pci.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/bitops.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/blk-mq.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/errno.h>
  21. #include <linux/fs.h>
  22. #include <linux/genhd.h>
  23. #include <linux/hdreg.h>
  24. #include <linux/idr.h>
  25. #include <linux/init.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/io.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/kthread.h>
  30. #include <linux/kernel.h>
  31. #include <linux/mm.h>
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <linux/mutex.h>
  35. #include <linux/pci.h>
  36. #include <linux/poison.h>
  37. #include <linux/ptrace.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/t10-pi.h>
  41. #include <linux/types.h>
  42. #include <linux/io-64-nonatomic-lo-hi.h>
  43. #include <asm/unaligned.h>
  44. #include "nvme.h"
  45. #define NVME_Q_DEPTH 1024
  46. #define NVME_AQ_DEPTH 256
  47. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  48. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  49. /*
  50. * We handle AEN commands ourselves and don't even let the
  51. * block layer know about them.
  52. */
  53. #define NVME_NR_AEN_COMMANDS 1
  54. #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
  55. unsigned char admin_timeout = 60;
  56. module_param(admin_timeout, byte, 0644);
  57. MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  58. unsigned char nvme_io_timeout = 30;
  59. module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  60. MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  61. unsigned char shutdown_timeout = 5;
  62. module_param(shutdown_timeout, byte, 0644);
  63. MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  64. static int use_threaded_interrupts;
  65. module_param(use_threaded_interrupts, int, 0);
  66. static bool use_cmb_sqes = true;
  67. module_param(use_cmb_sqes, bool, 0644);
  68. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  69. static LIST_HEAD(dev_list);
  70. static struct task_struct *nvme_thread;
  71. static struct workqueue_struct *nvme_workq;
  72. static wait_queue_head_t nvme_kthread_wait;
  73. struct nvme_dev;
  74. struct nvme_queue;
  75. static int nvme_reset(struct nvme_dev *dev);
  76. static void nvme_process_cq(struct nvme_queue *nvmeq);
  77. static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
  78. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  79. /*
  80. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  81. */
  82. struct nvme_dev {
  83. struct list_head node;
  84. struct nvme_queue **queues;
  85. struct blk_mq_tag_set tagset;
  86. struct blk_mq_tag_set admin_tagset;
  87. u32 __iomem *dbs;
  88. struct device *dev;
  89. struct dma_pool *prp_page_pool;
  90. struct dma_pool *prp_small_pool;
  91. unsigned queue_count;
  92. unsigned online_queues;
  93. unsigned max_qid;
  94. int q_depth;
  95. u32 db_stride;
  96. struct msix_entry *entry;
  97. void __iomem *bar;
  98. struct work_struct reset_work;
  99. struct work_struct scan_work;
  100. struct work_struct remove_work;
  101. struct mutex shutdown_lock;
  102. bool subsystem;
  103. void __iomem *cmb;
  104. dma_addr_t cmb_dma_addr;
  105. u64 cmb_size;
  106. u32 cmbsz;
  107. unsigned long flags;
  108. #define NVME_CTRL_RESETTING 0
  109. struct nvme_ctrl ctrl;
  110. struct completion ioq_wait;
  111. };
  112. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  113. {
  114. return container_of(ctrl, struct nvme_dev, ctrl);
  115. }
  116. /*
  117. * An NVM Express queue. Each device has at least two (one for admin
  118. * commands and one for I/O commands).
  119. */
  120. struct nvme_queue {
  121. struct device *q_dmadev;
  122. struct nvme_dev *dev;
  123. char irqname[24]; /* nvme4294967295-65535\0 */
  124. spinlock_t q_lock;
  125. struct nvme_command *sq_cmds;
  126. struct nvme_command __iomem *sq_cmds_io;
  127. volatile struct nvme_completion *cqes;
  128. struct blk_mq_tags **tags;
  129. dma_addr_t sq_dma_addr;
  130. dma_addr_t cq_dma_addr;
  131. u32 __iomem *q_db;
  132. u16 q_depth;
  133. s16 cq_vector;
  134. u16 sq_head;
  135. u16 sq_tail;
  136. u16 cq_head;
  137. u16 qid;
  138. u8 cq_phase;
  139. u8 cqe_seen;
  140. };
  141. /*
  142. * The nvme_iod describes the data in an I/O, including the list of PRP
  143. * entries. You can't see it in this data structure because C doesn't let
  144. * me express that. Use nvme_init_iod to ensure there's enough space
  145. * allocated to store the PRP list.
  146. */
  147. struct nvme_iod {
  148. struct nvme_queue *nvmeq;
  149. int aborted;
  150. int npages; /* In the PRP list. 0 means small pool in use */
  151. int nents; /* Used in scatterlist */
  152. int length; /* Of data, in bytes */
  153. dma_addr_t first_dma;
  154. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  155. struct scatterlist *sg;
  156. struct scatterlist inline_sg[0];
  157. };
  158. /*
  159. * Check we didin't inadvertently grow the command struct
  160. */
  161. static inline void _nvme_check_size(void)
  162. {
  163. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  164. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  165. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  166. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  167. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  168. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  169. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  170. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  171. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  172. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  173. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  175. }
  176. /*
  177. * Max size of iod being embedded in the request payload
  178. */
  179. #define NVME_INT_PAGES 2
  180. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  181. /*
  182. * Will slightly overestimate the number of pages needed. This is OK
  183. * as it only leads to a small amount of wasted memory for the lifetime of
  184. * the I/O.
  185. */
  186. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  187. {
  188. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  189. dev->ctrl.page_size);
  190. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  191. }
  192. static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
  193. unsigned int size, unsigned int nseg)
  194. {
  195. return sizeof(__le64 *) * nvme_npages(size, dev) +
  196. sizeof(struct scatterlist) * nseg;
  197. }
  198. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  199. {
  200. return sizeof(struct nvme_iod) +
  201. nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
  202. }
  203. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  204. unsigned int hctx_idx)
  205. {
  206. struct nvme_dev *dev = data;
  207. struct nvme_queue *nvmeq = dev->queues[0];
  208. WARN_ON(hctx_idx != 0);
  209. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  210. WARN_ON(nvmeq->tags);
  211. hctx->driver_data = nvmeq;
  212. nvmeq->tags = &dev->admin_tagset.tags[0];
  213. return 0;
  214. }
  215. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  216. {
  217. struct nvme_queue *nvmeq = hctx->driver_data;
  218. nvmeq->tags = NULL;
  219. }
  220. static int nvme_admin_init_request(void *data, struct request *req,
  221. unsigned int hctx_idx, unsigned int rq_idx,
  222. unsigned int numa_node)
  223. {
  224. struct nvme_dev *dev = data;
  225. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  226. struct nvme_queue *nvmeq = dev->queues[0];
  227. BUG_ON(!nvmeq);
  228. iod->nvmeq = nvmeq;
  229. return 0;
  230. }
  231. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  232. unsigned int hctx_idx)
  233. {
  234. struct nvme_dev *dev = data;
  235. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  236. if (!nvmeq->tags)
  237. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  238. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  239. hctx->driver_data = nvmeq;
  240. return 0;
  241. }
  242. static int nvme_init_request(void *data, struct request *req,
  243. unsigned int hctx_idx, unsigned int rq_idx,
  244. unsigned int numa_node)
  245. {
  246. struct nvme_dev *dev = data;
  247. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  248. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  249. BUG_ON(!nvmeq);
  250. iod->nvmeq = nvmeq;
  251. return 0;
  252. }
  253. static void nvme_complete_async_event(struct nvme_dev *dev,
  254. struct nvme_completion *cqe)
  255. {
  256. u16 status = le16_to_cpu(cqe->status) >> 1;
  257. u32 result = le32_to_cpu(cqe->result);
  258. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
  259. ++dev->ctrl.event_limit;
  260. if (status != NVME_SC_SUCCESS)
  261. return;
  262. switch (result & 0xff07) {
