ipmr.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <linux/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/cache.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/icmp.h>
  55. #include <net/udp.h>
  56. #include <net/raw.h>
  57. #include <linux/notifier.h>
  58. #include <linux/if_arp.h>
  59. #include <linux/netfilter_ipv4.h>
  60. #include <linux/compat.h>
  61. #include <linux/export.h>
  62. #include <net/ip_tunnels.h>
  63. #include <net/checksum.h>
  64. #include <net/netlink.h>
  65. #include <net/fib_rules.h>
  66. #include <linux/netconf.h>
  67. #include <net/nexthop.h>
  68. #include <net/switchdev.h>
  69. struct ipmr_rule {
  70. struct fib_rule common;
  71. };
  72. struct ipmr_result {
  73. struct mr_table *mrt;
  74. };
  75. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  76. * Note that the changes are semaphored via rtnl_lock.
  77. */
  78. static DEFINE_RWLOCK(mrt_lock);
  79. /* Multicast router control variables */
  80. /* Special spinlock for queue of unresolved entries */
  81. static DEFINE_SPINLOCK(mfc_unres_lock);
  82. /* We return to original Alan's scheme. Hash table of resolved
  83. * entries is changed only in process context and protected
  84. * with weak lock mrt_lock. Queue of unresolved entries is protected
  85. * with strong spinlock mfc_unres_lock.
  86. *
  87. * In this case data path is free of exclusive locks at all.
  88. */
  89. static struct kmem_cache *mrt_cachep __ro_after_init;
  90. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  91. static void ipmr_free_table(struct mr_table *mrt);
  92. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  93. struct net_device *dev, struct sk_buff *skb,
  94. struct mfc_cache *cache, int local);
  95. static int ipmr_cache_report(struct mr_table *mrt,
  96. struct sk_buff *pkt, vifi_t vifi, int assert);
  97. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  98. int cmd);
  99. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
  100. static void mroute_clean_tables(struct mr_table *mrt, bool all);
  101. static void ipmr_expire_process(struct timer_list *t);
  102. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  103. #define ipmr_for_each_table(mrt, net) \
  104. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  105. static struct mr_table *ipmr_mr_table_iter(struct net *net,
  106. struct mr_table *mrt)
  107. {
  108. struct mr_table *ret;
  109. if (!mrt)
  110. ret = list_entry_rcu(net->ipv4.mr_tables.next,
  111. struct mr_table, list);
  112. else
  113. ret = list_entry_rcu(mrt->list.next,
  114. struct mr_table, list);
  115. if (&ret->list == &net->ipv4.mr_tables)
  116. return NULL;
  117. return ret;
  118. }
  119. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  120. {
  121. struct mr_table *mrt;
  122. ipmr_for_each_table(mrt, net) {
  123. if (mrt->id == id)
  124. return mrt;
  125. }
  126. return NULL;
  127. }
  128. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  129. struct mr_table **mrt)
  130. {
  131. int err;
  132. struct ipmr_result res;
  133. struct fib_lookup_arg arg = {
  134. .result = &res,
  135. .flags = FIB_LOOKUP_NOREF,
  136. };
  137. /* update flow if oif or iif point to device enslaved to l3mdev */
  138. l3mdev_update_flow(net, flowi4_to_flowi(flp4));
  139. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  140. flowi4_to_flowi(flp4), 0, &arg);
  141. if (err < 0)
  142. return err;
  143. *mrt = res.mrt;
  144. return 0;
  145. }
  146. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  147. int flags, struct fib_lookup_arg *arg)
  148. {
  149. struct ipmr_result *res = arg->result;
  150. struct mr_table *mrt;
  151. switch (rule->action) {
  152. case FR_ACT_TO_TBL:
  153. break;
  154. case FR_ACT_UNREACHABLE:
  155. return -ENETUNREACH;
  156. case FR_ACT_PROHIBIT:
  157. return -EACCES;
  158. case FR_ACT_BLACKHOLE:
  159. default:
  160. return -EINVAL;
  161. }
  162. arg->table = fib_rule_get_table(rule, arg);
  163. mrt = ipmr_get_table(rule->fr_net, arg->table);
  164. if (!mrt)
  165. return -EAGAIN;
  166. res->mrt = mrt;
  167. return 0;
  168. }
  169. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  170. {
  171. return 1;
  172. }
  173. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  174. FRA_GENERIC_POLICY,
  175. };
  176. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  177. struct fib_rule_hdr *frh, struct nlattr **tb)
  178. {
  179. return 0;
  180. }
  181. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  182. struct nlattr **tb)
  183. {
  184. return 1;
  185. }
  186. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  187. struct fib_rule_hdr *frh)
  188. {
  189. frh->dst_len = 0;
  190. frh->src_len = 0;
  191. frh->tos = 0;
  192. return 0;
  193. }
  194. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  195. .family = RTNL_FAMILY_IPMR,
  196. .rule_size = sizeof(struct ipmr_rule),
  197. .addr_size = sizeof(u32),
  198. .action = ipmr_rule_action,
  199. .match = ipmr_rule_match,
  200. .configure = ipmr_rule_configure,
  201. .compare = ipmr_rule_compare,
  202. .fill = ipmr_rule_fill,
  203. .nlgroup = RTNLGRP_IPV4_RULE,
  204. .policy = ipmr_rule_policy,
  205. .owner = THIS_MODULE,
  206. };
  207. static int __net_init ipmr_rules_init(struct net *net)
  208. {
  209. struct fib_rules_ops *ops;
  210. struct mr_table *mrt;
  211. int err;
  212. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  213. if (IS_ERR(ops))
  214. return PTR_ERR(ops);
  215. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  216. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  217. if (IS_ERR(mrt)) {
  218. err = PTR_ERR(mrt);
  219. goto err1;
  220. }
  221. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  222. if (err < 0)
  223. goto err2;
  224. net->ipv4.mr_rules_ops = ops;
  225. return 0;
  226. err2:
  227. ipmr_free_table(mrt);
  228. err1:
  229. fib_rules_unregister(ops);
  230. return err;
  231. }
  232. static void __net_exit ipmr_rules_exit(struct net *net)
  233. {
  234. struct mr_table *mrt, *next;
  235. rtnl_lock();
  236. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  237. list_del(&mrt->list);
  238. ipmr_free_table(mrt);
  239. }
  240. fib_rules_unregister(net->ipv4.mr_rules_ops);
  241. rtnl_unlock();
  242. }
  243. static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
  244. {
  245. return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
  246. }
  247. static unsigned int ipmr_rules_seq_read(struct net *net)
  248. {
  249. return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
  250. }
  251. bool ipmr_rule_default(const struct fib_rule *rule)
  252. {
  253. return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
  254. }
  255. EXPORT_SYMBOL(ipmr_rule_default);
  256. #else
  257. #define ipmr_for_each_table(mrt, net) \
  258. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  259. static struct mr_table *ipmr_mr_table_iter(struct net *net,
  260. struct mr_table *mrt)
  261. {
  262. if (!mrt)
  263. return net->ipv4.mrt;
  264. return NULL;
  265. }
  266. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  267. {
  268. return net->ipv4.mrt;
  269. }
  270. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  271. struct mr_table **mrt)
  272. {
  273. *mrt = net->ipv4.mrt;
  274. return 0;
  275. }
  276. static int __net_init ipmr_rules_init(struct net *net)
  277. {
  278. struct mr_table *mrt;
  279. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  280. if (IS_ERR(mrt))
  281. return PTR_ERR(mrt);
  282. net->ipv4.mrt = mrt;
  283. return 0;
  284. }
  285. static void __net_exit ipmr_rules_exit(struct net *net)
  286. {
  287. rtnl_lock();
  288. ipmr_free_table(net->ipv4.mrt);
  289. net->ipv4.mrt = NULL;
  290. rtnl_unlock();
  291. }
  292. static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
  293. {
  294. return 0;
  295. }
  296. static unsigned int ipmr_rules_seq_read(struct net *net)
  297. {
  298. return 0;
  299. }
  300. bool ipmr_rule_default(const struct fib_rule *rule)
  301. {
  302. return true;
  303. }
  304. EXPORT_SYMBOL(ipmr_rule_default);
  305. #endif
  306. static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
  307. const void *ptr)
  308. {
  309. const struct mfc_cache_cmp_arg *cmparg = arg->key;
  310. struct mfc_cache *c = (struct mfc_cache *)ptr;
  311. return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
  312. cmparg->mfc_origin != c->mfc_origin;
  313. }
  314. static const struct rhashtable_params ipmr_rht_params = {
  315. .head_offset = offsetof(struct mr_mfc, mnode),
  316. .key_offset = offsetof(struct mfc_cache, cmparg),
  317. .key_len = sizeof(struct mfc_cache_cmp_arg),
  318. .nelem_hint = 3,
  319. .locks_mul = 1,
  320. .obj_cmpfn = ipmr_hash_cmp,
  321. .automatic_shrinking = true,
  322. };
  323. static void ipmr_new_table_set(struct mr_table *mrt,
  324. struct net *net)
  325. {
  326. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  327. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  328. #endif
  329. }
  330. static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
  331. .mfc_mcastgrp = htonl(INADDR_ANY),
  332. .mfc_origin = htonl(INADDR_ANY),
  333. };
  334. static struct mr_table_ops ipmr_mr_table_ops = {
  335. .rht_params = &ipmr_rht_params,
  336. .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
  337. };
  338. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  339. {
  340. struct mr_table *mrt;
  341. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  342. if (id != RT_TABLE_DEFAULT && id >= 1000000000)
  343. return ERR_PTR(-EINVAL);
  344. mrt = ipmr_get_table(net, id);
  345. if (mrt)
  346. return mrt;
  347. return mr_table_alloc(net, id, &ipmr_mr_table_ops,
  348. ipmr_expire_process, ipmr_new_table_set);
  349. }
  350. static void ipmr_free_table(struct mr_table *mrt)
  351. {
  352. del_timer_sync(&mrt->ipmr_expire_timer);
  353. mroute_clean_tables(mrt, true);
