process.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999, 2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <linux/init_task.h>
  26. #include <asm/io.h>
  27. #include <asm/processor.h>
  28. #include <asm/vtimer.h>
  29. #include <asm/exec.h>
  30. #include <asm/irq.h>
  31. #include <asm/nmi.h>
  32. #include <asm/smp.h>
  33. #include <asm/switch_to.h>
  34. #include <asm/runtime_instr.h>
  35. #include "entry.h"
  36. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  37. /*
  38. * Return saved PC of a blocked thread. used in kernel/sched.
  39. * resume in entry.S does not create a new stack frame, it
  40. * just stores the registers %r6-%r15 to the frame given by
  41. * schedule. We want to return the address of the caller of
  42. * schedule, so we have to walk the backchain one time to
  43. * find the frame schedule() store its return address.
  44. */
  45. unsigned long thread_saved_pc(struct task_struct *tsk)
  46. {
  47. struct stack_frame *sf, *low, *high;
  48. if (!tsk || !task_stack_page(tsk))
  49. return 0;
  50. low = task_stack_page(tsk);
  51. high = (struct stack_frame *) task_pt_regs(tsk);
  52. sf = (struct stack_frame *) tsk->thread.ksp;
  53. if (sf <= low || sf > high)
  54. return 0;
  55. sf = (struct stack_frame *) sf->back_chain;
  56. if (sf <= low || sf > high)
  57. return 0;
  58. return sf->gprs[8];
  59. }
  60. extern void kernel_thread_starter(void);
  61. /*
  62. * Free current thread data structures etc..
  63. */
  64. void exit_thread(void)
  65. {
  66. exit_thread_runtime_instr();
  67. }
  68. void flush_thread(void)
  69. {
  70. }
  71. void release_thread(struct task_struct *dead_task)
  72. {
  73. }
  74. void arch_release_task_struct(struct task_struct *tsk)
  75. {
  76. }
  77. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  78. {
  79. /*
  80. * Save the floating-point or vector register state of the current
  81. * task and set the CIF_FPU flag to lazy restore the FPU register
  82. * state when returning to user space.
  83. */
  84. save_fpu_regs();
  85. memcpy(dst, src, arch_task_struct_size);
  86. dst->thread.fpu.regs = dst->thread.fpu.fprs;
  87. return 0;
  88. }
  89. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  90. unsigned long arg, struct task_struct *p)
  91. {
  92. struct thread_info *ti;
  93. struct fake_frame
  94. {
  95. struct stack_frame sf;
  96. struct pt_regs childregs;
  97. } *frame;
  98. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  99. p->thread.ksp = (unsigned long) frame;
  100. /* Save access registers to new thread structure. */
  101. save_access_regs(&p->thread.acrs[0]);
  102. /* start new process with ar4 pointing to the correct address space */
  103. p->thread.mm_segment = get_fs();
  104. /* Don't copy debug registers */
  105. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  106. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  107. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  108. /* Initialize per thread user and system timer values */
  109. ti = task_thread_info(p);
  110. ti->user_timer = 0;
  111. ti->system_timer = 0;
  112. frame->sf.back_chain = 0;
  113. /* new return point is ret_from_fork */
  114. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  115. /* fake return stack for resume(), don't go back to schedule */
  116. frame->sf.gprs[9] = (unsigned long) frame;
  117. /* Store access registers to kernel stack of new process. */
  118. if (unlikely(p->flags & PF_KTHREAD)) {
  119. /* kernel thread */
  120. memset(&frame->childregs, 0, sizeof(struct pt_regs));
  121. frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
  122. PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  123. frame->childregs.psw.addr =
  124. (unsigned long) kernel_thread_starter;
  125. frame->childregs.gprs[9] = new_stackp; /* function */
  126. frame->childregs.gprs[10] = arg;
  127. frame->childregs.gprs[11] = (unsigned long) do_exit;
  128. frame->childregs.orig_gpr2 = -1;
  129. return 0;
  130. }
  131. frame->childregs = *current_pt_regs();
  132. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  133. frame->childregs.flags = 0;
  134. if (new_stackp)
  135. frame->childregs.gprs[15] = new_stackp;
  136. /* Don't copy runtime instrumentation info */
  137. p->thread.ri_cb = NULL;
  138. frame->childregs.psw.mask &= ~PSW_MASK_RI;
  139. /* Set a new TLS ? */
  140. if (clone_flags & CLONE_SETTLS) {
  141. unsigned long tls = frame->childregs.gprs[6];
  142. if (is_compat_task()) {
  143. p->thread.acrs[0] = (unsigned int)tls;
  144. } else {
  145. p->thread.acrs[0] = (unsigned int)(tls >> 32);
  146. p->thread.acrs[1] = (unsigned int)tls;
  147. }
  148. }
  149. return 0;
  150. }
  151. asmlinkage void execve_tail(void)
  152. {
  153. current->thread.fpu.fpc = 0;
  154. asm volatile("sfpc %0" : : "d" (0));
  155. }
  156. /*
  157. * fill in the FPU structure for a core dump.
  158. */
  159. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  160. {
  161. save_fpu_regs();
  162. fpregs->fpc = current->thread.fpu.fpc;
  163. fpregs->pad = 0;
  164. if (MACHINE_HAS_VX)
  165. convert_vx_to_fp((freg_t *)&fpregs->fprs,
  166. current->thread.fpu.vxrs);
  167. else
  168. memcpy(&fpregs->fprs, current->thread.fpu.fprs,
  169. sizeof(fpregs->fprs));
  170. return 1;
  171. }
  172. EXPORT_SYMBOL(dump_fpu);
  173. unsigned long get_wchan(struct task_struct *p)
  174. {
  175. struct stack_frame *sf, *low, *high;
  176. unsigned long return_address;
  177. int count;
  178. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  179. return 0;
  180. low = task_stack_page(p);
  181. high = (struct stack_frame *) task_pt_regs(p);
  182. sf = (struct stack_frame *) p->thread.ksp;
  183. if (sf <= low || sf > high)
  184. return 0;
  185. for (count = 0; count < 16; count++) {
  186. sf = (struct stack_frame *) sf->back_chain;
  187. if (sf <= low || sf > high)
  188. return 0;
  189. return_address = sf->gprs[8];
  190. if (!in_sched_functions(return_address))
  191. return return_address;
  192. }
  193. return 0;
  194. }
  195. unsigned long arch_align_stack(unsigned long sp)
  196. {
  197. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  198. sp -= get_random_int() & ~PAGE_MASK;
  199. return sp & ~0xf;
  200. }
  201. static inline unsigned long brk_rnd(void)
  202. {
  203. return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT;
  204. }
  205. unsigned long arch_randomize_brk(struct mm_struct *mm)
  206. {
  207. unsigned long ret;
  208. ret = PAGE_ALIGN(mm->brk + brk_rnd());
  209. return (ret > mm->brk) ? ret : mm->brk;
  210. }