bcm63xx_enet.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886
  1. /*
  2. * Driver for BCM963xx builtin Ethernet mac
  3. *
  4. * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/module.h>
  23. #include <linux/clk.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/ethtool.h>
  28. #include <linux/crc32.h>
  29. #include <linux/err.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/if_vlan.h>
  33. #include <bcm63xx_dev_enet.h>
  34. #include "bcm63xx_enet.h"
  35. static char bcm_enet_driver_name[] = "bcm63xx_enet";
  36. static char bcm_enet_driver_version[] = "1.0";
  37. static int copybreak __read_mostly = 128;
  38. module_param(copybreak, int, 0);
  39. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  40. /* io registers memory shared between all devices */
  41. static void __iomem *bcm_enet_shared_base[3];
  42. /*
  43. * io helpers to access mac registers
  44. */
  45. static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
  46. {
  47. return bcm_readl(priv->base + off);
  48. }
  49. static inline void enet_writel(struct bcm_enet_priv *priv,
  50. u32 val, u32 off)
  51. {
  52. bcm_writel(val, priv->base + off);
  53. }
  54. /*
  55. * io helpers to access switch registers
  56. */
  57. static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
  58. {
  59. return bcm_readl(priv->base + off);
  60. }
  61. static inline void enetsw_writel(struct bcm_enet_priv *priv,
  62. u32 val, u32 off)
  63. {
  64. bcm_writel(val, priv->base + off);
  65. }
  66. static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
  67. {
  68. return bcm_readw(priv->base + off);
  69. }
  70. static inline void enetsw_writew(struct bcm_enet_priv *priv,
  71. u16 val, u32 off)
  72. {
  73. bcm_writew(val, priv->base + off);
  74. }
  75. static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
  76. {
  77. return bcm_readb(priv->base + off);
  78. }
  79. static inline void enetsw_writeb(struct bcm_enet_priv *priv,
  80. u8 val, u32 off)
  81. {
  82. bcm_writeb(val, priv->base + off);
  83. }
  84. /* io helpers to access shared registers */
  85. static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
  86. {
  87. return bcm_readl(bcm_enet_shared_base[0] + off);
  88. }
  89. static inline void enet_dma_writel(struct bcm_enet_priv *priv,
  90. u32 val, u32 off)
  91. {
  92. bcm_writel(val, bcm_enet_shared_base[0] + off);
  93. }
  94. static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
  95. {
  96. return bcm_readl(bcm_enet_shared_base[1] +
  97. bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
  98. }
  99. static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
  100. u32 val, u32 off, int chan)
  101. {
  102. bcm_writel(val, bcm_enet_shared_base[1] +
  103. bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
  104. }
  105. static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
  106. {
  107. return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
  108. }
  109. static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
  110. u32 val, u32 off, int chan)
  111. {
  112. bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
  113. }
  114. /*
  115. * write given data into mii register and wait for transfer to end
  116. * with timeout (average measured transfer time is 25us)
  117. */
  118. static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
  119. {
  120. int limit;
  121. /* make sure mii interrupt status is cleared */
  122. enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
  123. enet_writel(priv, data, ENET_MIIDATA_REG);
  124. wmb();
  125. /* busy wait on mii interrupt bit, with timeout */
  126. limit = 1000;
  127. do {
  128. if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
  129. break;
  130. udelay(1);
  131. } while (limit-- > 0);
  132. return (limit < 0) ? 1 : 0;
  133. }
  134. /*
  135. * MII internal read callback
  136. */
  137. static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
  138. int regnum)
  139. {
  140. u32 tmp, val;
  141. tmp = regnum << ENET_MIIDATA_REG_SHIFT;
  142. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  143. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  144. tmp |= ENET_MIIDATA_OP_READ_MASK;
  145. if (do_mdio_op(priv, tmp))
  146. return -1;
  147. val = enet_readl(priv, ENET_MIIDATA_REG);
  148. val &= 0xffff;
  149. return val;
  150. }
  151. /*
  152. * MII internal write callback
  153. */
  154. static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
  155. int regnum, u16 value)
  156. {
  157. u32 tmp;
  158. tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
  159. tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
  160. tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
  161. tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
  162. tmp |= ENET_MIIDATA_OP_WRITE_MASK;
  163. (void)do_mdio_op(priv, tmp);
  164. return 0;
  165. }
  166. /*
  167. * MII read callback from phylib
  168. */
  169. static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
  170. int regnum)
  171. {
  172. return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
  173. }
  174. /*
  175. * MII write callback from phylib
  176. */
  177. static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
  178. int regnum, u16 value)
  179. {
  180. return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
  181. }
  182. /*
  183. * MII read callback from mii core
  184. */
  185. static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
  186. int regnum)
  187. {
  188. return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
  189. }
  190. /*
  191. * MII write callback from mii core
  192. */
  193. static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
  194. int regnum, int value)
  195. {
  196. bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
  197. }
  198. /*
  199. * refill rx queue
  200. */
  201. static int bcm_enet_refill_rx(struct net_device *dev)
  202. {
  203. struct bcm_enet_priv *priv;
  204. priv = netdev_priv(dev);
  205. while (priv->rx_desc_count < priv->rx_ring_size) {
  206. struct bcm_enet_desc *desc;
  207. struct sk_buff *skb;
  208. dma_addr_t p;
  209. int desc_idx;
  210. u32 len_stat;
  211. desc_idx = priv->rx_dirty_desc;
  212. desc = &priv->rx_desc_cpu[desc_idx];
  213. if (!priv->rx_skb[desc_idx]) {
  214. skb = netdev_alloc_skb(dev, priv->rx_skb_size);
  215. if (!skb)
  216. break;
  217. priv->rx_skb[desc_idx] = skb;
  218. p = dma_map_single(&priv->pdev->dev, skb->data,
  219. priv->rx_skb_size,
  220. DMA_FROM_DEVICE);
  221. desc->address = p;
  222. }
  223. len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
  224. len_stat |= DMADESC_OWNER_MASK;
  225. if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
  226. len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
  227. priv->rx_dirty_desc = 0;
  228. } else {
  229. priv->rx_dirty_desc++;
  230. }
  231. wmb();
  232. desc->len_stat = len_stat;
  233. priv->rx_desc_count++;
  234. /* tell dma engine we allocated one buffer */
  235. if (priv->dma_has_sram)
  236. enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
  237. else
  238. enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
  239. }
  240. /* If rx ring is still empty, set a timer to try allocating
  241. * again at a later time. */
  242. if (priv->rx_desc_count == 0 && netif_running(dev)) {
  243. dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
  244. priv->rx_timeout.expires = jiffies + HZ;
  245. add_timer(&priv->rx_timeout);
  246. }
  247. return 0;
  248. }
  249. /*
  250. * timer callback to defer refill rx queue in case we're OOM
  251. */
  252. static void bcm_enet_refill_rx_timer(unsigned long data)
  253. {
  254. struct net_device *dev;
  255. struct bcm_enet_priv *priv;
  256. dev = (struct net_device *)data;
  257. priv = netdev_priv(dev);
  258. spin_lock(&priv->rx_lock);
  259. bcm_enet_refill_rx((struct net_device *)data);
  260. spin_unlock(&priv->rx_lock);
  261. }
  262. /*
  263. * extract packet from rx queue
  264. */
  265. static int bcm_enet_receive_queue(struct net_device *dev, int budget)
  266. {
  267. struct bcm_enet_priv *priv;
  268. struct device *kdev;
  269. int processed;
  270. priv = netdev_priv(dev);
  271. kdev = &priv->pdev->dev;
  272. processed = 0;
  273. /* don't scan ring further than number of refilled
  274. * descriptor */
  275. if (budget > priv->rx_desc_count)
  276. budget = priv->rx_desc_count;
  277. do {
  278. struct bcm_enet_desc *desc;
  279. struct sk_buff *skb;
  280. int desc_idx;
  281. u32 len_stat;
  282. unsigned int len;
  283. desc_idx = priv->rx_curr_desc;
  284. desc = &priv->rx_desc_cpu[desc_idx];
  285. /* make sure we actually read the descriptor status at
  286. * each loop */
  287. rmb();
  288. len_stat = desc->len_stat;
  289. /* break if dma ownership belongs to hw */
  290. if (len_stat & DMADESC_OWNER_MASK)
  291. break;
  292. processed++;
  293. priv->rx_curr_desc++;
  294. if (priv->rx_curr_desc == priv->rx_ring_size)
  295. priv->rx_curr_desc = 0;
  296. priv->rx_desc_count--;
  297. /* if the packet does not have start of packet _and_
  298. * end of packet flag set, then just recycle it */
  299. if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
  300. (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
  301. dev->stats.rx_dropped++;
  302. continue;
  303. }
  304. /* recycle packet if it's marked as bad */
  305. if (!priv->enet_is_sw &&
  306. unlikely(len_stat & DMADESC_ERR_MASK)) {
  307. dev->stats.rx_errors++;
  308. if (len_stat & DMADESC_OVSIZE_MASK)
  309. dev->stats.rx_length_errors++;
  310. if (len_stat & DMADESC_CRC_MASK)
  311. dev->stats.rx_crc_errors++;
  312. if (len_stat & DMADESC_UNDER_MASK)
  313. dev->stats.rx_frame_errors++;
  314. if (len_stat & DMADESC_OV_MASK)
  315. dev->stats.rx_fifo_errors++;
  316. continue;
  317. }
  318. /* valid packet */
  319. skb = priv->rx_skb[desc_idx];
  320. len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
  321. /* don't include FCS */
  322. len -= 4;
  323. if (len < copybreak) {
  324. struct sk_buff *nskb;
  325. nskb = napi_alloc_skb(&priv->napi, len);
  326. if (!nskb) {
  327. /* forget packet, just rearm desc */
  328. dev->stats.rx_dropped++;
  329. continue;
  330. }
  331. dma_sync_single_for_cpu(kdev, desc->address,
  332. len, DMA_FROM_DEVICE);
  333. memcpy(nskb->data, skb->data, len);
  334. dma_sync_single_for_device(kdev, desc->address,
  335. len, DMA_FROM_DEVICE);
  336. skb = nskb;
  337. } else {
  338. dma_unmap_single(&priv->pdev->dev, desc->address,
  339. priv->rx_skb_size, DMA_FROM_DEVICE);
  340. priv->rx_skb[desc_idx] = NULL;
  341. }
  342. skb_put(skb, len);
  343. skb->protocol = eth_type_trans(skb, dev);
  344. dev->stats.rx_packets++;
  345. dev->stats.rx_bytes += len;
  346. netif_receive_skb(skb);
  347. } while (--budget > 0);
  348. if (processed || !priv->rx_desc_count) {
  349. bcm_enet_refill_rx(dev);
  350. /* kick rx dma */
  351. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  352. ENETDMAC_CHANCFG, priv->rx_chan);
  353. }
  354. return processed;
  355. }
  356. /*
  357. * try to or force reclaim of transmitted buffers
