intel_pm.c 213 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/i915_powerwell.h>
  34. #include <linux/pm_runtime.h>
  35. /**
  36. * RC6 is a special power stage which allows the GPU to enter an very
  37. * low-voltage mode when idle, using down to 0V while at this stage. This
  38. * stage is entered automatically when the GPU is idle when RC6 support is
  39. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  40. *
  41. * There are different RC6 modes available in Intel GPU, which differentiate
  42. * among each other with the latency required to enter and leave RC6 and
  43. * voltage consumed by the GPU in different states.
  44. *
  45. * The combination of the following flags define which states GPU is allowed
  46. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  47. * RC6pp is deepest RC6. Their support by hardware varies according to the
  48. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  49. * which brings the most power savings; deeper states save more power, but
  50. * require higher latency to switch to and wake up.
  51. */
  52. #define INTEL_RC6_ENABLE (1<<0)
  53. #define INTEL_RC6p_ENABLE (1<<1)
  54. #define INTEL_RC6pp_ENABLE (1<<2)
  55. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  56. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  57. * during in-memory transfers and, therefore, reduce the power packet.
  58. *
  59. * The benefits of FBC are mostly visible with solid backgrounds and
  60. * variation-less patterns.
  61. *
  62. * FBC-related functionality can be enabled by the means of the
  63. * i915.i915_enable_fbc parameter
  64. */
  65. static void gen9_init_clock_gating(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. /*
  69. * WaDisableSDEUnitClockGating:skl
  70. * This seems to be a pre-production w/a.
  71. */
  72. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  73. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  74. /*
  75. * WaDisableDgMirrorFixInHalfSliceChicken5:skl
  76. * This is a pre-production w/a.
  77. */
  78. I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
  79. I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
  80. ~GEN9_DG_MIRROR_FIX_ENABLE);
  81. /* Wa4x4STCOptimizationDisable:skl */
  82. I915_WRITE(CACHE_MODE_1,
  83. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  84. }
  85. static void i8xx_disable_fbc(struct drm_device *dev)
  86. {
  87. struct drm_i915_private *dev_priv = dev->dev_private;
  88. u32 fbc_ctl;
  89. /* Disable compression */
  90. fbc_ctl = I915_READ(FBC_CONTROL);
  91. if ((fbc_ctl & FBC_CTL_EN) == 0)
  92. return;
  93. fbc_ctl &= ~FBC_CTL_EN;
  94. I915_WRITE(FBC_CONTROL, fbc_ctl);
  95. /* Wait for compressing bit to clear */
  96. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  97. DRM_DEBUG_KMS("FBC idle timed out\n");
  98. return;
  99. }
  100. DRM_DEBUG_KMS("disabled FBC\n");
  101. }
  102. static void i8xx_enable_fbc(struct drm_crtc *crtc)
  103. {
  104. struct drm_device *dev = crtc->dev;
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. struct drm_framebuffer *fb = crtc->primary->fb;
  107. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  109. int cfb_pitch;
  110. int i;
  111. u32 fbc_ctl;
  112. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  113. if (fb->pitches[0] < cfb_pitch)
  114. cfb_pitch = fb->pitches[0];
  115. /* FBC_CTL wants 32B or 64B units */
  116. if (IS_GEN2(dev))
  117. cfb_pitch = (cfb_pitch / 32) - 1;
  118. else
  119. cfb_pitch = (cfb_pitch / 64) - 1;
  120. /* Clear old tags */
  121. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  122. I915_WRITE(FBC_TAG + (i * 4), 0);
  123. if (IS_GEN4(dev)) {
  124. u32 fbc_ctl2;
  125. /* Set it up... */
  126. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  127. fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
  128. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  129. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  130. }
  131. /* enable it... */
  132. fbc_ctl = I915_READ(FBC_CONTROL);
  133. fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
  134. fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
  135. if (IS_I945GM(dev))
  136. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  137. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  138. fbc_ctl |= obj->fence_reg;
  139. I915_WRITE(FBC_CONTROL, fbc_ctl);
  140. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
  141. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  142. }
  143. static bool i8xx_fbc_enabled(struct drm_device *dev)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  147. }
  148. static void g4x_enable_fbc(struct drm_crtc *crtc)
  149. {
  150. struct drm_device *dev = crtc->dev;
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. struct drm_framebuffer *fb = crtc->primary->fb;
  153. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  154. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  155. u32 dpfc_ctl;
  156. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
  157. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  158. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  159. else
  160. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  161. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  162. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  163. /* enable it... */
  164. I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  165. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  166. }
  167. static void g4x_disable_fbc(struct drm_device *dev)
  168. {
  169. struct drm_i915_private *dev_priv = dev->dev_private;
  170. u32 dpfc_ctl;
  171. /* Disable compression */
  172. dpfc_ctl = I915_READ(DPFC_CONTROL);
  173. if (dpfc_ctl & DPFC_CTL_EN) {
  174. dpfc_ctl &= ~DPFC_CTL_EN;
  175. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  176. DRM_DEBUG_KMS("disabled FBC\n");
  177. }
  178. }
  179. static bool g4x_fbc_enabled(struct drm_device *dev)
  180. {
  181. struct drm_i915_private *dev_priv = dev->dev_private;
  182. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  183. }
  184. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  185. {
  186. struct drm_i915_private *dev_priv = dev->dev_private;
  187. u32 blt_ecoskpd;
  188. /* Make sure blitter notifies FBC of writes */
  189. /* Blitter is part of Media powerwell on VLV. No impact of
  190. * his param in other platforms for now */
  191. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
  192. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  193. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  194. GEN6_BLITTER_LOCK_SHIFT;
  195. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  196. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  197. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  198. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  199. GEN6_BLITTER_LOCK_SHIFT);
  200. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  201. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  202. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
  203. }
  204. static void ironlake_enable_fbc(struct drm_crtc *crtc)
  205. {
  206. struct drm_device *dev = crtc->dev;
  207. struct drm_i915_private *dev_priv = dev->dev_private;
  208. struct drm_framebuffer *fb = crtc->primary->fb;
  209. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  210. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  211. u32 dpfc_ctl;
  212. dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
  213. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  214. dev_priv->fbc.threshold++;
  215. switch (dev_priv->fbc.threshold) {
  216. case 4:
  217. case 3:
  218. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  219. break;
  220. case 2:
  221. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  222. break;
  223. case 1:
  224. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  225. break;
  226. }
  227. dpfc_ctl |= DPFC_CTL_FENCE_EN;
  228. if (IS_GEN5(dev))
  229. dpfc_ctl |= obj->fence_reg;
  230. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  231. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  232. /* enable it... */
  233. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  234. if (IS_GEN6(dev)) {
  235. I915_WRITE(SNB_DPFC_CTL_SA,
  236. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  237. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  238. sandybridge_blit_fbc_update(dev);
  239. }
  240. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  241. }
  242. static void ironlake_disable_fbc(struct drm_device *dev)
  243. {
  244. struct drm_i915_private *dev_priv = dev->dev_private;
  245. u32 dpfc_ctl;
  246. /* Disable compression */
  247. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  248. if (dpfc_ctl & DPFC_CTL_EN) {
  249. dpfc_ctl &= ~DPFC_CTL_EN;
  250. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  251. DRM_DEBUG_KMS("disabled FBC\n");
  252. }
  253. }
  254. static bool ironlake_fbc_enabled(struct drm_device *dev)
  255. {
  256. struct drm_i915_private *dev_priv = dev->dev_private;
  257. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  258. }
  259. static void gen7_enable_fbc(struct drm_crtc *crtc)
  260. {
  261. struct drm_device *dev = crtc->dev;
  262. struct drm_i915_private *dev_priv = dev->dev_private;
  263. struct drm_framebuffer *fb = crtc->primary->fb;
  264. struct drm_i915_gem_object *obj = intel_fb_obj(fb);
  265. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  266. u32 dpfc_ctl;
  267. dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
  268. if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
  269. dev_priv->fbc.threshold++;
  270. switch (dev_priv->fbc.threshold) {
  271. case 4:
  272. case 3:
  273. dpfc_ctl |= DPFC_CTL_LIMIT_4X;
  274. break;
  275. case 2:
  276. dpfc_ctl |= DPFC_CTL_LIMIT_2X;
  277. break;
  278. case 1:
  279. dpfc_ctl |= DPFC_CTL_LIMIT_1X;
  280. break;
  281. }
  282. dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
  283. if (dev_priv->fbc.false_color)
  284. dpfc_ctl |= FBC_CTL_FALSE_COLOR;
  285. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  286. if (IS_IVYBRIDGE(dev)) {
  287. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  288. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  289. I915_READ(ILK_DISPLAY_CHICKEN1) |
  290. ILK_FBCQ_DIS);
  291. } else {
  292. /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
  293. I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
  294. I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
  295. HSW_FBCQ_DIS);
  296. }
  297. I915_WRITE(SNB_DPFC_CTL_SA,
  298. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  299. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  300. sandybridge_blit_fbc_update(dev);
  301. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  302. }
  303. bool intel_fbc_enabled(struct drm_device *dev)
  304. {
  305. struct drm_i915_private *dev_priv = dev->dev_private;
  306. if (!dev_priv->display.fbc_enabled)
  307. return false;
  308. return dev_priv->display.fbc_enabled(dev);
  309. }
  310. void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
  311. {
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. if (!IS_GEN8(dev))
  314. return;
  315. I915_WRITE(MSG_FBC_REND_STATE, value);
  316. }
  317. static void intel_fbc_work_fn(struct work_struct *__work)
  318. {
  319. struct intel_fbc_work *work =
  320. container_of(to_delayed_work(__work),
  321. struct intel_fbc_work, work);
  322. struct drm_device *dev = work->crtc->dev;
  323. struct drm_i915_private *dev_priv = dev->dev_private;
  324. mutex_lock(&dev->struct_mutex);
  325. if (work == dev_priv->fbc.fbc_work) {
  326. /* Double check that we haven't switched fb without cancelling
  327. * the prior work.
  328. */
  329. if (work->crtc->primary->fb == work->fb) {
  330. dev_priv->display.enable_fbc(work->crtc);
  331. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  332. dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
  333. dev_priv->fbc.y = work->crtc->y;
  334. }
  335. dev_priv->fbc.fbc_work = NULL;
  336. }
  337. mutex_unlock(&dev->struct_mutex);
  338. kfree(work);
  339. }
  340. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  341. {
  342. if (dev_priv->fbc.fbc_work == NULL)
  343. return;
  344. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  345. /* Synchronisation is provided by struct_mutex and checking of
  346. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  347. * entirely asynchronously.
  348. */
  349. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  350. /* tasklet was killed before being run, clean up */
  351. kfree(dev_priv->fbc.fbc_work);
  352. /* Mark the work as no longer wanted so that if it does
  353. * wake-up (because the work was already running and waiting
  354. * for our mutex), it will discover that is no longer
  355. * necessary to run.
  356. */
  357. dev_priv->fbc.fbc_work = NULL;
  358. }
  359. static void intel_enable_fbc(struct drm_crtc *crtc)
  360. {
  361. struct intel_fbc_work *work;
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. if (!dev_priv->display.enable_fbc)
  365. return;
  366. intel_cancel_fbc_work(dev_priv);
  367. work = kzalloc(sizeof(*work), GFP_KERNEL);
  368. if (work == NULL) {
  369. DRM_ERROR("Failed to allocate FBC work structure\n");
  370. dev_priv->display.enable_fbc(crtc);
  371. return;
  372. }
  373. work->crtc = crtc;
  374. work->fb = crtc->primary->fb;
  375. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  376. dev_priv->fbc.fbc_work = work;
  377. /* Delay the actual enabling to let pageflipping cease and the
  378. * display to settle before starting the compression. Note that
  379. * this delay also serves a second purpose: it allows for a
  380. * vblank to pass after disabling the FBC before we attempt
  381. * to modify the control registers.
  382. *
  383. * A more complicated solution would involve tracking vblanks
  384. * following the termination of the page-flipping sequence
  385. * and indeed performing the enable as a co-routine and not
  386. * waiting synchronously upon the vblank.
  387. *
  388. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  389. */
  390. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  391. }
  392. void intel_disable_fbc(struct drm_device *dev)
  393. {
  394. struct drm_i915_private *dev_priv = dev->dev_private;
  395. intel_cancel_fbc_work(dev_priv);
  396. if (!dev_priv->display.disable_fbc)
  397. return;
  398. dev_priv->display.disable_fbc(dev);
  399. dev_priv->fbc.plane = -1;
  400. }
  401. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  402. enum no_fbc_reason reason)
  403. {
  404. if (dev_priv->fbc.no_fbc_reason == reason)
  405. return false;
  406. dev_priv->fbc.no_fbc_reason = reason;
  407. return true;
  408. }
  409. /**
  410. * intel_update_fbc - enable/disable FBC as needed
  411. * @dev: the drm_device
  412. *
  413. * Set up the framebuffer compression hardware at mode set time. We
  414. * enable it if possible:
  415. * - plane A only (on pre-965)
  416. * - no pixel mulitply/line duplication
  417. * - no alpha buffer discard
  418. * - no dual wide
  419. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  420. *
  421. * We can't assume that any compression will take place (worst case),
  422. * so the compressed buffer has to be the same size as the uncompressed
  423. * one. It also must reside (along with the line length buffer) in
  424. * stolen memory.
  425. *
  426. * We need to enable/disable FBC on a global basis.
  427. */
  428. void intel_update_fbc(struct drm_device *dev)
  429. {
  430. struct drm_i915_private *dev_priv = dev->dev_private;
  431. struct drm_crtc *crtc = NULL, *tmp_crtc;
  432. struct intel_crtc *intel_crtc;
  433. struct drm_framebuffer *fb;
  434. struct drm_i915_gem_object *obj;
  435. const struct drm_display_mode *adjusted_mode;
  436. unsigned int max_width, max_height;
  437. if (!HAS_FBC(dev)) {
  438. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  439. return;
  440. }
  441. if (!i915.powersave) {
  442. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  443. DRM_DEBUG_KMS("fbc disabled per module param\n");
  444. return;
  445. }
  446. /*
  447. * If FBC is already on, we just have to verify that we can
  448. * keep it that way...
  449. * Need to disable if:
  450. * - more than one pipe is active
  451. * - changing FBC params (stride, fence, mode)
  452. * - new fb is too large to fit in compressed buffer
  453. * - going to an unsupported config (interlace, pixel multiply, etc.)
  454. */
  455. for_each_crtc(dev, tmp_crtc) {
  456. if (intel_crtc_active(tmp_crtc) &&
  457. to_intel_crtc(tmp_crtc)->primary_enabled) {
  458. if (crtc) {
  459. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  460. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  461. goto out_disable;
  462. }
  463. crtc = tmp_crtc;
  464. }
  465. }
  466. if (!crtc || crtc->primary->fb == NULL) {
  467. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  468. DRM_DEBUG_KMS("no output, disabling\n");
  469. goto out_disable;
  470. }
  471. intel_crtc = to_intel_crtc(crtc);
  472. fb = crtc->primary->fb;
  473. obj = intel_fb_obj(fb);
  474. adjusted_mode = &intel_crtc->config.adjusted_mode;
  475. if (i915.enable_fbc < 0) {
  476. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  477. DRM_DEBUG_KMS("disabled per chip default\n");
  478. goto out_disable;
  479. }
  480. if (!i915.enable_fbc) {
  481. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  482. DRM_DEBUG_KMS("fbc disabled per module param\n");
  483. goto out_disable;
  484. }
  485. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  486. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  487. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  488. DRM_DEBUG_KMS("mode incompatible with compression, "
  489. "disabling\n");
  490. goto out_disable;
  491. }
  492. if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
  493. max_width = 4096;
  494. max_height = 4096;
  495. } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  496. max_width = 4096;
  497. max_height = 2048;
  498. } else {
  499. max_width = 2048;
  500. max_height = 1536;
  501. }
  502. if (intel_crtc->config.pipe_src_w > max_width ||
  503. intel_crtc->config.pipe_src_h > max_height) {
  504. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  505. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  506. goto out_disable;
  507. }
  508. if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
  509. intel_crtc->plane != PLANE_A) {
  510. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  511. DRM_DEBUG_KMS("plane not A, disabling compression\n");
  512. goto out_disable;
  513. }
  514. /* The use of a CPU fence is mandatory in order to detect writes
  515. * by the CPU to the scanout and trigger updates to the FBC.
  516. */
  517. if (obj->tiling_mode != I915_TILING_X ||
  518. obj->fence_reg == I915_FENCE_REG_NONE) {
  519. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  520. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  521. goto out_disable;
  522. }
  523. if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
  524. to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
  525. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  526. DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
  527. goto out_disable;
  528. }
  529. /* If the kernel debugger is active, always disable compression */
  530. if (in_dbg_master())
  531. goto out_disable;
  532. if (i915_gem_stolen_setup_compression(dev, obj->base.size,
  533. drm_format_plane_cpp(fb->pixel_format, 0))) {
  534. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  535. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  536. goto out_disable;
  537. }
  538. /* If the scanout has not changed, don't modify the FBC settings.
  539. * Note that we make the fundamental assumption that the fb->obj
  540. * cannot be unpinned (and have its GTT offset and fence revoked)
  541. * without first being decoupled from the scanout and FBC disabled.
  542. */
  543. if (dev_priv->fbc.plane == intel_crtc->plane &&
  544. dev_priv->fbc.fb_id == fb->base.id &&
  545. dev_priv->fbc.y == crtc->y)
  546. return;
  547. if (intel_fbc_enabled(dev)) {
  548. /* We update FBC along two paths, after changing fb/crtc
  549. * configuration (modeswitching) and after page-flipping
  550. * finishes. For the latter, we know that not only did
  551. * we disable the FBC at the start of the page-flip
  552. * sequence, but also more than one vblank has passed.
  553. *
  554. * For the former case of modeswitching, it is possible
  555. * to switch between two FBC valid configurations
  556. * instantaneously so we do need to disable the FBC
  557. * before we can modify its control registers. We also
  558. * have to wait for the next vblank for that to take
  559. * effect. However, since we delay enabling FBC we can
  560. * assume that a vblank has passed since disabling and
  561. * that we can safely alter the registers in the deferred
  562. * callback.
  563. *
  564. * In the scenario that we go from a valid to invalid
  565. * and then back to valid FBC configuration we have
  566. * no strict enforcement that a vblank occurred since
  567. * disabling the FBC. However, along all current pipe
  568. * disabling paths we do need to wait for a vblank at
  569. * some point. And we wait before enabling FBC anyway.
  570. */
  571. DRM_DEBUG_KMS("disabling active FBC for update\n");
  572. intel_disable_fbc(dev);
  573. }
  574. intel_enable_fbc(crtc);
  575. dev_priv->fbc.no_fbc_reason = FBC_OK;
  576. return;
  577. out_disable:
  578. /* Multiple disables should be harmless */
  579. if (intel_fbc_enabled(dev)) {
  580. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  581. intel_disable_fbc(dev);
  582. }
  583. i915_gem_stolen_cleanup_compression(dev);
  584. }
  585. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  586. {
  587. struct drm_i915_private *dev_priv = dev->dev_private;
  588. u32 tmp;
  589. tmp = I915_READ(CLKCFG);
  590. switch (tmp & CLKCFG_FSB_MASK) {
  591. case CLKCFG_FSB_533:
  592. dev_priv->fsb_freq = 533; /* 133*4 */
  593. break;
  594. case CLKCFG_FSB_800:
  595. dev_priv->fsb_freq = 800; /* 200*4 */
  596. break;
  597. case CLKCFG_FSB_667:
  598. dev_priv->fsb_freq = 667; /* 167*4 */
  599. break;
  600. case CLKCFG_FSB_400:
  601. dev_priv->fsb_freq = 400; /* 100*4 */
  602. break;
  603. }
  604. switch (tmp & CLKCFG_MEM_MASK) {
  605. case CLKCFG_MEM_533:
  606. dev_priv->mem_freq = 533;
  607. break;
  608. case CLKCFG_MEM_667:
  609. dev_priv->mem_freq = 667;
  610. break;
  611. case CLKCFG_MEM_800:
  612. dev_priv->mem_freq = 800;
  613. break;
  614. }
  615. /* detect pineview DDR3 setting */
  616. tmp = I915_READ(CSHRDDR3CTL);
  617. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  618. }
  619. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  620. {
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. u16 ddrpll, csipll;
  623. ddrpll = I915_READ16(DDRMPLL1);
  624. csipll = I915_READ16(CSIPLL0);
  625. switch (ddrpll & 0xff) {
  626. case 0xc:
  627. dev_priv->mem_freq = 800;
  628. break;
  629. case 0x10:
  630. dev_priv->mem_freq = 1066;
  631. break;
  632. case 0x14:
  633. dev_priv->mem_freq = 1333;
  634. break;
  635. case 0x18:
  636. dev_priv->mem_freq = 1600;
  637. break;
  638. default:
  639. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  640. ddrpll & 0xff);
  641. dev_priv->mem_freq = 0;
  642. break;
  643. }
  644. dev_priv->ips.r_t = dev_priv->mem_freq;
  645. switch (csipll & 0x3ff) {
  646. case 0x00c:
  647. dev_priv->fsb_freq = 3200;
  648. break;
  649. case 0x00e:
  650. dev_priv->fsb_freq = 3733;
  651. break;
  652. case 0x010:
  653. dev_priv->fsb_freq = 4266;
  654. break;
  655. case 0x012:
  656. dev_priv->fsb_freq = 4800;
  657. break;
  658. case 0x014:
  659. dev_priv->fsb_freq = 5333;
  660. break;
  661. case 0x016:
  662. dev_priv->fsb_freq = 5866;
  663. break;
  664. case 0x018:
  665. dev_priv->fsb_freq = 6400;
  666. break;
  667. default:
  668. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  669. csipll & 0x3ff);
  670. dev_priv->fsb_freq = 0;
  671. break;
  672. }
  673. if (dev_priv->fsb_freq == 3200) {
  674. dev_priv->ips.c_m = 0;
  675. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  676. dev_priv->ips.c_m = 1;
  677. } else {
  678. dev_priv->ips.c_m = 2;
  679. }
  680. }
  681. static const struct cxsr_latency cxsr_latency_table[] = {
  682. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  683. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  684. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  685. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  686. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  687. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  688. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  689. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  690. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  691. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  692. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  693. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  694. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  695. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  696. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  697. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  698. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  699. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  700. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  701. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  702. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  703. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  704. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  705. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  706. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  707. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  708. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  709. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  710. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  711. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  712. };
  713. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  714. int is_ddr3,
  715. int fsb,
  716. int mem)
  717. {
  718. const struct cxsr_latency *latency;
  719. int i;
  720. if (fsb == 0 || mem == 0)
  721. return NULL;
  722. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  723. latency = &cxsr_latency_table[i];
  724. if (is_desktop == latency->is_desktop &&
  725. is_ddr3 == latency->is_ddr3 &&
  726. fsb == latency->fsb_freq && mem == latency->mem_freq)
  727. return latency;
  728. }
  729. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  730. return NULL;
  731. }
  732. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  733. {
  734. struct drm_device *dev = dev_priv->dev;
  735. u32 val;
  736. if (IS_VALLEYVIEW(dev)) {
  737. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  738. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  739. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  740. } else if (IS_PINEVIEW(dev)) {
  741. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  742. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  743. I915_WRITE(DSPFW3, val);
  744. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  745. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  746. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  747. I915_WRITE(FW_BLC_SELF, val);
  748. } else if (IS_I915GM(dev)) {
  749. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  750. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  751. I915_WRITE(INSTPM, val);
  752. } else {
  753. return;
  754. }
  755. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  756. enable ? "enabled" : "disabled");
  757. }
  758. /*
  759. * Latency for FIFO fetches is dependent on several factors:
  760. * - memory configuration (speed, channels)
  761. * - chipset
  762. * - current MCH state
  763. * It can be fairly high in some situations, so here we assume a fairly
  764. * pessimal value. It's a tradeoff between extra memory fetches (if we
  765. * set this value too high, the FIFO will fetch frequently to stay full)
  766. * and power consumption (set it too low to save power and we might see
  767. * FIFO underruns and display "flicker").
  768. *
  769. * A value of 5us seems to be a good balance; safe for very low end
  770. * platforms but not overly aggressive on lower latency configs.
  771. */
  772. static const int pessimal_latency_ns = 5000;
  773. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  774. {
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. uint32_t dsparb = I915_READ(DSPARB);
  777. int size;
  778. size = dsparb & 0x7f;
  779. if (plane)
  780. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  781. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  782. plane ? "B" : "A", size);
  783. return size;
  784. }
  785. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  786. {
  787. struct drm_i915_private *dev_priv = dev->dev_private;
  788. uint32_t dsparb = I915_READ(DSPARB);
  789. int size;
  790. size = dsparb & 0x1ff;
  791. if (plane)
  792. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  793. size >>= 1; /* Convert to cachelines */
  794. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  795. plane ? "B" : "A", size);
  796. return size;
  797. }
  798. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  799. {
  800. struct drm_i915_private *dev_priv = dev->dev_private;
  801. uint32_t dsparb = I915_READ(DSPARB);
  802. int size;
  803. size = dsparb & 0x7f;
  804. size >>= 2; /* Convert to cachelines */
  805. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  806. plane ? "B" : "A",
  807. size);
  808. return size;
  809. }
  810. /* Pineview has different values for various configs */
  811. static const struct intel_watermark_params pineview_display_wm = {
  812. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  813. .max_wm = PINEVIEW_MAX_WM,
  814. .default_wm = PINEVIEW_DFT_WM,
  815. .guard_size = PINEVIEW_GUARD_WM,
  816. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  817. };
  818. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  819. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  820. .max_wm = PINEVIEW_MAX_WM,
  821. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  822. .guard_size = PINEVIEW_GUARD_WM,
  823. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  824. };
  825. static const struct intel_watermark_params pineview_cursor_wm = {
  826. .fifo_size = PINEVIEW_CURSOR_FIFO,
  827. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  828. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  829. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  830. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  831. };
  832. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  833. .fifo_size = PINEVIEW_CURSOR_FIFO,
  834. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  835. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  836. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  837. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  838. };
  839. static const struct intel_watermark_params g4x_wm_info = {
  840. .fifo_size = G4X_FIFO_SIZE,
  841. .max_wm = G4X_MAX_WM,
  842. .default_wm = G4X_MAX_WM,
  843. .guard_size = 2,
  844. .cacheline_size = G4X_FIFO_LINE_SIZE,
  845. };
  846. static const struct intel_watermark_params g4x_cursor_wm_info = {
  847. .fifo_size = I965_CURSOR_FIFO,
  848. .max_wm = I965_CURSOR_MAX_WM,
  849. .default_wm = I965_CURSOR_DFT_WM,
  850. .guard_size = 2,
  851. .cacheline_size = G4X_FIFO_LINE_SIZE,
  852. };
  853. static const struct intel_watermark_params valleyview_wm_info = {
  854. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  855. .max_wm = VALLEYVIEW_MAX_WM,
  856. .default_wm = VALLEYVIEW_MAX_WM,
  857. .guard_size = 2,
  858. .cacheline_size = G4X_FIFO_LINE_SIZE,
  859. };
  860. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  861. .fifo_size = I965_CURSOR_FIFO,
  862. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  863. .default_wm = I965_CURSOR_DFT_WM,
  864. .guard_size = 2,
  865. .cacheline_size = G4X_FIFO_LINE_SIZE,
  866. };
  867. static const struct intel_watermark_params i965_cursor_wm_info = {
  868. .fifo_size = I965_CURSOR_FIFO,
  869. .max_wm = I965_CURSOR_MAX_WM,
  870. .default_wm = I965_CURSOR_DFT_WM,
  871. .guard_size = 2,
  872. .cacheline_size = I915_FIFO_LINE_SIZE,
  873. };
  874. static const struct intel_watermark_params i945_wm_info = {
  875. .fifo_size = I945_FIFO_SIZE,
  876. .max_wm = I915_MAX_WM,
  877. .default_wm = 1,
  878. .guard_size = 2,
  879. .cacheline_size = I915_FIFO_LINE_SIZE,
  880. };
  881. static const struct intel_watermark_params i915_wm_info = {
  882. .fifo_size = I915_FIFO_SIZE,
  883. .max_wm = I915_MAX_WM,
  884. .default_wm = 1,
  885. .guard_size = 2,
  886. .cacheline_size = I915_FIFO_LINE_SIZE,
  887. };
  888. static const struct intel_watermark_params i830_a_wm_info = {
  889. .fifo_size = I855GM_FIFO_SIZE,
  890. .max_wm = I915_MAX_WM,
  891. .default_wm = 1,
  892. .guard_size = 2,
  893. .cacheline_size = I830_FIFO_LINE_SIZE,
  894. };
  895. static const struct intel_watermark_params i830_bc_wm_info = {
  896. .fifo_size = I855GM_FIFO_SIZE,
  897. .max_wm = I915_MAX_WM/2,
  898. .default_wm = 1,
  899. .guard_size = 2,
  900. .cacheline_size = I830_FIFO_LINE_SIZE,
  901. };
  902. static const struct intel_watermark_params i845_wm_info = {
  903. .fifo_size = I830_FIFO_SIZE,
  904. .max_wm = I915_MAX_WM,
  905. .default_wm = 1,
  906. .guard_size = 2,
  907. .cacheline_size = I830_FIFO_LINE_SIZE,
  908. };
  909. /**
  910. * intel_calculate_wm - calculate watermark level
  911. * @clock_in_khz: pixel clock
  912. * @wm: chip FIFO params
  913. * @pixel_size: display pixel size
  914. * @latency_ns: memory latency for the platform
  915. *
  916. * Calculate the watermark level (the level at which the display plane will
  917. * start fetching from memory again). Each chip has a different display
  918. * FIFO size and allocation, so the caller needs to figure that out and pass
  919. * in the correct intel_watermark_params structure.
