hash-64k.h 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
  2. #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
  3. #define H_PTE_INDEX_SIZE 8
  4. #define H_PMD_INDEX_SIZE 5
  5. #define H_PUD_INDEX_SIZE 5
  6. #define H_PGD_INDEX_SIZE 12
  7. /* With 4k base page size, hugepage PTEs go at the PMD level */
  8. #define MIN_HUGEPTE_SHIFT PAGE_SHIFT
  9. #define H_PAGE_COMBO 0x00001000 /* this is a combo 4k page */
  10. #define H_PAGE_4K_PFN 0x00002000 /* PFN is for a single 4k page */
  11. /*
  12. * We need to differentiate between explicit huge page and THP huge
  13. * page, since THP huge page also need to track real subpage details
  14. */
  15. #define H_PAGE_THP_HUGE H_PAGE_4K_PFN
  16. /*
  17. * Used to track subpage group valid if H_PAGE_COMBO is set
  18. * This overloads H_PAGE_F_GIX and H_PAGE_F_SECOND
  19. */
  20. #define H_PAGE_COMBO_VALID (H_PAGE_F_GIX | H_PAGE_F_SECOND)
  21. /* PTE flags to conserve for HPTE identification */
  22. #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_F_SECOND | \
  23. H_PAGE_F_GIX | H_PAGE_HASHPTE | H_PAGE_COMBO)
  24. /*
  25. * we support 16 fragments per PTE page of 64K size.
  26. */
  27. #define H_PTE_FRAG_NR 16
  28. /*
  29. * We use a 2K PTE page fragment and another 2K for storing
  30. * real_pte_t hash index
  31. */
  32. #define H_PTE_FRAG_SIZE_SHIFT 12
  33. #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
  34. #ifndef __ASSEMBLY__
  35. #include <asm/errno.h>
  36. /*
  37. * With 64K pages on hash table, we have a special PTE format that
  38. * uses a second "half" of the page table to encode sub-page information
  39. * in order to deal with 64K made of 4K HW pages. Thus we override the
  40. * generic accessors and iterators here
  41. */
  42. #define __real_pte __real_pte
  43. static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep)
  44. {
  45. real_pte_t rpte;
  46. unsigned long *hidxp;
  47. rpte.pte = pte;
  48. rpte.hidx = 0;
  49. if (pte_val(pte) & H_PAGE_COMBO) {
  50. /*
  51. * Make sure we order the hidx load against the H_PAGE_COMBO
  52. * check. The store side ordering is done in __hash_page_4K
  53. */
  54. smp_rmb();
  55. hidxp = (unsigned long *)(ptep + PTRS_PER_PTE);
  56. rpte.hidx = *hidxp;
  57. }
  58. return rpte;
  59. }
  60. static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
  61. {
  62. if ((pte_val(rpte.pte) & H_PAGE_COMBO))
  63. return (rpte.hidx >> (index<<2)) & 0xf;
  64. return (pte_val(rpte.pte) >> H_PAGE_F_GIX_SHIFT) & 0xf;
  65. }
  66. #define __rpte_to_pte(r) ((r).pte)
  67. extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
  68. /*
  69. * Trick: we set __end to va + 64k, which happens works for
  70. * a 16M page as well as we want only one iteration
  71. */
  72. #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
  73. do { \
  74. unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
  75. unsigned __split = (psize == MMU_PAGE_4K || \
  76. psize == MMU_PAGE_64K_AP); \
  77. shift = mmu_psize_defs[psize].shift; \
  78. for (index = 0; vpn < __end; index++, \
  79. vpn += (1L << (shift - VPN_SHIFT))) { \
  80. if (!__split || __rpte_sub_valid(rpte, index)) \
  81. do {
  82. #define pte_iterate_hashed_end() } while(0); } } while(0)
  83. #define pte_pagesize_index(mm, addr, pte) \
  84. (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
  85. extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  86. unsigned long pfn, unsigned long size, pgprot_t);
  87. static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
  88. unsigned long pfn, pgprot_t prot)
  89. {
  90. if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
  91. WARN(1, "remap_4k_pfn called with wrong pfn value\n");
  92. return -EINVAL;
  93. }
  94. return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
  95. __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
  96. }
  97. #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
  98. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  99. #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
  100. (sizeof(unsigned long) << PMD_INDEX_SIZE))
  101. #else
  102. #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
  103. #endif
  104. #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
  105. #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
  106. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  107. static inline char *get_hpte_slot_array(pmd_t *pmdp)
  108. {
  109. /*
  110. * The hpte hindex is stored in the pgtable whose address is in the
  111. * second half of the PMD
  112. *
  113. * Order this load with the test for pmd_trans_huge in the caller
  114. */
  115. smp_rmb();
  116. return *(char **)(pmdp + PTRS_PER_PMD);
  117. }
  118. /*
  119. * The linux hugepage PMD now include the pmd entries followed by the address
  120. * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
  121. * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
  122. * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
  123. * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
  124. *
  125. * The top three bits are intentionally left as zero. This memory location
  126. * are also used as normal page PTE pointers. So if we have any pointers
  127. * left around while we collapse a hugepage, we need to make sure
  128. * _PAGE_PRESENT bit of that is zero when we look at them
  129. */
  130. static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
  131. {
  132. return hpte_slot_array[index] & 0x1;
  133. }
  134. static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
  135. int index)
  136. {
  137. return hpte_slot_array[index] >> 1;
  138. }
  139. static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
  140. unsigned int index, unsigned int hidx)
  141. {
  142. hpte_slot_array[index] = (hidx << 1) | 0x1;
  143. }
  144. /*
  145. *
  146. * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
  147. * page. The hugetlbfs page table walking and mangling paths are totally
  148. * separated form the core VM paths and they're differentiated by
  149. * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
  150. *
  151. * pmd_trans_huge() is defined as false at build time if
  152. * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
  153. * time in such case.
  154. *
  155. * For ppc64 we need to differntiate from explicit hugepages from THP, because
  156. * for THP we also track the subpage details at the pmd level. We don't do
  157. * that for explicit huge pages.
  158. *
  159. */
  160. static inline int hash__pmd_trans_huge(pmd_t pmd)
  161. {
  162. return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
  163. (_PAGE_PTE | H_PAGE_THP_HUGE));
  164. }
  165. static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
  166. {
  167. return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
  168. }
  169. static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
  170. {
  171. return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
  172. }
  173. extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
  174. unsigned long addr, pmd_t *pmdp,
  175. unsigned long clr, unsigned long set);
  176. extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
  177. unsigned long address, pmd_t *pmdp);
  178. extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  179. pgtable_t pgtable);
  180. extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
  181. extern void hash__pmdp_huge_split_prepare(struct vm_area_struct *vma,
  182. unsigned long address, pmd_t *pmdp);
  183. extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
  184. unsigned long addr, pmd_t *pmdp);
  185. extern int hash__has_transparent_hugepage(void);
  186. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  187. #endif /* __ASSEMBLY__ */
  188. #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */