spi-pxa2xx.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/init.h>
  16. #include <linux/module.h>
  17. #include <linux/device.h>
  18. #include <linux/ioport.h>
  19. #include <linux/errno.h>
  20. #include <linux/err.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/spi/pxa2xx_spi.h>
  24. #include <linux/spi/spi.h>
  25. #include <linux/delay.h>
  26. #include <linux/gpio.h>
  27. #include <linux/slab.h>
  28. #include <linux/clk.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/acpi.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/delay.h>
  34. #include "spi-pxa2xx.h"
  35. MODULE_AUTHOR("Stephen Street");
  36. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  37. MODULE_LICENSE("GPL");
  38. MODULE_ALIAS("platform:pxa2xx-spi");
  39. #define TIMOUT_DFLT 1000
  40. /*
  41. * for testing SSCR1 changes that require SSP restart, basically
  42. * everything except the service and interrupt enables, the pxa270 developer
  43. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44. * list, but the PXA255 dev man says all bits without really meaning the
  45. * service and interrupt enables
  46. */
  47. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53. #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
  54. | QUARK_X1000_SSCR1_EFWR \
  55. | QUARK_X1000_SSCR1_RFT \
  56. | QUARK_X1000_SSCR1_TFT \
  57. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  58. #define LPSS_RX_THRESH_DFLT 64
  59. #define LPSS_TX_LOTHRESH_DFLT 160
  60. #define LPSS_TX_HITHRESH_DFLT 224
  61. struct quark_spi_rate {
  62. u32 bitrate;
  63. u32 dds_clk_rate;
  64. u32 clk_div;
  65. };
  66. /*
  67. * 'rate', 'dds', 'clk_div' lookup table, which is defined in
  68. * the Quark SPI datasheet.
  69. */
  70. static const struct quark_spi_rate quark_spi_rate_table[] = {
  71. /* bitrate, dds_clk_rate, clk_div */
  72. {50000000, 0x800000, 0},
  73. {40000000, 0x666666, 0},
  74. {25000000, 0x400000, 0},
  75. {20000000, 0x666666, 1},
  76. {16667000, 0x800000, 2},
  77. {13333000, 0x666666, 2},
  78. {12500000, 0x200000, 0},
  79. {10000000, 0x800000, 4},
  80. {8000000, 0x666666, 4},
  81. {6250000, 0x400000, 3},
  82. {5000000, 0x400000, 4},
  83. {4000000, 0x666666, 9},
  84. {3125000, 0x80000, 0},
  85. {2500000, 0x400000, 9},
  86. {2000000, 0x666666, 19},
  87. {1563000, 0x40000, 0},
  88. {1250000, 0x200000, 9},
  89. {1000000, 0x400000, 24},
  90. {800000, 0x666666, 49},
  91. {781250, 0x20000, 0},
  92. {625000, 0x200000, 19},
  93. {500000, 0x400000, 49},
  94. {400000, 0x666666, 99},
  95. {390625, 0x10000, 0},
  96. {250000, 0x400000, 99},
  97. {200000, 0x666666, 199},
  98. {195313, 0x8000, 0},
  99. {125000, 0x100000, 49},
  100. {100000, 0x200000, 124},
  101. {50000, 0x100000, 124},
  102. {25000, 0x80000, 124},
  103. {10016, 0x20000, 77},
  104. {5040, 0x20000, 154},
  105. {1002, 0x8000, 194},
  106. };
  107. /* Offset from drv_data->lpss_base */
  108. #define GENERAL_REG 0x08
  109. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  110. #define SSP_REG 0x0c
  111. #define SPI_CS_CONTROL 0x18
  112. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  113. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  114. static bool is_lpss_ssp(const struct driver_data *drv_data)
  115. {
  116. return drv_data->ssp_type == LPSS_SSP;
  117. }
  118. static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
  119. {
  120. return drv_data->ssp_type == QUARK_X1000_SSP;
  121. }
  122. static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
  123. {
  124. switch (drv_data->ssp_type) {
  125. case QUARK_X1000_SSP:
  126. return QUARK_X1000_SSCR1_CHANGE_MASK;
  127. default:
  128. return SSCR1_CHANGE_MASK;
  129. }
  130. }
  131. static u32
  132. pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
  133. {
  134. switch (drv_data->ssp_type) {
  135. case QUARK_X1000_SSP:
  136. return RX_THRESH_QUARK_X1000_DFLT;
  137. default:
  138. return RX_THRESH_DFLT;
  139. }
  140. }
  141. static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
  142. {
  143. u32 mask;
  144. switch (drv_data->ssp_type) {
  145. case QUARK_X1000_SSP:
  146. mask = QUARK_X1000_SSSR_TFL_MASK;
  147. break;
  148. default:
  149. mask = SSSR_TFL_MASK;
  150. break;
  151. }
  152. return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
  153. }
  154. static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
  155. u32 *sccr1_reg)
  156. {
  157. u32 mask;
  158. switch (drv_data->ssp_type) {
  159. case QUARK_X1000_SSP:
  160. mask = QUARK_X1000_SSCR1_RFT;
  161. break;
  162. default:
  163. mask = SSCR1_RFT;
  164. break;
  165. }
  166. *sccr1_reg &= ~mask;
  167. }
  168. static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
  169. u32 *sccr1_reg, u32 threshold)
  170. {
  171. switch (drv_data->ssp_type) {
  172. case QUARK_X1000_SSP:
  173. *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
  174. break;
  175. default:
  176. *sccr1_reg |= SSCR1_RxTresh(threshold);
  177. break;
  178. }
  179. }
  180. static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
  181. u32 clk_div, u8 bits)
  182. {
  183. switch (drv_data->ssp_type) {
  184. case QUARK_X1000_SSP:
  185. return clk_div
  186. | QUARK_X1000_SSCR0_Motorola
  187. | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
  188. | SSCR0_SSE;
  189. default:
  190. return clk_div
  191. | SSCR0_Motorola
  192. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  193. | SSCR0_SSE
  194. | (bits > 16 ? SSCR0_EDSS : 0);
  195. }
  196. }
  197. /*
  198. * Read and write LPSS SSP private registers. Caller must first check that
  199. * is_lpss_ssp() returns true before these can be called.