  920. *
  921. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  922. * on the pixel size. When it reaches the watermark level, it'll start
  923. * fetching FIFO line sized based chunks from memory until the FIFO fills
  924. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  925. * will occur, and a display engine hang could result.
  926. */
  927. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  928. const struct intel_watermark_params *wm,
  929. int fifo_size,
  930. int pixel_size,
  931. unsigned long latency_ns)
  932. {
  933. long entries_required, wm_size;
  934. /*
  935. * Note: we need to make sure we don't overflow for various clock &
  936. * latency values.
  937. * clocks go from a few thousand to several hundred thousand.
  938. * latency is usually a few thousand
  939. */
  940. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  941. 1000;
  942. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  943. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  944. wm_size = fifo_size - (entries_required + wm->guard_size);
  945. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  946. /* Don't promote wm_size to unsigned... */
  947. if (wm_size > (long)wm->max_wm)
  948. wm_size = wm->max_wm;
  949. if (wm_size <= 0)
  950. wm_size = wm->default_wm;
  951. return wm_size;
  952. }
  953. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  954. {
  955. struct drm_crtc *crtc, *enabled = NULL;
  956. for_each_crtc(dev, crtc) {
  957. if (intel_crtc_active(crtc)) {
  958. if (enabled)
  959. return NULL;
  960. enabled = crtc;
  961. }
  962. }
  963. return enabled;
  964. }
  965. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  966. {
  967. struct drm_device *dev = unused_crtc->dev;
  968. struct drm_i915_private *dev_priv = dev->dev_private;
  969. struct drm_crtc *crtc;
  970. const struct cxsr_latency *latency;
  971. u32 reg;
  972. unsigned long wm;
  973. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  974. dev_priv->fsb_freq, dev_priv->mem_freq);
  975. if (!latency) {
  976. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  977. intel_set_memory_cxsr(dev_priv, false);
  978. return;
  979. }
  980. crtc = single_enabled_crtc(dev);
  981. if (crtc) {
  982. const struct drm_display_mode *adjusted_mode;
  983. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  984. int clock;
  985. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  986. clock = adjusted_mode->crtc_clock;
  987. /* Display SR */
  988. wm = intel_calculate_wm(clock, &pineview_display_wm,
  989. pineview_display_wm.fifo_size,
  990. pixel_size, latency->display_sr);
  991. reg = I915_READ(DSPFW1);
  992. reg &= ~DSPFW_SR_MASK;
  993. reg |= wm << DSPFW_SR_SHIFT;
  994. I915_WRITE(DSPFW1, reg);
  995. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  996. /* cursor SR */
  997. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  998. pineview_display_wm.fifo_size,
  999. pixel_size, latency->cursor_sr);
  1000. reg = I915_READ(DSPFW3);
  1001. reg &= ~DSPFW_CURSOR_SR_MASK;
  1002. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  1003. I915_WRITE(DSPFW3, reg);
  1004. /* Display HPLL off SR */
  1005. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  1006. pineview_display_hplloff_wm.fifo_size,
  1007. pixel_size, latency->display_hpll_disable);
  1008. reg = I915_READ(DSPFW3);
  1009. reg &= ~DSPFW_HPLL_SR_MASK;
  1010. reg |= wm & DSPFW_HPLL_SR_MASK;
  1011. I915_WRITE(DSPFW3, reg);
  1012. /* cursor HPLL off SR */
  1013. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  1014. pineview_display_hplloff_wm.fifo_size,
  1015. pixel_size, latency->cursor_hpll_disable);
  1016. reg = I915_READ(DSPFW3);
  1017. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  1018. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  1019. I915_WRITE(DSPFW3, reg);
  1020. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  1021. intel_set_memory_cxsr(dev_priv, true);
  1022. } else {
  1023. intel_set_memory_cxsr(dev_priv, false);
  1024. }
  1025. }
  1026. static bool g4x_compute_wm0(struct drm_device *dev,
  1027. int plane,
  1028. const struct intel_watermark_params *display,
  1029. int display_latency_ns,
  1030. const struct intel_watermark_params *cursor,
  1031. int cursor_latency_ns,
  1032. int *plane_wm,
  1033. int *cursor_wm)
  1034. {
  1035. struct drm_crtc *crtc;
  1036. const struct drm_display_mode *adjusted_mode;
  1037. int htotal, hdisplay, clock, pixel_size;
  1038. int line_time_us, line_count;
  1039. int entries, tlb_miss;
  1040. crtc = intel_get_crtc_for_plane(dev, plane);
  1041. if (!intel_crtc_active(crtc)) {
  1042. *cursor_wm = cursor->guard_size;
  1043. *plane_wm = display->guard_size;
  1044. return false;
  1045. }
  1046. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1047. clock = adjusted_mode->crtc_clock;
  1048. htotal = adjusted_mode->crtc_htotal;
  1049. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1050. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1051. /* Use the small buffer method to calculate plane watermark */
  1052. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1053. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1054. if (tlb_miss > 0)
  1055. entries += tlb_miss;
  1056. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1057. *plane_wm = entries + display->guard_size;
  1058. if (*plane_wm > (int)display->max_wm)
  1059. *plane_wm = display->max_wm;
  1060. /* Use the large buffer method to calculate cursor watermark */
  1061. line_time_us = max(htotal * 1000 / clock, 1);
  1062. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1063. entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
  1064. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1065. if (tlb_miss > 0)
  1066. entries += tlb_miss;
  1067. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1068. *cursor_wm = entries + cursor->guard_size;
  1069. if (*cursor_wm > (int)cursor->max_wm)
  1070. *cursor_wm = (int)cursor->max_wm;
  1071. return true;
  1072. }
  1073. /*
  1074. * Check the wm result.
  1075. *
  1076. * If any calculated watermark values is larger than the maximum value that
  1077. * can be programmed into the associated watermark register, that watermark
  1078. * must be disabled.
  1079. */
  1080. static bool g4x_check_srwm(struct drm_device *dev,
  1081. int display_wm, int cursor_wm,
  1082. const struct intel_watermark_params *display,
  1083. const struct intel_watermark_params *cursor)
  1084. {
  1085. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1086. display_wm, cursor_wm);
  1087. if (display_wm > display->max_wm) {
  1088. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1089. display_wm, display->max_wm);
  1090. return false;
  1091. }
  1092. if (cursor_wm > cursor->max_wm) {
  1093. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1094. cursor_wm, cursor->max_wm);
  1095. return false;
  1096. }
  1097. if (!(display_wm || cursor_wm)) {
  1098. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1099. return false;
  1100. }
  1101. return true;
  1102. }
  1103. static bool g4x_compute_srwm(struct drm_device *dev,
  1104. int plane,
  1105. int latency_ns,
  1106. const struct intel_watermark_params *display,
  1107. const struct intel_watermark_params *cursor,
  1108. int *display_wm, int *cursor_wm)
  1109. {
  1110. struct drm_crtc *crtc;
  1111. const struct drm_display_mode *adjusted_mode;
  1112. int hdisplay, htotal, pixel_size, clock;
  1113. unsigned long line_time_us;
  1114. int line_count, line_size;
  1115. int small, large;
  1116. int entries;
  1117. if (!latency_ns) {
  1118. *display_wm = *cursor_wm = 0;
  1119. return false;
  1120. }
  1121. crtc = intel_get_crtc_for_plane(dev, plane);
  1122. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1123. clock = adjusted_mode->crtc_clock;
  1124. htotal = adjusted_mode->crtc_htotal;
  1125. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1126. pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1127. line_time_us = max(htotal * 1000 / clock, 1);
  1128. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1129. line_size = hdisplay * pixel_size;
  1130. /* Use the minimum of the small and large buffer method for primary */
  1131. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1132. large = line_count * line_size;
  1133. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1134. *display_wm = entries + display->guard_size;
  1135. /* calculate the self-refresh watermark for display cursor */
  1136. entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
  1137. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1138. *cursor_wm = entries + cursor->guard_size;
  1139. return g4x_check_srwm(dev,
  1140. *display_wm, *cursor_wm,
  1141. display, cursor);
  1142. }
  1143. static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
  1144. int pixel_size,
  1145. int *prec_mult,
  1146. int *drain_latency)
  1147. {
  1148. int entries;
  1149. int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1150. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  1151. return false;
  1152. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  1153. return false;
  1154. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  1155. *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
  1156. DRAIN_LATENCY_PRECISION_32;
  1157. *drain_latency = (64 * (*prec_mult) * 4) / entries;
  1158. if (*drain_latency > DRAIN_LATENCY_MASK)
  1159. *drain_latency = DRAIN_LATENCY_MASK;
  1160. return true;
  1161. }
  1162. /*
  1163. * Update drain latency registers of memory arbiter
  1164. *
  1165. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1166. * to be programmed. Each plane has a drain latency multiplier and a drain
  1167. * latency value.
  1168. */
  1169. static void vlv_update_drain_latency(struct drm_crtc *crtc)
  1170. {
  1171. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1173. int pixel_size;
  1174. int drain_latency;
  1175. enum pipe pipe = intel_crtc->pipe;
  1176. int plane_prec, prec_mult, plane_dl;
  1177. plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
  1178. DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
  1179. (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
  1180. if (!intel_crtc_active(crtc)) {
  1181. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1182. return;
  1183. }
  1184. /* Primary plane Drain Latency */
  1185. pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
  1186. if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1187. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1188. DDL_PLANE_PRECISION_64 :
  1189. DDL_PLANE_PRECISION_32;
  1190. plane_dl |= plane_prec | drain_latency;
  1191. }
  1192. /* Cursor Drain Latency
  1193. * BPP is always 4 for cursor
  1194. */
  1195. pixel_size = 4;
  1196. /* Program cursor DL only if it is enabled */
  1197. if (intel_crtc->cursor_base &&
  1198. vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
  1199. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1200. DDL_CURSOR_PRECISION_64 :
  1201. DDL_CURSOR_PRECISION_32;
  1202. plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
  1203. }
  1204. I915_WRITE(VLV_DDL(pipe), plane_dl);
  1205. }
  1206. #define single_plane_enabled(mask) is_power_of_2(mask)
  1207. static void valleyview_update_wm(struct drm_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->dev;
  1210. static const int sr_latency_ns = 12000;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1213. int plane_sr, cursor_sr;
  1214. int ignore_plane_sr, ignore_cursor_sr;
  1215. unsigned int enabled = 0;
  1216. bool cxsr_enabled;
  1217. vlv_update_drain_latency(crtc);
  1218. if (g4x_compute_wm0(dev, PIPE_A,
  1219. &valleyview_wm_info, pessimal_latency_ns,
  1220. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1221. &planea_wm, &cursora_wm))
  1222. enabled |= 1 << PIPE_A;
  1223. if (g4x_compute_wm0(dev, PIPE_B,
  1224. &valleyview_wm_info, pessimal_latency_ns,
  1225. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1226. &planeb_wm, &cursorb_wm))
  1227. enabled |= 1 << PIPE_B;
  1228. if (single_plane_enabled(enabled) &&
  1229. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1230. sr_latency_ns,
  1231. &valleyview_wm_info,
  1232. &valleyview_cursor_wm_info,
  1233. &plane_sr, &ignore_cursor_sr) &&
  1234. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1235. 2*sr_latency_ns,
  1236. &valleyview_wm_info,
  1237. &valleyview_cursor_wm_info,
  1238. &ignore_plane_sr, &cursor_sr)) {
  1239. cxsr_enabled = true;
  1240. } else {
  1241. cxsr_enabled = false;
  1242. intel_set_memory_cxsr(dev_priv, false);
  1243. plane_sr = cursor_sr = 0;
  1244. }
  1245. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1246. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1247. planea_wm, cursora_wm,
  1248. planeb_wm, cursorb_wm,
  1249. plane_sr, cursor_sr);
  1250. I915_WRITE(DSPFW1,
  1251. (plane_sr << DSPFW_SR_SHIFT) |
  1252. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1253. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1254. (planea_wm << DSPFW_PLANEA_SHIFT));
  1255. I915_WRITE(DSPFW2,
  1256. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1257. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1258. I915_WRITE(DSPFW3,
  1259. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1260. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1261. if (cxsr_enabled)
  1262. intel_set_memory_cxsr(dev_priv, true);
  1263. }
  1264. static void cherryview_update_wm(struct drm_crtc *crtc)
  1265. {
  1266. struct drm_device *dev = crtc->dev;
  1267. static const int sr_latency_ns = 12000;
  1268. struct drm_i915_private *dev_priv = dev->dev_private;
  1269. int planea_wm, planeb_wm, planec_wm;
  1270. int cursora_wm, cursorb_wm, cursorc_wm;
  1271. int plane_sr, cursor_sr;
  1272. int ignore_plane_sr, ignore_cursor_sr;
  1273. unsigned int enabled = 0;
  1274. bool cxsr_enabled;
  1275. vlv_update_drain_latency(crtc);
  1276. if (g4x_compute_wm0(dev, PIPE_A,
  1277. &valleyview_wm_info, pessimal_latency_ns,
  1278. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1279. &planea_wm, &cursora_wm))
  1280. enabled |= 1 << PIPE_A;
  1281. if (g4x_compute_wm0(dev, PIPE_B,
  1282. &valleyview_wm_info, pessimal_latency_ns,
  1283. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1284. &planeb_wm, &cursorb_wm))
  1285. enabled |= 1 << PIPE_B;
  1286. if (g4x_compute_wm0(dev, PIPE_C,
  1287. &valleyview_wm_info, pessimal_latency_ns,
  1288. &valleyview_cursor_wm_info, pessimal_latency_ns,
  1289. &planec_wm, &cursorc_wm))
  1290. enabled |= 1 << PIPE_C;
  1291. if (single_plane_enabled(enabled) &&
  1292. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1293. sr_latency_ns,
  1294. &valleyview_wm_info,
  1295. &valleyview_cursor_wm_info,
  1296. &plane_sr, &ignore_cursor_sr) &&
  1297. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1298. 2*sr_latency_ns,
  1299. &valleyview_wm_info,
  1300. &valleyview_cursor_wm_info,
  1301. &ignore_plane_sr, &cursor_sr)) {
  1302. cxsr_enabled = true;
  1303. } else {
  1304. cxsr_enabled = false;
  1305. intel_set_memory_cxsr(dev_priv, false);
  1306. plane_sr = cursor_sr = 0;
  1307. }
  1308. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1309. "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
  1310. "SR: plane=%d, cursor=%d\n",
  1311. planea_wm, cursora_wm,
  1312. planeb_wm, cursorb_wm,
  1313. planec_wm, cursorc_wm,
  1314. plane_sr, cursor_sr);
  1315. I915_WRITE(DSPFW1,
  1316. (plane_sr << DSPFW_SR_SHIFT) |
  1317. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1318. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1319. (planea_wm << DSPFW_PLANEA_SHIFT));
  1320. I915_WRITE(DSPFW2,
  1321. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1322. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1323. I915_WRITE(DSPFW3,
  1324. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1325. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1326. I915_WRITE(DSPFW9_CHV,
  1327. (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
  1328. DSPFW_CURSORC_MASK)) |
  1329. (planec_wm << DSPFW_PLANEC_SHIFT) |
  1330. (cursorc_wm << DSPFW_CURSORC_SHIFT));
  1331. if (cxsr_enabled)
  1332. intel_set_memory_cxsr(dev_priv, true);
  1333. }
  1334. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  1335. struct drm_crtc *crtc,
  1336. uint32_t sprite_width,
  1337. uint32_t sprite_height,
  1338. int pixel_size,
  1339. bool enabled, bool scaled)
  1340. {
  1341. struct drm_device *dev = crtc->dev;
  1342. struct drm_i915_private *dev_priv = dev->dev_private;
  1343. int pipe = to_intel_plane(plane)->pipe;
  1344. int sprite = to_intel_plane(plane)->plane;
  1345. int drain_latency;
  1346. int plane_prec;
  1347. int sprite_dl;
  1348. int prec_mult;
  1349. sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
  1350. (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
  1351. if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
  1352. &drain_latency)) {
  1353. plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
  1354. DDL_SPRITE_PRECISION_64(sprite) :
  1355. DDL_SPRITE_PRECISION_32(sprite);
  1356. sprite_dl |= plane_prec |
  1357. (drain_latency << DDL_SPRITE_SHIFT(sprite));
  1358. }
  1359. I915_WRITE(VLV_DDL(pipe), sprite_dl);
  1360. }
  1361. static void g4x_update_wm(struct drm_crtc *crtc)
  1362. {
  1363. struct drm_device *dev = crtc->dev;
  1364. static const int sr_latency_ns = 12000;
  1365. struct drm_i915_private *dev_priv = dev->dev_private;
  1366. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1367. int plane_sr, cursor_sr;
  1368. unsigned int enabled = 0;
  1369. bool cxsr_enabled;
  1370. if (g4x_compute_wm0(dev, PIPE_A,
  1371. &g4x_wm_info, pessimal_latency_ns,
  1372. &g4x_cursor_wm_info, pessimal_latency_ns,
  1373. &planea_wm, &cursora_wm))
  1374. enabled |= 1 << PIPE_A;
  1375. if (g4x_compute_wm0(dev, PIPE_B,
  1376. &g4x_wm_info, pessimal_latency_ns,
  1377. &g4x_cursor_wm_info, pessimal_latency_ns,
  1378. &planeb_wm, &cursorb_wm))
  1379. enabled |= 1 << PIPE_B;
  1380. if (single_plane_enabled(enabled) &&
  1381. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1382. sr_latency_ns,
  1383. &g4x_wm_info,
  1384. &g4x_cursor_wm_info,
  1385. &plane_sr, &cursor_sr)) {
  1386. cxsr_enabled = true;
  1387. } else {
  1388. cxsr_enabled = false;
  1389. intel_set_memory_cxsr(dev_priv, false);
  1390. plane_sr = cursor_sr = 0;
  1391. }
  1392. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1393. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1394. planea_wm, cursora_wm,
  1395. planeb_wm, cursorb_wm,
  1396. plane_sr, cursor_sr);
  1397. I915_WRITE(DSPFW1,
  1398. (plane_sr << DSPFW_SR_SHIFT) |
  1399. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1400. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1401. (planea_wm << DSPFW_PLANEA_SHIFT));
  1402. I915_WRITE(DSPFW2,
  1403. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1404. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1405. /* HPLL off in SR has some issues on G4x... disable it */
  1406. I915_WRITE(DSPFW3,
  1407. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1408. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1409. if (cxsr_enabled)
  1410. intel_set_memory_cxsr(dev_priv, true);
  1411. }
  1412. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1413. {
  1414. struct drm_device *dev = unused_crtc->dev;
  1415. struct drm_i915_private *dev_priv = dev->dev_private;
  1416. struct drm_crtc *crtc;
  1417. int srwm = 1;
  1418. int cursor_sr = 16;
  1419. bool cxsr_enabled;
  1420. /* Calc sr entries for one plane configs */
  1421. crtc = single_enabled_crtc(dev);
  1422. if (crtc) {
  1423. /* self-refresh has much higher latency */
  1424. static const int sr_latency_ns = 12000;
  1425. const struct drm_display_mode *adjusted_mode =
  1426. &to_intel_crtc(crtc)->config.adjusted_mode;
  1427. int clock = adjusted_mode->crtc_clock;
  1428. int htotal = adjusted_mode->crtc_htotal;
  1429. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1430. int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
  1431. unsigned long line_time_us;
  1432. int entries;
  1433. line_time_us = max(htotal * 1000 / clock, 1);
  1434. /* Use ns/us then divide to preserve precision */
  1435. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1436. pixel_size * hdisplay;
  1437. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1438. srwm = I965_FIFO_SIZE - entries;
  1439. if (srwm < 0)
  1440. srwm = 1;
  1441. srwm &= 0x1ff;
  1442. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1443. entries, srwm);
  1444. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1445. pixel_size * to_intel_crtc(crtc)->cursor_width;
  1446. entries = DIV_ROUND_UP(entries,
  1447. i965_cursor_wm_info.cacheline_size);
  1448. cursor_sr = i965_cursor_wm_info.fifo_size -
  1449. (entries + i965_cursor_wm_info.guard_size);
  1450. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1451. cursor_sr = i965_cursor_wm_info.max_wm;
  1452. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1453. "cursor %d\n", srwm, cursor_sr);
  1454. cxsr_enabled = true;
  1455. } else {
  1456. cxsr_enabled = false;
  1457. /* Turn off self refresh if both pipes are enabled */
  1458. intel_set_memory_cxsr(dev_priv, false);
  1459. }
  1460. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1461. srwm);
  1462. /* 965 has limitations... */
  1463. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1464. (8 << DSPFW_CURSORB_SHIFT) |
  1465. (8 << DSPFW_PLANEB_SHIFT) |
  1466. (8 << DSPFW_PLANEA_SHIFT));
  1467. I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
  1468. (8 << DSPFW_PLANEC_SHIFT_OLD));
  1469. /* update cursor SR watermark */
  1470. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1471. if (cxsr_enabled)
  1472. intel_set_memory_cxsr(dev_priv, true);
  1473. }
  1474. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1475. {
  1476. struct drm_device *dev = unused_crtc->dev;
  1477. struct drm_i915_private *dev_priv = dev->dev_private;
  1478. const struct intel_watermark_params *wm_info;
  1479. uint32_t fwater_lo;
  1480. uint32_t fwater_hi;
  1481. int cwm, srwm = 1;
  1482. int fifo_size;
  1483. int planea_wm, planeb_wm;
  1484. struct drm_crtc *crtc, *enabled = NULL;
  1485. if (IS_I945GM(dev))
  1486. wm_info = &i945_wm_info;
  1487. else if (!IS_GEN2(dev))
  1488. wm_info = &i915_wm_info;
  1489. else
  1490. wm_info = &i830_a_wm_info;
  1491. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1492. crtc = intel_get_crtc_for_plane(dev, 0);
  1493. if (intel_crtc_active(crtc)) {
  1494. const struct drm_display_mode *adjusted_mode;
  1495. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1496. if (IS_GEN2(dev))
  1497. cpp = 4;
  1498. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1499. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1500. wm_info, fifo_size, cpp,
  1501. pessimal_latency_ns);
  1502. enabled = crtc;
  1503. } else {
  1504. planea_wm = fifo_size - wm_info->guard_size;
  1505. if (planea_wm > (long)wm_info->max_wm)
  1506. planea_wm = wm_info->max_wm;
  1507. }
  1508. if (IS_GEN2(dev))
  1509. wm_info = &i830_bc_wm_info;
  1510. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1511. crtc = intel_get_crtc_for_plane(dev, 1);
  1512. if (intel_crtc_active(crtc)) {
  1513. const struct drm_display_mode *adjusted_mode;
  1514. int cpp = crtc->primary->fb->bits_per_pixel / 8;
  1515. if (IS_GEN2(dev))
  1516. cpp = 4;
  1517. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1518. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1519. wm_info, fifo_size, cpp,
  1520. pessimal_latency_ns);
  1521. if (enabled == NULL)
  1522. enabled = crtc;
  1523. else
  1524. enabled = NULL;
  1525. } else {
  1526. planeb_wm = fifo_size - wm_info->guard_size;
  1527. if (planeb_wm > (long)wm_info->max_wm)
  1528. planeb_wm = wm_info->max_wm;
  1529. }
  1530. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1531. if (IS_I915GM(dev) && enabled) {
  1532. struct drm_i915_gem_object *obj;
  1533. obj = intel_fb_obj(enabled->primary->fb);
  1534. /* self-refresh seems busted with untiled */
  1535. if (obj->tiling_mode == I915_TILING_NONE)
  1536. enabled = NULL;
  1537. }
  1538. /*
  1539. * Overlay gets an aggressive default since video jitter is bad.
