fault.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/sched/task_stack.h>
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/string.h>
  23. #include <linux/types.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/mman.h>
  26. #include <linux/mm.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/highmem.h>
  29. #include <linux/extable.h>
  30. #include <linux/kprobes.h>
  31. #include <linux/kdebug.h>
  32. #include <linux/perf_event.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/context_tracking.h>
  35. #include <linux/hugetlb.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/firmware.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/mmu.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/siginfo.h>
  44. #include <asm/debug.h>
  45. static inline bool notify_page_fault(struct pt_regs *regs)
  46. {
  47. bool ret = false;
  48. #ifdef CONFIG_KPROBES
  49. /* kprobe_running() needs smp_processor_id() */
  50. if (!user_mode(regs)) {
  51. preempt_disable();
  52. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  53. ret = true;
  54. preempt_enable();
  55. }
  56. #endif /* CONFIG_KPROBES */
  57. if (unlikely(debugger_fault_handler(regs)))
  58. ret = true;
  59. return ret;
  60. }
  61. /*
  62. * Check whether the instruction at regs->nip is a store using
  63. * an update addressing form which will update r1.
  64. */
  65. static bool store_updates_sp(struct pt_regs *regs)
  66. {
  67. unsigned int inst;
  68. if (get_user(inst, (unsigned int __user *)regs->nip))
  69. return false;
  70. /* check for 1 in the rA field */
  71. if (((inst >> 16) & 0x1f) != 1)
  72. return false;
  73. /* check major opcode */
  74. switch (inst >> 26) {
  75. case 37: /* stwu */
  76. case 39: /* stbu */
  77. case 45: /* sthu */
  78. case 53: /* stfsu */
  79. case 55: /* stfdu */
  80. return true;
  81. case 62: /* std or stdu */
  82. return (inst & 3) == 1;
  83. case 31:
  84. /* check minor opcode */
  85. switch ((inst >> 1) & 0x3ff) {
  86. case 181: /* stdux */
  87. case 183: /* stwux */
  88. case 247: /* stbux */
  89. case 439: /* sthux */
  90. case 695: /* stfsux */
  91. case 759: /* stfdux */
  92. return true;
  93. }
  94. }
  95. return false;
  96. }
  97. /*
  98. * do_page_fault error handling helpers
  99. */
  100. static int
  101. __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
  102. int pkey)
  103. {
  104. /*
  105. * If we are in kernel mode, bail out with a SEGV, this will
  106. * be caught by the assembly which will restore the non-volatile
  107. * registers before calling bad_page_fault()
  108. */
  109. if (!user_mode(regs))
  110. return SIGSEGV;
  111. _exception_pkey(SIGSEGV, regs, si_code, address, pkey);
  112. return 0;
  113. }
  114. static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  115. {
  116. return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
  117. }
  118. static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
  119. int pkey)
  120. {
  121. struct mm_struct *mm = current->mm;
  122. /*
  123. * Something tried to access memory that isn't in our memory map..
  124. * Fix it, but check if it's kernel or user first..
  125. */
  126. up_read(&mm->mmap_sem);
  127. return __bad_area_nosemaphore(regs, address, si_code, pkey);
  128. }
  129. static noinline int bad_area(struct pt_regs *regs, unsigned long address)
  130. {
  131. return __bad_area(regs, address, SEGV_MAPERR, 0);
  132. }
  133. static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
  134. int pkey)
  135. {
  136. return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
  137. }
  138. static noinline int bad_access(struct pt_regs *regs, unsigned long address)
  139. {
  140. return __bad_area(regs, address, SEGV_ACCERR, 0);
  141. }
  142. static int do_sigbus(struct pt_regs *regs, unsigned long address,
  143. unsigned int fault)
  144. {
  145. siginfo_t info;
  146. unsigned int lsb = 0;
  147. if (!user_mode(regs))
  148. return SIGBUS;
  149. current->thread.trap_nr = BUS_ADRERR;
  150. info.si_signo = SIGBUS;
  151. info.si_errno = 0;
  152. info.si_code = BUS_ADRERR;
  153. info.si_addr = (void __user *)address;
  154. #ifdef CONFIG_MEMORY_FAILURE
  155. if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
  156. pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
  157. current->comm, current->pid, address);
  158. info.si_code = BUS_MCEERR_AR;
  159. }
  160. if (fault & VM_FAULT_HWPOISON_LARGE)
  161. lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
  162. if (fault & VM_FAULT_HWPOISON)
  163. lsb = PAGE_SHIFT;
  164. #endif
  165. info.si_addr_lsb = lsb;
  166. force_sig_info(SIGBUS, &info, current);
  167. return 0;
  168. }
  169. static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
  170. {
  171. /*
  172. * Kernel page fault interrupted by SIGKILL. We have no reason to
  173. * continue processing.