  358. */
  359. static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
  360. {
  361. struct bcm_enet_priv *priv;
  362. int released;
  363. priv = netdev_priv(dev);
  364. released = 0;
  365. while (priv->tx_desc_count < priv->tx_ring_size) {
  366. struct bcm_enet_desc *desc;
  367. struct sk_buff *skb;
  368. /* We run in a bh and fight against start_xmit, which
  369. * is called with bh disabled */
  370. spin_lock(&priv->tx_lock);
  371. desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
  372. if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
  373. spin_unlock(&priv->tx_lock);
  374. break;
  375. }
  376. /* ensure other field of the descriptor were not read
  377. * before we checked ownership */
  378. rmb();
  379. skb = priv->tx_skb[priv->tx_dirty_desc];
  380. priv->tx_skb[priv->tx_dirty_desc] = NULL;
  381. dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
  382. DMA_TO_DEVICE);
  383. priv->tx_dirty_desc++;
  384. if (priv->tx_dirty_desc == priv->tx_ring_size)
  385. priv->tx_dirty_desc = 0;
  386. priv->tx_desc_count++;
  387. spin_unlock(&priv->tx_lock);
  388. if (desc->len_stat & DMADESC_UNDER_MASK)
  389. dev->stats.tx_errors++;
  390. dev_kfree_skb(skb);
  391. released++;
  392. }
  393. if (netif_queue_stopped(dev) && released)
  394. netif_wake_queue(dev);
  395. return released;
  396. }
  397. /*
  398. * poll func, called by network core
  399. */
  400. static int bcm_enet_poll(struct napi_struct *napi, int budget)
  401. {
  402. struct bcm_enet_priv *priv;
  403. struct net_device *dev;
  404. int rx_work_done;
  405. priv = container_of(napi, struct bcm_enet_priv, napi);
  406. dev = priv->net_dev;
  407. /* ack interrupts */
  408. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  409. ENETDMAC_IR, priv->rx_chan);
  410. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  411. ENETDMAC_IR, priv->tx_chan);
  412. /* reclaim sent skb */
  413. bcm_enet_tx_reclaim(dev, 0);
  414. spin_lock(&priv->rx_lock);
  415. rx_work_done = bcm_enet_receive_queue(dev, budget);
  416. spin_unlock(&priv->rx_lock);
  417. if (rx_work_done >= budget) {
  418. /* rx queue is not yet empty/clean */
  419. return rx_work_done;
  420. }
  421. /* no more packet in rx/tx queue, remove device from poll
  422. * queue */
  423. napi_complete_done(napi, rx_work_done);
  424. /* restore rx/tx interrupt */
  425. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  426. ENETDMAC_IRMASK, priv->rx_chan);
  427. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  428. ENETDMAC_IRMASK, priv->tx_chan);
  429. return rx_work_done;
  430. }
  431. /*
  432. * mac interrupt handler
  433. */
  434. static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
  435. {
  436. struct net_device *dev;
  437. struct bcm_enet_priv *priv;
  438. u32 stat;
  439. dev = dev_id;
  440. priv = netdev_priv(dev);
  441. stat = enet_readl(priv, ENET_IR_REG);
  442. if (!(stat & ENET_IR_MIB))
  443. return IRQ_NONE;
  444. /* clear & mask interrupt */
  445. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  446. enet_writel(priv, 0, ENET_IRMASK_REG);
  447. /* read mib registers in workqueue */
  448. schedule_work(&priv->mib_update_task);
  449. return IRQ_HANDLED;
  450. }
  451. /*
  452. * rx/tx dma interrupt handler
  453. */
  454. static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
  455. {
  456. struct net_device *dev;
  457. struct bcm_enet_priv *priv;
  458. dev = dev_id;
  459. priv = netdev_priv(dev);
  460. /* mask rx/tx interrupts */
  461. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  462. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  463. napi_schedule(&priv->napi);
  464. return IRQ_HANDLED;
  465. }
  466. /*
  467. * tx request callback
  468. */
  469. static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  470. {
  471. struct bcm_enet_priv *priv;
  472. struct bcm_enet_desc *desc;
  473. u32 len_stat;
  474. int ret;
  475. priv = netdev_priv(dev);
  476. /* lock against tx reclaim */
  477. spin_lock(&priv->tx_lock);
  478. /* make sure the tx hw queue is not full, should not happen
  479. * since we stop queue before it's the case */
  480. if (unlikely(!priv->tx_desc_count)) {
  481. netif_stop_queue(dev);
  482. dev_err(&priv->pdev->dev, "xmit called with no tx desc "
  483. "available?\n");
  484. ret = NETDEV_TX_BUSY;
  485. goto out_unlock;
  486. }
  487. /* pad small packets sent on a switch device */
  488. if (priv->enet_is_sw && skb->len < 64) {
  489. int needed = 64 - skb->len;
  490. char *data;
  491. if (unlikely(skb_tailroom(skb) < needed)) {
  492. struct sk_buff *nskb;
  493. nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
  494. if (!nskb) {
  495. ret = NETDEV_TX_BUSY;
  496. goto out_unlock;
  497. }
  498. dev_kfree_skb(skb);
  499. skb = nskb;
  500. }
  501. data = skb_put_zero(skb, needed);
  502. }
  503. /* point to the next available desc */
  504. desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
  505. priv->tx_skb[priv->tx_curr_desc] = skb;
  506. /* fill descriptor */
  507. desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
  508. DMA_TO_DEVICE);
  509. len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
  510. len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
  511. DMADESC_APPEND_CRC |
  512. DMADESC_OWNER_MASK;
  513. priv->tx_curr_desc++;
  514. if (priv->tx_curr_desc == priv->tx_ring_size) {
  515. priv->tx_curr_desc = 0;
  516. len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
  517. }
  518. priv->tx_desc_count--;
  519. /* dma might be already polling, make sure we update desc
  520. * fields in correct order */
  521. wmb();
  522. desc->len_stat = len_stat;
  523. wmb();
  524. /* kick tx dma */
  525. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  526. ENETDMAC_CHANCFG, priv->tx_chan);
  527. /* stop queue if no more desc available */
  528. if (!priv->tx_desc_count)
  529. netif_stop_queue(dev);
  530. dev->stats.tx_bytes += skb->len;
  531. dev->stats.tx_packets++;
  532. ret = NETDEV_TX_OK;
  533. out_unlock:
  534. spin_unlock(&priv->tx_lock);
  535. return ret;
  536. }
  537. /*
  538. * Change the interface's mac address.
  539. */
  540. static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
  541. {
  542. struct bcm_enet_priv *priv;
  543. struct sockaddr *addr = p;
  544. u32 val;
  545. priv = netdev_priv(dev);
  546. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  547. /* use perfect match register 0 to store my mac address */
  548. val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
  549. (dev->dev_addr[4] << 8) | dev->dev_addr[5];
  550. enet_writel(priv, val, ENET_PML_REG(0));
  551. val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
  552. val |= ENET_PMH_DATAVALID_MASK;
  553. enet_writel(priv, val, ENET_PMH_REG(0));
  554. return 0;
  555. }
  556. /*
  557. * Change rx mode (promiscuous/allmulti) and update multicast list
  558. */
  559. static void bcm_enet_set_multicast_list(struct net_device *dev)
  560. {
  561. struct bcm_enet_priv *priv;
  562. struct netdev_hw_addr *ha;
  563. u32 val;
  564. int i;
  565. priv = netdev_priv(dev);
  566. val = enet_readl(priv, ENET_RXCFG_REG);
  567. if (dev->flags & IFF_PROMISC)
  568. val |= ENET_RXCFG_PROMISC_MASK;
  569. else
  570. val &= ~ENET_RXCFG_PROMISC_MASK;
  571. /* only 3 perfect match registers left, first one is used for
  572. * own mac address */
  573. if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
  574. val |= ENET_RXCFG_ALLMCAST_MASK;
  575. else
  576. val &= ~ENET_RXCFG_ALLMCAST_MASK;
  577. /* no need to set perfect match registers if we catch all
  578. * multicast */
  579. if (val & ENET_RXCFG_ALLMCAST_MASK) {
  580. enet_writel(priv, val, ENET_RXCFG_REG);
  581. return;
  582. }
  583. i = 0;
  584. netdev_for_each_mc_addr(ha, dev) {
  585. u8 *dmi_addr;
  586. u32 tmp;
  587. if (i == 3)
  588. break;
  589. /* update perfect match registers */
  590. dmi_addr = ha->addr;
  591. tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
  592. (dmi_addr[4] << 8) | dmi_addr[5];
  593. enet_writel(priv, tmp, ENET_PML_REG(i + 1));
  594. tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
  595. tmp |= ENET_PMH_DATAVALID_MASK;
  596. enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
  597. }
  598. for (; i < 3; i++) {
  599. enet_writel(priv, 0, ENET_PML_REG(i + 1));
  600. enet_writel(priv, 0, ENET_PMH_REG(i + 1));
  601. }
  602. enet_writel(priv, val, ENET_RXCFG_REG);
  603. }
  604. /*
  605. * set mac duplex parameters
  606. */
  607. static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
  608. {
  609. u32 val;
  610. val = enet_readl(priv, ENET_TXCTL_REG);
  611. if (fullduplex)
  612. val |= ENET_TXCTL_FD_MASK;
  613. else
  614. val &= ~ENET_TXCTL_FD_MASK;
  615. enet_writel(priv, val, ENET_TXCTL_REG);
  616. }
  617. /*
  618. * set mac flow control parameters
  619. */
  620. static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
  621. {
  622. u32 val;
  623. /* rx flow control (pause frame handling) */
  624. val = enet_readl(priv, ENET_RXCFG_REG);
  625. if (rx_en)
  626. val |= ENET_RXCFG_ENFLOW_MASK;
  627. else
  628. val &= ~ENET_RXCFG_ENFLOW_MASK;
  629. enet_writel(priv, val, ENET_RXCFG_REG);
  630. if (!priv->dma_has_sram)
  631. return;
  632. /* tx flow control (pause frame generation) */
  633. val = enet_dma_readl(priv, ENETDMA_CFG_REG);
  634. if (tx_en)
  635. val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  636. else
  637. val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
  638. enet_dma_writel(priv, val, ENETDMA_CFG_REG);
  639. }
  640. /*
  641. * link changed callback (from phylib)
  642. */
  643. static void bcm_enet_adjust_phy_link(struct net_device *dev)
  644. {
  645. struct bcm_enet_priv *priv;
  646. struct phy_device *phydev;
  647. int status_changed;
  648. priv = netdev_priv(dev);
  649. phydev = dev->phydev;
  650. status_changed = 0;
  651. if (priv->old_link != phydev->link) {
  652. status_changed = 1;
  653. priv->old_link = phydev->link;
  654. }
  655. /* reflect duplex change in mac configuration */
  656. if (phydev->link && phydev->duplex != priv->old_duplex) {
  657. bcm_enet_set_duplex(priv,
  658. (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
  659. status_changed = 1;
  660. priv->old_duplex = phydev->duplex;
  661. }
  662. /* enable flow control if remote advertise it (trust phylib to
  663. * check that duplex is full */
  664. if (phydev->link && phydev->pause != priv->old_pause) {
  665. int rx_pause_en, tx_pause_en;
  666. if (phydev->pause) {
  667. /* pause was advertised by lpa and us */
  668. rx_pause_en = 1;
  669. tx_pause_en = 1;
  670. } else if (!priv->pause_auto) {
  671. /* pause setting overridden by user */
  672. rx_pause_en = priv->pause_rx;
  673. tx_pause_en = priv->pause_tx;
  674. } else {
  675. rx_pause_en = 0;
  676. tx_pause_en = 0;
  677. }
  678. bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
  679. status_changed = 1;
  680. priv->old_pause = phydev->pause;
  681. }
  682. if (status_changed) {
  683. pr_info("%s: link %s", dev->name, phydev->link ?