  1540. */
  1541. cwm = 2;
  1542. /* Play safe and disable self-refresh before adjusting watermarks. */
  1543. intel_set_memory_cxsr(dev_priv, false);
  1544. /* Calc sr entries for one plane configs */
  1545. if (HAS_FW_BLC(dev) && enabled) {
  1546. /* self-refresh has much higher latency */
  1547. static const int sr_latency_ns = 6000;
  1548. const struct drm_display_mode *adjusted_mode =
  1549. &to_intel_crtc(enabled)->config.adjusted_mode;
  1550. int clock = adjusted_mode->crtc_clock;
  1551. int htotal = adjusted_mode->crtc_htotal;
  1552. int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
  1553. int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
  1554. unsigned long line_time_us;
  1555. int entries;
  1556. line_time_us = max(htotal * 1000 / clock, 1);
  1557. /* Use ns/us then divide to preserve precision */
  1558. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1559. pixel_size * hdisplay;
  1560. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1561. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1562. srwm = wm_info->fifo_size - entries;
  1563. if (srwm < 0)
  1564. srwm = 1;
  1565. if (IS_I945G(dev) || IS_I945GM(dev))
  1566. I915_WRITE(FW_BLC_SELF,
  1567. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1568. else if (IS_I915GM(dev))
  1569. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1570. }
  1571. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1572. planea_wm, planeb_wm, cwm, srwm);
  1573. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1574. fwater_hi = (cwm & 0x1f);
  1575. /* Set request length to 8 cachelines per fetch */
  1576. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1577. fwater_hi = fwater_hi | (1 << 8);
  1578. I915_WRITE(FW_BLC, fwater_lo);
  1579. I915_WRITE(FW_BLC2, fwater_hi);
  1580. if (enabled)
  1581. intel_set_memory_cxsr(dev_priv, true);
  1582. }
  1583. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1584. {
  1585. struct drm_device *dev = unused_crtc->dev;
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. struct drm_crtc *crtc;
  1588. const struct drm_display_mode *adjusted_mode;
  1589. uint32_t fwater_lo;
  1590. int planea_wm;
  1591. crtc = single_enabled_crtc(dev);
  1592. if (crtc == NULL)
  1593. return;
  1594. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1595. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1596. &i845_wm_info,
  1597. dev_priv->display.get_fifo_size(dev, 0),
  1598. 4, pessimal_latency_ns);
  1599. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1600. fwater_lo |= (3<<8) | planea_wm;
  1601. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1602. I915_WRITE(FW_BLC, fwater_lo);
  1603. }
  1604. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1605. struct drm_crtc *crtc)
  1606. {
  1607. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1608. uint32_t pixel_rate;
  1609. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1610. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1611. * adjust the pixel_rate here. */
  1612. if (intel_crtc->config.pch_pfit.enabled) {
  1613. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1614. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1615. pipe_w = intel_crtc->config.pipe_src_w;
  1616. pipe_h = intel_crtc->config.pipe_src_h;
  1617. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1618. pfit_h = pfit_size & 0xFFFF;
  1619. if (pipe_w < pfit_w)
  1620. pipe_w = pfit_w;
  1621. if (pipe_h < pfit_h)
  1622. pipe_h = pfit_h;
  1623. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1624. pfit_w * pfit_h);
  1625. }
  1626. return pixel_rate;
  1627. }
  1628. /* latency must be in 0.1us units. */
  1629. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1630. uint32_t latency)
  1631. {
  1632. uint64_t ret;
  1633. if (WARN(latency == 0, "Latency value missing\n"))
  1634. return UINT_MAX;
  1635. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1636. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1637. return ret;
  1638. }
  1639. /* latency must be in 0.1us units. */
  1640. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1641. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1642. uint32_t latency)
  1643. {
  1644. uint32_t ret;
  1645. if (WARN(latency == 0, "Latency value missing\n"))
  1646. return UINT_MAX;
  1647. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1648. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1649. ret = DIV_ROUND_UP(ret, 64) + 2;
  1650. return ret;
  1651. }
  1652. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1653. uint8_t bytes_per_pixel)
  1654. {
  1655. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1656. }
  1657. struct ilk_pipe_wm_parameters {
  1658. bool active;
  1659. uint32_t pipe_htotal;
  1660. uint32_t pixel_rate;
  1661. struct intel_plane_wm_parameters pri;
  1662. struct intel_plane_wm_parameters spr;
  1663. struct intel_plane_wm_parameters cur;
  1664. };
  1665. struct ilk_wm_maximums {
  1666. uint16_t pri;
  1667. uint16_t spr;
  1668. uint16_t cur;
  1669. uint16_t fbc;
  1670. };
  1671. /* used in computing the new watermarks state */
  1672. struct intel_wm_config {
  1673. unsigned int num_pipes_active;
  1674. bool sprites_enabled;
  1675. bool sprites_scaled;
  1676. };
  1677. /*
  1678. * For both WM_PIPE and WM_LP.
  1679. * mem_value must be in 0.1us units.
  1680. */
  1681. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1682. uint32_t mem_value,
  1683. bool is_lp)
  1684. {
  1685. uint32_t method1, method2;
  1686. if (!params->active || !params->pri.enabled)
  1687. return 0;
  1688. method1 = ilk_wm_method1(params->pixel_rate,
  1689. params->pri.bytes_per_pixel,
  1690. mem_value);
  1691. if (!is_lp)
  1692. return method1;
  1693. method2 = ilk_wm_method2(params->pixel_rate,
  1694. params->pipe_htotal,
  1695. params->pri.horiz_pixels,
  1696. params->pri.bytes_per_pixel,
  1697. mem_value);
  1698. return min(method1, method2);
  1699. }
  1700. /*
  1701. * For both WM_PIPE and WM_LP.
  1702. * mem_value must be in 0.1us units.
  1703. */
  1704. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1705. uint32_t mem_value)
  1706. {
  1707. uint32_t method1, method2;
  1708. if (!params->active || !params->spr.enabled)
  1709. return 0;
  1710. method1 = ilk_wm_method1(params->pixel_rate,
  1711. params->spr.bytes_per_pixel,
  1712. mem_value);
  1713. method2 = ilk_wm_method2(params->pixel_rate,
  1714. params->pipe_htotal,
  1715. params->spr.horiz_pixels,
  1716. params->spr.bytes_per_pixel,
  1717. mem_value);
  1718. return min(method1, method2);
  1719. }
  1720. /*
  1721. * For both WM_PIPE and WM_LP.
  1722. * mem_value must be in 0.1us units.
  1723. */
  1724. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1725. uint32_t mem_value)
  1726. {
  1727. if (!params->active || !params->cur.enabled)
  1728. return 0;
  1729. return ilk_wm_method2(params->pixel_rate,
  1730. params->pipe_htotal,
  1731. params->cur.horiz_pixels,
  1732. params->cur.bytes_per_pixel,
  1733. mem_value);
  1734. }
  1735. /* Only for WM_LP. */
  1736. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1737. uint32_t pri_val)
  1738. {
  1739. if (!params->active || !params->pri.enabled)
  1740. return 0;
  1741. return ilk_wm_fbc(pri_val,
  1742. params->pri.horiz_pixels,
  1743. params->pri.bytes_per_pixel);
  1744. }
  1745. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1746. {
  1747. if (INTEL_INFO(dev)->gen >= 8)
  1748. return 3072;
  1749. else if (INTEL_INFO(dev)->gen >= 7)
  1750. return 768;
  1751. else
  1752. return 512;
  1753. }
  1754. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1755. int level, bool is_sprite)
  1756. {
  1757. if (INTEL_INFO(dev)->gen >= 8)
  1758. /* BDW primary/sprite plane watermarks */
  1759. return level == 0 ? 255 : 2047;
  1760. else if (INTEL_INFO(dev)->gen >= 7)
  1761. /* IVB/HSW primary/sprite plane watermarks */
  1762. return level == 0 ? 127 : 1023;
  1763. else if (!is_sprite)
  1764. /* ILK/SNB primary plane watermarks */
  1765. return level == 0 ? 127 : 511;
  1766. else
  1767. /* ILK/SNB sprite plane watermarks */
  1768. return level == 0 ? 63 : 255;
  1769. }
  1770. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1771. int level)
  1772. {
  1773. if (INTEL_INFO(dev)->gen >= 7)
  1774. return level == 0 ? 63 : 255;
  1775. else
  1776. return level == 0 ? 31 : 63;
  1777. }
  1778. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1779. {
  1780. if (INTEL_INFO(dev)->gen >= 8)
  1781. return 31;
  1782. else
  1783. return 15;
  1784. }
  1785. /* Calculate the maximum primary/sprite plane watermark */
  1786. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1787. int level,
  1788. const struct intel_wm_config *config,
  1789. enum intel_ddb_partitioning ddb_partitioning,
  1790. bool is_sprite)
  1791. {
  1792. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1793. /* if sprites aren't enabled, sprites get nothing */
  1794. if (is_sprite && !config->sprites_enabled)
  1795. return 0;
  1796. /* HSW allows LP1+ watermarks even with multiple pipes */
  1797. if (level == 0 || config->num_pipes_active > 1) {
  1798. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1799. /*
  1800. * For some reason the non self refresh
  1801. * FIFO size is only half of the self
  1802. * refresh FIFO size on ILK/SNB.
  1803. */
  1804. if (INTEL_INFO(dev)->gen <= 6)
  1805. fifo_size /= 2;
  1806. }
  1807. if (config->sprites_enabled) {
  1808. /* level 0 is always calculated with 1:1 split */
  1809. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1810. if (is_sprite)
  1811. fifo_size *= 5;
  1812. fifo_size /= 6;
  1813. } else {
  1814. fifo_size /= 2;
  1815. }
  1816. }
  1817. /* clamp to max that the registers can hold */
  1818. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1819. }
  1820. /* Calculate the maximum cursor plane watermark */
  1821. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1822. int level,
  1823. const struct intel_wm_config *config)
  1824. {
  1825. /* HSW LP1+ watermarks w/ multiple pipes */
  1826. if (level > 0 && config->num_pipes_active > 1)
  1827. return 64;
  1828. /* otherwise just report max that registers can hold */
  1829. return ilk_cursor_wm_reg_max(dev, level);
  1830. }
  1831. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1832. int level,
  1833. const struct intel_wm_config *config,
  1834. enum intel_ddb_partitioning ddb_partitioning,
  1835. struct ilk_wm_maximums *max)
  1836. {
  1837. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1838. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1839. max->cur = ilk_cursor_wm_max(dev, level, config);
  1840. max->fbc = ilk_fbc_wm_reg_max(dev);
  1841. }
  1842. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1843. int level,
  1844. struct ilk_wm_maximums *max)
  1845. {
  1846. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1847. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1848. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1849. max->fbc = ilk_fbc_wm_reg_max(dev);
  1850. }
  1851. static bool ilk_validate_wm_level(int level,
  1852. const struct ilk_wm_maximums *max,
  1853. struct intel_wm_level *result)
  1854. {
  1855. bool ret;
  1856. /* already determined to be invalid? */
  1857. if (!result->enable)
  1858. return false;
  1859. result->enable = result->pri_val <= max->pri &&
  1860. result->spr_val <= max->spr &&
  1861. result->cur_val <= max->cur;
  1862. ret = result->enable;
  1863. /*
  1864. * HACK until we can pre-compute everything,
  1865. * and thus fail gracefully if LP0 watermarks
  1866. * are exceeded...
  1867. */
  1868. if (level == 0 && !result->enable) {
  1869. if (result->pri_val > max->pri)
  1870. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1871. level, result->pri_val, max->pri);
  1872. if (result->spr_val > max->spr)
  1873. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1874. level, result->spr_val, max->spr);
  1875. if (result->cur_val > max->cur)
  1876. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1877. level, result->cur_val, max->cur);
  1878. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1879. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1880. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1881. result->enable = true;
  1882. }
  1883. return ret;
  1884. }
  1885. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1886. int level,
  1887. const struct ilk_pipe_wm_parameters *p,
  1888. struct intel_wm_level *result)
  1889. {
  1890. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1891. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1892. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1893. /* WM1+ latency values stored in 0.5us units */
  1894. if (level > 0) {
  1895. pri_latency *= 5;
  1896. spr_latency *= 5;
  1897. cur_latency *= 5;
  1898. }
  1899. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1900. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1901. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1902. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1903. result->enable = true;
  1904. }
  1905. static uint32_t
  1906. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1907. {
  1908. struct drm_i915_private *dev_priv = dev->dev_private;
  1909. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1910. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  1911. u32 linetime, ips_linetime;
  1912. if (!intel_crtc_active(crtc))
  1913. return 0;
  1914. /* The WM are computed with base on how long it takes to fill a single
  1915. * row at the given clock rate, multiplied by 8.
  1916. * */
  1917. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1918. mode->crtc_clock);
  1919. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1920. intel_ddi_get_cdclk_freq(dev_priv));
  1921. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1922. PIPE_WM_LINETIME_TIME(linetime);
  1923. }
  1924. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1925. {
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1928. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1929. wm[0] = (sskpd >> 56) & 0xFF;
  1930. if (wm[0] == 0)
  1931. wm[0] = sskpd & 0xF;
  1932. wm[1] = (sskpd >> 4) & 0xFF;
  1933. wm[2] = (sskpd >> 12) & 0xFF;
  1934. wm[3] = (sskpd >> 20) & 0x1FF;
  1935. wm[4] = (sskpd >> 32) & 0x1FF;
  1936. } else if (INTEL_INFO(dev)->gen >= 6) {
  1937. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1938. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1939. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1940. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1941. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1942. } else if (INTEL_INFO(dev)->gen >= 5) {
  1943. uint32_t mltr = I915_READ(MLTR_ILK);
  1944. /* ILK primary LP0 latency is 700 ns */
  1945. wm[0] = 7;
  1946. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1947. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1948. }
  1949. }
  1950. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1951. {
  1952. /* ILK sprite LP0 latency is 1300 ns */
  1953. if (INTEL_INFO(dev)->gen == 5)
  1954. wm[0] = 13;
  1955. }
  1956. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1957. {
  1958. /* ILK cursor LP0 latency is 1300 ns */
  1959. if (INTEL_INFO(dev)->gen == 5)
  1960. wm[0] = 13;
  1961. /* WaDoubleCursorLP3Latency:ivb */
  1962. if (IS_IVYBRIDGE(dev))
  1963. wm[3] *= 2;
  1964. }
  1965. int ilk_wm_max_level(const struct drm_device *dev)
  1966. {
  1967. /* how many WM levels are we expecting */
  1968. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1969. return 4;
  1970. else if (INTEL_INFO(dev)->gen >= 6)
  1971. return 3;
  1972. else
  1973. return 2;
  1974. }
  1975. static void intel_print_wm_latency(struct drm_device *dev,
  1976. const char *name,
  1977. const uint16_t wm[5])
  1978. {
  1979. int level, max_level = ilk_wm_max_level(dev);
  1980. for (level = 0; level <= max_level; level++) {
  1981. unsigned int latency = wm[level];
  1982. if (latency == 0) {
  1983. DRM_ERROR("%s WM%d latency not provided\n",
  1984. name, level);
  1985. continue;
  1986. }
  1987. /* WM1+ latency values in 0.5us units */
  1988. if (level > 0)
  1989. latency *= 5;
  1990. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1991. name, level, wm[level],
  1992. latency / 10, latency % 10);
  1993. }
  1994. }
  1995. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1996. uint16_t wm[5], uint16_t min)
  1997. {
  1998. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1999. if (wm[0] >= min)
  2000. return false;
  2001. wm[0] = max(wm[0], min);
  2002. for (level = 1; level <= max_level; level++)
  2003. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  2004. return true;
  2005. }
  2006. static void snb_wm_latency_quirk(struct drm_device *dev)
  2007. {
  2008. struct drm_i915_private *dev_priv = dev->dev_private;
  2009. bool changed;
  2010. /*
  2011. * The BIOS provided WM memory latency values are often
  2012. * inadequate for high resolution displays. Adjust them.
  2013. */
  2014. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  2015. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  2016. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2017. if (!changed)
  2018. return;
  2019. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2020. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2021. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2022. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2023. }
  2024. static void ilk_setup_wm_latency(struct drm_device *dev)
  2025. {
  2026. struct drm_i915_private *dev_priv = dev->dev_private;
  2027. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2028. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2029. sizeof(dev_priv->wm.pri_latency));
  2030. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2031. sizeof(dev_priv->wm.pri_latency));
  2032. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2033. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2034. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2035. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2036. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2037. if (IS_GEN6(dev))
  2038. snb_wm_latency_quirk(dev);
  2039. }
  2040. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  2041. struct ilk_pipe_wm_parameters *p)
  2042. {
  2043. struct drm_device *dev = crtc->dev;
  2044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2045. enum pipe pipe = intel_crtc->pipe;
  2046. struct drm_plane *plane;
  2047. if (!intel_crtc_active(crtc))
  2048. return;
  2049. p->active = true;
  2050. p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
  2051. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2052. p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
  2053. p->cur.bytes_per_pixel = 4;
  2054. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2055. p->cur.horiz_pixels = intel_crtc->cursor_width;
  2056. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2057. p->pri.enabled = true;
  2058. p->cur.enabled = true;
  2059. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  2060. struct intel_plane *intel_plane = to_intel_plane(plane);
  2061. if (intel_plane->pipe == pipe) {
  2062. p->spr = intel_plane->wm;
  2063. break;
  2064. }
  2065. }
  2066. }
  2067. static void ilk_compute_wm_config(struct drm_device *dev,
  2068. struct intel_wm_config *config)
  2069. {
  2070. struct intel_crtc *intel_crtc;
  2071. /* Compute the currently _active_ config */
  2072. for_each_intel_crtc(dev, intel_crtc) {
  2073. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  2074. if (!wm->pipe_enabled)
  2075. continue;
  2076. config->sprites_enabled |= wm->sprites_enabled;
  2077. config->sprites_scaled |= wm->sprites_scaled;
  2078. config->num_pipes_active++;
  2079. }
  2080. }
  2081. /* Compute new watermarks for the pipe */
  2082. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2083. const struct ilk_pipe_wm_parameters *params,
  2084. struct intel_pipe_wm *pipe_wm)
  2085. {
  2086. struct drm_device *dev = crtc->dev;
  2087. const struct drm_i915_private *dev_priv = dev->dev_private;
  2088. int level, max_level = ilk_wm_max_level(dev);
  2089. /* LP0 watermark maximums depend on this pipe alone */
  2090. struct intel_wm_config config = {
  2091. .num_pipes_active = 1,
  2092. .sprites_enabled = params->spr.enabled,
  2093. .sprites_scaled = params->spr.scaled,
  2094. };
  2095. struct ilk_wm_maximums max;
  2096. pipe_wm->pipe_enabled = params->active;
  2097. pipe_wm->sprites_enabled = params->spr.enabled;
  2098. pipe_wm->sprites_scaled = params->spr.scaled;
  2099. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2100. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  2101. max_level = 1;
  2102. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2103. if (params->spr.scaled)
  2104. max_level = 0;
  2105. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  2106. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2107. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2108. /* LP0 watermarks always use 1/2 DDB partitioning */
  2109. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2110. /* At least LP0 must be valid */
  2111. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  2112. return false;
  2113. ilk_compute_wm_reg_maximums(dev, 1, &max);
  2114. for (level = 1; level <= max_level; level++) {
  2115. struct intel_wm_level wm = {};
  2116. ilk_compute_wm_level(dev_priv, level, params, &wm);
  2117. /*
  2118. * Disable any watermark level that exceeds the
  2119. * register maximums since such watermarks are
  2120. * always invalid.
  2121. */
  2122. if (!ilk_validate_wm_level(level, &max, &wm))
  2123. break;
  2124. pipe_wm->wm[level] = wm;
  2125. }
  2126. return true;
  2127. }
  2128. /*
  2129. * Merge the watermarks from all active pipes for a specific level.
  2130. */
  2131. static void ilk_merge_wm_level(struct drm_device *dev,
  2132. int level,
  2133. struct intel_wm_level *ret_wm)
  2134. {
  2135. const struct intel_crtc *intel_crtc;
  2136. ret_wm->enable = true;
  2137. for_each_intel_crtc(dev, intel_crtc) {
  2138. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2139. const struct intel_wm_level *wm = &active->wm[level];
  2140. if (!active->pipe_enabled)
  2141. continue;
  2142. /*
  2143. * The watermark values may have been used in the past,
  2144. * so we must maintain them in the registers for some
  2145. * time even if the level is now disabled.
  2146. */
  2147. if (!wm->enable)
  2148. ret_wm->enable = false;
  2149. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2150. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2151. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2152. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2153. }
  2154. }
  2155. /*
  2156. * Merge all low power watermarks for all active pipes.
  2157. */
  2158. static void ilk_wm_merge(struct drm_device *dev,
  2159. const struct intel_wm_config *config,
  2160. const struct ilk_wm_maximums *max,
  2161. struct intel_pipe_wm *merged)
  2162. {
  2163. int level, max_level = ilk_wm_max_level(dev);
  2164. int last_enabled_level = max_level;
  2165. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2166. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2167. config->num_pipes_active > 1)
  2168. return;
  2169. /* ILK: FBC WM must be disabled always */
  2170. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2171. /* merge each WM1+ level */
  2172. for (level = 1; level <= max_level; level++) {
  2173. struct intel_wm_level *wm = &merged->wm[level];
  2174. ilk_merge_wm_level(dev, level, wm);
  2175. if (level > last_enabled_level)
  2176. wm->enable = false;
  2177. else if (!ilk_validate_wm_level(level, max, wm))
  2178. /* make sure all following levels get disabled */
  2179. last_enabled_level = level - 1;
  2180. /*
  2181. * The spec says it is preferred to disable
  2182. * FBC WMs instead of disabling a WM level.
  2183. */
  2184. if (wm->fbc_val > max->fbc) {
  2185. if (wm->enable)
  2186. merged->fbc_wm_enabled = false;
  2187. wm->fbc_val = 0;
  2188. }
  2189. }
  2190. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2191. /*
  2192. * FIXME this is racy. FBC might get enabled later.
  2193. * What we should check here is whether FBC can be
  2194. * enabled sometime later.
  2195. */
  2196. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  2197. for (level = 2; level <= max_level; level++) {
  2198. struct intel_wm_level *wm = &merged->wm[level];
  2199. wm->enable = false;
  2200. }
  2201. }
  2202. }
  2203. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2204. {
  2205. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2206. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2207. }
  2208. /* The value we need to program into the WM_LPx latency field */
  2209. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2210. {
  2211. struct drm_i915_private *dev_priv = dev->dev_private;
  2212. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2213. return 2 * level;
  2214. else
  2215. return dev_priv->wm.pri_latency[level];
  2216. }
  2217. static void ilk_compute_wm_results(struct drm_device *dev,
  2218. const struct intel_pipe_wm *merged,
  2219. enum intel_ddb_partitioning partitioning,
  2220. struct ilk_wm_values *results)
  2221. {
  2222. struct intel_crtc *intel_crtc;
  2223. int level, wm_lp;
  2224. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2225. results->partitioning = partitioning;
  2226. /* LP1+ register values */
  2227. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2228. const struct intel_wm_level *r;
  2229. level = ilk_wm_lp_to_level(wm_lp, merged);
  2230. r = &merged->wm[level];
  2231. /*
  2232. * Maintain the watermark values even if the level is
  2233. * disabled. Doing otherwise could cause underruns.
  2234. */
  2235. results->wm_lp[wm_lp - 1] =
  2236. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2237. (r->pri_val << WM1_LP_SR_SHIFT) |
  2238. r->cur_val;
  2239. if (r->enable)
  2240. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2241. if (INTEL_INFO(dev)->gen >= 8)
  2242. results->wm_lp[wm_lp - 1] |=
  2243. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2244. else
  2245. results->wm_lp[wm_lp - 1] |=
  2246. r->fbc_val << WM1_LP_FBC_SHIFT;
  2247. /*
  2248. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2249. * level is disabled. Doing otherwise could cause underruns.
  2250. */
  2251. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2252. WARN_ON(wm_lp != 1);
  2253. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2254. } else
  2255. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2256. }
  2257. /* LP0 register values */
  2258. for_each_intel_crtc(dev, intel_crtc) {
  2259. enum pipe pipe = intel_crtc->pipe;
  2260. const struct intel_wm_level *r =
  2261. &intel_crtc->wm.active.wm[0];
  2262. if (WARN_ON(!r->enable))
  2263. continue;
  2264. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2265. results->wm_pipe[pipe] =
  2266. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2267. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2268. r->cur_val;
  2269. }
  2270. }
  2271. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2272. * case both are at the same level. Prefer r1 in case they're the same. */
  2273. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2274. struct intel_pipe_wm *r1,
  2275. struct intel_pipe_wm *r2)
  2276. {
  2277. int level, max_level = ilk_wm_max_level(dev);
  2278. int level1 = 0, level2 = 0;
  2279. for (level = 1; level <= max_level; level++) {
  2280. if (r1->wm[level].enable)
  2281. level1 = level;
  2282. if (r2->wm[level].enable)
  2283. level2 = level;
  2284. }
  2285. if (level1 == level2) {
  2286. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2287. return r2;
  2288. else
  2289. return r1;
  2290. } else if (level1 > level2) {
  2291. return r1;
  2292. } else {
  2293. return r2;
  2294. }
  2295. }
  2296. /* dirty bits used to track which watermarks need changes */
  2297. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2298. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2299. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2300. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2301. #define WM_DIRTY_FBC (1 << 24)
  2302. #define WM_DIRTY_DDB (1 << 25)
  2303. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2304. const struct ilk_wm_values *old,
  2305. const struct ilk_wm_values *new)
  2306. {
  2307. unsigned int dirty = 0;
  2308. enum pipe pipe;
  2309. int wm_lp;
  2310. for_each_pipe(dev_priv, pipe) {
  2311. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2312. dirty |= WM_DIRTY_LINETIME(pipe);
  2313. /* Must disable LP1+ watermarks too */
  2314. dirty |= WM_DIRTY_LP_ALL;
  2315. }
  2316. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2317. dirty |= WM_DIRTY_PIPE(pipe);
  2318. /* Must disable LP1+ watermarks too */
  2319. dirty |= WM_DIRTY_LP_ALL;
  2320. }
  2321. }
  2322. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2323. dirty |= WM_DIRTY_FBC;
  2324. /* Must disable LP1+ watermarks too */
  2325. dirty |= WM_DIRTY_LP_ALL;
  2326. }
  2327. if (old->partitioning != new->partitioning) {
  2328. dirty |= WM_DIRTY_DDB;
  2329. /* Must disable LP1+ watermarks too */
  2330. dirty |= WM_DIRTY_LP_ALL;
  2331. }
  2332. /* LP1+ watermarks already deemed dirty, no need to continue */
  2333. if (dirty & WM_DIRTY_LP_ALL)
  2334. return dirty;
  2335. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2336. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2337. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2338. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2339. break;
  2340. }
  2341. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2342. for (; wm_lp <= 3; wm_lp++)
  2343. dirty |= WM_DIRTY_LP(wm_lp);
  2344. return dirty;
  2345. }
  2346. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2347. unsigned int dirty)
  2348. {
  2349. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2350. bool changed = false;
  2351. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2352. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2353. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2354. changed = true;
  2355. }
  2356. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2357. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2358. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2359. changed = true;
  2360. }
  2361. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2362. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2363. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2364. changed = true;
  2365. }
  2366. /*
  2367. * Don't touch WM1S_LP_EN here.
  2368. * Doing so could cause underruns.
  2369. */
  2370. return changed;
  2371. }
  2372. /*
  2373. * The spec says we shouldn't write when we don't need, because every write
  2374. * causes WMs to be re-evaluated, expending some power.
