skbuff.h 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/cache.h>
  20. #include <linux/atomic.h>
  21. #include <asm/types.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/net.h>
  24. #include <linux/textsearch.h>
  25. #include <net/checksum.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/dmaengine.h>
  28. #include <linux/hrtimer.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/netdev_features.h>
  31. /* Don't change this without changing skb_csum_unnecessary! */
  32. #define CHECKSUM_NONE 0
  33. #define CHECKSUM_UNNECESSARY 1
  34. #define CHECKSUM_COMPLETE 2
  35. #define CHECKSUM_PARTIAL 3
  36. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  37. ~(SMP_CACHE_BYTES - 1))
  38. #define SKB_WITH_OVERHEAD(X) \
  39. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  40. #define SKB_MAX_ORDER(X, ORDER) \
  41. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  42. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  43. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  44. /* return minimum truesize of one skb containing X bytes of data */
  45. #define SKB_TRUESIZE(X) ((X) + \
  46. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  47. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  48. /* A. Checksumming of received packets by device.
  49. *
  50. * NONE: device failed to checksum this packet.
  51. * skb->csum is undefined.
  52. *
  53. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54. * skb->csum is undefined.
  55. * It is bad option, but, unfortunately, many of vendors do this.
  56. * Apparently with secret goal to sell you new device, when you
  57. * will add new protocol to your host. F.e. IPv6. 8)
  58. *
  59. * COMPLETE: the most generic way. Device supplied checksum of _all_
  60. * the packet as seen by netif_rx in skb->csum.
  61. * NOTE: Even if device supports only some protocols, but
  62. * is able to produce some skb->csum, it MUST use COMPLETE,
  63. * not UNNECESSARY.
  64. *
  65. * PARTIAL: identical to the case for output below. This may occur
  66. * on a packet received directly from another Linux OS, e.g.,
  67. * a virtualised Linux kernel on the same host. The packet can
  68. * be treated in the same way as UNNECESSARY except that on
  69. * output (i.e., forwarding) the checksum must be filled in
  70. * by the OS or the hardware.
  71. *
  72. * B. Checksumming on output.
  73. *
  74. * NONE: skb is checksummed by protocol or csum is not required.
  75. *
  76. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77. * from skb->csum_start to the end and to record the checksum
  78. * at skb->csum_start + skb->csum_offset.
  79. *
  80. * Device must show its capabilities in dev->features, set
  81. * at device setup time.
  82. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83. * everything.
  84. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  85. * TCP/UDP over IPv4. Sigh. Vendors like this
  86. * way by an unknown reason. Though, see comment above
  87. * about CHECKSUM_UNNECESSARY. 8)
  88. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  89. *
  90. * Any questions? No questions, good. --ANK
  91. */
  92. struct net_device;
  93. struct scatterlist;
  94. struct pipe_inode_info;
  95. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  96. struct nf_conntrack {
  97. atomic_t use;
  98. };
  99. #endif
  100. #ifdef CONFIG_BRIDGE_NETFILTER
  101. struct nf_bridge_info {
  102. atomic_t use;
  103. struct net_device *physindev;
  104. struct net_device *physoutdev;
  105. unsigned int mask;
  106. unsigned long data[32 / sizeof(unsigned long)];
  107. };
  108. #endif
  109. struct sk_buff_head {
  110. /* These two members must be first. */
  111. struct sk_buff *next;
  112. struct sk_buff *prev;
  113. __u32 qlen;
  114. spinlock_t lock;
  115. };
  116. struct sk_buff;
  117. /* To allow 64K frame to be packed as single skb without frag_list we
  118. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  119. * buffers which do not start on a page boundary.
  120. *
  121. * Since GRO uses frags we allocate at least 16 regardless of page
  122. * size.
  123. */
  124. #if (65536/PAGE_SIZE + 1) < 16
  125. #define MAX_SKB_FRAGS 16UL
  126. #else
  127. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  128. #endif
  129. typedef struct skb_frag_struct skb_frag_t;
  130. struct skb_frag_struct {
  131. struct {
  132. struct page *p;
  133. } page;
  134. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  135. __u32 page_offset;
  136. __u32 size;
  137. #else
  138. __u16 page_offset;
  139. __u16 size;
  140. #endif
  141. };
  142. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  143. {
  144. return frag->size;
  145. }
  146. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  147. {
  148. frag->size = size;
  149. }
  150. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  151. {
  152. frag->size += delta;
  153. }
  154. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  155. {
  156. frag->size -= delta;
  157. }
  158. #define HAVE_HW_TIME_STAMP
  159. /**
  160. * struct skb_shared_hwtstamps - hardware time stamps
  161. * @hwtstamp: hardware time stamp transformed into duration
  162. * since arbitrary point in time
  163. * @syststamp: hwtstamp transformed to system time base
  164. *
  165. * Software time stamps generated by ktime_get_real() are stored in
  166. * skb->tstamp. The relation between the different kinds of time
  167. * stamps is as follows:
  168. *
  169. * syststamp and tstamp can be compared against each other in
  170. * arbitrary combinations. The accuracy of a
  171. * syststamp/tstamp/"syststamp from other device" comparison is
  172. * limited by the accuracy of the transformation into system time
  173. * base. This depends on the device driver and its underlying
  174. * hardware.
  175. *
  176. * hwtstamps can only be compared against other hwtstamps from
  177. * the same device.
  178. *
  179. * This structure is attached to packets as part of the
  180. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  181. */
  182. struct skb_shared_hwtstamps {
  183. ktime_t hwtstamp;
  184. ktime_t syststamp;
  185. };
  186. /* Definitions for tx_flags in struct skb_shared_info */
  187. enum {
  188. /* generate hardware time stamp */
  189. SKBTX_HW_TSTAMP = 1 << 0,
  190. /* generate software time stamp */
  191. SKBTX_SW_TSTAMP = 1 << 1,
  192. /* device driver is going to provide hardware time stamp */
  193. SKBTX_IN_PROGRESS = 1 << 2,
  194. /* ensure the originating sk reference is available on driver level */
  195. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  196. /* device driver supports TX zero-copy buffers */
  197. SKBTX_DEV_ZEROCOPY = 1 << 4,
  198. /* generate wifi status information (where possible) */
  199. SKBTX_WIFI_STATUS = 1 << 5,
  200. };
  201. /*
  202. * The callback notifies userspace to release buffers when skb DMA is done in
  203. * lower device, the skb last reference should be 0 when calling this.
  204. * The desc is used to track userspace buffer index.
  205. */
  206. struct ubuf_info {
  207. void (*callback)(void *);
  208. void *arg;
  209. unsigned long desc;
  210. };
  211. /* This data is invariant across clones and lives at
  212. * the end of the header data, ie. at skb->end.
  213. */
  214. struct skb_shared_info {
  215. unsigned char nr_frags;
  216. __u8 tx_flags;
  217. unsigned short gso_size;
  218. /* Warning: this field is not always filled in (UFO)! */
  219. unsigned short gso_segs;
  220. unsigned short gso_type;
  221. struct sk_buff *frag_list;
  222. struct skb_shared_hwtstamps hwtstamps;
  223. __be32 ip6_frag_id;
  224. /*
  225. * Warning : all fields before dataref are cleared in __alloc_skb()
  226. */
  227. atomic_t dataref;
  228. /* Intermediate layers must ensure that destructor_arg
  229. * remains valid until skb destructor */
  230. void * destructor_arg;
  231. /* must be last field, see pskb_expand_head() */
  232. skb_frag_t frags[MAX_SKB_FRAGS];
  233. };
  234. /* We divide dataref into two halves. The higher 16 bits hold references
  235. * to the payload part of skb->data. The lower 16 bits hold references to
  236. * the entire skb->data. A clone of a headerless skb holds the length of
  237. * the header in skb->hdr_len.
  238. *
  239. * All users must obey the rule that the skb->data reference count must be
  240. * greater than or equal to the payload reference count.
  241. *
  242. * Holding a reference to the payload part means that the user does not
  243. * care about modifications to the header part of skb->data.