  354. rhltable_destroy(&mrt->mfc_hash);
  355. kfree(mrt);
  356. }
  357. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  358. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  359. {
  360. struct net *net = dev_net(dev);
  361. dev_close(dev);
  362. dev = __dev_get_by_name(net, "tunl0");
  363. if (dev) {
  364. const struct net_device_ops *ops = dev->netdev_ops;
  365. struct ifreq ifr;
  366. struct ip_tunnel_parm p;
  367. memset(&p, 0, sizeof(p));
  368. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  369. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  370. p.iph.version = 4;
  371. p.iph.ihl = 5;
  372. p.iph.protocol = IPPROTO_IPIP;
  373. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  374. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  375. if (ops->ndo_do_ioctl) {
  376. mm_segment_t oldfs = get_fs();
  377. set_fs(KERNEL_DS);
  378. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  379. set_fs(oldfs);
  380. }
  381. }
  382. }
  383. /* Initialize ipmr pimreg/tunnel in_device */
  384. static bool ipmr_init_vif_indev(const struct net_device *dev)
  385. {
  386. struct in_device *in_dev;
  387. ASSERT_RTNL();
  388. in_dev = __in_dev_get_rtnl(dev);
  389. if (!in_dev)
  390. return false;
  391. ipv4_devconf_setall(in_dev);
  392. neigh_parms_data_state_setall(in_dev->arp_parms);
  393. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  394. return true;
  395. }
  396. static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  397. {
  398. struct net_device *dev;
  399. dev = __dev_get_by_name(net, "tunl0");
  400. if (dev) {
  401. const struct net_device_ops *ops = dev->netdev_ops;
  402. int err;
  403. struct ifreq ifr;
  404. struct ip_tunnel_parm p;
  405. memset(&p, 0, sizeof(p));
  406. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  407. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  408. p.iph.version = 4;
  409. p.iph.ihl = 5;
  410. p.iph.protocol = IPPROTO_IPIP;
  411. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  412. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  413. if (ops->ndo_do_ioctl) {
  414. mm_segment_t oldfs = get_fs();
  415. set_fs(KERNEL_DS);
  416. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  417. set_fs(oldfs);
  418. } else {
  419. err = -EOPNOTSUPP;
  420. }
  421. dev = NULL;
  422. if (err == 0 &&
  423. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  424. dev->flags |= IFF_MULTICAST;
  425. if (!ipmr_init_vif_indev(dev))
  426. goto failure;
  427. if (dev_open(dev))
  428. goto failure;
  429. dev_hold(dev);
  430. }
  431. }
  432. return dev;
  433. failure:
  434. unregister_netdevice(dev);
  435. return NULL;
  436. }
  437. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  438. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  439. {
  440. struct net *net = dev_net(dev);
  441. struct mr_table *mrt;
  442. struct flowi4 fl4 = {
  443. .flowi4_oif = dev->ifindex,
  444. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  445. .flowi4_mark = skb->mark,
  446. };
  447. int err;
  448. err = ipmr_fib_lookup(net, &fl4, &mrt);
  449. if (err < 0) {
  450. kfree_skb(skb);
  451. return err;
  452. }
  453. read_lock(&mrt_lock);
  454. dev->stats.tx_bytes += skb->len;
  455. dev->stats.tx_packets++;
  456. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  457. read_unlock(&mrt_lock);
  458. kfree_skb(skb);
  459. return NETDEV_TX_OK;
  460. }
  461. static int reg_vif_get_iflink(const struct net_device *dev)
  462. {
  463. return 0;
  464. }
  465. static const struct net_device_ops reg_vif_netdev_ops = {
  466. .ndo_start_xmit = reg_vif_xmit,
  467. .ndo_get_iflink = reg_vif_get_iflink,
  468. };
  469. static void reg_vif_setup(struct net_device *dev)
  470. {
  471. dev->type = ARPHRD_PIMREG;
  472. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  473. dev->flags = IFF_NOARP;
  474. dev->netdev_ops = &reg_vif_netdev_ops;
  475. dev->needs_free_netdev = true;
  476. dev->features |= NETIF_F_NETNS_LOCAL;
  477. }
  478. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  479. {
  480. struct net_device *dev;
  481. char name[IFNAMSIZ];
  482. if (mrt->id == RT_TABLE_DEFAULT)
  483. sprintf(name, "pimreg");
  484. else
  485. sprintf(name, "pimreg%u", mrt->id);
  486. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  487. if (!dev)
  488. return NULL;
  489. dev_net_set(dev, net);
  490. if (register_netdevice(dev)) {
  491. free_netdev(dev);
  492. return NULL;
  493. }
  494. if (!ipmr_init_vif_indev(dev))
  495. goto failure;
  496. if (dev_open(dev))
  497. goto failure;
  498. dev_hold(dev);
  499. return dev;
  500. failure:
  501. unregister_netdevice(dev);
  502. return NULL;
  503. }
  504. /* called with rcu_read_lock() */
  505. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  506. unsigned int pimlen)
  507. {
  508. struct net_device *reg_dev = NULL;
  509. struct iphdr *encap;
  510. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  511. /* Check that:
  512. * a. packet is really sent to a multicast group
  513. * b. packet is not a NULL-REGISTER
  514. * c. packet is not truncated
  515. */
  516. if (!ipv4_is_multicast(encap->daddr) ||
  517. encap->tot_len == 0 ||
  518. ntohs(encap->tot_len) + pimlen > skb->len)
  519. return 1;
  520. read_lock(&mrt_lock);
  521. if (mrt->mroute_reg_vif_num >= 0)
  522. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  523. read_unlock(&mrt_lock);
  524. if (!reg_dev)
  525. return 1;
  526. skb->mac_header = skb->network_header;
  527. skb_pull(skb, (u8 *)encap - skb->data);
  528. skb_reset_network_header(skb);
  529. skb->protocol = htons(ETH_P_IP);
  530. skb->ip_summed = CHECKSUM_NONE;
  531. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  532. netif_rx(skb);
  533. return NET_RX_SUCCESS;
  534. }
  535. #else
  536. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  537. {
  538. return NULL;
  539. }
  540. #endif
  541. static int call_ipmr_vif_entry_notifier(struct notifier_block *nb,
  542. struct net *net,
  543. enum fib_event_type event_type,
  544. struct vif_device *vif,
  545. vifi_t vif_index, u32 tb_id)
  546. {
  547. struct vif_entry_notifier_info info = {
  548. .info = {
  549. .family = RTNL_FAMILY_IPMR,
  550. .net = net,
  551. },
  552. .dev = vif->dev,
  553. .vif_index = vif_index,
  554. .vif_flags = vif->flags,
  555. .tb_id = tb_id,
  556. };
  557. return call_fib_notifier(nb, net, event_type, &info.info);
  558. }
  559. static int call_ipmr_vif_entry_notifiers(struct net *net,
  560. enum fib_event_type event_type,
  561. struct vif_device *vif,
  562. vifi_t vif_index, u32 tb_id)
  563. {
  564. struct vif_entry_notifier_info info = {
  565. .info = {
  566. .family = RTNL_FAMILY_IPMR,
  567. .net = net,
  568. },
  569. .dev = vif->dev,
  570. .vif_index = vif_index,
  571. .vif_flags = vif->flags,
  572. .tb_id = tb_id,
  573. };
  574. ASSERT_RTNL();
  575. net->ipv4.ipmr_seq++;
  576. return call_fib_notifiers(net, event_type, &info.info);
  577. }
  578. static int call_ipmr_mfc_entry_notifier(struct notifier_block *nb,
  579. struct net *net,
  580. enum fib_event_type event_type,
  581. struct mfc_cache *mfc, u32 tb_id)
  582. {
  583. struct mfc_entry_notifier_info info = {
  584. .info = {
  585. .family = RTNL_FAMILY_IPMR,
  586. .net = net,
  587. },
  588. .mfc = mfc,
  589. .tb_id = tb_id
  590. };
  591. return call_fib_notifier(nb, net, event_type, &info.info);
  592. }
  593. static int call_ipmr_mfc_entry_notifiers(struct net *net,
  594. enum fib_event_type event_type,
  595. struct mfc_cache *mfc, u32 tb_id)
  596. {
  597. struct mfc_entry_notifier_info info = {
  598. .info = {
  599. .family = RTNL_FAMILY_IPMR,
  600. .net = net,
  601. },
  602. .mfc = mfc,
  603. .tb_id = tb_id
  604. };
  605. ASSERT_RTNL();
  606. net->ipv4.ipmr_seq++;
  607. return call_fib_notifiers(net, event_type, &info.info);
  608. }
  609. /**
  610. * vif_delete - Delete a VIF entry
  611. * @notify: Set to 1, if the caller is a notifier_call
  612. */
  613. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  614. struct list_head *head)
  615. {
  616. struct net *net = read_pnet(&mrt->net);
  617. struct vif_device *v;
  618. struct net_device *dev;
  619. struct in_device *in_dev;
  620. if (vifi < 0 || vifi >= mrt->maxvif)
  621. return -EADDRNOTAVAIL;
  622. v = &mrt->vif_table[vifi];
  623. if (VIF_EXISTS(mrt, vifi))
  624. call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
  625. mrt->id);
  626. write_lock_bh(&mrt_lock);
  627. dev = v->dev;
  628. v->dev = NULL;
  629. if (!dev) {
  630. write_unlock_bh(&mrt_lock);
  631. return -EADDRNOTAVAIL;
  632. }
  633. if (vifi == mrt->mroute_reg_vif_num)
  634. mrt->mroute_reg_vif_num = -1;
  635. if (vifi + 1 == mrt->maxvif) {
  636. int tmp;
  637. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  638. if (VIF_EXISTS(mrt, tmp))
  639. break;
  640. }
  641. mrt->maxvif = tmp+1;
  642. }
  643. write_unlock_bh(&mrt_lock);
  644. dev_set_allmulti(dev, -1);
  645. in_dev = __in_dev_get_rtnl(dev);
  646. if (in_dev) {
  647. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  648. inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
  649. NETCONFA_MC_FORWARDING,
  650. dev->ifindex, &in_dev->cnf);
  651. ip_rt_multicast_event(in_dev);
  652. }
  653. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  654. unregister_netdevice_queue(dev, head);
  655. dev_put(dev);
  656. return 0;
  657. }
  658. static void ipmr_cache_free_rcu(struct rcu_head *head)
  659. {
  660. struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
  661. kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
  662. }
  663. void ipmr_cache_free(struct mfc_cache *c)
  664. {
  665. call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
  666. }
  667. EXPORT_SYMBOL(ipmr_cache_free);
  668. /* Destroy an unresolved cache entry, killing queued skbs
  669. * and reporting error to netlink readers.