  2375. */
  2376. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2377. struct ilk_wm_values *results)
  2378. {
  2379. struct drm_device *dev = dev_priv->dev;
  2380. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2381. unsigned int dirty;
  2382. uint32_t val;
  2383. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2384. if (!dirty)
  2385. return;
  2386. _ilk_disable_lp_wm(dev_priv, dirty);
  2387. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2388. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2389. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2390. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2391. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2392. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2393. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2394. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2395. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2396. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2397. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2398. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2399. if (dirty & WM_DIRTY_DDB) {
  2400. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2401. val = I915_READ(WM_MISC);
  2402. if (results->partitioning == INTEL_DDB_PART_1_2)
  2403. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2404. else
  2405. val |= WM_MISC_DATA_PARTITION_5_6;
  2406. I915_WRITE(WM_MISC, val);
  2407. } else {
  2408. val = I915_READ(DISP_ARB_CTL2);
  2409. if (results->partitioning == INTEL_DDB_PART_1_2)
  2410. val &= ~DISP_DATA_PARTITION_5_6;
  2411. else
  2412. val |= DISP_DATA_PARTITION_5_6;
  2413. I915_WRITE(DISP_ARB_CTL2, val);
  2414. }
  2415. }
  2416. if (dirty & WM_DIRTY_FBC) {
  2417. val = I915_READ(DISP_ARB_CTL);
  2418. if (results->enable_fbc_wm)
  2419. val &= ~DISP_FBC_WM_DIS;
  2420. else
  2421. val |= DISP_FBC_WM_DIS;
  2422. I915_WRITE(DISP_ARB_CTL, val);
  2423. }
  2424. if (dirty & WM_DIRTY_LP(1) &&
  2425. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2426. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2427. if (INTEL_INFO(dev)->gen >= 7) {
  2428. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2429. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2430. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2431. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2432. }
  2433. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2434. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2435. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2436. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2437. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2438. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2439. dev_priv->wm.hw = *results;
  2440. }
  2441. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2442. {
  2443. struct drm_i915_private *dev_priv = dev->dev_private;
  2444. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2445. }
  2446. static void ilk_update_wm(struct drm_crtc *crtc)
  2447. {
  2448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2449. struct drm_device *dev = crtc->dev;
  2450. struct drm_i915_private *dev_priv = dev->dev_private;
  2451. struct ilk_wm_maximums max;
  2452. struct ilk_pipe_wm_parameters params = {};
  2453. struct ilk_wm_values results = {};
  2454. enum intel_ddb_partitioning partitioning;
  2455. struct intel_pipe_wm pipe_wm = {};
  2456. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2457. struct intel_wm_config config = {};
  2458. ilk_compute_wm_parameters(crtc, &params);
  2459. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2460. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2461. return;
  2462. intel_crtc->wm.active = pipe_wm;
  2463. ilk_compute_wm_config(dev, &config);
  2464. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2465. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2466. /* 5/6 split only in single pipe config on IVB+ */
  2467. if (INTEL_INFO(dev)->gen >= 7 &&
  2468. config.num_pipes_active == 1 && config.sprites_enabled) {
  2469. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2470. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2471. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2472. } else {
  2473. best_lp_wm = &lp_wm_1_2;
  2474. }
  2475. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2476. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2477. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2478. ilk_write_wm_values(dev_priv, &results);
  2479. }
  2480. static void
  2481. ilk_update_sprite_wm(struct drm_plane *plane,
  2482. struct drm_crtc *crtc,
  2483. uint32_t sprite_width, uint32_t sprite_height,
  2484. int pixel_size, bool enabled, bool scaled)
  2485. {
  2486. struct drm_device *dev = plane->dev;
  2487. struct intel_plane *intel_plane = to_intel_plane(plane);
  2488. intel_plane->wm.enabled = enabled;
  2489. intel_plane->wm.scaled = scaled;
  2490. intel_plane->wm.horiz_pixels = sprite_width;
  2491. intel_plane->wm.vert_pixels = sprite_width;
  2492. intel_plane->wm.bytes_per_pixel = pixel_size;
  2493. /*
  2494. * IVB workaround: must disable low power watermarks for at least
  2495. * one frame before enabling scaling. LP watermarks can be re-enabled
  2496. * when scaling is disabled.
  2497. *
  2498. * WaCxSRDisabledForSpriteScaling:ivb
  2499. */
  2500. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2501. intel_wait_for_vblank(dev, intel_plane->pipe);
  2502. ilk_update_wm(crtc);
  2503. }
  2504. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2505. {
  2506. struct drm_device *dev = crtc->dev;
  2507. struct drm_i915_private *dev_priv = dev->dev_private;
  2508. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2510. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2511. enum pipe pipe = intel_crtc->pipe;
  2512. static const unsigned int wm0_pipe_reg[] = {
  2513. [PIPE_A] = WM0_PIPEA_ILK,
  2514. [PIPE_B] = WM0_PIPEB_ILK,
  2515. [PIPE_C] = WM0_PIPEC_IVB,
  2516. };
  2517. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  2518. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2519. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2520. active->pipe_enabled = intel_crtc_active(crtc);
  2521. if (active->pipe_enabled) {
  2522. u32 tmp = hw->wm_pipe[pipe];
  2523. /*
  2524. * For active pipes LP0 watermark is marked as
  2525. * enabled, and LP1+ watermaks as disabled since
  2526. * we can't really reverse compute them in case
  2527. * multiple pipes are active.
  2528. */
  2529. active->wm[0].enable = true;
  2530. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  2531. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  2532. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  2533. active->linetime = hw->wm_linetime[pipe];
  2534. } else {
  2535. int level, max_level = ilk_wm_max_level(dev);
  2536. /*
  2537. * For inactive pipes, all watermark levels
  2538. * should be marked as enabled but zeroed,
  2539. * which is what we'd compute them to.
  2540. */
  2541. for (level = 0; level <= max_level; level++)
  2542. active->wm[level].enable = true;
  2543. }
  2544. }
  2545. void ilk_wm_get_hw_state(struct drm_device *dev)
  2546. {
  2547. struct drm_i915_private *dev_priv = dev->dev_private;
  2548. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2549. struct drm_crtc *crtc;
  2550. for_each_crtc(dev, crtc)
  2551. ilk_pipe_wm_get_hw_state(crtc);
  2552. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  2553. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  2554. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  2555. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2556. if (INTEL_INFO(dev)->gen >= 7) {
  2557. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2558. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2559. }
  2560. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2561. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2562. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2563. else if (IS_IVYBRIDGE(dev))
  2564. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  2565. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2566. hw->enable_fbc_wm =
  2567. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2568. }
  2569. /**
  2570. * intel_update_watermarks - update FIFO watermark values based on current modes
  2571. *
  2572. * Calculate watermark values for the various WM regs based on current mode
  2573. * and plane configuration.
  2574. *
  2575. * There are several cases to deal with here:
  2576. * - normal (i.e. non-self-refresh)
  2577. * - self-refresh (SR) mode
  2578. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2579. * - lines are small relative to FIFO size (buffer can hold more than 2
  2580. * lines), so need to account for TLB latency
  2581. *
  2582. * The normal calculation is:
  2583. * watermark = dotclock * bytes per pixel * latency
  2584. * where latency is platform & configuration dependent (we assume pessimal
  2585. * values here).
  2586. *
  2587. * The SR calculation is:
  2588. * watermark = (trunc(latency/line time)+1) * surface width *
  2589. * bytes per pixel
  2590. * where
  2591. * line time = htotal / dotclock
  2592. * surface width = hdisplay for normal plane and 64 for cursor
  2593. * and latency is assumed to be high, as above.
  2594. *
  2595. * The final value programmed to the register should always be rounded up,
  2596. * and include an extra 2 entries to account for clock crossings.
  2597. *
  2598. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2599. * to set the non-SR watermarks to 8.
  2600. */
  2601. void intel_update_watermarks(struct drm_crtc *crtc)
  2602. {
  2603. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2604. if (dev_priv->display.update_wm)
  2605. dev_priv->display.update_wm(crtc);
  2606. }
  2607. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2608. struct drm_crtc *crtc,
  2609. uint32_t sprite_width,
  2610. uint32_t sprite_height,
  2611. int pixel_size,
  2612. bool enabled, bool scaled)
  2613. {
  2614. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2615. if (dev_priv->display.update_sprite_wm)
  2616. dev_priv->display.update_sprite_wm(plane, crtc,
  2617. sprite_width, sprite_height,
  2618. pixel_size, enabled, scaled);
  2619. }
  2620. static struct drm_i915_gem_object *
  2621. intel_alloc_context_page(struct drm_device *dev)
  2622. {
  2623. struct drm_i915_gem_object *ctx;
  2624. int ret;
  2625. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2626. ctx = i915_gem_alloc_object(dev, 4096);
  2627. if (!ctx) {
  2628. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2629. return NULL;
  2630. }
  2631. ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
  2632. if (ret) {
  2633. DRM_ERROR("failed to pin power context: %d\n", ret);
  2634. goto err_unref;
  2635. }
  2636. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2637. if (ret) {
  2638. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2639. goto err_unpin;
  2640. }
  2641. return ctx;
  2642. err_unpin:
  2643. i915_gem_object_ggtt_unpin(ctx);
  2644. err_unref:
  2645. drm_gem_object_unreference(&ctx->base);
  2646. return NULL;
  2647. }
  2648. /**
  2649. * Lock protecting IPS related data structures
  2650. */
  2651. DEFINE_SPINLOCK(mchdev_lock);
  2652. /* Global for IPS driver to get at the current i915 device. Protected by
  2653. * mchdev_lock. */
  2654. static struct drm_i915_private *i915_mch_dev;
  2655. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2656. {
  2657. struct drm_i915_private *dev_priv = dev->dev_private;
  2658. u16 rgvswctl;
  2659. assert_spin_locked(&mchdev_lock);
  2660. rgvswctl = I915_READ16(MEMSWCTL);
  2661. if (rgvswctl & MEMCTL_CMD_STS) {
  2662. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2663. return false; /* still busy with another command */
  2664. }
  2665. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2666. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2667. I915_WRITE16(MEMSWCTL, rgvswctl);
  2668. POSTING_READ16(MEMSWCTL);
  2669. rgvswctl |= MEMCTL_CMD_STS;
  2670. I915_WRITE16(MEMSWCTL, rgvswctl);
  2671. return true;
  2672. }
  2673. static void ironlake_enable_drps(struct drm_device *dev)
  2674. {
  2675. struct drm_i915_private *dev_priv = dev->dev_private;
  2676. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2677. u8 fmax, fmin, fstart, vstart;
  2678. spin_lock_irq(&mchdev_lock);
  2679. /* Enable temp reporting */
  2680. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2681. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2682. /* 100ms RC evaluation intervals */
  2683. I915_WRITE(RCUPEI, 100000);
  2684. I915_WRITE(RCDNEI, 100000);
  2685. /* Set max/min thresholds to 90ms and 80ms respectively */
  2686. I915_WRITE(RCBMAXAVG, 90000);
  2687. I915_WRITE(RCBMINAVG, 80000);
  2688. I915_WRITE(MEMIHYST, 1);
  2689. /* Set up min, max, and cur for interrupt handling */
  2690. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2691. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2692. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2693. MEMMODE_FSTART_SHIFT;
  2694. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2695. PXVFREQ_PX_SHIFT;
  2696. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2697. dev_priv->ips.fstart = fstart;
  2698. dev_priv->ips.max_delay = fstart;
  2699. dev_priv->ips.min_delay = fmin;
  2700. dev_priv->ips.cur_delay = fstart;
  2701. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2702. fmax, fmin, fstart);
  2703. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2704. /*
  2705. * Interrupts will be enabled in ironlake_irq_postinstall
  2706. */
  2707. I915_WRITE(VIDSTART, vstart);
  2708. POSTING_READ(VIDSTART);
  2709. rgvmodectl |= MEMMODE_SWMODE_EN;
  2710. I915_WRITE(MEMMODECTL, rgvmodectl);
  2711. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2712. DRM_ERROR("stuck trying to change perf mode\n");
  2713. mdelay(1);
  2714. ironlake_set_drps(dev, fstart);
  2715. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2716. I915_READ(0x112e0);
  2717. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2718. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2719. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  2720. spin_unlock_irq(&mchdev_lock);
  2721. }
  2722. static void ironlake_disable_drps(struct drm_device *dev)
  2723. {
  2724. struct drm_i915_private *dev_priv = dev->dev_private;
  2725. u16 rgvswctl;
  2726. spin_lock_irq(&mchdev_lock);
  2727. rgvswctl = I915_READ16(MEMSWCTL);
  2728. /* Ack interrupts, disable EFC interrupt */
  2729. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2730. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2731. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2732. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2733. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2734. /* Go back to the starting frequency */
  2735. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2736. mdelay(1);
  2737. rgvswctl |= MEMCTL_CMD_STS;
  2738. I915_WRITE(MEMSWCTL, rgvswctl);
  2739. mdelay(1);
  2740. spin_unlock_irq(&mchdev_lock);
  2741. }
  2742. /* There's a funny hw issue where the hw returns all 0 when reading from
  2743. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2744. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2745. * all limits and the gpu stuck at whatever frequency it is at atm).
  2746. */
  2747. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  2748. {
  2749. u32 limits;
  2750. /* Only set the down limit when we've reached the lowest level to avoid
  2751. * getting more interrupts, otherwise leave this clear. This prevents a
  2752. * race in the hw when coming out of rc6: There's a tiny window where
  2753. * the hw runs at the minimal clock before selecting the desired
  2754. * frequency, if the down threshold expires in that window we will not
  2755. * receive a down interrupt. */
  2756. limits = dev_priv->rps.max_freq_softlimit << 24;
  2757. if (val <= dev_priv->rps.min_freq_softlimit)
  2758. limits |= dev_priv->rps.min_freq_softlimit << 16;
  2759. return limits;
  2760. }
  2761. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2762. {
  2763. int new_power;
  2764. if (dev_priv->rps.is_bdw_sw_turbo)
  2765. return;
  2766. new_power = dev_priv->rps.power;
  2767. switch (dev_priv->rps.power) {
  2768. case LOW_POWER:
  2769. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  2770. new_power = BETWEEN;
  2771. break;
  2772. case BETWEEN:
  2773. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  2774. new_power = LOW_POWER;
  2775. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  2776. new_power = HIGH_POWER;
  2777. break;
  2778. case HIGH_POWER:
  2779. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  2780. new_power = BETWEEN;
  2781. break;
  2782. }
  2783. /* Max/min bins are special */
  2784. if (val == dev_priv->rps.min_freq_softlimit)
  2785. new_power = LOW_POWER;
  2786. if (val == dev_priv->rps.max_freq_softlimit)
  2787. new_power = HIGH_POWER;
  2788. if (new_power == dev_priv->rps.power)
  2789. return;
  2790. /* Note the units here are not exactly 1us, but 1280ns. */
  2791. switch (new_power) {
  2792. case LOW_POWER:
  2793. /* Upclock if more than 95% busy over 16ms */
  2794. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2795. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2796. /* Downclock if less than 85% busy over 32ms */
  2797. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2798. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2799. I915_WRITE(GEN6_RP_CONTROL,
  2800. GEN6_RP_MEDIA_TURBO |
  2801. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2802. GEN6_RP_MEDIA_IS_GFX |
  2803. GEN6_RP_ENABLE |
  2804. GEN6_RP_UP_BUSY_AVG |
  2805. GEN6_RP_DOWN_IDLE_AVG);
  2806. break;
  2807. case BETWEEN:
  2808. /* Upclock if more than 90% busy over 13ms */
  2809. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2810. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2811. /* Downclock if less than 75% busy over 32ms */
  2812. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2813. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2814. I915_WRITE(GEN6_RP_CONTROL,
  2815. GEN6_RP_MEDIA_TURBO |
  2816. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2817. GEN6_RP_MEDIA_IS_GFX |
  2818. GEN6_RP_ENABLE |
  2819. GEN6_RP_UP_BUSY_AVG |
  2820. GEN6_RP_DOWN_IDLE_AVG);
  2821. break;
  2822. case HIGH_POWER:
  2823. /* Upclock if more than 85% busy over 10ms */
  2824. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2825. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2826. /* Downclock if less than 60% busy over 32ms */
  2827. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2828. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2829. I915_WRITE(GEN6_RP_CONTROL,
  2830. GEN6_RP_MEDIA_TURBO |
  2831. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2832. GEN6_RP_MEDIA_IS_GFX |
  2833. GEN6_RP_ENABLE |
  2834. GEN6_RP_UP_BUSY_AVG |
  2835. GEN6_RP_DOWN_IDLE_AVG);
  2836. break;
  2837. }
  2838. dev_priv->rps.power = new_power;
  2839. dev_priv->rps.last_adj = 0;
  2840. }
  2841. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  2842. {
  2843. u32 mask = 0;
  2844. if (val > dev_priv->rps.min_freq_softlimit)
  2845. mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  2846. if (val < dev_priv->rps.max_freq_softlimit)
  2847. mask |= GEN6_PM_RP_UP_THRESHOLD;
  2848. mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
  2849. mask &= dev_priv->pm_rps_events;
  2850. /* IVB and SNB hard hangs on looping batchbuffer
  2851. * if GEN6_PM_UP_EI_EXPIRED is masked.
  2852. */
  2853. if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
  2854. mask |= GEN6_PM_RP_UP_EI_EXPIRED;
  2855. if (IS_GEN8(dev_priv->dev))
  2856. mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  2857. return ~mask;
  2858. }
  2859. /* gen6_set_rps is called to update the frequency request, but should also be
  2860. * called when the range (min_delay and max_delay) is modified so that we can
  2861. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  2862. void gen6_set_rps(struct drm_device *dev, u8 val)
  2863. {
  2864. struct drm_i915_private *dev_priv = dev->dev_private;
  2865. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2866. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2867. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2868. /* min/max delay may still have been modified so be sure to
  2869. * write the limits value.
  2870. */
  2871. if (val != dev_priv->rps.cur_freq) {
  2872. gen6_set_rps_thresholds(dev_priv, val);
  2873. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2874. I915_WRITE(GEN6_RPNSWREQ,
  2875. HSW_FREQUENCY(val));
  2876. else
  2877. I915_WRITE(GEN6_RPNSWREQ,
  2878. GEN6_FREQUENCY(val) |
  2879. GEN6_OFFSET(0) |
  2880. GEN6_AGGRESSIVE_TURBO);
  2881. }
  2882. /* Make sure we continue to get interrupts
  2883. * until we hit the minimum or maximum frequencies.
  2884. */
  2885. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
  2886. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2887. POSTING_READ(GEN6_RPNSWREQ);
  2888. dev_priv->rps.cur_freq = val;
  2889. trace_intel_gpu_freq_change(val * 50);
  2890. }
  2891. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  2892. *
  2893. * * If Gfx is Idle, then
  2894. * 1. Mask Turbo interrupts
  2895. * 2. Bring up Gfx clock
  2896. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  2897. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  2898. * 5. Unmask Turbo interrupts
  2899. */
  2900. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  2901. {
  2902. struct drm_device *dev = dev_priv->dev;
  2903. /* Latest VLV doesn't need to force the gfx clock */
  2904. if (dev->pdev->revision >= 0xd) {
  2905. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2906. return;
  2907. }
  2908. /*
  2909. * When we are idle. Drop to min voltage state.
  2910. */
  2911. if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
  2912. return;
  2913. /* Mask turbo interrupt so that they will not come in between */
  2914. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2915. vlv_force_gfx_clock(dev_priv, true);
  2916. dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
  2917. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
  2918. dev_priv->rps.min_freq_softlimit);
  2919. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  2920. & GENFREQSTATUS) == 0, 5))
  2921. DRM_ERROR("timed out waiting for Punit\n");
  2922. vlv_force_gfx_clock(dev_priv, false);
  2923. I915_WRITE(GEN6_PMINTRMSK,
  2924. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  2925. }
  2926. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2927. {
  2928. struct drm_device *dev = dev_priv->dev;
  2929. mutex_lock(&dev_priv->rps.hw_lock);
  2930. if (dev_priv->rps.enabled) {
  2931. if (IS_CHERRYVIEW(dev))
  2932. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2933. else if (IS_VALLEYVIEW(dev))
  2934. vlv_set_rps_idle(dev_priv);
  2935. else if (!dev_priv->rps.is_bdw_sw_turbo
  2936. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2937. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  2938. }
  2939. dev_priv->rps.last_adj = 0;
  2940. }
  2941. mutex_unlock(&dev_priv->rps.hw_lock);
  2942. }
  2943. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2944. {
  2945. struct drm_device *dev = dev_priv->dev;
  2946. mutex_lock(&dev_priv->rps.hw_lock);
  2947. if (dev_priv->rps.enabled) {
  2948. if (IS_VALLEYVIEW(dev))
  2949. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2950. else if (!dev_priv->rps.is_bdw_sw_turbo
  2951. || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
  2952. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
  2953. }
  2954. dev_priv->rps.last_adj = 0;
  2955. }
  2956. mutex_unlock(&dev_priv->rps.hw_lock);
  2957. }
  2958. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2959. {
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2962. WARN_ON(val > dev_priv->rps.max_freq_softlimit);
  2963. WARN_ON(val < dev_priv->rps.min_freq_softlimit);
  2964. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  2965. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2966. dev_priv->rps.cur_freq,
  2967. vlv_gpu_freq(dev_priv, val), val);
  2968. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  2969. "Odd GPU freq value\n"))
  2970. val &= ~1;
  2971. if (val != dev_priv->rps.cur_freq)
  2972. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2973. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  2974. dev_priv->rps.cur_freq = val;
  2975. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
  2976. }
  2977. static void gen8_disable_rps_interrupts(struct drm_device *dev)
  2978. {
  2979. struct drm_i915_private *dev_priv = dev->dev_private;
  2980. if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
  2981. if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
  2982. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  2983. dev_priv-> rps.is_bdw_sw_turbo = false;
  2984. } else {
  2985. I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
  2986. I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
  2987. ~dev_priv->pm_rps_events);
  2988. /* Complete PM interrupt masking here doesn't race with the rps work
  2989. * item again unmasking PM interrupts because that is using a different
  2990. * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
  2991. * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
  2992. * gen8_enable_rps will clean up. */
  2993. spin_lock_irq(&dev_priv->irq_lock);
  2994. dev_priv->rps.pm_iir = 0;
  2995. spin_unlock_irq(&dev_priv->irq_lock);
  2996. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  2997. }
  2998. }
  2999. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3000. {
  3001. struct drm_i915_private *dev_priv = dev->dev_private;
  3002. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3003. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
  3004. ~dev_priv->pm_rps_events);
  3005. /* Complete PM interrupt masking here doesn't race with the rps work
  3006. * item again unmasking PM interrupts because that is using a different
  3007. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3008. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3009. spin_lock_irq(&dev_priv->irq_lock);
  3010. dev_priv->rps.pm_iir = 0;
  3011. spin_unlock_irq(&dev_priv->irq_lock);
  3012. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  3013. }
  3014. static void gen6_disable_rps(struct drm_device *dev)
  3015. {
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. I915_WRITE(GEN6_RC_CONTROL, 0);
  3018. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3019. if (IS_BROADWELL(dev))
  3020. gen8_disable_rps_interrupts(dev);
  3021. else
  3022. gen6_disable_rps_interrupts(dev);
  3023. }
  3024. static void cherryview_disable_rps(struct drm_device *dev)
  3025. {
  3026. struct drm_i915_private *dev_priv = dev->dev_private;
  3027. I915_WRITE(GEN6_RC_CONTROL, 0);
  3028. gen8_disable_rps_interrupts(dev);
  3029. }
  3030. static void valleyview_disable_rps(struct drm_device *dev)
  3031. {
  3032. struct drm_i915_private *dev_priv = dev->dev_private;
  3033. /* we're doing forcewake before Disabling RC6,
  3034. * This what the BIOS expects when going into suspend */
  3035. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3036. I915_WRITE(GEN6_RC_CONTROL, 0);
  3037. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3038. gen6_disable_rps_interrupts(dev);
  3039. }
  3040. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3041. {
  3042. if (IS_VALLEYVIEW(dev)) {
  3043. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3044. mode = GEN6_RC_CTL_RC6_ENABLE;
  3045. else
  3046. mode = 0;
  3047. }
  3048. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3049. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3050. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3051. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3052. }
  3053. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3054. {
  3055. /* No RC6 before Ironlake */
  3056. if (INTEL_INFO(dev)->gen < 5)
  3057. return 0;
  3058. /* RC6 is only on Ironlake mobile not on desktop */
  3059. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3060. return 0;
  3061. /* Respect the kernel parameter if it is set */
  3062. if (enable_rc6 >= 0) {
  3063. int mask;
  3064. if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
  3065. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3066. INTEL_RC6pp_ENABLE;
  3067. else
  3068. mask = INTEL_RC6_ENABLE;
  3069. if ((enable_rc6 & mask) != enable_rc6)
  3070. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3071. enable_rc6 & mask, enable_rc6, mask);
  3072. return enable_rc6 & mask;
  3073. }
  3074. /* Disable RC6 on Ironlake */
  3075. if (INTEL_INFO(dev)->gen == 5)
  3076. return 0;
  3077. if (IS_IVYBRIDGE(dev))
  3078. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3079. return INTEL_RC6_ENABLE;
  3080. }
  3081. int intel_enable_rc6(const struct drm_device *dev)
  3082. {
  3083. return i915.enable_rc6;
  3084. }
  3085. static void gen8_enable_rps_interrupts(struct drm_device *dev)
  3086. {
  3087. struct drm_i915_private *dev_priv = dev->dev_private;
  3088. spin_lock_irq(&dev_priv->irq_lock);
  3089. WARN_ON(dev_priv->rps.pm_iir);
  3090. gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3091. I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
  3092. spin_unlock_irq(&dev_priv->irq_lock);
  3093. }
  3094. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3095. {
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. spin_lock_irq(&dev_priv->irq_lock);
  3098. WARN_ON(dev_priv->rps.pm_iir);
  3099. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  3100. I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
  3101. spin_unlock_irq(&dev_priv->irq_lock);
  3102. }
  3103. static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
  3104. {
  3105. /* All of these values are in units of 50MHz */
  3106. dev_priv->rps.cur_freq = 0;
  3107. /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
  3108. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3109. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3110. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3111. /* XXX: only BYT has a special efficient freq */
  3112. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3113. /* hw_max = RP0 until we check for overclocking */
  3114. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3115. /* Preserve min/max settings in case of re-init */
  3116. if (dev_priv->rps.max_freq_softlimit == 0)
  3117. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3118. if (dev_priv->rps.min_freq_softlimit == 0)
  3119. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3120. }
  3121. static void bdw_sw_calculate_freq(struct drm_device *dev,
  3122. struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
  3123. {
  3124. struct drm_i915_private *dev_priv = dev->dev_private;
  3125. u64 busy = 0;
  3126. u32 busyness_pct = 0;
  3127. u32 elapsed_time = 0;
  3128. u16 new_freq = 0;
  3129. if (!c || !cur_time || !c0)
  3130. return;
  3131. if (0 == c->last_c0)
  3132. goto out;
  3133. /* Check Evaluation interval */
  3134. elapsed_time = *cur_time - c->last_ts;
  3135. if (elapsed_time < c->eval_interval)
  3136. return;
  3137. mutex_lock(&dev_priv->rps.hw_lock);
  3138. /*
  3139. * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
  3140. * Whole busyness_pct calculation should be
  3141. * busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
  3142. * busyness_pct = (u32)(busy * 100 / elapsed_time);
  3143. * The final formula is to simplify CPU calculation
  3144. */
  3145. busy = (u64)(*c0 - c->last_c0) << 12;
  3146. do_div(busy, elapsed_time);
  3147. busyness_pct = (u32)busy;
  3148. if (c->is_up && busyness_pct >= c->it_threshold_pct)
  3149. new_freq = (u16)dev_priv->rps.cur_freq + 3;
  3150. if (!c->is_up && busyness_pct <= c->it_threshold_pct)
  3151. new_freq = (u16)dev_priv->rps.cur_freq - 1;
  3152. /* Adjust to new frequency busyness and compare with threshold */
  3153. if (0 != new_freq) {
  3154. if (new_freq > dev_priv->rps.max_freq_softlimit)
  3155. new_freq = dev_priv->rps.max_freq_softlimit;
  3156. else if (new_freq < dev_priv->rps.min_freq_softlimit)
  3157. new_freq = dev_priv->rps.min_freq_softlimit;
  3158. gen6_set_rps(dev, new_freq);
  3159. }
  3160. mutex_unlock(&dev_priv->rps.hw_lock);
  3161. out:
  3162. c->last_c0 = *c0;
  3163. c->last_ts = *cur_time;
  3164. }
  3165. static void gen8_set_frequency_RP0(struct work_struct *work)
  3166. {
  3167. struct intel_rps_bdw_turbo *p_bdw_turbo =
  3168. container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
  3169. struct intel_gen6_power_mgmt *p_power_mgmt =
  3170. container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
  3171. struct drm_i915_private *dev_priv =
  3172. container_of(p_power_mgmt, struct drm_i915_private, rps);
  3173. mutex_lock(&dev_priv->rps.hw_lock);
  3174. gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
  3175. mutex_unlock(&dev_priv->rps.hw_lock);
  3176. }
  3177. static void flip_active_timeout_handler(unsigned long var)
  3178. {
  3179. struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
  3180. del_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3181. atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
  3182. queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
  3183. }
  3184. void bdw_software_turbo(struct drm_device *dev)
  3185. {
  3186. struct drm_i915_private *dev_priv = dev->dev_private;
  3187. u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
  3188. u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
  3189. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
  3190. &current_time, &current_c0);
  3191. bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
  3192. &current_time, &current_c0);
  3193. }
  3194. static void gen8_enable_rps(struct drm_device *dev)
  3195. {
  3196. struct drm_i915_private *dev_priv = dev->dev_private;
  3197. struct intel_engine_cs *ring;
  3198. uint32_t rc6_mask = 0, rp_state_cap;
  3199. uint32_t threshold_up_pct, threshold_down_pct;
  3200. uint32_t ei_up, ei_down; /* up and down evaluation interval */
  3201. u32 rp_ctl_flag;
  3202. int unused;
  3203. /* Use software Turbo for BDW */
  3204. dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
  3205. /* 1a: Software RC state - RC0 */
  3206. I915_WRITE(GEN6_RC_STATE, 0);
  3207. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3208. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3209. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3210. /* 2a: Disable RC states. */
  3211. I915_WRITE(GEN6_RC_CONTROL, 0);
  3212. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3213. parse_rp_state_cap(dev_priv, rp_state_cap);
  3214. /* 2b: Program RC6 thresholds.*/
  3215. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3216. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3217. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3218. for_each_ring(ring, dev_priv, unused)
  3219. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3220. I915_WRITE(GEN6_RC_SLEEP, 0);
  3221. if (IS_BROADWELL(dev))
  3222. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3223. else
  3224. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3225. /* 3: Enable RC6 */
  3226. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3227. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3228. intel_print_rc6_info(dev, rc6_mask);
  3229. if (IS_BROADWELL(dev))
  3230. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3231. GEN7_RC_CTL_TO_MODE |
  3232. rc6_mask);
  3233. else
  3234. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3235. GEN6_RC_CTL_EI_MODE(1) |
  3236. rc6_mask);
  3237. /* 4 Program defaults and thresholds for RPS*/
  3238. I915_WRITE(GEN6_RPNSWREQ,
  3239. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3240. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3241. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3242. ei_up = 84480; /* 84.48ms */
  3243. ei_down = 448000;
  3244. threshold_up_pct = 90; /* x percent busy */
  3245. threshold_down_pct = 70;
  3246. if (dev_priv->rps.is_bdw_sw_turbo) {
  3247. dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
  3248. dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
  3249. dev_priv->rps.sw_turbo.up.is_up = true;
  3250. dev_priv->rps.sw_turbo.up.last_ts = 0;
  3251. dev_priv->rps.sw_turbo.up.last_c0 = 0;
  3252. dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
  3253. dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
  3254. dev_priv->rps.sw_turbo.down.is_up = false;
  3255. dev_priv->rps.sw_turbo.down.last_ts = 0;
  3256. dev_priv->rps.sw_turbo.down.last_c0 = 0;
  3257. /* Start the timer to track if flip comes*/
  3258. dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
  3259. init_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3260. dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
  3261. dev_priv->rps.sw_turbo.flip_timer.data = (unsigned long) dev_priv;
  3262. dev_priv->rps.sw_turbo.flip_timer.expires =
  3263. usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
  3264. add_timer(&dev_priv->rps.sw_turbo.flip_timer);
  3265. INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
  3266. atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
  3267. } else {
  3268. /* NB: Docs say 1s, and 1000000 - which aren't equivalent
  3269. * 1 second timeout*/
  3270. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
  3271. /* Docs recommend 900MHz, and 300 MHz respectively */
  3272. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3273. dev_priv->rps.max_freq_softlimit << 24 |
  3274. dev_priv->rps.min_freq_softlimit << 16);
  3275. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3276. FREQ_1_28_US(ei_up * threshold_up_pct / 100));
  3277. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3278. FREQ_1_28_US(ei_down * threshold_down_pct / 100));
  3279. I915_WRITE(GEN6_RP_UP_EI,
  3280. FREQ_1_28_US(ei_up));
  3281. I915_WRITE(GEN6_RP_DOWN_EI,
  3282. FREQ_1_28_US(ei_down));
  3283. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3284. }
  3285. /* 5: Enable RPS */
  3286. rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
  3287. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3288. GEN6_RP_MEDIA_IS_GFX |
  3289. GEN6_RP_UP_BUSY_AVG |
  3290. GEN6_RP_DOWN_IDLE_AVG;
  3291. if (!dev_priv->rps.is_bdw_sw_turbo)
  3292. rp_ctl_flag |= GEN6_RP_ENABLE;
  3293. I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
  3294. /* 6: Ring frequency + overclocking
  3295. * (our driver does this later */
  3296. gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
  3297. if (!dev_priv->rps.is_bdw_sw_turbo)
  3298. gen8_enable_rps_interrupts(dev);
  3299. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3300. }
  3301. static void gen6_enable_rps(struct drm_device *dev)
  3302. {
  3303. struct drm_i915_private *dev_priv = dev->dev_private;
  3304. struct intel_engine_cs *ring;
  3305. u32 rp_state_cap;
  3306. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3307. u32 gtfifodbg;
  3308. int rc6_mode;
  3309. int i, ret;
  3310. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3311. /* Here begins a magic sequence of register writes to enable
  3312. * auto-downclocking.