  244. */
  245. #define SKB_DATAREF_SHIFT 16
  246. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  247. enum {
  248. SKB_FCLONE_UNAVAILABLE,
  249. SKB_FCLONE_ORIG,
  250. SKB_FCLONE_CLONE,
  251. };
  252. enum {
  253. SKB_GSO_TCPV4 = 1 << 0,
  254. SKB_GSO_UDP = 1 << 1,
  255. /* This indicates the skb is from an untrusted source. */
  256. SKB_GSO_DODGY = 1 << 2,
  257. /* This indicates the tcp segment has CWR set. */
  258. SKB_GSO_TCP_ECN = 1 << 3,
  259. SKB_GSO_TCPV6 = 1 << 4,
  260. SKB_GSO_FCOE = 1 << 5,
  261. };
  262. #if BITS_PER_LONG > 32
  263. #define NET_SKBUFF_DATA_USES_OFFSET 1
  264. #endif
  265. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  266. typedef unsigned int sk_buff_data_t;
  267. #else
  268. typedef unsigned char *sk_buff_data_t;
  269. #endif
  270. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  271. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  272. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  273. #endif
  274. /**
  275. * struct sk_buff - socket buffer
  276. * @next: Next buffer in list
  277. * @prev: Previous buffer in list
  278. * @tstamp: Time we arrived
  279. * @sk: Socket we are owned by
  280. * @dev: Device we arrived on/are leaving by
  281. * @cb: Control buffer. Free for use by every layer. Put private vars here
  282. * @_skb_refdst: destination entry (with norefcount bit)
  283. * @sp: the security path, used for xfrm
  284. * @len: Length of actual data
  285. * @data_len: Data length
  286. * @mac_len: Length of link layer header
  287. * @hdr_len: writable header length of cloned skb
  288. * @csum: Checksum (must include start/offset pair)
  289. * @csum_start: Offset from skb->head where checksumming should start
  290. * @csum_offset: Offset from csum_start where checksum should be stored
  291. * @priority: Packet queueing priority
  292. * @local_df: allow local fragmentation
  293. * @cloned: Head may be cloned (check refcnt to be sure)
  294. * @ip_summed: Driver fed us an IP checksum
  295. * @nohdr: Payload reference only, must not modify header
  296. * @nfctinfo: Relationship of this skb to the connection
  297. * @pkt_type: Packet class
  298. * @fclone: skbuff clone status
  299. * @ipvs_property: skbuff is owned by ipvs
  300. * @peeked: this packet has been seen already, so stats have been
  301. * done for it, don't do them again
  302. * @nf_trace: netfilter packet trace flag
  303. * @protocol: Packet protocol from driver
  304. * @destructor: Destruct function
  305. * @nfct: Associated connection, if any
  306. * @nfct_reasm: netfilter conntrack re-assembly pointer
  307. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  308. * @skb_iif: ifindex of device we arrived on
  309. * @tc_index: Traffic control index
  310. * @tc_verd: traffic control verdict
  311. * @rxhash: the packet hash computed on receive
  312. * @queue_mapping: Queue mapping for multiqueue devices
  313. * @ndisc_nodetype: router type (from link layer)
  314. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  315. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  316. * ports.
  317. * @wifi_acked_valid: wifi_acked was set
  318. * @wifi_acked: whether frame was acked on wifi or not
  319. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  320. * @dma_cookie: a cookie to one of several possible DMA operations
  321. * done by skb DMA functions
  322. * @secmark: security marking
  323. * @mark: Generic packet mark
  324. * @dropcount: total number of sk_receive_queue overflows
  325. * @vlan_tci: vlan tag control information
  326. * @transport_header: Transport layer header
  327. * @network_header: Network layer header
  328. * @mac_header: Link layer header
  329. * @tail: Tail pointer
  330. * @end: End pointer
  331. * @head: Head of buffer
  332. * @data: Data head pointer
  333. * @truesize: Buffer size
  334. * @users: User count - see {datagram,tcp}.c
  335. */
  336. struct sk_buff {
  337. /* These two members must be first. */
  338. struct sk_buff *next;
  339. struct sk_buff *prev;
  340. ktime_t tstamp;
  341. struct sock *sk;
  342. struct net_device *dev;
  343. /*
  344. * This is the control buffer. It is free to use for every
  345. * layer. Please put your private variables there. If you
  346. * want to keep them across layers you have to do a skb_clone()
  347. * first. This is owned by whoever has the skb queued ATM.
  348. */
  349. char cb[48] __aligned(8);
  350. unsigned long _skb_refdst;
  351. #ifdef CONFIG_XFRM
  352. struct sec_path *sp;
  353. #endif
  354. unsigned int len,
  355. data_len;
  356. __u16 mac_len,
  357. hdr_len;
  358. union {
  359. __wsum csum;
  360. struct {
  361. __u16 csum_start;
  362. __u16 csum_offset;
  363. };
  364. };
  365. __u32 priority;
  366. kmemcheck_bitfield_begin(flags1);
  367. __u8 local_df:1,
  368. cloned:1,
  369. ip_summed:2,
  370. nohdr:1,
  371. nfctinfo:3;
  372. __u8 pkt_type:3,
  373. fclone:2,
  374. ipvs_property:1,
  375. peeked:1,
  376. nf_trace:1;
  377. kmemcheck_bitfield_end(flags1);
  378. __be16 protocol;
  379. void (*destructor)(struct sk_buff *skb);
  380. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  381. struct nf_conntrack *nfct;
  382. #endif
  383. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  384. struct sk_buff *nfct_reasm;
  385. #endif
  386. #ifdef CONFIG_BRIDGE_NETFILTER
  387. struct nf_bridge_info *nf_bridge;
  388. #endif
  389. int skb_iif;
  390. __u32 rxhash;
  391. __u16 vlan_tci;
  392. #ifdef CONFIG_NET_SCHED
  393. __u16 tc_index; /* traffic control index */
  394. #ifdef CONFIG_NET_CLS_ACT
  395. __u16 tc_verd; /* traffic control verdict */
  396. #endif
  397. #endif
  398. __u16 queue_mapping;
  399. kmemcheck_bitfield_begin(flags2);
  400. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  401. __u8 ndisc_nodetype:2;
  402. #endif
  403. __u8 ooo_okay:1;
  404. __u8 l4_rxhash:1;
  405. __u8 wifi_acked_valid:1;
  406. __u8 wifi_acked:1;
  407. __u8 no_fcs:1;
  408. /* 9/11 bit hole (depending on ndisc_nodetype presence) */
  409. kmemcheck_bitfield_end(flags2);
  410. #ifdef CONFIG_NET_DMA
  411. dma_cookie_t dma_cookie;
  412. #endif
  413. #ifdef CONFIG_NETWORK_SECMARK
  414. __u32 secmark;
  415. #endif
  416. union {
  417. __u32 mark;
  418. __u32 dropcount;
  419. };
  420. sk_buff_data_t transport_header;
  421. sk_buff_data_t network_header;
  422. sk_buff_data_t mac_header;
  423. /* These elements must be at the end, see alloc_skb() for details. */
  424. sk_buff_data_t tail;
  425. sk_buff_data_t end;
  426. unsigned char *head,
  427. *data;
  428. unsigned int truesize;
  429. atomic_t users;
  430. };
  431. #ifdef __KERNEL__
  432. /*
  433. * Handling routines are only of interest to the kernel
  434. */
  435. #include <linux/slab.h>
  436. #include <asm/system.h>
  437. /*
  438. * skb might have a dst pointer attached, refcounted or not.
  439. * _skb_refdst low order bit is set if refcount was _not_ taken
  440. */
  441. #define SKB_DST_NOREF 1UL
  442. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  443. /**
  444. * skb_dst - returns skb dst_entry
  445. * @skb: buffer
  446. *
  447. * Returns skb dst_entry, regardless of reference taken or not.
