delayed-inode.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include <linux/iversion.h>
  21. #include "delayed-inode.h"
  22. #include "disk-io.h"
  23. #include "transaction.h"
  24. #include "ctree.h"
  25. #define BTRFS_DELAYED_WRITEBACK 512
  26. #define BTRFS_DELAYED_BACKGROUND 128
  27. #define BTRFS_DELAYED_BATCH 16
  28. static struct kmem_cache *delayed_node_cache;
  29. int __init btrfs_delayed_inode_init(void)
  30. {
  31. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  32. sizeof(struct btrfs_delayed_node),
  33. 0,
  34. SLAB_MEM_SPREAD,
  35. NULL);
  36. if (!delayed_node_cache)
  37. return -ENOMEM;
  38. return 0;
  39. }
  40. void btrfs_delayed_inode_exit(void)
  41. {
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. refcount_set(&delayed_node->refs, 0);
  51. delayed_node->ins_root = RB_ROOT;
  52. delayed_node->del_root = RB_ROOT;
  53. mutex_init(&delayed_node->mutex);
  54. INIT_LIST_HEAD(&delayed_node->n_list);
  55. INIT_LIST_HEAD(&delayed_node->p_list);
  56. }
  57. static inline int btrfs_is_continuous_delayed_item(
  58. struct btrfs_delayed_item *item1,
  59. struct btrfs_delayed_item *item2)
  60. {
  61. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  62. item1->key.objectid == item2->key.objectid &&
  63. item1->key.type == item2->key.type &&
  64. item1->key.offset + 1 == item2->key.offset)
  65. return 1;
  66. return 0;
  67. }
  68. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  69. struct btrfs_inode *btrfs_inode)
  70. {
  71. struct btrfs_root *root = btrfs_inode->root;
  72. u64 ino = btrfs_ino(btrfs_inode);
  73. struct btrfs_delayed_node *node;
  74. node = READ_ONCE(btrfs_inode->delayed_node);
  75. if (node) {
  76. refcount_inc(&node->refs);
  77. return node;
  78. }
  79. spin_lock(&root->inode_lock);
  80. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  81. if (node) {
  82. if (btrfs_inode->delayed_node) {
  83. refcount_inc(&node->refs); /* can be accessed */
  84. BUG_ON(btrfs_inode->delayed_node != node);
  85. spin_unlock(&root->inode_lock);
  86. return node;
  87. }
  88. /*
  89. * It's possible that we're racing into the middle of removing
  90. * this node from the radix tree. In this case, the refcount
  91. * was zero and it should never go back to one. Just return
  92. * NULL like it was never in the radix at all; our release
  93. * function is in the process of removing it.
  94. *
  95. * Some implementations of refcount_inc refuse to bump the
  96. * refcount once it has hit zero. If we don't do this dance
  97. * here, refcount_inc() may decide to just WARN_ONCE() instead
  98. * of actually bumping the refcount.
  99. *
  100. * If this node is properly in the radix, we want to bump the
  101. * refcount twice, once for the inode and once for this get
  102. * operation.
  103. */
  104. if (refcount_inc_not_zero(&node->refs)) {
  105. refcount_inc(&node->refs);
  106. btrfs_inode->delayed_node = node;
  107. } else {
  108. node = NULL;
  109. }
  110. spin_unlock(&root->inode_lock);
  111. return node;
  112. }
  113. spin_unlock(&root->inode_lock);
  114. return NULL;
  115. }
  116. /* Will return either the node or PTR_ERR(-ENOMEM) */
  117. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  118. struct btrfs_inode *btrfs_inode)
  119. {
  120. struct btrfs_delayed_node *node;
  121. struct btrfs_root *root = btrfs_inode->root;
  122. u64 ino = btrfs_ino(btrfs_inode);
  123. int ret;
  124. again:
  125. node = btrfs_get_delayed_node(btrfs_inode);
  126. if (node)
  127. return node;
  128. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  129. if (!node)
  130. return ERR_PTR(-ENOMEM);
  131. btrfs_init_delayed_node(node, root, ino);
  132. /* cached in the btrfs inode and can be accessed */
  133. refcount_set(&node->refs, 2);
  134. ret = radix_tree_preload(GFP_NOFS);
  135. if (ret) {
  136. kmem_cache_free(delayed_node_cache, node);
  137. return ERR_PTR(ret);
  138. }
  139. spin_lock(&root->inode_lock);
  140. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  141. if (ret == -EEXIST) {
  142. spin_unlock(&root->inode_lock);
  143. kmem_cache_free(delayed_node_cache, node);
  144. radix_tree_preload_end();
  145. goto again;
  146. }
  147. btrfs_inode->delayed_node = node;
  148. spin_unlock(&root->inode_lock);
  149. radix_tree_preload_end();
  150. return node;
  151. }
  152. /*
  153. * Call it when holding delayed_node->mutex
  154. *
  155. * If mod = 1, add this node into the prepared list.
  156. */
  157. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  158. struct btrfs_delayed_node *node,
  159. int mod)
  160. {
  161. spin_lock(&root->lock);
  162. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  163. if (!list_empty(&node->p_list))
  164. list_move_tail(&node->p_list, &root->prepare_list);
  165. else if (mod)
  166. list_add_tail(&node->p_list, &root->prepare_list);
  167. } else {
  168. list_add_tail(&node->n_list, &root->node_list);
  169. list_add_tail(&node->p_list, &root->prepare_list);
  170. refcount_inc(&node->refs); /* inserted into list */
  171. root->nodes++;
  172. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  173. }
  174. spin_unlock(&root->lock);
  175. }
  176. /* Call it when holding delayed_node->mutex */
  177. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  178. struct btrfs_delayed_node *node)
  179. {
  180. spin_lock(&root->lock);
  181. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  182. root->nodes--;
  183. refcount_dec(&node->refs); /* not in the list */
  184. list_del_init(&node->n_list);
  185. if (!list_empty(&node->p_list))
  186. list_del_init(&node->p_list);
  187. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  188. }
  189. spin_unlock(&root->lock);
  190. }
  191. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  192. struct btrfs_delayed_root *delayed_root)
  193. {
  194. struct list_head *p;
  195. struct btrfs_delayed_node *node = NULL;
  196. spin_lock(&delayed_root->lock);
  197. if (list_empty(&delayed_root->node_list))
  198. goto out;
  199. p = delayed_root->node_list.next;
  200. node = list_entry(p, struct btrfs_delayed_node, n_list);
  201. refcount_inc(&node->refs);
  202. out:
  203. spin_unlock(&delayed_root->lock);
  204. return node;
  205. }
  206. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  207. struct btrfs_delayed_node *node)
  208. {
  209. struct btrfs_delayed_root *delayed_root;
  210. struct list_head *p;
  211. struct btrfs_delayed_node *next = NULL;
  212. delayed_root = node->root->fs_info->delayed_root;
  213. spin_lock(&delayed_root->lock);
  214. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  215. /* not in the list */
  216. if (list_empty(&delayed_root->node_list))
  217. goto out;
  218. p = delayed_root->node_list.next;
  219. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  220. goto out;
  221. else
  222. p = node->n_list.next;
  223. next = list_entry(p, struct btrfs_delayed_node, n_list);
  224. refcount_inc(&next->refs);
  225. out:
  226. spin_unlock(&delayed_root->lock);
  227. return next;
  228. }
  229. static void __btrfs_release_delayed_node(
  230. struct btrfs_delayed_node *delayed_node,
  231. int mod)
  232. {
  233. struct btrfs_delayed_root *delayed_root;
  234. if (!delayed_node)
  235. return;
  236. delayed_root = delayed_node->root->fs_info->delayed_root;
  237. mutex_lock(&delayed_node->mutex);
  238. if (delayed_node->count)
  239. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  240. else
  241. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  242. mutex_unlock(&delayed_node->mutex);
  243. if (refcount_dec_and_test(&delayed_node->refs)) {
  244. struct btrfs_root *root = delayed_node->root;
  245. spin_lock(&root->inode_lock);
  246. /*
  247. * Once our refcount goes to zero, nobody is allowed to bump it
  248. * back up. We can delete it now.