  670. */
  671. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  672. {
  673. struct net *net = read_pnet(&mrt->net);
  674. struct sk_buff *skb;
  675. struct nlmsgerr *e;
  676. atomic_dec(&mrt->cache_resolve_queue_len);
  677. while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
  678. if (ip_hdr(skb)->version == 0) {
  679. struct nlmsghdr *nlh = skb_pull(skb,
  680. sizeof(struct iphdr));
  681. nlh->nlmsg_type = NLMSG_ERROR;
  682. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  683. skb_trim(skb, nlh->nlmsg_len);
  684. e = nlmsg_data(nlh);
  685. e->error = -ETIMEDOUT;
  686. memset(&e->msg, 0, sizeof(e->msg));
  687. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  688. } else {
  689. kfree_skb(skb);
  690. }
  691. }
  692. ipmr_cache_free(c);
  693. }
  694. /* Timer process for the unresolved queue. */
  695. static void ipmr_expire_process(struct timer_list *t)
  696. {
  697. struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
  698. struct mr_mfc *c, *next;
  699. unsigned long expires;
  700. unsigned long now;
  701. if (!spin_trylock(&mfc_unres_lock)) {
  702. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  703. return;
  704. }
  705. if (list_empty(&mrt->mfc_unres_queue))
  706. goto out;
  707. now = jiffies;
  708. expires = 10*HZ;
  709. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  710. if (time_after(c->mfc_un.unres.expires, now)) {
  711. unsigned long interval = c->mfc_un.unres.expires - now;
  712. if (interval < expires)
  713. expires = interval;
  714. continue;
  715. }
  716. list_del(&c->list);
  717. mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
  718. ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
  719. }
  720. if (!list_empty(&mrt->mfc_unres_queue))
  721. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  722. out:
  723. spin_unlock(&mfc_unres_lock);
  724. }
  725. /* Fill oifs list. It is called under write locked mrt_lock. */
  726. static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
  727. unsigned char *ttls)
  728. {
  729. int vifi;
  730. cache->mfc_un.res.minvif = MAXVIFS;
  731. cache->mfc_un.res.maxvif = 0;
  732. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  733. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  734. if (VIF_EXISTS(mrt, vifi) &&
  735. ttls[vifi] && ttls[vifi] < 255) {
  736. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  737. if (cache->mfc_un.res.minvif > vifi)
  738. cache->mfc_un.res.minvif = vifi;
  739. if (cache->mfc_un.res.maxvif <= vifi)
  740. cache->mfc_un.res.maxvif = vifi + 1;
  741. }
  742. }
  743. cache->mfc_un.res.lastuse = jiffies;
  744. }
  745. static int vif_add(struct net *net, struct mr_table *mrt,
  746. struct vifctl *vifc, int mrtsock)
  747. {
  748. int vifi = vifc->vifc_vifi;
  749. struct switchdev_attr attr = {
  750. .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
  751. };
  752. struct vif_device *v = &mrt->vif_table[vifi];
  753. struct net_device *dev;
  754. struct in_device *in_dev;
  755. int err;
  756. /* Is vif busy ? */
  757. if (VIF_EXISTS(mrt, vifi))
  758. return -EADDRINUSE;
  759. switch (vifc->vifc_flags) {
  760. case VIFF_REGISTER:
  761. if (!ipmr_pimsm_enabled())
  762. return -EINVAL;
  763. /* Special Purpose VIF in PIM
  764. * All the packets will be sent to the daemon
  765. */
  766. if (mrt->mroute_reg_vif_num >= 0)
  767. return -EADDRINUSE;
  768. dev = ipmr_reg_vif(net, mrt);
  769. if (!dev)
  770. return -ENOBUFS;
  771. err = dev_set_allmulti(dev, 1);
  772. if (err) {
  773. unregister_netdevice(dev);
  774. dev_put(dev);
  775. return err;
  776. }
  777. break;
  778. case VIFF_TUNNEL:
  779. dev = ipmr_new_tunnel(net, vifc);
  780. if (!dev)
  781. return -ENOBUFS;
  782. err = dev_set_allmulti(dev, 1);
  783. if (err) {
  784. ipmr_del_tunnel(dev, vifc);
  785. dev_put(dev);
  786. return err;
  787. }
  788. break;
  789. case VIFF_USE_IFINDEX:
  790. case 0:
  791. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  792. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  793. if (dev && !__in_dev_get_rtnl(dev)) {
  794. dev_put(dev);
  795. return -EADDRNOTAVAIL;
  796. }
  797. } else {
  798. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  799. }
  800. if (!dev)
  801. return -EADDRNOTAVAIL;
  802. err = dev_set_allmulti(dev, 1);
  803. if (err) {
  804. dev_put(dev);
  805. return err;
  806. }
  807. break;
  808. default:
  809. return -EINVAL;
  810. }
  811. in_dev = __in_dev_get_rtnl(dev);
  812. if (!in_dev) {
  813. dev_put(dev);
  814. return -EADDRNOTAVAIL;
  815. }
  816. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  817. inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
  818. dev->ifindex, &in_dev->cnf);
  819. ip_rt_multicast_event(in_dev);
  820. /* Fill in the VIF structures */
  821. vif_device_init(v, dev, vifc->vifc_rate_limit,
  822. vifc->vifc_threshold,
  823. vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
  824. (VIFF_TUNNEL | VIFF_REGISTER));
  825. attr.orig_dev = dev;
  826. if (!switchdev_port_attr_get(dev, &attr)) {
  827. memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
  828. v->dev_parent_id.id_len = attr.u.ppid.id_len;
  829. } else {
  830. v->dev_parent_id.id_len = 0;
  831. }
  832. v->local = vifc->vifc_lcl_addr.s_addr;
  833. v->remote = vifc->vifc_rmt_addr.s_addr;
  834. /* And finish update writing critical data */
  835. write_lock_bh(&mrt_lock);
  836. v->dev = dev;
  837. if (v->flags & VIFF_REGISTER)
  838. mrt->mroute_reg_vif_num = vifi;
  839. if (vifi+1 > mrt->maxvif)
  840. mrt->maxvif = vifi+1;
  841. write_unlock_bh(&mrt_lock);
  842. call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
  843. return 0;
  844. }
  845. /* called with rcu_read_lock() */
  846. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  847. __be32 origin,
  848. __be32 mcastgrp)
  849. {
  850. struct mfc_cache_cmp_arg arg = {
  851. .mfc_mcastgrp = mcastgrp,
  852. .mfc_origin = origin
  853. };
  854. return mr_mfc_find(mrt, &arg);
  855. }
  856. /* Look for a (*,G) entry */
  857. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  858. __be32 mcastgrp, int vifi)
  859. {
  860. struct mfc_cache_cmp_arg arg = {
  861. .mfc_mcastgrp = mcastgrp,
  862. .mfc_origin = htonl(INADDR_ANY)
  863. };
  864. if (mcastgrp == htonl(INADDR_ANY))
  865. return mr_mfc_find_any_parent(mrt, vifi);
  866. return mr_mfc_find_any(mrt, vifi, &arg);
  867. }
  868. /* Look for a (S,G,iif) entry if parent != -1 */
  869. static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
  870. __be32 origin, __be32 mcastgrp,
  871. int parent)
  872. {
  873. struct mfc_cache_cmp_arg arg = {
  874. .mfc_mcastgrp = mcastgrp,
  875. .mfc_origin = origin,
  876. };
  877. return mr_mfc_find_parent(mrt, &arg, parent);
  878. }
  879. /* Allocate a multicast cache entry */
  880. static struct mfc_cache *ipmr_cache_alloc(void)
  881. {
  882. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  883. if (c) {
  884. c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
  885. c->_c.mfc_un.res.minvif = MAXVIFS;
  886. refcount_set(&c->_c.mfc_un.res.refcount, 1);
  887. }
  888. return c;
  889. }
  890. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  891. {
  892. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  893. if (c) {
  894. skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
  895. c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
  896. }
  897. return c;
  898. }
  899. /* A cache entry has gone into a resolved state from queued */
  900. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  901. struct mfc_cache *uc, struct mfc_cache *c)
  902. {
  903. struct sk_buff *skb;
  904. struct nlmsgerr *e;
  905. /* Play the pending entries through our router */
  906. while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
  907. if (ip_hdr(skb)->version == 0) {
  908. struct nlmsghdr *nlh = skb_pull(skb,
  909. sizeof(struct iphdr));
  910. if (mr_fill_mroute(mrt, skb, &c->_c,
  911. nlmsg_data(nlh)) > 0) {
  912. nlh->nlmsg_len = skb_tail_pointer(skb) -
  913. (u8 *)nlh;
  914. } else {
  915. nlh->nlmsg_type = NLMSG_ERROR;
  916. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  917. skb_trim(skb, nlh->nlmsg_len);
  918. e = nlmsg_data(nlh);
  919. e->error = -EMSGSIZE;
  920. memset(&e->msg, 0, sizeof(e->msg));
  921. }
  922. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  923. } else {
  924. ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
  925. }
  926. }
  927. }
  928. /* Bounce a cache query up to mrouted and netlink.
  929. *
  930. * Called under mrt_lock.
  931. */
  932. static int ipmr_cache_report(struct mr_table *mrt,
  933. struct sk_buff *pkt, vifi_t vifi, int assert)
  934. {
  935. const int ihl = ip_hdrlen(pkt);
  936. struct sock *mroute_sk;
  937. struct igmphdr *igmp;
  938. struct igmpmsg *msg;
  939. struct sk_buff *skb;
  940. int ret;
  941. if (assert == IGMPMSG_WHOLEPKT)
  942. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  943. else
  944. skb = alloc_skb(128, GFP_ATOMIC);
  945. if (!skb)
  946. return -ENOBUFS;
  947. if (assert == IGMPMSG_WHOLEPKT) {
  948. /* Ugly, but we have no choice with this interface.
  949. * Duplicate old header, fix ihl, length etc.
  950. * And all this only to mangle msg->im_msgtype and
  951. * to set msg->im_mbz to "mbz" :-)
  952. */
  953. skb_push(skb, sizeof(struct iphdr));
  954. skb_reset_network_header(skb);
  955. skb_reset_transport_header(skb);
  956. msg = (struct igmpmsg *)skb_network_header(skb);
  957. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  958. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  959. msg->im_mbz = 0;
  960. msg->im_vif = mrt->mroute_reg_vif_num;
  961. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  962. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  963. sizeof(struct iphdr));
  964. } else {
  965. /* Copy the IP header */
  966. skb_set_network_header(skb, skb->len);
  967. skb_put(skb, ihl);
  968. skb_copy_to_linear_data(skb, pkt->data, ihl);
  969. /* Flag to the kernel this is a route add */
  970. ip_hdr(skb)->protocol = 0;
  971. msg = (struct igmpmsg *)skb_network_header(skb);
  972. msg->im_vif = vifi;
  973. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  974. /* Add our header */
  975. igmp = skb_put(skb, sizeof(struct igmphdr));
  976. igmp->type = assert;
  977. msg->im_msgtype = assert;
  978. igmp->code = 0;
  979. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  980. skb->transport_header = skb->network_header;
  981. }
  982. rcu_read_lock();
  983. mroute_sk = rcu_dereference(mrt->mroute_sk);
  984. if (!mroute_sk) {
  985. rcu_read_unlock();
  986. kfree_skb(skb);
  987. return -EINVAL;
  988. }
  989. igmpmsg_netlink_event(mrt, skb);
  990. /* Deliver to mrouted */
  991. ret = sock_queue_rcv_skb(mroute_sk, skb);
  992. rcu_read_unlock();
  993. if (ret < 0) {
  994. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  995. kfree_skb(skb);
  996. }
  997. return ret;
  998. }
  999. /* Queue a packet for resolution. It gets locked cache entry! */
  1000. static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
  1001. struct sk_buff *skb, struct net_device *dev)
  1002. {
  1003. const struct iphdr *iph = ip_hdr(skb);
  1004. struct mfc_cache *c;
  1005. bool found = false;
  1006. int err;
  1007. spin_lock_bh(&mfc_unres_lock);
  1008. list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
  1009. if (c->mfc_mcastgrp == iph->daddr &&
  1010. c->mfc_origin == iph->saddr) {
  1011. found = true;
  1012. break;
  1013. }
  1014. }
  1015. if (!found) {
  1016. /* Create a new entry if allowable */
  1017. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  1018. (c = ipmr_cache_alloc_unres()) == NULL) {
  1019. spin_unlock_bh(&mfc_unres_lock);
  1020. kfree_skb(skb);
  1021. return -ENOBUFS;
  1022. }
  1023. /* Fill in the new cache entry */
  1024. c->_c.mfc_parent = -1;
  1025. c->mfc_origin = iph->saddr;
  1026. c->mfc_mcastgrp = iph->daddr;
  1027. /* Reflect first query at mrouted. */
  1028. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  1029. if (err < 0) {
  1030. /* If the report failed throw the cache entry
  1031. out - Brad Parker
  1032. */
  1033. spin_unlock_bh(&mfc_unres_lock);
  1034. ipmr_cache_free(c);
  1035. kfree_skb(skb);
  1036. return err;
  1037. }
  1038. atomic_inc(&mrt->cache_resolve_queue_len);
  1039. list_add(&c->_c.list, &mrt->mfc_unres_queue);
  1040. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1041. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  1042. mod_timer(&mrt->ipmr_expire_timer,
  1043. c->_c.mfc_un.unres.expires);
  1044. }
  1045. /* See if we can append the packet */
  1046. if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
  1047. kfree_skb(skb);
  1048. err = -ENOBUFS;
  1049. } else {
  1050. if (dev) {
  1051. skb->dev = dev;
  1052. skb->skb_iif = dev->ifindex;
  1053. }
  1054. skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
  1055. err = 0;
  1056. }
  1057. spin_unlock_bh(&mfc_unres_lock);
  1058. return err;
  1059. }
  1060. /* MFC cache manipulation by user space mroute daemon */
  1061. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  1062. {
  1063. struct net *net = read_pnet(&mrt->net);
  1064. struct mfc_cache *c;
  1065. /* The entries are added/deleted only under RTNL */
  1066. rcu_read_lock();
  1067. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  1068. mfc->mfcc_mcastgrp.s_addr, parent);
  1069. rcu_read_unlock();
  1070. if (!c)
  1071. return -ENOENT;
  1072. rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
  1073. list_del_rcu(&c->_c.list);
  1074. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
  1075. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1076. ipmr_cache_put(c);
  1077. return 0;
  1078. }
  1079. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  1080. struct mfcctl *mfc, int mrtsock, int parent)
  1081. {
  1082. struct mfc_cache *uc, *c;
  1083. struct mr_mfc *_uc;
  1084. bool found;
  1085. int ret;
  1086. if (mfc->mfcc_parent >= MAXVIFS)
  1087. return -ENFILE;
  1088. /* The entries are added/deleted only under RTNL */
  1089. rcu_read_lock();
  1090. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  1091. mfc->mfcc_mcastgrp.s_addr, parent);
  1092. rcu_read_unlock();
  1093. if (c) {
  1094. write_lock_bh(&mrt_lock);
  1095. c->_c.mfc_parent = mfc->mfcc_parent;
  1096. ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
  1097. if (!mrtsock)
  1098. c->_c.mfc_flags |= MFC_STATIC;
  1099. write_unlock_bh(&mrt_lock);
  1100. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
  1101. mrt->id);
  1102. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1103. return 0;
  1104. }
  1105. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  1106. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  1107. return -EINVAL;
  1108. c = ipmr_cache_alloc();
  1109. if (!c)
  1110. return -ENOMEM;
  1111. c->mfc_origin = mfc->mfcc_origin.s_addr;
  1112. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  1113. c->_c.mfc_parent = mfc->mfcc_parent;
  1114. ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
  1115. if (!mrtsock)
  1116. c->_c.mfc_flags |= MFC_STATIC;
  1117. ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
  1118. ipmr_rht_params);
  1119. if (ret) {
  1120. pr_err("ipmr: rhtable insert error %d\n", ret);
  1121. ipmr_cache_free(c);
  1122. return ret;
  1123. }
  1124. list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
  1125. /* Check to see if we resolved a queued list. If so we
  1126. * need to send on the frames and tidy up.