  448. */
  449. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  450. {
  451. /* If refdst was not refcounted, check we still are in a
  452. * rcu_read_lock section
  453. */
  454. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  455. !rcu_read_lock_held() &&
  456. !rcu_read_lock_bh_held());
  457. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  458. }
  459. /**
  460. * skb_dst_set - sets skb dst
  461. * @skb: buffer
  462. * @dst: dst entry
  463. *
  464. * Sets skb dst, assuming a reference was taken on dst and should
  465. * be released by skb_dst_drop()
  466. */
  467. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  468. {
  469. skb->_skb_refdst = (unsigned long)dst;
  470. }
  471. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  472. /**
  473. * skb_dst_is_noref - Test if skb dst isn't refcounted
  474. * @skb: buffer
  475. */
  476. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  477. {
  478. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  479. }
  480. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  481. {
  482. return (struct rtable *)skb_dst(skb);
  483. }
  484. extern void kfree_skb(struct sk_buff *skb);
  485. extern void consume_skb(struct sk_buff *skb);
  486. extern void __kfree_skb(struct sk_buff *skb);
  487. extern struct sk_buff *__alloc_skb(unsigned int size,
  488. gfp_t priority, int fclone, int node);
  489. extern struct sk_buff *build_skb(void *data);
  490. static inline struct sk_buff *alloc_skb(unsigned int size,
  491. gfp_t priority)
  492. {
  493. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  494. }
  495. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  496. gfp_t priority)
  497. {
  498. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  499. }
  500. extern void skb_recycle(struct sk_buff *skb);
  501. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  502. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  503. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  504. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  505. gfp_t priority);
  506. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  507. gfp_t priority);
  508. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  509. int headroom, gfp_t gfp_mask);
  510. extern int pskb_expand_head(struct sk_buff *skb,
  511. int nhead, int ntail,
  512. gfp_t gfp_mask);
  513. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  514. unsigned int headroom);
  515. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  516. int newheadroom, int newtailroom,
  517. gfp_t priority);
  518. extern int skb_to_sgvec(struct sk_buff *skb,
  519. struct scatterlist *sg, int offset,
  520. int len);
  521. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  522. struct sk_buff **trailer);
  523. extern int skb_pad(struct sk_buff *skb, int pad);
  524. #define dev_kfree_skb(a) consume_skb(a)
  525. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  526. int getfrag(void *from, char *to, int offset,
  527. int len,int odd, struct sk_buff *skb),
  528. void *from, int length);
  529. struct skb_seq_state {
  530. __u32 lower_offset;
  531. __u32 upper_offset;
  532. __u32 frag_idx;
  533. __u32 stepped_offset;
  534. struct sk_buff *root_skb;
  535. struct sk_buff *cur_skb;
  536. __u8 *frag_data;
  537. };
  538. extern void skb_prepare_seq_read(struct sk_buff *skb,
  539. unsigned int from, unsigned int to,
  540. struct skb_seq_state *st);
  541. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  542. struct skb_seq_state *st);
  543. extern void skb_abort_seq_read(struct skb_seq_state *st);
  544. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  545. unsigned int to, struct ts_config *config,
  546. struct ts_state *state);
  547. extern void __skb_get_rxhash(struct sk_buff *skb);
  548. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  549. {
  550. if (!skb->rxhash)
  551. __skb_get_rxhash(skb);
  552. return skb->rxhash;
  553. }
  554. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  555. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  556. {
  557. return skb->head + skb->end;
  558. }
  559. #else
  560. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  561. {
  562. return skb->end;
  563. }
  564. #endif
  565. /* Internal */
  566. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  567. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  568. {
  569. return &skb_shinfo(skb)->hwtstamps;
  570. }
  571. /**
  572. * skb_queue_empty - check if a queue is empty
  573. * @list: queue head
  574. *
  575. * Returns true if the queue is empty, false otherwise.
  576. */
  577. static inline int skb_queue_empty(const struct sk_buff_head *list)
  578. {
  579. return list->next == (struct sk_buff *)list;
  580. }
  581. /**
  582. * skb_queue_is_last - check if skb is the last entry in the queue
  583. * @list: queue head
  584. * @skb: buffer
  585. *
  586. * Returns true if @skb is the last buffer on the list.
  587. */
  588. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  589. const struct sk_buff *skb)
  590. {
  591. return skb->next == (struct sk_buff *)list;
  592. }
  593. /**
  594. * skb_queue_is_first - check if skb is the first entry in the queue
  595. * @list: queue head
  596. * @skb: buffer
  597. *
  598. * Returns true if @skb is the first buffer on the list.
  599. */
  600. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  601. const struct sk_buff *skb)
  602. {
  603. return skb->prev == (struct sk_buff *)list;
  604. }
  605. /**
  606. * skb_queue_next - return the next packet in the queue
  607. * @list: queue head
  608. * @skb: current buffer
  609. *
  610. * Return the next packet in @list after @skb. It is only valid to
  611. * call this if skb_queue_is_last() evaluates to false.
  612. */
  613. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  614. const struct sk_buff *skb)
  615. {
  616. /* This BUG_ON may seem severe, but if we just return then we
  617. * are going to dereference garbage.
  618. */
  619. BUG_ON(skb_queue_is_last(list, skb));
  620. return skb->next;
  621. }
  622. /**
  623. * skb_queue_prev - return the prev packet in the queue
  624. * @list: queue head
  625. * @skb: current buffer
  626. *
  627. * Return the prev packet in @list before @skb. It is only valid to
  628. * call this if skb_queue_is_first() evaluates to false.
  629. */
  630. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  631. const struct sk_buff *skb)
  632. {
  633. /* This BUG_ON may seem severe, but if we just return then we
  634. * are going to dereference garbage.
  635. */
  636. BUG_ON(skb_queue_is_first(list, skb));
  637. return skb->prev;
  638. }
  639. /**
  640. * skb_get - reference buffer
  641. * @skb: buffer to reference
  642. *
  643. * Makes another reference to a socket buffer and returns a pointer
  644. * to the buffer.
  645. */
  646. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  647. {
  648. atomic_inc(&skb->users);
  649. return skb;
  650. }
  651. /*
  652. * If users == 1, we are the only owner and are can avoid redundant
  653. * atomic change.
  654. */
  655. /**
  656. * skb_cloned - is the buffer a clone
  657. * @skb: buffer to check
  658. *
  659. * Returns true if the buffer was generated with skb_clone() and is
  660. * one of multiple shared copies of the buffer. Cloned buffers are
  661. * shared data so must not be written to under normal circumstances.
  662. */
  663. static inline int skb_cloned(const struct sk_buff *skb)
  664. {
  665. return skb->cloned &&
  666. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  667. }
  668. /**
  669. * skb_header_cloned - is the header a clone
  670. * @skb: buffer to check
  671. *
  672. * Returns true if modifying the header part of the buffer requires
  673. * the data to be copied.
  674. */
  675. static inline int skb_header_cloned(const struct sk_buff *skb)
  676. {
  677. int dataref;
  678. if (!skb->cloned)
  679. return 0;
  680. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  681. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  682. return dataref != 1;
  683. }
  684. /**
  685. * skb_header_release - release reference to header
  686. * @skb: buffer to operate on
  687. *
  688. * Drop a reference to the header part of the buffer. This is done
  689. * by acquiring a payload reference. You must not read from the header
  690. * part of skb->data after this.
  691. */
  692. static inline void skb_header_release(struct sk_buff *skb)
  693. {
  694. BUG_ON(skb->nohdr);
  695. skb->nohdr = 1;
  696. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  697. }
  698. /**
  699. * skb_shared - is the buffer shared
  700. * @skb: buffer to check
  701. *
  702. * Returns true if more than one person has a reference to this
  703. * buffer.
  704. */
  705. static inline int skb_shared(const struct sk_buff *skb)
  706. {
  707. return atomic_read(&skb->users) != 1;
  708. }
  709. /**
  710. * skb_share_check - check if buffer is shared and if so clone it
  711. * @skb: buffer to check
  712. * @pri: priority for memory allocation
  713. *
  714. * If the buffer is shared the buffer is cloned and the old copy
  715. * drops a reference. A new clone with a single reference is returned.
  716. * If the buffer is not shared the original buffer is returned. When
  717. * being called from interrupt status or with spinlocks held pri must
  718. * be GFP_ATOMIC.
  719. *
  720. * NULL is returned on a memory allocation failure.
  721. */
  722. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  723. gfp_t pri)
  724. {
  725. might_sleep_if(pri & __GFP_WAIT);
  726. if (skb_shared(skb)) {
  727. struct sk_buff *nskb = skb_clone(skb, pri);
  728. kfree_skb(skb);
  729. skb = nskb;
  730. }
  731. return skb;
  732. }
  733. /*
  734. * Copy shared buffers into a new sk_buff. We effectively do COW on
  735. * packets to handle cases where we have a local reader and forward
  736. * and a couple of other messy ones. The normal one is tcpdumping
  737. * a packet thats being forwarded.
  738. */
  739. /**
  740. * skb_unshare - make a copy of a shared buffer
  741. * @skb: buffer to check
  742. * @pri: priority for memory allocation
  743. *
  744. * If the socket buffer is a clone then this function creates a new
  745. * copy of the data, drops a reference count on the old copy and returns
  746. * the new copy with the reference count at 1. If the buffer is not a clone
  747. * the original buffer is returned. When called with a spinlock held or
  748. * from interrupt state @pri must be %GFP_ATOMIC
  749. *
  750. * %NULL is returned on a memory allocation failure.
  751. */
  752. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  753. gfp_t pri)
  754. {
  755. might_sleep_if(pri & __GFP_WAIT);
  756. if (skb_cloned(skb)) {
  757. struct sk_buff *nskb = skb_copy(skb, pri);
  758. kfree_skb(skb); /* Free our shared copy */
  759. skb = nskb;
  760. }
  761. return skb;
  762. }
  763. /**
  764. * skb_peek - peek at the head of an &sk_buff_head
  765. * @list_: list to peek at
  766. *
  767. * Peek an &sk_buff. Unlike most other operations you _MUST_
  768. * be careful with this one. A peek leaves the buffer on the
  769. * list and someone else may run off with it. You must hold
  770. * the appropriate locks or have a private queue to do this.
  771. *
  772. * Returns %NULL for an empty list or a pointer to the head element.
  773. * The reference count is not incremented and the reference is therefore
  774. * volatile. Use with caution.