  263. case NVME_AER_NOTICE_NS_CHANGED:
  264. dev_info(dev->dev, "rescanning\n");
  265. queue_work(nvme_workq, &dev->scan_work);
  266. default:
  267. dev_warn(dev->dev, "async event result %08x\n", result);
  268. }
  269. }
  270. /**
  271. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  272. * @nvmeq: The queue to use
  273. * @cmd: The command to send
  274. *
  275. * Safe to use from interrupt context
  276. */
  277. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  278. struct nvme_command *cmd)
  279. {
  280. u16 tail = nvmeq->sq_tail;
  281. if (nvmeq->sq_cmds_io)
  282. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  283. else
  284. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  285. if (++tail == nvmeq->q_depth)
  286. tail = 0;
  287. writel(tail, nvmeq->q_db);
  288. nvmeq->sq_tail = tail;
  289. }
  290. static __le64 **iod_list(struct request *req)
  291. {
  292. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  293. return (__le64 **)(iod->sg + req->nr_phys_segments);
  294. }
  295. static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  296. {
  297. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  298. int nseg = rq->nr_phys_segments;
  299. unsigned size;
  300. if (rq->cmd_flags & REQ_DISCARD)
  301. size = sizeof(struct nvme_dsm_range);
  302. else
  303. size = blk_rq_bytes(rq);
  304. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  305. iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
  306. if (!iod->sg)
  307. return BLK_MQ_RQ_QUEUE_BUSY;
  308. } else {
  309. iod->sg = iod->inline_sg;
  310. }
  311. iod->aborted = 0;
  312. iod->npages = -1;
  313. iod->nents = 0;
  314. iod->length = size;
  315. return 0;
  316. }
  317. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  318. {
  319. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  320. const int last_prp = dev->ctrl.page_size / 8 - 1;
  321. int i;
  322. __le64 **list = iod_list(req);
  323. dma_addr_t prp_dma = iod->first_dma;
  324. if (iod->npages == 0)
  325. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  326. for (i = 0; i < iod->npages; i++) {
  327. __le64 *prp_list = list[i];
  328. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  329. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  330. prp_dma = next_prp_dma;
  331. }
  332. if (iod->sg != iod->inline_sg)
  333. kfree(iod->sg);
  334. }
  335. #ifdef CONFIG_BLK_DEV_INTEGRITY
  336. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  337. {
  338. if (be32_to_cpu(pi->ref_tag) == v)
  339. pi->ref_tag = cpu_to_be32(p);
  340. }
  341. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  342. {
  343. if (be32_to_cpu(pi->ref_tag) == p)
  344. pi->ref_tag = cpu_to_be32(v);
  345. }
  346. /**
  347. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  348. *
  349. * The virtual start sector is the one that was originally submitted by the
  350. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  351. * start sector may be different. Remap protection information to match the
  352. * physical LBA on writes, and back to the original seed on reads.
  353. *
  354. * Type 0 and 3 do not have a ref tag, so no remapping required.
  355. */
  356. static void nvme_dif_remap(struct request *req,
  357. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  358. {
  359. struct nvme_ns *ns = req->rq_disk->private_data;
  360. struct bio_integrity_payload *bip;
  361. struct t10_pi_tuple *pi;
  362. void *p, *pmap;
  363. u32 i, nlb, ts, phys, virt;
  364. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  365. return;
  366. bip = bio_integrity(req->bio);
  367. if (!bip)
  368. return;
  369. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  370. p = pmap;
  371. virt = bip_get_seed(bip);
  372. phys = nvme_block_nr(ns, blk_rq_pos(req));
  373. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  374. ts = ns->disk->queue->integrity.tuple_size;
  375. for (i = 0; i < nlb; i++, virt++, phys++) {
  376. pi = (struct t10_pi_tuple *)p;
  377. dif_swap(phys, virt, pi);
  378. p += ts;
  379. }
  380. kunmap_atomic(pmap);
  381. }
  382. #else /* CONFIG_BLK_DEV_INTEGRITY */
  383. static void nvme_dif_remap(struct request *req,
  384. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  385. {
  386. }
  387. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  388. {
  389. }
  390. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  391. {
  392. }
  393. #endif
  394. static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
  395. int total_len)
  396. {
  397. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  398. struct dma_pool *pool;
  399. int length = total_len;
  400. struct scatterlist *sg = iod->sg;
  401. int dma_len = sg_dma_len(sg);
  402. u64 dma_addr = sg_dma_address(sg);
  403. u32 page_size = dev->ctrl.page_size;
  404. int offset = dma_addr & (page_size - 1);
  405. __le64 *prp_list;
  406. __le64 **list = iod_list(req);
  407. dma_addr_t prp_dma;
  408. int nprps, i;
  409. length -= (page_size - offset);
  410. if (length <= 0)
  411. return true;
  412. dma_len -= (page_size - offset);
  413. if (dma_len) {
  414. dma_addr += (page_size - offset);
  415. } else {
  416. sg = sg_next(sg);
  417. dma_addr = sg_dma_address(sg);
  418. dma_len = sg_dma_len(sg);
  419. }
  420. if (length <= page_size) {
  421. iod->first_dma = dma_addr;
  422. return true;
  423. }
  424. nprps = DIV_ROUND_UP(length, page_size);
  425. if (nprps <= (256 / 8)) {
  426. pool = dev->prp_small_pool;
  427. iod->npages = 0;
  428. } else {
  429. pool = dev->prp_page_pool;
  430. iod->npages = 1;
  431. }
  432. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  433. if (!prp_list) {
  434. iod->first_dma = dma_addr;
  435. iod->npages = -1;
  436. return false;
  437. }
  438. list[0] = prp_list;
  439. iod->first_dma = prp_dma;
  440. i = 0;
  441. for (;;) {
  442. if (i == page_size >> 3) {
  443. __le64 *old_prp_list = prp_list;
  444. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  445. if (!prp_list)
  446. return false;
  447. list[iod->npages++] = prp_list;
  448. prp_list[0] = old_prp_list[i - 1];
  449. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  450. i = 1;
  451. }
  452. prp_list[i++] = cpu_to_le64(dma_addr);
  453. dma_len -= page_size;
  454. dma_addr += page_size;
  455. length -= page_size;
  456. if (length <= 0)
  457. break;
  458. if (dma_len > 0)
  459. continue;
  460. BUG_ON(dma_len < 0);
  461. sg = sg_next(sg);
  462. dma_addr = sg_dma_address(sg);
  463. dma_len = sg_dma_len(sg);
  464. }
  465. return true;
  466. }
  467. static int nvme_map_data(struct nvme_dev *dev, struct request *req,
  468. struct nvme_command *cmnd)
  469. {
  470. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  471. struct request_queue *q = req->q;
  472. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  473. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  474. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  475. sg_init_table(iod->sg, req->nr_phys_segments);
  476. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  477. if (!iod->nents)
  478. goto out;
  479. ret = BLK_MQ_RQ_QUEUE_BUSY;
  480. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  481. goto out;
  482. if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
  483. goto out_unmap;
  484. ret = BLK_MQ_RQ_QUEUE_ERROR;
  485. if (blk_integrity_rq(req)) {
  486. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  487. goto out_unmap;
  488. sg_init_table(&iod->meta_sg, 1);
  489. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  490. goto out_unmap;
  491. if (rq_data_dir(req))
  492. nvme_dif_remap(req, nvme_dif_prep);
  493. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  494. goto out_unmap;
  495. }
  496. cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  497. cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
  498. if (blk_integrity_rq(req))
  499. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  500. return BLK_MQ_RQ_QUEUE_OK;
  501. out_unmap:
  502. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  503. out:
  504. return ret;
  505. }
  506. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  507. {
  508. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  509. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  510. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  511. if (iod->nents) {
  512. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  513. if (blk_integrity_rq(req)) {
  514. if (!rq_data_dir(req))
  515. nvme_dif_remap(req, nvme_dif_complete);
  516. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  517. }
  518. }
  519. nvme_free_iod(dev, req);
  520. }
  521. /*
  522. * We reuse the small pool to allocate the 16-byte range here as it is not
  523. * worth having a special pool for these or additional cases to handle freeing
  524. * the iod.