  1127. */
  1128. found = false;
  1129. spin_lock_bh(&mfc_unres_lock);
  1130. list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
  1131. uc = (struct mfc_cache *)_uc;
  1132. if (uc->mfc_origin == c->mfc_origin &&
  1133. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  1134. list_del(&_uc->list);
  1135. atomic_dec(&mrt->cache_resolve_queue_len);
  1136. found = true;
  1137. break;
  1138. }
  1139. }
  1140. if (list_empty(&mrt->mfc_unres_queue))
  1141. del_timer(&mrt->ipmr_expire_timer);
  1142. spin_unlock_bh(&mfc_unres_lock);
  1143. if (found) {
  1144. ipmr_cache_resolve(net, mrt, uc, c);
  1145. ipmr_cache_free(uc);
  1146. }
  1147. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
  1148. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1149. return 0;
  1150. }
  1151. /* Close the multicast socket, and clear the vif tables etc */
  1152. static void mroute_clean_tables(struct mr_table *mrt, bool all)
  1153. {
  1154. struct net *net = read_pnet(&mrt->net);
  1155. struct mr_mfc *c, *tmp;
  1156. struct mfc_cache *cache;
  1157. LIST_HEAD(list);
  1158. int i;
  1159. /* Shut down all active vif entries */
  1160. for (i = 0; i < mrt->maxvif; i++) {
  1161. if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
  1162. continue;
  1163. vif_delete(mrt, i, 0, &list);
  1164. }
  1165. unregister_netdevice_many(&list);
  1166. /* Wipe the cache */
  1167. list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
  1168. if (!all && (c->mfc_flags & MFC_STATIC))
  1169. continue;
  1170. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  1171. list_del_rcu(&c->list);
  1172. cache = (struct mfc_cache *)c;
  1173. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
  1174. mrt->id);
  1175. mroute_netlink_event(mrt, cache, RTM_DELROUTE);
  1176. ipmr_cache_put(cache);
  1177. }
  1178. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1179. spin_lock_bh(&mfc_unres_lock);
  1180. list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
  1181. list_del(&c->list);
  1182. cache = (struct mfc_cache *)c;
  1183. mroute_netlink_event(mrt, cache, RTM_DELROUTE);
  1184. ipmr_destroy_unres(mrt, cache);
  1185. }
  1186. spin_unlock_bh(&mfc_unres_lock);
  1187. }
  1188. }
  1189. /* called from ip_ra_control(), before an RCU grace period,
  1190. * we dont need to call synchronize_rcu() here
  1191. */
  1192. static void mrtsock_destruct(struct sock *sk)
  1193. {
  1194. struct net *net = sock_net(sk);
  1195. struct mr_table *mrt;
  1196. ASSERT_RTNL();
  1197. ipmr_for_each_table(mrt, net) {
  1198. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1199. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1200. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1201. NETCONFA_MC_FORWARDING,
  1202. NETCONFA_IFINDEX_ALL,
  1203. net->ipv4.devconf_all);
  1204. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1205. mroute_clean_tables(mrt, false);
  1206. }
  1207. }
  1208. }
  1209. /* Socket options and virtual interface manipulation. The whole
  1210. * virtual interface system is a complete heap, but unfortunately
  1211. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1212. * MOSPF/PIM router set up we can clean this up.
  1213. */
  1214. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
  1215. unsigned int optlen)
  1216. {
  1217. struct net *net = sock_net(sk);
  1218. int val, ret = 0, parent = 0;
  1219. struct mr_table *mrt;
  1220. struct vifctl vif;
  1221. struct mfcctl mfc;
  1222. u32 uval;
  1223. /* There's one exception to the lock - MRT_DONE which needs to unlock */
  1224. rtnl_lock();
  1225. if (sk->sk_type != SOCK_RAW ||
  1226. inet_sk(sk)->inet_num != IPPROTO_IGMP) {
  1227. ret = -EOPNOTSUPP;
  1228. goto out_unlock;
  1229. }
  1230. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1231. if (!mrt) {
  1232. ret = -ENOENT;
  1233. goto out_unlock;
  1234. }
  1235. if (optname != MRT_INIT) {
  1236. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1237. !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1238. ret = -EACCES;
  1239. goto out_unlock;
  1240. }
  1241. }
  1242. switch (optname) {
  1243. case MRT_INIT:
  1244. if (optlen != sizeof(int)) {
  1245. ret = -EINVAL;
  1246. break;
  1247. }
  1248. if (rtnl_dereference(mrt->mroute_sk)) {
  1249. ret = -EADDRINUSE;
  1250. break;
  1251. }
  1252. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1253. if (ret == 0) {
  1254. rcu_assign_pointer(mrt->mroute_sk, sk);
  1255. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1256. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1257. NETCONFA_MC_FORWARDING,
  1258. NETCONFA_IFINDEX_ALL,
  1259. net->ipv4.devconf_all);
  1260. }
  1261. break;
  1262. case MRT_DONE:
  1263. if (sk != rcu_access_pointer(mrt->mroute_sk)) {
  1264. ret = -EACCES;
  1265. } else {
  1266. ret = ip_ra_control(sk, 0, NULL);
  1267. goto out_unlock;
  1268. }
  1269. break;
  1270. case MRT_ADD_VIF:
  1271. case MRT_DEL_VIF:
  1272. if (optlen != sizeof(vif)) {
  1273. ret = -EINVAL;
  1274. break;
  1275. }
  1276. if (copy_from_user(&vif, optval, sizeof(vif))) {
  1277. ret = -EFAULT;
  1278. break;
  1279. }
  1280. if (vif.vifc_vifi >= MAXVIFS) {
  1281. ret = -ENFILE;
  1282. break;
  1283. }
  1284. if (optname == MRT_ADD_VIF) {
  1285. ret = vif_add(net, mrt, &vif,
  1286. sk == rtnl_dereference(mrt->mroute_sk));
  1287. } else {
  1288. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1289. }
  1290. break;
  1291. /* Manipulate the forwarding caches. These live
  1292. * in a sort of kernel/user symbiosis.
  1293. */
  1294. case MRT_ADD_MFC:
  1295. case MRT_DEL_MFC:
  1296. parent = -1;
  1297. /* fall through */
  1298. case MRT_ADD_MFC_PROXY:
  1299. case MRT_DEL_MFC_PROXY:
  1300. if (optlen != sizeof(mfc)) {
  1301. ret = -EINVAL;
  1302. break;
  1303. }
  1304. if (copy_from_user(&mfc, optval, sizeof(mfc))) {
  1305. ret = -EFAULT;
  1306. break;
  1307. }
  1308. if (parent == 0)
  1309. parent = mfc.mfcc_parent;
  1310. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1311. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1312. else
  1313. ret = ipmr_mfc_add(net, mrt, &mfc,
  1314. sk == rtnl_dereference(mrt->mroute_sk),
  1315. parent);
  1316. break;
  1317. /* Control PIM assert. */
  1318. case MRT_ASSERT:
  1319. if (optlen != sizeof(val)) {
  1320. ret = -EINVAL;
  1321. break;
  1322. }
  1323. if (get_user(val, (int __user *)optval)) {
  1324. ret = -EFAULT;
  1325. break;
  1326. }
  1327. mrt->mroute_do_assert = val;
  1328. break;
  1329. case MRT_PIM:
  1330. if (!ipmr_pimsm_enabled()) {
  1331. ret = -ENOPROTOOPT;
  1332. break;
  1333. }
  1334. if (optlen != sizeof(val)) {
  1335. ret = -EINVAL;
  1336. break;
  1337. }
  1338. if (get_user(val, (int __user *)optval)) {
  1339. ret = -EFAULT;
  1340. break;
  1341. }
  1342. val = !!val;
  1343. if (val != mrt->mroute_do_pim) {
  1344. mrt->mroute_do_pim = val;
  1345. mrt->mroute_do_assert = val;
  1346. }
  1347. break;
  1348. case MRT_TABLE:
  1349. if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
  1350. ret = -ENOPROTOOPT;
  1351. break;
  1352. }
  1353. if (optlen != sizeof(uval)) {
  1354. ret = -EINVAL;
  1355. break;
  1356. }
  1357. if (get_user(uval, (u32 __user *)optval)) {
  1358. ret = -EFAULT;
  1359. break;
  1360. }
  1361. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1362. ret = -EBUSY;
  1363. } else {
  1364. mrt = ipmr_new_table(net, uval);
  1365. if (IS_ERR(mrt))
  1366. ret = PTR_ERR(mrt);
  1367. else
  1368. raw_sk(sk)->ipmr_table = uval;
  1369. }
  1370. break;
  1371. /* Spurious command, or MRT_VERSION which you cannot set. */
  1372. default:
  1373. ret = -ENOPROTOOPT;
  1374. }
  1375. out_unlock:
  1376. rtnl_unlock();
  1377. return ret;
  1378. }
  1379. /* Getsock opt support for the multicast routing system. */
  1380. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1381. {
  1382. int olr;
  1383. int val;
  1384. struct net *net = sock_net(sk);
  1385. struct mr_table *mrt;
  1386. if (sk->sk_type != SOCK_RAW ||
  1387. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1388. return -EOPNOTSUPP;
  1389. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1390. if (!mrt)
  1391. return -ENOENT;
  1392. switch (optname) {
  1393. case MRT_VERSION:
  1394. val = 0x0305;
  1395. break;
  1396. case MRT_PIM:
  1397. if (!ipmr_pimsm_enabled())
  1398. return -ENOPROTOOPT;
  1399. val = mrt->mroute_do_pim;
  1400. break;
  1401. case MRT_ASSERT:
  1402. val = mrt->mroute_do_assert;
  1403. break;
  1404. default:
  1405. return -ENOPROTOOPT;
  1406. }
  1407. if (get_user(olr, optlen))
  1408. return -EFAULT;
  1409. olr = min_t(unsigned int, olr, sizeof(int));
  1410. if (olr < 0)
  1411. return -EINVAL;
  1412. if (put_user(olr, optlen))
  1413. return -EFAULT;
  1414. if (copy_to_user(optval, &val, olr))
  1415. return -EFAULT;
  1416. return 0;
  1417. }
  1418. /* The IP multicast ioctl support routines. */
  1419. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1420. {
  1421. struct sioc_sg_req sr;
  1422. struct sioc_vif_req vr;
  1423. struct vif_device *vif;
  1424. struct mfc_cache *c;
  1425. struct net *net = sock_net(sk);
  1426. struct mr_table *mrt;
  1427. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1428. if (!mrt)
  1429. return -ENOENT;
  1430. switch (cmd) {
  1431. case SIOCGETVIFCNT:
  1432. if (copy_from_user(&vr, arg, sizeof(vr)))
  1433. return -EFAULT;
  1434. if (vr.vifi >= mrt->maxvif)
  1435. return -EINVAL;
  1436. read_lock(&mrt_lock);
  1437. vif = &mrt->vif_table[vr.vifi];
  1438. if (VIF_EXISTS(mrt, vr.vifi)) {
  1439. vr.icount = vif->pkt_in;
  1440. vr.ocount = vif->pkt_out;
  1441. vr.ibytes = vif->bytes_in;