  775. */
  776. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  777. {
  778. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  779. if (list == (struct sk_buff *)list_)
  780. list = NULL;
  781. return list;
  782. }
  783. /**
  784. * skb_peek_next - peek skb following the given one from a queue
  785. * @skb: skb to start from
  786. * @list_: list to peek at
  787. *
  788. * Returns %NULL when the end of the list is met or a pointer to the
  789. * next element. The reference count is not incremented and the
  790. * reference is therefore volatile. Use with caution.
  791. */
  792. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  793. const struct sk_buff_head *list_)
  794. {
  795. struct sk_buff *next = skb->next;
  796. if (next == (struct sk_buff *)list_)
  797. next = NULL;
  798. return next;
  799. }
  800. /**
  801. * skb_peek_tail - peek at the tail of an &sk_buff_head
  802. * @list_: list to peek at
  803. *
  804. * Peek an &sk_buff. Unlike most other operations you _MUST_
  805. * be careful with this one. A peek leaves the buffer on the
  806. * list and someone else may run off with it. You must hold
  807. * the appropriate locks or have a private queue to do this.
  808. *
  809. * Returns %NULL for an empty list or a pointer to the tail element.
  810. * The reference count is not incremented and the reference is therefore
  811. * volatile. Use with caution.
  812. */
  813. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  814. {
  815. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  816. if (list == (struct sk_buff *)list_)
  817. list = NULL;
  818. return list;
  819. }
  820. /**
  821. * skb_queue_len - get queue length
  822. * @list_: list to measure
  823. *
  824. * Return the length of an &sk_buff queue.
  825. */
  826. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  827. {
  828. return list_->qlen;
  829. }
  830. /**
  831. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  832. * @list: queue to initialize
  833. *
  834. * This initializes only the list and queue length aspects of
  835. * an sk_buff_head object. This allows to initialize the list
  836. * aspects of an sk_buff_head without reinitializing things like
  837. * the spinlock. It can also be used for on-stack sk_buff_head
  838. * objects where the spinlock is known to not be used.
  839. */
  840. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  841. {
  842. list->prev = list->next = (struct sk_buff *)list;
  843. list->qlen = 0;
  844. }
  845. /*
  846. * This function creates a split out lock class for each invocation;
  847. * this is needed for now since a whole lot of users of the skb-queue
  848. * infrastructure in drivers have different locking usage (in hardirq)
  849. * than the networking core (in softirq only). In the long run either the
  850. * network layer or drivers should need annotation to consolidate the
  851. * main types of usage into 3 classes.
  852. */
  853. static inline void skb_queue_head_init(struct sk_buff_head *list)
  854. {
  855. spin_lock_init(&list->lock);
  856. __skb_queue_head_init(list);
  857. }
  858. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  859. struct lock_class_key *class)
  860. {
  861. skb_queue_head_init(list);
  862. lockdep_set_class(&list->lock, class);
  863. }
  864. /*
  865. * Insert an sk_buff on a list.
  866. *
  867. * The "__skb_xxxx()" functions are the non-atomic ones that
  868. * can only be called with interrupts disabled.
  869. */
  870. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  871. static inline void __skb_insert(struct sk_buff *newsk,
  872. struct sk_buff *prev, struct sk_buff *next,
  873. struct sk_buff_head *list)
  874. {
  875. newsk->next = next;
  876. newsk->prev = prev;
  877. next->prev = prev->next = newsk;
  878. list->qlen++;
  879. }
  880. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  881. struct sk_buff *prev,
  882. struct sk_buff *next)
  883. {
  884. struct sk_buff *first = list->next;
  885. struct sk_buff *last = list->prev;
  886. first->prev = prev;
  887. prev->next = first;
  888. last->next = next;
  889. next->prev = last;
  890. }
  891. /**
  892. * skb_queue_splice - join two skb lists, this is designed for stacks
  893. * @list: the new list to add
  894. * @head: the place to add it in the first list
  895. */
  896. static inline void skb_queue_splice(const struct sk_buff_head *list,
  897. struct sk_buff_head *head)
  898. {
  899. if (!skb_queue_empty(list)) {
  900. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  901. head->qlen += list->qlen;
  902. }
  903. }
  904. /**
  905. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  906. * @list: the new list to add
  907. * @head: the place to add it in the first list
  908. *
  909. * The list at @list is reinitialised
  910. */
  911. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  912. struct sk_buff_head *head)
  913. {
  914. if (!skb_queue_empty(list)) {
  915. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  916. head->qlen += list->qlen;
  917. __skb_queue_head_init(list);
  918. }
  919. }
  920. /**
  921. * skb_queue_splice_tail - join two skb lists, each list being a queue
  922. * @list: the new list to add
  923. * @head: the place to add it in the first list
  924. */
  925. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  926. struct sk_buff_head *head)
  927. {
  928. if (!skb_queue_empty(list)) {
  929. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  930. head->qlen += list->qlen;
  931. }
  932. }
  933. /**
  934. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  935. * @list: the new list to add
  936. * @head: the place to add it in the first list
  937. *
  938. * Each of the lists is a queue.
  939. * The list at @list is reinitialised
  940. */
  941. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  942. struct sk_buff_head *head)
  943. {
  944. if (!skb_queue_empty(list)) {
  945. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  946. head->qlen += list->qlen;
  947. __skb_queue_head_init(list);
  948. }
  949. }
  950. /**
  951. * __skb_queue_after - queue a buffer at the list head
  952. * @list: list to use
  953. * @prev: place after this buffer
  954. * @newsk: buffer to queue
  955. *
  956. * Queue a buffer int the middle of a list. This function takes no locks
  957. * and you must therefore hold required locks before calling it.
  958. *
  959. * A buffer cannot be placed on two lists at the same time.
  960. */
  961. static inline void __skb_queue_after(struct sk_buff_head *list,
  962. struct sk_buff *prev,
  963. struct sk_buff *newsk)
  964. {
  965. __skb_insert(newsk, prev, prev->next, list);
  966. }
  967. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  968. struct sk_buff_head *list);
  969. static inline void __skb_queue_before(struct sk_buff_head *list,
  970. struct sk_buff *next,
  971. struct sk_buff *newsk)
  972. {
  973. __skb_insert(newsk, next->prev, next, list);
  974. }
  975. /**
  976. * __skb_queue_head - queue a buffer at the list head
  977. * @list: list to use
  978. * @newsk: buffer to queue
  979. *
  980. * Queue a buffer at the start of a list. This function takes no locks
  981. * and you must therefore hold required locks before calling it.
  982. *
  983. * A buffer cannot be placed on two lists at the same time.
  984. */
  985. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  986. static inline void __skb_queue_head(struct sk_buff_head *list,
  987. struct sk_buff *newsk)
  988. {
  989. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  990. }
  991. /**
  992. * __skb_queue_tail - queue a buffer at the list tail
  993. * @list: list to use
  994. * @newsk: buffer to queue
  995. *
  996. * Queue a buffer at the end of a list. This function takes no locks
  997. * and you must therefore hold required locks before calling it.
  998. *
  999. * A buffer cannot be placed on two lists at the same time.
  1000. */
  1001. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1002. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1003. struct sk_buff *newsk)
  1004. {
  1005. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1006. }
  1007. /*
  1008. * remove sk_buff from list. _Must_ be called atomically, and with
  1009. * the list known..
  1010. */
  1011. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1012. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1013. {
  1014. struct sk_buff *next, *prev;
  1015. list->qlen--;
  1016. next = skb->next;
  1017. prev = skb->prev;
  1018. skb->next = skb->prev = NULL;
  1019. next->prev = prev;
  1020. prev->next = next;
  1021. }
  1022. /**
  1023. * __skb_dequeue - remove from the head of the queue
  1024. * @list: list to dequeue from
  1025. *
  1026. * Remove the head of the list. This function does not take any locks
  1027. * so must be used with appropriate locks held only. The head item is
  1028. * returned or %NULL if the list is empty.
  1029. */
  1030. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1031. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1032. {
  1033. struct sk_buff *skb = skb_peek(list);
  1034. if (skb)
  1035. __skb_unlink(skb, list);
  1036. return skb;
  1037. }
  1038. /**
  1039. * __skb_dequeue_tail - remove from the tail of the queue
  1040. * @list: list to dequeue from
  1041. *
  1042. * Remove the tail of the list. This function does not take any locks
  1043. * so must be used with appropriate locks held only. The tail item is
  1044. * returned or %NULL if the list is empty.
  1045. */
  1046. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1047. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1048. {
  1049. struct sk_buff *skb = skb_peek_tail(list);
  1050. if (skb)
  1051. __skb_unlink(skb, list);
  1052. return skb;
  1053. }
  1054. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  1055. {
  1056. return skb->data_len;
  1057. }
  1058. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1059. {
  1060. return skb->len - skb->data_len;
  1061. }
  1062. static inline int skb_pagelen(const struct sk_buff *skb)
  1063. {
  1064. int i, len = 0;
  1065. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1066. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1067. return len + skb_headlen(skb);
  1068. }
  1069. /**
  1070. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1071. * @skb: buffer containing fragment to be initialised
  1072. * @i: paged fragment index to initialise
  1073. * @page: the page to use for this fragment
  1074. * @off: the offset to the data with @page
  1075. * @size: the length of the data
  1076. *
  1077. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1078. * offset @off within @page.