  684. "UP" : "DOWN");
  685. if (phydev->link)
  686. pr_cont(" - %d/%s - flow control %s", phydev->speed,
  687. DUPLEX_FULL == phydev->duplex ? "full" : "half",
  688. phydev->pause == 1 ? "rx&tx" : "off");
  689. pr_cont("\n");
  690. }
  691. }
  692. /*
  693. * link changed callback (if phylib is not used)
  694. */
  695. static void bcm_enet_adjust_link(struct net_device *dev)
  696. {
  697. struct bcm_enet_priv *priv;
  698. priv = netdev_priv(dev);
  699. bcm_enet_set_duplex(priv, priv->force_duplex_full);
  700. bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
  701. netif_carrier_on(dev);
  702. pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
  703. dev->name,
  704. priv->force_speed_100 ? 100 : 10,
  705. priv->force_duplex_full ? "full" : "half",
  706. priv->pause_rx ? "rx" : "off",
  707. priv->pause_tx ? "tx" : "off");
  708. }
  709. /*
  710. * open callback, allocate dma rings & buffers and start rx operation
  711. */
  712. static int bcm_enet_open(struct net_device *dev)
  713. {
  714. struct bcm_enet_priv *priv;
  715. struct sockaddr addr;
  716. struct device *kdev;
  717. struct phy_device *phydev;
  718. int i, ret;
  719. unsigned int size;
  720. char phy_id[MII_BUS_ID_SIZE + 3];
  721. void *p;
  722. u32 val;
  723. priv = netdev_priv(dev);
  724. kdev = &priv->pdev->dev;
  725. if (priv->has_phy) {
  726. /* connect to PHY */
  727. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  728. priv->mii_bus->id, priv->phy_id);
  729. phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
  730. PHY_INTERFACE_MODE_MII);
  731. if (IS_ERR(phydev)) {
  732. dev_err(kdev, "could not attach to PHY\n");
  733. return PTR_ERR(phydev);
  734. }
  735. /* mask with MAC supported features */
  736. phydev->supported &= (SUPPORTED_10baseT_Half |
  737. SUPPORTED_10baseT_Full |
  738. SUPPORTED_100baseT_Half |
  739. SUPPORTED_100baseT_Full |
  740. SUPPORTED_Autoneg |
  741. SUPPORTED_Pause |
  742. SUPPORTED_MII);
  743. phydev->advertising = phydev->supported;
  744. if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
  745. phydev->advertising |= SUPPORTED_Pause;
  746. else
  747. phydev->advertising &= ~SUPPORTED_Pause;
  748. phy_attached_info(phydev);
  749. priv->old_link = 0;
  750. priv->old_duplex = -1;
  751. priv->old_pause = -1;
  752. } else {
  753. phydev = NULL;
  754. }
  755. /* mask all interrupts and request them */
  756. enet_writel(priv, 0, ENET_IRMASK_REG);
  757. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  758. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  759. ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
  760. if (ret)
  761. goto out_phy_disconnect;
  762. ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
  763. dev->name, dev);
  764. if (ret)
  765. goto out_freeirq;
  766. ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
  767. 0, dev->name, dev);
  768. if (ret)
  769. goto out_freeirq_rx;
  770. /* initialize perfect match registers */
  771. for (i = 0; i < 4; i++) {
  772. enet_writel(priv, 0, ENET_PML_REG(i));
  773. enet_writel(priv, 0, ENET_PMH_REG(i));
  774. }
  775. /* write device mac address */
  776. memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
  777. bcm_enet_set_mac_address(dev, &addr);
  778. /* allocate rx dma ring */
  779. size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
  780. p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
  781. if (!p) {
  782. ret = -ENOMEM;
  783. goto out_freeirq_tx;
  784. }
  785. priv->rx_desc_alloc_size = size;
  786. priv->rx_desc_cpu = p;
  787. /* allocate tx dma ring */
  788. size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
  789. p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
  790. if (!p) {
  791. ret = -ENOMEM;
  792. goto out_free_rx_ring;
  793. }
  794. priv->tx_desc_alloc_size = size;
  795. priv->tx_desc_cpu = p;
  796. priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
  797. GFP_KERNEL);
  798. if (!priv->tx_skb) {
  799. ret = -ENOMEM;
  800. goto out_free_tx_ring;
  801. }
  802. priv->tx_desc_count = priv->tx_ring_size;
  803. priv->tx_dirty_desc = 0;
  804. priv->tx_curr_desc = 0;
  805. spin_lock_init(&priv->tx_lock);
  806. /* init & fill rx ring with skbs */
  807. priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
  808. GFP_KERNEL);
  809. if (!priv->rx_skb) {
  810. ret = -ENOMEM;
  811. goto out_free_tx_skb;
  812. }
  813. priv->rx_desc_count = 0;
  814. priv->rx_dirty_desc = 0;
  815. priv->rx_curr_desc = 0;
  816. /* initialize flow control buffer allocation */
  817. if (priv->dma_has_sram)
  818. enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  819. ENETDMA_BUFALLOC_REG(priv->rx_chan));
  820. else
  821. enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  822. ENETDMAC_BUFALLOC, priv->rx_chan);
  823. if (bcm_enet_refill_rx(dev)) {
  824. dev_err(kdev, "cannot allocate rx skb queue\n");
  825. ret = -ENOMEM;
  826. goto out;
  827. }
  828. /* write rx & tx ring addresses */
  829. if (priv->dma_has_sram) {
  830. enet_dmas_writel(priv, priv->rx_desc_dma,
  831. ENETDMAS_RSTART_REG, priv->rx_chan);
  832. enet_dmas_writel(priv, priv->tx_desc_dma,
  833. ENETDMAS_RSTART_REG, priv->tx_chan);
  834. } else {
  835. enet_dmac_writel(priv, priv->rx_desc_dma,
  836. ENETDMAC_RSTART, priv->rx_chan);
  837. enet_dmac_writel(priv, priv->tx_desc_dma,
  838. ENETDMAC_RSTART, priv->tx_chan);
  839. }
  840. /* clear remaining state ram for rx & tx channel */
  841. if (priv->dma_has_sram) {
  842. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
  843. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
  844. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
  845. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
  846. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
  847. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
  848. } else {
  849. enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
  850. enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
  851. }
  852. /* set max rx/tx length */
  853. enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
  854. enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
  855. /* set dma maximum burst len */
  856. enet_dmac_writel(priv, priv->dma_maxburst,
  857. ENETDMAC_MAXBURST, priv->rx_chan);
  858. enet_dmac_writel(priv, priv->dma_maxburst,
  859. ENETDMAC_MAXBURST, priv->tx_chan);
  860. /* set correct transmit fifo watermark */
  861. enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
  862. /* set flow control low/high threshold to 1/3 / 2/3 */
  863. if (priv->dma_has_sram) {
  864. val = priv->rx_ring_size / 3;
  865. enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
  866. val = (priv->rx_ring_size * 2) / 3;
  867. enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
  868. } else {
  869. enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
  870. enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
  871. enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
  872. }
  873. /* all set, enable mac and interrupts, start dma engine and
  874. * kick rx dma channel */
  875. wmb();
  876. val = enet_readl(priv, ENET_CTL_REG);
  877. val |= ENET_CTL_ENABLE_MASK;
  878. enet_writel(priv, val, ENET_CTL_REG);
  879. enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
  880. enet_dmac_writel(priv, priv->dma_chan_en_mask,
  881. ENETDMAC_CHANCFG, priv->rx_chan);
  882. /* watch "mib counters about to overflow" interrupt */
  883. enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
  884. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  885. /* watch "packet transferred" interrupt in rx and tx */
  886. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  887. ENETDMAC_IR, priv->rx_chan);
  888. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  889. ENETDMAC_IR, priv->tx_chan);
  890. /* make sure we enable napi before rx interrupt */
  891. napi_enable(&priv->napi);
  892. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  893. ENETDMAC_IRMASK, priv->rx_chan);
  894. enet_dmac_writel(priv, priv->dma_chan_int_mask,
  895. ENETDMAC_IRMASK, priv->tx_chan);
  896. if (phydev)
  897. phy_start(phydev);
  898. else
  899. bcm_enet_adjust_link(dev);
  900. netif_start_queue(dev);
  901. return 0;
  902. out:
  903. for (i = 0; i < priv->rx_ring_size; i++) {
  904. struct bcm_enet_desc *desc;
  905. if (!priv->rx_skb[i])
  906. continue;
  907. desc = &priv->rx_desc_cpu[i];
  908. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  909. DMA_FROM_DEVICE);
  910. kfree_skb(priv->rx_skb[i]);
  911. }
  912. kfree(priv->rx_skb);
  913. out_free_tx_skb:
  914. kfree(priv->tx_skb);
  915. out_free_tx_ring:
  916. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  917. priv->tx_desc_cpu, priv->tx_desc_dma);
  918. out_free_rx_ring:
  919. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  920. priv->rx_desc_cpu, priv->rx_desc_dma);
  921. out_freeirq_tx:
  922. free_irq(priv->irq_tx, dev);
  923. out_freeirq_rx:
  924. free_irq(priv->irq_rx, dev);
  925. out_freeirq:
  926. free_irq(dev->irq, dev);
  927. out_phy_disconnect:
  928. if (phydev)
  929. phy_disconnect(phydev);
  930. return ret;
  931. }
  932. /*
  933. * disable mac
  934. */
  935. static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
  936. {
  937. int limit;
  938. u32 val;
  939. val = enet_readl(priv, ENET_CTL_REG);
  940. val |= ENET_CTL_DISABLE_MASK;
  941. enet_writel(priv, val, ENET_CTL_REG);
  942. limit = 1000;
  943. do {
  944. u32 val;
  945. val = enet_readl(priv, ENET_CTL_REG);
  946. if (!(val & ENET_CTL_DISABLE_MASK))
  947. break;
  948. udelay(1);
  949. } while (limit--);
  950. }
  951. /*
  952. * disable dma in given channel
  953. */
  954. static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
  955. {
  956. int limit;
  957. enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
  958. limit = 1000;
  959. do {
  960. u32 val;
  961. val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
  962. if (!(val & ENETDMAC_CHANCFG_EN_MASK))
  963. break;
  964. udelay(1);
  965. } while (limit--);
  966. }
  967. /*
  968. * stop callback
  969. */
  970. static int bcm_enet_stop(struct net_device *dev)
  971. {
  972. struct bcm_enet_priv *priv;
  973. struct device *kdev;
  974. int i;
  975. priv = netdev_priv(dev);
  976. kdev = &priv->pdev->dev;
  977. netif_stop_queue(dev);
  978. napi_disable(&priv->napi);
  979. if (priv->has_phy)
  980. phy_stop(dev->phydev);
  981. del_timer_sync(&priv->rx_timeout);
  982. /* mask all interrupts */
  983. enet_writel(priv, 0, ENET_IRMASK_REG);
  984. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  985. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  986. /* make sure no mib update is scheduled */
  987. cancel_work_sync(&priv->mib_update_task);
  988. /* disable dma & mac */
  989. bcm_enet_disable_dma(priv, priv->tx_chan);
  990. bcm_enet_disable_dma(priv, priv->rx_chan);
  991. bcm_enet_disable_mac(priv);
  992. /* force reclaim of all tx buffers */