  249. */
  250. ASSERT(refcount_read(&delayed_node->refs) == 0);
  251. radix_tree_delete(&root->delayed_nodes_tree,
  252. delayed_node->inode_id);
  253. spin_unlock(&root->inode_lock);
  254. kmem_cache_free(delayed_node_cache, delayed_node);
  255. }
  256. }
  257. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  258. {
  259. __btrfs_release_delayed_node(node, 0);
  260. }
  261. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  262. struct btrfs_delayed_root *delayed_root)
  263. {
  264. struct list_head *p;
  265. struct btrfs_delayed_node *node = NULL;
  266. spin_lock(&delayed_root->lock);
  267. if (list_empty(&delayed_root->prepare_list))
  268. goto out;
  269. p = delayed_root->prepare_list.next;
  270. list_del_init(p);
  271. node = list_entry(p, struct btrfs_delayed_node, p_list);
  272. refcount_inc(&node->refs);
  273. out:
  274. spin_unlock(&delayed_root->lock);
  275. return node;
  276. }
  277. static inline void btrfs_release_prepared_delayed_node(
  278. struct btrfs_delayed_node *node)
  279. {
  280. __btrfs_release_delayed_node(node, 1);
  281. }
  282. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  283. {
  284. struct btrfs_delayed_item *item;
  285. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  286. if (item) {
  287. item->data_len = data_len;
  288. item->ins_or_del = 0;
  289. item->bytes_reserved = 0;
  290. item->delayed_node = NULL;
  291. refcount_set(&item->refs, 1);
  292. }
  293. return item;
  294. }
  295. /*
  296. * __btrfs_lookup_delayed_item - look up the delayed item by key
  297. * @delayed_node: pointer to the delayed node
  298. * @key: the key to look up
  299. * @prev: used to store the prev item if the right item isn't found
  300. * @next: used to store the next item if the right item isn't found
  301. *
  302. * Note: if we don't find the right item, we will return the prev item and
  303. * the next item.
  304. */
  305. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  306. struct rb_root *root,
  307. struct btrfs_key *key,
  308. struct btrfs_delayed_item **prev,
  309. struct btrfs_delayed_item **next)
  310. {
  311. struct rb_node *node, *prev_node = NULL;
  312. struct btrfs_delayed_item *delayed_item = NULL;
  313. int ret = 0;
  314. node = root->rb_node;
  315. while (node) {
  316. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  317. rb_node);
  318. prev_node = node;
  319. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  320. if (ret < 0)
  321. node = node->rb_right;
  322. else if (ret > 0)
  323. node = node->rb_left;
  324. else
  325. return delayed_item;
  326. }
  327. if (prev) {
  328. if (!prev_node)
  329. *prev = NULL;
  330. else if (ret < 0)
  331. *prev = delayed_item;
  332. else if ((node = rb_prev(prev_node)) != NULL) {
  333. *prev = rb_entry(node, struct btrfs_delayed_item,
  334. rb_node);
  335. } else
  336. *prev = NULL;
  337. }
  338. if (next) {
  339. if (!prev_node)
  340. *next = NULL;
  341. else if (ret > 0)
  342. *next = delayed_item;
  343. else if ((node = rb_next(prev_node)) != NULL) {
  344. *next = rb_entry(node, struct btrfs_delayed_item,
  345. rb_node);
  346. } else
  347. *next = NULL;
  348. }
  349. return NULL;
  350. }
  351. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  352. struct btrfs_delayed_node *delayed_node,
  353. struct btrfs_key *key)
  354. {
  355. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  356. NULL, NULL);
  357. }
  358. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  359. struct btrfs_delayed_item *ins,
  360. int action)
  361. {
  362. struct rb_node **p, *node;
  363. struct rb_node *parent_node = NULL;
  364. struct rb_root *root;
  365. struct btrfs_delayed_item *item;
  366. int cmp;
  367. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  368. root = &delayed_node->ins_root;
  369. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  370. root = &delayed_node->del_root;
  371. else
  372. BUG();
  373. p = &root->rb_node;
  374. node = &ins->rb_node;
  375. while (*p) {
  376. parent_node = *p;
  377. item = rb_entry(parent_node, struct btrfs_delayed_item,
  378. rb_node);
  379. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  380. if (cmp < 0)
  381. p = &(*p)->rb_right;
  382. else if (cmp > 0)
  383. p = &(*p)->rb_left;
  384. else
  385. return -EEXIST;
  386. }
  387. rb_link_node(node, parent_node, p);
  388. rb_insert_color(node, root);
  389. ins->delayed_node = delayed_node;
  390. ins->ins_or_del = action;
  391. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  392. action == BTRFS_DELAYED_INSERTION_ITEM &&
  393. ins->key.offset >= delayed_node->index_cnt)
  394. delayed_node->index_cnt = ins->key.offset + 1;
  395. delayed_node->count++;
  396. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  397. return 0;
  398. }
  399. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  400. struct btrfs_delayed_item *item)
  401. {
  402. return __btrfs_add_delayed_item(node, item,
  403. BTRFS_DELAYED_INSERTION_ITEM);
  404. }
  405. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  406. struct btrfs_delayed_item *item)
  407. {
  408. return __btrfs_add_delayed_item(node, item,
  409. BTRFS_DELAYED_DELETION_ITEM);
  410. }
  411. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  412. {
  413. int seq = atomic_inc_return(&delayed_root->items_seq);
  414. /*
  415. * atomic_dec_return implies a barrier for waitqueue_active
  416. */
  417. if ((atomic_dec_return(&delayed_root->items) <
  418. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  419. waitqueue_active(&delayed_root->wait))
  420. wake_up(&delayed_root->wait);
  421. }
  422. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  423. {
  424. struct rb_root *root;
  425. struct btrfs_delayed_root *delayed_root;
  426. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  427. BUG_ON(!delayed_root);
  428. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  429. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  430. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  431. root = &delayed_item->delayed_node->ins_root;
  432. else
  433. root = &delayed_item->delayed_node->del_root;
  434. rb_erase(&delayed_item->rb_node, root);
  435. delayed_item->delayed_node->count--;
  436. finish_one_item(delayed_root);
  437. }
