md.c 144 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (request_queue_t *q, struct bio *bio)
  178. {
  179. bio_io_error(bio, bio->bi_size);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_unregister(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->queue = blk_alloc_queue(GFP_KERNEL);
  234. if (!new->queue) {
  235. kfree(new);
  236. return NULL;
  237. }
  238. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  239. blk_queue_make_request(new->queue, md_fail_request);
  240. goto retry;
  241. }
  242. static inline int mddev_lock(mddev_t * mddev)
  243. {
  244. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  245. }
  246. static inline int mddev_trylock(mddev_t * mddev)
  247. {
  248. return mutex_trylock(&mddev->reconfig_mutex);
  249. }
  250. static inline void mddev_unlock(mddev_t * mddev)
  251. {
  252. mutex_unlock(&mddev->reconfig_mutex);
  253. md_wakeup_thread(mddev->thread);
  254. }
  255. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  256. {
  257. mdk_rdev_t * rdev;
  258. struct list_head *tmp;
  259. ITERATE_RDEV(mddev,rdev,tmp) {
  260. if (rdev->desc_nr == nr)
  261. return rdev;
  262. }
  263. return NULL;
  264. }
  265. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  266. {
  267. struct list_head *tmp;
  268. mdk_rdev_t *rdev;
  269. ITERATE_RDEV(mddev,rdev,tmp) {
  270. if (rdev->bdev->bd_dev == dev)
  271. return rdev;
  272. }
  273. return NULL;
  274. }
  275. static struct mdk_personality *find_pers(int level, char *clevel)
  276. {
  277. struct mdk_personality *pers;
  278. list_for_each_entry(pers, &pers_list, list) {
  279. if (level != LEVEL_NONE && pers->level == level)
  280. return pers;
  281. if (strcmp(pers->name, clevel)==0)
  282. return pers;
  283. }
  284. return NULL;
  285. }
  286. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  287. {
  288. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  289. return MD_NEW_SIZE_BLOCKS(size);
  290. }
  291. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  292. {
  293. sector_t size;
  294. size = rdev->sb_offset;
  295. if (chunk_size)
  296. size &= ~((sector_t)chunk_size/1024 - 1);
  297. return size;
  298. }
  299. static int alloc_disk_sb(mdk_rdev_t * rdev)
  300. {
  301. if (rdev->sb_page)
  302. MD_BUG();
  303. rdev->sb_page = alloc_page(GFP_KERNEL);
  304. if (!rdev->sb_page) {
  305. printk(KERN_ALERT "md: out of memory.\n");
  306. return -EINVAL;
  307. }
  308. return 0;
  309. }
  310. static void free_disk_sb(mdk_rdev_t * rdev)
  311. {
  312. if (rdev->sb_page) {
  313. put_page(rdev->sb_page);
  314. rdev->sb_loaded = 0;
  315. rdev->sb_page = NULL;
  316. rdev->sb_offset = 0;
  317. rdev->size = 0;
  318. }
  319. }
  320. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  321. {
  322. mdk_rdev_t *rdev = bio->bi_private;
  323. mddev_t *mddev = rdev->mddev;
  324. if (bio->bi_size)
  325. return 1;
  326. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  327. printk("md: super_written gets error=%d, uptodate=%d\n",
  328. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  330. md_error(mddev, rdev);
  331. }
  332. if (atomic_dec_and_test(&mddev->pending_writes))
  333. wake_up(&mddev->sb_wait);
  334. bio_put(bio);
  335. return 0;
  336. }
  337. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  338. {
  339. struct bio *bio2 = bio->bi_private;
  340. mdk_rdev_t *rdev = bio2->bi_private;
  341. mddev_t *mddev = rdev->mddev;
  342. if (bio->bi_size)
  343. return 1;
  344. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  345. error == -EOPNOTSUPP) {
  346. unsigned long flags;
  347. /* barriers don't appear to be supported :-( */
  348. set_bit(BarriersNotsupp, &rdev->flags);
  349. mddev->barriers_work = 0;
  350. spin_lock_irqsave(&mddev->write_lock, flags);
  351. bio2->bi_next = mddev->biolist;
  352. mddev->biolist = bio2;
  353. spin_unlock_irqrestore(&mddev->write_lock, flags);
  354. wake_up(&mddev->sb_wait);
  355. bio_put(bio);
  356. return 0;
  357. }
  358. bio_put(bio2);
  359. bio->bi_private = rdev;
  360. return super_written(bio, bytes_done, error);
  361. }
  362. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  363. sector_t sector, int size, struct page *page)
  364. {
  365. /* write first size bytes of page to sector of rdev
  366. * Increment mddev->pending_writes before returning
  367. * and decrement it on completion, waking up sb_wait
  368. * if zero is reached.