  200. */
  201. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  202. {
  203. WARN_ON(!drv_data->lpss_base);
  204. return readl(drv_data->lpss_base + offset);
  205. }
  206. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  207. unsigned offset, u32 value)
  208. {
  209. WARN_ON(!drv_data->lpss_base);
  210. writel(value, drv_data->lpss_base + offset);
  211. }
  212. /*
  213. * lpss_ssp_setup - perform LPSS SSP specific setup
  214. * @drv_data: pointer to the driver private data
  215. *
  216. * Perform LPSS SSP specific setup. This function must be called first if
  217. * one is going to use LPSS SSP private registers.
  218. */
  219. static void lpss_ssp_setup(struct driver_data *drv_data)
  220. {
  221. unsigned offset = 0x400;
  222. u32 value, orig;
  223. /*
  224. * Perform auto-detection of the LPSS SSP private registers. They
  225. * can be either at 1k or 2k offset from the base address.
  226. */
  227. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  228. /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
  229. value = orig | SPI_CS_CONTROL_SW_MODE;
  230. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  231. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  232. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  233. offset = 0x800;
  234. goto detection_done;
  235. }
  236. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  237. /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
  238. value = orig & ~SPI_CS_CONTROL_SW_MODE;
  239. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  240. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  241. if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
  242. offset = 0x800;
  243. goto detection_done;
  244. }
  245. detection_done:
  246. /* Now set the LPSS base */
  247. drv_data->lpss_base = drv_data->ioaddr + offset;
  248. /* Enable software chip select control */
  249. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  250. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  251. /* Enable multiblock DMA transfers */
  252. if (drv_data->master_info->enable_dma) {
  253. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  254. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  255. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  256. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  257. }
  258. }
  259. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  260. {
  261. u32 value;
  262. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  263. if (enable)
  264. value &= ~SPI_CS_CONTROL_CS_HIGH;
  265. else
  266. value |= SPI_CS_CONTROL_CS_HIGH;
  267. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  268. }
  269. static void cs_assert(struct driver_data *drv_data)
  270. {
  271. struct chip_data *chip = drv_data->cur_chip;
  272. if (drv_data->ssp_type == CE4100_SSP) {
  273. pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
  274. return;
  275. }
  276. if (chip->cs_control) {
  277. chip->cs_control(PXA2XX_CS_ASSERT);
  278. return;
  279. }
  280. if (gpio_is_valid(chip->gpio_cs)) {
  281. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  282. return;
  283. }
  284. if (is_lpss_ssp(drv_data))
  285. lpss_ssp_cs_control(drv_data, true);
  286. }
  287. static void cs_deassert(struct driver_data *drv_data)
  288. {
  289. struct chip_data *chip = drv_data->cur_chip;
  290. if (drv_data->ssp_type == CE4100_SSP)
  291. return;
  292. if (chip->cs_control) {
  293. chip->cs_control(PXA2XX_CS_DEASSERT);
  294. return;
  295. }
  296. if (gpio_is_valid(chip->gpio_cs)) {
  297. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  298. return;
  299. }
  300. if (is_lpss_ssp(drv_data))
  301. lpss_ssp_cs_control(drv_data, false);
  302. }
  303. int pxa2xx_spi_flush(struct driver_data *drv_data)
  304. {
  305. unsigned long limit = loops_per_jiffy << 1;
  306. do {
  307. while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  308. pxa2xx_spi_read(drv_data, SSDR);
  309. } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
  310. write_SSSR_CS(drv_data, SSSR_ROR);
  311. return limit;
  312. }
  313. static int null_writer(struct driver_data *drv_data)
  314. {
  315. u8 n_bytes = drv_data->n_bytes;
  316. if (pxa2xx_spi_txfifo_full(drv_data)
  317. || (drv_data->tx == drv_data->tx_end))
  318. return 0;
  319. pxa2xx_spi_write(drv_data, SSDR, 0);
  320. drv_data->tx += n_bytes;
  321. return 1;
  322. }
  323. static int null_reader(struct driver_data *drv_data)
  324. {
  325. u8 n_bytes = drv_data->n_bytes;
  326. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  327. && (drv_data->rx < drv_data->rx_end)) {
  328. pxa2xx_spi_read(drv_data, SSDR);
  329. drv_data->rx += n_bytes;
  330. }
  331. return drv_data->rx == drv_data->rx_end;
  332. }
  333. static int u8_writer(struct driver_data *drv_data)
  334. {
  335. if (pxa2xx_spi_txfifo_full(drv_data)
  336. || (drv_data->tx == drv_data->tx_end))
  337. return 0;
  338. pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
  339. ++drv_data->tx;
  340. return 1;
  341. }
  342. static int u8_reader(struct driver_data *drv_data)
  343. {
  344. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  345. && (drv_data->rx < drv_data->rx_end)) {
  346. *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  347. ++drv_data->rx;
  348. }
  349. return drv_data->rx == drv_data->rx_end;
  350. }
  351. static int u16_writer(struct driver_data *drv_data)
  352. {
  353. if (pxa2xx_spi_txfifo_full(drv_data)
  354. || (drv_data->tx == drv_data->tx_end))
  355. return 0;
  356. pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
  357. drv_data->tx += 2;
  358. return 1;
  359. }
  360. static int u16_reader(struct driver_data *drv_data)
  361. {
  362. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  363. && (drv_data->rx < drv_data->rx_end)) {