  174. */
  175. if (fatal_signal_pending(current) && !user_mode(regs))
  176. return SIGKILL;
  177. /* Out of memory */
  178. if (fault & VM_FAULT_OOM) {
  179. /*
  180. * We ran out of memory, or some other thing happened to us that
  181. * made us unable to handle the page fault gracefully.
  182. */
  183. if (!user_mode(regs))
  184. return SIGSEGV;
  185. pagefault_out_of_memory();
  186. } else {
  187. if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
  188. VM_FAULT_HWPOISON_LARGE))
  189. return do_sigbus(regs, addr, fault);
  190. else if (fault & VM_FAULT_SIGSEGV)
  191. return bad_area_nosemaphore(regs, addr);
  192. else
  193. BUG();
  194. }
  195. return 0;
  196. }
  197. /* Is this a bad kernel fault ? */
  198. static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
  199. unsigned long address)
  200. {
  201. if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
  202. printk_ratelimited(KERN_CRIT "kernel tried to execute"
  203. " exec-protected page (%lx) -"
  204. "exploit attempt? (uid: %d)\n",
  205. address, from_kuid(&init_user_ns,
  206. current_uid()));
  207. }
  208. return is_exec || (address >= TASK_SIZE);
  209. }
  210. static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
  211. struct vm_area_struct *vma,
  212. bool store_update_sp)
  213. {
  214. /*
  215. * N.B. The POWER/Open ABI allows programs to access up to
  216. * 288 bytes below the stack pointer.
  217. * The kernel signal delivery code writes up to about 1.5kB
  218. * below the stack pointer (r1) before decrementing it.
  219. * The exec code can write slightly over 640kB to the stack
  220. * before setting the user r1. Thus we allow the stack to
  221. * expand to 1MB without further checks.
  222. */
  223. if (address + 0x100000 < vma->vm_end) {
  224. /* get user regs even if this fault is in kernel mode */
  225. struct pt_regs *uregs = current->thread.regs;
  226. if (uregs == NULL)
  227. return true;
  228. /*
  229. * A user-mode access to an address a long way below
  230. * the stack pointer is only valid if the instruction
  231. * is one which would update the stack pointer to the
  232. * address accessed if the instruction completed,
  233. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  234. * (or the byte, halfword, float or double forms).
  235. *
  236. * If we don't check this then any write to the area
  237. * between the last mapped region and the stack will
  238. * expand the stack rather than segfaulting.
  239. */
  240. if (address + 2048 < uregs->gpr[1] && !store_update_sp)
  241. return true;
  242. }
  243. return false;
  244. }
  245. static bool access_error(bool is_write, bool is_exec,
  246. struct vm_area_struct *vma)
  247. {
  248. /*
  249. * Allow execution from readable areas if the MMU does not
  250. * provide separate controls over reading and executing.
  251. *
  252. * Note: That code used to not be enabled for 4xx/BookE.
  253. * It is now as I/D cache coherency for these is done at
  254. * set_pte_at() time and I see no reason why the test
  255. * below wouldn't be valid on those processors. This -may-
  256. * break programs compiled with a really old ABI though.