  369. * If an error occurred, call md_error
  370. *
  371. * As we might need to resubmit the request if BIO_RW_BARRIER
  372. * causes ENOTSUPP, we allocate a spare bio...
  373. */
  374. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  375. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  376. bio->bi_bdev = rdev->bdev;
  377. bio->bi_sector = sector;
  378. bio_add_page(bio, page, size, 0);
  379. bio->bi_private = rdev;
  380. bio->bi_end_io = super_written;
  381. bio->bi_rw = rw;
  382. atomic_inc(&mddev->pending_writes);
  383. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  384. struct bio *rbio;
  385. rw |= (1<<BIO_RW_BARRIER);
  386. rbio = bio_clone(bio, GFP_NOIO);
  387. rbio->bi_private = bio;
  388. rbio->bi_end_io = super_written_barrier;
  389. submit_bio(rw, rbio);
  390. } else
  391. submit_bio(rw, bio);
  392. }
  393. void md_super_wait(mddev_t *mddev)
  394. {
  395. /* wait for all superblock writes that were scheduled to complete.
  396. * if any had to be retried (due to BARRIER problems), retry them
  397. */
  398. DEFINE_WAIT(wq);
  399. for(;;) {
  400. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  401. if (atomic_read(&mddev->pending_writes)==0)
  402. break;
  403. while (mddev->biolist) {
  404. struct bio *bio;
  405. spin_lock_irq(&mddev->write_lock);
  406. bio = mddev->biolist;
  407. mddev->biolist = bio->bi_next ;
  408. bio->bi_next = NULL;
  409. spin_unlock_irq(&mddev->write_lock);
  410. submit_bio(bio->bi_rw, bio);
  411. }
  412. schedule();
  413. }
  414. finish_wait(&mddev->sb_wait, &wq);
  415. }
  416. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  417. {
  418. if (bio->bi_size)
  419. return 1;
  420. complete((struct completion*)bio->bi_private);
  421. return 0;
  422. }
  423. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  424. struct page *page, int rw)
  425. {
  426. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  427. struct completion event;
  428. int ret;
  429. rw |= (1 << BIO_RW_SYNC);
  430. bio->bi_bdev = bdev;
  431. bio->bi_sector = sector;
  432. bio_add_page(bio, page, size, 0);
  433. init_completion(&event);
  434. bio->bi_private = &event;
  435. bio->bi_end_io = bi_complete;
  436. submit_bio(rw, bio);
  437. wait_for_completion(&event);
  438. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  439. bio_put(bio);
  440. return ret;
  441. }
  442. EXPORT_SYMBOL_GPL(sync_page_io);
  443. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  444. {
  445. char b[BDEVNAME_SIZE];
  446. if (!rdev->sb_page) {
  447. MD_BUG();
  448. return -EINVAL;
  449. }
  450. if (rdev->sb_loaded)
  451. return 0;
  452. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  453. goto fail;
  454. rdev->sb_loaded = 1;
  455. return 0;
  456. fail:
  457. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  458. bdevname(rdev->bdev,b));
  459. return -EINVAL;
  460. }
  461. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  462. {
  463. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  464. (sb1->set_uuid1 == sb2->set_uuid1) &&
  465. (sb1->set_uuid2 == sb2->set_uuid2) &&
  466. (sb1->set_uuid3 == sb2->set_uuid3))
  467. return 1;
  468. return 0;
  469. }
  470. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  471. {
  472. int ret;
  473. mdp_super_t *tmp1, *tmp2;
  474. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  475. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  476. if (!tmp1 || !tmp2) {
  477. ret = 0;
  478. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  479. goto abort;
  480. }
  481. *tmp1 = *sb1;
  482. *tmp2 = *sb2;
  483. /*
  484. * nr_disks is not constant
  485. */
  486. tmp1->nr_disks = 0;
  487. tmp2->nr_disks = 0;
  488. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  489. ret = 0;
  490. else
  491. ret = 1;
  492. abort:
  493. kfree(tmp1);
  494. kfree(tmp2);
  495. return ret;
  496. }
  497. static u32 md_csum_fold(u32 csum)
  498. {
  499. csum = (csum & 0xffff) + (csum >> 16);
  500. return (csum & 0xffff) + (csum >> 16);
  501. }
  502. static unsigned int calc_sb_csum(mdp_super_t * sb)
  503. {
  504. u64 newcsum = 0;
  505. u32 *sb32 = (u32*)sb;
  506. int i;
  507. unsigned int disk_csum, csum;
  508. disk_csum = sb->sb_csum;
  509. sb->sb_csum = 0;
  510. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  511. newcsum += sb32[i];
  512. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  513. #ifdef CONFIG_ALPHA
  514. /* This used to use csum_partial, which was wrong for several
  515. * reasons including that different results are returned on
  516. * different architectures. It isn't critical that we get exactly
  517. * the same return value as before (we always csum_fold before
  518. * testing, and that removes any differences). However as we
  519. * know that csum_partial always returned a 16bit value on
  520. * alphas, do a fold to maximise conformity to previous behaviour.