  993. bcm_enet_tx_reclaim(dev, 1);
  994. /* free the rx skb ring */
  995. for (i = 0; i < priv->rx_ring_size; i++) {
  996. struct bcm_enet_desc *desc;
  997. if (!priv->rx_skb[i])
  998. continue;
  999. desc = &priv->rx_desc_cpu[i];
  1000. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  1001. DMA_FROM_DEVICE);
  1002. kfree_skb(priv->rx_skb[i]);
  1003. }
  1004. /* free remaining allocated memory */
  1005. kfree(priv->rx_skb);
  1006. kfree(priv->tx_skb);
  1007. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  1008. priv->rx_desc_cpu, priv->rx_desc_dma);
  1009. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  1010. priv->tx_desc_cpu, priv->tx_desc_dma);
  1011. free_irq(priv->irq_tx, dev);
  1012. free_irq(priv->irq_rx, dev);
  1013. free_irq(dev->irq, dev);
  1014. /* release phy */
  1015. if (priv->has_phy)
  1016. phy_disconnect(dev->phydev);
  1017. return 0;
  1018. }
  1019. /*
  1020. * ethtool callbacks
  1021. */
  1022. struct bcm_enet_stats {
  1023. char stat_string[ETH_GSTRING_LEN];
  1024. int sizeof_stat;
  1025. int stat_offset;
  1026. int mib_reg;
  1027. };
  1028. #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
  1029. offsetof(struct bcm_enet_priv, m)
  1030. #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
  1031. offsetof(struct net_device_stats, m)
  1032. static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
  1033. { "rx_packets", DEV_STAT(rx_packets), -1 },
  1034. { "tx_packets", DEV_STAT(tx_packets), -1 },
  1035. { "rx_bytes", DEV_STAT(rx_bytes), -1 },
  1036. { "tx_bytes", DEV_STAT(tx_bytes), -1 },
  1037. { "rx_errors", DEV_STAT(rx_errors), -1 },
  1038. { "tx_errors", DEV_STAT(tx_errors), -1 },
  1039. { "rx_dropped", DEV_STAT(rx_dropped), -1 },
  1040. { "tx_dropped", DEV_STAT(tx_dropped), -1 },
  1041. { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
  1042. { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
  1043. { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
  1044. { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
  1045. { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
  1046. { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
  1047. { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
  1048. { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
  1049. { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
  1050. { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
  1051. { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
  1052. { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
  1053. { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
  1054. { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
  1055. { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
  1056. { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
  1057. { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
  1058. { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
  1059. { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
  1060. { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
  1061. { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
  1062. { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
  1063. { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
  1064. { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
  1065. { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
  1066. { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
  1067. { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
  1068. { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
  1069. { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
  1070. { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
  1071. { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
  1072. { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
  1073. { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
  1074. { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
  1075. { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
  1076. { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
  1077. { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
  1078. { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
  1079. { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
  1080. { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
  1081. { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
  1082. { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
  1083. { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
  1084. };
  1085. #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
  1086. static const u32 unused_mib_regs[] = {
  1087. ETH_MIB_TX_ALL_OCTETS,
  1088. ETH_MIB_TX_ALL_PKTS,
  1089. ETH_MIB_RX_ALL_OCTETS,
  1090. ETH_MIB_RX_ALL_PKTS,
  1091. };
  1092. static void bcm_enet_get_drvinfo(struct net_device *netdev,
  1093. struct ethtool_drvinfo *drvinfo)
  1094. {
  1095. strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
  1096. strlcpy(drvinfo->version, bcm_enet_driver_version,
  1097. sizeof(drvinfo->version));
  1098. strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  1099. strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
  1100. }
  1101. static int bcm_enet_get_sset_count(struct net_device *netdev,
  1102. int string_set)
  1103. {
  1104. switch (string_set) {
  1105. case ETH_SS_STATS:
  1106. return BCM_ENET_STATS_LEN;
  1107. default:
  1108. return -EINVAL;
  1109. }
  1110. }
  1111. static void bcm_enet_get_strings(struct net_device *netdev,
  1112. u32 stringset, u8 *data)
  1113. {
  1114. int i;
  1115. switch (stringset) {
  1116. case ETH_SS_STATS:
  1117. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1118. memcpy(data + i * ETH_GSTRING_LEN,
  1119. bcm_enet_gstrings_stats[i].stat_string,
  1120. ETH_GSTRING_LEN);
  1121. }
  1122. break;
  1123. }
  1124. }
  1125. static void update_mib_counters(struct bcm_enet_priv *priv)
  1126. {
  1127. int i;
  1128. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1129. const struct bcm_enet_stats *s;
  1130. u32 val;
  1131. char *p;
  1132. s = &bcm_enet_gstrings_stats[i];
  1133. if (s->mib_reg == -1)
  1134. continue;
  1135. val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
  1136. p = (char *)priv + s->stat_offset;
  1137. if (s->sizeof_stat == sizeof(u64))
  1138. *(u64 *)p += val;
  1139. else
  1140. *(u32 *)p += val;
  1141. }
  1142. /* also empty unused mib counters to make sure mib counter
  1143. * overflow interrupt is cleared */
  1144. for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
  1145. (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
  1146. }
  1147. static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
  1148. {
  1149. struct bcm_enet_priv *priv;
  1150. priv = container_of(t, struct bcm_enet_priv, mib_update_task);
  1151. mutex_lock(&priv->mib_update_lock);
  1152. update_mib_counters(priv);
  1153. mutex_unlock(&priv->mib_update_lock);
  1154. /* reenable mib interrupt */
  1155. if (netif_running(priv->net_dev))
  1156. enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
  1157. }
  1158. static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
  1159. struct ethtool_stats *stats,
  1160. u64 *data)
  1161. {
  1162. struct bcm_enet_priv *priv;
  1163. int i;
  1164. priv = netdev_priv(netdev);
  1165. mutex_lock(&priv->mib_update_lock);
  1166. update_mib_counters(priv);
  1167. for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
  1168. const struct bcm_enet_stats *s;
  1169. char *p;
  1170. s = &bcm_enet_gstrings_stats[i];
  1171. if (s->mib_reg == -1)
  1172. p = (char *)&netdev->stats;
  1173. else
  1174. p = (char *)priv;
  1175. p += s->stat_offset;
  1176. data[i] = (s->sizeof_stat == sizeof(u64)) ?
  1177. *(u64 *)p : *(u32 *)p;
  1178. }
  1179. mutex_unlock(&priv->mib_update_lock);
  1180. }
  1181. static int bcm_enet_nway_reset(struct net_device *dev)
  1182. {
  1183. struct bcm_enet_priv *priv;
  1184. priv = netdev_priv(dev);
  1185. if (priv->has_phy)
  1186. return phy_ethtool_nway_reset(dev);
  1187. return -EOPNOTSUPP;
  1188. }
  1189. static int bcm_enet_get_link_ksettings(struct net_device *dev,
  1190. struct ethtool_link_ksettings *cmd)
  1191. {
  1192. struct bcm_enet_priv *priv;
  1193. u32 supported, advertising;
  1194. priv = netdev_priv(dev);
  1195. if (priv->has_phy) {
  1196. if (!dev->phydev)
  1197. return -ENODEV;
  1198. phy_ethtool_ksettings_get(dev->phydev, cmd);
  1199. return 0;
  1200. } else {
  1201. cmd->base.autoneg = 0;
  1202. cmd->base.speed = (priv->force_speed_100) ?
  1203. SPEED_100 : SPEED_10;
  1204. cmd->base.duplex = (priv->force_duplex_full) ?
  1205. DUPLEX_FULL : DUPLEX_HALF;
  1206. supported = ADVERTISED_10baseT_Half |
  1207. ADVERTISED_10baseT_Full |
  1208. ADVERTISED_100baseT_Half |
  1209. ADVERTISED_100baseT_Full;
  1210. advertising = 0;
  1211. ethtool_convert_legacy_u32_to_link_mode(
  1212. cmd->link_modes.supported, supported);
  1213. ethtool_convert_legacy_u32_to_link_mode(
  1214. cmd->link_modes.advertising, advertising);
  1215. cmd->base.port = PORT_MII;
  1216. }
  1217. return 0;
  1218. }
  1219. static int bcm_enet_set_link_ksettings(struct net_device *dev,
  1220. const struct ethtool_link_ksettings *cmd)
  1221. {
  1222. struct bcm_enet_priv *priv;
  1223. priv = netdev_priv(dev);
  1224. if (priv->has_phy) {
  1225. if (!dev->phydev)
  1226. return -ENODEV;
  1227. return phy_ethtool_ksettings_set(dev->phydev, cmd);
  1228. } else {
  1229. if (cmd->base.autoneg ||
  1230. (cmd->base.speed != SPEED_100 &&
  1231. cmd->base.speed != SPEED_10) ||
  1232. cmd->base.port != PORT_MII)
  1233. return -EINVAL;
  1234. priv->force_speed_100 =
  1235. (cmd->base.speed == SPEED_100) ? 1 : 0;
  1236. priv->force_duplex_full =
  1237. (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
  1238. if (netif_running(dev))
  1239. bcm_enet_adjust_link(dev);
  1240. return 0;
  1241. }
  1242. }
  1243. static void bcm_enet_get_ringparam(struct net_device *dev,
  1244. struct ethtool_ringparam *ering)
  1245. {
  1246. struct bcm_enet_priv *priv;
  1247. priv = netdev_priv(dev);
  1248. /* rx/tx ring is actually only limited by memory */
  1249. ering->rx_max_pending = 8192;
  1250. ering->tx_max_pending = 8192;
  1251. ering->rx_pending = priv->rx_ring_size;
  1252. ering->tx_pending = priv->tx_ring_size;
  1253. }
  1254. static int bcm_enet_set_ringparam(struct net_device *dev,
  1255. struct ethtool_ringparam *ering)
  1256. {
  1257. struct bcm_enet_priv *priv;
  1258. int was_running;
  1259. priv = netdev_priv(dev);
  1260. was_running = 0;
  1261. if (netif_running(dev)) {
  1262. bcm_enet_stop(dev);
  1263. was_running = 1;
  1264. }
  1265. priv->rx_ring_size = ering->rx_pending;
  1266. priv->tx_ring_size = ering->tx_pending;
  1267. if (was_running) {
  1268. int err;
  1269. err = bcm_enet_open(dev);
  1270. if (err)
  1271. dev_close(dev);
  1272. else
  1273. bcm_enet_set_multicast_list(dev);
  1274. }
  1275. return 0;
  1276. }
  1277. static void bcm_enet_get_pauseparam(struct net_device *dev,
  1278. struct ethtool_pauseparam *ecmd)
