spi-rspi.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/of_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/sh_dma.h>
  32. #include <linux/spi/spi.h>
  33. #include <linux/spi/rspi.h>
  34. #define RSPI_SPCR 0x00 /* Control Register */
  35. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  36. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  37. #define RSPI_SPSR 0x03 /* Status Register */
  38. #define RSPI_SPDR 0x04 /* Data Register */
  39. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  40. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  41. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  42. #define RSPI_SPDCR 0x0b /* Data Control Register */
  43. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  44. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  45. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  46. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  47. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  48. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  49. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  50. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  51. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  52. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  53. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  54. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  55. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  56. #define RSPI_NUM_SPCMD 8
  57. #define RSPI_RZ_NUM_SPCMD 4
  58. #define QSPI_NUM_SPCMD 4
  59. /* RSPI on RZ only */
  60. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  61. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  62. /* QSPI only */
  63. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  64. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  65. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  66. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  67. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  68. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  69. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  70. /* SPCR - Control Register */
  71. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  72. #define SPCR_SPE 0x40 /* Function Enable */
  73. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  74. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  75. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  76. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  77. /* RSPI on SH only */
  78. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  79. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  80. /* QSPI on R-Car Gen2 only */
  81. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  82. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  83. /* SSLP - Slave Select Polarity Register */
  84. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  85. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  86. /* SPPCR - Pin Control Register */
  87. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  88. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  89. #define SPPCR_SPOM 0x04
  90. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  91. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  92. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94. /* SPSR - Status Register */
  95. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  96. #define SPSR_TEND 0x40 /* Transmit End */
  97. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  98. #define SPSR_PERF 0x08 /* Parity Error Flag */
  99. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  100. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  101. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  102. /* SPSCR - Sequence Control Register */
  103. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  104. /* SPSSR - Sequence Status Register */
  105. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  106. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  107. /* SPDCR - Data Control Register */
  108. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  109. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  110. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  111. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  112. #define SPDCR_SPLWORD SPDCR_SPLW1
  113. #define SPDCR_SPLBYTE SPDCR_SPLW0
  114. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  115. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  116. #define SPDCR_SLSEL1 0x08
  117. #define SPDCR_SLSEL0 0x04
  118. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  119. #define SPDCR_SPFC1 0x02
  120. #define SPDCR_SPFC0 0x01
  121. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  122. /* SPCKD - Clock Delay Register */
  123. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  124. /* SSLND - Slave Select Negation Delay Register */
  125. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  126. /* SPND - Next-Access Delay Register */
  127. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  128. /* SPCR2 - Control Register 2 */
  129. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  130. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  131. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  132. #define SPCR2_SPPE 0x01 /* Parity Enable */
  133. /* SPCMDn - Command Registers */