  521. */
  522. sb->sb_csum = md_csum_fold(disk_csum);
  523. #else
  524. sb->sb_csum = disk_csum;
  525. #endif
  526. return csum;
  527. }
  528. /*
  529. * Handle superblock details.
  530. * We want to be able to handle multiple superblock formats
  531. * so we have a common interface to them all, and an array of
  532. * different handlers.
  533. * We rely on user-space to write the initial superblock, and support
  534. * reading and updating of superblocks.
  535. * Interface methods are:
  536. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  537. * loads and validates a superblock on dev.
  538. * if refdev != NULL, compare superblocks on both devices
  539. * Return:
  540. * 0 - dev has a superblock that is compatible with refdev
  541. * 1 - dev has a superblock that is compatible and newer than refdev
  542. * so dev should be used as the refdev in future
  543. * -EINVAL superblock incompatible or invalid
  544. * -othererror e.g. -EIO
  545. *
  546. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  547. * Verify that dev is acceptable into mddev.
  548. * The first time, mddev->raid_disks will be 0, and data from
  549. * dev should be merged in. Subsequent calls check that dev
  550. * is new enough. Return 0 or -EINVAL
  551. *
  552. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  553. * Update the superblock for rdev with data in mddev
  554. * This does not write to disc.
  555. *
  556. */
  557. struct super_type {
  558. char *name;
  559. struct module *owner;
  560. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  561. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  562. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  563. };
  564. /*
  565. * load_super for 0.90.0
  566. */
  567. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  568. {
  569. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  570. mdp_super_t *sb;
  571. int ret;
  572. sector_t sb_offset;
  573. /*
  574. * Calculate the position of the superblock,
  575. * it's at the end of the disk.
  576. *
  577. * It also happens to be a multiple of 4Kb.
  578. */
  579. sb_offset = calc_dev_sboffset(rdev->bdev);
  580. rdev->sb_offset = sb_offset;
  581. ret = read_disk_sb(rdev, MD_SB_BYTES);
  582. if (ret) return ret;
  583. ret = -EINVAL;
  584. bdevname(rdev->bdev, b);
  585. sb = (mdp_super_t*)page_address(rdev->sb_page);
  586. if (sb->md_magic != MD_SB_MAGIC) {
  587. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  588. b);
  589. goto abort;
  590. }
  591. if (sb->major_version != 0 ||
  592. sb->minor_version < 90 ||
  593. sb->minor_version > 91) {
  594. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  595. sb->major_version, sb->minor_version,
  596. b);
  597. goto abort;
  598. }
  599. if (sb->raid_disks <= 0)
  600. goto abort;
  601. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  602. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  603. b);
  604. goto abort;
  605. }
  606. rdev->preferred_minor = sb->md_minor;
  607. rdev->data_offset = 0;
  608. rdev->sb_size = MD_SB_BYTES;
  609. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  610. if (sb->level != 1 && sb->level != 4
  611. && sb->level != 5 && sb->level != 6
  612. && sb->level != 10) {
  613. /* FIXME use a better test */
  614. printk(KERN_WARNING
  615. "md: bitmaps not supported for this level.\n");
  616. goto abort;