  438. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  439. {
  440. if (item) {
  441. __btrfs_remove_delayed_item(item);
  442. if (refcount_dec_and_test(&item->refs))
  443. kfree(item);
  444. }
  445. }
  446. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  447. struct btrfs_delayed_node *delayed_node)
  448. {
  449. struct rb_node *p;
  450. struct btrfs_delayed_item *item = NULL;
  451. p = rb_first(&delayed_node->ins_root);
  452. if (p)
  453. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  454. return item;
  455. }
  456. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  457. struct btrfs_delayed_node *delayed_node)
  458. {
  459. struct rb_node *p;
  460. struct btrfs_delayed_item *item = NULL;
  461. p = rb_first(&delayed_node->del_root);
  462. if (p)
  463. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  464. return item;
  465. }
  466. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  467. struct btrfs_delayed_item *item)
  468. {
  469. struct rb_node *p;
  470. struct btrfs_delayed_item *next = NULL;
  471. p = rb_next(&item->rb_node);
  472. if (p)
  473. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  474. return next;
  475. }
  476. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  477. struct btrfs_fs_info *fs_info,
  478. struct btrfs_delayed_item *item)
  479. {
  480. struct btrfs_block_rsv *src_rsv;
  481. struct btrfs_block_rsv *dst_rsv;
  482. u64 num_bytes;
  483. int ret;
  484. if (!trans->bytes_reserved)
  485. return 0;
  486. src_rsv = trans->block_rsv;
  487. dst_rsv = &fs_info->delayed_block_rsv;
  488. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  489. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  490. if (!ret) {
  491. trace_btrfs_space_reservation(fs_info, "delayed_item",
  492. item->key.objectid,
  493. num_bytes, 1);
  494. item->bytes_reserved = num_bytes;
  495. }
  496. return ret;
  497. }
  498. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  499. struct btrfs_delayed_item *item)
  500. {
  501. struct btrfs_block_rsv *rsv;
  502. if (!item->bytes_reserved)
  503. return;
  504. rsv = &fs_info->delayed_block_rsv;
  505. trace_btrfs_space_reservation(fs_info, "delayed_item",
  506. item->key.objectid, item->bytes_reserved,
  507. 0);
  508. btrfs_block_rsv_release(fs_info, rsv,
  509. item->bytes_reserved);
  510. }
  511. static int btrfs_delayed_inode_reserve_metadata(
  512. struct btrfs_trans_handle *trans,
  513. struct btrfs_root *root,
  514. struct btrfs_inode *inode,
  515. struct btrfs_delayed_node *node)
  516. {
  517. struct btrfs_fs_info *fs_info = root->fs_info;
  518. struct btrfs_block_rsv *src_rsv;
  519. struct btrfs_block_rsv *dst_rsv;
  520. u64 num_bytes;
  521. int ret;
  522. src_rsv = trans->block_rsv;
  523. dst_rsv = &fs_info->delayed_block_rsv;
  524. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  525. /*
  526. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  527. * which doesn't reserve space for speed. This is a problem since we
  528. * still need to reserve space for this update, so try to reserve the
  529. * space.
  530. *
  531. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  532. * we always reserve enough to update the inode item.
  533. */
  534. if (!src_rsv || (!trans->bytes_reserved &&
  535. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  536. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  537. BTRFS_RESERVE_NO_FLUSH);
  538. /*
  539. * Since we're under a transaction reserve_metadata_bytes could
  540. * try to commit the transaction which will make it return
  541. * EAGAIN to make us stop the transaction we have, so return
  542. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  543. */
  544. if (ret == -EAGAIN)
  545. ret = -ENOSPC;
  546. if (!ret) {
  547. node->bytes_reserved = num_bytes;
  548. trace_btrfs_space_reservation(fs_info,
  549. "delayed_inode",
  550. btrfs_ino(inode),
  551. num_bytes, 1);
  552. }
  553. return ret;
  554. }
  555. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  556. if (!ret) {
  557. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  558. btrfs_ino(inode), num_bytes, 1);
  559. node->bytes_reserved = num_bytes;
  560. }
  561. return ret;
  562. }
  563. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  564. struct btrfs_delayed_node *node)
  565. {
  566. struct btrfs_block_rsv *rsv;
  567. if (!node->bytes_reserved)
  568. return;
  569. rsv = &fs_info->delayed_block_rsv;
  570. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  571. node->inode_id, node->bytes_reserved, 0);
  572. btrfs_block_rsv_release(fs_info, rsv,
  573. node->bytes_reserved);
  574. node->bytes_reserved = 0;
  575. }
  576. /*
  577. * This helper will insert some continuous items into the same leaf according
  578. * to the free space of the leaf.
  579. */
  580. static int btrfs_batch_insert_items(struct btrfs_root *root,
  581. struct btrfs_path *path,
  582. struct btrfs_delayed_item *item)
  583. {
  584. struct btrfs_fs_info *fs_info = root->fs_info;
  585. struct btrfs_delayed_item *curr, *next;
  586. int free_space;
  587. int total_data_size = 0, total_size = 0;
  588. struct extent_buffer *leaf;
  589. char *data_ptr;
  590. struct btrfs_key *keys;
  591. u32 *data_size;
  592. struct list_head head;
  593. int slot;
  594. int nitems;
  595. int i;
  596. int ret = 0;
  597. BUG_ON(!path->nodes[0]);
  598. leaf = path->nodes[0];
  599. free_space = btrfs_leaf_free_space(fs_info, leaf);
  600. INIT_LIST_HEAD(&head);
  601. next = item;
  602. nitems = 0;
  603. /*
  604. * count the number of the continuous items that we can insert in batch
  605. */
  606. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  607. free_space) {
  608. total_data_size += next->data_len;
  609. total_size += next->data_len + sizeof(struct btrfs_item);
  610. list_add_tail(&next->tree_list, &head);
  611. nitems++;
  612. curr = next;
  613. next = __btrfs_next_delayed_item(curr);
  614. if (!next)
  615. break;
  616. if (!btrfs_is_continuous_delayed_item(curr, next))
  617. break;
  618. }
  619. if (!nitems) {
  620. ret = 0;
  621. goto out;
  622. }
  623. /*
  624. * we need allocate some memory space, but it might cause the task
  625. * to sleep, so we set all locked nodes in the path to blocking locks
  626. * first.