  134. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  135. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  136. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  137. #define SPCMD_LSBF 0x1000 /* LSB First */
  138. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  139. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  140. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  141. #define SPCMD_SPB_16BIT 0x0100
  142. #define SPCMD_SPB_20BIT 0x0000
  143. #define SPCMD_SPB_24BIT 0x0100
  144. #define SPCMD_SPB_32BIT 0x0200
  145. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  146. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  147. #define SPCMD_SPIMOD1 0x0040
  148. #define SPCMD_SPIMOD0 0x0020
  149. #define SPCMD_SPIMOD_SINGLE 0
  150. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  151. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  152. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  153. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  154. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  155. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  156. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  157. /* SPBFCR - Buffer Control Register */
  158. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  159. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  160. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  161. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  162. struct rspi_data {
  163. void __iomem *addr;
  164. u32 max_speed_hz;
  165. struct spi_master *master;
  166. wait_queue_head_t wait;
  167. struct clk *clk;
  168. u16 spcmd;
  169. u8 spsr;
  170. u8 sppcr;
  171. int rx_irq, tx_irq;
  172. const struct spi_ops *ops;
  173. unsigned dma_callbacked:1;
  174. unsigned byte_access:1;
  175. };
  176. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  177. {
  178. iowrite8(data, rspi->addr + offset);
  179. }
  180. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  181. {
  182. iowrite16(data, rspi->addr + offset);
  183. }
  184. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  185. {
  186. iowrite32(data, rspi->addr + offset);
  187. }
  188. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  189. {
  190. return ioread8(rspi->addr + offset);
  191. }
  192. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  193. {
  194. return ioread16(rspi->addr + offset);
  195. }
  196. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  197. {
  198. if (rspi->byte_access)
  199. rspi_write8(rspi, data, RSPI_SPDR);
  200. else /* 16 bit */
  201. rspi_write16(rspi, data, RSPI_SPDR);
  202. }
  203. static u16 rspi_read_data(const struct rspi_data *rspi)
  204. {
  205. if (rspi->byte_access)
  206. return rspi_read8(rspi, RSPI_SPDR);
  207. else /* 16 bit */
  208. return rspi_read16(rspi, RSPI_SPDR);
  209. }
  210. /* optional functions */
  211. struct spi_ops {
  212. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  213. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  214. struct spi_transfer *xfer);
  215. u16 mode_bits;
  216. u16 flags;
  217. u16 fifo_size;
  218. };
  219. /*
  220. * functions for RSPI on legacy SH
  221. */
  222. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  223. {
  224. int spbr;
  225. /* Sets output mode, MOSI signal, and (optionally) loopback */
  226. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  227. /* Sets transfer bit rate */
  228. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  229. 2 * rspi->max_speed_hz) - 1;
  230. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  231. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  232. rspi_write8(rspi, 0, RSPI_SPDCR);
  233. rspi->byte_access = 0;
  234. /* Sets RSPCK, SSL, next-access delay value */
  235. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  236. rspi_write8(rspi, 0x00, RSPI_SSLND);
  237. rspi_write8(rspi, 0x00, RSPI_SPND);
  238. /* Sets parity, interrupt mask */
  239. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  240. /* Sets SPCMD */
  241. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  242. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  243. /* Sets RSPI mode */
  244. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  245. return 0;
  246. }
  247. /*
  248. * functions for RSPI on RZ
  249. */
  250. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  251. {
  252. int spbr;
  253. /* Sets output mode, MOSI signal, and (optionally) loopback */
  254. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  255. /* Sets transfer bit rate */
  256. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  257. 2 * rspi->max_speed_hz) - 1;
  258. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  259. /* Disable dummy transmission, set byte access */
  260. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  261. rspi->byte_access = 1;
  262. /* Sets RSPCK, SSL, next-access delay value */
  263. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  264. rspi_write8(rspi, 0x00, RSPI_SSLND);
  265. rspi_write8(rspi, 0x00, RSPI_SPND);
  266. /* Sets SPCMD */
  267. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  268. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  269. /* Sets RSPI mode */
  270. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  271. return 0;