  364. *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  365. drv_data->rx += 2;
  366. }
  367. return drv_data->rx == drv_data->rx_end;
  368. }
  369. static int u32_writer(struct driver_data *drv_data)
  370. {
  371. if (pxa2xx_spi_txfifo_full(drv_data)
  372. || (drv_data->tx == drv_data->tx_end))
  373. return 0;
  374. pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
  375. drv_data->tx += 4;
  376. return 1;
  377. }
  378. static int u32_reader(struct driver_data *drv_data)
  379. {
  380. while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
  381. && (drv_data->rx < drv_data->rx_end)) {
  382. *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
  383. drv_data->rx += 4;
  384. }
  385. return drv_data->rx == drv_data->rx_end;
  386. }
  387. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  388. {
  389. struct spi_message *msg = drv_data->cur_msg;
  390. struct spi_transfer *trans = drv_data->cur_transfer;
  391. /* Move to next transfer */
  392. if (trans->transfer_list.next != &msg->transfers) {
  393. drv_data->cur_transfer =
  394. list_entry(trans->transfer_list.next,
  395. struct spi_transfer,
  396. transfer_list);
  397. return RUNNING_STATE;
  398. } else
  399. return DONE_STATE;
  400. }
  401. /* caller already set message->status; dma and pio irqs are blocked */
  402. static void giveback(struct driver_data *drv_data)
  403. {
  404. struct spi_transfer* last_transfer;
  405. struct spi_message *msg;
  406. msg = drv_data->cur_msg;
  407. drv_data->cur_msg = NULL;
  408. drv_data->cur_transfer = NULL;
  409. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  410. transfer_list);
  411. /* Delay if requested before any change in chip select */
  412. if (last_transfer->delay_usecs)
  413. udelay(last_transfer->delay_usecs);
  414. /* Drop chip select UNLESS cs_change is true or we are returning
  415. * a message with an error, or next message is for another chip
  416. */
  417. if (!last_transfer->cs_change)
  418. cs_deassert(drv_data);
  419. else {
  420. struct spi_message *next_msg;
  421. /* Holding of cs was hinted, but we need to make sure
  422. * the next message is for the same chip. Don't waste
  423. * time with the following tests unless this was hinted.
  424. *
  425. * We cannot postpone this until pump_messages, because
  426. * after calling msg->complete (below) the driver that
  427. * sent the current message could be unloaded, which
  428. * could invalidate the cs_control() callback...
  429. */
  430. /* get a pointer to the next message, if any */
  431. next_msg = spi_get_next_queued_message(drv_data->master);
  432. /* see if the next and current messages point
  433. * to the same chip
  434. */
  435. if (next_msg && next_msg->spi != msg->spi)
  436. next_msg = NULL;
  437. if (!next_msg || msg->state == ERROR_STATE)
  438. cs_deassert(drv_data);
  439. }
  440. drv_data->cur_chip = NULL;
  441. spi_finalize_current_message(drv_data->master);
  442. }
  443. static void reset_sccr1(struct driver_data *drv_data)
  444. {
  445. struct chip_data *chip = drv_data->cur_chip;
  446. u32 sccr1_reg;
  447. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
  448. sccr1_reg &= ~SSCR1_RFT;
  449. sccr1_reg |= chip->threshold;
  450. pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
  451. }
  452. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  453. {
  454. /* Stop and reset SSP */
  455. write_SSSR_CS(drv_data, drv_data->clear_sr);
  456. reset_sccr1(drv_data);
  457. if (!pxa25x_ssp_comp(drv_data))
  458. pxa2xx_spi_write(drv_data, SSTO, 0);
  459. pxa2xx_spi_flush(drv_data);
  460. pxa2xx_spi_write(drv_data, SSCR0,
  461. pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
  462. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  463. drv_data->cur_msg->state = ERROR_STATE;
  464. tasklet_schedule(&drv_data->pump_transfers);
  465. }
  466. static void int_transfer_complete(struct driver_data *drv_data)
  467. {
  468. /* Stop SSP */
  469. write_SSSR_CS(drv_data, drv_data->clear_sr);
  470. reset_sccr1(drv_data);
  471. if (!pxa25x_ssp_comp(drv_data))
  472. pxa2xx_spi_write(drv_data, SSTO, 0);
  473. /* Update total byte transferred return count actual bytes read */
  474. drv_data->cur_msg->actual_length += drv_data->len -
  475. (drv_data->rx_end - drv_data->rx);
  476. /* Transfer delays and chip select release are
  477. * handled in pump_transfers or giveback
  478. */
  479. /* Move to next transfer */
  480. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  481. /* Schedule transfer tasklet */
  482. tasklet_schedule(&drv_data->pump_transfers);
  483. }
  484. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  485. {
  486. u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
  487. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  488. u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
  489. if (irq_status & SSSR_ROR) {
  490. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  491. return IRQ_HANDLED;
  492. }
  493. if (irq_status & SSSR_TINT) {
  494. pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
  495. if (drv_data->read(drv_data)) {
  496. int_transfer_complete(drv_data);
  497. return IRQ_HANDLED;
  498. }
  499. }
  500. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  501. do {
  502. if (drv_data->read(drv_data)) {
  503. int_transfer_complete(drv_data);
  504. return IRQ_HANDLED;
  505. }
  506. } while (drv_data->write(drv_data));
  507. if (drv_data->read(drv_data)) {
  508. int_transfer_complete(drv_data);
  509. return IRQ_HANDLED;
  510. }
  511. if (drv_data->tx == drv_data->tx_end) {
  512. u32 bytes_left;
  513. u32 sccr1_reg;
  514. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
  515. sccr1_reg &= ~SSCR1_TIE;
  516. /*
  517. * PXA25x_SSP has no timeout, set up rx threshould for the
  518. * remaining RX bytes.