  627. */
  628. btrfs_set_path_blocking(path);
  629. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  630. if (!keys) {
  631. ret = -ENOMEM;
  632. goto out;
  633. }
  634. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  635. if (!data_size) {
  636. ret = -ENOMEM;
  637. goto error;
  638. }
  639. /* get keys of all the delayed items */
  640. i = 0;
  641. list_for_each_entry(next, &head, tree_list) {
  642. keys[i] = next->key;
  643. data_size[i] = next->data_len;
  644. i++;
  645. }
  646. /* reset all the locked nodes in the patch to spinning locks. */
  647. btrfs_clear_path_blocking(path, NULL, 0);
  648. /* insert the keys of the items */
  649. setup_items_for_insert(root, path, keys, data_size,
  650. total_data_size, total_size, nitems);
  651. /* insert the dir index items */
  652. slot = path->slots[0];
  653. list_for_each_entry_safe(curr, next, &head, tree_list) {
  654. data_ptr = btrfs_item_ptr(leaf, slot, char);
  655. write_extent_buffer(leaf, &curr->data,
  656. (unsigned long)data_ptr,
  657. curr->data_len);
  658. slot++;
  659. btrfs_delayed_item_release_metadata(fs_info, curr);
  660. list_del(&curr->tree_list);
  661. btrfs_release_delayed_item(curr);
  662. }
  663. error:
  664. kfree(data_size);
  665. kfree(keys);
  666. out:
  667. return ret;
  668. }
  669. /*
  670. * This helper can just do simple insertion that needn't extend item for new
  671. * data, such as directory name index insertion, inode insertion.
  672. */
  673. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  674. struct btrfs_root *root,
  675. struct btrfs_path *path,
  676. struct btrfs_delayed_item *delayed_item)
  677. {
  678. struct btrfs_fs_info *fs_info = root->fs_info;
  679. struct extent_buffer *leaf;
  680. char *ptr;
  681. int ret;
  682. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  683. delayed_item->data_len);
  684. if (ret < 0 && ret != -EEXIST)
  685. return ret;
  686. leaf = path->nodes[0];
  687. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  688. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  689. delayed_item->data_len);
  690. btrfs_mark_buffer_dirty(leaf);
  691. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  692. return 0;
  693. }
  694. /*
  695. * we insert an item first, then if there are some continuous items, we try
  696. * to insert those items into the same leaf.
  697. */
  698. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  699. struct btrfs_path *path,
  700. struct btrfs_root *root,
  701. struct btrfs_delayed_node *node)
  702. {
  703. struct btrfs_delayed_item *curr, *prev;
  704. int ret = 0;
  705. do_again:
  706. mutex_lock(&node->mutex);
  707. curr = __btrfs_first_delayed_insertion_item(node);
  708. if (!curr)
  709. goto insert_end;
  710. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  711. if (ret < 0) {
  712. btrfs_release_path(path);
  713. goto insert_end;
  714. }
  715. prev = curr;
  716. curr = __btrfs_next_delayed_item(prev);
  717. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  718. /* insert the continuous items into the same leaf */
  719. path->slots[0]++;
  720. btrfs_batch_insert_items(root, path, curr);
  721. }
  722. btrfs_release_delayed_item(prev);
  723. btrfs_mark_buffer_dirty(path->nodes[0]);
  724. btrfs_release_path(path);
  725. mutex_unlock(&node->mutex);
  726. goto do_again;
  727. insert_end:
  728. mutex_unlock(&node->mutex);
  729. return ret;
  730. }
  731. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  732. struct btrfs_root *root,
  733. struct btrfs_path *path,
  734. struct btrfs_delayed_item *item)
  735. {
  736. struct btrfs_fs_info *fs_info = root->fs_info;
  737. struct btrfs_delayed_item *curr, *next;
  738. struct extent_buffer *leaf;
  739. struct btrfs_key key;
  740. struct list_head head;
  741. int nitems, i, last_item;
  742. int ret = 0;
  743. BUG_ON(!path->nodes[0]);
  744. leaf = path->nodes[0];
  745. i = path->slots[0];
  746. last_item = btrfs_header_nritems(leaf) - 1;
  747. if (i > last_item)
  748. return -ENOENT; /* FIXME: Is errno suitable? */
  749. next = item;
  750. INIT_LIST_HEAD(&head);
  751. btrfs_item_key_to_cpu(leaf, &key, i);
  752. nitems = 0;
  753. /*
  754. * count the number of the dir index items that we can delete in batch
  755. */
  756. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  757. list_add_tail(&next->tree_list, &head);
  758. nitems++;
  759. curr = next;
  760. next = __btrfs_next_delayed_item(curr);
  761. if (!next)
  762. break;
  763. if (!btrfs_is_continuous_delayed_item(curr, next))
  764. break;
  765. i++;
  766. if (i > last_item)
  767. break;
  768. btrfs_item_key_to_cpu(leaf, &key, i);
  769. }
  770. if (!nitems)
  771. return 0;
  772. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  773. if (ret)
  774. goto out;
  775. list_for_each_entry_safe(curr, next, &head, tree_list) {
  776. btrfs_delayed_item_release_metadata(fs_info, curr);
  777. list_del(&curr->tree_list);
  778. btrfs_release_delayed_item(curr);
  779. }
  780. out:
  781. return ret;
  782. }
  783. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  784. struct btrfs_path *path,
  785. struct btrfs_root *root,
  786. struct btrfs_delayed_node *node)
  787. {
  788. struct btrfs_delayed_item *curr, *prev;
  789. int ret = 0;
  790. do_again:
  791. mutex_lock(&node->mutex);
  792. curr = __btrfs_first_delayed_deletion_item(node);
  793. if (!curr)
  794. goto delete_fail;
  795. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  796. if (ret < 0)
  797. goto delete_fail;
  798. else if (ret > 0) {
  799. /*
  800. * can't find the item which the node points to, so this node
  801. * is invalid, just drop it.