  1442. vr.obytes = vif->bytes_out;
  1443. read_unlock(&mrt_lock);
  1444. if (copy_to_user(arg, &vr, sizeof(vr)))
  1445. return -EFAULT;
  1446. return 0;
  1447. }
  1448. read_unlock(&mrt_lock);
  1449. return -EADDRNOTAVAIL;
  1450. case SIOCGETSGCNT:
  1451. if (copy_from_user(&sr, arg, sizeof(sr)))
  1452. return -EFAULT;
  1453. rcu_read_lock();
  1454. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1455. if (c) {
  1456. sr.pktcnt = c->_c.mfc_un.res.pkt;
  1457. sr.bytecnt = c->_c.mfc_un.res.bytes;
  1458. sr.wrong_if = c->_c.mfc_un.res.wrong_if;
  1459. rcu_read_unlock();
  1460. if (copy_to_user(arg, &sr, sizeof(sr)))
  1461. return -EFAULT;
  1462. return 0;
  1463. }
  1464. rcu_read_unlock();
  1465. return -EADDRNOTAVAIL;
  1466. default:
  1467. return -ENOIOCTLCMD;
  1468. }
  1469. }
  1470. #ifdef CONFIG_COMPAT
  1471. struct compat_sioc_sg_req {
  1472. struct in_addr src;
  1473. struct in_addr grp;
  1474. compat_ulong_t pktcnt;
  1475. compat_ulong_t bytecnt;
  1476. compat_ulong_t wrong_if;
  1477. };
  1478. struct compat_sioc_vif_req {
  1479. vifi_t vifi; /* Which iface */
  1480. compat_ulong_t icount;
  1481. compat_ulong_t ocount;
  1482. compat_ulong_t ibytes;
  1483. compat_ulong_t obytes;
  1484. };
  1485. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1486. {
  1487. struct compat_sioc_sg_req sr;
  1488. struct compat_sioc_vif_req vr;
  1489. struct vif_device *vif;
  1490. struct mfc_cache *c;
  1491. struct net *net = sock_net(sk);
  1492. struct mr_table *mrt;
  1493. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1494. if (!mrt)
  1495. return -ENOENT;
  1496. switch (cmd) {
  1497. case SIOCGETVIFCNT:
  1498. if (copy_from_user(&vr, arg, sizeof(vr)))
  1499. return -EFAULT;
  1500. if (vr.vifi >= mrt->maxvif)
  1501. return -EINVAL;
  1502. read_lock(&mrt_lock);
  1503. vif = &mrt->vif_table[vr.vifi];
  1504. if (VIF_EXISTS(mrt, vr.vifi)) {
  1505. vr.icount = vif->pkt_in;
  1506. vr.ocount = vif->pkt_out;
  1507. vr.ibytes = vif->bytes_in;
  1508. vr.obytes = vif->bytes_out;
  1509. read_unlock(&mrt_lock);
  1510. if (copy_to_user(arg, &vr, sizeof(vr)))
  1511. return -EFAULT;
  1512. return 0;
  1513. }
  1514. read_unlock(&mrt_lock);
  1515. return -EADDRNOTAVAIL;
  1516. case SIOCGETSGCNT:
  1517. if (copy_from_user(&sr, arg, sizeof(sr)))
  1518. return -EFAULT;
  1519. rcu_read_lock();
  1520. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1521. if (c) {
  1522. sr.pktcnt = c->_c.mfc_un.res.pkt;
  1523. sr.bytecnt = c->_c.mfc_un.res.bytes;
  1524. sr.wrong_if = c->_c.mfc_un.res.wrong_if;
  1525. rcu_read_unlock();
  1526. if (copy_to_user(arg, &sr, sizeof(sr)))
  1527. return -EFAULT;
  1528. return 0;
  1529. }
  1530. rcu_read_unlock();
  1531. return -EADDRNOTAVAIL;
  1532. default:
  1533. return -ENOIOCTLCMD;
  1534. }
  1535. }
  1536. #endif
  1537. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1538. {
  1539. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1540. struct net *net = dev_net(dev);
  1541. struct mr_table *mrt;
  1542. struct vif_device *v;
  1543. int ct;
  1544. if (event != NETDEV_UNREGISTER)
  1545. return NOTIFY_DONE;
  1546. ipmr_for_each_table(mrt, net) {
  1547. v = &mrt->vif_table[0];
  1548. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1549. if (v->dev == dev)
  1550. vif_delete(mrt, ct, 1, NULL);
  1551. }
  1552. }
  1553. return NOTIFY_DONE;
  1554. }
  1555. static struct notifier_block ip_mr_notifier = {
  1556. .notifier_call = ipmr_device_event,
  1557. };
  1558. /* Encapsulate a packet by attaching a valid IPIP header to it.
  1559. * This avoids tunnel drivers and other mess and gives us the speed so
  1560. * important for multicast video.
  1561. */
  1562. static void ip_encap(struct net *net, struct sk_buff *skb,
  1563. __be32 saddr, __be32 daddr)
  1564. {
  1565. struct iphdr *iph;
  1566. const struct iphdr *old_iph = ip_hdr(skb);
  1567. skb_push(skb, sizeof(struct iphdr));
  1568. skb->transport_header = skb->network_header;
  1569. skb_reset_network_header(skb);
  1570. iph = ip_hdr(skb);
  1571. iph->version = 4;
  1572. iph->tos = old_iph->tos;
  1573. iph->ttl = old_iph->ttl;
  1574. iph->frag_off = 0;
  1575. iph->daddr = daddr;
  1576. iph->saddr = saddr;
  1577. iph->protocol = IPPROTO_IPIP;
  1578. iph->ihl = 5;
  1579. iph->tot_len = htons(skb->len);
  1580. ip_select_ident(net, skb, NULL);
  1581. ip_send_check(iph);
  1582. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1583. nf_reset(skb);
  1584. }
  1585. static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
  1586. struct sk_buff *skb)
  1587. {
  1588. struct ip_options *opt = &(IPCB(skb)->opt);
  1589. IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
  1590. IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
  1591. if (unlikely(opt->optlen))
  1592. ip_forward_options(skb);
  1593. return dst_output(net, sk, skb);
  1594. }
  1595. #ifdef CONFIG_NET_SWITCHDEV
  1596. static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
  1597. int in_vifi, int out_vifi)
  1598. {
  1599. struct vif_device *out_vif = &mrt->vif_table[out_vifi];
  1600. struct vif_device *in_vif = &mrt->vif_table[in_vifi];
  1601. if (!skb->offload_mr_fwd_mark)
  1602. return false;
  1603. if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
  1604. return false;
  1605. return netdev_phys_item_id_same(&out_vif->dev_parent_id,
  1606. &in_vif->dev_parent_id);
  1607. }
  1608. #else
  1609. static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
  1610. int in_vifi, int out_vifi)
  1611. {
  1612. return false;
  1613. }
  1614. #endif
  1615. /* Processing handlers for ipmr_forward */
  1616. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1617. int in_vifi, struct sk_buff *skb,
  1618. struct mfc_cache *c, int vifi)
  1619. {
  1620. const struct iphdr *iph = ip_hdr(skb);
  1621. struct vif_device *vif = &mrt->vif_table[vifi];
  1622. struct net_device *dev;
  1623. struct rtable *rt;
  1624. struct flowi4 fl4;
  1625. int encap = 0;
  1626. if (!vif->dev)
  1627. goto out_free;
  1628. if (vif->flags & VIFF_REGISTER) {
  1629. vif->pkt_out++;
  1630. vif->bytes_out += skb->len;
  1631. vif->dev->stats.tx_bytes += skb->len;
  1632. vif->dev->stats.tx_packets++;
  1633. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1634. goto out_free;
  1635. }
  1636. if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
  1637. goto out_free;
  1638. if (vif->flags & VIFF_TUNNEL) {
  1639. rt = ip_route_output_ports(net, &fl4, NULL,
  1640. vif->remote, vif->local,
  1641. 0, 0,
  1642. IPPROTO_IPIP,
  1643. RT_TOS(iph->tos), vif->link);
  1644. if (IS_ERR(rt))
  1645. goto out_free;
  1646. encap = sizeof(struct iphdr);
  1647. } else {
  1648. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1649. 0, 0,
  1650. IPPROTO_IPIP,
  1651. RT_TOS(iph->tos), vif->link);
  1652. if (IS_ERR(rt))
  1653. goto out_free;
  1654. }
  1655. dev = rt->dst.dev;
  1656. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1657. /* Do not fragment multicasts. Alas, IPv4 does not
  1658. * allow to send ICMP, so that packets will disappear
  1659. * to blackhole.
  1660. */
  1661. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  1662. ip_rt_put(rt);
  1663. goto out_free;
  1664. }
  1665. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1666. if (skb_cow(skb, encap)) {
  1667. ip_rt_put(rt);
  1668. goto out_free;
  1669. }
  1670. vif->pkt_out++;
  1671. vif->bytes_out += skb->len;
  1672. skb_dst_drop(skb);
  1673. skb_dst_set(skb, &rt->dst);
  1674. ip_decrease_ttl(ip_hdr(skb));
  1675. /* FIXME: forward and output firewalls used to be called here.
  1676. * What do we do with netfilter? -- RR
  1677. */
  1678. if (vif->flags & VIFF_TUNNEL) {
  1679. ip_encap(net, skb, vif->local, vif->remote);
  1680. /* FIXME: extra output firewall step used to be here. --RR */
  1681. vif->dev->stats.tx_packets++;
  1682. vif->dev->stats.tx_bytes += skb->len;
  1683. }
  1684. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1685. /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1686. * not only before forwarding, but after forwarding on all output
  1687. * interfaces. It is clear, if mrouter runs a multicasting
  1688. * program, it should receive packets not depending to what interface
  1689. * program is joined.
  1690. * If we will not make it, the program will have to join on all
  1691. * interfaces. On the other hand, multihoming host (or router, but
  1692. * not mrouter) cannot join to more than one interface - it will
  1693. * result in receiving multiple packets.
  1694. */
  1695. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
  1696. net, NULL, skb, skb->dev, dev,
  1697. ipmr_forward_finish);
  1698. return;
  1699. out_free:
  1700. kfree_skb(skb);
  1701. }
  1702. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1703. {
  1704. int ct;
  1705. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1706. if (mrt->vif_table[ct].dev == dev)
  1707. break;
  1708. }
  1709. return ct;
  1710. }
  1711. /* "local" means that we should preserve one skb (for local delivery) */
  1712. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1713. struct net_device *dev, struct sk_buff *skb,
  1714. struct mfc_cache *c, int local)
  1715. {
  1716. int true_vifi = ipmr_find_vif(mrt, dev);
  1717. int psend = -1;
  1718. int vif, ct;
  1719. vif = c->_c.mfc_parent;
  1720. c->_c.mfc_un.res.pkt++;
  1721. c->_c.mfc_un.res.bytes += skb->len;
  1722. c->_c.mfc_un.res.lastuse = jiffies;
  1723. if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1724. struct mfc_cache *cache_proxy;
  1725. /* For an (*,G) entry, we only check that the incomming
  1726. * interface is part of the static tree.