  519. */
  520. if (pxa25x_ssp_comp(drv_data)) {
  521. u32 rx_thre;
  522. pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
  523. bytes_left = drv_data->rx_end - drv_data->rx;
  524. switch (drv_data->n_bytes) {
  525. case 4:
  526. bytes_left >>= 1;
  527. case 2:
  528. bytes_left >>= 1;
  529. }
  530. rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
  531. if (rx_thre > bytes_left)
  532. rx_thre = bytes_left;
  533. pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
  534. }
  535. pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
  536. }
  537. /* We did something */
  538. return IRQ_HANDLED;
  539. }
  540. static irqreturn_t ssp_int(int irq, void *dev_id)
  541. {
  542. struct driver_data *drv_data = dev_id;
  543. u32 sccr1_reg;
  544. u32 mask = drv_data->mask_sr;
  545. u32 status;
  546. /*
  547. * The IRQ might be shared with other peripherals so we must first
  548. * check that are we RPM suspended or not. If we are we assume that
  549. * the IRQ was not for us (we shouldn't be RPM suspended when the
  550. * interrupt is enabled).
  551. */
  552. if (pm_runtime_suspended(&drv_data->pdev->dev))
  553. return IRQ_NONE;
  554. /*
  555. * If the device is not yet in RPM suspended state and we get an
  556. * interrupt that is meant for another device, check if status bits
  557. * are all set to one. That means that the device is already
  558. * powered off.
  559. */
  560. status = pxa2xx_spi_read(drv_data, SSSR);
  561. if (status == ~0)
  562. return IRQ_NONE;
  563. sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
  564. /* Ignore possible writes if we don't need to write */
  565. if (!(sccr1_reg & SSCR1_TIE))
  566. mask &= ~SSSR_TFS;
  567. if (!(status & mask))
  568. return IRQ_NONE;
  569. if (!drv_data->cur_msg) {
  570. pxa2xx_spi_write(drv_data, SSCR0,
  571. pxa2xx_spi_read(drv_data, SSCR0)
  572. & ~SSCR0_SSE);
  573. pxa2xx_spi_write(drv_data, SSCR1,
  574. pxa2xx_spi_read(drv_data, SSCR1)
  575. & ~drv_data->int_cr1);
  576. if (!pxa25x_ssp_comp(drv_data))
  577. pxa2xx_spi_write(drv_data, SSTO, 0);
  578. write_SSSR_CS(drv_data, drv_data->clear_sr);
  579. dev_err(&drv_data->pdev->dev,
  580. "bad message state in interrupt handler\n");
  581. /* Never fail */
  582. return IRQ_HANDLED;
  583. }
  584. return drv_data->transfer_handler(drv_data);
  585. }
  586. /*
  587. * The Quark SPI data sheet gives a table, and for the given 'rate',
  588. * the 'dds' and 'clk_div' can be found in the table.
  589. */
  590. static u32 quark_x1000_set_clk_regvals(u32 rate, u32 *dds, u32 *clk_div)
  591. {
  592. unsigned int i;
  593. for (i = 0; i < ARRAY_SIZE(quark_spi_rate_table); i++) {
  594. if (rate >= quark_spi_rate_table[i].bitrate) {
  595. *dds = quark_spi_rate_table[i].dds_clk_rate;
  596. *clk_div = quark_spi_rate_table[i].clk_div;
  597. return quark_spi_rate_table[i].bitrate;
  598. }
  599. }
  600. *dds = quark_spi_rate_table[i-1].dds_clk_rate;
  601. *clk_div = quark_spi_rate_table[i-1].clk_div;
  602. return quark_spi_rate_table[i-1].bitrate;
  603. }
  604. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  605. {
  606. unsigned long ssp_clk = drv_data->max_clk_rate;
  607. const struct ssp_device *ssp = drv_data->ssp;
  608. rate = min_t(int, ssp_clk, rate);
  609. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  610. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  611. else
  612. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  613. }
  614. static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
  615. struct chip_data *chip, int rate)
  616. {
  617. u32 clk_div;
  618. switch (drv_data->ssp_type) {
  619. case QUARK_X1000_SSP:
  620. quark_x1000_set_clk_regvals(rate, &chip->dds_rate, &clk_div);
  621. return clk_div << 8;
  622. default:
  623. return ssp_get_clk_div(drv_data, rate);
  624. }
  625. }
  626. static void pump_transfers(unsigned long data)
  627. {
  628. struct driver_data *drv_data = (struct driver_data *)data;
  629. struct spi_message *message = NULL;
  630. struct spi_transfer *transfer = NULL;
  631. struct spi_transfer *previous = NULL;
  632. struct chip_data *chip = NULL;
  633. u32 clk_div = 0;
  634. u8 bits = 0;
  635. u32 speed = 0;
  636. u32 cr0;
  637. u32 cr1;
  638. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  639. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  640. u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
  641. /* Get current state information */
  642. message = drv_data->cur_msg;
  643. transfer = drv_data->cur_transfer;
  644. chip = drv_data->cur_chip;
  645. /* Handle for abort */
  646. if (message->state == ERROR_STATE) {
  647. message->status = -EIO;
  648. giveback(drv_data);
  649. return;
  650. }
  651. /* Handle end of message */
  652. if (message->state == DONE_STATE) {
  653. message->status = 0;
  654. giveback(drv_data);
  655. return;
  656. }
  657. /* Delay if requested at end of transfer before CS change */
  658. if (message->state == RUNNING_STATE) {
  659. previous = list_entry(transfer->transfer_list.prev,
  660. struct spi_transfer,
  661. transfer_list);
  662. if (previous->delay_usecs)
  663. udelay(previous->delay_usecs);
  664. /* Drop chip select only if cs_change is requested */
  665. if (previous->cs_change)
  666. cs_deassert(drv_data);
  667. }
  668. /* Check if we can DMA this transfer */
  669. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  670. /* reject already-mapped transfers; PIO won't always work */
  671. if (message->is_dma_mapped
  672. || transfer->rx_dma || transfer->tx_dma) {
  673. dev_err(&drv_data->pdev->dev,
  674. "pump_transfers: mapped transfer length of "
  675. "%u is greater than %d\n",
  676. transfer->len, MAX_DMA_LEN);
  677. message->status = -EINVAL;