  802. */
  803. prev = curr;
  804. curr = __btrfs_next_delayed_item(prev);
  805. btrfs_release_delayed_item(prev);
  806. ret = 0;
  807. btrfs_release_path(path);
  808. if (curr) {
  809. mutex_unlock(&node->mutex);
  810. goto do_again;
  811. } else
  812. goto delete_fail;
  813. }
  814. btrfs_batch_delete_items(trans, root, path, curr);
  815. btrfs_release_path(path);
  816. mutex_unlock(&node->mutex);
  817. goto do_again;
  818. delete_fail:
  819. btrfs_release_path(path);
  820. mutex_unlock(&node->mutex);
  821. return ret;
  822. }
  823. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  824. {
  825. struct btrfs_delayed_root *delayed_root;
  826. if (delayed_node &&
  827. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  828. BUG_ON(!delayed_node->root);
  829. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  830. delayed_node->count--;
  831. delayed_root = delayed_node->root->fs_info->delayed_root;
  832. finish_one_item(delayed_root);
  833. }
  834. }
  835. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  836. {
  837. struct btrfs_delayed_root *delayed_root;
  838. ASSERT(delayed_node->root);
  839. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  840. delayed_node->count--;
  841. delayed_root = delayed_node->root->fs_info->delayed_root;
  842. finish_one_item(delayed_root);
  843. }
  844. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  845. struct btrfs_root *root,
  846. struct btrfs_path *path,
  847. struct btrfs_delayed_node *node)
  848. {
  849. struct btrfs_fs_info *fs_info = root->fs_info;
  850. struct btrfs_key key;
  851. struct btrfs_inode_item *inode_item;
  852. struct extent_buffer *leaf;
  853. int mod;
  854. int ret;
  855. key.objectid = node->inode_id;
  856. key.type = BTRFS_INODE_ITEM_KEY;
  857. key.offset = 0;
  858. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  859. mod = -1;
  860. else
  861. mod = 1;
  862. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  863. if (ret > 0) {
  864. btrfs_release_path(path);
  865. return -ENOENT;
  866. } else if (ret < 0) {
  867. return ret;
  868. }
  869. leaf = path->nodes[0];
  870. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  871. struct btrfs_inode_item);
  872. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  873. sizeof(struct btrfs_inode_item));
  874. btrfs_mark_buffer_dirty(leaf);
  875. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  876. goto no_iref;
  877. path->slots[0]++;
  878. if (path->slots[0] >= btrfs_header_nritems(leaf))
  879. goto search;
  880. again:
  881. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  882. if (key.objectid != node->inode_id)
  883. goto out;
  884. if (key.type != BTRFS_INODE_REF_KEY &&
  885. key.type != BTRFS_INODE_EXTREF_KEY)
  886. goto out;
  887. /*
  888. * Delayed iref deletion is for the inode who has only one link,
  889. * so there is only one iref. The case that several irefs are
  890. * in the same item doesn't exist.
  891. */
  892. btrfs_del_item(trans, root, path);
  893. out:
  894. btrfs_release_delayed_iref(node);
  895. no_iref:
  896. btrfs_release_path(path);
  897. err_out:
  898. btrfs_delayed_inode_release_metadata(fs_info, node);
  899. btrfs_release_delayed_inode(node);
  900. return ret;
  901. search:
  902. btrfs_release_path(path);
  903. key.type = BTRFS_INODE_EXTREF_KEY;
  904. key.offset = -1;
  905. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  906. if (ret < 0)
  907. goto err_out;
  908. ASSERT(ret);
  909. ret = 0;
  910. leaf = path->nodes[0];
  911. path->slots[0]--;
  912. goto again;
  913. }
  914. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  915. struct btrfs_root *root,
  916. struct btrfs_path *path,
  917. struct btrfs_delayed_node *node)
  918. {
  919. int ret;
  920. mutex_lock(&node->mutex);
  921. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  922. mutex_unlock(&node->mutex);
  923. return 0;
  924. }
  925. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  926. mutex_unlock(&node->mutex);
  927. return ret;
  928. }
  929. static inline int
  930. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  931. struct btrfs_path *path,
  932. struct btrfs_delayed_node *node)
  933. {
  934. int ret;
  935. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  936. if (ret)
  937. return ret;
  938. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  939. if (ret)
  940. return ret;
  941. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  942. return ret;
  943. }
  944. /*
  945. * Called when committing the transaction.
  946. * Returns 0 on success.
  947. * Returns < 0 on error and returns with an aborted transaction with any
  948. * outstanding delayed items cleaned up.
  949. */
  950. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  951. struct btrfs_fs_info *fs_info, int nr)
  952. {
  953. struct btrfs_delayed_root *delayed_root;
  954. struct btrfs_delayed_node *curr_node, *prev_node;
  955. struct btrfs_path *path;
  956. struct btrfs_block_rsv *block_rsv;
  957. int ret = 0;
  958. bool count = (nr > 0);
  959. if (trans->aborted)
  960. return -EIO;
  961. path = btrfs_alloc_path();
  962. if (!path)
  963. return -ENOMEM;
  964. path->leave_spinning = 1;
  965. block_rsv = trans->block_rsv;
  966. trans->block_rsv = &fs_info->delayed_block_rsv;
  967. delayed_root = fs_info->delayed_root;
  968. curr_node = btrfs_first_delayed_node(delayed_root);
  969. while (curr_node && (!count || (count && nr--))) {
  970. ret = __btrfs_commit_inode_delayed_items(trans, path,
  971. curr_node);
  972. if (ret) {
  973. btrfs_release_delayed_node(curr_node);
  974. curr_node = NULL;
  975. btrfs_abort_transaction(trans, ret);
  976. break;
  977. }
  978. prev_node = curr_node;
  979. curr_node = btrfs_next_delayed_node(curr_node);
  980. btrfs_release_delayed_node(prev_node);
  981. }
  982. if (curr_node)
  983. btrfs_release_delayed_node(curr_node);
  984. btrfs_free_path(path);
  985. trans->block_rsv = block_rsv;
  986. return ret;
  987. }
  988. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  989. struct btrfs_fs_info *fs_info)
  990. {
  991. return __btrfs_run_delayed_items(trans, fs_info, -1);
  992. }
  993. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  994. struct btrfs_fs_info *fs_info, int nr)
  995. {
  996. return __btrfs_run_delayed_items(trans, fs_info, nr);
  997. }
  998. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  999. struct btrfs_inode *inode)
  1000. {
  1001. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1002. struct btrfs_path *path;
  1003. struct btrfs_block_rsv *block_rsv;
  1004. int ret;
  1005. if (!delayed_node)
  1006. return 0;
  1007. mutex_lock(&delayed_node->mutex);
  1008. if (!delayed_node->count) {
  1009. mutex_unlock(&delayed_node->mutex);
  1010. btrfs_release_delayed_node(delayed_node);
  1011. return 0;
  1012. }
  1013. mutex_unlock(&delayed_node->mutex);
  1014. path = btrfs_alloc_path();
  1015. if (!path) {
  1016. btrfs_release_delayed_node(delayed_node);
  1017. return -ENOMEM;
  1018. }
  1019. path->leave_spinning = 1;
  1020. block_rsv = trans->block_rsv;
  1021. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1022. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1023. btrfs_release_delayed_node(delayed_node);
  1024. btrfs_free_path(path);
  1025. trans->block_rsv = block_rsv;
  1026. return ret;
  1027. }
  1028. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1029. {
  1030. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1031. struct btrfs_trans_handle *trans;
  1032. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1033. struct btrfs_path *path;
  1034. struct btrfs_block_rsv *block_rsv;
  1035. int ret;
  1036. if (!delayed_node)
  1037. return 0;
  1038. mutex_lock(&delayed_node->mutex);
  1039. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1040. mutex_unlock(&delayed_node->mutex);
  1041. btrfs_release_delayed_node(delayed_node);
  1042. return 0;
  1043. }
  1044. mutex_unlock(&delayed_node->mutex);
  1045. trans = btrfs_join_transaction(delayed_node->root);
