slb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. /*
  2. * PowerPC64 SLB support.
  3. *
  4. * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5. * Based on earlier code written by:
  6. * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7. * Copyright (c) 2001 Dave Engebretsen
  8. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <asm/pgtable.h>
  17. #include <asm/mmu.h>
  18. #include <asm/mmu_context.h>
  19. #include <asm/paca.h>
  20. #include <asm/cputable.h>
  21. #include <asm/cacheflush.h>
  22. #include <asm/smp.h>
  23. #include <linux/compiler.h>
  24. #include <linux/mm_types.h>
  25. #include <asm/udbg.h>
  26. #include <asm/code-patching.h>
  27. enum slb_index {
  28. LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
  29. VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
  30. KSTACK_INDEX = 2, /* Kernel stack map */
  31. };
  32. extern void slb_allocate(unsigned long ea);
  33. #define slb_esid_mask(ssize) \
  34. (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
  35. static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  36. enum slb_index index)
  37. {
  38. return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
  39. }
  40. static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  41. unsigned long flags)
  42. {
  43. return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
  44. ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  45. }
  46. static inline void slb_shadow_update(unsigned long ea, int ssize,
  47. unsigned long flags,
  48. enum slb_index index)
  49. {
  50. struct slb_shadow *p = get_slb_shadow();
  51. /*
  52. * Clear the ESID first so the entry is not valid while we are
  53. * updating it. No write barriers are needed here, provided
  54. * we only update the current CPU's SLB shadow buffer.
  55. */
  56. p->save_area[index].esid = 0;
  57. p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
  58. p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
  59. }
  60. static inline void slb_shadow_clear(enum slb_index index)
  61. {
  62. get_slb_shadow()->save_area[index].esid = 0;
  63. }
  64. static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  65. unsigned long flags,
  66. enum slb_index index)
  67. {
  68. /*
  69. * Updating the shadow buffer before writing the SLB ensures
  70. * we don't get a stale entry here if we get preempted by PHYP
  71. * between these two statements.
  72. */
  73. slb_shadow_update(ea, ssize, flags, index);
  74. asm volatile("slbmte %0,%1" :
  75. : "r" (mk_vsid_data(ea, ssize, flags)),
  76. "r" (mk_esid_data(ea, ssize, index))
  77. : "memory" );
  78. }
  79. static void __slb_flush_and_rebolt(void)
  80. {
  81. /* If you change this make sure you change SLB_NUM_BOLTED
  82. * and PR KVM appropriately too. */
  83. unsigned long linear_llp, vmalloc_llp, lflags, vflags;
  84. unsigned long ksp_esid_data, ksp_vsid_data;
  85. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  86. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  87. lflags = SLB_VSID_KERNEL | linear_llp;
  88. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  89. ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
  90. if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
  91. ksp_esid_data &= ~SLB_ESID_V;
  92. ksp_vsid_data = 0;
  93. slb_shadow_clear(KSTACK_INDEX);
  94. } else {
  95. /* Update stack entry; others don't change */
  96. slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
  97. ksp_vsid_data =
  98. be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
  99. }
  100. /* We need to do this all in asm, so we're sure we don't touch
  101. * the stack between the slbia and rebolting it. */
  102. asm volatile("isync\n"
  103. "slbia\n"
  104. /* Slot 1 - first VMALLOC segment */
  105. "slbmte %0,%1\n"
  106. /* Slot 2 - kernel stack */
  107. "slbmte %2,%3\n"
  108. "isync"
  109. :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
  110. "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
  111. "r"(ksp_vsid_data),
  112. "r"(ksp_esid_data)
  113. : "memory");
  114. }
  115. void slb_flush_and_rebolt(void)
  116. {
  117. WARN_ON(!irqs_disabled());
  118. /*
  119. * We can't take a PMU exception in the following code, so hard
  120. * disable interrupts.
  121. */
  122. hard_irq_disable();
  123. __slb_flush_and_rebolt();
  124. get_paca()->slb_cache_ptr = 0;
  125. }
  126. void slb_vmalloc_update(void)
  127. {
  128. unsigned long vflags;
  129. vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
  130. slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
  131. slb_flush_and_rebolt();
  132. }
  133. /* Helper function to compare esids. There are four cases to handle.
  134. * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
  135. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
  136. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
  137. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
  138. */
  139. static inline int esids_match(unsigned long addr1, unsigned long addr2)
  140. {
  141. int esid_1t_count;
  142. /* System is not 1T segment size capable. */
  143. if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
  144. return (GET_ESID(addr1) == GET_ESID(addr2));
  145. esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
  146. ((addr2 >> SID_SHIFT_1T) != 0));
  147. /* both addresses are < 1T */
  148. if (esid_1t_count == 0)
  149. return (GET_ESID(addr1) == GET_ESID(addr2));
  150. /* One address < 1T, the other > 1T. Not a match */
  151. if (esid_1t_count == 1)
  152. return 0;
  153. /* Both addresses are > 1T. */
  154. return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
  155. }
  156. /* Flush all user entries from the segment table of the current processor. */
  157. void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
  158. {
  159. unsigned long offset;
  160. unsigned long slbie_data = 0;
  161. unsigned long pc = KSTK_EIP(tsk);
  162. unsigned long stack = KSTK_ESP(tsk);
  163. unsigned long exec_base;
  164. /*
  165. * We need interrupts hard-disabled here, not just soft-disabled,
  166. * so that a PMU interrupt can't occur, which might try to access
  167. * user memory (to get a stack trace) and possible cause an SLB miss
  168. * which would update the slb_cache/slb_cache_ptr fields in the PACA.