  617. }
  618. }
  619. if (sb->level == LEVEL_MULTIPATH)
  620. rdev->desc_nr = -1;
  621. else
  622. rdev->desc_nr = sb->this_disk.number;
  623. if (refdev == 0)
  624. ret = 1;
  625. else {
  626. __u64 ev1, ev2;
  627. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  628. if (!uuid_equal(refsb, sb)) {
  629. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  630. b, bdevname(refdev->bdev,b2));
  631. goto abort;
  632. }
  633. if (!sb_equal(refsb, sb)) {
  634. printk(KERN_WARNING "md: %s has same UUID"
  635. " but different superblock to %s\n",
  636. b, bdevname(refdev->bdev, b2));
  637. goto abort;
  638. }
  639. ev1 = md_event(sb);
  640. ev2 = md_event(refsb);
  641. if (ev1 > ev2)
  642. ret = 1;
  643. else
  644. ret = 0;
  645. }
  646. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  647. if (rdev->size < sb->size && sb->level > 1)
  648. /* "this cannot possibly happen" ... */
  649. ret = -EINVAL;
  650. abort:
  651. return ret;
  652. }
  653. /*
  654. * validate_super for 0.90.0
  655. */
  656. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  657. {
  658. mdp_disk_t *desc;
  659. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  660. __u64 ev1 = md_event(sb);
  661. rdev->raid_disk = -1;
  662. rdev->flags = 0;
  663. if (mddev->raid_disks == 0) {
  664. mddev->major_version = 0;
  665. mddev->minor_version = sb->minor_version;
  666. mddev->patch_version = sb->patch_version;
  667. mddev->persistent = ! sb->not_persistent;
  668. mddev->chunk_size = sb->chunk_size;
  669. mddev->ctime = sb->ctime;
  670. mddev->utime = sb->utime;
  671. mddev->level = sb->level;
  672. mddev->clevel[0] = 0;
  673. mddev->layout = sb->layout;
  674. mddev->raid_disks = sb->raid_disks;
  675. mddev->size = sb->size;
  676. mddev->events = ev1;
  677. mddev->bitmap_offset = 0;
  678. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  679. if (mddev->minor_version >= 91) {
  680. mddev->reshape_position = sb->reshape_position;
  681. mddev->delta_disks = sb->delta_disks;
  682. mddev->new_level = sb->new_level;
  683. mddev->new_layout = sb->new_layout;
  684. mddev->new_chunk = sb->new_chunk;
  685. } else {
  686. mddev->reshape_position = MaxSector;
  687. mddev->delta_disks = 0;
  688. mddev->new_level = mddev->level;
  689. mddev->new_layout = mddev->layout;
  690. mddev->new_chunk = mddev->chunk_size;
  691. }
  692. if (sb->state & (1<<MD_SB_CLEAN))
  693. mddev->recovery_cp = MaxSector;
  694. else {
  695. if (sb->events_hi == sb->cp_events_hi &&
  696. sb->events_lo == sb->cp_events_lo) {
  697. mddev->recovery_cp = sb->recovery_cp;
  698. } else
  699. mddev->recovery_cp = 0;
  700. }
  701. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  702. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  703. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  704. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  705. mddev->max_disks = MD_SB_DISKS;
  706. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  707. mddev->bitmap_file == NULL)
  708. mddev->bitmap_offset = mddev->default_bitmap_offset;
  709. } else if (mddev->pers == NULL) {
  710. /* Insist on good event counter while assembling */
  711. ++ev1;
  712. if (ev1 < mddev->events)
  713. return -EINVAL;
  714. } else if (mddev->bitmap) {
  715. /* if adding to array with a bitmap, then we can accept an
  716. * older device ... but not too old.