  678. giveback(drv_data);
  679. return;
  680. }
  681. /* warn ... we force this to PIO mode */
  682. dev_warn_ratelimited(&message->spi->dev,
  683. "pump_transfers: DMA disabled for transfer length %ld "
  684. "greater than %d\n",
  685. (long)drv_data->len, MAX_DMA_LEN);
  686. }
  687. /* Setup the transfer state based on the type of transfer */
  688. if (pxa2xx_spi_flush(drv_data) == 0) {
  689. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  690. message->status = -EIO;
  691. giveback(drv_data);
  692. return;
  693. }
  694. drv_data->n_bytes = chip->n_bytes;
  695. drv_data->tx = (void *)transfer->tx_buf;
  696. drv_data->tx_end = drv_data->tx + transfer->len;
  697. drv_data->rx = transfer->rx_buf;
  698. drv_data->rx_end = drv_data->rx + transfer->len;
  699. drv_data->rx_dma = transfer->rx_dma;
  700. drv_data->tx_dma = transfer->tx_dma;
  701. drv_data->len = transfer->len;
  702. drv_data->write = drv_data->tx ? chip->write : null_writer;
  703. drv_data->read = drv_data->rx ? chip->read : null_reader;
  704. /* Change speed and bit per word on a per transfer */
  705. cr0 = chip->cr0;
  706. if (transfer->speed_hz || transfer->bits_per_word) {
  707. bits = chip->bits_per_word;
  708. speed = chip->speed_hz;
  709. if (transfer->speed_hz)
  710. speed = transfer->speed_hz;
  711. if (transfer->bits_per_word)
  712. bits = transfer->bits_per_word;
  713. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
  714. if (bits <= 8) {
  715. drv_data->n_bytes = 1;
  716. drv_data->read = drv_data->read != null_reader ?
  717. u8_reader : null_reader;
  718. drv_data->write = drv_data->write != null_writer ?
  719. u8_writer : null_writer;
  720. } else if (bits <= 16) {
  721. drv_data->n_bytes = 2;
  722. drv_data->read = drv_data->read != null_reader ?
  723. u16_reader : null_reader;
  724. drv_data->write = drv_data->write != null_writer ?
  725. u16_writer : null_writer;
  726. } else if (bits <= 32) {
  727. drv_data->n_bytes = 4;
  728. drv_data->read = drv_data->read != null_reader ?
  729. u32_reader : null_reader;
  730. drv_data->write = drv_data->write != null_writer ?
  731. u32_writer : null_writer;
  732. }
  733. /* if bits/word is changed in dma mode, then must check the
  734. * thresholds and burst also */
  735. if (chip->enable_dma) {
  736. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  737. message->spi,
  738. bits, &dma_burst,
  739. &dma_thresh))
  740. dev_warn_ratelimited(&message->spi->dev,
  741. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  742. }
  743. cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
  744. }
  745. message->state = RUNNING_STATE;
  746. drv_data->dma_mapped = 0;
  747. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  748. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  749. if (drv_data->dma_mapped) {
  750. /* Ensure we have the correct interrupt handler */
  751. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  752. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  753. /* Clear status and start DMA engine */
  754. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  755. pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
  756. pxa2xx_spi_dma_start(drv_data);
  757. } else {
  758. /* Ensure we have the correct interrupt handler */
  759. drv_data->transfer_handler = interrupt_transfer;
  760. /* Clear status */
  761. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  762. write_SSSR_CS(drv_data, drv_data->clear_sr);
  763. }
  764. if (is_lpss_ssp(drv_data)) {
  765. if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
  766. != chip->lpss_rx_threshold)
  767. pxa2xx_spi_write(drv_data, SSIRF,
  768. chip->lpss_rx_threshold);
  769. if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
  770. != chip->lpss_tx_threshold)
  771. pxa2xx_spi_write(drv_data, SSITF,
  772. chip->lpss_tx_threshold);
  773. }
  774. if (is_quark_x1000_ssp(drv_data) &&
  775. (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
  776. pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
  777. /* see if we need to reload the config registers */
  778. if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
  779. || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
  780. != (cr1 & change_mask)) {
  781. /* stop the SSP, and update the other bits */
  782. pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
  783. if (!pxa25x_ssp_comp(drv_data))
  784. pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
  785. /* first set CR1 without interrupt and service enables */
  786. pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
  787. /* restart the SSP */
  788. pxa2xx_spi_write(drv_data, SSCR0, cr0);
  789. } else {
  790. if (!pxa25x_ssp_comp(drv_data))
  791. pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
  792. }
  793. cs_assert(drv_data);
  794. /* after chip select, release the data by enabling service
  795. * requests and interrupts, without changing any mode bits */
  796. pxa2xx_spi_write(drv_data, SSCR1, cr1);
  797. }
  798. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  799. struct spi_message *msg)
  800. {
  801. struct driver_data *drv_data = spi_master_get_devdata(master);
  802. drv_data->cur_msg = msg;
  803. /* Initial message state*/
  804. drv_data->cur_msg->state = START_STATE;
  805. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  806. struct spi_transfer,
  807. transfer_list);
  808. /* prepare to setup the SSP, in pump_transfers, using the per
  809. * chip configuration */
  810. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  811. /* Mark as busy and launch transfers */
  812. tasklet_schedule(&drv_data->pump_transfers);
  813. return 0;
  814. }
  815. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  816. {