  257. */
  258. if (is_exec) {
  259. return !(vma->vm_flags & VM_EXEC) &&
  260. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  261. !(vma->vm_flags & (VM_READ | VM_WRITE)));
  262. }
  263. if (is_write) {
  264. if (unlikely(!(vma->vm_flags & VM_WRITE)))
  265. return true;
  266. return false;
  267. }
  268. if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
  269. return true;
  270. return false;
  271. }
  272. #ifdef CONFIG_PPC_SMLPAR
  273. static inline void cmo_account_page_fault(void)
  274. {
  275. if (firmware_has_feature(FW_FEATURE_CMO)) {
  276. u32 page_ins;
  277. preempt_disable();
  278. page_ins = be32_to_cpu(get_lppaca()->page_ins);
  279. page_ins += 1 << PAGE_FACTOR;
  280. get_lppaca()->page_ins = cpu_to_be32(page_ins);
  281. preempt_enable();
  282. }
  283. }
  284. #else
  285. static inline void cmo_account_page_fault(void) { }
  286. #endif /* CONFIG_PPC_SMLPAR */
  287. #ifdef CONFIG_PPC_STD_MMU
  288. static void sanity_check_fault(bool is_write, unsigned long error_code)
  289. {
  290. /*
  291. * For hash translation mode, we should never get a
  292. * PROTFAULT. Any update to pte to reduce access will result in us
  293. * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
  294. * fault instead of DSISR_PROTFAULT.
  295. *
  296. * A pte update to relax the access will not result in a hash page table
  297. * entry invalidate and hence can result in DSISR_PROTFAULT.
  298. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
  299. * the special !is_write in the below conditional.
  300. *
  301. * For platforms that doesn't supports coherent icache and do support
  302. * per page noexec bit, we do setup things such that we do the
  303. * sync between D/I cache via fault. But that is handled via low level
  304. * hash fault code (hash_page_do_lazy_icache()) and we should not reach
  305. * here in such case.
  306. *
  307. * For wrong access that can result in PROTFAULT, the above vma->vm_flags
  308. * check should handle those and hence we should fall to the bad_area
  309. * handling correctly.
  310. *
  311. * For embedded with per page exec support that doesn't support coherent
  312. * icache we do get PROTFAULT and we handle that D/I cache sync in
  313. * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
  314. * is conditional for server MMU.
  315. *
  316. * For radix, we can get prot fault for autonuma case, because radix
  317. * page table will have them marked noaccess for user.
  318. */
  319. if (!radix_enabled() && !is_write)
  320. WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
  321. }
  322. #else
  323. static void sanity_check_fault(bool is_write, unsigned long error_code) { }
  324. #endif /* CONFIG_PPC_STD_MMU */
  325. /*
  326. * Define the correct "is_write" bit in error_code based
  327. * on the processor family
  328. */
  329. #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  330. #define page_fault_is_write(__err) ((__err) & ESR_DST)
  331. #define page_fault_is_bad(__err) (0)
  332. #else
  333. #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
  334. #if defined(CONFIG_PPC_8xx)
  335. #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
  336. #elif defined(CONFIG_PPC64)
  337. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
  338. #else
  339. #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
  340. #endif
  341. #endif
  342. /*
  343. * For 600- and 800-family processors, the error_code parameter is DSISR
  344. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  345. * the error_code parameter is ESR for a data fault, 0 for an instruction
  346. * fault.
  347. * For 64-bit processors, the error_code parameter is
  348. * - DSISR for a non-SLB data access fault,
  349. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  350. * - 0 any SLB fault.
  351. *
  352. * The return value is 0 if the fault was handled, or the signal
  353. * number if this is a kernel fault that can't be handled here.