  3313. *
  3314. * Perhaps there might be some value in exposing these to
  3315. * userspace...
  3316. */
  3317. I915_WRITE(GEN6_RC_STATE, 0);
  3318. /* Clear the DBG now so we don't confuse earlier errors */
  3319. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3320. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3321. I915_WRITE(GTFIFODBG, gtfifodbg);
  3322. }
  3323. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3324. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3325. parse_rp_state_cap(dev_priv, rp_state_cap);
  3326. /* disable the counters and set deterministic thresholds */
  3327. I915_WRITE(GEN6_RC_CONTROL, 0);
  3328. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3329. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3330. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3331. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3332. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3333. for_each_ring(ring, dev_priv, i)
  3334. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3335. I915_WRITE(GEN6_RC_SLEEP, 0);
  3336. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3337. if (IS_IVYBRIDGE(dev))
  3338. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3339. else
  3340. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3341. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3342. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3343. /* Check if we are enabling RC6 */
  3344. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3345. if (rc6_mode & INTEL_RC6_ENABLE)
  3346. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3347. /* We don't use those on Haswell */
  3348. if (!IS_HASWELL(dev)) {
  3349. if (rc6_mode & INTEL_RC6p_ENABLE)
  3350. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3351. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3352. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3353. }
  3354. intel_print_rc6_info(dev, rc6_mask);
  3355. I915_WRITE(GEN6_RC_CONTROL,
  3356. rc6_mask |
  3357. GEN6_RC_CTL_EI_MODE(1) |
  3358. GEN6_RC_CTL_HW_ENABLE);
  3359. /* Power down if completely idle for over 50ms */
  3360. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3361. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3362. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3363. if (ret)
  3364. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3365. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3366. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3367. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3368. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3369. (pcu_mbox & 0xff) * 50);
  3370. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3371. }
  3372. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3373. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3374. gen6_enable_rps_interrupts(dev);
  3375. rc6vids = 0;
  3376. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3377. if (IS_GEN6(dev) && ret) {
  3378. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3379. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3380. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3381. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3382. rc6vids &= 0xffff00;
  3383. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3384. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3385. if (ret)
  3386. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3387. }
  3388. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3389. }
  3390. static void __gen6_update_ring_freq(struct drm_device *dev)
  3391. {
  3392. struct drm_i915_private *dev_priv = dev->dev_private;
  3393. int min_freq = 15;
  3394. unsigned int gpu_freq;
  3395. unsigned int max_ia_freq, min_ring_freq;
  3396. int scaling_factor = 180;
  3397. struct cpufreq_policy *policy;
  3398. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3399. policy = cpufreq_cpu_get(0);
  3400. if (policy) {
  3401. max_ia_freq = policy->cpuinfo.max_freq;
  3402. cpufreq_cpu_put(policy);
  3403. } else {
  3404. /*
  3405. * Default to measured freq if none found, PCU will ensure we
  3406. * don't go over
  3407. */
  3408. max_ia_freq = tsc_khz;
  3409. }
  3410. /* Convert from kHz to MHz */
  3411. max_ia_freq /= 1000;
  3412. min_ring_freq = I915_READ(DCLK) & 0xf;
  3413. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3414. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3415. /*
  3416. * For each potential GPU frequency, load a ring frequency we'd like
  3417. * to use for memory access. We do this by specifying the IA frequency
  3418. * the PCU should use as a reference to determine the ring frequency.
  3419. */
  3420. for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
  3421. gpu_freq--) {
  3422. int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
  3423. unsigned int ia_freq = 0, ring_freq = 0;
  3424. if (INTEL_INFO(dev)->gen >= 8) {
  3425. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3426. ring_freq = max(min_ring_freq, gpu_freq);
  3427. } else if (IS_HASWELL(dev)) {
  3428. ring_freq = mult_frac(gpu_freq, 5, 4);
  3429. ring_freq = max(min_ring_freq, ring_freq);
  3430. /* leave ia_freq as the default, chosen by cpufreq */
  3431. } else {
  3432. /* On older processors, there is no separate ring
  3433. * clock domain, so in order to boost the bandwidth
  3434. * of the ring, we need to upclock the CPU (ia_freq).
  3435. *
  3436. * For GPU frequencies less than 750MHz,
  3437. * just use the lowest ring freq.
  3438. */
  3439. if (gpu_freq < min_freq)
  3440. ia_freq = 800;
  3441. else
  3442. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3443. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3444. }
  3445. sandybridge_pcode_write(dev_priv,
  3446. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3447. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3448. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3449. gpu_freq);
  3450. }
  3451. }
  3452. void gen6_update_ring_freq(struct drm_device *dev)
  3453. {
  3454. struct drm_i915_private *dev_priv = dev->dev_private;
  3455. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3456. return;
  3457. mutex_lock(&dev_priv->rps.hw_lock);
  3458. __gen6_update_ring_freq(dev);
  3459. mutex_unlock(&dev_priv->rps.hw_lock);
  3460. }
  3461. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3462. {
  3463. u32 val, rp0;
  3464. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3465. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3466. return rp0;
  3467. }
  3468. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3469. {
  3470. u32 val, rpe;
  3471. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3472. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3473. return rpe;
  3474. }
  3475. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3476. {
  3477. u32 val, rp1;
  3478. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3479. rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3480. return rp1;
  3481. }
  3482. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3483. {
  3484. u32 val, rpn;
  3485. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3486. rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
  3487. return rpn;
  3488. }
  3489. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3490. {
  3491. u32 val, rp1;
  3492. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3493. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3494. return rp1;
  3495. }
  3496. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3497. {
  3498. u32 val, rp0;
  3499. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3500. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3501. /* Clamp to max */
  3502. rp0 = min_t(u32, rp0, 0xea);
  3503. return rp0;
  3504. }
  3505. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3506. {
  3507. u32 val, rpe;
  3508. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3509. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3510. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3511. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3512. return rpe;
  3513. }
  3514. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3515. {
  3516. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3517. }
  3518. /* Check that the pctx buffer wasn't move under us. */
  3519. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3520. {
  3521. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3522. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3523. dev_priv->vlv_pctx->stolen->start);
  3524. }
  3525. /* Check that the pcbr address is not empty. */
  3526. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3527. {
  3528. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3529. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3530. }
  3531. static void cherryview_setup_pctx(struct drm_device *dev)
  3532. {
  3533. struct drm_i915_private *dev_priv = dev->dev_private;
  3534. unsigned long pctx_paddr, paddr;
  3535. struct i915_gtt *gtt = &dev_priv->gtt;
  3536. u32 pcbr;
  3537. int pctx_size = 32*1024;
  3538. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3539. pcbr = I915_READ(VLV_PCBR);
  3540. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3541. paddr = (dev_priv->mm.stolen_base +
  3542. (gtt->stolen_size - pctx_size));
  3543. pctx_paddr = (paddr & (~4095));
  3544. I915_WRITE(VLV_PCBR, pctx_paddr);
  3545. }
  3546. }
  3547. static void valleyview_setup_pctx(struct drm_device *dev)
  3548. {
  3549. struct drm_i915_private *dev_priv = dev->dev_private;
  3550. struct drm_i915_gem_object *pctx;
  3551. unsigned long pctx_paddr;
  3552. u32 pcbr;
  3553. int pctx_size = 24*1024;
  3554. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3555. pcbr = I915_READ(VLV_PCBR);
  3556. if (pcbr) {
  3557. /* BIOS set it up already, grab the pre-alloc'd space */
  3558. int pcbr_offset;
  3559. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3560. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3561. pcbr_offset,
  3562. I915_GTT_OFFSET_NONE,
  3563. pctx_size);
  3564. goto out;
  3565. }
  3566. /*
  3567. * From the Gunit register HAS:
  3568. * The Gfx driver is expected to program this register and ensure
  3569. * proper allocation within Gfx stolen memory. For example, this
  3570. * register should be programmed such than the PCBR range does not
  3571. * overlap with other ranges, such as the frame buffer, protected
  3572. * memory, or any other relevant ranges.
  3573. */
  3574. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3575. if (!pctx) {
  3576. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3577. return;
  3578. }
  3579. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3580. I915_WRITE(VLV_PCBR, pctx_paddr);
  3581. out:
  3582. dev_priv->vlv_pctx = pctx;
  3583. }
  3584. static void valleyview_cleanup_pctx(struct drm_device *dev)
  3585. {
  3586. struct drm_i915_private *dev_priv = dev->dev_private;
  3587. if (WARN_ON(!dev_priv->vlv_pctx))
  3588. return;
  3589. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3590. dev_priv->vlv_pctx = NULL;
  3591. }
  3592. static void valleyview_init_gt_powersave(struct drm_device *dev)
  3593. {
  3594. struct drm_i915_private *dev_priv = dev->dev_private;
  3595. u32 val;
  3596. valleyview_setup_pctx(dev);
  3597. mutex_lock(&dev_priv->rps.hw_lock);
  3598. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3599. switch ((val >> 6) & 3) {
  3600. case 0:
  3601. case 1:
  3602. dev_priv->mem_freq = 800;
  3603. break;
  3604. case 2:
  3605. dev_priv->mem_freq = 1066;
  3606. break;
  3607. case 3:
  3608. dev_priv->mem_freq = 1333;
  3609. break;
  3610. }
  3611. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3612. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  3613. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3614. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3615. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3616. dev_priv->rps.max_freq);
  3617. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  3618. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3619. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3620. dev_priv->rps.efficient_freq);
  3621. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  3622. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  3623. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3624. dev_priv->rps.rp1_freq);
  3625. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  3626. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3627. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3628. dev_priv->rps.min_freq);
  3629. /* Preserve min/max settings in case of re-init */
  3630. if (dev_priv->rps.max_freq_softlimit == 0)
  3631. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3632. if (dev_priv->rps.min_freq_softlimit == 0)
  3633. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3634. mutex_unlock(&dev_priv->rps.hw_lock);
  3635. }
  3636. static void cherryview_init_gt_powersave(struct drm_device *dev)
  3637. {
  3638. struct drm_i915_private *dev_priv = dev->dev_private;
  3639. u32 val;
  3640. cherryview_setup_pctx(dev);
  3641. mutex_lock(&dev_priv->rps.hw_lock);
  3642. val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
  3643. switch ((val >> 2) & 0x7) {
  3644. case 0:
  3645. case 1:
  3646. dev_priv->rps.cz_freq = 200;
  3647. dev_priv->mem_freq = 1600;
  3648. break;
  3649. case 2:
  3650. dev_priv->rps.cz_freq = 267;
  3651. dev_priv->mem_freq = 1600;
  3652. break;
  3653. case 3:
  3654. dev_priv->rps.cz_freq = 333;
  3655. dev_priv->mem_freq = 2000;
  3656. break;
  3657. case 4:
  3658. dev_priv->rps.cz_freq = 320;
  3659. dev_priv->mem_freq = 1600;
  3660. break;
  3661. case 5:
  3662. dev_priv->rps.cz_freq = 400;
  3663. dev_priv->mem_freq = 1600;
  3664. break;
  3665. }
  3666. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3667. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  3668. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  3669. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3670. vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  3671. dev_priv->rps.max_freq);
  3672. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  3673. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3674. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3675. dev_priv->rps.efficient_freq);
  3676. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  3677. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  3678. vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  3679. dev_priv->rps.rp1_freq);
  3680. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  3681. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3682. vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  3683. dev_priv->rps.min_freq);
  3684. WARN_ONCE((dev_priv->rps.max_freq |
  3685. dev_priv->rps.efficient_freq |
  3686. dev_priv->rps.rp1_freq |
  3687. dev_priv->rps.min_freq) & 1,
  3688. "Odd GPU freq values\n");
  3689. /* Preserve min/max settings in case of re-init */
  3690. if (dev_priv->rps.max_freq_softlimit == 0)
  3691. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3692. if (dev_priv->rps.min_freq_softlimit == 0)
  3693. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  3694. mutex_unlock(&dev_priv->rps.hw_lock);
  3695. }
  3696. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  3697. {
  3698. valleyview_cleanup_pctx(dev);
  3699. }
  3700. static void cherryview_enable_rps(struct drm_device *dev)
  3701. {
  3702. struct drm_i915_private *dev_priv = dev->dev_private;
  3703. struct intel_engine_cs *ring;
  3704. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  3705. int i;
  3706. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3707. gtfifodbg = I915_READ(GTFIFODBG);
  3708. if (gtfifodbg) {
  3709. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3710. gtfifodbg);
  3711. I915_WRITE(GTFIFODBG, gtfifodbg);
  3712. }
  3713. cherryview_check_pctx(dev_priv);
  3714. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  3715. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3716. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3717. /* 2a: Program RC6 thresholds.*/
  3718. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3719. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3720. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3721. for_each_ring(ring, dev_priv, i)
  3722. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3723. I915_WRITE(GEN6_RC_SLEEP, 0);
  3724. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3725. /* allows RC6 residency counter to work */
  3726. I915_WRITE(VLV_COUNTER_CONTROL,
  3727. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3728. VLV_MEDIA_RC6_COUNT_EN |
  3729. VLV_RENDER_RC6_COUNT_EN));
  3730. /* For now we assume BIOS is allocating and populating the PCBR */
  3731. pcbr = I915_READ(VLV_PCBR);
  3732. DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
  3733. /* 3: Enable RC6 */
  3734. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  3735. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  3736. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  3737. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3738. /* 4 Program defaults and thresholds for RPS*/
  3739. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3740. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3741. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3742. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3743. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3744. /* WaDisablePwrmtrEvent:chv (pre-production hw) */
  3745. I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
  3746. I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
  3747. /* 5: Enable RPS */
  3748. I915_WRITE(GEN6_RP_CONTROL,
  3749. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3750. GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
  3751. GEN6_RP_ENABLE |
  3752. GEN6_RP_UP_BUSY_AVG |
  3753. GEN6_RP_DOWN_IDLE_AVG);
  3754. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3755. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3756. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3757. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3758. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3759. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3760. dev_priv->rps.cur_freq);
  3761. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3762. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3763. dev_priv->rps.efficient_freq);
  3764. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3765. gen8_enable_rps_interrupts(dev);
  3766. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3767. }
  3768. static void valleyview_enable_rps(struct drm_device *dev)
  3769. {
  3770. struct drm_i915_private *dev_priv = dev->dev_private;
  3771. struct intel_engine_cs *ring;
  3772. u32 gtfifodbg, val, rc6_mode = 0;
  3773. int i;
  3774. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3775. valleyview_check_pctx(dev_priv);
  3776. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3777. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3778. gtfifodbg);
  3779. I915_WRITE(GTFIFODBG, gtfifodbg);
  3780. }
  3781. /* If VLV, Forcewake all wells, else re-direct to regular path */
  3782. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  3783. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3784. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3785. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3786. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3787. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3788. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
  3789. I915_WRITE(GEN6_RP_CONTROL,
  3790. GEN6_RP_MEDIA_TURBO |
  3791. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3792. GEN6_RP_MEDIA_IS_GFX |
  3793. GEN6_RP_ENABLE |
  3794. GEN6_RP_UP_BUSY_AVG |
  3795. GEN6_RP_DOWN_IDLE_CONT);
  3796. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3797. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3798. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3799. for_each_ring(ring, dev_priv, i)
  3800. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3801. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  3802. /* allows RC6 residency counter to work */
  3803. I915_WRITE(VLV_COUNTER_CONTROL,
  3804. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  3805. VLV_RENDER_RC0_COUNT_EN |
  3806. VLV_MEDIA_RC6_COUNT_EN |
  3807. VLV_RENDER_RC6_COUNT_EN));
  3808. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3809. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  3810. intel_print_rc6_info(dev, rc6_mode);
  3811. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3812. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3813. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3814. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3815. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  3816. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3817. vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  3818. dev_priv->rps.cur_freq);
  3819. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3820. vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  3821. dev_priv->rps.efficient_freq);
  3822. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  3823. gen6_enable_rps_interrupts(dev);
  3824. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  3825. }
  3826. void ironlake_teardown_rc6(struct drm_device *dev)
  3827. {
  3828. struct drm_i915_private *dev_priv = dev->dev_private;
  3829. if (dev_priv->ips.renderctx) {
  3830. i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
  3831. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3832. dev_priv->ips.renderctx = NULL;
  3833. }
  3834. if (dev_priv->ips.pwrctx) {
  3835. i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
  3836. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3837. dev_priv->ips.pwrctx = NULL;
  3838. }
  3839. }
  3840. static void ironlake_disable_rc6(struct drm_device *dev)
  3841. {
  3842. struct drm_i915_private *dev_priv = dev->dev_private;
  3843. if (I915_READ(PWRCTXA)) {
  3844. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3845. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3846. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3847. 50);
  3848. I915_WRITE(PWRCTXA, 0);
  3849. POSTING_READ(PWRCTXA);
  3850. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3851. POSTING_READ(RSTDBYCTL);
  3852. }
  3853. }
  3854. static int ironlake_setup_rc6(struct drm_device *dev)
  3855. {
  3856. struct drm_i915_private *dev_priv = dev->dev_private;
  3857. if (dev_priv->ips.renderctx == NULL)
  3858. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3859. if (!dev_priv->ips.renderctx)
  3860. return -ENOMEM;
  3861. if (dev_priv->ips.pwrctx == NULL)
  3862. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3863. if (!dev_priv->ips.pwrctx) {
  3864. ironlake_teardown_rc6(dev);
  3865. return -ENOMEM;
  3866. }
  3867. return 0;
  3868. }
  3869. static void ironlake_enable_rc6(struct drm_device *dev)
  3870. {
  3871. struct drm_i915_private *dev_priv = dev->dev_private;
  3872. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  3873. bool was_interruptible;
  3874. int ret;
  3875. /* rc6 disabled by default due to repeated reports of hanging during
  3876. * boot and resume.
  3877. */
  3878. if (!intel_enable_rc6(dev))
  3879. return;
  3880. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3881. ret = ironlake_setup_rc6(dev);
  3882. if (ret)
  3883. return;
  3884. was_interruptible = dev_priv->mm.interruptible;
  3885. dev_priv->mm.interruptible = false;
  3886. /*
  3887. * GPU can automatically power down the render unit if given a page
  3888. * to save state.
  3889. */
  3890. ret = intel_ring_begin(ring, 6);
  3891. if (ret) {
  3892. ironlake_teardown_rc6(dev);
  3893. dev_priv->mm.interruptible = was_interruptible;
  3894. return;
  3895. }
  3896. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3897. intel_ring_emit(ring, MI_SET_CONTEXT);
  3898. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3899. MI_MM_SPACE_GTT |
  3900. MI_SAVE_EXT_STATE_EN |
  3901. MI_RESTORE_EXT_STATE_EN |
  3902. MI_RESTORE_INHIBIT);
  3903. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3904. intel_ring_emit(ring, MI_NOOP);
  3905. intel_ring_emit(ring, MI_FLUSH);
  3906. intel_ring_advance(ring);
  3907. /*
  3908. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3909. * does an implicit flush, combined with MI_FLUSH above, it should be
  3910. * safe to assume that renderctx is valid
  3911. */
  3912. ret = intel_ring_idle(ring);
  3913. dev_priv->mm.interruptible = was_interruptible;
  3914. if (ret) {
  3915. DRM_ERROR("failed to enable ironlake power savings\n");
  3916. ironlake_teardown_rc6(dev);
  3917. return;
  3918. }
  3919. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3920. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3921. intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
  3922. }
  3923. static unsigned long intel_pxfreq(u32 vidfreq)
  3924. {
  3925. unsigned long freq;
  3926. int div = (vidfreq & 0x3f0000) >> 16;
  3927. int post = (vidfreq & 0x3000) >> 12;
  3928. int pre = (vidfreq & 0x7);
  3929. if (!pre)
  3930. return 0;
  3931. freq = ((div * 133333) / ((1<<post) * pre));
  3932. return freq;
  3933. }
  3934. static const struct cparams {
  3935. u16 i;
  3936. u16 t;
  3937. u16 m;
  3938. u16 c;
  3939. } cparams[] = {
  3940. { 1, 1333, 301, 28664 },
  3941. { 1, 1066, 294, 24460 },
  3942. { 1, 800, 294, 25192 },
  3943. { 0, 1333, 276, 27605 },
  3944. { 0, 1066, 276, 27605 },
  3945. { 0, 800, 231, 23784 },
  3946. };
  3947. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3948. {
  3949. u64 total_count, diff, ret;
  3950. u32 count1, count2, count3, m = 0, c = 0;
  3951. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3952. int i;
  3953. assert_spin_locked(&mchdev_lock);
  3954. diff1 = now - dev_priv->ips.last_time1;
  3955. /* Prevent division-by-zero if we are asking too fast.
  3956. * Also, we don't get interesting results if we are polling
  3957. * faster than once in 10ms, so just return the saved value
  3958. * in such cases.