  525. */
  526. static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  527. struct request *req, struct nvme_command *cmnd)
  528. {
  529. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  530. struct nvme_dsm_range *range;
  531. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  532. &iod->first_dma);
  533. if (!range)
  534. return BLK_MQ_RQ_QUEUE_BUSY;
  535. iod_list(req)[0] = (__le64 *)range;
  536. iod->npages = 0;
  537. range->cattr = cpu_to_le32(0);
  538. range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
  539. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  540. memset(cmnd, 0, sizeof(*cmnd));
  541. cmnd->dsm.opcode = nvme_cmd_dsm;
  542. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  543. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  544. cmnd->dsm.nr = 0;
  545. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  546. return BLK_MQ_RQ_QUEUE_OK;
  547. }
  548. /*
  549. * NOTE: ns is NULL when called on the admin queue.
  550. */
  551. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  552. const struct blk_mq_queue_data *bd)
  553. {
  554. struct nvme_ns *ns = hctx->queue->queuedata;
  555. struct nvme_queue *nvmeq = hctx->driver_data;
  556. struct nvme_dev *dev = nvmeq->dev;
  557. struct request *req = bd->rq;
  558. struct nvme_command cmnd;
  559. int ret = BLK_MQ_RQ_QUEUE_OK;
  560. /*
  561. * If formated with metadata, require the block layer provide a buffer
  562. * unless this namespace is formated such that the metadata can be
  563. * stripped/generated by the controller with PRACT=1.
  564. */
  565. if (ns && ns->ms && !blk_integrity_rq(req)) {
  566. if (!(ns->pi_type && ns->ms == 8) &&
  567. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  568. blk_mq_end_request(req, -EFAULT);
  569. return BLK_MQ_RQ_QUEUE_OK;
  570. }
  571. }
  572. ret = nvme_init_iod(req, dev);
  573. if (ret)
  574. return ret;
  575. if (req->cmd_flags & REQ_DISCARD) {
  576. ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
  577. } else {
  578. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  579. memcpy(&cmnd, req->cmd, sizeof(cmnd));
  580. else if (req->cmd_flags & REQ_FLUSH)
  581. nvme_setup_flush(ns, &cmnd);
  582. else
  583. nvme_setup_rw(ns, req, &cmnd);
  584. if (req->nr_phys_segments)
  585. ret = nvme_map_data(dev, req, &cmnd);
  586. }
  587. if (ret)
  588. goto out;
  589. cmnd.common.command_id = req->tag;
  590. blk_mq_start_request(req);
  591. spin_lock_irq(&nvmeq->q_lock);
  592. __nvme_submit_cmd(nvmeq, &cmnd);
  593. nvme_process_cq(nvmeq);
  594. spin_unlock_irq(&nvmeq->q_lock);
  595. return BLK_MQ_RQ_QUEUE_OK;
  596. out:
  597. nvme_free_iod(dev, req);
  598. return ret;
  599. }
  600. static void nvme_complete_rq(struct request *req)
  601. {
  602. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  603. struct nvme_dev *dev = iod->nvmeq->dev;
  604. int error = 0;
  605. nvme_unmap_data(dev, req);
  606. if (unlikely(req->errors)) {
  607. if (nvme_req_needs_retry(req, req->errors)) {
  608. nvme_requeue_req(req);
  609. return;
  610. }
  611. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  612. error = req->errors;
  613. else
  614. error = nvme_error_status(req->errors);
  615. }
  616. if (unlikely(iod->aborted)) {
  617. dev_warn(dev->dev,
  618. "completing aborted command with status: %04x\n",
  619. req->errors);
  620. }
  621. blk_mq_end_request(req, error);
  622. }
  623. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  624. {
  625. u16 head, phase;
  626. head = nvmeq->cq_head;
  627. phase = nvmeq->cq_phase;
  628. for (;;) {
  629. struct nvme_completion cqe = nvmeq->cqes[head];
  630. u16 status = le16_to_cpu(cqe.status);
  631. struct request *req;
  632. if ((status & 1) != phase)
  633. break;
  634. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  635. if (++head == nvmeq->q_depth) {
  636. head = 0;
  637. phase = !phase;
  638. }
  639. if (tag && *tag == cqe.command_id)
  640. *tag = -1;
  641. if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
  642. dev_warn(nvmeq->q_dmadev,
  643. "invalid id %d completed on queue %d\n",
  644. cqe.command_id, le16_to_cpu(cqe.sq_id));
  645. continue;
  646. }
  647. /*
  648. * AEN requests are special as they don't time out and can
  649. * survive any kind of queue freeze and often don't respond to
  650. * aborts. We don't even bother to allocate a struct request
  651. * for them but rather special case them here.
  652. */
  653. if (unlikely(nvmeq->qid == 0 &&
  654. cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
  655. nvme_complete_async_event(nvmeq->dev, &cqe);
  656. continue;
  657. }
  658. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
  659. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  660. u32 result = le32_to_cpu(cqe.result);
  661. req->special = (void *)(uintptr_t)result;
  662. }
  663. blk_mq_complete_request(req, status >> 1);
  664. }
  665. /* If the controller ignores the cq head doorbell and continuously
  666. * writes to the queue, it is theoretically possible to wrap around
  667. * the queue twice and mistakenly return IRQ_NONE. Linux only
  668. * requires that 0.1% of your interrupts are handled, so this isn't
  669. * a big problem.
  670. */
  671. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  672. return;
  673. if (likely(nvmeq->cq_vector >= 0))
  674. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  675. nvmeq->cq_head = head;
  676. nvmeq->cq_phase = phase;
  677. nvmeq->cqe_seen = 1;
  678. }
  679. static void nvme_process_cq(struct nvme_queue *nvmeq)
  680. {
  681. __nvme_process_cq(nvmeq, NULL);
  682. }
  683. static irqreturn_t nvme_irq(int irq, void *data)
  684. {
  685. irqreturn_t result;
  686. struct nvme_queue *nvmeq = data;
  687. spin_lock(&nvmeq->q_lock);
  688. nvme_process_cq(nvmeq);
  689. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  690. nvmeq->cqe_seen = 0;
  691. spin_unlock(&nvmeq->q_lock);
  692. return result;
  693. }
  694. static irqreturn_t nvme_irq_check(int irq, void *data)
  695. {
  696. struct nvme_queue *nvmeq = data;
  697. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  698. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  699. return IRQ_NONE;
  700. return IRQ_WAKE_THREAD;
  701. }
  702. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  703. {
  704. struct nvme_queue *nvmeq = hctx->driver_data;
  705. if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
  706. nvmeq->cq_phase) {
  707. spin_lock_irq(&nvmeq->q_lock);
  708. __nvme_process_cq(nvmeq, &tag);
  709. spin_unlock_irq(&nvmeq->q_lock);
  710. if (tag == -1)
  711. return 1;
  712. }
  713. return 0;
  714. }
  715. static void nvme_submit_async_event(struct nvme_dev *dev)
  716. {
  717. struct nvme_command c;
  718. memset(&c, 0, sizeof(c));
  719. c.common.opcode = nvme_admin_async_event;
  720. c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
  721. __nvme_submit_cmd(dev->queues[0], &c);
  722. }
  723. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  724. {
  725. struct nvme_command c;
  726. memset(&c, 0, sizeof(c));
  727. c.delete_queue.opcode = opcode;
  728. c.delete_queue.qid = cpu_to_le16(id);
  729. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  730. }
  731. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  732. struct nvme_queue *nvmeq)
  733. {
  734. struct nvme_command c;
  735. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  736. /*
  737. * Note: we (ab)use the fact the the prp fields survive if no data
  738. * is attached to the request.
  739. */
  740. memset(&c, 0, sizeof(c));
  741. c.create_cq.opcode = nvme_admin_create_cq;
  742. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  743. c.create_cq.cqid = cpu_to_le16(qid);
  744. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  745. c.create_cq.cq_flags = cpu_to_le16(flags);
  746. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  747. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  748. }
  749. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  750. struct nvme_queue *nvmeq)
  751. {
  752. struct nvme_command c;
  753. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  754. /*
  755. * Note: we (ab)use the fact the the prp fields survive if no data
  756. * is attached to the request.