  272. }
  273. /*
  274. * functions for QSPI
  275. */
  276. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  277. {
  278. int spbr;
  279. /* Sets output mode, MOSI signal, and (optionally) loopback */
  280. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  281. /* Sets transfer bit rate */
  282. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  283. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  284. /* Disable dummy transmission, set byte access */
  285. rspi_write8(rspi, 0, RSPI_SPDCR);
  286. rspi->byte_access = 1;
  287. /* Sets RSPCK, SSL, next-access delay value */
  288. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  289. rspi_write8(rspi, 0x00, RSPI_SSLND);
  290. rspi_write8(rspi, 0x00, RSPI_SPND);
  291. /* Data Length Setting */
  292. if (access_size == 8)
  293. rspi->spcmd |= SPCMD_SPB_8BIT;
  294. else if (access_size == 16)
  295. rspi->spcmd |= SPCMD_SPB_16BIT;
  296. else
  297. rspi->spcmd |= SPCMD_SPB_32BIT;
  298. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  299. /* Resets transfer data length */
  300. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  301. /* Resets transmit and receive buffer */
  302. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  303. /* Sets buffer to allow normal operation */
  304. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  305. /* Sets SPCMD */
  306. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  307. /* Enables SPI function in master mode */
  308. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  309. return 0;
  310. }
  311. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  312. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  313. {
  314. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  315. }
  316. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  317. {
  318. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  319. }
  320. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  321. u8 enable_bit)
  322. {
  323. int ret;
  324. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  325. if (rspi->spsr & wait_mask)
  326. return 0;
  327. rspi_enable_irq(rspi, enable_bit);
  328. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  329. if (ret == 0 && !(rspi->spsr & wait_mask))
  330. return -ETIMEDOUT;
  331. return 0;
  332. }
  333. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  334. {
  335. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  336. }
  337. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  338. {
  339. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  340. }
  341. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  342. {
  343. int error = rspi_wait_for_tx_empty(rspi);
  344. if (error < 0) {
  345. dev_err(&rspi->master->dev, "transmit timeout\n");
  346. return error;
  347. }
  348. rspi_write_data(rspi, data);
  349. return 0;
  350. }
  351. static int rspi_data_in(struct rspi_data *rspi)
  352. {
  353. int error;
  354. u8 data;
  355. error = rspi_wait_for_rx_full(rspi);
  356. if (error < 0) {
  357. dev_err(&rspi->master->dev, "receive timeout\n");
  358. return error;
  359. }
  360. data = rspi_read_data(rspi);
  361. return data;
  362. }
  363. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  364. unsigned int n)
  365. {
  366. while (n-- > 0) {
  367. if (tx) {
  368. int ret = rspi_data_out(rspi, *tx++);
  369. if (ret < 0)
  370. return ret;
  371. }
  372. if (rx) {
  373. int ret = rspi_data_in(rspi);
  374. if (ret < 0)
  375. return ret;
  376. *rx++ = ret;
  377. }
  378. }
  379. return 0;
  380. }
  381. static void rspi_dma_complete(void *arg)
  382. {
  383. struct rspi_data *rspi = arg;
  384. rspi->dma_callbacked = 1;
  385. wake_up_interruptible(&rspi->wait);
  386. }
  387. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  388. struct sg_table *rx)
  389. {
  390. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  391. u8 irq_mask = 0;
  392. unsigned int other_irq = 0;
  393. dma_cookie_t cookie;
  394. int ret;
  395. /* First prepare and submit the DMA request(s), as this may fail */
  396. if (rx) {
  397. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  398. rx->sgl, rx->nents, DMA_FROM_DEVICE,
  399. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  400. if (!desc_rx) {
  401. ret = -EAGAIN;
  402. goto no_dma_rx;
  403. }
  404. desc_rx->callback = rspi_dma_complete;
  405. desc_rx->callback_param = rspi;
  406. cookie = dmaengine_submit(desc_rx);
  407. if (dma_submit_error(cookie)) {
  408. ret = cookie;
  409. goto no_dma_rx;
  410. }
  411. irq_mask |= SPCR_SPRIE;
  412. }
  413. if (tx) {
  414. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  415. tx->sgl, tx->nents, DMA_TO_DEVICE,
  416. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  417. if (!desc_tx) {
  418. ret = -EAGAIN;
  419. goto no_dma_tx;
  420. }
  421. if (rx) {
  422. /* No callback */
  423. desc_tx->callback = NULL;
  424. } else {
  425. desc_tx->callback = rspi_dma_complete;
  426. desc_tx->callback_param = rspi;
  427. }
  428. cookie = dmaengine_submit(desc_tx);
  429. if (dma_submit_error(cookie)) {
  430. ret = cookie;
  431. goto no_dma_tx;
  432. }
  433. irq_mask |= SPCR_SPTIE;
  434. }
  435. /*
  436. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  437. * called. So, this driver disables the IRQ while DMA transfer.