  1079. *
  1080. * Does not take any additional reference on the fragment.
  1081. */
  1082. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1083. struct page *page, int off, int size)
  1084. {
  1085. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1086. frag->page.p = page;
  1087. frag->page_offset = off;
  1088. skb_frag_size_set(frag, size);
  1089. }
  1090. /**
  1091. * skb_fill_page_desc - initialise a paged fragment in an skb
  1092. * @skb: buffer containing fragment to be initialised
  1093. * @i: paged fragment index to initialise
  1094. * @page: the page to use for this fragment
  1095. * @off: the offset to the data with @page
  1096. * @size: the length of the data
  1097. *
  1098. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1099. * @skb to point to &size bytes at offset @off within @page. In
  1100. * addition updates @skb such that @i is the last fragment.
  1101. *
  1102. * Does not take any additional reference on the fragment.
  1103. */
  1104. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1105. struct page *page, int off, int size)
  1106. {
  1107. __skb_fill_page_desc(skb, i, page, off, size);
  1108. skb_shinfo(skb)->nr_frags = i + 1;
  1109. }
  1110. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1111. int off, int size);
  1112. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1113. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1114. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1115. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1116. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1117. {
  1118. return skb->head + skb->tail;
  1119. }
  1120. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1121. {
  1122. skb->tail = skb->data - skb->head;
  1123. }
  1124. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1125. {
  1126. skb_reset_tail_pointer(skb);
  1127. skb->tail += offset;
  1128. }
  1129. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1130. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1131. {
  1132. return skb->tail;
  1133. }
  1134. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1135. {
  1136. skb->tail = skb->data;
  1137. }
  1138. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1139. {
  1140. skb->tail = skb->data + offset;
  1141. }
  1142. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1143. /*
  1144. * Add data to an sk_buff
  1145. */
  1146. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1147. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1148. {
  1149. unsigned char *tmp = skb_tail_pointer(skb);
  1150. SKB_LINEAR_ASSERT(skb);
  1151. skb->tail += len;
  1152. skb->len += len;
  1153. return tmp;
  1154. }
  1155. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1156. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1157. {
  1158. skb->data -= len;
  1159. skb->len += len;
  1160. return skb->data;
  1161. }
  1162. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1163. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1164. {
  1165. skb->len -= len;
  1166. BUG_ON(skb->len < skb->data_len);
  1167. return skb->data += len;
  1168. }
  1169. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1170. {
  1171. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1172. }
  1173. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1174. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1175. {
  1176. if (len > skb_headlen(skb) &&
  1177. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1178. return NULL;
  1179. skb->len -= len;
  1180. return skb->data += len;
  1181. }
  1182. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1183. {
  1184. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1185. }
  1186. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1187. {
  1188. if (likely(len <= skb_headlen(skb)))
  1189. return 1;
  1190. if (unlikely(len > skb->len))
  1191. return 0;
  1192. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1193. }
  1194. /**
  1195. * skb_headroom - bytes at buffer head
  1196. * @skb: buffer to check
  1197. *
  1198. * Return the number of bytes of free space at the head of an &sk_buff.
  1199. */
  1200. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1201. {
  1202. return skb->data - skb->head;
  1203. }
  1204. /**
  1205. * skb_tailroom - bytes at buffer end
  1206. * @skb: buffer to check
  1207. *
  1208. * Return the number of bytes of free space at the tail of an sk_buff
  1209. */
  1210. static inline int skb_tailroom(const struct sk_buff *skb)
  1211. {
  1212. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1213. }
  1214. /**
  1215. * skb_reserve - adjust headroom
  1216. * @skb: buffer to alter
  1217. * @len: bytes to move
  1218. *
  1219. * Increase the headroom of an empty &sk_buff by reducing the tail
  1220. * room. This is only allowed for an empty buffer.
  1221. */
  1222. static inline void skb_reserve(struct sk_buff *skb, int len)
  1223. {
  1224. skb->data += len;
  1225. skb->tail += len;
  1226. }
  1227. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1228. {
  1229. skb->mac_len = skb->network_header - skb->mac_header;
  1230. }
  1231. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1232. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1233. {
  1234. return skb->head + skb->transport_header;
  1235. }
  1236. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1237. {
  1238. skb->transport_header = skb->data - skb->head;
  1239. }
  1240. static inline void skb_set_transport_header(struct sk_buff *skb,
  1241. const int offset)
  1242. {
  1243. skb_reset_transport_header(skb);
  1244. skb->transport_header += offset;
  1245. }
  1246. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1247. {
  1248. return skb->head + skb->network_header;
  1249. }
  1250. static inline void skb_reset_network_header(struct sk_buff *skb)
  1251. {
  1252. skb->network_header = skb->data - skb->head;
  1253. }
  1254. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1255. {
  1256. skb_reset_network_header(skb);
  1257. skb->network_header += offset;
  1258. }
  1259. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1260. {
  1261. return skb->head + skb->mac_header;
  1262. }
  1263. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1264. {
  1265. return skb->mac_header != ~0U;
  1266. }
  1267. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1268. {
  1269. skb->mac_header = skb->data - skb->head;
  1270. }
  1271. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1272. {
  1273. skb_reset_mac_header(skb);
  1274. skb->mac_header += offset;
  1275. }
  1276. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1277. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1278. {
  1279. return skb->transport_header;
  1280. }
  1281. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1282. {
  1283. skb->transport_header = skb->data;
  1284. }
  1285. static inline void skb_set_transport_header(struct sk_buff *skb,
  1286. const int offset)
  1287. {
  1288. skb->transport_header = skb->data + offset;
  1289. }
  1290. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1291. {
  1292. return skb->network_header;
  1293. }
  1294. static inline void skb_reset_network_header(struct sk_buff *skb)
  1295. {
  1296. skb->network_header = skb->data;
  1297. }
  1298. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1299. {
  1300. skb->network_header = skb->data + offset;
  1301. }
  1302. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1303. {
  1304. return skb->mac_header;
  1305. }
  1306. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1307. {
  1308. return skb->mac_header != NULL;
  1309. }
  1310. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1311. {
  1312. skb->mac_header = skb->data;
  1313. }
  1314. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1315. {
  1316. skb->mac_header = skb->data + offset;
  1317. }
  1318. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1319. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1320. {
  1321. return skb->csum_start - skb_headroom(skb);
  1322. }
  1323. static inline int skb_transport_offset(const struct sk_buff *skb)
  1324. {
  1325. return skb_transport_header(skb) - skb->data;
  1326. }
  1327. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1328. {
  1329. return skb->transport_header - skb->network_header;
  1330. }
  1331. static inline int skb_network_offset(const struct sk_buff *skb)
  1332. {
  1333. return skb_network_header(skb) - skb->data;
  1334. }
  1335. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1336. {
  1337. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1338. }
  1339. /*
  1340. * CPUs often take a performance hit when accessing unaligned memory
  1341. * locations. The actual performance hit varies, it can be small if the
  1342. * hardware handles it or large if we have to take an exception and fix it
  1343. * in software.
  1344. *
  1345. * Since an ethernet header is 14 bytes network drivers often end up with
  1346. * the IP header at an unaligned offset. The IP header can be aligned by
  1347. * shifting the start of the packet by 2 bytes. Drivers should do this
  1348. * with:
  1349. *
  1350. * skb_reserve(skb, NET_IP_ALIGN);
  1351. *
  1352. * The downside to this alignment of the IP header is that the DMA is now
  1353. * unaligned. On some architectures the cost of an unaligned DMA is high
  1354. * and this cost outweighs the gains made by aligning the IP header.
  1355. *
  1356. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1357. * to be overridden.
  1358. */
  1359. #ifndef NET_IP_ALIGN
  1360. #define NET_IP_ALIGN 2
  1361. #endif
  1362. /*
  1363. * The networking layer reserves some headroom in skb data (via
  1364. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1365. * the header has to grow. In the default case, if the header has to grow
  1366. * 32 bytes or less we avoid the reallocation.
  1367. *
  1368. * Unfortunately this headroom changes the DMA alignment of the resulting
  1369. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1370. * on some architectures. An architecture can override this value,
  1371. * perhaps setting it to a cacheline in size (since that will maintain
  1372. * cacheline alignment of the DMA). It must be a power of 2.
  1373. *
  1374. * Various parts of the networking layer expect at least 32 bytes of
  1375. * headroom, you should not reduce this.