  354. */
  355. static int __do_page_fault(struct pt_regs *regs, unsigned long address,
  356. unsigned long error_code)
  357. {
  358. struct vm_area_struct * vma;
  359. struct mm_struct *mm = current->mm;
  360. unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
  361. int is_exec = TRAP(regs) == 0x400;
  362. int is_user = user_mode(regs);
  363. int is_write = page_fault_is_write(error_code);
  364. int fault, major = 0;
  365. bool store_update_sp = false;
  366. if (notify_page_fault(regs))
  367. return 0;
  368. if (unlikely(page_fault_is_bad(error_code))) {
  369. if (is_user) {
  370. _exception(SIGBUS, regs, BUS_OBJERR, address);
  371. return 0;
  372. }
  373. return SIGBUS;
  374. }
  375. /* Additional sanity check(s) */
  376. sanity_check_fault(is_write, error_code);
  377. /*
  378. * The kernel should never take an execute fault nor should it
  379. * take a page fault to a kernel address.
  380. */
  381. if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
  382. return SIGSEGV;
  383. /*
  384. * If we're in an interrupt, have no user context or are running
  385. * in a region with pagefaults disabled then we must not take the fault
  386. */
  387. if (unlikely(faulthandler_disabled() || !mm)) {
  388. if (is_user)
  389. printk_ratelimited(KERN_ERR "Page fault in user mode"
  390. " with faulthandler_disabled()=%d"
  391. " mm=%p\n",
  392. faulthandler_disabled(), mm);
  393. return bad_area_nosemaphore(regs, address);
  394. }
  395. /* We restore the interrupt state now */
  396. if (!arch_irq_disabled_regs(regs))
  397. local_irq_enable();
  398. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
  399. if (error_code & DSISR_KEYFAULT)
  400. return bad_key_fault_exception(regs, address,
  401. get_mm_addr_key(mm, address));
  402. /*
  403. * We want to do this outside mmap_sem, because reading code around nip
  404. * can result in fault, which will cause a deadlock when called with
  405. * mmap_sem held
  406. */
  407. if (is_write && is_user)
  408. store_update_sp = store_updates_sp(regs);
  409. if (is_user)
  410. flags |= FAULT_FLAG_USER;
  411. if (is_write)
  412. flags |= FAULT_FLAG_WRITE;
  413. if (is_exec)
  414. flags |= FAULT_FLAG_INSTRUCTION;
  415. /* When running in the kernel we expect faults to occur only to
  416. * addresses in user space. All other faults represent errors in the
  417. * kernel and should generate an OOPS. Unfortunately, in the case of an
  418. * erroneous fault occurring in a code path which already holds mmap_sem
  419. * we will deadlock attempting to validate the fault against the
  420. * address space. Luckily the kernel only validly references user
  421. * space from well defined areas of code, which are listed in the
  422. * exceptions table.
  423. *
  424. * As the vast majority of faults will be valid we will only perform
  425. * the source reference check when there is a possibility of a deadlock.
  426. * Attempt to lock the address space, if we cannot we then validate the
  427. * source. If this is invalid we can skip the address space check,
  428. * thus avoiding the deadlock.
  429. */
  430. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  431. if (!is_user && !search_exception_tables(regs->nip))
  432. return bad_area_nosemaphore(regs, address);
  433. retry:
  434. down_read(&mm->mmap_sem);
  435. } else {
  436. /*
  437. * The above down_read_trylock() might have succeeded in
  438. * which case we'll have missed the might_sleep() from
  439. * down_read():
  440. */
  441. might_sleep();
  442. }
  443. vma = find_vma(mm, address);
  444. if (unlikely(!vma))
  445. return bad_area(regs, address);
  446. if (likely(vma->vm_start <= address))
  447. goto good_area;
  448. if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
  449. return bad_area(regs, address);
  450. /* The stack is being expanded, check if it's valid */
  451. if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
  452. return bad_area(regs, address);
  453. /* Try to expand it */
  454. if (unlikely(expand_stack(vma, address)))
  455. return bad_area(regs, address);
  456. good_area:
  457. if (unlikely(access_error(is_write, is_exec, vma)))
  458. return bad_access(regs, address);
  459. /*
  460. * If for any reason at all we couldn't handle the fault,
  461. * make sure we exit gracefully rather than endlessly redo
  462. * the fault.