  438. */
  439. if (tx)
  440. disable_irq(other_irq = rspi->tx_irq);
  441. if (rx && rspi->rx_irq != other_irq)
  442. disable_irq(rspi->rx_irq);
  443. rspi_enable_irq(rspi, irq_mask);
  444. rspi->dma_callbacked = 0;
  445. /* Now start DMA */
  446. if (rx)
  447. dma_async_issue_pending(rspi->master->dma_rx);
  448. if (tx)
  449. dma_async_issue_pending(rspi->master->dma_tx);
  450. ret = wait_event_interruptible_timeout(rspi->wait,
  451. rspi->dma_callbacked, HZ);
  452. if (ret > 0 && rspi->dma_callbacked)
  453. ret = 0;
  454. else if (!ret) {
  455. dev_err(&rspi->master->dev, "DMA timeout\n");
  456. ret = -ETIMEDOUT;
  457. if (tx)
  458. dmaengine_terminate_all(rspi->master->dma_tx);
  459. if (rx)
  460. dmaengine_terminate_all(rspi->master->dma_rx);
  461. }
  462. rspi_disable_irq(rspi, irq_mask);
  463. if (tx)
  464. enable_irq(rspi->tx_irq);
  465. if (rx && rspi->rx_irq != other_irq)
  466. enable_irq(rspi->rx_irq);
  467. return ret;
  468. no_dma_tx:
  469. if (rx)
  470. dmaengine_terminate_all(rspi->master->dma_rx);
  471. no_dma_rx:
  472. if (ret == -EAGAIN) {
  473. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  474. dev_driver_string(&rspi->master->dev),
  475. dev_name(&rspi->master->dev));
  476. }
  477. return ret;
  478. }
  479. static void rspi_receive_init(const struct rspi_data *rspi)
  480. {
  481. u8 spsr;
  482. spsr = rspi_read8(rspi, RSPI_SPSR);
  483. if (spsr & SPSR_SPRF)
  484. rspi_read_data(rspi); /* dummy read */
  485. if (spsr & SPSR_OVRF)
  486. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  487. RSPI_SPSR);
  488. }
  489. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  490. {
  491. rspi_receive_init(rspi);
  492. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  493. rspi_write8(rspi, 0, RSPI_SPBFCR);
  494. }
  495. static void qspi_receive_init(const struct rspi_data *rspi)
  496. {
  497. u8 spsr;
  498. spsr = rspi_read8(rspi, RSPI_SPSR);
  499. if (spsr & SPSR_SPRF)
  500. rspi_read_data(rspi); /* dummy read */
  501. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  502. rspi_write8(rspi, 0, QSPI_SPBFCR);
  503. }
  504. static bool __rspi_can_dma(const struct rspi_data *rspi,
  505. const struct spi_transfer *xfer)
  506. {
  507. return xfer->len > rspi->ops->fifo_size;
  508. }
  509. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  510. struct spi_transfer *xfer)
  511. {
  512. struct rspi_data *rspi = spi_master_get_devdata(master);
  513. return __rspi_can_dma(rspi, xfer);
  514. }
  515. static int rspi_common_transfer(struct rspi_data *rspi,
  516. struct spi_transfer *xfer)
  517. {
  518. int ret;
  519. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  520. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  521. ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
  522. xfer->rx_buf ? &xfer->rx_sg : NULL);
  523. if (ret != -EAGAIN)
  524. return ret;
  525. }
  526. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  527. if (ret < 0)
  528. return ret;
  529. /* Wait for the last transmission */
  530. rspi_wait_for_tx_empty(rspi);
  531. return 0;
  532. }
  533. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  534. struct spi_transfer *xfer)
  535. {
  536. struct rspi_data *rspi = spi_master_get_devdata(master);
  537. u8 spcr;
  538. spcr = rspi_read8(rspi, RSPI_SPCR);
  539. if (xfer->rx_buf) {
  540. rspi_receive_init(rspi);
  541. spcr &= ~SPCR_TXMD;
  542. } else {
  543. spcr |= SPCR_TXMD;
  544. }
  545. rspi_write8(rspi, spcr, RSPI_SPCR);
  546. return rspi_common_transfer(rspi, xfer);
  547. }
  548. static int rspi_rz_transfer_one(struct spi_master *master,
  549. struct spi_device *spi,
  550. struct spi_transfer *xfer)
  551. {
  552. struct rspi_data *rspi = spi_master_get_devdata(master);
  553. rspi_rz_receive_init(rspi);
  554. return rspi_common_transfer(rspi, xfer);
  555. }