  757. */
  758. memset(&c, 0, sizeof(c));
  759. c.create_sq.opcode = nvme_admin_create_sq;
  760. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  761. c.create_sq.sqid = cpu_to_le16(qid);
  762. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  763. c.create_sq.sq_flags = cpu_to_le16(flags);
  764. c.create_sq.cqid = cpu_to_le16(qid);
  765. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  766. }
  767. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  768. {
  769. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  770. }
  771. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  772. {
  773. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  774. }
  775. static void abort_endio(struct request *req, int error)
  776. {
  777. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  778. struct nvme_queue *nvmeq = iod->nvmeq;
  779. u32 result = (u32)(uintptr_t)req->special;
  780. u16 status = req->errors;
  781. dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
  782. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  783. blk_mq_free_request(req);
  784. }
  785. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  786. {
  787. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  788. struct nvme_queue *nvmeq = iod->nvmeq;
  789. struct nvme_dev *dev = nvmeq->dev;
  790. struct request *abort_req;
  791. struct nvme_command cmd;
  792. /*
  793. * Shutdown immediately if controller times out while starting. The
  794. * reset work will see the pci device disabled when it gets the forced
  795. * cancellation error. All outstanding requests are completed on
  796. * shutdown, so we return BLK_EH_HANDLED.
  797. */
  798. if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
  799. dev_warn(dev->dev,
  800. "I/O %d QID %d timeout, disable controller\n",
  801. req->tag, nvmeq->qid);
  802. nvme_dev_disable(dev, false);
  803. req->errors = NVME_SC_CANCELLED;
  804. return BLK_EH_HANDLED;
  805. }
  806. /*
  807. * Shutdown the controller immediately and schedule a reset if the
  808. * command was already aborted once before and still hasn't been
  809. * returned to the driver, or if this is the admin queue.
  810. */
  811. if (!nvmeq->qid || iod->aborted) {
  812. dev_warn(dev->dev,
  813. "I/O %d QID %d timeout, reset controller\n",
  814. req->tag, nvmeq->qid);
  815. nvme_dev_disable(dev, false);
  816. queue_work(nvme_workq, &dev->reset_work);
  817. /*
  818. * Mark the request as handled, since the inline shutdown
  819. * forces all outstanding requests to complete.
  820. */
  821. req->errors = NVME_SC_CANCELLED;
  822. return BLK_EH_HANDLED;
  823. }
  824. iod->aborted = 1;
  825. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  826. atomic_inc(&dev->ctrl.abort_limit);
  827. return BLK_EH_RESET_TIMER;
  828. }
  829. memset(&cmd, 0, sizeof(cmd));
  830. cmd.abort.opcode = nvme_admin_abort_cmd;
  831. cmd.abort.cid = req->tag;
  832. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  833. dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
  834. req->tag, nvmeq->qid);
  835. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  836. BLK_MQ_REQ_NOWAIT);
  837. if (IS_ERR(abort_req)) {
  838. atomic_inc(&dev->ctrl.abort_limit);
  839. return BLK_EH_RESET_TIMER;
  840. }
  841. abort_req->timeout = ADMIN_TIMEOUT;
  842. abort_req->end_io_data = NULL;
  843. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  844. /*
  845. * The aborted req will be completed on receiving the abort req.
  846. * We enable the timer again. If hit twice, it'll cause a device reset,
  847. * as the device then is in a faulty state.
  848. */
  849. return BLK_EH_RESET_TIMER;
  850. }
  851. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  852. {
  853. struct nvme_queue *nvmeq = data;
  854. int status;
  855. if (!blk_mq_request_started(req))
  856. return;
  857. dev_warn(nvmeq->q_dmadev,
  858. "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
  859. status = NVME_SC_ABORT_REQ;
  860. if (blk_queue_dying(req->q))
  861. status |= NVME_SC_DNR;
  862. blk_mq_complete_request(req, status);
  863. }
  864. static void nvme_free_queue(struct nvme_queue *nvmeq)
  865. {
  866. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  867. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  868. if (nvmeq->sq_cmds)
  869. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  870. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  871. kfree(nvmeq);
  872. }
  873. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  874. {
  875. int i;
  876. for (i = dev->queue_count - 1; i >= lowest; i--) {
  877. struct nvme_queue *nvmeq = dev->queues[i];
  878. dev->queue_count--;
  879. dev->queues[i] = NULL;
  880. nvme_free_queue(nvmeq);
  881. }
  882. }
  883. /**
  884. * nvme_suspend_queue - put queue into suspended state
  885. * @nvmeq - queue to suspend
  886. */
  887. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  888. {
  889. int vector;
  890. spin_lock_irq(&nvmeq->q_lock);
  891. if (nvmeq->cq_vector == -1) {
  892. spin_unlock_irq(&nvmeq->q_lock);
  893. return 1;
  894. }
  895. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  896. nvmeq->dev->online_queues--;
  897. nvmeq->cq_vector = -1;
  898. spin_unlock_irq(&nvmeq->q_lock);
  899. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  900. blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
  901. irq_set_affinity_hint(vector, NULL);
  902. free_irq(vector, nvmeq);
  903. return 0;
  904. }
  905. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  906. {
  907. spin_lock_irq(&nvmeq->q_lock);
  908. if (nvmeq->tags && *nvmeq->tags)
  909. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  910. spin_unlock_irq(&nvmeq->q_lock);
  911. }
  912. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  913. {
  914. struct nvme_queue *nvmeq = dev->queues[0];
  915. if (!nvmeq)
  916. return;
  917. if (nvme_suspend_queue(nvmeq))
  918. return;
  919. if (shutdown)
  920. nvme_shutdown_ctrl(&dev->ctrl);
  921. else
  922. nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
  923. dev->bar + NVME_REG_CAP));
  924. spin_lock_irq(&nvmeq->q_lock);
  925. nvme_process_cq(nvmeq);
  926. spin_unlock_irq(&nvmeq->q_lock);
  927. }
  928. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  929. int entry_size)
  930. {
  931. int q_depth = dev->q_depth;
  932. unsigned q_size_aligned = roundup(q_depth * entry_size,
  933. dev->ctrl.page_size);
  934. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  935. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  936. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  937. q_depth = div_u64(mem_per_q, entry_size);
  938. /*
  939. * Ensure the reduced q_depth is above some threshold where it
  940. * would be better to map queues in system memory with the
  941. * original depth
  942. */
  943. if (q_depth < 64)
  944. return -ENOMEM;
  945. }
  946. return q_depth;
  947. }
  948. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  949. int qid, int depth)
  950. {
  951. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  952. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  953. dev->ctrl.page_size);
  954. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  955. nvmeq->sq_cmds_io = dev->cmb + offset;
  956. } else {
  957. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  958. &nvmeq->sq_dma_addr, GFP_KERNEL);
  959. if (!nvmeq->sq_cmds)
  960. return -ENOMEM;
  961. }
  962. return 0;
  963. }
  964. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  965. int depth)
  966. {
  967. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  968. if (!nvmeq)
  969. return NULL;
  970. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  971. &nvmeq->cq_dma_addr, GFP_KERNEL);
  972. if (!nvmeq->cqes)
  973. goto free_nvmeq;
  974. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  975. goto free_cqdma;
  976. nvmeq->q_dmadev = dev->dev;
  977. nvmeq->dev = dev;
  978. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  979. dev->ctrl.instance, qid);
  980. spin_lock_init(&nvmeq->q_lock);
  981. nvmeq->cq_head = 0;
  982. nvmeq->cq_phase = 1;
  983. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  984. nvmeq->q_depth = depth;
  985. nvmeq->qid = qid;
  986. nvmeq->cq_vector = -1;
  987. dev->queues[qid] = nvmeq;
  988. /* make sure queue descriptor is set before queue count, for kthread */
  989. mb();
  990. dev->queue_count++;
  991. return nvmeq;
  992. free_cqdma:
  993. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  994. nvmeq->cq_dma_addr);
  995. free_nvmeq:
  996. kfree(nvmeq);
  997. return NULL;
  998. }
  999. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1000. const char *name)
  1001. {
  1002. if (use_threaded_interrupts)
  1003. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  1004. nvme_irq_check, nvme_irq, IRQF_SHARED,
  1005. name, nvmeq);