  1376. *
  1377. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1378. * to reduce average number of cache lines per packet.
  1379. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1380. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1381. */
  1382. #ifndef NET_SKB_PAD
  1383. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1384. #endif
  1385. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1386. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1387. {
  1388. if (unlikely(skb_is_nonlinear(skb))) {
  1389. WARN_ON(1);
  1390. return;
  1391. }
  1392. skb->len = len;
  1393. skb_set_tail_pointer(skb, len);
  1394. }
  1395. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1396. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1397. {
  1398. if (skb->data_len)
  1399. return ___pskb_trim(skb, len);
  1400. __skb_trim(skb, len);
  1401. return 0;
  1402. }
  1403. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1404. {
  1405. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1406. }
  1407. /**
  1408. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1409. * @skb: buffer to alter
  1410. * @len: new length
  1411. *
  1412. * This is identical to pskb_trim except that the caller knows that
  1413. * the skb is not cloned so we should never get an error due to out-
  1414. * of-memory.
  1415. */
  1416. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1417. {
  1418. int err = pskb_trim(skb, len);
  1419. BUG_ON(err);
  1420. }
  1421. /**
  1422. * skb_orphan - orphan a buffer
  1423. * @skb: buffer to orphan
  1424. *
  1425. * If a buffer currently has an owner then we call the owner's
  1426. * destructor function and make the @skb unowned. The buffer continues
  1427. * to exist but is no longer charged to its former owner.
  1428. */
  1429. static inline void skb_orphan(struct sk_buff *skb)
  1430. {
  1431. if (skb->destructor)
  1432. skb->destructor(skb);
  1433. skb->destructor = NULL;
  1434. skb->sk = NULL;
  1435. }
  1436. /**
  1437. * __skb_queue_purge - empty a list
  1438. * @list: list to empty
  1439. *
  1440. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1441. * the list and one reference dropped. This function does not take the
  1442. * list lock and the caller must hold the relevant locks to use it.
  1443. */
  1444. extern void skb_queue_purge(struct sk_buff_head *list);
  1445. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1446. {
  1447. struct sk_buff *skb;
  1448. while ((skb = __skb_dequeue(list)) != NULL)
  1449. kfree_skb(skb);
  1450. }
  1451. /**
  1452. * __dev_alloc_skb - allocate an skbuff for receiving
  1453. * @length: length to allocate
  1454. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1455. *
  1456. * Allocate a new &sk_buff and assign it a usage count of one. The
  1457. * buffer has unspecified headroom built in. Users should allocate
  1458. * the headroom they think they need without accounting for the
  1459. * built in space. The built in space is used for optimisations.
  1460. *
  1461. * %NULL is returned if there is no free memory.
  1462. */
  1463. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1464. gfp_t gfp_mask)
  1465. {
  1466. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1467. if (likely(skb))
  1468. skb_reserve(skb, NET_SKB_PAD);
  1469. return skb;
  1470. }
  1471. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1472. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1473. unsigned int length, gfp_t gfp_mask);
  1474. /**
  1475. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1476. * @dev: network device to receive on
  1477. * @length: length to allocate
  1478. *
  1479. * Allocate a new &sk_buff and assign it a usage count of one. The
  1480. * buffer has unspecified headroom built in. Users should allocate
  1481. * the headroom they think they need without accounting for the
  1482. * built in space. The built in space is used for optimisations.
  1483. *
  1484. * %NULL is returned if there is no free memory. Although this function
  1485. * allocates memory it can be called from an interrupt.
  1486. */
  1487. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1488. unsigned int length)
  1489. {
  1490. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1491. }
  1492. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1493. unsigned int length, gfp_t gfp)
  1494. {
  1495. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1496. if (NET_IP_ALIGN && skb)
  1497. skb_reserve(skb, NET_IP_ALIGN);
  1498. return skb;
  1499. }
  1500. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1501. unsigned int length)
  1502. {
  1503. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1504. }
  1505. /**
  1506. * skb_frag_page - retrieve the page refered to by a paged fragment
  1507. * @frag: the paged fragment
  1508. *
  1509. * Returns the &struct page associated with @frag.
  1510. */
  1511. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1512. {
  1513. return frag->page.p;
  1514. }
  1515. /**
  1516. * __skb_frag_ref - take an addition reference on a paged fragment.
  1517. * @frag: the paged fragment
  1518. *
  1519. * Takes an additional reference on the paged fragment @frag.
  1520. */
  1521. static inline void __skb_frag_ref(skb_frag_t *frag)
  1522. {
  1523. get_page(skb_frag_page(frag));
  1524. }
  1525. /**
  1526. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1527. * @skb: the buffer
  1528. * @f: the fragment offset.
  1529. *
  1530. * Takes an additional reference on the @f'th paged fragment of @skb.
  1531. */
  1532. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1533. {
  1534. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1535. }
  1536. /**
  1537. * __skb_frag_unref - release a reference on a paged fragment.
  1538. * @frag: the paged fragment
  1539. *
  1540. * Releases a reference on the paged fragment @frag.
  1541. */
  1542. static inline void __skb_frag_unref(skb_frag_t *frag)
  1543. {
  1544. put_page(skb_frag_page(frag));
  1545. }
  1546. /**
  1547. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1548. * @skb: the buffer
  1549. * @f: the fragment offset
  1550. *
  1551. * Releases a reference on the @f'th paged fragment of @skb.
  1552. */
  1553. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1554. {
  1555. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1556. }
  1557. /**
  1558. * skb_frag_address - gets the address of the data contained in a paged fragment
  1559. * @frag: the paged fragment buffer
  1560. *
  1561. * Returns the address of the data within @frag. The page must already
  1562. * be mapped.
  1563. */
  1564. static inline void *skb_frag_address(const skb_frag_t *frag)
  1565. {
  1566. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1567. }
  1568. /**
  1569. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1570. * @frag: the paged fragment buffer
  1571. *
  1572. * Returns the address of the data within @frag. Checks that the page
  1573. * is mapped and returns %NULL otherwise.
  1574. */
  1575. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1576. {
  1577. void *ptr = page_address(skb_frag_page(frag));
  1578. if (unlikely(!ptr))
  1579. return NULL;
  1580. return ptr + frag->page_offset;
  1581. }
  1582. /**
  1583. * __skb_frag_set_page - sets the page contained in a paged fragment
  1584. * @frag: the paged fragment
  1585. * @page: the page to set
  1586. *
  1587. * Sets the fragment @frag to contain @page.
  1588. */
  1589. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1590. {
  1591. frag->page.p = page;
  1592. }
  1593. /**
  1594. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1595. * @skb: the buffer
  1596. * @f: the fragment offset
  1597. * @page: the page to set
  1598. *
  1599. * Sets the @f'th fragment of @skb to contain @page.
  1600. */
  1601. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1602. struct page *page)
  1603. {
  1604. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1605. }
  1606. /**
  1607. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1608. * @dev: the device to map the fragment to
  1609. * @frag: the paged fragment to map
  1610. * @offset: the offset within the fragment (starting at the
  1611. * fragment's own offset)
  1612. * @size: the number of bytes to map
  1613. * @dir: the direction of the mapping (%PCI_DMA_*)
  1614. *
  1615. * Maps the page associated with @frag to @device.
  1616. */
  1617. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1618. const skb_frag_t *frag,
  1619. size_t offset, size_t size,
  1620. enum dma_data_direction dir)
  1621. {
  1622. return dma_map_page(dev, skb_frag_page(frag),
  1623. frag->page_offset + offset, size, dir);
  1624. }
  1625. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1626. gfp_t gfp_mask)
  1627. {
  1628. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1629. }
  1630. /**
  1631. * skb_clone_writable - is the header of a clone writable
  1632. * @skb: buffer to check
  1633. * @len: length up to which to write
  1634. *
  1635. * Returns true if modifying the header part of the cloned buffer
  1636. * does not requires the data to be copied.
  1637. */
  1638. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1639. {
  1640. return !skb_header_cloned(skb) &&
  1641. skb_headroom(skb) + len <= skb->hdr_len;
  1642. }
  1643. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1644. int cloned)
  1645. {
  1646. int delta = 0;
  1647. if (headroom < NET_SKB_PAD)
  1648. headroom = NET_SKB_PAD;
  1649. if (headroom > skb_headroom(skb))
  1650. delta = headroom - skb_headroom(skb);
  1651. if (delta || cloned)
  1652. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1653. GFP_ATOMIC);
  1654. return 0;
  1655. }
  1656. /**
  1657. * skb_cow - copy header of skb when it is required
  1658. * @skb: buffer to cow
  1659. * @headroom: needed headroom
  1660. *
  1661. * If the skb passed lacks sufficient headroom or its data part
  1662. * is shared, data is reallocated. If reallocation fails, an error
  1663. * is returned and original skb is not changed.