  717. */
  718. if (ev1 < mddev->bitmap->events_cleared)
  719. return 0;
  720. } else {
  721. if (ev1 < mddev->events)
  722. /* just a hot-add of a new device, leave raid_disk at -1 */
  723. return 0;
  724. }
  725. if (mddev->level != LEVEL_MULTIPATH) {
  726. desc = sb->disks + rdev->desc_nr;
  727. if (desc->state & (1<<MD_DISK_FAULTY))
  728. set_bit(Faulty, &rdev->flags);
  729. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  730. desc->raid_disk < mddev->raid_disks */) {
  731. set_bit(In_sync, &rdev->flags);
  732. rdev->raid_disk = desc->raid_disk;
  733. }
  734. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  735. set_bit(WriteMostly, &rdev->flags);
  736. } else /* MULTIPATH are always insync */
  737. set_bit(In_sync, &rdev->flags);
  738. return 0;
  739. }
  740. /*
  741. * sync_super for 0.90.0
  742. */
  743. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  744. {
  745. mdp_super_t *sb;
  746. struct list_head *tmp;
  747. mdk_rdev_t *rdev2;
  748. int next_spare = mddev->raid_disks;
  749. /* make rdev->sb match mddev data..
  750. *
  751. * 1/ zero out disks
  752. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  753. * 3/ any empty disks < next_spare become removed
  754. *
  755. * disks[0] gets initialised to REMOVED because
  756. * we cannot be sure from other fields if it has
  757. * been initialised or not.
  758. */
  759. int i;
  760. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  761. rdev->sb_size = MD_SB_BYTES;
  762. sb = (mdp_super_t*)page_address(rdev->sb_page);
  763. memset(sb, 0, sizeof(*sb));
  764. sb->md_magic = MD_SB_MAGIC;
  765. sb->major_version = mddev->major_version;
  766. sb->patch_version = mddev->patch_version;
  767. sb->gvalid_words = 0; /* ignored */
  768. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  769. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  770. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  771. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  772. sb->ctime = mddev->ctime;
  773. sb->level = mddev->level;
  774. sb->size = mddev->size;
  775. sb->raid_disks = mddev->raid_disks;
  776. sb->md_minor = mddev->md_minor;
  777. sb->not_persistent = !mddev->persistent;
  778. sb->utime = mddev->utime;
  779. sb->state = 0;
  780. sb->events_hi = (mddev->events>>32);
  781. sb->events_lo = (u32)mddev->events;
  782. if (mddev->reshape_position == MaxSector)
  783. sb->minor_version = 90;
  784. else {
  785. sb->minor_version = 91;
  786. sb->reshape_position = mddev->reshape_position;
  787. sb->new_level = mddev->new_level;
  788. sb->delta_disks = mddev->delta_disks;
  789. sb->new_layout = mddev->new_layout;
  790. sb->new_chunk = mddev->new_chunk;
  791. }
  792. mddev->minor_version = sb->minor_version;
  793. if (mddev->in_sync)
  794. {
  795. sb->recovery_cp = mddev->recovery_cp;
  796. sb->cp_events_hi = (mddev->events>>32);
  797. sb->cp_events_lo = (u32)mddev->events;
  798. if (mddev->recovery_cp == MaxSector)
  799. sb->state = (1<< MD_SB_CLEAN);
  800. } else
  801. sb->recovery_cp = 0;
  802. sb->layout = mddev->layout;
  803. sb->chunk_size = mddev->chunk_size;
  804. if (mddev->bitmap && mddev->bitmap_file == NULL)
  805. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  806. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  807. ITERATE_RDEV(mddev,rdev2,tmp) {
  808. mdp_disk_t *d;
  809. int desc_nr;
  810. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  811. && !test_bit(Faulty, &rdev2->flags))
  812. desc_nr = rdev2->raid_disk;
  813. else
  814. desc_nr = next_spare++;
  815. rdev2->desc_nr = desc_nr;
  816. d = &sb->disks[rdev2->desc_nr];
  817. nr_disks++;
  818. d->number = rdev2->desc_nr;
  819. d->major = MAJOR(rdev2->bdev->bd_dev);
  820. d->minor = MINOR(rdev2->bdev->bd_dev);
  821. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  822. && !test_bit(Faulty, &rdev2->flags))
  823. d->raid_disk = rdev2->raid_disk;
  824. else
  825. d->raid_disk = rdev2->desc_nr; /* compatibility */
  826. if (test_bit(Faulty, &rdev2->flags))
  827. d->state = (1<<MD_DISK_FAULTY);
  828. else if (test_bit(In_sync, &rdev2->flags)) {
  829. d->state = (1<<MD_DISK_ACTIVE);
  830. d->state |= (1<<MD_DISK_SYNC);
  831. active++;
  832. working++;
  833. } else {
  834. d->state = 0;
  835. spare++;
  836. working++;
  837. }