  1727. */
  1728. cache_proxy = mr_mfc_find_any_parent(mrt, vif);
  1729. if (cache_proxy &&
  1730. cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
  1731. goto forward;
  1732. }
  1733. /* Wrong interface: drop packet and (maybe) send PIM assert. */
  1734. if (mrt->vif_table[vif].dev != dev) {
  1735. if (rt_is_output_route(skb_rtable(skb))) {
  1736. /* It is our own packet, looped back.
  1737. * Very complicated situation...
  1738. *
  1739. * The best workaround until routing daemons will be
  1740. * fixed is not to redistribute packet, if it was
  1741. * send through wrong interface. It means, that
  1742. * multicast applications WILL NOT work for
  1743. * (S,G), which have default multicast route pointing
  1744. * to wrong oif. In any case, it is not a good
  1745. * idea to use multicasting applications on router.
  1746. */
  1747. goto dont_forward;
  1748. }
  1749. c->_c.mfc_un.res.wrong_if++;
  1750. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1751. /* pimsm uses asserts, when switching from RPT to SPT,
  1752. * so that we cannot check that packet arrived on an oif.
  1753. * It is bad, but otherwise we would need to move pretty
  1754. * large chunk of pimd to kernel. Ough... --ANK
  1755. */
  1756. (mrt->mroute_do_pim ||
  1757. c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
  1758. time_after(jiffies,
  1759. c->_c.mfc_un.res.last_assert +
  1760. MFC_ASSERT_THRESH)) {
  1761. c->_c.mfc_un.res.last_assert = jiffies;
  1762. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1763. }
  1764. goto dont_forward;
  1765. }
  1766. forward:
  1767. mrt->vif_table[vif].pkt_in++;
  1768. mrt->vif_table[vif].bytes_in += skb->len;
  1769. /* Forward the frame */
  1770. if (c->mfc_origin == htonl(INADDR_ANY) &&
  1771. c->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1772. if (true_vifi >= 0 &&
  1773. true_vifi != c->_c.mfc_parent &&
  1774. ip_hdr(skb)->ttl >
  1775. c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
  1776. /* It's an (*,*) entry and the packet is not coming from
  1777. * the upstream: forward the packet to the upstream
  1778. * only.
  1779. */
  1780. psend = c->_c.mfc_parent;
  1781. goto last_forward;
  1782. }
  1783. goto dont_forward;
  1784. }
  1785. for (ct = c->_c.mfc_un.res.maxvif - 1;
  1786. ct >= c->_c.mfc_un.res.minvif; ct--) {
  1787. /* For (*,G) entry, don't forward to the incoming interface */
  1788. if ((c->mfc_origin != htonl(INADDR_ANY) ||
  1789. ct != true_vifi) &&
  1790. ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
  1791. if (psend != -1) {
  1792. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1793. if (skb2)
  1794. ipmr_queue_xmit(net, mrt, true_vifi,
  1795. skb2, c, psend);
  1796. }
  1797. psend = ct;
  1798. }
  1799. }
  1800. last_forward:
  1801. if (psend != -1) {
  1802. if (local) {
  1803. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1804. if (skb2)
  1805. ipmr_queue_xmit(net, mrt, true_vifi, skb2,
  1806. c, psend);
  1807. } else {
  1808. ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
  1809. return;
  1810. }
  1811. }
  1812. dont_forward:
  1813. if (!local)
  1814. kfree_skb(skb);
  1815. }
  1816. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1817. {
  1818. struct rtable *rt = skb_rtable(skb);
  1819. struct iphdr *iph = ip_hdr(skb);
  1820. struct flowi4 fl4 = {
  1821. .daddr = iph->daddr,
  1822. .saddr = iph->saddr,
  1823. .flowi4_tos = RT_TOS(iph->tos),
  1824. .flowi4_oif = (rt_is_output_route(rt) ?
  1825. skb->dev->ifindex : 0),
  1826. .flowi4_iif = (rt_is_output_route(rt) ?
  1827. LOOPBACK_IFINDEX :
  1828. skb->dev->ifindex),
  1829. .flowi4_mark = skb->mark,
  1830. };
  1831. struct mr_table *mrt;
  1832. int err;
  1833. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1834. if (err)
  1835. return ERR_PTR(err);
  1836. return mrt;
  1837. }
  1838. /* Multicast packets for forwarding arrive here
  1839. * Called with rcu_read_lock();
  1840. */
  1841. int ip_mr_input(struct sk_buff *skb)
  1842. {
  1843. struct mfc_cache *cache;
  1844. struct net *net = dev_net(skb->dev);
  1845. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1846. struct mr_table *mrt;
  1847. struct net_device *dev;
  1848. /* skb->dev passed in is the loX master dev for vrfs.
  1849. * As there are no vifs associated with loopback devices,
  1850. * get the proper interface that does have a vif associated with it.
  1851. */
  1852. dev = skb->dev;
  1853. if (netif_is_l3_master(skb->dev)) {
  1854. dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
  1855. if (!dev) {
  1856. kfree_skb(skb);
  1857. return -ENODEV;
  1858. }
  1859. }
  1860. /* Packet is looped back after forward, it should not be
  1861. * forwarded second time, but still can be delivered locally.
  1862. */
  1863. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1864. goto dont_forward;
  1865. mrt = ipmr_rt_fib_lookup(net, skb);
  1866. if (IS_ERR(mrt)) {
  1867. kfree_skb(skb);
  1868. return PTR_ERR(mrt);
  1869. }
  1870. if (!local) {
  1871. if (IPCB(skb)->opt.router_alert) {
  1872. if (ip_call_ra_chain(skb))
  1873. return 0;
  1874. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1875. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1876. * Cisco IOS <= 11.2(8)) do not put router alert
  1877. * option to IGMP packets destined to routable
  1878. * groups. It is very bad, because it means
  1879. * that we can forward NO IGMP messages.
  1880. */
  1881. struct sock *mroute_sk;
  1882. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1883. if (mroute_sk) {
  1884. nf_reset(skb);
  1885. raw_rcv(mroute_sk, skb);
  1886. return 0;
  1887. }
  1888. }
  1889. }
  1890. /* already under rcu_read_lock() */
  1891. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1892. if (!cache) {
  1893. int vif = ipmr_find_vif(mrt, dev);
  1894. if (vif >= 0)
  1895. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1896. vif);
  1897. }
  1898. /* No usable cache entry */
  1899. if (!cache) {
  1900. int vif;
  1901. if (local) {
  1902. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1903. ip_local_deliver(skb);
  1904. if (!skb2)
  1905. return -ENOBUFS;
  1906. skb = skb2;
  1907. }
  1908. read_lock(&mrt_lock);
  1909. vif = ipmr_find_vif(mrt, dev);
  1910. if (vif >= 0) {
  1911. int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
  1912. read_unlock(&mrt_lock);
  1913. return err2;
  1914. }
  1915. read_unlock(&mrt_lock);
  1916. kfree_skb(skb);
  1917. return -ENODEV;
  1918. }
  1919. read_lock(&mrt_lock);
  1920. ip_mr_forward(net, mrt, dev, skb, cache, local);
  1921. read_unlock(&mrt_lock);
  1922. if (local)
  1923. return ip_local_deliver(skb);
  1924. return 0;
  1925. dont_forward:
  1926. if (local)
  1927. return ip_local_deliver(skb);
  1928. kfree_skb(skb);
  1929. return 0;
  1930. }
  1931. #ifdef CONFIG_IP_PIMSM_V1
  1932. /* Handle IGMP messages of PIMv1 */
  1933. int pim_rcv_v1(struct sk_buff *skb)
  1934. {
  1935. struct igmphdr *pim;
  1936. struct net *net = dev_net(skb->dev);
  1937. struct mr_table *mrt;
  1938. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1939. goto drop;
  1940. pim = igmp_hdr(skb);
  1941. mrt = ipmr_rt_fib_lookup(net, skb);
  1942. if (IS_ERR(mrt))
  1943. goto drop;
  1944. if (!mrt->mroute_do_pim ||
  1945. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1946. goto drop;
  1947. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1948. drop:
  1949. kfree_skb(skb);
  1950. }
  1951. return 0;
  1952. }
  1953. #endif
  1954. #ifdef CONFIG_IP_PIMSM_V2
  1955. static int pim_rcv(struct sk_buff *skb)
  1956. {
  1957. struct pimreghdr *pim;
  1958. struct net *net = dev_net(skb->dev);
  1959. struct mr_table *mrt;
  1960. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1961. goto drop;
  1962. pim = (struct pimreghdr *)skb_transport_header(skb);
  1963. if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
  1964. (pim->flags & PIM_NULL_REGISTER) ||
  1965. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1966. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1967. goto drop;
  1968. mrt = ipmr_rt_fib_lookup(net, skb);
  1969. if (IS_ERR(mrt))
  1970. goto drop;
  1971. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1972. drop:
  1973. kfree_skb(skb);
  1974. }
  1975. return 0;
  1976. }
  1977. #endif
  1978. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1979. __be32 saddr, __be32 daddr,
  1980. struct rtmsg *rtm, u32 portid)
  1981. {
  1982. struct mfc_cache *cache;
  1983. struct mr_table *mrt;
  1984. int err;
  1985. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1986. if (!mrt)
  1987. return -ENOENT;
  1988. rcu_read_lock();
  1989. cache = ipmr_cache_find(mrt, saddr, daddr);
  1990. if (!cache && skb->dev) {
  1991. int vif = ipmr_find_vif(mrt, skb->dev);
  1992. if (vif >= 0)
  1993. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1994. }
  1995. if (!cache) {
  1996. struct sk_buff *skb2;
  1997. struct iphdr *iph;
  1998. struct net_device *dev;
  1999. int vif = -1;
  2000. dev = skb->dev;
  2001. read_lock(&mrt_lock);
  2002. if (dev)
  2003. vif = ipmr_find_vif(mrt, dev);
  2004. if (vif < 0) {
  2005. read_unlock(&mrt_lock);
  2006. rcu_read_unlock();
  2007. return -ENODEV;
  2008. }
  2009. skb2 = skb_clone(skb, GFP_ATOMIC);
  2010. if (!skb2) {
  2011. read_unlock(&mrt_lock);
  2012. rcu_read_unlock();
  2013. return -ENOMEM;
  2014. }
  2015. NETLINK_CB(skb2).portid = portid;
  2016. skb_push(skb2, sizeof(struct iphdr));
  2017. skb_reset_network_header(skb2);
  2018. iph = ip_hdr(skb2);
  2019. iph->ihl = sizeof(struct iphdr) >> 2;
  2020. iph->saddr = saddr;
  2021. iph->daddr = daddr;
  2022. iph->version = 0;
  2023. err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
  2024. read_unlock(&mrt_lock);
  2025. rcu_read_unlock();
  2026. return err;
  2027. }
  2028. read_lock(&mrt_lock);
  2029. err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
  2030. read_unlock(&mrt_lock);
  2031. rcu_read_unlock();
  2032. return err;
  2033. }
  2034. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  2035. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  2036. int flags)
  2037. {
  2038. struct nlmsghdr *nlh;
  2039. struct rtmsg *rtm;
  2040. int err;
  2041. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  2042. if (!nlh)
  2043. return -EMSGSIZE;
  2044. rtm = nlmsg_data(nlh);
  2045. rtm->rtm_family = RTNL_FAMILY_IPMR;
  2046. rtm->rtm_dst_len = 32;
  2047. rtm->rtm_src_len = 32;
  2048. rtm->rtm_tos = 0;
  2049. rtm->rtm_table = mrt->id;
  2050. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  2051. goto nla_put_failure;
  2052. rtm->rtm_type = RTN_MULTICAST;
  2053. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  2054. if (c->_c.mfc_flags & MFC_STATIC)
  2055. rtm->rtm_protocol = RTPROT_STATIC;
  2056. else
  2057. rtm->rtm_protocol = RTPROT_MROUTED;
  2058. rtm->rtm_flags = 0;
  2059. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  2060. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  2061. goto nla_put_failure;
  2062. err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
  2063. /* do not break the dump if cache is unresolved */
  2064. if (err < 0 && err != -ENOENT)
  2065. goto nla_put_failure;
  2066. nlmsg_end(skb, nlh);
  2067. return 0;
  2068. nla_put_failure:
  2069. nlmsg_cancel(skb, nlh);
  2070. return -EMSGSIZE;
  2071. }
  2072. static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  2073. u32 portid, u32 seq, struct mr_mfc *c, int cmd,
  2074. int flags)
  2075. {
  2076. return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
  2077. cmd, flags);
  2078. }
  2079. static size_t mroute_msgsize(bool unresolved, int maxvif)
  2080. {
  2081. size_t len =
  2082. NLMSG_ALIGN(sizeof(struct rtmsg))
  2083. + nla_total_size(4) /* RTA_TABLE */
  2084. + nla_total_size(4) /* RTA_SRC */
  2085. + nla_total_size(4) /* RTA_DST */
  2086. ;
  2087. if (!unresolved)
  2088. len = len
  2089. + nla_total_size(4) /* RTA_IIF */
  2090. + nla_total_size(0) /* RTA_MULTIPATH */
  2091. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  2092. /* RTA_MFC_STATS */
  2093. + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
  2094. ;
  2095. return len;
  2096. }
  2097. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  2098. int cmd)
  2099. {
  2100. struct net *net = read_pnet(&mrt->net);
  2101. struct sk_buff *skb;
  2102. int err = -ENOBUFS;
  2103. skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