  1664. *
  1665. * The result is skb with writable area skb->head...skb->tail
  1666. * and at least @headroom of space at head.
  1667. */
  1668. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1669. {
  1670. return __skb_cow(skb, headroom, skb_cloned(skb));
  1671. }
  1672. /**
  1673. * skb_cow_head - skb_cow but only making the head writable
  1674. * @skb: buffer to cow
  1675. * @headroom: needed headroom
  1676. *
  1677. * This function is identical to skb_cow except that we replace the
  1678. * skb_cloned check by skb_header_cloned. It should be used when
  1679. * you only need to push on some header and do not need to modify
  1680. * the data.
  1681. */
  1682. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1683. {
  1684. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1685. }
  1686. /**
  1687. * skb_padto - pad an skbuff up to a minimal size
  1688. * @skb: buffer to pad
  1689. * @len: minimal length
  1690. *
  1691. * Pads up a buffer to ensure the trailing bytes exist and are
  1692. * blanked. If the buffer already contains sufficient data it
  1693. * is untouched. Otherwise it is extended. Returns zero on
  1694. * success. The skb is freed on error.
  1695. */
  1696. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1697. {
  1698. unsigned int size = skb->len;
  1699. if (likely(size >= len))
  1700. return 0;
  1701. return skb_pad(skb, len - size);
  1702. }
  1703. static inline int skb_add_data(struct sk_buff *skb,
  1704. char __user *from, int copy)
  1705. {
  1706. const int off = skb->len;
  1707. if (skb->ip_summed == CHECKSUM_NONE) {
  1708. int err = 0;
  1709. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1710. copy, 0, &err);
  1711. if (!err) {
  1712. skb->csum = csum_block_add(skb->csum, csum, off);
  1713. return 0;
  1714. }
  1715. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1716. return 0;
  1717. __skb_trim(skb, off);
  1718. return -EFAULT;
  1719. }
  1720. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1721. const struct page *page, int off)
  1722. {
  1723. if (i) {
  1724. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1725. return page == skb_frag_page(frag) &&
  1726. off == frag->page_offset + skb_frag_size(frag);
  1727. }
  1728. return 0;
  1729. }
  1730. static inline int __skb_linearize(struct sk_buff *skb)
  1731. {
  1732. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1733. }
  1734. /**
  1735. * skb_linearize - convert paged skb to linear one
  1736. * @skb: buffer to linarize
  1737. *
  1738. * If there is no free memory -ENOMEM is returned, otherwise zero
  1739. * is returned and the old skb data released.
  1740. */
  1741. static inline int skb_linearize(struct sk_buff *skb)
  1742. {
  1743. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1744. }
  1745. /**
  1746. * skb_linearize_cow - make sure skb is linear and writable
  1747. * @skb: buffer to process
  1748. *
  1749. * If there is no free memory -ENOMEM is returned, otherwise zero
  1750. * is returned and the old skb data released.
  1751. */
  1752. static inline int skb_linearize_cow(struct sk_buff *skb)
  1753. {
  1754. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1755. __skb_linearize(skb) : 0;
  1756. }
  1757. /**
  1758. * skb_postpull_rcsum - update checksum for received skb after pull
  1759. * @skb: buffer to update
  1760. * @start: start of data before pull
  1761. * @len: length of data pulled
  1762. *
  1763. * After doing a pull on a received packet, you need to call this to
  1764. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1765. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1766. */
  1767. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1768. const void *start, unsigned int len)
  1769. {
  1770. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1771. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1772. }
  1773. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1774. /**
  1775. * pskb_trim_rcsum - trim received skb and update checksum
  1776. * @skb: buffer to trim
  1777. * @len: new length
  1778. *
  1779. * This is exactly the same as pskb_trim except that it ensures the
  1780. * checksum of received packets are still valid after the operation.
  1781. */
  1782. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1783. {
  1784. if (likely(len >= skb->len))
  1785. return 0;
  1786. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1787. skb->ip_summed = CHECKSUM_NONE;
  1788. return __pskb_trim(skb, len);
  1789. }
  1790. #define skb_queue_walk(queue, skb) \
  1791. for (skb = (queue)->next; \
  1792. skb != (struct sk_buff *)(queue); \
  1793. skb = skb->next)
  1794. #define skb_queue_walk_safe(queue, skb, tmp) \
  1795. for (skb = (queue)->next, tmp = skb->next; \
  1796. skb != (struct sk_buff *)(queue); \
  1797. skb = tmp, tmp = skb->next)
  1798. #define skb_queue_walk_from(queue, skb) \
  1799. for (; skb != (struct sk_buff *)(queue); \
  1800. skb = skb->next)
  1801. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1802. for (tmp = skb->next; \
  1803. skb != (struct sk_buff *)(queue); \
  1804. skb = tmp, tmp = skb->next)
  1805. #define skb_queue_reverse_walk(queue, skb) \
  1806. for (skb = (queue)->prev; \
  1807. skb != (struct sk_buff *)(queue); \
  1808. skb = skb->prev)
  1809. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1810. for (skb = (queue)->prev, tmp = skb->prev; \
  1811. skb != (struct sk_buff *)(queue); \
  1812. skb = tmp, tmp = skb->prev)
  1813. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1814. for (tmp = skb->prev; \
  1815. skb != (struct sk_buff *)(queue); \
  1816. skb = tmp, tmp = skb->prev)
  1817. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1818. {
  1819. return skb_shinfo(skb)->frag_list != NULL;
  1820. }
  1821. static inline void skb_frag_list_init(struct sk_buff *skb)
  1822. {
  1823. skb_shinfo(skb)->frag_list = NULL;
  1824. }
  1825. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1826. {
  1827. frag->next = skb_shinfo(skb)->frag_list;
  1828. skb_shinfo(skb)->frag_list = frag;
  1829. }
  1830. #define skb_walk_frags(skb, iter) \
  1831. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1832. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1833. int *peeked, int *off, int *err);
  1834. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1835. int noblock, int *err);
  1836. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1837. struct poll_table_struct *wait);
  1838. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1839. int offset, struct iovec *to,
  1840. int size);
  1841. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1842. int hlen,
  1843. struct iovec *iov);
  1844. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1845. int offset,
  1846. const struct iovec *from,
  1847. int from_offset,
  1848. int len);
  1849. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1850. int offset,
  1851. const struct iovec *to,
  1852. int to_offset,
  1853. int size);
  1854. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1855. extern void skb_free_datagram_locked(struct sock *sk,
  1856. struct sk_buff *skb);
  1857. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1858. unsigned int flags);
  1859. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1860. int len, __wsum csum);
  1861. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1862. void *to, int len);
  1863. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1864. const void *from, int len);
  1865. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1866. int offset, u8 *to, int len,
  1867. __wsum csum);
  1868. extern int skb_splice_bits(struct sk_buff *skb,
  1869. unsigned int offset,
  1870. struct pipe_inode_info *pipe,
  1871. unsigned int len,
  1872. unsigned int flags);
  1873. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1874. extern void skb_split(struct sk_buff *skb,
  1875. struct sk_buff *skb1, const u32 len);
  1876. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1877. int shiftlen);
  1878. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1879. netdev_features_t features);
  1880. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1881. int len, void *buffer)
  1882. {
  1883. int hlen = skb_headlen(skb);
  1884. if (hlen - offset >= len)
  1885. return skb->data + offset;
  1886. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1887. return NULL;
  1888. return buffer;
  1889. }
  1890. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1891. void *to,
  1892. const unsigned int len)
  1893. {
  1894. memcpy(to, skb->data, len);
  1895. }
  1896. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1897. const int offset, void *to,
  1898. const unsigned int len)
  1899. {
  1900. memcpy(to, skb->data + offset, len);
  1901. }
  1902. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1903. const void *from,
  1904. const unsigned int len)
  1905. {
  1906. memcpy(skb->data, from, len);
  1907. }
  1908. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1909. const int offset,
  1910. const void *from,
  1911. const unsigned int len)
  1912. {
  1913. memcpy(skb->data + offset, from, len);
  1914. }
  1915. extern void skb_init(void);
  1916. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1917. {
  1918. return skb->tstamp;
  1919. }
  1920. /**
  1921. * skb_get_timestamp - get timestamp from a skb
  1922. * @skb: skb to get stamp from
  1923. * @stamp: pointer to struct timeval to store stamp in
  1924. *
  1925. * Timestamps are stored in the skb as offsets to a base timestamp.
  1926. * This function converts the offset back to a struct timeval and stores
  1927. * it in stamp.