  817. struct driver_data *drv_data = spi_master_get_devdata(master);
  818. /* Disable the SSP now */
  819. pxa2xx_spi_write(drv_data, SSCR0,
  820. pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
  821. return 0;
  822. }
  823. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  824. struct pxa2xx_spi_chip *chip_info)
  825. {
  826. int err = 0;
  827. if (chip == NULL || chip_info == NULL)
  828. return 0;
  829. /* NOTE: setup() can be called multiple times, possibly with
  830. * different chip_info, release previously requested GPIO
  831. */
  832. if (gpio_is_valid(chip->gpio_cs))
  833. gpio_free(chip->gpio_cs);
  834. /* If (*cs_control) is provided, ignore GPIO chip select */
  835. if (chip_info->cs_control) {
  836. chip->cs_control = chip_info->cs_control;
  837. return 0;
  838. }
  839. if (gpio_is_valid(chip_info->gpio_cs)) {
  840. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  841. if (err) {
  842. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  843. chip_info->gpio_cs);
  844. return err;
  845. }
  846. chip->gpio_cs = chip_info->gpio_cs;
  847. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  848. err = gpio_direction_output(chip->gpio_cs,
  849. !chip->gpio_cs_inverted);
  850. }
  851. return err;
  852. }
  853. static int setup(struct spi_device *spi)
  854. {
  855. struct pxa2xx_spi_chip *chip_info = NULL;
  856. struct chip_data *chip;
  857. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  858. unsigned int clk_div;
  859. uint tx_thres, tx_hi_thres, rx_thres;
  860. switch (drv_data->ssp_type) {
  861. case QUARK_X1000_SSP:
  862. tx_thres = TX_THRESH_QUARK_X1000_DFLT;
  863. tx_hi_thres = 0;
  864. rx_thres = RX_THRESH_QUARK_X1000_DFLT;
  865. break;
  866. case LPSS_SSP:
  867. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  868. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  869. rx_thres = LPSS_RX_THRESH_DFLT;
  870. break;
  871. default:
  872. tx_thres = TX_THRESH_DFLT;
  873. tx_hi_thres = 0;
  874. rx_thres = RX_THRESH_DFLT;
  875. break;
  876. }
  877. /* Only alloc on first setup */
  878. chip = spi_get_ctldata(spi);
  879. if (!chip) {
  880. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  881. if (!chip)
  882. return -ENOMEM;
  883. if (drv_data->ssp_type == CE4100_SSP) {
  884. if (spi->chip_select > 4) {
  885. dev_err(&spi->dev,
  886. "failed setup: cs number must not be > 4.\n");
  887. kfree(chip);
  888. return -EINVAL;
  889. }
  890. chip->frm = spi->chip_select;
  891. } else
  892. chip->gpio_cs = -1;
  893. chip->enable_dma = 0;
  894. chip->timeout = TIMOUT_DFLT;
  895. }
  896. /* protocol drivers may change the chip settings, so...
  897. * if chip_info exists, use it */
  898. chip_info = spi->controller_data;
  899. /* chip_info isn't always needed */
  900. chip->cr1 = 0;
  901. if (chip_info) {
  902. if (chip_info->timeout)
  903. chip->timeout = chip_info->timeout;
  904. if (chip_info->tx_threshold)
  905. tx_thres = chip_info->tx_threshold;
  906. if (chip_info->tx_hi_threshold)
  907. tx_hi_thres = chip_info->tx_hi_threshold;
  908. if (chip_info->rx_threshold)
  909. rx_thres = chip_info->rx_threshold;
  910. chip->enable_dma = drv_data->master_info->enable_dma;
  911. chip->dma_threshold = 0;
  912. if (chip_info->enable_loopback)
  913. chip->cr1 = SSCR1_LBM;
  914. } else if (ACPI_HANDLE(&spi->dev)) {
  915. /*
  916. * Slave devices enumerated from ACPI namespace don't
  917. * usually have chip_info but we still might want to use
  918. * DMA with them.
  919. */
  920. chip->enable_dma = drv_data->master_info->enable_dma;
  921. }
  922. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  923. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  924. | SSITF_TxHiThresh(tx_hi_thres);
  925. /* set dma burst and threshold outside of chip_info path so that if
  926. * chip_info goes away after setting chip->enable_dma, the
  927. * burst and threshold can still respond to changes in bits_per_word */
  928. if (chip->enable_dma) {
  929. /* set up legal burst and threshold for dma */
  930. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  931. spi->bits_per_word,
  932. &chip->dma_burst_size,
  933. &chip->dma_threshold)) {
  934. dev_warn(&spi->dev,
  935. "in setup: DMA burst size reduced to match bits_per_word\n");
  936. }
  937. }
  938. clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
  939. chip->speed_hz = spi->max_speed_hz;
  940. chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
  941. spi->bits_per_word);
  942. switch (drv_data->ssp_type) {
  943. case QUARK_X1000_SSP:
  944. chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
  945. & QUARK_X1000_SSCR1_RFT)
  946. | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
  947. & QUARK_X1000_SSCR1_TFT);
  948. break;
  949. default:
  950. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  951. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  952. break;
  953. }
  954. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  955. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  956. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  957. if (spi->mode & SPI_LOOP)
  958. chip->cr1 |= SSCR1_LBM;
  959. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  960. if (!pxa25x_ssp_comp(drv_data))
  961. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  962. drv_data->max_clk_rate
  963. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  964. chip->enable_dma ? "DMA" : "PIO");
  965. else
  966. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  967. drv_data->max_clk_rate / 2
  968. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  969. chip->enable_dma ? "DMA" : "PIO");
  970. if (spi->bits_per_word <= 8) {
  971. chip->n_bytes = 1;
  972. chip->read = u8_reader;