  1006. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  1007. IRQF_SHARED, name, nvmeq);
  1008. }
  1009. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1010. {
  1011. struct nvme_dev *dev = nvmeq->dev;
  1012. spin_lock_irq(&nvmeq->q_lock);
  1013. nvmeq->sq_tail = 0;
  1014. nvmeq->cq_head = 0;
  1015. nvmeq->cq_phase = 1;
  1016. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1017. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1018. dev->online_queues++;
  1019. spin_unlock_irq(&nvmeq->q_lock);
  1020. }
  1021. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1022. {
  1023. struct nvme_dev *dev = nvmeq->dev;
  1024. int result;
  1025. nvmeq->cq_vector = qid - 1;
  1026. result = adapter_alloc_cq(dev, qid, nvmeq);
  1027. if (result < 0)
  1028. return result;
  1029. result = adapter_alloc_sq(dev, qid, nvmeq);
  1030. if (result < 0)
  1031. goto release_cq;
  1032. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1033. if (result < 0)
  1034. goto release_sq;
  1035. nvme_init_queue(nvmeq, qid);
  1036. return result;
  1037. release_sq:
  1038. adapter_delete_sq(dev, qid);
  1039. release_cq:
  1040. adapter_delete_cq(dev, qid);
  1041. return result;
  1042. }
  1043. static struct blk_mq_ops nvme_mq_admin_ops = {
  1044. .queue_rq = nvme_queue_rq,
  1045. .complete = nvme_complete_rq,
  1046. .map_queue = blk_mq_map_queue,
  1047. .init_hctx = nvme_admin_init_hctx,
  1048. .exit_hctx = nvme_admin_exit_hctx,
  1049. .init_request = nvme_admin_init_request,
  1050. .timeout = nvme_timeout,
  1051. };
  1052. static struct blk_mq_ops nvme_mq_ops = {
  1053. .queue_rq = nvme_queue_rq,
  1054. .complete = nvme_complete_rq,
  1055. .map_queue = blk_mq_map_queue,
  1056. .init_hctx = nvme_init_hctx,
  1057. .init_request = nvme_init_request,
  1058. .timeout = nvme_timeout,
  1059. .poll = nvme_poll,
  1060. };
  1061. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1062. {
  1063. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1064. blk_cleanup_queue(dev->ctrl.admin_q);
  1065. blk_mq_free_tag_set(&dev->admin_tagset);
  1066. }
  1067. }
  1068. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1069. {
  1070. if (!dev->ctrl.admin_q) {
  1071. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1072. dev->admin_tagset.nr_hw_queues = 1;
  1073. /*
  1074. * Subtract one to leave an empty queue entry for 'Full Queue'
  1075. * condition. See NVM-Express 1.2 specification, section 4.1.2.
  1076. */
  1077. dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
  1078. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1079. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1080. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1081. dev->admin_tagset.driver_data = dev;
  1082. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1083. return -ENOMEM;
  1084. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1085. if (IS_ERR(dev->ctrl.admin_q)) {
  1086. blk_mq_free_tag_set(&dev->admin_tagset);
  1087. return -ENOMEM;
  1088. }
  1089. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1090. nvme_dev_remove_admin(dev);
  1091. dev->ctrl.admin_q = NULL;
  1092. return -ENODEV;
  1093. }
  1094. } else
  1095. blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
  1096. return 0;
  1097. }
  1098. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1099. {
  1100. int result;
  1101. u32 aqa;
  1102. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1103. struct nvme_queue *nvmeq;
  1104. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1105. NVME_CAP_NSSRC(cap) : 0;
  1106. if (dev->subsystem &&
  1107. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1108. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1109. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1110. if (result < 0)
  1111. return result;
  1112. nvmeq = dev->queues[0];
  1113. if (!nvmeq) {
  1114. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1115. if (!nvmeq)
  1116. return -ENOMEM;
  1117. }
  1118. aqa = nvmeq->q_depth - 1;
  1119. aqa |= aqa << 16;
  1120. writel(aqa, dev->bar + NVME_REG_AQA);
  1121. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1122. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1123. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1124. if (result)
  1125. goto free_nvmeq;
  1126. nvmeq->cq_vector = 0;
  1127. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1128. if (result) {
  1129. nvmeq->cq_vector = -1;
  1130. goto free_nvmeq;
  1131. }
  1132. return result;
  1133. free_nvmeq:
  1134. nvme_free_queues(dev, 0);
  1135. return result;
  1136. }
  1137. static int nvme_kthread(void *data)
  1138. {
  1139. struct nvme_dev *dev, *next;
  1140. while (!kthread_should_stop()) {
  1141. set_current_state(TASK_INTERRUPTIBLE);
  1142. spin_lock(&dev_list_lock);
  1143. list_for_each_entry_safe(dev, next, &dev_list, node) {
  1144. int i;
  1145. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1146. /*
  1147. * Skip controllers currently under reset.
  1148. */
  1149. if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
  1150. continue;
  1151. if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
  1152. csts & NVME_CSTS_CFS) {
  1153. if (queue_work(nvme_workq, &dev->reset_work)) {
  1154. dev_warn(dev->dev,
  1155. "Failed status: %x, reset controller\n",
  1156. readl(dev->bar + NVME_REG_CSTS));
  1157. }
  1158. continue;
  1159. }
  1160. for (i = 0; i < dev->queue_count; i++) {
  1161. struct nvme_queue *nvmeq = dev->queues[i];
  1162. if (!nvmeq)
  1163. continue;
  1164. spin_lock_irq(&nvmeq->q_lock);
  1165. nvme_process_cq(nvmeq);
  1166. while (i == 0 && dev->ctrl.event_limit > 0)
  1167. nvme_submit_async_event(dev);
  1168. spin_unlock_irq(&nvmeq->q_lock);
  1169. }
  1170. }
  1171. spin_unlock(&dev_list_lock);
  1172. schedule_timeout(round_jiffies_relative(HZ));
  1173. }
  1174. return 0;
  1175. }
  1176. static int nvme_create_io_queues(struct nvme_dev *dev)
  1177. {
  1178. unsigned i;
  1179. int ret = 0;
  1180. for (i = dev->queue_count; i <= dev->max_qid; i++) {
  1181. if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
  1182. ret = -ENOMEM;
  1183. break;
  1184. }
  1185. }
  1186. for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
  1187. ret = nvme_create_queue(dev->queues[i], i);
  1188. if (ret) {
  1189. nvme_free_queues(dev, i);
  1190. break;
  1191. }
  1192. }
  1193. /*
  1194. * Ignore failing Create SQ/CQ commands, we can continue with less
  1195. * than the desired aount of queues, and even a controller without
  1196. * I/O queues an still be used to issue admin commands. This might
  1197. * be useful to upgrade a buggy firmware for example.
  1198. */
  1199. return ret >= 0 ? 0 : ret;
  1200. }
  1201. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1202. {
  1203. u64 szu, size, offset;
  1204. u32 cmbloc;
  1205. resource_size_t bar_size;
  1206. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1207. void __iomem *cmb;
  1208. dma_addr_t dma_addr;
  1209. if (!use_cmb_sqes)
  1210. return NULL;
  1211. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1212. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1213. return NULL;
  1214. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1215. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1216. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1217. offset = szu * NVME_CMB_OFST(cmbloc);
  1218. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1219. if (offset > bar_size)
  1220. return NULL;
  1221. /*
  1222. * Controllers may support a CMB size larger than their BAR,
  1223. * for example, due to being behind a bridge. Reduce the CMB to
  1224. * the reported size of the BAR
  1225. */
  1226. if (size > bar_size - offset)
  1227. size = bar_size - offset;
  1228. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1229. cmb = ioremap_wc(dma_addr, size);
  1230. if (!cmb)
  1231. return NULL;
  1232. dev->cmb_dma_addr = dma_addr;
  1233. dev->cmb_size = size;
  1234. return cmb;
  1235. }
  1236. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1237. {
  1238. if (dev->cmb) {
  1239. iounmap(dev->cmb);
  1240. dev->cmb = NULL;
  1241. }
  1242. }
  1243. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1244. {
  1245. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1246. }
  1247. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1248. {
  1249. struct nvme_queue *adminq = dev->queues[0];
  1250. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1251. int result, i, vecs, nr_io_queues, size;
  1252. nr_io_queues = num_possible_cpus();
  1253. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1254. if (result < 0)
  1255. return result;
  1256. /*
  1257. * Degraded controllers might return an error when setting the queue
  1258. * count. We still want to be able to bring them online and offer
  1259. * access to the admin queue, as that might be only way to fix them up.