  169. */
  170. hard_irq_disable();
  171. offset = get_paca()->slb_cache_ptr;
  172. if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
  173. offset <= SLB_CACHE_ENTRIES) {
  174. int i;
  175. asm volatile("isync" : : : "memory");
  176. for (i = 0; i < offset; i++) {
  177. slbie_data = (unsigned long)get_paca()->slb_cache[i]
  178. << SID_SHIFT; /* EA */
  179. slbie_data |= user_segment_size(slbie_data)
  180. << SLBIE_SSIZE_SHIFT;
  181. slbie_data |= SLBIE_C; /* C set for user addresses */
  182. asm volatile("slbie %0" : : "r" (slbie_data));
  183. }
  184. asm volatile("isync" : : : "memory");
  185. } else {
  186. __slb_flush_and_rebolt();
  187. }
  188. /* Workaround POWER5 < DD2.1 issue */
  189. if (offset == 1 || offset > SLB_CACHE_ENTRIES)
  190. asm volatile("slbie %0" : : "r" (slbie_data));
  191. get_paca()->slb_cache_ptr = 0;
  192. copy_mm_to_paca(mm);
  193. /*
  194. * preload some userspace segments into the SLB.
  195. * Almost all 32 and 64bit PowerPC executables are linked at
  196. * 0x10000000 so it makes sense to preload this segment.
  197. */
  198. exec_base = 0x10000000;
  199. if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
  200. is_kernel_addr(exec_base))
  201. return;
  202. slb_allocate(pc);
  203. if (!esids_match(pc, stack))
  204. slb_allocate(stack);
  205. if (!esids_match(pc, exec_base) &&
  206. !esids_match(stack, exec_base))
  207. slb_allocate(exec_base);
  208. }
  209. static inline void patch_slb_encoding(unsigned int *insn_addr,
  210. unsigned int immed)
  211. {
  212. /*
  213. * This function patches either an li or a cmpldi instruction with
  214. * a new immediate value. This relies on the fact that both li
  215. * (which is actually addi) and cmpldi both take a 16-bit immediate
  216. * value, and it is situated in the same location in the instruction,
  217. * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
  218. * The signedness of the immediate operand differs between the two
  219. * instructions however this code is only ever patching a small value,
  220. * much less than 1 << 15, so we can get away with it.
  221. * To patch the value we read the existing instruction, clear the
  222. * immediate value, and or in our new value, then write the instruction
  223. * back.
  224. */
  225. unsigned int insn = (*insn_addr & 0xffff0000) | immed;
  226. patch_instruction(insn_addr, insn);
  227. }
  228. extern u32 slb_miss_kernel_load_linear[];
  229. extern u32 slb_miss_kernel_load_io[];
  230. extern u32 slb_compare_rr_to_size[];
  231. extern u32 slb_miss_kernel_load_vmemmap[];
  232. void slb_set_size(u16 size)
  233. {
  234. if (mmu_slb_size == size)
  235. return;
  236. mmu_slb_size = size;
  237. patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
  238. }
  239. void slb_initialize(void)
  240. {
  241. unsigned long linear_llp, vmalloc_llp, io_llp;
  242. unsigned long lflags, vflags;
  243. static int slb_encoding_inited;
  244. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  245. unsigned long vmemmap_llp;
  246. #endif
  247. /* Prepare our SLB miss handler based on our page size */
  248. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  249. io_llp = mmu_psize_defs[mmu_io_psize].sllp;
  250. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  251. get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
  252. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  253. vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
  254. #endif
  255. if (!slb_encoding_inited) {
  256. slb_encoding_inited = 1;
  257. patch_slb_encoding(slb_miss_kernel_load_linear,
  258. SLB_VSID_KERNEL | linear_llp);
  259. patch_slb_encoding(slb_miss_kernel_load_io,
  260. SLB_VSID_KERNEL | io_llp);
  261. patch_slb_encoding(slb_compare_rr_to_size,
  262. mmu_slb_size);
  263. pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
  264. pr_devel("SLB: io LLP = %04lx\n", io_llp);
  265. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  266. patch_slb_encoding(slb_miss_kernel_load_vmemmap,
  267. SLB_VSID_KERNEL | vmemmap_llp);
  268. pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
  269. #endif
  270. }
  271. get_paca()->stab_rr = SLB_NUM_BOLTED;
  272. lflags = SLB_VSID_KERNEL | linear_llp;
  273. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  274. /* Invalidate the entire SLB (even entry 0) & all the ERATS */
  275. asm volatile("isync":::"memory");
  276. asm volatile("slbmte %0,%0"::"r" (0) : "memory");
  277. asm volatile("isync; slbia; isync":::"memory");
  278. create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
  279. create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
  280. /* For the boot cpu, we're running on the stack in init_thread_union,
  281. * which is in the first segment of the linear mapping, and also
  282. * get_paca()->kstack hasn't been initialized yet.
  283. * For secondary cpus, we need to bolt the kernel stack entry now.
  284. */
  285. slb_shadow_clear(KSTACK_INDEX);
  286. if (raw_smp_processor_id() != boot_cpuid &&
  287. (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
  288. create_shadowed_slbe(get_paca()->kstack,
  289. mmu_kernel_ssize, lflags, KSTACK_INDEX);
  290. asm volatile("isync":::"memory");
  291. }