  973. chip->write = u8_writer;
  974. } else if (spi->bits_per_word <= 16) {
  975. chip->n_bytes = 2;
  976. chip->read = u16_reader;
  977. chip->write = u16_writer;
  978. } else if (spi->bits_per_word <= 32) {
  979. if (!is_quark_x1000_ssp(drv_data))
  980. chip->cr0 |= SSCR0_EDSS;
  981. chip->n_bytes = 4;
  982. chip->read = u32_reader;
  983. chip->write = u32_writer;
  984. }
  985. chip->bits_per_word = spi->bits_per_word;
  986. spi_set_ctldata(spi, chip);
  987. if (drv_data->ssp_type == CE4100_SSP)
  988. return 0;
  989. return setup_cs(spi, chip, chip_info);
  990. }
  991. static void cleanup(struct spi_device *spi)
  992. {
  993. struct chip_data *chip = spi_get_ctldata(spi);
  994. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  995. if (!chip)
  996. return;
  997. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  998. gpio_free(chip->gpio_cs);
  999. kfree(chip);
  1000. }
  1001. #ifdef CONFIG_ACPI
  1002. static struct pxa2xx_spi_master *
  1003. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1004. {
  1005. struct pxa2xx_spi_master *pdata;
  1006. struct acpi_device *adev;
  1007. struct ssp_device *ssp;
  1008. struct resource *res;
  1009. int devid;
  1010. if (!ACPI_HANDLE(&pdev->dev) ||
  1011. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  1012. return NULL;
  1013. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1014. if (!pdata)
  1015. return NULL;
  1016. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1017. if (!res)
  1018. return NULL;
  1019. ssp = &pdata->ssp;
  1020. ssp->phys_base = res->start;
  1021. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  1022. if (IS_ERR(ssp->mmio_base))
  1023. return NULL;
  1024. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  1025. ssp->irq = platform_get_irq(pdev, 0);
  1026. ssp->type = LPSS_SSP;
  1027. ssp->pdev = pdev;
  1028. ssp->port_id = -1;
  1029. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  1030. ssp->port_id = devid;
  1031. pdata->num_chipselect = 1;
  1032. pdata->enable_dma = true;
  1033. return pdata;
  1034. }
  1035. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  1036. { "INT33C0", 0 },
  1037. { "INT33C1", 0 },
  1038. { "INT3430", 0 },
  1039. { "INT3431", 0 },
  1040. { "80860F0E", 0 },
  1041. { "8086228E", 0 },
  1042. { },
  1043. };
  1044. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  1045. #else
  1046. static inline struct pxa2xx_spi_master *
  1047. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  1048. {
  1049. return NULL;
  1050. }
  1051. #endif
  1052. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1053. {
  1054. struct device *dev = &pdev->dev;
  1055. struct pxa2xx_spi_master *platform_info;
  1056. struct spi_master *master;
  1057. struct driver_data *drv_data;
  1058. struct ssp_device *ssp;
  1059. int status;
  1060. u32 tmp;
  1061. platform_info = dev_get_platdata(dev);
  1062. if (!platform_info) {
  1063. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  1064. if (!platform_info) {
  1065. dev_err(&pdev->dev, "missing platform data\n");
  1066. return -ENODEV;
  1067. }
  1068. }
  1069. ssp = pxa_ssp_request(pdev->id, pdev->name);
  1070. if (!ssp)
  1071. ssp = &platform_info->ssp;
  1072. if (!ssp->mmio_base) {
  1073. dev_err(&pdev->dev, "failed to get ssp\n");
  1074. return -ENODEV;
  1075. }
  1076. /* Allocate master with space for drv_data and null dma buffer */
  1077. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1078. if (!master) {
  1079. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1080. pxa_ssp_free(ssp);
  1081. return -ENOMEM;
  1082. }
  1083. drv_data = spi_master_get_devdata(master);
  1084. drv_data->master = master;
  1085. drv_data->master_info = platform_info;
  1086. drv_data->pdev = pdev;
  1087. drv_data->ssp = ssp;
  1088. master->dev.parent = &pdev->dev;
  1089. master->dev.of_node = pdev->dev.of_node;
  1090. /* the spi->mode bits understood by this driver: */
  1091. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1092. master->bus_num = ssp->port_id;
  1093. master->num_chipselect = platform_info->num_chipselect;
  1094. master->dma_alignment = DMA_ALIGNMENT;
  1095. master->cleanup = cleanup;
  1096. master->setup = setup;
  1097. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  1098. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  1099. master->auto_runtime_pm = true;
  1100. drv_data->ssp_type = ssp->type;
  1101. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  1102. drv_data->ioaddr = ssp->mmio_base;
  1103. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1104. if (pxa25x_ssp_comp(drv_data)) {
  1105. switch (drv_data->ssp_type) {
  1106. case QUARK_X1000_SSP:
  1107. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1108. break;
  1109. default:
  1110. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  1111. break;
  1112. }
  1113. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1114. drv_data->dma_cr1 = 0;
  1115. drv_data->clear_sr = SSSR_ROR;
  1116. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1117. } else {
  1118. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  1119. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1120. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  1121. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1122. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1123. }
  1124. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  1125. drv_data);
  1126. if (status < 0) {
  1127. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1128. goto out_error_master_alloc;
  1129. }
  1130. /* Setup DMA if requested */
  1131. drv_data->tx_channel = -1;
  1132. drv_data->rx_channel = -1;
  1133. if (platform_info->enable_dma) {
  1134. status = pxa2xx_spi_dma_setup(drv_data);