  838. if (test_bit(WriteMostly, &rdev2->flags))
  839. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  840. }
  841. /* now set the "removed" and "faulty" bits on any missing devices */
  842. for (i=0 ; i < mddev->raid_disks ; i++) {
  843. mdp_disk_t *d = &sb->disks[i];
  844. if (d->state == 0 && d->number == 0) {
  845. d->number = i;
  846. d->raid_disk = i;
  847. d->state = (1<<MD_DISK_REMOVED);
  848. d->state |= (1<<MD_DISK_FAULTY);
  849. failed++;
  850. }
  851. }
  852. sb->nr_disks = nr_disks;
  853. sb->active_disks = active;
  854. sb->working_disks = working;
  855. sb->failed_disks = failed;
  856. sb->spare_disks = spare;
  857. sb->this_disk = sb->disks[rdev->desc_nr];
  858. sb->sb_csum = calc_sb_csum(sb);
  859. }
  860. /*
  861. * version 1 superblock
  862. */
  863. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  864. {
  865. __le32 disk_csum;
  866. u32 csum;
  867. unsigned long long newcsum;
  868. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  869. __le32 *isuper = (__le32*)sb;
  870. int i;
  871. disk_csum = sb->sb_csum;
  872. sb->sb_csum = 0;
  873. newcsum = 0;
  874. for (i=0; size>=4; size -= 4 )
  875. newcsum += le32_to_cpu(*isuper++);
  876. if (size == 2)
  877. newcsum += le16_to_cpu(*(__le16*) isuper);
  878. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  879. sb->sb_csum = disk_csum;
  880. return cpu_to_le32(csum);
  881. }
  882. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  883. {
  884. struct mdp_superblock_1 *sb;
  885. int ret;
  886. sector_t sb_offset;
  887. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  888. int bmask;
  889. /*
  890. * Calculate the position of the superblock.
  891. * It is always aligned to a 4K boundary and
  892. * depeding on minor_version, it can be:
  893. * 0: At least 8K, but less than 12K, from end of device
  894. * 1: At start of device
  895. * 2: 4K from start of device.
  896. */
  897. switch(minor_version) {
  898. case 0:
  899. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  900. sb_offset -= 8*2;
  901. sb_offset &= ~(sector_t)(4*2-1);
  902. /* convert from sectors to K */
  903. sb_offset /= 2;
  904. break;
  905. case 1:
  906. sb_offset = 0;
  907. break;
  908. case 2:
  909. sb_offset = 4;
  910. break;
  911. default:
  912. return -EINVAL;
  913. }
  914. rdev->sb_offset = sb_offset;
  915. /* superblock is rarely larger than 1K, but it can be larger,
  916. * and it is safe to read 4k, so we do that
  917. */
  918. ret = read_disk_sb(rdev, 4096);
  919. if (ret) return ret;
  920. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  921. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  922. sb->major_version != cpu_to_le32(1) ||
  923. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  924. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  925. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  926. return -EINVAL;
  927. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  928. printk("md: invalid superblock checksum on %s\n",
  929. bdevname(rdev->bdev,b));
  930. return -EINVAL;
  931. }
  932. if (le64_to_cpu(sb->data_size) < 10) {
  933. printk("md: data_size too small on %s\n",
  934. bdevname(rdev->bdev,b));
  935. return -EINVAL;
  936. }
  937. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  938. if (sb->level != cpu_to_le32(1) &&
  939. sb->level != cpu_to_le32(4) &&
  940. sb->level != cpu_to_le32(5) &&
  941. sb->level != cpu_to_le32(6) &&
  942. sb->level != cpu_to_le32(10)) {
  943. printk(KERN_WARNING
  944. "md: bitmaps not supported for this level.\n");
  945. return -EINVAL;
  946. }
  947. }
  948. rdev->preferred_minor = 0xffff;
  949. rdev->data_offset = le64_to_cpu(sb->data_offset);
  950. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  951. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  952. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  953. if (rdev->sb_size & bmask)
  954. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  955. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  956. rdev->desc_nr = -1;
  957. else
  958. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  959. if (refdev == 0)
  960. ret = 1;
  961. else {
  962. __u64 ev1, ev2;
  963. struct mdp_superblock_1 *refsb =