  3959. */
  3960. if (diff1 <= 10)
  3961. return dev_priv->ips.chipset_power;
  3962. count1 = I915_READ(DMIEC);
  3963. count2 = I915_READ(DDREC);
  3964. count3 = I915_READ(CSIEC);
  3965. total_count = count1 + count2 + count3;
  3966. /* FIXME: handle per-counter overflow */
  3967. if (total_count < dev_priv->ips.last_count1) {
  3968. diff = ~0UL - dev_priv->ips.last_count1;
  3969. diff += total_count;
  3970. } else {
  3971. diff = total_count - dev_priv->ips.last_count1;
  3972. }
  3973. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3974. if (cparams[i].i == dev_priv->ips.c_m &&
  3975. cparams[i].t == dev_priv->ips.r_t) {
  3976. m = cparams[i].m;
  3977. c = cparams[i].c;
  3978. break;
  3979. }
  3980. }
  3981. diff = div_u64(diff, diff1);
  3982. ret = ((m * diff) + c);
  3983. ret = div_u64(ret, 10);
  3984. dev_priv->ips.last_count1 = total_count;
  3985. dev_priv->ips.last_time1 = now;
  3986. dev_priv->ips.chipset_power = ret;
  3987. return ret;
  3988. }
  3989. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3990. {
  3991. struct drm_device *dev = dev_priv->dev;
  3992. unsigned long val;
  3993. if (INTEL_INFO(dev)->gen != 5)
  3994. return 0;
  3995. spin_lock_irq(&mchdev_lock);
  3996. val = __i915_chipset_val(dev_priv);
  3997. spin_unlock_irq(&mchdev_lock);
  3998. return val;
  3999. }
  4000. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4001. {
  4002. unsigned long m, x, b;
  4003. u32 tsfs;
  4004. tsfs = I915_READ(TSFS);
  4005. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4006. x = I915_READ8(TR1);
  4007. b = tsfs & TSFS_INTR_MASK;
  4008. return ((m * x) / 127) - b;
  4009. }
  4010. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4011. {
  4012. struct drm_device *dev = dev_priv->dev;
  4013. static const struct v_table {
  4014. u16 vd; /* in .1 mil */
  4015. u16 vm; /* in .1 mil */
  4016. } v_table[] = {
  4017. { 0, 0, },
  4018. { 375, 0, },
  4019. { 500, 0, },
  4020. { 625, 0, },
  4021. { 750, 0, },
  4022. { 875, 0, },
  4023. { 1000, 0, },
  4024. { 1125, 0, },
  4025. { 4125, 3000, },
  4026. { 4125, 3000, },
  4027. { 4125, 3000, },
  4028. { 4125, 3000, },
  4029. { 4125, 3000, },
  4030. { 4125, 3000, },
  4031. { 4125, 3000, },
  4032. { 4125, 3000, },
  4033. { 4125, 3000, },
  4034. { 4125, 3000, },
  4035. { 4125, 3000, },
  4036. { 4125, 3000, },
  4037. { 4125, 3000, },
  4038. { 4125, 3000, },
  4039. { 4125, 3000, },
  4040. { 4125, 3000, },
  4041. { 4125, 3000, },
  4042. { 4125, 3000, },
  4043. { 4125, 3000, },
  4044. { 4125, 3000, },
  4045. { 4125, 3000, },
  4046. { 4125, 3000, },
  4047. { 4125, 3000, },
  4048. { 4125, 3000, },
  4049. { 4250, 3125, },
  4050. { 4375, 3250, },
  4051. { 4500, 3375, },
  4052. { 4625, 3500, },
  4053. { 4750, 3625, },
  4054. { 4875, 3750, },
  4055. { 5000, 3875, },
  4056. { 5125, 4000, },
  4057. { 5250, 4125, },
  4058. { 5375, 4250, },
  4059. { 5500, 4375, },
  4060. { 5625, 4500, },
  4061. { 5750, 4625, },
  4062. { 5875, 4750, },
  4063. { 6000, 4875, },
  4064. { 6125, 5000, },
  4065. { 6250, 5125, },
  4066. { 6375, 5250, },
  4067. { 6500, 5375, },
  4068. { 6625, 5500, },
  4069. { 6750, 5625, },
  4070. { 6875, 5750, },
  4071. { 7000, 5875, },
  4072. { 7125, 6000, },
  4073. { 7250, 6125, },
  4074. { 7375, 6250, },
  4075. { 7500, 6375, },
  4076. { 7625, 6500, },
  4077. { 7750, 6625, },
  4078. { 7875, 6750, },
  4079. { 8000, 6875, },
  4080. { 8125, 7000, },
  4081. { 8250, 7125, },
  4082. { 8375, 7250, },
  4083. { 8500, 7375, },
  4084. { 8625, 7500, },
  4085. { 8750, 7625, },
  4086. { 8875, 7750, },
  4087. { 9000, 7875, },
  4088. { 9125, 8000, },
  4089. { 9250, 8125, },
  4090. { 9375, 8250, },
  4091. { 9500, 8375, },
  4092. { 9625, 8500, },
  4093. { 9750, 8625, },
  4094. { 9875, 8750, },
  4095. { 10000, 8875, },
  4096. { 10125, 9000, },
  4097. { 10250, 9125, },
  4098. { 10375, 9250, },
  4099. { 10500, 9375, },
  4100. { 10625, 9500, },
  4101. { 10750, 9625, },
  4102. { 10875, 9750, },
  4103. { 11000, 9875, },
  4104. { 11125, 10000, },
  4105. { 11250, 10125, },
  4106. { 11375, 10250, },
  4107. { 11500, 10375, },
  4108. { 11625, 10500, },
  4109. { 11750, 10625, },
  4110. { 11875, 10750, },
  4111. { 12000, 10875, },
  4112. { 12125, 11000, },
  4113. { 12250, 11125, },
  4114. { 12375, 11250, },
  4115. { 12500, 11375, },
  4116. { 12625, 11500, },
  4117. { 12750, 11625, },
  4118. { 12875, 11750, },
  4119. { 13000, 11875, },
  4120. { 13125, 12000, },
  4121. { 13250, 12125, },
  4122. { 13375, 12250, },
  4123. { 13500, 12375, },
  4124. { 13625, 12500, },
  4125. { 13750, 12625, },
  4126. { 13875, 12750, },
  4127. { 14000, 12875, },
  4128. { 14125, 13000, },
  4129. { 14250, 13125, },
  4130. { 14375, 13250, },
  4131. { 14500, 13375, },
  4132. { 14625, 13500, },
  4133. { 14750, 13625, },
  4134. { 14875, 13750, },
  4135. { 15000, 13875, },
  4136. { 15125, 14000, },
  4137. { 15250, 14125, },
  4138. { 15375, 14250, },
  4139. { 15500, 14375, },
  4140. { 15625, 14500, },
  4141. { 15750, 14625, },
  4142. { 15875, 14750, },
  4143. { 16000, 14875, },
  4144. { 16125, 15000, },
  4145. };
  4146. if (INTEL_INFO(dev)->is_mobile)
  4147. return v_table[pxvid].vm;
  4148. else
  4149. return v_table[pxvid].vd;
  4150. }
  4151. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4152. {
  4153. u64 now, diff, diffms;
  4154. u32 count;
  4155. assert_spin_locked(&mchdev_lock);
  4156. now = ktime_get_raw_ns();
  4157. diffms = now - dev_priv->ips.last_time2;
  4158. do_div(diffms, NSEC_PER_MSEC);
  4159. /* Don't divide by 0 */
  4160. if (!diffms)
  4161. return;
  4162. count = I915_READ(GFXEC);
  4163. if (count < dev_priv->ips.last_count2) {
  4164. diff = ~0UL - dev_priv->ips.last_count2;
  4165. diff += count;
  4166. } else {
  4167. diff = count - dev_priv->ips.last_count2;
  4168. }
  4169. dev_priv->ips.last_count2 = count;
  4170. dev_priv->ips.last_time2 = now;
  4171. /* More magic constants... */
  4172. diff = diff * 1181;
  4173. diff = div_u64(diff, diffms * 10);
  4174. dev_priv->ips.gfx_power = diff;
  4175. }
  4176. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4177. {
  4178. struct drm_device *dev = dev_priv->dev;
  4179. if (INTEL_INFO(dev)->gen != 5)
  4180. return;
  4181. spin_lock_irq(&mchdev_lock);
  4182. __i915_update_gfx_val(dev_priv);
  4183. spin_unlock_irq(&mchdev_lock);
  4184. }
  4185. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4186. {
  4187. unsigned long t, corr, state1, corr2, state2;
  4188. u32 pxvid, ext_v;
  4189. assert_spin_locked(&mchdev_lock);
  4190. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4191. pxvid = (pxvid >> 24) & 0x7f;
  4192. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4193. state1 = ext_v;
  4194. t = i915_mch_val(dev_priv);
  4195. /* Revel in the empirically derived constants */
  4196. /* Correction factor in 1/100000 units */
  4197. if (t > 80)
  4198. corr = ((t * 2349) + 135940);
  4199. else if (t >= 50)
  4200. corr = ((t * 964) + 29317);
  4201. else /* < 50 */
  4202. corr = ((t * 301) + 1004);
  4203. corr = corr * ((150142 * state1) / 10000 - 78642);
  4204. corr /= 100000;
  4205. corr2 = (corr * dev_priv->ips.corr);
  4206. state2 = (corr2 * state1) / 10000;
  4207. state2 /= 100; /* convert to mW */
  4208. __i915_update_gfx_val(dev_priv);
  4209. return dev_priv->ips.gfx_power + state2;
  4210. }
  4211. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4212. {
  4213. struct drm_device *dev = dev_priv->dev;
  4214. unsigned long val;
  4215. if (INTEL_INFO(dev)->gen != 5)
  4216. return 0;
  4217. spin_lock_irq(&mchdev_lock);
  4218. val = __i915_gfx_val(dev_priv);
  4219. spin_unlock_irq(&mchdev_lock);
  4220. return val;
  4221. }
  4222. /**
  4223. * i915_read_mch_val - return value for IPS use
  4224. *
  4225. * Calculate and return a value for the IPS driver to use when deciding whether
  4226. * we have thermal and power headroom to increase CPU or GPU power budget.
  4227. */
  4228. unsigned long i915_read_mch_val(void)
  4229. {
  4230. struct drm_i915_private *dev_priv;
  4231. unsigned long chipset_val, graphics_val, ret = 0;
  4232. spin_lock_irq(&mchdev_lock);
  4233. if (!i915_mch_dev)
  4234. goto out_unlock;
  4235. dev_priv = i915_mch_dev;
  4236. chipset_val = __i915_chipset_val(dev_priv);
  4237. graphics_val = __i915_gfx_val(dev_priv);
  4238. ret = chipset_val + graphics_val;
  4239. out_unlock:
  4240. spin_unlock_irq(&mchdev_lock);
  4241. return ret;
  4242. }
  4243. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4244. /**
  4245. * i915_gpu_raise - raise GPU frequency limit
  4246. *
  4247. * Raise the limit; IPS indicates we have thermal headroom.
  4248. */
  4249. bool i915_gpu_raise(void)
  4250. {
  4251. struct drm_i915_private *dev_priv;
  4252. bool ret = true;
  4253. spin_lock_irq(&mchdev_lock);
  4254. if (!i915_mch_dev) {
  4255. ret = false;
  4256. goto out_unlock;
  4257. }
  4258. dev_priv = i915_mch_dev;
  4259. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4260. dev_priv->ips.max_delay--;
  4261. out_unlock:
  4262. spin_unlock_irq(&mchdev_lock);
  4263. return ret;
  4264. }
  4265. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4266. /**
  4267. * i915_gpu_lower - lower GPU frequency limit
  4268. *
  4269. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4270. * frequency maximum.
  4271. */
  4272. bool i915_gpu_lower(void)
  4273. {
  4274. struct drm_i915_private *dev_priv;
  4275. bool ret = true;
  4276. spin_lock_irq(&mchdev_lock);
  4277. if (!i915_mch_dev) {
  4278. ret = false;
  4279. goto out_unlock;
  4280. }
  4281. dev_priv = i915_mch_dev;
  4282. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4283. dev_priv->ips.max_delay++;
  4284. out_unlock:
  4285. spin_unlock_irq(&mchdev_lock);
  4286. return ret;
  4287. }
  4288. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4289. /**
  4290. * i915_gpu_busy - indicate GPU business to IPS
  4291. *
  4292. * Tell the IPS driver whether or not the GPU is busy.
  4293. */
  4294. bool i915_gpu_busy(void)
  4295. {
  4296. struct drm_i915_private *dev_priv;
  4297. struct intel_engine_cs *ring;
  4298. bool ret = false;
  4299. int i;
  4300. spin_lock_irq(&mchdev_lock);
  4301. if (!i915_mch_dev)
  4302. goto out_unlock;
  4303. dev_priv = i915_mch_dev;
  4304. for_each_ring(ring, dev_priv, i)
  4305. ret |= !list_empty(&ring->request_list);
  4306. out_unlock:
  4307. spin_unlock_irq(&mchdev_lock);
  4308. return ret;
  4309. }
  4310. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4311. /**
  4312. * i915_gpu_turbo_disable - disable graphics turbo
  4313. *
  4314. * Disable graphics turbo by resetting the max frequency and setting the
  4315. * current frequency to the default.
  4316. */
  4317. bool i915_gpu_turbo_disable(void)
  4318. {
  4319. struct drm_i915_private *dev_priv;
  4320. bool ret = true;
  4321. spin_lock_irq(&mchdev_lock);
  4322. if (!i915_mch_dev) {
  4323. ret = false;
  4324. goto out_unlock;
  4325. }
  4326. dev_priv = i915_mch_dev;
  4327. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4328. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4329. ret = false;
  4330. out_unlock:
  4331. spin_unlock_irq(&mchdev_lock);
  4332. return ret;
  4333. }
  4334. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4335. /**
  4336. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4337. * IPS got loaded first.
  4338. *
  4339. * This awkward dance is so that neither module has to depend on the
  4340. * other in order for IPS to do the appropriate communication of
  4341. * GPU turbo limits to i915.
  4342. */
  4343. static void
  4344. ips_ping_for_i915_load(void)
  4345. {
  4346. void (*link)(void);
  4347. link = symbol_get(ips_link_to_i915_driver);
  4348. if (link) {
  4349. link();
  4350. symbol_put(ips_link_to_i915_driver);
  4351. }
  4352. }
  4353. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4354. {
  4355. /* We only register the i915 ips part with intel-ips once everything is
  4356. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4357. spin_lock_irq(&mchdev_lock);
  4358. i915_mch_dev = dev_priv;
  4359. spin_unlock_irq(&mchdev_lock);
  4360. ips_ping_for_i915_load();
  4361. }
  4362. void intel_gpu_ips_teardown(void)
  4363. {
  4364. spin_lock_irq(&mchdev_lock);
  4365. i915_mch_dev = NULL;
  4366. spin_unlock_irq(&mchdev_lock);
  4367. }
  4368. static void intel_init_emon(struct drm_device *dev)
  4369. {
  4370. struct drm_i915_private *dev_priv = dev->dev_private;
  4371. u32 lcfuse;
  4372. u8 pxw[16];
  4373. int i;
  4374. /* Disable to program */
  4375. I915_WRITE(ECR, 0);
  4376. POSTING_READ(ECR);
  4377. /* Program energy weights for various events */
  4378. I915_WRITE(SDEW, 0x15040d00);
  4379. I915_WRITE(CSIEW0, 0x007f0000);
  4380. I915_WRITE(CSIEW1, 0x1e220004);
  4381. I915_WRITE(CSIEW2, 0x04000004);
  4382. for (i = 0; i < 5; i++)
  4383. I915_WRITE(PEW + (i * 4), 0);
  4384. for (i = 0; i < 3; i++)
  4385. I915_WRITE(DEW + (i * 4), 0);
  4386. /* Program P-state weights to account for frequency power adjustment */
  4387. for (i = 0; i < 16; i++) {
  4388. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4389. unsigned long freq = intel_pxfreq(pxvidfreq);
  4390. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4391. PXVFREQ_PX_SHIFT;
  4392. unsigned long val;
  4393. val = vid * vid;
  4394. val *= (freq / 1000);
  4395. val *= 255;
  4396. val /= (127*127*900);
  4397. if (val > 0xff)
  4398. DRM_ERROR("bad pxval: %ld\n", val);
  4399. pxw[i] = val;
  4400. }
  4401. /* Render standby states get 0 weight */
  4402. pxw[14] = 0;
  4403. pxw[15] = 0;
  4404. for (i = 0; i < 4; i++) {
  4405. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4406. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4407. I915_WRITE(PXW + (i * 4), val);
  4408. }
  4409. /* Adjust magic regs to magic values (more experimental results) */
  4410. I915_WRITE(OGW0, 0);
  4411. I915_WRITE(OGW1, 0);
  4412. I915_WRITE(EG0, 0x00007f00);
  4413. I915_WRITE(EG1, 0x0000000e);
  4414. I915_WRITE(EG2, 0x000e0000);
  4415. I915_WRITE(EG3, 0x68000300);
  4416. I915_WRITE(EG4, 0x42000000);
  4417. I915_WRITE(EG5, 0x00140031);
  4418. I915_WRITE(EG6, 0);
  4419. I915_WRITE(EG7, 0);
  4420. for (i = 0; i < 8; i++)
  4421. I915_WRITE(PXWL + (i * 4), 0);
  4422. /* Enable PMON + select events */
  4423. I915_WRITE(ECR, 0x80000019);
  4424. lcfuse = I915_READ(LCFUSE02);
  4425. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4426. }
  4427. void intel_init_gt_powersave(struct drm_device *dev)
  4428. {
  4429. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4430. if (IS_CHERRYVIEW(dev))
  4431. cherryview_init_gt_powersave(dev);
  4432. else if (IS_VALLEYVIEW(dev))
  4433. valleyview_init_gt_powersave(dev);
  4434. }
  4435. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4436. {
  4437. if (IS_CHERRYVIEW(dev))
  4438. return;
  4439. else if (IS_VALLEYVIEW(dev))
  4440. valleyview_cleanup_gt_powersave(dev);
  4441. }
  4442. /**
  4443. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4444. * @dev: drm device
  4445. *
  4446. * We don't want to disable RC6 or other features here, we just want
  4447. * to make sure any work we've queued has finished and won't bother
  4448. * us while we're suspended.
  4449. */
  4450. void intel_suspend_gt_powersave(struct drm_device *dev)
  4451. {
  4452. struct drm_i915_private *dev_priv = dev->dev_private;
  4453. /* Interrupts should be disabled already to avoid re-arming. */
  4454. WARN_ON(intel_irqs_enabled(dev_priv));
  4455. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4456. cancel_work_sync(&dev_priv->rps.work);
  4457. /* Force GPU to min freq during suspend */
  4458. gen6_rps_idle(dev_priv);
  4459. }
  4460. void intel_disable_gt_powersave(struct drm_device *dev)
  4461. {
  4462. struct drm_i915_private *dev_priv = dev->dev_private;
  4463. /* Interrupts should be disabled already to avoid re-arming. */
  4464. WARN_ON(intel_irqs_enabled(dev_priv));
  4465. if (IS_IRONLAKE_M(dev)) {
  4466. ironlake_disable_drps(dev);
  4467. ironlake_disable_rc6(dev);
  4468. } else if (INTEL_INFO(dev)->gen >= 6) {
  4469. intel_suspend_gt_powersave(dev);
  4470. mutex_lock(&dev_priv->rps.hw_lock);
  4471. if (IS_CHERRYVIEW(dev))
  4472. cherryview_disable_rps(dev);
  4473. else if (IS_VALLEYVIEW(dev))
  4474. valleyview_disable_rps(dev);
  4475. else
  4476. gen6_disable_rps(dev);
  4477. dev_priv->rps.enabled = false;
  4478. mutex_unlock(&dev_priv->rps.hw_lock);
  4479. }
  4480. }
  4481. static void intel_gen6_powersave_work(struct work_struct *work)
  4482. {
  4483. struct drm_i915_private *dev_priv =
  4484. container_of(work, struct drm_i915_private,
  4485. rps.delayed_resume_work.work);
  4486. struct drm_device *dev = dev_priv->dev;
  4487. dev_priv->rps.is_bdw_sw_turbo = false;
  4488. mutex_lock(&dev_priv->rps.hw_lock);
  4489. if (IS_CHERRYVIEW(dev)) {
  4490. cherryview_enable_rps(dev);
  4491. } else if (IS_VALLEYVIEW(dev)) {
  4492. valleyview_enable_rps(dev);
  4493. } else if (IS_BROADWELL(dev)) {
  4494. gen8_enable_rps(dev);
  4495. __gen6_update_ring_freq(dev);
  4496. } else {
  4497. gen6_enable_rps(dev);
  4498. __gen6_update_ring_freq(dev);
  4499. }
  4500. dev_priv->rps.enabled = true;
  4501. mutex_unlock(&dev_priv->rps.hw_lock);
  4502. intel_runtime_pm_put(dev_priv);
  4503. }
  4504. void intel_enable_gt_powersave(struct drm_device *dev)
  4505. {
  4506. struct drm_i915_private *dev_priv = dev->dev_private;
  4507. if (IS_IRONLAKE_M(dev)) {
  4508. mutex_lock(&dev->struct_mutex);
  4509. ironlake_enable_drps(dev);
  4510. ironlake_enable_rc6(dev);
  4511. intel_init_emon(dev);
  4512. mutex_unlock(&dev->struct_mutex);
  4513. } else if (INTEL_INFO(dev)->gen >= 6) {
  4514. /*
  4515. * PCU communication is slow and this doesn't need to be
  4516. * done at any specific time, so do this out of our fast path
  4517. * to make resume and init faster.
  4518. *
  4519. * We depend on the HW RC6 power context save/restore
  4520. * mechanism when entering D3 through runtime PM suspend. So
  4521. * disable RPM until RPS/RC6 is properly setup. We can only
  4522. * get here via the driver load/system resume/runtime resume
  4523. * paths, so the _noresume version is enough (and in case of
  4524. * runtime resume it's necessary).
  4525. */
  4526. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4527. round_jiffies_up_relative(HZ)))
  4528. intel_runtime_pm_get_noresume(dev_priv);
  4529. }
  4530. }
  4531. void intel_reset_gt_powersave(struct drm_device *dev)
  4532. {
  4533. struct drm_i915_private *dev_priv = dev->dev_private;
  4534. dev_priv->rps.enabled = false;
  4535. intel_enable_gt_powersave(dev);
  4536. }
  4537. static void ibx_init_clock_gating(struct drm_device *dev)
  4538. {
  4539. struct drm_i915_private *dev_priv = dev->dev_private;
  4540. /*
  4541. * On Ibex Peak and Cougar Point, we need to disable clock
  4542. * gating for the panel power sequencer or it will fail to
  4543. * start up when no ports are active.
  4544. */
  4545. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4546. }
  4547. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4548. {
  4549. struct drm_i915_private *dev_priv = dev->dev_private;
  4550. int pipe;
  4551. for_each_pipe(dev_priv, pipe) {
  4552. I915_WRITE(DSPCNTR(pipe),
  4553. I915_READ(DSPCNTR(pipe)) |
  4554. DISPPLANE_TRICKLE_FEED_DISABLE);
  4555. intel_flush_primary_plane(dev_priv, pipe);
  4556. }
  4557. }
  4558. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4559. {
  4560. struct drm_i915_private *dev_priv = dev->dev_private;
  4561. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4562. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4563. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4564. /*
  4565. * Don't touch WM1S_LP_EN here.
  4566. * Doing so could cause underruns.
  4567. */
  4568. }
  4569. static void ironlake_init_clock_gating(struct drm_device *dev)
  4570. {
  4571. struct drm_i915_private *dev_priv = dev->dev_private;
  4572. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4573. /*
  4574. * Required for FBC
  4575. * WaFbcDisableDpfcClockGating:ilk
  4576. */
  4577. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4578. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4579. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4580. I915_WRITE(PCH_3DCGDIS0,
  4581. MARIUNIT_CLOCK_GATE_DISABLE |
  4582. SVSMUNIT_CLOCK_GATE_DISABLE);
  4583. I915_WRITE(PCH_3DCGDIS1,
  4584. VFMUNIT_CLOCK_GATE_DISABLE);
  4585. /*
  4586. * According to the spec the following bits should be set in
  4587. * order to enable memory self-refresh
  4588. * The bit 22/21 of 0x42004
  4589. * The bit 5 of 0x42020
  4590. * The bit 15 of 0x45000
  4591. */
  4592. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4593. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4594. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4595. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4596. I915_WRITE(DISP_ARB_CTL,
  4597. (I915_READ(DISP_ARB_CTL) |
  4598. DISP_FBC_WM_DIS));
  4599. ilk_init_lp_watermarks(dev);
  4600. /*
  4601. * Based on the document from hardware guys the following bits
  4602. * should be set unconditionally in order to enable FBC.
  4603. * The bit 22 of 0x42000
  4604. * The bit 22 of 0x42004
  4605. * The bit 7,8,9 of 0x42020.
  4606. */
  4607. if (IS_IRONLAKE_M(dev)) {
  4608. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4609. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4610. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4611. ILK_FBCQ_DIS);
  4612. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4613. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4614. ILK_DPARB_GATE);
  4615. }
  4616. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4617. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4618. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4619. ILK_ELPIN_409_SELECT);
  4620. I915_WRITE(_3D_CHICKEN2,
  4621. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4622. _3D_CHICKEN2_WM_READ_PIPELINED);
  4623. /* WaDisableRenderCachePipelinedFlush:ilk */
  4624. I915_WRITE(CACHE_MODE_0,
  4625. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4626. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4627. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4628. g4x_disable_trickle_feed(dev);
  4629. ibx_init_clock_gating(dev);
  4630. }
  4631. static void cpt_init_clock_gating(struct drm_device *dev)
  4632. {
  4633. struct drm_i915_private *dev_priv = dev->dev_private;
  4634. int pipe;
  4635. uint32_t val;
  4636. /*
  4637. * On Ibex Peak and Cougar Point, we need to disable clock
  4638. * gating for the panel power sequencer or it will fail to
  4639. * start up when no ports are active.
  4640. */
  4641. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4642. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4643. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4644. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4645. DPLS_EDP_PPS_FIX_DIS);
  4646. /* The below fixes the weird display corruption, a few pixels shifted
  4647. * downward, on (only) LVDS of some HP laptops with IVY.
  4648. */
  4649. for_each_pipe(dev_priv, pipe) {
  4650. val = I915_READ(TRANS_CHICKEN2(pipe));
  4651. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4652. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4653. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4654. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4655. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4656. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4657. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4658. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4659. }
  4660. /* WADP0ClockGatingDisable */
  4661. for_each_pipe(dev_priv, pipe) {
  4662. I915_WRITE(TRANS_CHICKEN1(pipe),
  4663. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4664. }
  4665. }
  4666. static void gen6_check_mch_setup(struct drm_device *dev)
  4667. {
  4668. struct drm_i915_private *dev_priv = dev->dev_private;
  4669. uint32_t tmp;
  4670. tmp = I915_READ(MCH_SSKPD);
  4671. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4672. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4673. tmp);
  4674. }
  4675. static void gen6_init_clock_gating(struct drm_device *dev)
  4676. {
  4677. struct drm_i915_private *dev_priv = dev->dev_private;
  4678. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4679. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4680. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4681. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4682. ILK_ELPIN_409_SELECT);
  4683. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4684. I915_WRITE(_3D_CHICKEN,
  4685. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4686. /* WaSetupGtModeTdRowDispatch:snb */
  4687. if (IS_SNB_GT1(dev))
  4688. I915_WRITE(GEN6_GT_MODE,
  4689. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4690. /* WaDisable_RenderCache_OperationalFlush:snb */
  4691. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4692. /*
  4693. * BSpec recoomends 8x4 when MSAA is used,
  4694. * however in practice 16x4 seems fastest.
  4695. *
  4696. * Note that PS/WM thread counts depend on the WIZ hashing
  4697. * disable bit, which we don't touch here, but it's good
  4698. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4699. */
  4700. I915_WRITE(GEN6_GT_MODE,
  4701. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4702. ilk_init_lp_watermarks(dev);
  4703. I915_WRITE(CACHE_MODE_0,
  4704. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4705. I915_WRITE(GEN6_UCGCTL1,
  4706. I915_READ(GEN6_UCGCTL1) |
  4707. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4708. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4709. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4710. * gating disable must be set. Failure to set it results in
  4711. * flickering pixels due to Z write ordering failures after
  4712. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4713. * Sanctuary and Tropics, and apparently anything else with
  4714. * alpha test or pixel discard.
  4715. *
  4716. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4717. * but we didn't debug actual testcases to find it out.
  4718. *
  4719. * WaDisableRCCUnitClockGating:snb
  4720. * WaDisableRCPBUnitClockGating:snb
  4721. */
  4722. I915_WRITE(GEN6_UCGCTL2,
  4723. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4724. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4725. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4726. I915_WRITE(_3D_CHICKEN3,
  4727. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4728. /*
  4729. * Bspec says:
  4730. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4731. * 3DSTATE_SF number of SF output attributes is more than 16."
  4732. */
  4733. I915_WRITE(_3D_CHICKEN3,
  4734. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4735. /*
  4736. * According to the spec the following bits should be
  4737. * set in order to enable memory self-refresh and fbc:
  4738. * The bit21 and bit22 of 0x42000
  4739. * The bit21 and bit22 of 0x42004
  4740. * The bit5 and bit7 of 0x42020
  4741. * The bit14 of 0x70180
  4742. * The bit14 of 0x71180
  4743. *
  4744. * WaFbcAsynchFlipDisableFbcQueue:snb
  4745. */
  4746. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4747. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4748. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4749. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4750. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4751. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4752. I915_WRITE(ILK_DSPCLK_GATE_D,
  4753. I915_READ(ILK_DSPCLK_GATE_D) |
  4754. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4755. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4756. g4x_disable_trickle_feed(dev);
  4757. cpt_init_clock_gating(dev);
  4758. gen6_check_mch_setup(dev);
  4759. }
  4760. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4761. {
  4762. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4763. /*
  4764. * WaVSThreadDispatchOverride:ivb,vlv
  4765. *
  4766. * This actually overrides the dispatch
  4767. * mode for all thread types.