  556. static int qspi_transfer_out_in(struct rspi_data *rspi,
  557. struct spi_transfer *xfer)
  558. {
  559. qspi_receive_init(rspi);
  560. return rspi_common_transfer(rspi, xfer);
  561. }
  562. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  563. {
  564. int ret;
  565. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  566. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  567. if (ret != -EAGAIN)
  568. return ret;
  569. }
  570. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  571. if (ret < 0)
  572. return ret;
  573. /* Wait for the last transmission */
  574. rspi_wait_for_tx_empty(rspi);
  575. return 0;
  576. }
  577. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  578. {
  579. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  580. int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  581. if (ret != -EAGAIN)
  582. return ret;
  583. }
  584. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  585. }
  586. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  587. struct spi_transfer *xfer)
  588. {
  589. struct rspi_data *rspi = spi_master_get_devdata(master);
  590. if (spi->mode & SPI_LOOP) {
  591. return qspi_transfer_out_in(rspi, xfer);
  592. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  593. /* Quad or Dual SPI Write */
  594. return qspi_transfer_out(rspi, xfer);
  595. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  596. /* Quad or Dual SPI Read */
  597. return qspi_transfer_in(rspi, xfer);
  598. } else {
  599. /* Single SPI Transfer */
  600. return qspi_transfer_out_in(rspi, xfer);
  601. }
  602. }
  603. static int rspi_setup(struct spi_device *spi)
  604. {
  605. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  606. rspi->max_speed_hz = spi->max_speed_hz;
  607. rspi->spcmd = SPCMD_SSLKP;
  608. if (spi->mode & SPI_CPOL)
  609. rspi->spcmd |= SPCMD_CPOL;
  610. if (spi->mode & SPI_CPHA)
  611. rspi->spcmd |= SPCMD_CPHA;
  612. /* CMOS output mode and MOSI signal from previous transfer */
  613. rspi->sppcr = 0;
  614. if (spi->mode & SPI_LOOP)
  615. rspi->sppcr |= SPPCR_SPLP;
  616. set_config_register(rspi, 8);
  617. return 0;
  618. }
  619. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  620. {
  621. if (xfer->tx_buf)
  622. switch (xfer->tx_nbits) {
  623. case SPI_NBITS_QUAD:
  624. return SPCMD_SPIMOD_QUAD;
  625. case SPI_NBITS_DUAL:
  626. return SPCMD_SPIMOD_DUAL;
  627. default:
  628. return 0;
  629. }
  630. if (xfer->rx_buf)
  631. switch (xfer->rx_nbits) {
  632. case SPI_NBITS_QUAD:
  633. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  634. case SPI_NBITS_DUAL:
  635. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  636. default:
  637. return 0;
  638. }
  639. return 0;
  640. }
  641. static int qspi_setup_sequencer(struct rspi_data *rspi,
  642. const struct spi_message *msg)
  643. {
  644. const struct spi_transfer *xfer;
  645. unsigned int i = 0, len = 0;
  646. u16 current_mode = 0xffff, mode;
  647. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  648. mode = qspi_transfer_mode(xfer);
  649. if (mode == current_mode) {
  650. len += xfer->len;
  651. continue;
  652. }
  653. /* Transfer mode change */
  654. if (i) {
  655. /* Set transfer data length of previous transfer */
  656. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  657. }
  658. if (i >= QSPI_NUM_SPCMD) {
  659. dev_err(&msg->spi->dev,
  660. "Too many different transfer modes");
  661. return -EINVAL;
  662. }
  663. /* Program transfer mode for this transfer */
  664. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  665. current_mode = mode;
  666. len = xfer->len;
  667. i++;
  668. }
  669. if (i) {
  670. /* Set final transfer data length and sequence length */
  671. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  672. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  673. }
  674. return 0;
  675. }