  1046. if (IS_ERR(trans)) {
  1047. ret = PTR_ERR(trans);
  1048. goto out;
  1049. }
  1050. path = btrfs_alloc_path();
  1051. if (!path) {
  1052. ret = -ENOMEM;
  1053. goto trans_out;
  1054. }
  1055. path->leave_spinning = 1;
  1056. block_rsv = trans->block_rsv;
  1057. trans->block_rsv = &fs_info->delayed_block_rsv;
  1058. mutex_lock(&delayed_node->mutex);
  1059. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1060. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1061. path, delayed_node);
  1062. else
  1063. ret = 0;
  1064. mutex_unlock(&delayed_node->mutex);
  1065. btrfs_free_path(path);
  1066. trans->block_rsv = block_rsv;
  1067. trans_out:
  1068. btrfs_end_transaction(trans);
  1069. btrfs_btree_balance_dirty(fs_info);
  1070. out:
  1071. btrfs_release_delayed_node(delayed_node);
  1072. return ret;
  1073. }
  1074. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1075. {
  1076. struct btrfs_delayed_node *delayed_node;
  1077. delayed_node = READ_ONCE(inode->delayed_node);
  1078. if (!delayed_node)
  1079. return;
  1080. inode->delayed_node = NULL;
  1081. btrfs_release_delayed_node(delayed_node);
  1082. }
  1083. struct btrfs_async_delayed_work {
  1084. struct btrfs_delayed_root *delayed_root;
  1085. int nr;
  1086. struct btrfs_work work;
  1087. };
  1088. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1089. {
  1090. struct btrfs_async_delayed_work *async_work;
  1091. struct btrfs_delayed_root *delayed_root;
  1092. struct btrfs_trans_handle *trans;
  1093. struct btrfs_path *path;
  1094. struct btrfs_delayed_node *delayed_node = NULL;
  1095. struct btrfs_root *root;
  1096. struct btrfs_block_rsv *block_rsv;
  1097. int total_done = 0;
  1098. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1099. delayed_root = async_work->delayed_root;
  1100. path = btrfs_alloc_path();
  1101. if (!path)
  1102. goto out;
  1103. do {
  1104. if (atomic_read(&delayed_root->items) <
  1105. BTRFS_DELAYED_BACKGROUND / 2)
  1106. break;
  1107. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1108. if (!delayed_node)
  1109. break;
  1110. path->leave_spinning = 1;
  1111. root = delayed_node->root;
  1112. trans = btrfs_join_transaction(root);
  1113. if (IS_ERR(trans)) {
  1114. btrfs_release_path(path);
  1115. btrfs_release_prepared_delayed_node(delayed_node);
  1116. total_done++;
  1117. continue;
  1118. }
  1119. block_rsv = trans->block_rsv;
  1120. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1121. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1122. trans->block_rsv = block_rsv;
  1123. btrfs_end_transaction(trans);
  1124. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1125. btrfs_release_path(path);
  1126. btrfs_release_prepared_delayed_node(delayed_node);
  1127. total_done++;
  1128. } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
  1129. || total_done < async_work->nr);
  1130. btrfs_free_path(path);
  1131. out:
  1132. wake_up(&delayed_root->wait);
  1133. kfree(async_work);
  1134. }
  1135. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1136. struct btrfs_fs_info *fs_info, int nr)
  1137. {
  1138. struct btrfs_async_delayed_work *async_work;
  1139. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1140. if (!async_work)
  1141. return -ENOMEM;
  1142. async_work->delayed_root = delayed_root;
  1143. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1144. btrfs_async_run_delayed_root, NULL, NULL);
  1145. async_work->nr = nr;
  1146. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1147. return 0;
  1148. }
  1149. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1150. {
  1151. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1152. }
  1153. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1154. {
  1155. int val = atomic_read(&delayed_root->items_seq);
  1156. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1157. return 1;
  1158. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1159. return 1;
  1160. return 0;
  1161. }
  1162. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1163. {
  1164. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1165. if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
  1166. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1167. return;
  1168. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1169. int seq;
  1170. int ret;
  1171. seq = atomic_read(&delayed_root->items_seq);
  1172. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1173. if (ret)
  1174. return;
  1175. wait_event_interruptible(delayed_root->wait,
  1176. could_end_wait(delayed_root, seq));
  1177. return;
  1178. }
  1179. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1180. }
  1181. /* Will return 0 or -ENOMEM */
  1182. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1183. struct btrfs_fs_info *fs_info,
  1184. const char *name, int name_len,
  1185. struct btrfs_inode *dir,
  1186. struct btrfs_disk_key *disk_key, u8 type,
  1187. u64 index)
  1188. {
  1189. struct btrfs_delayed_node *delayed_node;
  1190. struct btrfs_delayed_item *delayed_item;
  1191. struct btrfs_dir_item *dir_item;
  1192. int ret;
  1193. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1194. if (IS_ERR(delayed_node))
  1195. return PTR_ERR(delayed_node);
  1196. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1197. if (!delayed_item) {
  1198. ret = -ENOMEM;
  1199. goto release_node;
  1200. }
  1201. delayed_item->key.objectid = btrfs_ino(dir);
  1202. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1203. delayed_item->key.offset = index;
  1204. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1205. dir_item->location = *disk_key;
  1206. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1207. btrfs_set_stack_dir_data_len(dir_item, 0);
  1208. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1209. btrfs_set_stack_dir_type(dir_item, type);
  1210. memcpy((char *)(dir_item + 1), name, name_len);
  1211. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1212. /*
  1213. * we have reserved enough space when we start a new transaction,
  1214. * so reserving metadata failure is impossible
  1215. */
  1216. BUG_ON(ret);
  1217. mutex_lock(&delayed_node->mutex);
  1218. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1219. if (unlikely(ret)) {
  1220. btrfs_err(fs_info,
  1221. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1222. name_len, name, delayed_node->root->objectid,
  1223. delayed_node->inode_id, ret);
  1224. BUG();
  1225. }
  1226. mutex_unlock(&delayed_node->mutex);
  1227. release_node:
  1228. btrfs_release_delayed_node(delayed_node);
  1229. return ret;
  1230. }
  1231. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1232. struct btrfs_delayed_node *node,
  1233. struct btrfs_key *key)
  1234. {
  1235. struct btrfs_delayed_item *item;
  1236. mutex_lock(&node->mutex);
  1237. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1238. if (!item) {
  1239. mutex_unlock(&node->mutex);
  1240. return 1;
  1241. }
  1242. btrfs_delayed_item_release_metadata(fs_info, item);
  1243. btrfs_release_delayed_item(item);
  1244. mutex_unlock(&node->mutex);
  1245. return 0;
  1246. }
  1247. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1248. struct btrfs_fs_info *fs_info,
  1249. struct btrfs_inode *dir, u64 index)
  1250. {
  1251. struct btrfs_delayed_node *node;
  1252. struct btrfs_delayed_item *item;
  1253. struct btrfs_key item_key;
  1254. int ret;
  1255. node = btrfs_get_or_create_delayed_node(dir);
  1256. if (IS_ERR(node))
  1257. return PTR_ERR(node);
  1258. item_key.objectid = btrfs_ino(dir);
  1259. item_key.type = BTRFS_DIR_INDEX_KEY;
  1260. item_key.offset = index;
  1261. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1262. if (!ret)
  1263. goto end;
  1264. item = btrfs_alloc_delayed_item(0);
  1265. if (!item) {
  1266. ret = -ENOMEM;
  1267. goto end;
  1268. }
  1269. item->key = item_key;
  1270. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1271. /*
  1272. * we have reserved enough space when we start a new transaction,
  1273. * so reserving metadata failure is impossible.