  4768. */
  4769. reg &= ~GEN7_FF_SCHED_MASK;
  4770. reg |= GEN7_FF_TS_SCHED_HW;
  4771. reg |= GEN7_FF_VS_SCHED_HW;
  4772. reg |= GEN7_FF_DS_SCHED_HW;
  4773. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4774. }
  4775. static void lpt_init_clock_gating(struct drm_device *dev)
  4776. {
  4777. struct drm_i915_private *dev_priv = dev->dev_private;
  4778. /*
  4779. * TODO: this bit should only be enabled when really needed, then
  4780. * disabled when not needed anymore in order to save power.
  4781. */
  4782. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4783. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4784. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4785. PCH_LP_PARTITION_LEVEL_DISABLE);
  4786. /* WADPOClockGatingDisable:hsw */
  4787. I915_WRITE(_TRANSA_CHICKEN1,
  4788. I915_READ(_TRANSA_CHICKEN1) |
  4789. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4790. }
  4791. static void lpt_suspend_hw(struct drm_device *dev)
  4792. {
  4793. struct drm_i915_private *dev_priv = dev->dev_private;
  4794. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4795. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4796. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4797. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4798. }
  4799. }
  4800. static void broadwell_init_clock_gating(struct drm_device *dev)
  4801. {
  4802. struct drm_i915_private *dev_priv = dev->dev_private;
  4803. enum pipe pipe;
  4804. I915_WRITE(WM3_LP_ILK, 0);
  4805. I915_WRITE(WM2_LP_ILK, 0);
  4806. I915_WRITE(WM1_LP_ILK, 0);
  4807. /* FIXME(BDW): Check all the w/a, some might only apply to
  4808. * pre-production hw. */
  4809. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
  4810. I915_WRITE(_3D_CHICKEN3,
  4811. _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
  4812. /* WaSwitchSolVfFArbitrationPriority:bdw */
  4813. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4814. /* WaPsrDPAMaskVBlankInSRD:bdw */
  4815. I915_WRITE(CHICKEN_PAR1_1,
  4816. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  4817. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  4818. for_each_pipe(dev_priv, pipe) {
  4819. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  4820. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  4821. BDW_DPRS_MASK_VBLANK_SRD);
  4822. }
  4823. /* WaVSRefCountFullforceMissDisable:bdw */
  4824. /* WaDSRefCountFullforceMissDisable:bdw */
  4825. I915_WRITE(GEN7_FF_THREAD_MODE,
  4826. I915_READ(GEN7_FF_THREAD_MODE) &
  4827. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  4828. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  4829. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  4830. /* WaDisableSDEUnitClockGating:bdw */
  4831. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  4832. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  4833. lpt_init_clock_gating(dev);
  4834. }
  4835. static void haswell_init_clock_gating(struct drm_device *dev)
  4836. {
  4837. struct drm_i915_private *dev_priv = dev->dev_private;
  4838. ilk_init_lp_watermarks(dev);
  4839. /* L3 caching of data atomics doesn't work -- disable it. */
  4840. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  4841. I915_WRITE(HSW_ROW_CHICKEN3,
  4842. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  4843. /* This is required by WaCatErrorRejectionIssue:hsw */
  4844. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4845. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4846. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4847. /* WaVSRefCountFullforceMissDisable:hsw */
  4848. I915_WRITE(GEN7_FF_THREAD_MODE,
  4849. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  4850. /* WaDisable_RenderCache_OperationalFlush:hsw */
  4851. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4852. /* enable HiZ Raw Stall Optimization */
  4853. I915_WRITE(CACHE_MODE_0_GEN7,
  4854. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4855. /* WaDisable4x2SubspanOptimization:hsw */
  4856. I915_WRITE(CACHE_MODE_1,
  4857. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4858. /*
  4859. * BSpec recommends 8x4 when MSAA is used,
  4860. * however in practice 16x4 seems fastest.
  4861. *
  4862. * Note that PS/WM thread counts depend on the WIZ hashing
  4863. * disable bit, which we don't touch here, but it's good
  4864. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4865. */
  4866. I915_WRITE(GEN7_GT_MODE,
  4867. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4868. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4869. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4870. /* WaRsPkgCStateDisplayPMReq:hsw */
  4871. I915_WRITE(CHICKEN_PAR1_1,
  4872. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4873. lpt_init_clock_gating(dev);
  4874. }
  4875. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4876. {
  4877. struct drm_i915_private *dev_priv = dev->dev_private;
  4878. uint32_t snpcr;
  4879. ilk_init_lp_watermarks(dev);
  4880. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4881. /* WaDisableEarlyCull:ivb */
  4882. I915_WRITE(_3D_CHICKEN3,
  4883. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4884. /* WaDisableBackToBackFlipFix:ivb */
  4885. I915_WRITE(IVB_CHICKEN3,
  4886. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4887. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4888. /* WaDisablePSDDualDispatchEnable:ivb */
  4889. if (IS_IVB_GT1(dev))
  4890. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4891. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4892. /* WaDisable_RenderCache_OperationalFlush:ivb */
  4893. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4894. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4895. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4896. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4897. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4898. I915_WRITE(GEN7_L3CNTLREG1,
  4899. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4900. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4901. GEN7_WA_L3_CHICKEN_MODE);
  4902. if (IS_IVB_GT1(dev))
  4903. I915_WRITE(GEN7_ROW_CHICKEN2,
  4904. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4905. else {
  4906. /* must write both registers */
  4907. I915_WRITE(GEN7_ROW_CHICKEN2,
  4908. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4909. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4910. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4911. }
  4912. /* WaForceL3Serialization:ivb */
  4913. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4914. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4915. /*
  4916. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4917. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4918. */
  4919. I915_WRITE(GEN6_UCGCTL2,
  4920. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4921. /* This is required by WaCatErrorRejectionIssue:ivb */
  4922. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4923. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4924. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4925. g4x_disable_trickle_feed(dev);
  4926. gen7_setup_fixed_func_scheduler(dev_priv);
  4927. if (0) { /* causes HiZ corruption on ivb:gt1 */
  4928. /* enable HiZ Raw Stall Optimization */
  4929. I915_WRITE(CACHE_MODE_0_GEN7,
  4930. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  4931. }
  4932. /* WaDisable4x2SubspanOptimization:ivb */
  4933. I915_WRITE(CACHE_MODE_1,
  4934. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4935. /*
  4936. * BSpec recommends 8x4 when MSAA is used,
  4937. * however in practice 16x4 seems fastest.
  4938. *
  4939. * Note that PS/WM thread counts depend on the WIZ hashing
  4940. * disable bit, which we don't touch here, but it's good
  4941. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4942. */
  4943. I915_WRITE(GEN7_GT_MODE,
  4944. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  4945. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4946. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4947. snpcr |= GEN6_MBC_SNPCR_MED;
  4948. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4949. if (!HAS_PCH_NOP(dev))
  4950. cpt_init_clock_gating(dev);
  4951. gen6_check_mch_setup(dev);
  4952. }
  4953. static void valleyview_init_clock_gating(struct drm_device *dev)
  4954. {
  4955. struct drm_i915_private *dev_priv = dev->dev_private;
  4956. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4957. /* WaDisableEarlyCull:vlv */
  4958. I915_WRITE(_3D_CHICKEN3,
  4959. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4960. /* WaDisableBackToBackFlipFix:vlv */
  4961. I915_WRITE(IVB_CHICKEN3,
  4962. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4963. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4964. /* WaPsdDispatchEnable:vlv */
  4965. /* WaDisablePSDDualDispatchEnable:vlv */
  4966. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4967. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4968. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4969. /* WaDisable_RenderCache_OperationalFlush:vlv */
  4970. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4971. /* WaForceL3Serialization:vlv */
  4972. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4973. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4974. /* WaDisableDopClockGating:vlv */
  4975. I915_WRITE(GEN7_ROW_CHICKEN2,
  4976. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4977. /* This is required by WaCatErrorRejectionIssue:vlv */
  4978. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4979. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4980. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4981. gen7_setup_fixed_func_scheduler(dev_priv);
  4982. /*
  4983. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4984. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4985. */
  4986. I915_WRITE(GEN6_UCGCTL2,
  4987. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4988. /* WaDisableL3Bank2xClockGate:vlv
  4989. * Disabling L3 clock gating- MMIO 940c[25] = 1
  4990. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  4991. I915_WRITE(GEN7_UCGCTL4,
  4992. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4993. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4994. /*
  4995. * BSpec says this must be set, even though
  4996. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  4997. */
  4998. I915_WRITE(CACHE_MODE_1,
  4999. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5000. /*
  5001. * WaIncreaseL3CreditsForVLVB0:vlv
  5002. * This is the hardware default actually.
  5003. */
  5004. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5005. /*
  5006. * WaDisableVLVClockGating_VBIIssue:vlv
  5007. * Disable clock gating on th GCFG unit to prevent a delay
  5008. * in the reporting of vblank events.
  5009. */
  5010. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5011. }
  5012. static void cherryview_init_clock_gating(struct drm_device *dev)
  5013. {
  5014. struct drm_i915_private *dev_priv = dev->dev_private;
  5015. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5016. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5017. /* WaVSRefCountFullforceMissDisable:chv */
  5018. /* WaDSRefCountFullforceMissDisable:chv */
  5019. I915_WRITE(GEN7_FF_THREAD_MODE,
  5020. I915_READ(GEN7_FF_THREAD_MODE) &
  5021. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5022. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5023. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5024. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5025. /* WaDisableCSUnitClockGating:chv */
  5026. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5027. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5028. /* WaDisableSDEUnitClockGating:chv */
  5029. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5030. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5031. /* WaDisableGunitClockGating:chv (pre-production hw) */
  5032. I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
  5033. GINT_DIS);
  5034. /* WaDisableFfDopClockGating:chv (pre-production hw) */
  5035. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5036. _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
  5037. /* WaDisableDopClockGating:chv (pre-production hw) */
  5038. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5039. GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  5040. }
  5041. static void g4x_init_clock_gating(struct drm_device *dev)
  5042. {
  5043. struct drm_i915_private *dev_priv = dev->dev_private;
  5044. uint32_t dspclk_gate;
  5045. I915_WRITE(RENCLK_GATE_D1, 0);
  5046. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5047. GS_UNIT_CLOCK_GATE_DISABLE |
  5048. CL_UNIT_CLOCK_GATE_DISABLE);
  5049. I915_WRITE(RAMCLK_GATE_D, 0);
  5050. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5051. OVRUNIT_CLOCK_GATE_DISABLE |
  5052. OVCUNIT_CLOCK_GATE_DISABLE;
  5053. if (IS_GM45(dev))
  5054. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5055. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5056. /* WaDisableRenderCachePipelinedFlush */
  5057. I915_WRITE(CACHE_MODE_0,
  5058. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5059. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5060. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5061. g4x_disable_trickle_feed(dev);
  5062. }
  5063. static void crestline_init_clock_gating(struct drm_device *dev)
  5064. {
  5065. struct drm_i915_private *dev_priv = dev->dev_private;
  5066. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5067. I915_WRITE(RENCLK_GATE_D2, 0);
  5068. I915_WRITE(DSPCLK_GATE_D, 0);
  5069. I915_WRITE(RAMCLK_GATE_D, 0);
  5070. I915_WRITE16(DEUC, 0);
  5071. I915_WRITE(MI_ARB_STATE,
  5072. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5073. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5074. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5075. }
  5076. static void broadwater_init_clock_gating(struct drm_device *dev)
  5077. {
  5078. struct drm_i915_private *dev_priv = dev->dev_private;
  5079. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5080. I965_RCC_CLOCK_GATE_DISABLE |
  5081. I965_RCPB_CLOCK_GATE_DISABLE |
  5082. I965_ISC_CLOCK_GATE_DISABLE |
  5083. I965_FBC_CLOCK_GATE_DISABLE);
  5084. I915_WRITE(RENCLK_GATE_D2, 0);
  5085. I915_WRITE(MI_ARB_STATE,
  5086. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5087. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5088. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5089. }
  5090. static void gen3_init_clock_gating(struct drm_device *dev)
  5091. {
  5092. struct drm_i915_private *dev_priv = dev->dev_private;
  5093. u32 dstate = I915_READ(D_STATE);
  5094. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5095. DSTATE_DOT_CLOCK_GATING;
  5096. I915_WRITE(D_STATE, dstate);
  5097. if (IS_PINEVIEW(dev))
  5098. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5099. /* IIR "flip pending" means done if this bit is set */
  5100. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5101. /* interrupts should cause a wake up from C3 */
  5102. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5103. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5104. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5105. I915_WRITE(MI_ARB_STATE,
  5106. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5107. }
  5108. static void i85x_init_clock_gating(struct drm_device *dev)
  5109. {
  5110. struct drm_i915_private *dev_priv = dev->dev_private;
  5111. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5112. /* interrupts should cause a wake up from C3 */
  5113. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5114. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5115. I915_WRITE(MEM_MODE,
  5116. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5117. }
  5118. static void i830_init_clock_gating(struct drm_device *dev)
  5119. {
  5120. struct drm_i915_private *dev_priv = dev->dev_private;
  5121. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5122. I915_WRITE(MEM_MODE,
  5123. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5124. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5125. }
  5126. void intel_init_clock_gating(struct drm_device *dev)
  5127. {
  5128. struct drm_i915_private *dev_priv = dev->dev_private;
  5129. dev_priv->display.init_clock_gating(dev);
  5130. }
  5131. void intel_suspend_hw(struct drm_device *dev)
  5132. {
  5133. if (HAS_PCH_LPT(dev))
  5134. lpt_suspend_hw(dev);
  5135. }
  5136. #define for_each_power_well(i, power_well, domain_mask, power_domains) \
  5137. for (i = 0; \
  5138. i < (power_domains)->power_well_count && \
  5139. ((power_well) = &(power_domains)->power_wells[i]); \
  5140. i++) \
  5141. if ((power_well)->domains & (domain_mask))
  5142. #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
  5143. for (i = (power_domains)->power_well_count - 1; \
  5144. i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
  5145. i--) \
  5146. if ((power_well)->domains & (domain_mask))
  5147. /**
  5148. * We should only use the power well if we explicitly asked the hardware to
  5149. * enable it, so check if it's enabled and also check if we've requested it to
  5150. * be enabled.
  5151. */
  5152. static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
  5153. struct i915_power_well *power_well)
  5154. {
  5155. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  5156. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  5157. }
  5158. bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
  5159. enum intel_display_power_domain domain)
  5160. {
  5161. struct i915_power_domains *power_domains;
  5162. struct i915_power_well *power_well;
  5163. bool is_enabled;
  5164. int i;
  5165. if (dev_priv->pm.suspended)
  5166. return false;
  5167. power_domains = &dev_priv->power_domains;
  5168. is_enabled = true;
  5169. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5170. if (power_well->always_on)
  5171. continue;
  5172. if (!power_well->hw_enabled) {
  5173. is_enabled = false;
  5174. break;
  5175. }
  5176. }
  5177. return is_enabled;
  5178. }
  5179. bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
  5180. enum intel_display_power_domain domain)
  5181. {
  5182. struct i915_power_domains *power_domains;
  5183. bool ret;
  5184. power_domains = &dev_priv->power_domains;
  5185. mutex_lock(&power_domains->lock);
  5186. ret = intel_display_power_enabled_unlocked(dev_priv, domain);
  5187. mutex_unlock(&power_domains->lock);
  5188. return ret;
  5189. }
  5190. /*
  5191. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  5192. * when not needed anymore. We have 4 registers that can request the power well
  5193. * to be enabled, and it will only be disabled if none of the registers is
  5194. * requesting it to be enabled.
  5195. */
  5196. static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
  5197. {
  5198. struct drm_device *dev = dev_priv->dev;
  5199. /*
  5200. * After we re-enable the power well, if we touch VGA register 0x3d5
  5201. * we'll get unclaimed register interrupts. This stops after we write
  5202. * anything to the VGA MSR register. The vgacon module uses this
  5203. * register all the time, so if we unbind our driver and, as a
  5204. * consequence, bind vgacon, we'll get stuck in an infinite loop at
  5205. * console_unlock(). So make here we touch the VGA MSR register, making
  5206. * sure vgacon can keep working normally without triggering interrupts
  5207. * and error messages.
  5208. */
  5209. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  5210. outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
  5211. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  5212. if (IS_BROADWELL(dev) || (INTEL_INFO(dev)->gen >= 9))
  5213. gen8_irq_power_well_post_enable(dev_priv);
  5214. }
  5215. static void hsw_set_power_well(struct drm_i915_private *dev_priv,
  5216. struct i915_power_well *power_well, bool enable)
  5217. {
  5218. bool is_enabled, enable_requested;
  5219. uint32_t tmp;
  5220. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  5221. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  5222. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  5223. if (enable) {
  5224. if (!enable_requested)
  5225. I915_WRITE(HSW_PWR_WELL_DRIVER,
  5226. HSW_PWR_WELL_ENABLE_REQUEST);
  5227. if (!is_enabled) {
  5228. DRM_DEBUG_KMS("Enabling power well\n");
  5229. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  5230. HSW_PWR_WELL_STATE_ENABLED), 20))
  5231. DRM_ERROR("Timeout enabling power well\n");
  5232. }
  5233. hsw_power_well_post_enable(dev_priv);
  5234. } else {
  5235. if (enable_requested) {
  5236. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  5237. POSTING_READ(HSW_PWR_WELL_DRIVER);
  5238. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  5239. }
  5240. }
  5241. }
  5242. static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5243. struct i915_power_well *power_well)
  5244. {
  5245. hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
  5246. /*
  5247. * We're taking over the BIOS, so clear any requests made by it since
  5248. * the driver is in charge now.
  5249. */
  5250. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  5251. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  5252. }
  5253. static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
  5254. struct i915_power_well *power_well)
  5255. {
  5256. hsw_set_power_well(dev_priv, power_well, true);
  5257. }
  5258. static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
  5259. struct i915_power_well *power_well)
  5260. {
  5261. hsw_set_power_well(dev_priv, power_well, false);
  5262. }
  5263. static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
  5264. struct i915_power_well *power_well)
  5265. {
  5266. }
  5267. static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
  5268. struct i915_power_well *power_well)
  5269. {
  5270. return true;
  5271. }
  5272. static void vlv_set_power_well(struct drm_i915_private *dev_priv,
  5273. struct i915_power_well *power_well, bool enable)
  5274. {
  5275. enum punit_power_well power_well_id = power_well->data;
  5276. u32 mask;
  5277. u32 state;
  5278. u32 ctrl;
  5279. mask = PUNIT_PWRGT_MASK(power_well_id);
  5280. state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
  5281. PUNIT_PWRGT_PWR_GATE(power_well_id);
  5282. mutex_lock(&dev_priv->rps.hw_lock);
  5283. #define COND \
  5284. ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
  5285. if (COND)
  5286. goto out;
  5287. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
  5288. ctrl &= ~mask;
  5289. ctrl |= state;
  5290. vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
  5291. if (wait_for(COND, 100))
  5292. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5293. state,
  5294. vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
  5295. #undef COND
  5296. out:
  5297. mutex_unlock(&dev_priv->rps.hw_lock);
  5298. }
  5299. static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5300. struct i915_power_well *power_well)
  5301. {
  5302. vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
  5303. }
  5304. static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
  5305. struct i915_power_well *power_well)
  5306. {
  5307. vlv_set_power_well(dev_priv, power_well, true);
  5308. }
  5309. static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
  5310. struct i915_power_well *power_well)
  5311. {
  5312. vlv_set_power_well(dev_priv, power_well, false);
  5313. }
  5314. static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
  5315. struct i915_power_well *power_well)
  5316. {
  5317. int power_well_id = power_well->data;
  5318. bool enabled = false;
  5319. u32 mask;
  5320. u32 state;
  5321. u32 ctrl;
  5322. mask = PUNIT_PWRGT_MASK(power_well_id);
  5323. ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
  5324. mutex_lock(&dev_priv->rps.hw_lock);
  5325. state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
  5326. /*
  5327. * We only ever set the power-on and power-gate states, anything
  5328. * else is unexpected.
  5329. */
  5330. WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
  5331. state != PUNIT_PWRGT_PWR_GATE(power_well_id));
  5332. if (state == ctrl)
  5333. enabled = true;
  5334. /*
  5335. * A transient state at this point would mean some unexpected party
  5336. * is poking at the power controls too.
  5337. */
  5338. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
  5339. WARN_ON(ctrl != state);
  5340. mutex_unlock(&dev_priv->rps.hw_lock);
  5341. return enabled;
  5342. }
  5343. static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
  5344. struct i915_power_well *power_well)
  5345. {
  5346. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5347. vlv_set_power_well(dev_priv, power_well, true);
  5348. spin_lock_irq(&dev_priv->irq_lock);
  5349. valleyview_enable_display_irqs(dev_priv);
  5350. spin_unlock_irq(&dev_priv->irq_lock);
  5351. /*
  5352. * During driver initialization/resume we can avoid restoring the
  5353. * part of the HW/SW state that will be inited anyway explicitly.
  5354. */
  5355. if (dev_priv->power_domains.initializing)
  5356. return;
  5357. intel_hpd_init(dev_priv->dev);
  5358. i915_redisable_vga_power_on(dev_priv->dev);
  5359. }
  5360. static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
  5361. struct i915_power_well *power_well)
  5362. {
  5363. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
  5364. spin_lock_irq(&dev_priv->irq_lock);
  5365. valleyview_disable_display_irqs(dev_priv);
  5366. spin_unlock_irq(&dev_priv->irq_lock);
  5367. vlv_set_power_well(dev_priv, power_well, false);
  5368. vlv_power_sequencer_reset(dev_priv);
  5369. }
  5370. static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5371. struct i915_power_well *power_well)
  5372. {
  5373. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5374. /*
  5375. * Enable the CRI clock source so we can get at the
  5376. * display and the reference clock for VGA
  5377. * hotplug / manual detection.
  5378. */
  5379. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5380. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5381. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5382. vlv_set_power_well(dev_priv, power_well, true);
  5383. /*
  5384. * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
  5385. * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
  5386. * a. GUnit 0x2110 bit[0] set to 1 (def 0)
  5387. * b. The other bits such as sfr settings / modesel may all
  5388. * be set to 0.
  5389. *
  5390. * This should only be done on init and resume from S3 with
  5391. * both PLLs disabled, or we risk losing DPIO and PLL
  5392. * synchronization.
  5393. */
  5394. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
  5395. }
  5396. static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5397. struct i915_power_well *power_well)
  5398. {
  5399. enum pipe pipe;
  5400. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
  5401. for_each_pipe(dev_priv, pipe)
  5402. assert_pll_disabled(dev_priv, pipe);
  5403. /* Assert common reset */
  5404. I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
  5405. vlv_set_power_well(dev_priv, power_well, false);
  5406. }
  5407. static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
  5408. struct i915_power_well *power_well)
  5409. {
  5410. enum dpio_phy phy;
  5411. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5412. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5413. /*
  5414. * Enable the CRI clock source so we can get at the
  5415. * display and the reference clock for VGA
  5416. * hotplug / manual detection.
  5417. */
  5418. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5419. phy = DPIO_PHY0;
  5420. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5421. DPLL_REFA_CLK_ENABLE_VLV);
  5422. I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
  5423. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5424. } else {
  5425. phy = DPIO_PHY1;
  5426. I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
  5427. DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
  5428. }
  5429. udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
  5430. vlv_set_power_well(dev_priv, power_well, true);
  5431. /* Poll for phypwrgood signal */
  5432. if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
  5433. DRM_ERROR("Display PHY %d is not power up\n", phy);
  5434. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
  5435. PHY_COM_LANE_RESET_DEASSERT(phy));
  5436. }
  5437. static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
  5438. struct i915_power_well *power_well)
  5439. {
  5440. enum dpio_phy phy;
  5441. WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
  5442. power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
  5443. if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
  5444. phy = DPIO_PHY0;
  5445. assert_pll_disabled(dev_priv, PIPE_A);
  5446. assert_pll_disabled(dev_priv, PIPE_B);
  5447. } else {
  5448. phy = DPIO_PHY1;
  5449. assert_pll_disabled(dev_priv, PIPE_C);
  5450. }
  5451. I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
  5452. ~PHY_COM_LANE_RESET_DEASSERT(phy));
  5453. vlv_set_power_well(dev_priv, power_well, false);
  5454. }
  5455. static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
  5456. struct i915_power_well *power_well)
  5457. {
  5458. enum pipe pipe = power_well->data;
  5459. bool enabled;
  5460. u32 state, ctrl;
  5461. mutex_lock(&dev_priv->rps.hw_lock);
  5462. state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
  5463. /*
  5464. * We only ever set the power-on and power-gate states, anything
  5465. * else is unexpected.
  5466. */
  5467. WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
  5468. enabled = state == DP_SSS_PWR_ON(pipe);
  5469. /*
  5470. * A transient state at this point would mean some unexpected party
  5471. * is poking at the power controls too.