  1260. */
  1261. if (result > 0) {
  1262. dev_err(dev->dev, "Could not set queue count (%d)\n", result);
  1263. nr_io_queues = 0;
  1264. result = 0;
  1265. }
  1266. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1267. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1268. sizeof(struct nvme_command));
  1269. if (result > 0)
  1270. dev->q_depth = result;
  1271. else
  1272. nvme_release_cmb(dev);
  1273. }
  1274. size = db_bar_size(dev, nr_io_queues);
  1275. if (size > 8192) {
  1276. iounmap(dev->bar);
  1277. do {
  1278. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1279. if (dev->bar)
  1280. break;
  1281. if (!--nr_io_queues)
  1282. return -ENOMEM;
  1283. size = db_bar_size(dev, nr_io_queues);
  1284. } while (1);
  1285. dev->dbs = dev->bar + 4096;
  1286. adminq->q_db = dev->dbs;
  1287. }
  1288. /* Deregister the admin queue's interrupt */
  1289. free_irq(dev->entry[0].vector, adminq);
  1290. /*
  1291. * If we enable msix early due to not intx, disable it again before
  1292. * setting up the full range we need.
  1293. */
  1294. if (!pdev->irq)
  1295. pci_disable_msix(pdev);
  1296. for (i = 0; i < nr_io_queues; i++)
  1297. dev->entry[i].entry = i;
  1298. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1299. if (vecs < 0) {
  1300. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1301. if (vecs < 0) {
  1302. vecs = 1;
  1303. } else {
  1304. for (i = 0; i < vecs; i++)
  1305. dev->entry[i].vector = i + pdev->irq;
  1306. }
  1307. }
  1308. /*
  1309. * Should investigate if there's a performance win from allocating
  1310. * more queues than interrupt vectors; it might allow the submission
  1311. * path to scale better, even if the receive path is limited by the
  1312. * number of interrupts.
  1313. */
  1314. nr_io_queues = vecs;
  1315. dev->max_qid = nr_io_queues;
  1316. result = queue_request_irq(dev, adminq, adminq->irqname);
  1317. if (result) {
  1318. adminq->cq_vector = -1;
  1319. goto free_queues;
  1320. }
  1321. /* Free previously allocated queues that are no longer usable */
  1322. nvme_free_queues(dev, nr_io_queues + 1);
  1323. return nvme_create_io_queues(dev);
  1324. free_queues:
  1325. nvme_free_queues(dev, 1);
  1326. return result;
  1327. }
  1328. static void nvme_set_irq_hints(struct nvme_dev *dev)
  1329. {
  1330. struct nvme_queue *nvmeq;
  1331. int i;
  1332. for (i = 0; i < dev->online_queues; i++) {
  1333. nvmeq = dev->queues[i];
  1334. if (!nvmeq->tags || !(*nvmeq->tags))
  1335. continue;
  1336. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1337. blk_mq_tags_cpumask(*nvmeq->tags));
  1338. }
  1339. }
  1340. static void nvme_dev_scan(struct work_struct *work)
  1341. {
  1342. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  1343. if (!dev->tagset.tags)
  1344. return;
  1345. nvme_scan_namespaces(&dev->ctrl);
  1346. nvme_set_irq_hints(dev);
  1347. }
  1348. static void nvme_del_queue_end(struct request *req, int error)
  1349. {
  1350. struct nvme_queue *nvmeq = req->end_io_data;
  1351. blk_mq_free_request(req);
  1352. complete(&nvmeq->dev->ioq_wait);
  1353. }
  1354. static void nvme_del_cq_end(struct request *req, int error)
  1355. {
  1356. struct nvme_queue *nvmeq = req->end_io_data;
  1357. if (!error) {
  1358. unsigned long flags;
  1359. spin_lock_irqsave(&nvmeq->q_lock, flags);
  1360. nvme_process_cq(nvmeq);
  1361. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1362. }
  1363. nvme_del_queue_end(req, error);
  1364. }
  1365. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1366. {
  1367. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1368. struct request *req;
  1369. struct nvme_command cmd;
  1370. memset(&cmd, 0, sizeof(cmd));
  1371. cmd.delete_queue.opcode = opcode;
  1372. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1373. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
  1374. if (IS_ERR(req))
  1375. return PTR_ERR(req);
  1376. req->timeout = ADMIN_TIMEOUT;
  1377. req->end_io_data = nvmeq;
  1378. blk_execute_rq_nowait(q, NULL, req, false,
  1379. opcode == nvme_admin_delete_cq ?
  1380. nvme_del_cq_end : nvme_del_queue_end);
  1381. return 0;
  1382. }
  1383. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1384. {
  1385. int pass;
  1386. unsigned long timeout;
  1387. u8 opcode = nvme_admin_delete_sq;
  1388. for (pass = 0; pass < 2; pass++) {
  1389. int sent = 0, i = dev->queue_count - 1;
  1390. reinit_completion(&dev->ioq_wait);
  1391. retry:
  1392. timeout = ADMIN_TIMEOUT;
  1393. for (; i > 0; i--) {
  1394. struct nvme_queue *nvmeq = dev->queues[i];
  1395. if (!pass)
  1396. nvme_suspend_queue(nvmeq);
  1397. if (nvme_delete_queue(nvmeq, opcode))
  1398. break;
  1399. ++sent;
  1400. }
  1401. while (sent--) {
  1402. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1403. if (timeout == 0)
  1404. return;
  1405. if (i)
  1406. goto retry;
  1407. }
  1408. opcode = nvme_admin_delete_cq;
  1409. }
  1410. }
  1411. /*
  1412. * Return: error value if an error occurred setting up the queues or calling
  1413. * Identify Device. 0 if these succeeded, even if adding some of the
  1414. * namespaces failed. At the moment, these failures are silent. TBD which
  1415. * failures should be reported.
  1416. */
  1417. static int nvme_dev_add(struct nvme_dev *dev)
  1418. {
  1419. if (!dev->ctrl.tagset) {
  1420. dev->tagset.ops = &nvme_mq_ops;
  1421. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1422. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1423. dev->tagset.numa_node = dev_to_node(dev->dev);
  1424. dev->tagset.queue_depth =
  1425. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1426. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1427. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1428. dev->tagset.driver_data = dev;
  1429. if (blk_mq_alloc_tag_set(&dev->tagset))
  1430. return 0;
  1431. dev->ctrl.tagset = &dev->tagset;
  1432. }
  1433. queue_work(nvme_workq, &dev->scan_work);
  1434. return 0;
  1435. }
  1436. static int nvme_dev_map(struct nvme_dev *dev)
  1437. {
  1438. u64 cap;
  1439. int bars, result = -ENOMEM;
  1440. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1441. if (pci_enable_device_mem(pdev))
  1442. return result;
  1443. dev->entry[0].vector = pdev->irq;
  1444. pci_set_master(pdev);
  1445. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1446. if (!bars)
  1447. goto disable_pci;
  1448. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1449. goto disable_pci;
  1450. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1451. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1452. goto disable;
  1453. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1454. if (!dev->bar)
  1455. goto disable;
  1456. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1457. result = -ENODEV;
  1458. goto unmap;
  1459. }
  1460. /*
  1461. * Some devices don't advertse INTx interrupts, pre-enable a single
  1462. * MSIX vec for setup. We'll adjust this later.