  463. */
  464. fault = handle_mm_fault(vma, address, flags);
  465. #ifdef CONFIG_PPC_MEM_KEYS
  466. /*
  467. * if the HPTE is not hashed, hardware will not detect
  468. * a key fault. Lets check if we failed because of a
  469. * software detected key fault.
  470. */
  471. if (unlikely(fault & VM_FAULT_SIGSEGV) &&
  472. !arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
  473. is_exec, 0)) {
  474. /*
  475. * The PGD-PDT...PMD-PTE tree may not have been fully setup.
  476. * Hence we cannot walk the tree to locate the PTE, to locate
  477. * the key. Hence let's use vma_pkey() to get the key; instead
  478. * of get_mm_addr_key().
  479. */
  480. int pkey = vma_pkey(vma);
  481. if (likely(pkey)) {
  482. up_read(&mm->mmap_sem);
  483. return bad_key_fault_exception(regs, address, pkey);
  484. }
  485. }
  486. #endif /* CONFIG_PPC_MEM_KEYS */
  487. major |= fault & VM_FAULT_MAJOR;
  488. /*
  489. * Handle the retry right now, the mmap_sem has been released in that
  490. * case.
  491. */
  492. if (unlikely(fault & VM_FAULT_RETRY)) {
  493. /* We retry only once */
  494. if (flags & FAULT_FLAG_ALLOW_RETRY) {
  495. /*
  496. * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
  497. * of starvation.
  498. */
  499. flags &= ~FAULT_FLAG_ALLOW_RETRY;
  500. flags |= FAULT_FLAG_TRIED;
  501. if (!fatal_signal_pending(current))
  502. goto retry;
  503. }
  504. /*
  505. * User mode? Just return to handle the fatal exception otherwise
  506. * return to bad_page_fault
  507. */
  508. return is_user ? 0 : SIGBUS;
  509. }
  510. up_read(&current->mm->mmap_sem);
  511. if (unlikely(fault & VM_FAULT_ERROR))
  512. return mm_fault_error(regs, address, fault);
  513. /*
  514. * Major/minor page fault accounting.
  515. */
  516. if (major) {
  517. current->maj_flt++;
  518. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
  519. cmo_account_page_fault();
  520. } else {
  521. current->min_flt++;
  522. perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
  523. }
  524. return 0;
  525. }
  526. NOKPROBE_SYMBOL(__do_page_fault);
  527. int do_page_fault(struct pt_regs *regs, unsigned long address,
  528. unsigned long error_code)
  529. {
  530. enum ctx_state prev_state = exception_enter();
  531. int rc = __do_page_fault(regs, address, error_code);
  532. exception_exit(prev_state);
  533. return rc;
  534. }
  535. NOKPROBE_SYMBOL(do_page_fault);
  536. /*
  537. * bad_page_fault is called when we have a bad access from the kernel.
  538. * It is called from the DSI and ISI handlers in head.S and from some
  539. * of the procedures in traps.c.
  540. */
  541. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  542. {
  543. const struct exception_table_entry *entry;
  544. /* Are we prepared to handle this fault? */
  545. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  546. regs->nip = extable_fixup(entry);
  547. return;
  548. }
  549. /* kernel has accessed a bad area */
  550. switch (TRAP(regs)) {
  551. case 0x300:
  552. case 0x380:
  553. printk(KERN_ALERT "Unable to handle kernel paging request for "
  554. "data at address 0x%08lx\n", regs->dar);
  555. break;
  556. case 0x400:
  557. case 0x480:
  558. printk(KERN_ALERT "Unable to handle kernel paging request for "
  559. "instruction fetch\n");
  560. break;
  561. case 0x600:
  562. printk(KERN_ALERT "Unable to handle kernel paging request for "
  563. "unaligned access at address 0x%08lx\n", regs->dar);
  564. break;
  565. default:
  566. printk(KERN_ALERT "Unable to handle kernel paging request for "
  567. "unknown fault\n");
  568. break;
  569. }
  570. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  571. regs->nip);
  572. if (task_stack_end_corrupted(current))
  573. printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
  574. die("Kernel access of bad area", regs, sig);
  575. }