  964. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  965. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  966. sb->level != refsb->level ||
  967. sb->layout != refsb->layout ||
  968. sb->chunksize != refsb->chunksize) {
  969. printk(KERN_WARNING "md: %s has strangely different"
  970. " superblock to %s\n",
  971. bdevname(rdev->bdev,b),
  972. bdevname(refdev->bdev,b2));
  973. return -EINVAL;
  974. }
  975. ev1 = le64_to_cpu(sb->events);
  976. ev2 = le64_to_cpu(refsb->events);
  977. if (ev1 > ev2)
  978. ret = 1;
  979. else
  980. ret = 0;
  981. }
  982. if (minor_version)
  983. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  984. else
  985. rdev->size = rdev->sb_offset;
  986. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  987. return -EINVAL;
  988. rdev->size = le64_to_cpu(sb->data_size)/2;
  989. if (le32_to_cpu(sb->chunksize))
  990. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  991. if (le64_to_cpu(sb->size) > rdev->size*2)
  992. return -EINVAL;
  993. return ret;
  994. }
  995. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  996. {
  997. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  998. __u64 ev1 = le64_to_cpu(sb->events);
  999. rdev->raid_disk = -1;
  1000. rdev->flags = 0;
  1001. if (mddev->raid_disks == 0) {
  1002. mddev->major_version = 1;
  1003. mddev->patch_version = 0;
  1004. mddev->persistent = 1;
  1005. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1006. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1007. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1008. mddev->level = le32_to_cpu(sb->level);
  1009. mddev->clevel[0] = 0;
  1010. mddev->layout = le32_to_cpu(sb->layout);
  1011. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1012. mddev->size = le64_to_cpu(sb->size)/2;
  1013. mddev->events = ev1;
  1014. mddev->bitmap_offset = 0;
  1015. mddev->default_bitmap_offset = 1024 >> 9;
  1016. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1017. memcpy(mddev->uuid, sb->set_uuid, 16);
  1018. mddev->max_disks = (4096-256)/2;
  1019. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1020. mddev->bitmap_file == NULL )
  1021. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1022. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1023. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1024. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1025. mddev->new_level = le32_to_cpu(sb->new_level);
  1026. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1027. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1028. } else {
  1029. mddev->reshape_position = MaxSector;
  1030. mddev->delta_disks = 0;
  1031. mddev->new_level = mddev->level;
  1032. mddev->new_layout = mddev->layout;
  1033. mddev->new_chunk = mddev->chunk_size;
  1034. }
  1035. } else if (mddev->pers == NULL) {
  1036. /* Insist of good event counter while assembling */
  1037. ++ev1;
  1038. if (ev1 < mddev->events)
  1039. return -EINVAL;
  1040. } else if (mddev->bitmap) {
  1041. /* If adding to array with a bitmap, then we can accept an
  1042. * older device, but not too old.
  1043. */
  1044. if (ev1 < mddev->bitmap->events_cleared)
  1045. return 0;
  1046. } else {
  1047. if (ev1 < mddev->events)
  1048. /* just a hot-add of a new device, leave raid_disk at -1 */
  1049. return 0;
  1050. }
  1051. if (mddev->level != LEVEL_MULTIPATH) {
  1052. int role;
  1053. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1054. switch(role) {
  1055. case 0xffff: /* spare */
  1056. break;
  1057. case 0xfffe: /* faulty */
  1058. set_bit(Faulty, &rdev->flags);
  1059. break;
  1060. default:
  1061. if ((le32_to_cpu(sb->feature_map) &
  1062. MD_FEATURE_RECOVERY_OFFSET))
  1063. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1064. else
  1065. set_bit(In_sync, &rdev->flags);
  1066. rdev->raid_disk = role;
  1067. break;
  1068. }
  1069. if (sb->devflags & WriteMostly1)
  1070. set_bit(WriteMostly, &rdev->flags);
  1071. } else /* MULTIPATH are always insync */
  1072. set_bit(In_sync, &rdev->flags);
  1073. return 0;
  1074. }
  1075. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1076. {
  1077. struct mdp_superblock_1 *sb;
  1078. struct list_head *tmp;
  1079. mdk_rdev_t *rdev2;
  1080. int max_dev, i;
  1081. /* make rdev->sb match mddev and rdev data. */
  1082. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1083. sb->feature_map = 0;