  1135. if (status) {
  1136. dev_dbg(dev, "no DMA channels available, using PIO\n");
  1137. platform_info->enable_dma = false;
  1138. }
  1139. }
  1140. /* Enable SOC clock */
  1141. clk_prepare_enable(ssp->clk);
  1142. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  1143. /* Load default SSP configuration */
  1144. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1145. switch (drv_data->ssp_type) {
  1146. case QUARK_X1000_SSP:
  1147. tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
  1148. | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
  1149. pxa2xx_spi_write(drv_data, SSCR1, tmp);
  1150. /* using the Motorola SPI protocol and use 8 bit frame */
  1151. pxa2xx_spi_write(drv_data, SSCR0,
  1152. QUARK_X1000_SSCR0_Motorola
  1153. | QUARK_X1000_SSCR0_DataSize(8));
  1154. break;
  1155. default:
  1156. tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
  1157. SSCR1_TxTresh(TX_THRESH_DFLT);
  1158. pxa2xx_spi_write(drv_data, SSCR1, tmp);
  1159. tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
  1160. pxa2xx_spi_write(drv_data, SSCR0, tmp);
  1161. break;
  1162. }
  1163. if (!pxa25x_ssp_comp(drv_data))
  1164. pxa2xx_spi_write(drv_data, SSTO, 0);
  1165. if (!is_quark_x1000_ssp(drv_data))
  1166. pxa2xx_spi_write(drv_data, SSPSP, 0);
  1167. if (is_lpss_ssp(drv_data))
  1168. lpss_ssp_setup(drv_data);
  1169. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1170. (unsigned long)drv_data);
  1171. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  1172. pm_runtime_use_autosuspend(&pdev->dev);
  1173. pm_runtime_set_active(&pdev->dev);
  1174. pm_runtime_enable(&pdev->dev);
  1175. /* Register with the SPI framework */
  1176. platform_set_drvdata(pdev, drv_data);
  1177. status = devm_spi_register_master(&pdev->dev, master);
  1178. if (status != 0) {
  1179. dev_err(&pdev->dev, "problem registering spi master\n");
  1180. goto out_error_clock_enabled;
  1181. }
  1182. return status;
  1183. out_error_clock_enabled:
  1184. clk_disable_unprepare(ssp->clk);
  1185. pxa2xx_spi_dma_release(drv_data);
  1186. free_irq(ssp->irq, drv_data);
  1187. out_error_master_alloc:
  1188. spi_master_put(master);
  1189. pxa_ssp_free(ssp);
  1190. return status;
  1191. }
  1192. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1193. {
  1194. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1195. struct ssp_device *ssp;
  1196. if (!drv_data)
  1197. return 0;
  1198. ssp = drv_data->ssp;
  1199. pm_runtime_get_sync(&pdev->dev);
  1200. /* Disable the SSP at the peripheral and SOC level */
  1201. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1202. clk_disable_unprepare(ssp->clk);
  1203. /* Release DMA */
  1204. if (drv_data->master_info->enable_dma)
  1205. pxa2xx_spi_dma_release(drv_data);
  1206. pm_runtime_put_noidle(&pdev->dev);
  1207. pm_runtime_disable(&pdev->dev);
  1208. /* Release IRQ */
  1209. free_irq(ssp->irq, drv_data);
  1210. /* Release SSP */
  1211. pxa_ssp_free(ssp);
  1212. return 0;
  1213. }
  1214. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1215. {
  1216. int status = 0;
  1217. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1218. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1219. }
  1220. #ifdef CONFIG_PM_SLEEP
  1221. static int pxa2xx_spi_suspend(struct device *dev)
  1222. {
  1223. struct driver_data *drv_data = dev_get_drvdata(dev);
  1224. struct ssp_device *ssp = drv_data->ssp;
  1225. int status = 0;
  1226. status = spi_master_suspend(drv_data->master);
  1227. if (status != 0)
  1228. return status;
  1229. pxa2xx_spi_write(drv_data, SSCR0, 0);
  1230. if (!pm_runtime_suspended(dev))
  1231. clk_disable_unprepare(ssp->clk);
  1232. return 0;
  1233. }
  1234. static int pxa2xx_spi_resume(struct device *dev)
  1235. {
  1236. struct driver_data *drv_data = dev_get_drvdata(dev);
  1237. struct ssp_device *ssp = drv_data->ssp;
  1238. int status = 0;
  1239. pxa2xx_spi_dma_resume(drv_data);
  1240. /* Enable the SSP clock */
  1241. if (!pm_runtime_suspended(dev))
  1242. clk_prepare_enable(ssp->clk);
  1243. /* Restore LPSS private register bits */
  1244. if (is_lpss_ssp(drv_data))
  1245. lpss_ssp_setup(drv_data);
  1246. /* Start the queue running */
  1247. status = spi_master_resume(drv_data->master);
  1248. if (status != 0) {
  1249. dev_err(dev, "problem starting queue (%d)\n", status);
  1250. return status;
  1251. }
  1252. return 0;
  1253. }
  1254. #endif
  1255. #ifdef CONFIG_PM
  1256. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1257. {
  1258. struct driver_data *drv_data = dev_get_drvdata(dev);
  1259. clk_disable_unprepare(drv_data->ssp->clk);
  1260. return 0;
  1261. }
  1262. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1263. {
  1264. struct driver_data *drv_data = dev_get_drvdata(dev);
  1265. clk_prepare_enable(drv_data->ssp->clk);
  1266. return 0;
  1267. }
  1268. #endif
  1269. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1270. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1271. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1272. pxa2xx_spi_runtime_resume, NULL)
  1273. };
  1274. static struct platform_driver driver = {
  1275. .driver = {
  1276. .name = "pxa2xx-spi",
  1277. .pm = &pxa2xx_spi_pm_ops,
  1278. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1279. },
  1280. .probe = pxa2xx_spi_probe,
  1281. .remove = pxa2xx_spi_remove,
  1282. .shutdown = pxa2xx_spi_shutdown,
  1283. };
  1284. static int __init pxa2xx_spi_init(void)
  1285. {
  1286. return platform_driver_register(&driver);
  1287. }
  1288. subsys_initcall(pxa2xx_spi_init);
  1289. static void __exit pxa2xx_spi_exit(void)
  1290. {
  1291. platform_driver_unregister(&driver);
  1292. }
  1293. module_exit(pxa2xx_spi_exit);