  1274. */
  1275. BUG_ON(ret);
  1276. mutex_lock(&node->mutex);
  1277. ret = __btrfs_add_delayed_deletion_item(node, item);
  1278. if (unlikely(ret)) {
  1279. btrfs_err(fs_info,
  1280. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1281. index, node->root->objectid, node->inode_id, ret);
  1282. BUG();
  1283. }
  1284. mutex_unlock(&node->mutex);
  1285. end:
  1286. btrfs_release_delayed_node(node);
  1287. return ret;
  1288. }
  1289. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1290. {
  1291. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1292. if (!delayed_node)
  1293. return -ENOENT;
  1294. /*
  1295. * Since we have held i_mutex of this directory, it is impossible that
  1296. * a new directory index is added into the delayed node and index_cnt
  1297. * is updated now. So we needn't lock the delayed node.
  1298. */
  1299. if (!delayed_node->index_cnt) {
  1300. btrfs_release_delayed_node(delayed_node);
  1301. return -EINVAL;
  1302. }
  1303. inode->index_cnt = delayed_node->index_cnt;
  1304. btrfs_release_delayed_node(delayed_node);
  1305. return 0;
  1306. }
  1307. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1308. struct list_head *ins_list,
  1309. struct list_head *del_list)
  1310. {
  1311. struct btrfs_delayed_node *delayed_node;
  1312. struct btrfs_delayed_item *item;
  1313. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1314. if (!delayed_node)
  1315. return false;
  1316. /*
  1317. * We can only do one readdir with delayed items at a time because of
  1318. * item->readdir_list.
  1319. */
  1320. inode_unlock_shared(inode);
  1321. inode_lock(inode);
  1322. mutex_lock(&delayed_node->mutex);
  1323. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1324. while (item) {
  1325. refcount_inc(&item->refs);
  1326. list_add_tail(&item->readdir_list, ins_list);
  1327. item = __btrfs_next_delayed_item(item);
  1328. }
  1329. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1330. while (item) {
  1331. refcount_inc(&item->refs);
  1332. list_add_tail(&item->readdir_list, del_list);
  1333. item = __btrfs_next_delayed_item(item);
  1334. }
  1335. mutex_unlock(&delayed_node->mutex);
  1336. /*
  1337. * This delayed node is still cached in the btrfs inode, so refs
  1338. * must be > 1 now, and we needn't check it is going to be freed
  1339. * or not.
  1340. *
  1341. * Besides that, this function is used to read dir, we do not
  1342. * insert/delete delayed items in this period. So we also needn't
  1343. * requeue or dequeue this delayed node.
  1344. */
  1345. refcount_dec(&delayed_node->refs);
  1346. return true;
  1347. }
  1348. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1349. struct list_head *ins_list,
  1350. struct list_head *del_list)
  1351. {
  1352. struct btrfs_delayed_item *curr, *next;
  1353. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1354. list_del(&curr->readdir_list);
  1355. if (refcount_dec_and_test(&curr->refs))
  1356. kfree(curr);
  1357. }
  1358. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1359. list_del(&curr->readdir_list);
  1360. if (refcount_dec_and_test(&curr->refs))
  1361. kfree(curr);
  1362. }
  1363. /*
  1364. * The VFS is going to do up_read(), so we need to downgrade back to a
  1365. * read lock.
  1366. */
  1367. downgrade_write(&inode->i_rwsem);
  1368. }
  1369. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1370. u64 index)
  1371. {
  1372. struct btrfs_delayed_item *curr;
  1373. int ret = 0;
  1374. list_for_each_entry(curr, del_list, readdir_list) {
  1375. if (curr->key.offset > index)
  1376. break;
  1377. if (curr->key.offset == index) {
  1378. ret = 1;
  1379. break;
  1380. }
  1381. }
  1382. return ret;
  1383. }
  1384. /*
  1385. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1386. *
  1387. */
  1388. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1389. struct list_head *ins_list)
  1390. {
  1391. struct btrfs_dir_item *di;
  1392. struct btrfs_delayed_item *curr, *next;
  1393. struct btrfs_key location;
  1394. char *name;
  1395. int name_len;
  1396. int over = 0;
  1397. unsigned char d_type;
  1398. if (list_empty(ins_list))
  1399. return 0;
  1400. /*
  1401. * Changing the data of the delayed item is impossible. So
  1402. * we needn't lock them. And we have held i_mutex of the
  1403. * directory, nobody can delete any directory indexes now.