  1279. {
  1280. struct bcm_enet_priv *priv;
  1281. priv = netdev_priv(dev);
  1282. ecmd->autoneg = priv->pause_auto;
  1283. ecmd->rx_pause = priv->pause_rx;
  1284. ecmd->tx_pause = priv->pause_tx;
  1285. }
  1286. static int bcm_enet_set_pauseparam(struct net_device *dev,
  1287. struct ethtool_pauseparam *ecmd)
  1288. {
  1289. struct bcm_enet_priv *priv;
  1290. priv = netdev_priv(dev);
  1291. if (priv->has_phy) {
  1292. if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
  1293. /* asymetric pause mode not supported,
  1294. * actually possible but integrated PHY has RO
  1295. * asym_pause bit */
  1296. return -EINVAL;
  1297. }
  1298. } else {
  1299. /* no pause autoneg on direct mii connection */
  1300. if (ecmd->autoneg)
  1301. return -EINVAL;
  1302. }
  1303. priv->pause_auto = ecmd->autoneg;
  1304. priv->pause_rx = ecmd->rx_pause;
  1305. priv->pause_tx = ecmd->tx_pause;
  1306. return 0;
  1307. }
  1308. static const struct ethtool_ops bcm_enet_ethtool_ops = {
  1309. .get_strings = bcm_enet_get_strings,
  1310. .get_sset_count = bcm_enet_get_sset_count,
  1311. .get_ethtool_stats = bcm_enet_get_ethtool_stats,
  1312. .nway_reset = bcm_enet_nway_reset,
  1313. .get_drvinfo = bcm_enet_get_drvinfo,
  1314. .get_link = ethtool_op_get_link,
  1315. .get_ringparam = bcm_enet_get_ringparam,
  1316. .set_ringparam = bcm_enet_set_ringparam,
  1317. .get_pauseparam = bcm_enet_get_pauseparam,
  1318. .set_pauseparam = bcm_enet_set_pauseparam,
  1319. .get_link_ksettings = bcm_enet_get_link_ksettings,
  1320. .set_link_ksettings = bcm_enet_set_link_ksettings,
  1321. };
  1322. static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  1323. {
  1324. struct bcm_enet_priv *priv;
  1325. priv = netdev_priv(dev);
  1326. if (priv->has_phy) {
  1327. if (!dev->phydev)
  1328. return -ENODEV;
  1329. return phy_mii_ioctl(dev->phydev, rq, cmd);
  1330. } else {
  1331. struct mii_if_info mii;
  1332. mii.dev = dev;
  1333. mii.mdio_read = bcm_enet_mdio_read_mii;
  1334. mii.mdio_write = bcm_enet_mdio_write_mii;
  1335. mii.phy_id = 0;
  1336. mii.phy_id_mask = 0x3f;
  1337. mii.reg_num_mask = 0x1f;
  1338. return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
  1339. }
  1340. }
  1341. /*
  1342. * adjust mtu, can't be called while device is running
  1343. */
  1344. static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
  1345. {
  1346. struct bcm_enet_priv *priv = netdev_priv(dev);
  1347. int actual_mtu = new_mtu;
  1348. if (netif_running(dev))
  1349. return -EBUSY;
  1350. /* add ethernet header + vlan tag size */
  1351. actual_mtu += VLAN_ETH_HLEN;
  1352. /*
  1353. * setup maximum size before we get overflow mark in
  1354. * descriptor, note that this will not prevent reception of
  1355. * big frames, they will be split into multiple buffers
  1356. * anyway
  1357. */
  1358. priv->hw_mtu = actual_mtu;
  1359. /*
  1360. * align rx buffer size to dma burst len, account FCS since
  1361. * it's appended
  1362. */
  1363. priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
  1364. priv->dma_maxburst * 4);
  1365. dev->mtu = new_mtu;
  1366. return 0;
  1367. }
  1368. /*
  1369. * preinit hardware to allow mii operation while device is down
  1370. */
  1371. static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
  1372. {
  1373. u32 val;
  1374. int limit;
  1375. /* make sure mac is disabled */
  1376. bcm_enet_disable_mac(priv);
  1377. /* soft reset mac */
  1378. val = ENET_CTL_SRESET_MASK;
  1379. enet_writel(priv, val, ENET_CTL_REG);
  1380. wmb();
  1381. limit = 1000;
  1382. do {
  1383. val = enet_readl(priv, ENET_CTL_REG);
  1384. if (!(val & ENET_CTL_SRESET_MASK))
  1385. break;
  1386. udelay(1);
  1387. } while (limit--);
  1388. /* select correct mii interface */
  1389. val = enet_readl(priv, ENET_CTL_REG);
  1390. if (priv->use_external_mii)
  1391. val |= ENET_CTL_EPHYSEL_MASK;
  1392. else
  1393. val &= ~ENET_CTL_EPHYSEL_MASK;
  1394. enet_writel(priv, val, ENET_CTL_REG);
  1395. /* turn on mdc clock */
  1396. enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
  1397. ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
  1398. /* set mib counters to self-clear when read */
  1399. val = enet_readl(priv, ENET_MIBCTL_REG);
  1400. val |= ENET_MIBCTL_RDCLEAR_MASK;
  1401. enet_writel(priv, val, ENET_MIBCTL_REG);
  1402. }
  1403. static const struct net_device_ops bcm_enet_ops = {
  1404. .ndo_open = bcm_enet_open,
  1405. .ndo_stop = bcm_enet_stop,
  1406. .ndo_start_xmit = bcm_enet_start_xmit,
  1407. .ndo_set_mac_address = bcm_enet_set_mac_address,
  1408. .ndo_set_rx_mode = bcm_enet_set_multicast_list,
  1409. .ndo_do_ioctl = bcm_enet_ioctl,
  1410. .ndo_change_mtu = bcm_enet_change_mtu,
  1411. };
  1412. /*
  1413. * allocate netdevice, request register memory and register device.
  1414. */
  1415. static int bcm_enet_probe(struct platform_device *pdev)
  1416. {
  1417. struct bcm_enet_priv *priv;
  1418. struct net_device *dev;
  1419. struct bcm63xx_enet_platform_data *pd;
  1420. struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
  1421. struct mii_bus *bus;
  1422. const char *clk_name;
  1423. int i, ret;
  1424. /* stop if shared driver failed, assume driver->probe will be
  1425. * called in the same order we register devices (correct ?) */
  1426. if (!bcm_enet_shared_base[0])
  1427. return -ENODEV;
  1428. res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1429. res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
  1430. res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
  1431. if (!res_irq || !res_irq_rx || !res_irq_tx)
  1432. return -ENODEV;
  1433. ret = 0;
  1434. dev = alloc_etherdev(sizeof(*priv));
  1435. if (!dev)
  1436. return -ENOMEM;
  1437. priv = netdev_priv(dev);
  1438. priv->enet_is_sw = false;
  1439. priv->dma_maxburst = BCMENET_DMA_MAXBURST;
  1440. ret = bcm_enet_change_mtu(dev, dev->mtu);
  1441. if (ret)
  1442. goto out;
  1443. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1444. priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
  1445. if (IS_ERR(priv->base)) {
  1446. ret = PTR_ERR(priv->base);
  1447. goto out;
  1448. }
  1449. dev->irq = priv->irq = res_irq->start;
  1450. priv->irq_rx = res_irq_rx->start;
  1451. priv->irq_tx = res_irq_tx->start;
  1452. priv->mac_id = pdev->id;
  1453. /* get rx & tx dma channel id for this mac */
  1454. if (priv->mac_id == 0) {
  1455. priv->rx_chan = 0;
  1456. priv->tx_chan = 1;
  1457. clk_name = "enet0";
  1458. } else {
  1459. priv->rx_chan = 2;
  1460. priv->tx_chan = 3;
  1461. clk_name = "enet1";
  1462. }
  1463. priv->mac_clk = clk_get(&pdev->dev, clk_name);
  1464. if (IS_ERR(priv->mac_clk)) {
  1465. ret = PTR_ERR(priv->mac_clk);
  1466. goto out;
  1467. }
  1468. clk_prepare_enable(priv->mac_clk);
  1469. /* initialize default and fetch platform data */
  1470. priv->rx_ring_size = BCMENET_DEF_RX_DESC;
  1471. priv->tx_ring_size = BCMENET_DEF_TX_DESC;
  1472. pd = dev_get_platdata(&pdev->dev);
  1473. if (pd) {
  1474. memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
  1475. priv->has_phy = pd->has_phy;
  1476. priv->phy_id = pd->phy_id;
  1477. priv->has_phy_interrupt = pd->has_phy_interrupt;
  1478. priv->phy_interrupt = pd->phy_interrupt;
  1479. priv->use_external_mii = !pd->use_internal_phy;
  1480. priv->pause_auto = pd->pause_auto;
  1481. priv->pause_rx = pd->pause_rx;
  1482. priv->pause_tx = pd->pause_tx;
  1483. priv->force_duplex_full = pd->force_duplex_full;
  1484. priv->force_speed_100 = pd->force_speed_100;
  1485. priv->dma_chan_en_mask = pd->dma_chan_en_mask;
  1486. priv->dma_chan_int_mask = pd->dma_chan_int_mask;
  1487. priv->dma_chan_width = pd->dma_chan_width;
  1488. priv->dma_has_sram = pd->dma_has_sram;
  1489. priv->dma_desc_shift = pd->dma_desc_shift;
  1490. }
  1491. if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
  1492. /* using internal PHY, enable clock */
  1493. priv->phy_clk = clk_get(&pdev->dev, "ephy");
  1494. if (IS_ERR(priv->phy_clk)) {
  1495. ret = PTR_ERR(priv->phy_clk);
  1496. priv->phy_clk = NULL;
  1497. goto out_put_clk_mac;
  1498. }
  1499. clk_prepare_enable(priv->phy_clk);
  1500. }
  1501. /* do minimal hardware init to be able to probe mii bus */
  1502. bcm_enet_hw_preinit(priv);
  1503. /* MII bus registration */
  1504. if (priv->has_phy) {
  1505. priv->mii_bus = mdiobus_alloc();
  1506. if (!priv->mii_bus) {
  1507. ret = -ENOMEM;
  1508. goto out_uninit_hw;
  1509. }
  1510. bus = priv->mii_bus;
  1511. bus->name = "bcm63xx_enet MII bus";
  1512. bus->parent = &pdev->dev;
  1513. bus->priv = priv;
  1514. bus->read = bcm_enet_mdio_read_phylib;
  1515. bus->write = bcm_enet_mdio_write_phylib;
  1516. sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
  1517. /* only probe bus where we think the PHY is, because
  1518. * the mdio read operation return 0 instead of 0xffff
  1519. * if a slave is not present on hw */
  1520. bus->phy_mask = ~(1 << priv->phy_id);
  1521. if (priv->has_phy_interrupt)
  1522. bus->irq[priv->phy_id] = priv->phy_interrupt;
  1523. ret = mdiobus_register(bus);
  1524. if (ret) {
  1525. dev_err(&pdev->dev, "unable to register mdio bus\n");
  1526. goto out_free_mdio;
  1527. }
  1528. } else {
  1529. /* run platform code to initialize PHY device */
  1530. if (pd && pd->mii_config &&
  1531. pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
  1532. bcm_enet_mdio_write_mii)) {
  1533. dev_err(&pdev->dev, "unable to configure mdio bus\n");
  1534. goto out_uninit_hw;
  1535. }
  1536. }
  1537. spin_lock_init(&priv->rx_lock);
  1538. /* init rx timeout (used for oom) */
  1539. setup_timer(&priv->rx_timeout, bcm_enet_refill_rx_timer,
  1540. (unsigned long)dev);
  1541. /* init the mib update lock&work */
  1542. mutex_init(&priv->mib_update_lock);
  1543. INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
  1544. /* zero mib counters */
  1545. for (i = 0; i < ENET_MIB_REG_COUNT; i++)
  1546. enet_writel(priv, 0, ENET_MIB_REG(i));
  1547. /* register netdevice */
  1548. dev->netdev_ops = &bcm_enet_ops;
  1549. netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
  1550. dev->ethtool_ops = &bcm_enet_ethtool_ops;
  1551. /* MTU range: 46 - 2028 */
  1552. dev->min_mtu = ETH_ZLEN - ETH_HLEN;
  1553. dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
  1554. SET_NETDEV_DEV(dev, &pdev->dev);
  1555. ret = register_netdev(dev);
  1556. if (ret)
  1557. goto out_unregister_mdio;
  1558. netif_carrier_off(dev);
  1559. platform_set_drvdata(pdev, dev);
  1560. priv->pdev = pdev;
  1561. priv->net_dev = dev;
  1562. return 0;
  1563. out_unregister_mdio:
  1564. if (priv->mii_bus)
  1565. mdiobus_unregister(priv->mii_bus);
  1566. out_free_mdio:
  1567. if (priv->mii_bus)
  1568. mdiobus_free(priv->mii_bus);
  1569. out_uninit_hw:
  1570. /* turn off mdc clock */
  1571. enet_writel(priv, 0, ENET_MIISC_REG);
  1572. if (priv->phy_clk) {
  1573. clk_disable_unprepare(priv->phy_clk);
  1574. clk_put(priv->phy_clk);
  1575. }
  1576. out_put_clk_mac:
  1577. clk_disable_unprepare(priv->mac_clk);
  1578. clk_put(priv->mac_clk);
  1579. out:
  1580. free_netdev(dev);
  1581. return ret;
  1582. }
  1583. /*
  1584. * exit func, stops hardware and unregisters netdevice
  1585. */
  1586. static int bcm_enet_remove(struct platform_device *pdev)
  1587. {
  1588. struct bcm_enet_priv *priv;
  1589. struct net_device *dev;
  1590. /* stop netdevice */
  1591. dev = platform_get_drvdata(pdev);
  1592. priv = netdev_priv(dev);
  1593. unregister_netdev(dev);
  1594. /* turn off mdc clock */
  1595. enet_writel(priv, 0, ENET_MIISC_REG);
  1596. if (priv->has_phy) {
  1597. mdiobus_unregister(priv->mii_bus);
  1598. mdiobus_free(priv->mii_bus);
  1599. } else {
  1600. struct bcm63xx_enet_platform_data *pd;
  1601. pd = dev_get_platdata(&pdev->dev);
  1602. if (pd && pd->mii_config)
  1603. pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
  1604. bcm_enet_mdio_write_mii);
  1605. }
  1606. /* disable hw block clocks */
  1607. if (priv->phy_clk) {
  1608. clk_disable_unprepare(priv->phy_clk);
  1609. clk_put(priv->phy_clk);
  1610. }
  1611. clk_disable_unprepare(priv->mac_clk);
  1612. clk_put(priv->mac_clk);
  1613. free_netdev(dev);
  1614. return 0;
  1615. }
  1616. struct platform_driver bcm63xx_enet_driver = {
  1617. .probe = bcm_enet_probe,
  1618. .remove = bcm_enet_remove,
  1619. .driver = {
  1620. .name = "bcm63xx_enet",
  1621. .owner = THIS_MODULE,
  1622. },
  1623. };
  1624. /*
  1625. * switch mii access callbacks
  1626. */
  1627. static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
  1628. int ext, int phy_id, int location)
  1629. {
  1630. u32 reg;
  1631. int ret;
  1632. spin_lock_bh(&priv->enetsw_mdio_lock);
  1633. enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
  1634. reg = ENETSW_MDIOC_RD_MASK |
  1635. (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
  1636. (location << ENETSW_MDIOC_REG_SHIFT);
  1637. if (ext)
  1638. reg |= ENETSW_MDIOC_EXT_MASK;
  1639. enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
  1640. udelay(50);
  1641. ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
  1642. spin_unlock_bh(&priv->enetsw_mdio_lock);
  1643. return ret;
  1644. }
  1645. static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
  1646. int ext, int phy_id, int location,
  1647. uint16_t data)
  1648. {
  1649. u32 reg;
  1650. spin_lock_bh(&priv->enetsw_mdio_lock);
  1651. enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
  1652. reg = ENETSW_MDIOC_WR_MASK |
  1653. (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
  1654. (location << ENETSW_MDIOC_REG_SHIFT);
  1655. if (ext)
  1656. reg |= ENETSW_MDIOC_EXT_MASK;
  1657. reg |= data;
  1658. enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
  1659. udelay(50);
  1660. spin_unlock_bh(&priv->enetsw_mdio_lock);
  1661. }
  1662. static inline int bcm_enet_port_is_rgmii(int portid)
  1663. {
  1664. return portid >= ENETSW_RGMII_PORT0;
  1665. }
  1666. /*
  1667. * enet sw PHY polling
  1668. */
  1669. static void swphy_poll_timer(unsigned long data)
  1670. {
  1671. struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
  1672. unsigned int i;
  1673. for (i = 0; i < priv->num_ports; i++) {
  1674. struct bcm63xx_enetsw_port *port;
  1675. int val, j, up, advertise, lpa, speed, duplex, media;
  1676. int external_phy = bcm_enet_port_is_rgmii(i);
  1677. u8 override;
  1678. port = &priv->used_ports[i];
  1679. if (!port->used)
  1680. continue;
  1681. if (port->bypass_link)
  1682. continue;
  1683. /* dummy read to clear */
  1684. for (j = 0; j < 2; j++)
  1685. val = bcmenet_sw_mdio_read(priv, external_phy,
  1686. port->phy_id, MII_BMSR);
  1687. if (val == 0xffff)
  1688. continue;
  1689. up = (val & BMSR_LSTATUS) ? 1 : 0;
  1690. if (!(up ^ priv->sw_port_link[i]))
  1691. continue;
  1692. priv->sw_port_link[i] = up;
  1693. /* link changed */
  1694. if (!up) {
  1695. dev_info(&priv->pdev->dev, "link DOWN on %s\n",
  1696. port->name);
  1697. enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
  1698. ENETSW_PORTOV_REG(i));
  1699. enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
  1700. ENETSW_PTCTRL_TXDIS_MASK,
  1701. ENETSW_PTCTRL_REG(i));
  1702. continue;
  1703. }
  1704. advertise = bcmenet_sw_mdio_read(priv, external_phy,
  1705. port->phy_id, MII_ADVERTISE);
  1706. lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
  1707. MII_LPA);
  1708. /* figure out media and duplex from advertise and LPA values */
  1709. media = mii_nway_result(lpa & advertise);
  1710. duplex = (media & ADVERTISE_FULL) ? 1 : 0;
  1711. if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
  1712. speed = 100;
  1713. else
  1714. speed = 10;
  1715. if (val & BMSR_ESTATEN) {
  1716. advertise = bcmenet_sw_mdio_read(priv, external_phy,
  1717. port->phy_id, MII_CTRL1000);
  1718. lpa = bcmenet_sw_mdio_read(priv, external_phy,
  1719. port->phy_id, MII_STAT1000);
  1720. if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
  1721. && lpa & (LPA_1000FULL | LPA_1000HALF)) {
  1722. speed = 1000;
  1723. duplex = (lpa & LPA_1000FULL);
  1724. }
  1725. }
  1726. dev_info(&priv->pdev->dev,
  1727. "link UP on %s, %dMbps, %s-duplex\n",
  1728. port->name, speed, duplex ? "full" : "half");
  1729. override = ENETSW_PORTOV_ENABLE_MASK |
  1730. ENETSW_PORTOV_LINKUP_MASK;
  1731. if (speed == 1000)
  1732. override |= ENETSW_IMPOV_1000_MASK;
  1733. else if (speed == 100)
  1734. override |= ENETSW_IMPOV_100_MASK;
  1735. if (duplex)
  1736. override |= ENETSW_IMPOV_FDX_MASK;
  1737. enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
  1738. enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
  1739. }
  1740. priv->swphy_poll.expires = jiffies + HZ;
  1741. add_timer(&priv->swphy_poll);
  1742. }
  1743. /*
  1744. * open callback, allocate dma rings & buffers and start rx operation
  1745. */
  1746. static int bcm_enetsw_open(struct net_device *dev)
  1747. {
  1748. struct bcm_enet_priv *priv;
  1749. struct device *kdev;
  1750. int i, ret;
  1751. unsigned int size;
  1752. void *p;
  1753. u32 val;
  1754. priv = netdev_priv(dev);
  1755. kdev = &priv->pdev->dev;
  1756. /* mask all interrupts and request them */
  1757. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  1758. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  1759. ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
  1760. 0, dev->name, dev);
  1761. if (ret)
  1762. goto out_freeirq;
  1763. if (priv->irq_tx != -1) {
  1764. ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
  1765. 0, dev->name, dev);
  1766. if (ret)
  1767. goto out_freeirq_rx;
  1768. }
  1769. /* allocate rx dma ring */
  1770. size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
  1771. p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
  1772. if (!p) {
  1773. dev_err(kdev, "cannot allocate rx ring %u\n", size);
  1774. ret = -ENOMEM;
  1775. goto out_freeirq_tx;
  1776. }
  1777. memset(p, 0, size);
  1778. priv->rx_desc_alloc_size = size;
  1779. priv->rx_desc_cpu = p;
  1780. /* allocate tx dma ring */
  1781. size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
  1782. p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
  1783. if (!p) {
  1784. dev_err(kdev, "cannot allocate tx ring\n");
  1785. ret = -ENOMEM;
  1786. goto out_free_rx_ring;
  1787. }
  1788. memset(p, 0, size);
  1789. priv->tx_desc_alloc_size = size;
  1790. priv->tx_desc_cpu = p;
  1791. priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
  1792. GFP_KERNEL);
  1793. if (!priv->tx_skb) {
  1794. dev_err(kdev, "cannot allocate rx skb queue\n");
  1795. ret = -ENOMEM;
  1796. goto out_free_tx_ring;
  1797. }
  1798. priv->tx_desc_count = priv->tx_ring_size;
  1799. priv->tx_dirty_desc = 0;
  1800. priv->tx_curr_desc = 0;
  1801. spin_lock_init(&priv->tx_lock);
  1802. /* init & fill rx ring with skbs */
  1803. priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
  1804. GFP_KERNEL);
  1805. if (!priv->rx_skb) {
  1806. dev_err(kdev, "cannot allocate rx skb queue\n");
  1807. ret = -ENOMEM;
  1808. goto out_free_tx_skb;
  1809. }
  1810. priv->rx_desc_count = 0;
  1811. priv->rx_dirty_desc = 0;
  1812. priv->rx_curr_desc = 0;
  1813. /* disable all ports */
  1814. for (i = 0; i < priv->num_ports; i++) {
  1815. enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
  1816. ENETSW_PORTOV_REG(i));
  1817. enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
  1818. ENETSW_PTCTRL_TXDIS_MASK,
  1819. ENETSW_PTCTRL_REG(i));
  1820. priv->sw_port_link[i] = 0;
  1821. }
  1822. /* reset mib */
  1823. val = enetsw_readb(priv, ENETSW_GMCR_REG);
  1824. val |= ENETSW_GMCR_RST_MIB_MASK;
  1825. enetsw_writeb(priv, val, ENETSW_GMCR_REG);
  1826. mdelay(1);
  1827. val &= ~ENETSW_GMCR_RST_MIB_MASK;
  1828. enetsw_writeb(priv, val, ENETSW_GMCR_REG);
  1829. mdelay(1);
  1830. /* force CPU port state */
  1831. val = enetsw_readb(priv, ENETSW_IMPOV_REG);
  1832. val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
  1833. enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
  1834. /* enable switch forward engine */
  1835. val = enetsw_readb(priv, ENETSW_SWMODE_REG);
  1836. val |= ENETSW_SWMODE_FWD_EN_MASK;
  1837. enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
  1838. /* enable jumbo on all ports */
  1839. enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
  1840. enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
  1841. /* initialize flow control buffer allocation */
  1842. enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
  1843. ENETDMA_BUFALLOC_REG(priv->rx_chan));
  1844. if (bcm_enet_refill_rx(dev)) {
  1845. dev_err(kdev, "cannot allocate rx skb queue\n");
  1846. ret = -ENOMEM;
  1847. goto out;
  1848. }
  1849. /* write rx & tx ring addresses */
  1850. enet_dmas_writel(priv, priv->rx_desc_dma,
  1851. ENETDMAS_RSTART_REG, priv->rx_chan);
  1852. enet_dmas_writel(priv, priv->tx_desc_dma,
  1853. ENETDMAS_RSTART_REG, priv->tx_chan);
  1854. /* clear remaining state ram for rx & tx channel */
  1855. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
  1856. enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
  1857. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
  1858. enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
  1859. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
  1860. enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
  1861. /* set dma maximum burst len */
  1862. enet_dmac_writel(priv, priv->dma_maxburst,
  1863. ENETDMAC_MAXBURST, priv->rx_chan);
  1864. enet_dmac_writel(priv, priv->dma_maxburst,
  1865. ENETDMAC_MAXBURST, priv->tx_chan);
  1866. /* set flow control low/high threshold to 1/3 / 2/3 */
  1867. val = priv->rx_ring_size / 3;
  1868. enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
  1869. val = (priv->rx_ring_size * 2) / 3;
  1870. enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
  1871. /* all set, enable mac and interrupts, start dma engine and
  1872. * kick rx dma channel
  1873. */
  1874. wmb();