  676. static int rspi_prepare_message(struct spi_master *master,
  677. struct spi_message *msg)
  678. {
  679. struct rspi_data *rspi = spi_master_get_devdata(master);
  680. int ret;
  681. if (msg->spi->mode &
  682. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  683. /* Setup sequencer for messages with multiple transfer modes */
  684. ret = qspi_setup_sequencer(rspi, msg);
  685. if (ret < 0)
  686. return ret;
  687. }
  688. /* Enable SPI function in master mode */
  689. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  690. return 0;
  691. }
  692. static int rspi_unprepare_message(struct spi_master *master,
  693. struct spi_message *msg)
  694. {
  695. struct rspi_data *rspi = spi_master_get_devdata(master);
  696. /* Disable SPI function */
  697. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  698. /* Reset sequencer for Single SPI Transfers */
  699. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  700. rspi_write8(rspi, 0, RSPI_SPSCR);
  701. return 0;
  702. }
  703. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  704. {
  705. struct rspi_data *rspi = _sr;
  706. u8 spsr;
  707. irqreturn_t ret = IRQ_NONE;
  708. u8 disable_irq = 0;
  709. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  710. if (spsr & SPSR_SPRF)
  711. disable_irq |= SPCR_SPRIE;
  712. if (spsr & SPSR_SPTEF)
  713. disable_irq |= SPCR_SPTIE;
  714. if (disable_irq) {
  715. ret = IRQ_HANDLED;
  716. rspi_disable_irq(rspi, disable_irq);
  717. wake_up(&rspi->wait);
  718. }
  719. return ret;
  720. }
  721. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  722. {
  723. struct rspi_data *rspi = _sr;
  724. u8 spsr;
  725. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  726. if (spsr & SPSR_SPRF) {
  727. rspi_disable_irq(rspi, SPCR_SPRIE);
  728. wake_up(&rspi->wait);
  729. return IRQ_HANDLED;
  730. }
  731. return 0;
  732. }
  733. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  734. {
  735. struct rspi_data *rspi = _sr;
  736. u8 spsr;
  737. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  738. if (spsr & SPSR_SPTEF) {
  739. rspi_disable_irq(rspi, SPCR_SPTIE);
  740. wake_up(&rspi->wait);
  741. return IRQ_HANDLED;
  742. }
  743. return 0;
  744. }
  745. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  746. enum dma_transfer_direction dir,
  747. unsigned int id,
  748. dma_addr_t port_addr)
  749. {
  750. dma_cap_mask_t mask;
  751. struct dma_chan *chan;
  752. struct dma_slave_config cfg;
  753. int ret;
  754. dma_cap_zero(mask);
  755. dma_cap_set(DMA_SLAVE, mask);
  756. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  757. (void *)(unsigned long)id, dev,
  758. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  759. if (!chan) {
  760. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  761. return NULL;
  762. }
  763. memset(&cfg, 0, sizeof(cfg));
  764. cfg.slave_id = id;
  765. cfg.direction = dir;
  766. if (dir == DMA_MEM_TO_DEV) {
  767. cfg.dst_addr = port_addr;
  768. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  769. } else {
  770. cfg.src_addr = port_addr;
  771. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  772. }
  773. ret = dmaengine_slave_config(chan, &cfg);
  774. if (ret) {
  775. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  776. dma_release_channel(chan);
  777. return NULL;
  778. }
  779. return chan;
  780. }
  781. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  782. const struct resource *res)
  783. {
  784. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  785. unsigned int dma_tx_id, dma_rx_id;
  786. if (dev->of_node) {
  787. /* In the OF case we will get the slave IDs from the DT */
  788. dma_tx_id = 0;
  789. dma_rx_id = 0;
  790. } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
  791. dma_tx_id = rspi_pd->dma_tx_id;
  792. dma_rx_id = rspi_pd->dma_rx_id;
  793. } else {
  794. /* The driver assumes no error. */
  795. return 0;