  1404. */
  1405. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1406. list_del(&curr->readdir_list);
  1407. if (curr->key.offset < ctx->pos) {
  1408. if (refcount_dec_and_test(&curr->refs))
  1409. kfree(curr);
  1410. continue;
  1411. }
  1412. ctx->pos = curr->key.offset;
  1413. di = (struct btrfs_dir_item *)curr->data;
  1414. name = (char *)(di + 1);
  1415. name_len = btrfs_stack_dir_name_len(di);
  1416. d_type = btrfs_filetype_table[di->type];
  1417. btrfs_disk_key_to_cpu(&location, &di->location);
  1418. over = !dir_emit(ctx, name, name_len,
  1419. location.objectid, d_type);
  1420. if (refcount_dec_and_test(&curr->refs))
  1421. kfree(curr);
  1422. if (over)
  1423. return 1;
  1424. ctx->pos++;
  1425. }
  1426. return 0;
  1427. }
  1428. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1429. struct btrfs_inode_item *inode_item,
  1430. struct inode *inode)
  1431. {
  1432. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1433. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1434. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1435. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1436. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1437. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1438. btrfs_set_stack_inode_generation(inode_item,
  1439. BTRFS_I(inode)->generation);
  1440. btrfs_set_stack_inode_sequence(inode_item,
  1441. inode_peek_iversion(inode));
  1442. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1443. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1444. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1445. btrfs_set_stack_inode_block_group(inode_item, 0);
  1446. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1447. inode->i_atime.tv_sec);
  1448. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1449. inode->i_atime.tv_nsec);
  1450. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1451. inode->i_mtime.tv_sec);
  1452. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1453. inode->i_mtime.tv_nsec);
  1454. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1455. inode->i_ctime.tv_sec);
  1456. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1457. inode->i_ctime.tv_nsec);
  1458. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1459. BTRFS_I(inode)->i_otime.tv_sec);
  1460. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1461. BTRFS_I(inode)->i_otime.tv_nsec);
  1462. }
  1463. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1464. {
  1465. struct btrfs_delayed_node *delayed_node;
  1466. struct btrfs_inode_item *inode_item;
  1467. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1468. if (!delayed_node)
  1469. return -ENOENT;
  1470. mutex_lock(&delayed_node->mutex);
  1471. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1472. mutex_unlock(&delayed_node->mutex);
  1473. btrfs_release_delayed_node(delayed_node);
  1474. return -ENOENT;
  1475. }
  1476. inode_item = &delayed_node->inode_item;
  1477. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1478. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1479. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1480. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1481. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1482. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1483. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1484. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1485. inode_set_iversion_queried(inode,
  1486. btrfs_stack_inode_sequence(inode_item));
  1487. inode->i_rdev = 0;
  1488. *rdev = btrfs_stack_inode_rdev(inode_item);
  1489. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1490. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1491. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1492. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1493. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1494. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1495. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1496. BTRFS_I(inode)->i_otime.tv_sec =
  1497. btrfs_stack_timespec_sec(&inode_item->otime);
  1498. BTRFS_I(inode)->i_otime.tv_nsec =
  1499. btrfs_stack_timespec_nsec(&inode_item->otime);
  1500. inode->i_generation = BTRFS_I(inode)->generation;
  1501. BTRFS_I(inode)->index_cnt = (u64)-1;
  1502. mutex_unlock(&delayed_node->mutex);
  1503. btrfs_release_delayed_node(delayed_node);
  1504. return 0;
  1505. }
  1506. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1507. struct btrfs_root *root, struct inode *inode)
  1508. {
  1509. struct btrfs_delayed_node *delayed_node;
  1510. int ret = 0;
  1511. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1512. if (IS_ERR(delayed_node))
  1513. return PTR_ERR(delayed_node);
  1514. mutex_lock(&delayed_node->mutex);
  1515. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1516. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1517. goto release_node;
  1518. }
  1519. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1520. delayed_node);
  1521. if (ret)
  1522. goto release_node;
  1523. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1524. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1525. delayed_node->count++;
  1526. atomic_inc(&root->fs_info->delayed_root->items);
  1527. release_node:
  1528. mutex_unlock(&delayed_node->mutex);
  1529. btrfs_release_delayed_node(delayed_node);
  1530. return ret;
  1531. }
  1532. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1533. {
  1534. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1535. struct btrfs_delayed_node *delayed_node;
  1536. /*
  1537. * we don't do delayed inode updates during log recovery because it
  1538. * leads to enospc problems. This means we also can't do
  1539. * delayed inode refs
  1540. */
  1541. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1542. return -EAGAIN;
  1543. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1544. if (IS_ERR(delayed_node))
  1545. return PTR_ERR(delayed_node);
  1546. /*
  1547. * We don't reserve space for inode ref deletion is because:
  1548. * - We ONLY do async inode ref deletion for the inode who has only
  1549. * one link(i_nlink == 1), it means there is only one inode ref.
  1550. * And in most case, the inode ref and the inode item are in the
  1551. * same leaf, and we will deal with them at the same time.
  1552. * Since we are sure we will reserve the space for the inode item,
  1553. * it is unnecessary to reserve space for inode ref deletion.
  1554. * - If the inode ref and the inode item are not in the same leaf,
  1555. * We also needn't worry about enospc problem, because we reserve
  1556. * much more space for the inode update than it needs.
  1557. * - At the worst, we can steal some space from the global reservation.
  1558. * It is very rare.
  1559. */
  1560. mutex_lock(&delayed_node->mutex);
  1561. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1562. goto release_node;
  1563. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1564. delayed_node->count++;
  1565. atomic_inc(&fs_info->delayed_root->items);
  1566. release_node:
  1567. mutex_unlock(&delayed_node->mutex);
  1568. btrfs_release_delayed_node(delayed_node);
  1569. return 0;
  1570. }
  1571. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1572. {
  1573. struct btrfs_root *root = delayed_node->root;
  1574. struct btrfs_fs_info *fs_info = root->fs_info;
  1575. struct btrfs_delayed_item *curr_item, *prev_item;
  1576. mutex_lock(&delayed_node->mutex);
  1577. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1578. while (curr_item) {
  1579. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1580. prev_item = curr_item;
  1581. curr_item = __btrfs_next_delayed_item(prev_item);
  1582. btrfs_release_delayed_item(prev_item);
  1583. }
  1584. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1585. while (curr_item) {
  1586. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1587. prev_item = curr_item;
  1588. curr_item = __btrfs_next_delayed_item(prev_item);
  1589. btrfs_release_delayed_item(prev_item);
  1590. }
  1591. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1592. btrfs_release_delayed_iref(delayed_node);
  1593. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1594. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1595. btrfs_release_delayed_inode(delayed_node);
  1596. }
  1597. mutex_unlock(&delayed_node->mutex);
  1598. }
  1599. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1600. {
  1601. struct btrfs_delayed_node *delayed_node;
  1602. delayed_node = btrfs_get_delayed_node(inode);
  1603. if (!delayed_node)
  1604. return;
  1605. __btrfs_kill_delayed_node(delayed_node);
  1606. btrfs_release_delayed_node(delayed_node);
  1607. }
  1608. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1609. {
  1610. u64 inode_id = 0;
  1611. struct btrfs_delayed_node *delayed_nodes[8];
  1612. int i, n;
  1613. while (1) {
  1614. spin_lock(&root->inode_lock);
  1615. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1616. (void **)delayed_nodes, inode_id,
  1617. ARRAY_SIZE(delayed_nodes));
  1618. if (!n) {
  1619. spin_unlock(&root->inode_lock);
  1620. break;
  1621. }
  1622. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1623. for (i = 0; i < n; i++)
  1624. refcount_inc(&delayed_nodes[i]->refs);
  1625. spin_unlock(&root->inode_lock);
  1626. for (i = 0; i < n; i++) {
  1627. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1628. btrfs_release_delayed_node(delayed_nodes[i]);
  1629. }
  1630. }
  1631. }
  1632. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1633. {
  1634. struct btrfs_delayed_node *curr_node, *prev_node;
  1635. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1636. while (curr_node) {
  1637. __btrfs_kill_delayed_node(curr_node);
  1638. prev_node = curr_node;
  1639. curr_node = btrfs_next_delayed_node(curr_node);
  1640. btrfs_release_delayed_node(prev_node);
  1641. }
  1642. }