  5472. */
  5473. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
  5474. WARN_ON(ctrl << 16 != state);
  5475. mutex_unlock(&dev_priv->rps.hw_lock);
  5476. return enabled;
  5477. }
  5478. static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
  5479. struct i915_power_well *power_well,
  5480. bool enable)
  5481. {
  5482. enum pipe pipe = power_well->data;
  5483. u32 state;
  5484. u32 ctrl;
  5485. state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
  5486. mutex_lock(&dev_priv->rps.hw_lock);
  5487. #define COND \
  5488. ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
  5489. if (COND)
  5490. goto out;
  5491. ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  5492. ctrl &= ~DP_SSC_MASK(pipe);
  5493. ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
  5494. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
  5495. if (wait_for(COND, 100))
  5496. DRM_ERROR("timout setting power well state %08x (%08x)\n",
  5497. state,
  5498. vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
  5499. #undef COND
  5500. out:
  5501. mutex_unlock(&dev_priv->rps.hw_lock);
  5502. }
  5503. static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
  5504. struct i915_power_well *power_well)
  5505. {
  5506. chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
  5507. }
  5508. static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
  5509. struct i915_power_well *power_well)
  5510. {
  5511. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5512. power_well->data != PIPE_B &&
  5513. power_well->data != PIPE_C);
  5514. chv_set_pipe_power_well(dev_priv, power_well, true);
  5515. }
  5516. static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
  5517. struct i915_power_well *power_well)
  5518. {
  5519. WARN_ON_ONCE(power_well->data != PIPE_A &&
  5520. power_well->data != PIPE_B &&
  5521. power_well->data != PIPE_C);
  5522. chv_set_pipe_power_well(dev_priv, power_well, false);
  5523. }
  5524. static void check_power_well_state(struct drm_i915_private *dev_priv,
  5525. struct i915_power_well *power_well)
  5526. {
  5527. bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
  5528. if (power_well->always_on || !i915.disable_power_well) {
  5529. if (!enabled)
  5530. goto mismatch;
  5531. return;
  5532. }
  5533. if (enabled != (power_well->count > 0))
  5534. goto mismatch;
  5535. return;
  5536. mismatch:
  5537. WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
  5538. power_well->name, power_well->always_on, enabled,
  5539. power_well->count, i915.disable_power_well);
  5540. }
  5541. void intel_display_power_get(struct drm_i915_private *dev_priv,
  5542. enum intel_display_power_domain domain)
  5543. {
  5544. struct i915_power_domains *power_domains;
  5545. struct i915_power_well *power_well;
  5546. int i;
  5547. intel_runtime_pm_get(dev_priv);
  5548. power_domains = &dev_priv->power_domains;
  5549. mutex_lock(&power_domains->lock);
  5550. for_each_power_well(i, power_well, BIT(domain), power_domains) {
  5551. if (!power_well->count++) {
  5552. DRM_DEBUG_KMS("enabling %s\n", power_well->name);
  5553. power_well->ops->enable(dev_priv, power_well);
  5554. power_well->hw_enabled = true;
  5555. }
  5556. check_power_well_state(dev_priv, power_well);
  5557. }
  5558. power_domains->domain_use_count[domain]++;
  5559. mutex_unlock(&power_domains->lock);
  5560. }
  5561. void intel_display_power_put(struct drm_i915_private *dev_priv,
  5562. enum intel_display_power_domain domain)
  5563. {
  5564. struct i915_power_domains *power_domains;
  5565. struct i915_power_well *power_well;
  5566. int i;
  5567. power_domains = &dev_priv->power_domains;
  5568. mutex_lock(&power_domains->lock);
  5569. WARN_ON(!power_domains->domain_use_count[domain]);
  5570. power_domains->domain_use_count[domain]--;
  5571. for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
  5572. WARN_ON(!power_well->count);
  5573. if (!--power_well->count && i915.disable_power_well) {
  5574. DRM_DEBUG_KMS("disabling %s\n", power_well->name);
  5575. power_well->hw_enabled = false;
  5576. power_well->ops->disable(dev_priv, power_well);
  5577. }
  5578. check_power_well_state(dev_priv, power_well);
  5579. }
  5580. mutex_unlock(&power_domains->lock);
  5581. intel_runtime_pm_put(dev_priv);
  5582. }
  5583. static struct i915_power_domains *hsw_pwr;
  5584. /* Display audio driver power well request */
  5585. int i915_request_power_well(void)
  5586. {
  5587. struct drm_i915_private *dev_priv;
  5588. if (!hsw_pwr)
  5589. return -ENODEV;
  5590. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5591. power_domains);
  5592. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  5593. return 0;
  5594. }
  5595. EXPORT_SYMBOL_GPL(i915_request_power_well);
  5596. /* Display audio driver power well release */
  5597. int i915_release_power_well(void)
  5598. {
  5599. struct drm_i915_private *dev_priv;
  5600. if (!hsw_pwr)
  5601. return -ENODEV;
  5602. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5603. power_domains);
  5604. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  5605. return 0;
  5606. }
  5607. EXPORT_SYMBOL_GPL(i915_release_power_well);
  5608. /*
  5609. * Private interface for the audio driver to get CDCLK in kHz.
  5610. *
  5611. * Caller must request power well using i915_request_power_well() prior to
  5612. * making the call.
  5613. */
  5614. int i915_get_cdclk_freq(void)
  5615. {
  5616. struct drm_i915_private *dev_priv;
  5617. if (!hsw_pwr)
  5618. return -ENODEV;
  5619. dev_priv = container_of(hsw_pwr, struct drm_i915_private,
  5620. power_domains);
  5621. return intel_ddi_get_cdclk_freq(dev_priv);
  5622. }
  5623. EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
  5624. #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
  5625. #define HSW_ALWAYS_ON_POWER_DOMAINS ( \
  5626. BIT(POWER_DOMAIN_PIPE_A) | \
  5627. BIT(POWER_DOMAIN_TRANSCODER_EDP) | \
  5628. BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) | \
  5629. BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) | \
  5630. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5631. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5632. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5633. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5634. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5635. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5636. BIT(POWER_DOMAIN_PORT_CRT) | \
  5637. BIT(POWER_DOMAIN_PLLS) | \
  5638. BIT(POWER_DOMAIN_INIT))
  5639. #define HSW_DISPLAY_POWER_DOMAINS ( \
  5640. (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) | \
  5641. BIT(POWER_DOMAIN_INIT))
  5642. #define BDW_ALWAYS_ON_POWER_DOMAINS ( \
  5643. HSW_ALWAYS_ON_POWER_DOMAINS | \
  5644. BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
  5645. #define BDW_DISPLAY_POWER_DOMAINS ( \
  5646. (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) | \
  5647. BIT(POWER_DOMAIN_INIT))
  5648. #define VLV_ALWAYS_ON_POWER_DOMAINS BIT(POWER_DOMAIN_INIT)
  5649. #define VLV_DISPLAY_POWER_DOMAINS POWER_DOMAIN_MASK
  5650. #define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5651. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5652. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5653. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5654. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5655. BIT(POWER_DOMAIN_PORT_CRT) | \
  5656. BIT(POWER_DOMAIN_INIT))
  5657. #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
  5658. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5659. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5660. BIT(POWER_DOMAIN_INIT))
  5661. #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
  5662. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5663. BIT(POWER_DOMAIN_INIT))
  5664. #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
  5665. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5666. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5667. BIT(POWER_DOMAIN_INIT))
  5668. #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
  5669. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5670. BIT(POWER_DOMAIN_INIT))
  5671. #define CHV_PIPE_A_POWER_DOMAINS ( \
  5672. BIT(POWER_DOMAIN_PIPE_A) | \
  5673. BIT(POWER_DOMAIN_INIT))
  5674. #define CHV_PIPE_B_POWER_DOMAINS ( \
  5675. BIT(POWER_DOMAIN_PIPE_B) | \
  5676. BIT(POWER_DOMAIN_INIT))
  5677. #define CHV_PIPE_C_POWER_DOMAINS ( \
  5678. BIT(POWER_DOMAIN_PIPE_C) | \
  5679. BIT(POWER_DOMAIN_INIT))
  5680. #define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
  5681. BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) | \
  5682. BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) | \
  5683. BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) | \
  5684. BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) | \
  5685. BIT(POWER_DOMAIN_INIT))
  5686. #define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
  5687. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5688. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5689. BIT(POWER_DOMAIN_INIT))
  5690. #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS ( \
  5691. BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) | \
  5692. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5693. BIT(POWER_DOMAIN_INIT))
  5694. #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS ( \
  5695. BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) | \
  5696. BIT(POWER_DOMAIN_INIT))
  5697. static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
  5698. .sync_hw = i9xx_always_on_power_well_noop,
  5699. .enable = i9xx_always_on_power_well_noop,
  5700. .disable = i9xx_always_on_power_well_noop,
  5701. .is_enabled = i9xx_always_on_power_well_enabled,
  5702. };
  5703. static const struct i915_power_well_ops chv_pipe_power_well_ops = {
  5704. .sync_hw = chv_pipe_power_well_sync_hw,
  5705. .enable = chv_pipe_power_well_enable,
  5706. .disable = chv_pipe_power_well_disable,
  5707. .is_enabled = chv_pipe_power_well_enabled,
  5708. };
  5709. static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
  5710. .sync_hw = vlv_power_well_sync_hw,
  5711. .enable = chv_dpio_cmn_power_well_enable,
  5712. .disable = chv_dpio_cmn_power_well_disable,
  5713. .is_enabled = vlv_power_well_enabled,
  5714. };
  5715. static struct i915_power_well i9xx_always_on_power_well[] = {
  5716. {
  5717. .name = "always-on",
  5718. .always_on = 1,
  5719. .domains = POWER_DOMAIN_MASK,
  5720. .ops = &i9xx_always_on_power_well_ops,
  5721. },
  5722. };
  5723. static const struct i915_power_well_ops hsw_power_well_ops = {
  5724. .sync_hw = hsw_power_well_sync_hw,
  5725. .enable = hsw_power_well_enable,
  5726. .disable = hsw_power_well_disable,
  5727. .is_enabled = hsw_power_well_enabled,
  5728. };
  5729. static struct i915_power_well hsw_power_wells[] = {
  5730. {
  5731. .name = "always-on",
  5732. .always_on = 1,
  5733. .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
  5734. .ops = &i9xx_always_on_power_well_ops,
  5735. },
  5736. {
  5737. .name = "display",
  5738. .domains = HSW_DISPLAY_POWER_DOMAINS,
  5739. .ops = &hsw_power_well_ops,
  5740. },
  5741. };
  5742. static struct i915_power_well bdw_power_wells[] = {
  5743. {
  5744. .name = "always-on",
  5745. .always_on = 1,
  5746. .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
  5747. .ops = &i9xx_always_on_power_well_ops,
  5748. },
  5749. {
  5750. .name = "display",
  5751. .domains = BDW_DISPLAY_POWER_DOMAINS,
  5752. .ops = &hsw_power_well_ops,
  5753. },
  5754. };
  5755. static const struct i915_power_well_ops vlv_display_power_well_ops = {
  5756. .sync_hw = vlv_power_well_sync_hw,
  5757. .enable = vlv_display_power_well_enable,
  5758. .disable = vlv_display_power_well_disable,
  5759. .is_enabled = vlv_power_well_enabled,
  5760. };
  5761. static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
  5762. .sync_hw = vlv_power_well_sync_hw,
  5763. .enable = vlv_dpio_cmn_power_well_enable,
  5764. .disable = vlv_dpio_cmn_power_well_disable,
  5765. .is_enabled = vlv_power_well_enabled,
  5766. };
  5767. static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
  5768. .sync_hw = vlv_power_well_sync_hw,
  5769. .enable = vlv_power_well_enable,
  5770. .disable = vlv_power_well_disable,
  5771. .is_enabled = vlv_power_well_enabled,
  5772. };
  5773. static struct i915_power_well vlv_power_wells[] = {
  5774. {
  5775. .name = "always-on",
  5776. .always_on = 1,
  5777. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5778. .ops = &i9xx_always_on_power_well_ops,
  5779. },
  5780. {
  5781. .name = "display",
  5782. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5783. .data = PUNIT_POWER_WELL_DISP2D,
  5784. .ops = &vlv_display_power_well_ops,
  5785. },
  5786. {
  5787. .name = "dpio-tx-b-01",
  5788. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5789. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5790. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5791. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5792. .ops = &vlv_dpio_power_well_ops,
  5793. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5794. },
  5795. {
  5796. .name = "dpio-tx-b-23",
  5797. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5798. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5799. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5800. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5801. .ops = &vlv_dpio_power_well_ops,
  5802. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5803. },
  5804. {
  5805. .name = "dpio-tx-c-01",
  5806. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5807. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5808. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5809. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5810. .ops = &vlv_dpio_power_well_ops,
  5811. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5812. },
  5813. {
  5814. .name = "dpio-tx-c-23",
  5815. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5816. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
  5817. VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5818. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5819. .ops = &vlv_dpio_power_well_ops,
  5820. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5821. },
  5822. {
  5823. .name = "dpio-common",
  5824. .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
  5825. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5826. .ops = &vlv_dpio_cmn_power_well_ops,
  5827. },
  5828. };
  5829. static struct i915_power_well chv_power_wells[] = {
  5830. {
  5831. .name = "always-on",
  5832. .always_on = 1,
  5833. .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
  5834. .ops = &i9xx_always_on_power_well_ops,
  5835. },
  5836. #if 0
  5837. {
  5838. .name = "display",
  5839. .domains = VLV_DISPLAY_POWER_DOMAINS,
  5840. .data = PUNIT_POWER_WELL_DISP2D,
  5841. .ops = &vlv_display_power_well_ops,
  5842. },
  5843. {
  5844. .name = "pipe-a",
  5845. .domains = CHV_PIPE_A_POWER_DOMAINS,
  5846. .data = PIPE_A,
  5847. .ops = &chv_pipe_power_well_ops,
  5848. },
  5849. {
  5850. .name = "pipe-b",
  5851. .domains = CHV_PIPE_B_POWER_DOMAINS,
  5852. .data = PIPE_B,
  5853. .ops = &chv_pipe_power_well_ops,
  5854. },
  5855. {
  5856. .name = "pipe-c",
  5857. .domains = CHV_PIPE_C_POWER_DOMAINS,
  5858. .data = PIPE_C,
  5859. .ops = &chv_pipe_power_well_ops,
  5860. },
  5861. #endif
  5862. {
  5863. .name = "dpio-common-bc",
  5864. /*
  5865. * XXX: cmnreset for one PHY seems to disturb the other.
  5866. * As a workaround keep both powered on at the same
  5867. * time for now.
  5868. */
  5869. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5870. .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
  5871. .ops = &chv_dpio_cmn_power_well_ops,
  5872. },
  5873. {
  5874. .name = "dpio-common-d",
  5875. /*
  5876. * XXX: cmnreset for one PHY seems to disturb the other.
  5877. * As a workaround keep both powered on at the same
  5878. * time for now.
  5879. */
  5880. .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
  5881. .data = PUNIT_POWER_WELL_DPIO_CMN_D,
  5882. .ops = &chv_dpio_cmn_power_well_ops,
  5883. },
  5884. #if 0
  5885. {
  5886. .name = "dpio-tx-b-01",
  5887. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5888. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5889. .ops = &vlv_dpio_power_well_ops,
  5890. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
  5891. },
  5892. {
  5893. .name = "dpio-tx-b-23",
  5894. .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
  5895. VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
  5896. .ops = &vlv_dpio_power_well_ops,
  5897. .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
  5898. },
  5899. {
  5900. .name = "dpio-tx-c-01",
  5901. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5902. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5903. .ops = &vlv_dpio_power_well_ops,
  5904. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
  5905. },
  5906. {
  5907. .name = "dpio-tx-c-23",
  5908. .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
  5909. VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
  5910. .ops = &vlv_dpio_power_well_ops,
  5911. .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
  5912. },
  5913. {
  5914. .name = "dpio-tx-d-01",
  5915. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5916. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5917. .ops = &vlv_dpio_power_well_ops,
  5918. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
  5919. },
  5920. {
  5921. .name = "dpio-tx-d-23",
  5922. .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
  5923. CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
  5924. .ops = &vlv_dpio_power_well_ops,
  5925. .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
  5926. },
  5927. #endif
  5928. };
  5929. static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
  5930. enum punit_power_well power_well_id)
  5931. {
  5932. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5933. struct i915_power_well *power_well;
  5934. int i;
  5935. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5936. if (power_well->data == power_well_id)
  5937. return power_well;
  5938. }
  5939. return NULL;
  5940. }
  5941. #define set_power_wells(power_domains, __power_wells) ({ \
  5942. (power_domains)->power_wells = (__power_wells); \
  5943. (power_domains)->power_well_count = ARRAY_SIZE(__power_wells); \
  5944. })
  5945. int intel_power_domains_init(struct drm_i915_private *dev_priv)
  5946. {
  5947. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5948. mutex_init(&power_domains->lock);
  5949. /*
  5950. * The enabling order will be from lower to higher indexed wells,
  5951. * the disabling order is reversed.
  5952. */
  5953. if (IS_HASWELL(dev_priv->dev)) {
  5954. set_power_wells(power_domains, hsw_power_wells);
  5955. hsw_pwr = power_domains;
  5956. } else if (IS_BROADWELL(dev_priv->dev)) {
  5957. set_power_wells(power_domains, bdw_power_wells);
  5958. hsw_pwr = power_domains;
  5959. } else if (IS_CHERRYVIEW(dev_priv->dev)) {
  5960. set_power_wells(power_domains, chv_power_wells);
  5961. } else if (IS_VALLEYVIEW(dev_priv->dev)) {
  5962. set_power_wells(power_domains, vlv_power_wells);
  5963. } else {
  5964. set_power_wells(power_domains, i9xx_always_on_power_well);
  5965. }
  5966. return 0;
  5967. }
  5968. void intel_power_domains_remove(struct drm_i915_private *dev_priv)
  5969. {
  5970. hsw_pwr = NULL;
  5971. }
  5972. static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
  5973. {
  5974. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  5975. struct i915_power_well *power_well;
  5976. int i;
  5977. mutex_lock(&power_domains->lock);
  5978. for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
  5979. power_well->ops->sync_hw(dev_priv, power_well);
  5980. power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
  5981. power_well);
  5982. }
  5983. mutex_unlock(&power_domains->lock);
  5984. }
  5985. static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
  5986. {
  5987. struct i915_power_well *cmn =
  5988. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
  5989. struct i915_power_well *disp2d =
  5990. lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
  5991. /* nothing to do if common lane is already off */
  5992. if (!cmn->ops->is_enabled(dev_priv, cmn))
  5993. return;
  5994. /* If the display might be already active skip this */
  5995. if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
  5996. I915_READ(DPIO_CTL) & DPIO_CMNRST)
  5997. return;
  5998. DRM_DEBUG_KMS("toggling display PHY side reset\n");
  5999. /* cmnlane needs DPLL registers */
  6000. disp2d->ops->enable(dev_priv, disp2d);
  6001. /*
  6002. * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
  6003. * Need to assert and de-assert PHY SB reset by gating the
  6004. * common lane power, then un-gating it.
  6005. * Simply ungating isn't enough to reset the PHY enough to get
  6006. * ports and lanes running.
  6007. */
  6008. cmn->ops->disable(dev_priv, cmn);
  6009. }
  6010. void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
  6011. {
  6012. struct drm_device *dev = dev_priv->dev;
  6013. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  6014. power_domains->initializing = true;
  6015. if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
  6016. mutex_lock(&power_domains->lock);
  6017. vlv_cmnlane_wa(dev_priv);
  6018. mutex_unlock(&power_domains->lock);
  6019. }
  6020. /* For now, we need the power well to be always enabled. */
  6021. intel_display_set_init_power(dev_priv, true);
  6022. intel_power_domains_resume(dev_priv);
  6023. power_domains->initializing = false;
  6024. }
  6025. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  6026. {
  6027. intel_runtime_pm_get(dev_priv);
  6028. }
  6029. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  6030. {
  6031. intel_runtime_pm_put(dev_priv);
  6032. }
  6033. void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
  6034. {
  6035. struct drm_device *dev = dev_priv->dev;
  6036. struct device *device = &dev->pdev->dev;
  6037. if (!HAS_RUNTIME_PM(dev))
  6038. return;
  6039. pm_runtime_get_sync(device);
  6040. WARN(dev_priv->pm.suspended, "Device still suspended.\n");
  6041. }
  6042. void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
  6043. {
  6044. struct drm_device *dev = dev_priv->dev;
  6045. struct device *device = &dev->pdev->dev;
  6046. if (!HAS_RUNTIME_PM(dev))
  6047. return;
  6048. WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
  6049. pm_runtime_get_noresume(device);
  6050. }
  6051. void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
  6052. {
  6053. struct drm_device *dev = dev_priv->dev;
  6054. struct device *device = &dev->pdev->dev;
  6055. if (!HAS_RUNTIME_PM(dev))
  6056. return;
  6057. pm_runtime_mark_last_busy(device);
  6058. pm_runtime_put_autosuspend(device);
  6059. }
  6060. void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
  6061. {
  6062. struct drm_device *dev = dev_priv->dev;
  6063. struct device *device = &dev->pdev->dev;
  6064. if (!HAS_RUNTIME_PM(dev))
  6065. return;
  6066. pm_runtime_set_active(device);
  6067. /*
  6068. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6069. * requirement.
  6070. */
  6071. if (!intel_enable_rc6(dev)) {
  6072. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6073. return;
  6074. }
  6075. pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
  6076. pm_runtime_mark_last_busy(device);
  6077. pm_runtime_use_autosuspend(device);
  6078. pm_runtime_put_autosuspend(device);
  6079. }
  6080. void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
  6081. {
  6082. struct drm_device *dev = dev_priv->dev;
  6083. struct device *device = &dev->pdev->dev;
  6084. if (!HAS_RUNTIME_PM(dev))
  6085. return;
  6086. if (!intel_enable_rc6(dev))
  6087. return;
  6088. /* Make sure we're not suspended first. */
  6089. pm_runtime_get_sync(device);
  6090. pm_runtime_disable(device);
  6091. }
  6092. /* Set up chip specific power management-related functions */
  6093. void intel_init_pm(struct drm_device *dev)
  6094. {
  6095. struct drm_i915_private *dev_priv = dev->dev_private;
  6096. if (HAS_FBC(dev)) {
  6097. if (INTEL_INFO(dev)->gen >= 7) {
  6098. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6099. dev_priv->display.enable_fbc = gen7_enable_fbc;
  6100. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6101. } else if (INTEL_INFO(dev)->gen >= 5) {
  6102. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6103. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  6104. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6105. } else if (IS_GM45(dev)) {
  6106. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  6107. dev_priv->display.enable_fbc = g4x_enable_fbc;
  6108. dev_priv->display.disable_fbc = g4x_disable_fbc;
  6109. } else {
  6110. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  6111. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  6112. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  6113. /* This value was pulled out of someone's hat */
  6114. I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
  6115. }
  6116. }
  6117. /* For cxsr */
  6118. if (IS_PINEVIEW(dev))
  6119. i915_pineview_get_mem_freq(dev);
  6120. else if (IS_GEN5(dev))
  6121. i915_ironlake_get_mem_freq(dev);
  6122. /* For FIFO watermark updates */
  6123. if (HAS_PCH_SPLIT(dev)) {
  6124. ilk_setup_wm_latency(dev);
  6125. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  6126. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  6127. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  6128. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  6129. dev_priv->display.update_wm = ilk_update_wm;
  6130. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  6131. } else {
  6132. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6133. "Disable CxSR\n");
  6134. }
  6135. if (IS_GEN5(dev))
  6136. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  6137. else if (IS_GEN6(dev))
  6138. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  6139. else if (IS_IVYBRIDGE(dev))
  6140. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  6141. else if (IS_HASWELL(dev))
  6142. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  6143. else if (INTEL_INFO(dev)->gen == 8)
  6144. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  6145. else if (INTEL_INFO(dev)->gen == 9)
  6146. dev_priv->display.init_clock_gating = gen9_init_clock_gating;
  6147. } else if (IS_CHERRYVIEW(dev)) {
  6148. dev_priv->display.update_wm = cherryview_update_wm;
  6149. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6150. dev_priv->display.init_clock_gating =
  6151. cherryview_init_clock_gating;
  6152. } else if (IS_VALLEYVIEW(dev)) {
  6153. dev_priv->display.update_wm = valleyview_update_wm;
  6154. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  6155. dev_priv->display.init_clock_gating =
  6156. valleyview_init_clock_gating;
  6157. } else if (IS_PINEVIEW(dev)) {
  6158. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  6159. dev_priv->is_ddr3,
  6160. dev_priv->fsb_freq,
  6161. dev_priv->mem_freq)) {
  6162. DRM_INFO("failed to find known CxSR latency "
  6163. "(found ddr%s fsb freq %d, mem freq %d), "
  6164. "disabling CxSR\n",
  6165. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  6166. dev_priv->fsb_freq, dev_priv->mem_freq);
  6167. /* Disable CxSR and never update its watermark again */
  6168. intel_set_memory_cxsr(dev_priv, false);
  6169. dev_priv->display.update_wm = NULL;
  6170. } else
  6171. dev_priv->display.update_wm = pineview_update_wm;
  6172. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6173. } else if (IS_G4X(dev)) {
  6174. dev_priv->display.update_wm = g4x_update_wm;
  6175. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  6176. } else if (IS_GEN4(dev)) {
  6177. dev_priv->display.update_wm = i965_update_wm;
  6178. if (IS_CRESTLINE(dev))
  6179. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  6180. else if (IS_BROADWATER(dev))
  6181. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  6182. } else if (IS_GEN3(dev)) {
  6183. dev_priv->display.update_wm = i9xx_update_wm;
  6184. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6185. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  6186. } else if (IS_GEN2(dev)) {
  6187. if (INTEL_INFO(dev)->num_pipes == 1) {
  6188. dev_priv->display.update_wm = i845_update_wm;
  6189. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6190. } else {
  6191. dev_priv->display.update_wm = i9xx_update_wm;
  6192. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6193. }
  6194. if (IS_I85X(dev) || IS_I865G(dev))
  6195. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  6196. else
  6197. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  6198. } else {
  6199. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  6200. }
  6201. }
  6202. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  6203. {
  6204. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6205. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6206. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  6207. return -EAGAIN;
  6208. }
  6209. I915_WRITE(GEN6_PCODE_DATA, *val);
  6210. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6211. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6212. 500)) {
  6213. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  6214. return -ETIMEDOUT;
  6215. }
  6216. *val = I915_READ(GEN6_PCODE_DATA);
  6217. I915_WRITE(GEN6_PCODE_DATA, 0);
  6218. return 0;
  6219. }
  6220. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  6221. {
  6222. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  6223. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  6224. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  6225. return -EAGAIN;
  6226. }
  6227. I915_WRITE(GEN6_PCODE_DATA, val);
  6228. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  6229. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6230. 500)) {
  6231. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  6232. return -ETIMEDOUT;
  6233. }
  6234. I915_WRITE(GEN6_PCODE_DATA, 0);
  6235. return 0;
  6236. }
  6237. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6238. {
  6239. int div;
  6240. /* 4 x czclk */
  6241. switch (dev_priv->mem_freq) {
  6242. case 800:
  6243. div = 10;
  6244. break;
  6245. case 1066:
  6246. div = 12;
  6247. break;
  6248. case 1333:
  6249. div = 16;
  6250. break;
  6251. default:
  6252. return -1;
  6253. }
  6254. return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
  6255. }
  6256. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6257. {
  6258. int mul;
  6259. /* 4 x czclk */
  6260. switch (dev_priv->mem_freq) {
  6261. case 800:
  6262. mul = 10;
  6263. break;
  6264. case 1066:
  6265. mul = 12;
  6266. break;
  6267. case 1333:
  6268. mul = 16;
  6269. break;
  6270. default:
  6271. return -1;
  6272. }
  6273. return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
  6274. }
  6275. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6276. {
  6277. int div, freq;
  6278. switch (dev_priv->rps.cz_freq) {
  6279. case 200:
  6280. div = 5;
  6281. break;
  6282. case 267:
  6283. div = 6;
  6284. break;
  6285. case 320:
  6286. case 333:
  6287. case 400:
  6288. div = 8;
  6289. break;
  6290. default:
  6291. return -1;
  6292. }
  6293. freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
  6294. return freq;
  6295. }
  6296. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6297. {
  6298. int mul, opcode;
  6299. switch (dev_priv->rps.cz_freq) {
  6300. case 200:
  6301. mul = 5;
  6302. break;
  6303. case 267:
  6304. mul = 6;
  6305. break;
  6306. case 320:
  6307. case 333:
  6308. case 400:
  6309. mul = 8;
  6310. break;
  6311. default:
  6312. return -1;
  6313. }
  6314. /* CHV needs even values */
  6315. opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
  6316. return opcode;
  6317. }
  6318. int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  6319. {
  6320. int ret = -1;
  6321. if (IS_CHERRYVIEW(dev_priv->dev))
  6322. ret = chv_gpu_freq(dev_priv, val);
  6323. else if (IS_VALLEYVIEW(dev_priv->dev))
  6324. ret = byt_gpu_freq(dev_priv, val);
  6325. return ret;
  6326. }
  6327. int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  6328. {
  6329. int ret = -1;
  6330. if (IS_CHERRYVIEW(dev_priv->dev))
  6331. ret = chv_freq_opcode(dev_priv, val);
  6332. else if (IS_VALLEYVIEW(dev_priv->dev))
  6333. ret = byt_freq_opcode(dev_priv, val);
  6334. return ret;
  6335. }
  6336. void intel_pm_setup(struct drm_device *dev)
  6337. {
  6338. struct drm_i915_private *dev_priv = dev->dev_private;
  6339. mutex_init(&dev_priv->rps.hw_lock);
  6340. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  6341. intel_gen6_powersave_work);
  6342. dev_priv->pm.suspended = false;
  6343. dev_priv->pm._irqs_disabled = false;
  6344. }