  796. }
  797. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
  798. res->start + RSPI_SPDR);
  799. if (!master->dma_tx)
  800. return -ENODEV;
  801. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
  802. res->start + RSPI_SPDR);
  803. if (!master->dma_rx) {
  804. dma_release_channel(master->dma_tx);
  805. master->dma_tx = NULL;
  806. return -ENODEV;
  807. }
  808. master->can_dma = rspi_can_dma;
  809. dev_info(dev, "DMA available");
  810. return 0;
  811. }
  812. static void rspi_release_dma(struct spi_master *master)
  813. {
  814. if (master->dma_tx)
  815. dma_release_channel(master->dma_tx);
  816. if (master->dma_rx)
  817. dma_release_channel(master->dma_rx);
  818. }
  819. static int rspi_remove(struct platform_device *pdev)
  820. {
  821. struct rspi_data *rspi = platform_get_drvdata(pdev);
  822. rspi_release_dma(rspi->master);
  823. pm_runtime_disable(&pdev->dev);
  824. return 0;
  825. }
  826. static const struct spi_ops rspi_ops = {
  827. .set_config_register = rspi_set_config_register,
  828. .transfer_one = rspi_transfer_one,
  829. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  830. .flags = SPI_MASTER_MUST_TX,
  831. .fifo_size = 8,
  832. };
  833. static const struct spi_ops rspi_rz_ops = {
  834. .set_config_register = rspi_rz_set_config_register,
  835. .transfer_one = rspi_rz_transfer_one,
  836. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  837. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  838. .fifo_size = 8, /* 8 for TX, 32 for RX */
  839. };
  840. static const struct spi_ops qspi_ops = {
  841. .set_config_register = qspi_set_config_register,
  842. .transfer_one = qspi_transfer_one,
  843. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  844. SPI_TX_DUAL | SPI_TX_QUAD |
  845. SPI_RX_DUAL | SPI_RX_QUAD,
  846. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  847. .fifo_size = 32,
  848. };
  849. #ifdef CONFIG_OF
  850. static const struct of_device_id rspi_of_match[] = {
  851. /* RSPI on legacy SH */
  852. { .compatible = "renesas,rspi", .data = &rspi_ops },
  853. /* RSPI on RZ/A1H */
  854. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  855. /* QSPI on R-Car Gen2 */
  856. { .compatible = "renesas,qspi", .data = &qspi_ops },
  857. { /* sentinel */ }
  858. };
  859. MODULE_DEVICE_TABLE(of, rspi_of_match);
  860. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  861. {
  862. u32 num_cs;
  863. int error;
  864. /* Parse DT properties */
  865. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  866. if (error) {
  867. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  868. return error;
  869. }
  870. master->num_chipselect = num_cs;
  871. return 0;
  872. }
  873. #else
  874. #define rspi_of_match NULL
  875. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  876. {
  877. return -EINVAL;
  878. }
  879. #endif /* CONFIG_OF */
  880. static int rspi_request_irq(struct device *dev, unsigned int irq,
  881. irq_handler_t handler, const char *suffix,
  882. void *dev_id)
  883. {
  884. const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
  885. dev_name(dev), suffix);
  886. if (!name)
  887. return -ENOMEM;
  888. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  889. }
  890. static int rspi_probe(struct platform_device *pdev)
  891. {
  892. struct resource *res;
  893. struct spi_master *master;
  894. struct rspi_data *rspi;
  895. int ret;
  896. const struct of_device_id *of_id;
  897. const struct rspi_plat_data *rspi_pd;
  898. const struct spi_ops *ops;
  899. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  900. if (master == NULL) {
  901. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  902. return -ENOMEM;
  903. }
  904. of_id = of_match_device(rspi_of_match, &pdev->dev);
  905. if (of_id) {
  906. ops = of_id->data;
  907. ret = rspi_parse_dt(&pdev->dev, master);
  908. if (ret)
  909. goto error1;
  910. } else {
  911. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  912. rspi_pd = dev_get_platdata(&pdev->dev);
  913. if (rspi_pd && rspi_pd->num_chipselect)
  914. master->num_chipselect = rspi_pd->num_chipselect;
  915. else
  916. master->num_chipselect = 2; /* default */
  917. }
  918. /* ops parameter check */
  919. if (!ops->set_config_register) {
  920. dev_err(&pdev->dev, "there is no set_config_register\n");
  921. ret = -ENODEV;
  922. goto error1;
  923. }
  924. rspi = spi_master_get_devdata(master);
  925. platform_set_drvdata(pdev, rspi);
  926. rspi->ops = ops;
  927. rspi->master = master;
  928. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  929. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  930. if (IS_ERR(rspi->addr)) {
  931. ret = PTR_ERR(rspi->addr);
  932. goto error1;
  933. }
  934. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  935. if (IS_ERR(rspi->clk)) {
  936. dev_err(&pdev->dev, "cannot get clock\n");
  937. ret = PTR_ERR(rspi->clk);
  938. goto error1;
  939. }
  940. pm_runtime_enable(&pdev->dev);
  941. init_waitqueue_head(&rspi->wait);
  942. master->bus_num = pdev->id;
  943. master->setup = rspi_setup;
  944. master->auto_runtime_pm = true;
  945. master->transfer_one = ops->transfer_one;
  946. master->prepare_message = rspi_prepare_message;
  947. master->unprepare_message = rspi_unprepare_message;
  948. master->mode_bits = ops->mode_bits;
  949. master->flags = ops->flags;
  950. master->dev.of_node = pdev->dev.of_node;
  951. ret = platform_get_irq_byname(pdev, "rx");
  952. if (ret < 0) {
  953. ret = platform_get_irq_byname(pdev, "mux");
  954. if (ret < 0)
  955. ret = platform_get_irq(pdev, 0);
  956. if (ret >= 0)
  957. rspi->rx_irq = rspi->tx_irq = ret;
  958. } else {
  959. rspi->rx_irq = ret;
  960. ret = platform_get_irq_byname(pdev, "tx");
  961. if (ret >= 0)
  962. rspi->tx_irq = ret;
  963. }
  964. if (ret < 0) {
  965. dev_err(&pdev->dev, "platform_get_irq error\n");
  966. goto error2;
  967. }
  968. if (rspi->rx_irq == rspi->tx_irq) {
  969. /* Single multiplexed interrupt */
  970. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  971. "mux", rspi);
  972. } else {
  973. /* Multi-interrupt mode, only SPRI and SPTI are used */
  974. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  975. "rx", rspi);
  976. if (!ret)
  977. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  978. rspi_irq_tx, "tx", rspi);
  979. }
  980. if (ret < 0) {
  981. dev_err(&pdev->dev, "request_irq error\n");
  982. goto error2;
  983. }
  984. ret = rspi_request_dma(&pdev->dev, master, res);
  985. if (ret < 0)
  986. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  987. ret = devm_spi_register_master(&pdev->dev, master);
  988. if (ret < 0) {
  989. dev_err(&pdev->dev, "spi_register_master error.\n");
  990. goto error3;
  991. }
  992. dev_info(&pdev->dev, "probed\n");
  993. return 0;
  994. error3:
  995. rspi_release_dma(master);
  996. error2:
  997. pm_runtime_disable(&pdev->dev);
  998. error1:
  999. spi_master_put(master);
  1000. return ret;
  1001. }
  1002. static struct platform_device_id spi_driver_ids[] = {
  1003. { "rspi", (kernel_ulong_t)&rspi_ops },
  1004. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1005. { "qspi", (kernel_ulong_t)&qspi_ops },
  1006. {},
  1007. };
  1008. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1009. static struct platform_driver rspi_driver = {
  1010. .probe = rspi_probe,
  1011. .remove = rspi_remove,
  1012. .id_table = spi_driver_ids,
  1013. .driver = {
  1014. .name = "renesas_spi",
  1015. .of_match_table = of_match_ptr(rspi_of_match),
  1016. },
  1017. };
  1018. module_platform_driver(rspi_driver);
  1019. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1020. MODULE_LICENSE("GPL v2");
  1021. MODULE_AUTHOR("Yoshihiro Shimoda");
  1022. MODULE_ALIAS("platform:rspi");