  2104. mrt->maxvif),
  2105. GFP_ATOMIC);
  2106. if (!skb)
  2107. goto errout;
  2108. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  2109. if (err < 0)
  2110. goto errout;
  2111. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  2112. return;
  2113. errout:
  2114. kfree_skb(skb);
  2115. if (err < 0)
  2116. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  2117. }
  2118. static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
  2119. {
  2120. size_t len =
  2121. NLMSG_ALIGN(sizeof(struct rtgenmsg))
  2122. + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
  2123. + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
  2124. + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
  2125. + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
  2126. /* IPMRA_CREPORT_PKT */
  2127. + nla_total_size(payloadlen)
  2128. ;
  2129. return len;
  2130. }
  2131. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
  2132. {
  2133. struct net *net = read_pnet(&mrt->net);
  2134. struct nlmsghdr *nlh;
  2135. struct rtgenmsg *rtgenm;
  2136. struct igmpmsg *msg;
  2137. struct sk_buff *skb;
  2138. struct nlattr *nla;
  2139. int payloadlen;
  2140. payloadlen = pkt->len - sizeof(struct igmpmsg);
  2141. msg = (struct igmpmsg *)skb_network_header(pkt);
  2142. skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
  2143. if (!skb)
  2144. goto errout;
  2145. nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
  2146. sizeof(struct rtgenmsg), 0);
  2147. if (!nlh)
  2148. goto errout;
  2149. rtgenm = nlmsg_data(nlh);
  2150. rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
  2151. if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
  2152. nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
  2153. nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
  2154. msg->im_src.s_addr) ||
  2155. nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
  2156. msg->im_dst.s_addr))
  2157. goto nla_put_failure;
  2158. nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
  2159. if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
  2160. nla_data(nla), payloadlen))
  2161. goto nla_put_failure;
  2162. nlmsg_end(skb, nlh);
  2163. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
  2164. return;
  2165. nla_put_failure:
  2166. nlmsg_cancel(skb, nlh);
  2167. errout:
  2168. kfree_skb(skb);
  2169. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
  2170. }
  2171. static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
  2172. struct netlink_ext_ack *extack)
  2173. {
  2174. struct net *net = sock_net(in_skb->sk);
  2175. struct nlattr *tb[RTA_MAX + 1];
  2176. struct sk_buff *skb = NULL;
  2177. struct mfc_cache *cache;
  2178. struct mr_table *mrt;
  2179. struct rtmsg *rtm;
  2180. __be32 src, grp;
  2181. u32 tableid;
  2182. int err;
  2183. err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
  2184. rtm_ipv4_policy, extack);
  2185. if (err < 0)
  2186. goto errout;
  2187. rtm = nlmsg_data(nlh);
  2188. src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
  2189. grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
  2190. tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
  2191. mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
  2192. if (!mrt) {
  2193. err = -ENOENT;
  2194. goto errout_free;
  2195. }
  2196. /* entries are added/deleted only under RTNL */
  2197. rcu_read_lock();
  2198. cache = ipmr_cache_find(mrt, src, grp);
  2199. rcu_read_unlock();
  2200. if (!cache) {
  2201. err = -ENOENT;
  2202. goto errout_free;
  2203. }
  2204. skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
  2205. if (!skb) {
  2206. err = -ENOBUFS;
  2207. goto errout_free;
  2208. }
  2209. err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
  2210. nlh->nlmsg_seq, cache,
  2211. RTM_NEWROUTE, 0);
  2212. if (err < 0)
  2213. goto errout_free;
  2214. err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
  2215. errout:
  2216. return err;
  2217. errout_free:
  2218. kfree_skb(skb);
  2219. goto errout;
  2220. }
  2221. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2222. {
  2223. return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
  2224. _ipmr_fill_mroute, &mfc_unres_lock);
  2225. }
  2226. static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
  2227. [RTA_SRC] = { .type = NLA_U32 },
  2228. [RTA_DST] = { .type = NLA_U32 },
  2229. [RTA_IIF] = { .type = NLA_U32 },
  2230. [RTA_TABLE] = { .type = NLA_U32 },
  2231. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  2232. };
  2233. static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
  2234. {
  2235. switch (rtm_protocol) {
  2236. case RTPROT_STATIC:
  2237. case RTPROT_MROUTED:
  2238. return true;
  2239. }
  2240. return false;
  2241. }
  2242. static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
  2243. {
  2244. struct rtnexthop *rtnh = nla_data(nla);
  2245. int remaining = nla_len(nla), vifi = 0;
  2246. while (rtnh_ok(rtnh, remaining)) {
  2247. mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
  2248. if (++vifi == MAXVIFS)
  2249. break;
  2250. rtnh = rtnh_next(rtnh, &remaining);
  2251. }
  2252. return remaining > 0 ? -EINVAL : vifi;
  2253. }
  2254. /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
  2255. static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
  2256. struct mfcctl *mfcc, int *mrtsock,
  2257. struct mr_table **mrtret,
  2258. struct netlink_ext_ack *extack)
  2259. {
  2260. struct net_device *dev = NULL;
  2261. u32 tblid = RT_TABLE_DEFAULT;
  2262. struct mr_table *mrt;
  2263. struct nlattr *attr;
  2264. struct rtmsg *rtm;
  2265. int ret, rem;
  2266. ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
  2267. extack);
  2268. if (ret < 0)
  2269. goto out;
  2270. rtm = nlmsg_data(nlh);
  2271. ret = -EINVAL;
  2272. if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
  2273. rtm->rtm_type != RTN_MULTICAST ||
  2274. rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
  2275. !ipmr_rtm_validate_proto(rtm->rtm_protocol))
  2276. goto out;
  2277. memset(mfcc, 0, sizeof(*mfcc));
  2278. mfcc->mfcc_parent = -1;
  2279. ret = 0;
  2280. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
  2281. switch (nla_type(attr)) {
  2282. case RTA_SRC:
  2283. mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
  2284. break;
  2285. case RTA_DST:
  2286. mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
  2287. break;
  2288. case RTA_IIF:
  2289. dev = __dev_get_by_index(net, nla_get_u32(attr));
  2290. if (!dev) {
  2291. ret = -ENODEV;
  2292. goto out;
  2293. }
  2294. break;
  2295. case RTA_MULTIPATH:
  2296. if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
  2297. ret = -EINVAL;
  2298. goto out;
  2299. }
  2300. break;
  2301. case RTA_PREFSRC:
  2302. ret = 1;
  2303. break;
  2304. case RTA_TABLE:
  2305. tblid = nla_get_u32(attr);
  2306. break;
  2307. }
  2308. }
  2309. mrt = ipmr_get_table(net, tblid);
  2310. if (!mrt) {
  2311. ret = -ENOENT;
  2312. goto out;
  2313. }
  2314. *mrtret = mrt;
  2315. *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
  2316. if (dev)
  2317. mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
  2318. out:
  2319. return ret;
  2320. }
  2321. /* takes care of both newroute and delroute */
  2322. static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
  2323. struct netlink_ext_ack *extack)
  2324. {
  2325. struct net *net = sock_net(skb->sk);
  2326. int ret, mrtsock, parent;
  2327. struct mr_table *tbl;
  2328. struct mfcctl mfcc;
  2329. mrtsock = 0;
  2330. tbl = NULL;
  2331. ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
  2332. if (ret < 0)
  2333. return ret;
  2334. parent = ret ? mfcc.mfcc_parent : -1;
  2335. if (nlh->nlmsg_type == RTM_NEWROUTE)
  2336. return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
  2337. else
  2338. return ipmr_mfc_delete(tbl, &mfcc, parent);
  2339. }
  2340. static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
  2341. {
  2342. u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
  2343. if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
  2344. nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
  2345. nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
  2346. mrt->mroute_reg_vif_num) ||
  2347. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
  2348. mrt->mroute_do_assert) ||
  2349. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
  2350. return false;
  2351. return true;
  2352. }
  2353. static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
  2354. {
  2355. struct nlattr *vif_nest;
  2356. struct vif_device *vif;
  2357. /* if the VIF doesn't exist just continue */
  2358. if (!VIF_EXISTS(mrt, vifid))
  2359. return true;
  2360. vif = &mrt->vif_table[vifid];
  2361. vif_nest = nla_nest_start(skb, IPMRA_VIF);
  2362. if (!vif_nest)
  2363. return false;
  2364. if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
  2365. nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
  2366. nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
  2367. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
  2368. IPMRA_VIFA_PAD) ||
  2369. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
  2370. IPMRA_VIFA_PAD) ||
  2371. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
  2372. IPMRA_VIFA_PAD) ||
  2373. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
  2374. IPMRA_VIFA_PAD) ||
  2375. nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
  2376. nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
  2377. nla_nest_cancel(skb, vif_nest);
  2378. return false;
  2379. }
  2380. nla_nest_end(skb, vif_nest);
  2381. return true;
  2382. }
  2383. static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
  2384. {
  2385. struct net *net = sock_net(skb->sk);
  2386. struct nlmsghdr *nlh = NULL;
  2387. unsigned int t = 0, s_t;
  2388. unsigned int e = 0, s_e;
  2389. struct mr_table *mrt;
  2390. s_t = cb->args[0];
  2391. s_e = cb->args[1];
  2392. ipmr_for_each_table(mrt, net) {
  2393. struct nlattr *vifs, *af;
  2394. struct ifinfomsg *hdr;
  2395. u32 i;
  2396. if (t < s_t)
  2397. goto skip_table;
  2398. nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
  2399. cb->nlh->nlmsg_seq, RTM_NEWLINK,
  2400. sizeof(*hdr), NLM_F_MULTI);
  2401. if (!nlh)
  2402. break;
  2403. hdr = nlmsg_data(nlh);
  2404. memset(hdr, 0, sizeof(*hdr));
  2405. hdr->ifi_family = RTNL_FAMILY_IPMR;
  2406. af = nla_nest_start(skb, IFLA_AF_SPEC);
  2407. if (!af) {
  2408. nlmsg_cancel(skb, nlh);
  2409. goto out;
  2410. }
  2411. if (!ipmr_fill_table(mrt, skb)) {
  2412. nlmsg_cancel(skb, nlh);
  2413. goto out;
  2414. }
  2415. vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
  2416. if (!vifs) {
  2417. nla_nest_end(skb, af);
  2418. nlmsg_end(skb, nlh);
  2419. goto out;
  2420. }
  2421. for (i = 0; i < mrt->maxvif; i++) {
  2422. if (e < s_e)
  2423. goto skip_entry;
  2424. if (!ipmr_fill_vif(mrt, i, skb)) {
  2425. nla_nest_end(skb, vifs);
  2426. nla_nest_end(skb, af);
  2427. nlmsg_end(skb, nlh);
  2428. goto out;
  2429. }
  2430. skip_entry:
  2431. e++;
  2432. }
  2433. s_e = 0;
  2434. e = 0;
  2435. nla_nest_end(skb, vifs);
  2436. nla_nest_end(skb, af);
  2437. nlmsg_end(skb, nlh);
  2438. skip_table:
  2439. t++;
  2440. }
  2441. out:
  2442. cb->args[1] = e;
  2443. cb->args[0] = t;
  2444. return skb->len;
  2445. }
  2446. #ifdef CONFIG_PROC_FS
  2447. /* The /proc interfaces to multicast routing :
  2448. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2449. */
  2450. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2451. __acquires(mrt_lock)
  2452. {
  2453. struct mr_vif_iter *iter = seq->private;
  2454. struct net *net = seq_file_net(seq);
  2455. struct mr_table *mrt;
  2456. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2457. if (!mrt)
  2458. return ERR_PTR(-ENOENT);
  2459. iter->mrt = mrt;
  2460. read_lock(&mrt_lock);
  2461. return mr_vif_seq_start(seq, pos);
  2462. }
  2463. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2464. __releases(mrt_lock)
  2465. {
  2466. read_unlock(&mrt_lock);
  2467. }
  2468. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2469. {
  2470. struct mr_vif_iter *iter = seq->private;
  2471. struct mr_table *mrt = iter->mrt;
  2472. if (v == SEQ_START_TOKEN) {
  2473. seq_puts(seq,
  2474. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2475. } else {
  2476. const struct vif_device *vif = v;
  2477. const char *name = vif->dev ?