  1463. */
  1464. if (!pdev->irq) {
  1465. result = pci_enable_msix(pdev, dev->entry, 1);
  1466. if (result < 0)
  1467. goto unmap;
  1468. }
  1469. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1470. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1471. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1472. dev->dbs = dev->bar + 4096;
  1473. /*
  1474. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1475. * some MacBook7,1 to avoid controller resets and data loss.
  1476. */
  1477. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1478. dev->q_depth = 2;
  1479. dev_warn(dev->dev, "detected Apple NVMe controller, set "
  1480. "queue depth=%u to work around controller resets\n",
  1481. dev->q_depth);
  1482. }
  1483. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1484. dev->cmb = nvme_map_cmb(dev);
  1485. pci_enable_pcie_error_reporting(pdev);
  1486. pci_save_state(pdev);
  1487. return 0;
  1488. unmap:
  1489. iounmap(dev->bar);
  1490. dev->bar = NULL;
  1491. disable:
  1492. pci_release_regions(pdev);
  1493. disable_pci:
  1494. pci_disable_device(pdev);
  1495. return result;
  1496. }
  1497. static void nvme_dev_unmap(struct nvme_dev *dev)
  1498. {
  1499. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1500. if (pdev->msi_enabled)
  1501. pci_disable_msi(pdev);
  1502. else if (pdev->msix_enabled)
  1503. pci_disable_msix(pdev);
  1504. if (dev->bar) {
  1505. iounmap(dev->bar);
  1506. dev->bar = NULL;
  1507. pci_release_regions(pdev);
  1508. }
  1509. if (pci_is_enabled(pdev)) {
  1510. pci_disable_pcie_error_reporting(pdev);
  1511. pci_disable_device(pdev);
  1512. }
  1513. }
  1514. static int nvme_dev_list_add(struct nvme_dev *dev)
  1515. {
  1516. bool start_thread = false;
  1517. spin_lock(&dev_list_lock);
  1518. if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
  1519. start_thread = true;
  1520. nvme_thread = NULL;
  1521. }
  1522. list_add(&dev->node, &dev_list);
  1523. spin_unlock(&dev_list_lock);
  1524. if (start_thread) {
  1525. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1526. wake_up_all(&nvme_kthread_wait);
  1527. } else
  1528. wait_event_killable(nvme_kthread_wait, nvme_thread);
  1529. if (IS_ERR_OR_NULL(nvme_thread))
  1530. return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
  1531. return 0;
  1532. }
  1533. /*
  1534. * Remove the node from the device list and check
  1535. * for whether or not we need to stop the nvme_thread.
  1536. */
  1537. static void nvme_dev_list_remove(struct nvme_dev *dev)
  1538. {
  1539. struct task_struct *tmp = NULL;
  1540. spin_lock(&dev_list_lock);
  1541. list_del_init(&dev->node);
  1542. if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
  1543. tmp = nvme_thread;
  1544. nvme_thread = NULL;
  1545. }
  1546. spin_unlock(&dev_list_lock);
  1547. if (tmp)
  1548. kthread_stop(tmp);
  1549. }
  1550. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1551. {
  1552. int i;
  1553. u32 csts = -1;
  1554. nvme_dev_list_remove(dev);
  1555. mutex_lock(&dev->shutdown_lock);
  1556. if (dev->bar) {
  1557. nvme_stop_queues(&dev->ctrl);
  1558. csts = readl(dev->bar + NVME_REG_CSTS);
  1559. }
  1560. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1561. for (i = dev->queue_count - 1; i >= 0; i--) {
  1562. struct nvme_queue *nvmeq = dev->queues[i];
  1563. nvme_suspend_queue(nvmeq);
  1564. }
  1565. } else {
  1566. nvme_disable_io_queues(dev);
  1567. nvme_disable_admin_queue(dev, shutdown);
  1568. }
  1569. nvme_dev_unmap(dev);
  1570. for (i = dev->queue_count - 1; i >= 0; i--)
  1571. nvme_clear_queue(dev->queues[i]);
  1572. mutex_unlock(&dev->shutdown_lock);
  1573. }
  1574. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1575. {
  1576. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1577. PAGE_SIZE, PAGE_SIZE, 0);
  1578. if (!dev->prp_page_pool)
  1579. return -ENOMEM;
  1580. /* Optimisation for I/Os between 4k and 128k */
  1581. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1582. 256, 256, 0);
  1583. if (!dev->prp_small_pool) {
  1584. dma_pool_destroy(dev->prp_page_pool);
  1585. return -ENOMEM;
  1586. }
  1587. return 0;
  1588. }
  1589. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1590. {
  1591. dma_pool_destroy(dev->prp_page_pool);
  1592. dma_pool_destroy(dev->prp_small_pool);
  1593. }
  1594. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1595. {
  1596. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1597. put_device(dev->dev);
  1598. if (dev->tagset.tags)
  1599. blk_mq_free_tag_set(&dev->tagset);
  1600. if (dev->ctrl.admin_q)
  1601. blk_put_queue(dev->ctrl.admin_q);
  1602. kfree(dev->queues);
  1603. kfree(dev->entry);
  1604. kfree(dev);
  1605. }
  1606. static void nvme_reset_work(struct work_struct *work)
  1607. {
  1608. struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
  1609. int result;
  1610. if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
  1611. goto out;
  1612. /*
  1613. * If we're called to reset a live controller first shut it down before
  1614. * moving on.
  1615. */
  1616. if (dev->bar)
  1617. nvme_dev_disable(dev, false);
  1618. set_bit(NVME_CTRL_RESETTING, &dev->flags);
  1619. result = nvme_dev_map(dev);
  1620. if (result)
  1621. goto out;
  1622. result = nvme_configure_admin_queue(dev);
  1623. if (result)
  1624. goto unmap;
  1625. nvme_init_queue(dev->queues[0], 0);
  1626. result = nvme_alloc_admin_tags(dev);
  1627. if (result)
  1628. goto disable;
  1629. result = nvme_init_identify(&dev->ctrl);
  1630. if (result)
  1631. goto free_tags;
  1632. result = nvme_setup_io_queues(dev);
  1633. if (result)
  1634. goto free_tags;
  1635. dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
  1636. result = nvme_dev_list_add(dev);
  1637. if (result)
  1638. goto remove;
  1639. /*
  1640. * Keep the controller around but remove all namespaces if we don't have
  1641. * any working I/O queue.