  1875. enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
  1876. enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
  1877. ENETDMAC_CHANCFG, priv->rx_chan);
  1878. /* watch "packet transferred" interrupt in rx and tx */
  1879. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1880. ENETDMAC_IR, priv->rx_chan);
  1881. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1882. ENETDMAC_IR, priv->tx_chan);
  1883. /* make sure we enable napi before rx interrupt */
  1884. napi_enable(&priv->napi);
  1885. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1886. ENETDMAC_IRMASK, priv->rx_chan);
  1887. enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
  1888. ENETDMAC_IRMASK, priv->tx_chan);
  1889. netif_carrier_on(dev);
  1890. netif_start_queue(dev);
  1891. /* apply override config for bypass_link ports here. */
  1892. for (i = 0; i < priv->num_ports; i++) {
  1893. struct bcm63xx_enetsw_port *port;
  1894. u8 override;
  1895. port = &priv->used_ports[i];
  1896. if (!port->used)
  1897. continue;
  1898. if (!port->bypass_link)
  1899. continue;
  1900. override = ENETSW_PORTOV_ENABLE_MASK |
  1901. ENETSW_PORTOV_LINKUP_MASK;
  1902. switch (port->force_speed) {
  1903. case 1000:
  1904. override |= ENETSW_IMPOV_1000_MASK;
  1905. break;
  1906. case 100:
  1907. override |= ENETSW_IMPOV_100_MASK;
  1908. break;
  1909. case 10:
  1910. break;
  1911. default:
  1912. pr_warn("invalid forced speed on port %s: assume 10\n",
  1913. port->name);
  1914. break;
  1915. }
  1916. if (port->force_duplex_full)
  1917. override |= ENETSW_IMPOV_FDX_MASK;
  1918. enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
  1919. enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
  1920. }
  1921. /* start phy polling timer */
  1922. setup_timer(&priv->swphy_poll, swphy_poll_timer, (unsigned long)priv);
  1923. mod_timer(&priv->swphy_poll, jiffies);
  1924. return 0;
  1925. out:
  1926. for (i = 0; i < priv->rx_ring_size; i++) {
  1927. struct bcm_enet_desc *desc;
  1928. if (!priv->rx_skb[i])
  1929. continue;
  1930. desc = &priv->rx_desc_cpu[i];
  1931. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  1932. DMA_FROM_DEVICE);
  1933. kfree_skb(priv->rx_skb[i]);
  1934. }
  1935. kfree(priv->rx_skb);
  1936. out_free_tx_skb:
  1937. kfree(priv->tx_skb);
  1938. out_free_tx_ring:
  1939. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  1940. priv->tx_desc_cpu, priv->tx_desc_dma);
  1941. out_free_rx_ring:
  1942. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  1943. priv->rx_desc_cpu, priv->rx_desc_dma);
  1944. out_freeirq_tx:
  1945. if (priv->irq_tx != -1)
  1946. free_irq(priv->irq_tx, dev);
  1947. out_freeirq_rx:
  1948. free_irq(priv->irq_rx, dev);
  1949. out_freeirq:
  1950. return ret;
  1951. }
  1952. /* stop callback */
  1953. static int bcm_enetsw_stop(struct net_device *dev)
  1954. {
  1955. struct bcm_enet_priv *priv;
  1956. struct device *kdev;
  1957. int i;
  1958. priv = netdev_priv(dev);
  1959. kdev = &priv->pdev->dev;
  1960. del_timer_sync(&priv->swphy_poll);
  1961. netif_stop_queue(dev);
  1962. napi_disable(&priv->napi);
  1963. del_timer_sync(&priv->rx_timeout);
  1964. /* mask all interrupts */
  1965. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
  1966. enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
  1967. /* disable dma & mac */
  1968. bcm_enet_disable_dma(priv, priv->tx_chan);
  1969. bcm_enet_disable_dma(priv, priv->rx_chan);
  1970. /* force reclaim of all tx buffers */
  1971. bcm_enet_tx_reclaim(dev, 1);
  1972. /* free the rx skb ring */
  1973. for (i = 0; i < priv->rx_ring_size; i++) {
  1974. struct bcm_enet_desc *desc;
  1975. if (!priv->rx_skb[i])
  1976. continue;
  1977. desc = &priv->rx_desc_cpu[i];
  1978. dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
  1979. DMA_FROM_DEVICE);
  1980. kfree_skb(priv->rx_skb[i]);
  1981. }
  1982. /* free remaining allocated memory */
  1983. kfree(priv->rx_skb);
  1984. kfree(priv->tx_skb);
  1985. dma_free_coherent(kdev, priv->rx_desc_alloc_size,
  1986. priv->rx_desc_cpu, priv->rx_desc_dma);
  1987. dma_free_coherent(kdev, priv->tx_desc_alloc_size,
  1988. priv->tx_desc_cpu, priv->tx_desc_dma);
  1989. if (priv->irq_tx != -1)
  1990. free_irq(priv->irq_tx, dev);
  1991. free_irq(priv->irq_rx, dev);
  1992. return 0;
  1993. }
  1994. /* try to sort out phy external status by walking the used_port field
  1995. * in the bcm_enet_priv structure. in case the phy address is not
  1996. * assigned to any physical port on the switch, assume it is external
  1997. * (and yell at the user).
  1998. */
  1999. static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
  2000. {
  2001. int i;
  2002. for (i = 0; i < priv->num_ports; ++i) {
  2003. if (!priv->used_ports[i].used)
  2004. continue;
  2005. if (priv->used_ports[i].phy_id == phy_id)
  2006. return bcm_enet_port_is_rgmii(i);
  2007. }
  2008. printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
  2009. phy_id);
  2010. return 1;
  2011. }
  2012. /* can't use bcmenet_sw_mdio_read directly as we need to sort out
  2013. * external/internal status of the given phy_id first.
  2014. */
  2015. static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
  2016. int location)
  2017. {
  2018. struct bcm_enet_priv *priv;
  2019. priv = netdev_priv(dev);
  2020. return bcmenet_sw_mdio_read(priv,
  2021. bcm_enetsw_phy_is_external(priv, phy_id),
  2022. phy_id, location);
  2023. }
  2024. /* can't use bcmenet_sw_mdio_write directly as we need to sort out
  2025. * external/internal status of the given phy_id first.
  2026. */
  2027. static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
  2028. int location,
  2029. int val)
  2030. {
  2031. struct bcm_enet_priv *priv;
  2032. priv = netdev_priv(dev);
  2033. bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
  2034. phy_id, location, val);
  2035. }
  2036. static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  2037. {
  2038. struct mii_if_info mii;
  2039. mii.dev = dev;
  2040. mii.mdio_read = bcm_enetsw_mii_mdio_read;
  2041. mii.mdio_write = bcm_enetsw_mii_mdio_write;
  2042. mii.phy_id = 0;
  2043. mii.phy_id_mask = 0x3f;
  2044. mii.reg_num_mask = 0x1f;
  2045. return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
  2046. }
  2047. static const struct net_device_ops bcm_enetsw_ops = {
  2048. .ndo_open = bcm_enetsw_open,
  2049. .ndo_stop = bcm_enetsw_stop,
  2050. .ndo_start_xmit = bcm_enet_start_xmit,
  2051. .ndo_change_mtu = bcm_enet_change_mtu,
  2052. .ndo_do_ioctl = bcm_enetsw_ioctl,
  2053. };
  2054. static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
  2055. { "rx_packets", DEV_STAT(rx_packets), -1 },
  2056. { "tx_packets", DEV_STAT(tx_packets), -1 },
  2057. { "rx_bytes", DEV_STAT(rx_bytes), -1 },
  2058. { "tx_bytes", DEV_STAT(tx_bytes), -1 },
  2059. { "rx_errors", DEV_STAT(rx_errors), -1 },
  2060. { "tx_errors", DEV_STAT(tx_errors), -1 },
  2061. { "rx_dropped", DEV_STAT(rx_dropped), -1 },
  2062. { "tx_dropped", DEV_STAT(tx_dropped), -1 },
  2063. { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
  2064. { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
  2065. { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
  2066. { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
  2067. { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
  2068. { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
  2069. { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
  2070. { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
  2071. { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
  2072. { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
  2073. ETHSW_MIB_RX_1024_1522 },
  2074. { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
  2075. ETHSW_MIB_RX_1523_2047 },
  2076. { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
  2077. ETHSW_MIB_RX_2048_4095 },
  2078. { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
  2079. ETHSW_MIB_RX_4096_8191 },
  2080. { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
  2081. ETHSW_MIB_RX_8192_9728 },
  2082. { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
  2083. { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
  2084. { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
  2085. { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
  2086. { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
  2087. { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
  2088. { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
  2089. { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
  2090. { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
  2091. { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
  2092. { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
  2093. };
  2094. #define BCM_ENETSW_STATS_LEN \
  2095. (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
  2096. static void bcm_enetsw_get_strings(struct net_device *netdev,
  2097. u32 stringset, u8 *data)
  2098. {
  2099. int i;
  2100. switch (stringset) {
  2101. case ETH_SS_STATS:
  2102. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2103. memcpy(data + i * ETH_GSTRING_LEN,
  2104. bcm_enetsw_gstrings_stats[i].stat_string,
  2105. ETH_GSTRING_LEN);
  2106. }
  2107. break;
  2108. }
  2109. }
  2110. static int bcm_enetsw_get_sset_count(struct net_device *netdev,
  2111. int string_set)
  2112. {
  2113. switch (string_set) {
  2114. case ETH_SS_STATS:
  2115. return BCM_ENETSW_STATS_LEN;
  2116. default:
  2117. return -EINVAL;
  2118. }
  2119. }
  2120. static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
  2121. struct ethtool_drvinfo *drvinfo)
  2122. {
  2123. strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
  2124. strncpy(drvinfo->version, bcm_enet_driver_version, 32);
  2125. strncpy(drvinfo->fw_version, "N/A", 32);
  2126. strncpy(drvinfo->bus_info, "bcm63xx", 32);
  2127. }
  2128. static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
  2129. struct ethtool_stats *stats,
  2130. u64 *data)
  2131. {
  2132. struct bcm_enet_priv *priv;
  2133. int i;
  2134. priv = netdev_priv(netdev);
  2135. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2136. const struct bcm_enet_stats *s;
  2137. u32 lo, hi;
  2138. char *p;
  2139. int reg;
  2140. s = &bcm_enetsw_gstrings_stats[i];
  2141. reg = s->mib_reg;
  2142. if (reg == -1)
  2143. continue;
  2144. lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
  2145. p = (char *)priv + s->stat_offset;
  2146. if (s->sizeof_stat == sizeof(u64)) {
  2147. hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
  2148. *(u64 *)p = ((u64)hi << 32 | lo);
  2149. } else {
  2150. *(u32 *)p = lo;
  2151. }
  2152. }
  2153. for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
  2154. const struct bcm_enet_stats *s;
  2155. char *p;
  2156. s = &bcm_enetsw_gstrings_stats[i];
  2157. if (s->mib_reg == -1)
  2158. p = (char *)&netdev->stats + s->stat_offset;
  2159. else
  2160. p = (char *)priv + s->stat_offset;
  2161. data[i] = (s->sizeof_stat == sizeof(u64)) ?