  2478. vif->dev->name : "none";
  2479. seq_printf(seq,
  2480. "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2481. vif - mrt->vif_table,
  2482. name, vif->bytes_in, vif->pkt_in,
  2483. vif->bytes_out, vif->pkt_out,
  2484. vif->flags, vif->local, vif->remote);
  2485. }
  2486. return 0;
  2487. }
  2488. static const struct seq_operations ipmr_vif_seq_ops = {
  2489. .start = ipmr_vif_seq_start,
  2490. .next = mr_vif_seq_next,
  2491. .stop = ipmr_vif_seq_stop,
  2492. .show = ipmr_vif_seq_show,
  2493. };
  2494. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2495. {
  2496. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2497. sizeof(struct mr_vif_iter));
  2498. }
  2499. static const struct file_operations ipmr_vif_fops = {
  2500. .open = ipmr_vif_open,
  2501. .read = seq_read,
  2502. .llseek = seq_lseek,
  2503. .release = seq_release_net,
  2504. };
  2505. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2506. {
  2507. struct net *net = seq_file_net(seq);
  2508. struct mr_table *mrt;
  2509. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2510. if (!mrt)
  2511. return ERR_PTR(-ENOENT);
  2512. return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
  2513. }
  2514. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2515. {
  2516. int n;
  2517. if (v == SEQ_START_TOKEN) {
  2518. seq_puts(seq,
  2519. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2520. } else {
  2521. const struct mfc_cache *mfc = v;
  2522. const struct mr_mfc_iter *it = seq->private;
  2523. const struct mr_table *mrt = it->mrt;
  2524. seq_printf(seq, "%08X %08X %-3hd",
  2525. (__force u32) mfc->mfc_mcastgrp,
  2526. (__force u32) mfc->mfc_origin,
  2527. mfc->_c.mfc_parent);
  2528. if (it->cache != &mrt->mfc_unres_queue) {
  2529. seq_printf(seq, " %8lu %8lu %8lu",
  2530. mfc->_c.mfc_un.res.pkt,
  2531. mfc->_c.mfc_un.res.bytes,
  2532. mfc->_c.mfc_un.res.wrong_if);
  2533. for (n = mfc->_c.mfc_un.res.minvif;
  2534. n < mfc->_c.mfc_un.res.maxvif; n++) {
  2535. if (VIF_EXISTS(mrt, n) &&
  2536. mfc->_c.mfc_un.res.ttls[n] < 255)
  2537. seq_printf(seq,
  2538. " %2d:%-3d",
  2539. n, mfc->_c.mfc_un.res.ttls[n]);
  2540. }
  2541. } else {
  2542. /* unresolved mfc_caches don't contain
  2543. * pkt, bytes and wrong_if values
  2544. */
  2545. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2546. }
  2547. seq_putc(seq, '\n');
  2548. }
  2549. return 0;
  2550. }
  2551. static const struct seq_operations ipmr_mfc_seq_ops = {
  2552. .start = ipmr_mfc_seq_start,
  2553. .next = mr_mfc_seq_next,
  2554. .stop = mr_mfc_seq_stop,
  2555. .show = ipmr_mfc_seq_show,
  2556. };
  2557. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2558. {
  2559. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2560. sizeof(struct mr_mfc_iter));
  2561. }
  2562. static const struct file_operations ipmr_mfc_fops = {
  2563. .open = ipmr_mfc_open,
  2564. .read = seq_read,
  2565. .llseek = seq_lseek,
  2566. .release = seq_release_net,
  2567. };
  2568. #endif
  2569. #ifdef CONFIG_IP_PIMSM_V2
  2570. static const struct net_protocol pim_protocol = {
  2571. .handler = pim_rcv,
  2572. .netns_ok = 1,
  2573. };
  2574. #endif
  2575. static unsigned int ipmr_seq_read(struct net *net)
  2576. {
  2577. ASSERT_RTNL();
  2578. return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
  2579. }
  2580. static int ipmr_dump(struct net *net, struct notifier_block *nb)
  2581. {
  2582. struct mr_table *mrt;
  2583. int err;
  2584. err = ipmr_rules_dump(net, nb);
  2585. if (err)
  2586. return err;
  2587. ipmr_for_each_table(mrt, net) {
  2588. struct vif_device *v = &mrt->vif_table[0];
  2589. struct mr_mfc *mfc;
  2590. int vifi;
  2591. /* Notifiy on table VIF entries */
  2592. read_lock(&mrt_lock);
  2593. for (vifi = 0; vifi < mrt->maxvif; vifi++, v++) {
  2594. if (!v->dev)
  2595. continue;
  2596. call_ipmr_vif_entry_notifier(nb, net, FIB_EVENT_VIF_ADD,
  2597. v, vifi, mrt->id);
  2598. }
  2599. read_unlock(&mrt_lock);
  2600. /* Notify on table MFC entries */
  2601. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
  2602. call_ipmr_mfc_entry_notifier(nb, net,
  2603. FIB_EVENT_ENTRY_ADD,
  2604. (struct mfc_cache *)mfc,
  2605. mrt->id);
  2606. }
  2607. return 0;
  2608. }
  2609. static const struct fib_notifier_ops ipmr_notifier_ops_template = {
  2610. .family = RTNL_FAMILY_IPMR,
  2611. .fib_seq_read = ipmr_seq_read,
  2612. .fib_dump = ipmr_dump,
  2613. .owner = THIS_MODULE,
  2614. };
  2615. static int __net_init ipmr_notifier_init(struct net *net)
  2616. {
  2617. struct fib_notifier_ops *ops;
  2618. net->ipv4.ipmr_seq = 0;
  2619. ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
  2620. if (IS_ERR(ops))
  2621. return PTR_ERR(ops);
  2622. net->ipv4.ipmr_notifier_ops = ops;
  2623. return 0;
  2624. }
  2625. static void __net_exit ipmr_notifier_exit(struct net *net)
  2626. {
  2627. fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
  2628. net->ipv4.ipmr_notifier_ops = NULL;
  2629. }
  2630. /* Setup for IP multicast routing */
  2631. static int __net_init ipmr_net_init(struct net *net)
  2632. {
  2633. int err;
  2634. err = ipmr_notifier_init(net);
  2635. if (err)
  2636. goto ipmr_notifier_fail;
  2637. err = ipmr_rules_init(net);
  2638. if (err < 0)
  2639. goto ipmr_rules_fail;
  2640. #ifdef CONFIG_PROC_FS
  2641. err = -ENOMEM;
  2642. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2643. goto proc_vif_fail;
  2644. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2645. goto proc_cache_fail;
  2646. #endif
  2647. return 0;
  2648. #ifdef CONFIG_PROC_FS
  2649. proc_cache_fail:
  2650. remove_proc_entry("ip_mr_vif", net->proc_net);
  2651. proc_vif_fail:
  2652. ipmr_rules_exit(net);
  2653. #endif
  2654. ipmr_rules_fail:
  2655. ipmr_notifier_exit(net);
  2656. ipmr_notifier_fail:
  2657. return err;
  2658. }
  2659. static void __net_exit ipmr_net_exit(struct net *net)
  2660. {
  2661. #ifdef CONFIG_PROC_FS
  2662. remove_proc_entry("ip_mr_cache", net->proc_net);
  2663. remove_proc_entry("ip_mr_vif", net->proc_net);
  2664. #endif
  2665. ipmr_notifier_exit(net);
  2666. ipmr_rules_exit(net);
  2667. }
  2668. static struct pernet_operations ipmr_net_ops = {
  2669. .init = ipmr_net_init,
  2670. .exit = ipmr_net_exit,
  2671. .async = true,
  2672. };
  2673. int __init ip_mr_init(void)
  2674. {
  2675. int err;
  2676. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2677. sizeof(struct mfc_cache),
  2678. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2679. NULL);
  2680. err = register_pernet_subsys(&ipmr_net_ops);
  2681. if (err)
  2682. goto reg_pernet_fail;
  2683. err = register_netdevice_notifier(&ip_mr_notifier);
  2684. if (err)
  2685. goto reg_notif_fail;
  2686. #ifdef CONFIG_IP_PIMSM_V2
  2687. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2688. pr_err("%s: can't add PIM protocol\n", __func__);
  2689. err = -EAGAIN;
  2690. goto add_proto_fail;
  2691. }
  2692. #endif
  2693. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2694. ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
  2695. rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
  2696. ipmr_rtm_route, NULL, 0);
  2697. rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
  2698. ipmr_rtm_route, NULL, 0);
  2699. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
  2700. NULL, ipmr_rtm_dumplink, 0);
  2701. return 0;
  2702. #ifdef CONFIG_IP_PIMSM_V2
  2703. add_proto_fail:
  2704. unregister_netdevice_notifier(&ip_mr_notifier);
  2705. #endif
  2706. reg_notif_fail:
  2707. unregister_pernet_subsys(&ipmr_net_ops);
  2708. reg_pernet_fail:
  2709. kmem_cache_destroy(mrt_cachep);
  2710. return err;
  2711. }