  1928. */
  1929. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1930. struct timeval *stamp)
  1931. {
  1932. *stamp = ktime_to_timeval(skb->tstamp);
  1933. }
  1934. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1935. struct timespec *stamp)
  1936. {
  1937. *stamp = ktime_to_timespec(skb->tstamp);
  1938. }
  1939. static inline void __net_timestamp(struct sk_buff *skb)
  1940. {
  1941. skb->tstamp = ktime_get_real();
  1942. }
  1943. static inline ktime_t net_timedelta(ktime_t t)
  1944. {
  1945. return ktime_sub(ktime_get_real(), t);
  1946. }
  1947. static inline ktime_t net_invalid_timestamp(void)
  1948. {
  1949. return ktime_set(0, 0);
  1950. }
  1951. extern void skb_timestamping_init(void);
  1952. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1953. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1954. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1955. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1956. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1957. {
  1958. }
  1959. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1960. {
  1961. return false;
  1962. }
  1963. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1964. /**
  1965. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1966. *
  1967. * PHY drivers may accept clones of transmitted packets for
  1968. * timestamping via their phy_driver.txtstamp method. These drivers
  1969. * must call this function to return the skb back to the stack, with
  1970. * or without a timestamp.
  1971. *
  1972. * @skb: clone of the the original outgoing packet
  1973. * @hwtstamps: hardware time stamps, may be NULL if not available
  1974. *
  1975. */
  1976. void skb_complete_tx_timestamp(struct sk_buff *skb,
  1977. struct skb_shared_hwtstamps *hwtstamps);
  1978. /**
  1979. * skb_tstamp_tx - queue clone of skb with send time stamps
  1980. * @orig_skb: the original outgoing packet
  1981. * @hwtstamps: hardware time stamps, may be NULL if not available
  1982. *
  1983. * If the skb has a socket associated, then this function clones the
  1984. * skb (thus sharing the actual data and optional structures), stores
  1985. * the optional hardware time stamping information (if non NULL) or
  1986. * generates a software time stamp (otherwise), then queues the clone
  1987. * to the error queue of the socket. Errors are silently ignored.
  1988. */
  1989. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  1990. struct skb_shared_hwtstamps *hwtstamps);
  1991. static inline void sw_tx_timestamp(struct sk_buff *skb)
  1992. {
  1993. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  1994. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  1995. skb_tstamp_tx(skb, NULL);
  1996. }
  1997. /**
  1998. * skb_tx_timestamp() - Driver hook for transmit timestamping
  1999. *
  2000. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2001. * function immediately before giving the sk_buff to the MAC hardware.
  2002. *
  2003. * @skb: A socket buffer.
  2004. */
  2005. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2006. {
  2007. skb_clone_tx_timestamp(skb);
  2008. sw_tx_timestamp(skb);
  2009. }
  2010. /**
  2011. * skb_complete_wifi_ack - deliver skb with wifi status
  2012. *
  2013. * @skb: the original outgoing packet
  2014. * @acked: ack status
  2015. *
  2016. */
  2017. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2018. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2019. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2020. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2021. {
  2022. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2023. }
  2024. /**
  2025. * skb_checksum_complete - Calculate checksum of an entire packet
  2026. * @skb: packet to process
  2027. *
  2028. * This function calculates the checksum over the entire packet plus
  2029. * the value of skb->csum. The latter can be used to supply the
  2030. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2031. * checksum.
  2032. *
  2033. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2034. * this function can be used to verify that checksum on received
  2035. * packets. In that case the function should return zero if the
  2036. * checksum is correct. In particular, this function will return zero
  2037. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2038. * hardware has already verified the correctness of the checksum.
  2039. */
  2040. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2041. {
  2042. return skb_csum_unnecessary(skb) ?
  2043. 0 : __skb_checksum_complete(skb);
  2044. }
  2045. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2046. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2047. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2048. {
  2049. if (nfct && atomic_dec_and_test(&nfct->use))
  2050. nf_conntrack_destroy(nfct);
  2051. }
  2052. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2053. {
  2054. if (nfct)
  2055. atomic_inc(&nfct->use);
  2056. }
  2057. #endif
  2058. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2059. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2060. {
  2061. if (skb)
  2062. atomic_inc(&skb->users);
  2063. }
  2064. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2065. {
  2066. if (skb)
  2067. kfree_skb(skb);
  2068. }
  2069. #endif
  2070. #ifdef CONFIG_BRIDGE_NETFILTER
  2071. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2072. {
  2073. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2074. kfree(nf_bridge);
  2075. }
  2076. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2077. {
  2078. if (nf_bridge)
  2079. atomic_inc(&nf_bridge->use);
  2080. }
  2081. #endif /* CONFIG_BRIDGE_NETFILTER */
  2082. static inline void nf_reset(struct sk_buff *skb)
  2083. {
  2084. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2085. nf_conntrack_put(skb->nfct);
  2086. skb->nfct = NULL;
  2087. #endif
  2088. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2089. nf_conntrack_put_reasm(skb->nfct_reasm);
  2090. skb->nfct_reasm = NULL;
  2091. #endif
  2092. #ifdef CONFIG_BRIDGE_NETFILTER
  2093. nf_bridge_put(skb->nf_bridge);
  2094. skb->nf_bridge = NULL;
  2095. #endif
  2096. }
  2097. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2098. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2099. {
  2100. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2101. dst->nfct = src->nfct;
  2102. nf_conntrack_get(src->nfct);
  2103. dst->nfctinfo = src->nfctinfo;
  2104. #endif
  2105. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2106. dst->nfct_reasm = src->nfct_reasm;
  2107. nf_conntrack_get_reasm(src->nfct_reasm);
  2108. #endif
  2109. #ifdef CONFIG_BRIDGE_NETFILTER
  2110. dst->nf_bridge = src->nf_bridge;
  2111. nf_bridge_get(src->nf_bridge);
  2112. #endif
  2113. }
  2114. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2115. {
  2116. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2117. nf_conntrack_put(dst->nfct);
  2118. #endif
  2119. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2120. nf_conntrack_put_reasm(dst->nfct_reasm);
  2121. #endif
  2122. #ifdef CONFIG_BRIDGE_NETFILTER
  2123. nf_bridge_put(dst->nf_bridge);
  2124. #endif
  2125. __nf_copy(dst, src);
  2126. }
  2127. #ifdef CONFIG_NETWORK_SECMARK
  2128. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2129. {
  2130. to->secmark = from->secmark;
  2131. }
  2132. static inline void skb_init_secmark(struct sk_buff *skb)
  2133. {
  2134. skb->secmark = 0;
  2135. }
  2136. #else
  2137. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2138. { }
  2139. static inline void skb_init_secmark(struct sk_buff *skb)
  2140. { }
  2141. #endif
  2142. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2143. {
  2144. skb->queue_mapping = queue_mapping;
  2145. }
  2146. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2147. {
  2148. return skb->queue_mapping;
  2149. }
  2150. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2151. {
  2152. to->queue_mapping = from->queue_mapping;
  2153. }
  2154. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2155. {
  2156. skb->queue_mapping = rx_queue + 1;
  2157. }
  2158. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2159. {
  2160. return skb->queue_mapping - 1;
  2161. }
  2162. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2163. {
  2164. return skb->queue_mapping != 0;
  2165. }
  2166. extern u16 __skb_tx_hash(const struct net_device *dev,
  2167. const struct sk_buff *skb,
  2168. unsigned int num_tx_queues);
  2169. #ifdef CONFIG_XFRM
  2170. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2171. {
  2172. return skb->sp;
  2173. }
  2174. #else
  2175. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2176. {
  2177. return NULL;
  2178. }
  2179. #endif
  2180. static inline int skb_is_gso(const struct sk_buff *skb)
  2181. {
  2182. return skb_shinfo(skb)->gso_size;
  2183. }
  2184. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  2185. {
  2186. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2187. }
  2188. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2189. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2190. {
  2191. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2192. * wanted then gso_type will be set. */
  2193. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2194. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2195. unlikely(shinfo->gso_type == 0)) {
  2196. __skb_warn_lro_forwarding(skb);
  2197. return true;
  2198. }
  2199. return false;
  2200. }
  2201. static inline void skb_forward_csum(struct sk_buff *skb)
  2202. {
  2203. /* Unfortunately we don't support this one. Any brave souls? */
  2204. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2205. skb->ip_summed = CHECKSUM_NONE;
  2206. }
  2207. /**
  2208. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2209. * @skb: skb to check
  2210. *
  2211. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2212. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2213. * use this helper, to document places where we make this assertion.
  2214. */
  2215. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2216. {
  2217. #ifdef DEBUG
  2218. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2219. #endif
  2220. }
  2221. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2222. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2223. {
  2224. if (irqs_disabled())
  2225. return false;
  2226. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2227. return false;
  2228. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2229. return false;
  2230. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2231. if (skb_end_pointer(skb) - skb->head < skb_size)
  2232. return false;
  2233. if (skb_shared(skb) || skb_cloned(skb))
  2234. return false;
  2235. return true;
  2236. }
  2237. #endif /* __KERNEL__ */
  2238. #endif /* _LINUX_SKBUFF_H */