  2162. *(u64 *)p : *(u32 *)p;
  2163. }
  2164. }
  2165. static void bcm_enetsw_get_ringparam(struct net_device *dev,
  2166. struct ethtool_ringparam *ering)
  2167. {
  2168. struct bcm_enet_priv *priv;
  2169. priv = netdev_priv(dev);
  2170. /* rx/tx ring is actually only limited by memory */
  2171. ering->rx_max_pending = 8192;
  2172. ering->tx_max_pending = 8192;
  2173. ering->rx_mini_max_pending = 0;
  2174. ering->rx_jumbo_max_pending = 0;
  2175. ering->rx_pending = priv->rx_ring_size;
  2176. ering->tx_pending = priv->tx_ring_size;
  2177. }
  2178. static int bcm_enetsw_set_ringparam(struct net_device *dev,
  2179. struct ethtool_ringparam *ering)
  2180. {
  2181. struct bcm_enet_priv *priv;
  2182. int was_running;
  2183. priv = netdev_priv(dev);
  2184. was_running = 0;
  2185. if (netif_running(dev)) {
  2186. bcm_enetsw_stop(dev);
  2187. was_running = 1;
  2188. }
  2189. priv->rx_ring_size = ering->rx_pending;
  2190. priv->tx_ring_size = ering->tx_pending;
  2191. if (was_running) {
  2192. int err;
  2193. err = bcm_enetsw_open(dev);
  2194. if (err)
  2195. dev_close(dev);
  2196. }
  2197. return 0;
  2198. }
  2199. static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
  2200. .get_strings = bcm_enetsw_get_strings,
  2201. .get_sset_count = bcm_enetsw_get_sset_count,
  2202. .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
  2203. .get_drvinfo = bcm_enetsw_get_drvinfo,
  2204. .get_ringparam = bcm_enetsw_get_ringparam,
  2205. .set_ringparam = bcm_enetsw_set_ringparam,
  2206. };
  2207. /* allocate netdevice, request register memory and register device. */
  2208. static int bcm_enetsw_probe(struct platform_device *pdev)
  2209. {
  2210. struct bcm_enet_priv *priv;
  2211. struct net_device *dev;
  2212. struct bcm63xx_enetsw_platform_data *pd;
  2213. struct resource *res_mem;
  2214. int ret, irq_rx, irq_tx;
  2215. /* stop if shared driver failed, assume driver->probe will be
  2216. * called in the same order we register devices (correct ?)
  2217. */
  2218. if (!bcm_enet_shared_base[0])
  2219. return -ENODEV;
  2220. res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2221. irq_rx = platform_get_irq(pdev, 0);
  2222. irq_tx = platform_get_irq(pdev, 1);
  2223. if (!res_mem || irq_rx < 0)
  2224. return -ENODEV;
  2225. ret = 0;
  2226. dev = alloc_etherdev(sizeof(*priv));
  2227. if (!dev)
  2228. return -ENOMEM;
  2229. priv = netdev_priv(dev);
  2230. memset(priv, 0, sizeof(*priv));
  2231. /* initialize default and fetch platform data */
  2232. priv->enet_is_sw = true;
  2233. priv->irq_rx = irq_rx;
  2234. priv->irq_tx = irq_tx;
  2235. priv->rx_ring_size = BCMENET_DEF_RX_DESC;
  2236. priv->tx_ring_size = BCMENET_DEF_TX_DESC;
  2237. priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
  2238. pd = dev_get_platdata(&pdev->dev);
  2239. if (pd) {
  2240. memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
  2241. memcpy(priv->used_ports, pd->used_ports,
  2242. sizeof(pd->used_ports));
  2243. priv->num_ports = pd->num_ports;
  2244. priv->dma_has_sram = pd->dma_has_sram;
  2245. priv->dma_chan_en_mask = pd->dma_chan_en_mask;
  2246. priv->dma_chan_int_mask = pd->dma_chan_int_mask;
  2247. priv->dma_chan_width = pd->dma_chan_width;
  2248. }
  2249. ret = bcm_enet_change_mtu(dev, dev->mtu);
  2250. if (ret)
  2251. goto out;
  2252. if (!request_mem_region(res_mem->start, resource_size(res_mem),
  2253. "bcm63xx_enetsw")) {
  2254. ret = -EBUSY;
  2255. goto out;
  2256. }
  2257. priv->base = ioremap(res_mem->start, resource_size(res_mem));
  2258. if (priv->base == NULL) {
  2259. ret = -ENOMEM;
  2260. goto out_release_mem;
  2261. }
  2262. priv->mac_clk = clk_get(&pdev->dev, "enetsw");
  2263. if (IS_ERR(priv->mac_clk)) {
  2264. ret = PTR_ERR(priv->mac_clk);
  2265. goto out_unmap;
  2266. }
  2267. clk_enable(priv->mac_clk);
  2268. priv->rx_chan = 0;
  2269. priv->tx_chan = 1;
  2270. spin_lock_init(&priv->rx_lock);
  2271. /* init rx timeout (used for oom) */
  2272. init_timer(&priv->rx_timeout);
  2273. priv->rx_timeout.function = bcm_enet_refill_rx_timer;
  2274. priv->rx_timeout.data = (unsigned long)dev;
  2275. /* register netdevice */
  2276. dev->netdev_ops = &bcm_enetsw_ops;
  2277. netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
  2278. dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
  2279. SET_NETDEV_DEV(dev, &pdev->dev);
  2280. spin_lock_init(&priv->enetsw_mdio_lock);
  2281. ret = register_netdev(dev);
  2282. if (ret)
  2283. goto out_put_clk;
  2284. netif_carrier_off(dev);
  2285. platform_set_drvdata(pdev, dev);
  2286. priv->pdev = pdev;
  2287. priv->net_dev = dev;
  2288. return 0;
  2289. out_put_clk:
  2290. clk_put(priv->mac_clk);
  2291. out_unmap:
  2292. iounmap(priv->base);
  2293. out_release_mem:
  2294. release_mem_region(res_mem->start, resource_size(res_mem));
  2295. out:
  2296. free_netdev(dev);
  2297. return ret;
  2298. }
  2299. /* exit func, stops hardware and unregisters netdevice */
  2300. static int bcm_enetsw_remove(struct platform_device *pdev)
  2301. {
  2302. struct bcm_enet_priv *priv;
  2303. struct net_device *dev;
  2304. struct resource *res;
  2305. /* stop netdevice */
  2306. dev = platform_get_drvdata(pdev);
  2307. priv = netdev_priv(dev);
  2308. unregister_netdev(dev);
  2309. /* release device resources */
  2310. iounmap(priv->base);
  2311. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2312. release_mem_region(res->start, resource_size(res));
  2313. free_netdev(dev);
  2314. return 0;
  2315. }
  2316. struct platform_driver bcm63xx_enetsw_driver = {
  2317. .probe = bcm_enetsw_probe,
  2318. .remove = bcm_enetsw_remove,
  2319. .driver = {
  2320. .name = "bcm63xx_enetsw",
  2321. .owner = THIS_MODULE,
  2322. },
  2323. };
  2324. /* reserve & remap memory space shared between all macs */
  2325. static int bcm_enet_shared_probe(struct platform_device *pdev)
  2326. {
  2327. struct resource *res;
  2328. void __iomem *p[3];
  2329. unsigned int i;
  2330. memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
  2331. for (i = 0; i < 3; i++) {
  2332. res = platform_get_resource(pdev, IORESOURCE_MEM, i);
  2333. p[i] = devm_ioremap_resource(&pdev->dev, res);
  2334. if (IS_ERR(p[i]))
  2335. return PTR_ERR(p[i]);
  2336. }
  2337. memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
  2338. return 0;
  2339. }
  2340. static int bcm_enet_shared_remove(struct platform_device *pdev)
  2341. {
  2342. return 0;
  2343. }
  2344. /* this "shared" driver is needed because both macs share a single
  2345. * address space
  2346. */
  2347. struct platform_driver bcm63xx_enet_shared_driver = {
  2348. .probe = bcm_enet_shared_probe,
  2349. .remove = bcm_enet_shared_remove,
  2350. .driver = {
  2351. .name = "bcm63xx_enet_shared",
  2352. .owner = THIS_MODULE,
  2353. },
  2354. };
  2355. static struct platform_driver * const drivers[] = {
  2356. &bcm63xx_enet_shared_driver,
  2357. &bcm63xx_enet_driver,
  2358. &bcm63xx_enetsw_driver,
  2359. };
  2360. /* entry point */
  2361. static int __init bcm_enet_init(void)
  2362. {
  2363. return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
  2364. }
  2365. static void __exit bcm_enet_exit(void)
  2366. {
  2367. platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
  2368. }
  2369. module_init(bcm_enet_init);
  2370. module_exit(bcm_enet_exit);
  2371. MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
  2372. MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
  2373. MODULE_LICENSE("GPL");