  1642. */
  1643. if (dev->online_queues < 2) {
  1644. dev_warn(dev->dev, "IO queues not created\n");
  1645. nvme_remove_namespaces(&dev->ctrl);
  1646. } else {
  1647. nvme_start_queues(&dev->ctrl);
  1648. nvme_dev_add(dev);
  1649. }
  1650. clear_bit(NVME_CTRL_RESETTING, &dev->flags);
  1651. return;
  1652. remove:
  1653. nvme_dev_list_remove(dev);
  1654. free_tags:
  1655. nvme_dev_remove_admin(dev);
  1656. blk_put_queue(dev->ctrl.admin_q);
  1657. dev->ctrl.admin_q = NULL;
  1658. dev->queues[0]->tags = NULL;
  1659. disable:
  1660. nvme_disable_admin_queue(dev, false);
  1661. unmap:
  1662. nvme_dev_unmap(dev);
  1663. out:
  1664. nvme_remove_dead_ctrl(dev);
  1665. }
  1666. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1667. {
  1668. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1669. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1670. if (pci_get_drvdata(pdev))
  1671. pci_stop_and_remove_bus_device_locked(pdev);
  1672. nvme_put_ctrl(&dev->ctrl);
  1673. }
  1674. static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
  1675. {
  1676. dev_warn(dev->dev, "Removing after probe failure\n");
  1677. kref_get(&dev->ctrl.kref);
  1678. if (!schedule_work(&dev->remove_work))
  1679. nvme_put_ctrl(&dev->ctrl);
  1680. }
  1681. static int nvme_reset(struct nvme_dev *dev)
  1682. {
  1683. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  1684. return -ENODEV;
  1685. if (!queue_work(nvme_workq, &dev->reset_work))
  1686. return -EBUSY;
  1687. flush_work(&dev->reset_work);
  1688. return 0;
  1689. }
  1690. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  1691. {
  1692. *val = readl(to_nvme_dev(ctrl)->bar + off);
  1693. return 0;
  1694. }
  1695. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  1696. {
  1697. writel(val, to_nvme_dev(ctrl)->bar + off);
  1698. return 0;
  1699. }
  1700. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  1701. {
  1702. *val = readq(to_nvme_dev(ctrl)->bar + off);
  1703. return 0;
  1704. }
  1705. static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
  1706. {
  1707. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1708. return !dev->bar || dev->online_queues < 2;
  1709. }
  1710. static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
  1711. {
  1712. return nvme_reset(to_nvme_dev(ctrl));
  1713. }
  1714. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  1715. .reg_read32 = nvme_pci_reg_read32,
  1716. .reg_write32 = nvme_pci_reg_write32,
  1717. .reg_read64 = nvme_pci_reg_read64,
  1718. .io_incapable = nvme_pci_io_incapable,
  1719. .reset_ctrl = nvme_pci_reset_ctrl,
  1720. .free_ctrl = nvme_pci_free_ctrl,
  1721. };
  1722. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1723. {
  1724. int node, result = -ENOMEM;
  1725. struct nvme_dev *dev;
  1726. node = dev_to_node(&pdev->dev);
  1727. if (node == NUMA_NO_NODE)
  1728. set_dev_node(&pdev->dev, 0);
  1729. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  1730. if (!dev)
  1731. return -ENOMEM;
  1732. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  1733. GFP_KERNEL, node);
  1734. if (!dev->entry)
  1735. goto free;
  1736. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  1737. GFP_KERNEL, node);
  1738. if (!dev->queues)
  1739. goto free;
  1740. dev->dev = get_device(&pdev->dev);
  1741. pci_set_drvdata(pdev, dev);
  1742. INIT_LIST_HEAD(&dev->node);
  1743. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  1744. INIT_WORK(&dev->reset_work, nvme_reset_work);
  1745. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  1746. mutex_init(&dev->shutdown_lock);
  1747. init_completion(&dev->ioq_wait);
  1748. result = nvme_setup_prp_pools(dev);
  1749. if (result)
  1750. goto put_pci;
  1751. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  1752. id->driver_data);
  1753. if (result)
  1754. goto release_pools;
  1755. queue_work(nvme_workq, &dev->reset_work);
  1756. return 0;
  1757. release_pools:
  1758. nvme_release_prp_pools(dev);
  1759. put_pci:
  1760. put_device(dev->dev);
  1761. free:
  1762. kfree(dev->queues);
  1763. kfree(dev->entry);
  1764. kfree(dev);
  1765. return result;
  1766. }
  1767. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  1768. {
  1769. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1770. if (prepare)
  1771. nvme_dev_disable(dev, false);
  1772. else
  1773. queue_work(nvme_workq, &dev->reset_work);
  1774. }
  1775. static void nvme_shutdown(struct pci_dev *pdev)
  1776. {
  1777. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1778. nvme_dev_disable(dev, true);
  1779. }
  1780. static void nvme_remove(struct pci_dev *pdev)
  1781. {
  1782. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1783. spin_lock(&dev_list_lock);
  1784. list_del_init(&dev->node);
  1785. spin_unlock(&dev_list_lock);
  1786. pci_set_drvdata(pdev, NULL);
  1787. flush_work(&dev->reset_work);
  1788. flush_work(&dev->scan_work);
  1789. nvme_remove_namespaces(&dev->ctrl);
  1790. nvme_uninit_ctrl(&dev->ctrl);
  1791. nvme_dev_disable(dev, true);
  1792. nvme_dev_remove_admin(dev);
  1793. nvme_free_queues(dev, 0);
  1794. nvme_release_cmb(dev);
  1795. nvme_release_prp_pools(dev);
  1796. nvme_put_ctrl(&dev->ctrl);
  1797. }
  1798. #ifdef CONFIG_PM_SLEEP
  1799. static int nvme_suspend(struct device *dev)
  1800. {
  1801. struct pci_dev *pdev = to_pci_dev(dev);
  1802. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1803. nvme_dev_disable(ndev, true);
  1804. return 0;
  1805. }
  1806. static int nvme_resume(struct device *dev)
  1807. {
  1808. struct pci_dev *pdev = to_pci_dev(dev);
  1809. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  1810. queue_work(nvme_workq, &ndev->reset_work);
  1811. return 0;
  1812. }
  1813. #endif
  1814. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  1815. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  1816. pci_channel_state_t state)
  1817. {
  1818. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1819. /*
  1820. * A frozen channel requires a reset. When detected, this method will
  1821. * shutdown the controller to quiesce. The controller will be restarted
  1822. * after the slot reset through driver's slot_reset callback.
  1823. */
  1824. dev_warn(&pdev->dev, "error detected: state:%d\n", state);
  1825. switch (state) {
  1826. case pci_channel_io_normal:
  1827. return PCI_ERS_RESULT_CAN_RECOVER;
  1828. case pci_channel_io_frozen:
  1829. nvme_dev_disable(dev, false);
  1830. return PCI_ERS_RESULT_NEED_RESET;
  1831. case pci_channel_io_perm_failure:
  1832. return PCI_ERS_RESULT_DISCONNECT;
  1833. }
  1834. return PCI_ERS_RESULT_NEED_RESET;
  1835. }
  1836. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  1837. {
  1838. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1839. dev_info(&pdev->dev, "restart after slot reset\n");
  1840. pci_restore_state(pdev);
  1841. queue_work(nvme_workq, &dev->reset_work);
  1842. return PCI_ERS_RESULT_RECOVERED;
  1843. }
  1844. static void nvme_error_resume(struct pci_dev *pdev)
  1845. {
  1846. pci_cleanup_aer_uncorrect_error_status(pdev);
  1847. }
  1848. static const struct pci_error_handlers nvme_err_handler = {
  1849. .error_detected = nvme_error_detected,
  1850. .slot_reset = nvme_slot_reset,
  1851. .resume = nvme_error_resume,
  1852. .reset_notify = nvme_reset_notify,
  1853. };
  1854. /* Move to pci_ids.h later */
  1855. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1856. static const struct pci_device_id nvme_id_table[] = {
  1857. { PCI_VDEVICE(INTEL, 0x0953),
  1858. .driver_data = NVME_QUIRK_STRIPE_SIZE, },
  1859. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  1860. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  1861. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1862. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  1863. { 0, }
  1864. };
  1865. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1866. static struct pci_driver nvme_driver = {
  1867. .name = "nvme",
  1868. .id_table = nvme_id_table,
  1869. .probe = nvme_probe,
  1870. .remove = nvme_remove,
  1871. .shutdown = nvme_shutdown,
  1872. .driver = {
  1873. .pm = &nvme_dev_pm_ops,
  1874. },
  1875. .err_handler = &nvme_err_handler,
  1876. };
  1877. static int __init nvme_init(void)
  1878. {
  1879. int result;
  1880. init_waitqueue_head(&nvme_kthread_wait);
  1881. nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
  1882. if (!nvme_workq)
  1883. return -ENOMEM;
  1884. result = nvme_core_init();
  1885. if (result < 0)
  1886. goto kill_workq;
  1887. result = pci_register_driver(&nvme_driver);
  1888. if (result)
  1889. goto core_exit;
  1890. return 0;
  1891. core_exit:
  1892. nvme_core_exit();
  1893. kill_workq:
  1894. destroy_workqueue(nvme_workq);
  1895. return result;
  1896. }
  1897. static void __exit nvme_exit(void)
  1898. {
  1899. pci_unregister_driver(&nvme_driver);
  1900. nvme_core_exit();
  1901. destroy_workqueue(nvme_workq);
  1902. BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
  1903. _nvme_check_size();
  1904. }
  1905. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1906. MODULE_LICENSE("GPL");
  1907. MODULE_VERSION("1.0");
  1908. module_init(nvme_init);
  1909. module_exit(nvme_exit);