  1084. sb->pad0 = 0;
  1085. sb->recovery_offset = cpu_to_le64(0);
  1086. memset(sb->pad1, 0, sizeof(sb->pad1));
  1087. memset(sb->pad2, 0, sizeof(sb->pad2));
  1088. memset(sb->pad3, 0, sizeof(sb->pad3));
  1089. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1090. sb->events = cpu_to_le64(mddev->events);
  1091. if (mddev->in_sync)
  1092. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1093. else
  1094. sb->resync_offset = cpu_to_le64(0);
  1095. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1096. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1097. sb->size = cpu_to_le64(mddev->size<<1);
  1098. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1099. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1100. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1101. }
  1102. if (rdev->raid_disk >= 0 &&
  1103. !test_bit(In_sync, &rdev->flags) &&
  1104. rdev->recovery_offset > 0) {
  1105. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1106. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1107. }
  1108. if (mddev->reshape_position != MaxSector) {
  1109. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1110. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1111. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1112. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1113. sb->new_level = cpu_to_le32(mddev->new_level);
  1114. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1115. }
  1116. max_dev = 0;
  1117. ITERATE_RDEV(mddev,rdev2,tmp)
  1118. if (rdev2->desc_nr+1 > max_dev)
  1119. max_dev = rdev2->desc_nr+1;
  1120. if (max_dev > le32_to_cpu(sb->max_dev))
  1121. sb->max_dev = cpu_to_le32(max_dev);
  1122. for (i=0; i<max_dev;i++)
  1123. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1124. ITERATE_RDEV(mddev,rdev2,tmp) {
  1125. i = rdev2->desc_nr;
  1126. if (test_bit(Faulty, &rdev2->flags))
  1127. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1128. else if (test_bit(In_sync, &rdev2->flags))
  1129. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1130. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1131. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1132. else
  1133. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1134. }
  1135. sb->sb_csum = calc_sb_1_csum(sb);
  1136. }
  1137. static struct super_type super_types[] = {
  1138. [0] = {
  1139. .name = "0.90.0",
  1140. .owner = THIS_MODULE,
  1141. .load_super = super_90_load,
  1142. .validate_super = super_90_validate,
  1143. .sync_super = super_90_sync,
  1144. },
  1145. [1] = {
  1146. .name = "md-1",
  1147. .owner = THIS_MODULE,
  1148. .load_super = super_1_load,
  1149. .validate_super = super_1_validate,
  1150. .sync_super = super_1_sync,
  1151. },
  1152. };
  1153. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1154. {
  1155. struct list_head *tmp, *tmp2;
  1156. mdk_rdev_t *rdev, *rdev2;
  1157. ITERATE_RDEV(mddev1,rdev,tmp)
  1158. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1159. if (rdev->bdev->bd_contains ==
  1160. rdev2->bdev->bd_contains)
  1161. return 1;
  1162. return 0;
  1163. }
  1164. static LIST_HEAD(pending_raid_disks);
  1165. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1166. {
  1167. char b[BDEVNAME_SIZE];
  1168. struct kobject *ko;
  1169. char *s;
  1170. int err;
  1171. if (rdev->mddev) {
  1172. MD_BUG();
  1173. return -EINVAL;
  1174. }
  1175. /* make sure rdev->size exceeds mddev->size */
  1176. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1177. if (mddev->pers) {
  1178. /* Cannot change size, so fail
  1179. * If mddev->level <= 0, then we don't care
  1180. * about aligning sizes (e.g. linear)
  1181. */
  1182. if (mddev->level > 0)
  1183. return -ENOSPC;
  1184. } else
  1185. mddev->size = rdev->size;
  1186. }
  1187. /* Verify rdev->desc_nr is unique.
  1188. * If it is -1, assign a free number, else
  1189. * check number is not in use
  1190. */
  1191. if (rdev->desc_nr < 0) {
  1192. int choice = 0;
  1193. if (mddev->pers) choice = mddev->raid_disks;
  1194. while (find_rdev_nr(mddev, choice))
  1195. choice++;
  1196. rdev->desc_nr = choice;
  1197. } else {
  1198. if (find_rdev_nr(mddev, rdev->desc_nr))
  1199. return -EBUSY;
  1200. }
  1201. bdevname(rdev->bdev,b);
  1202. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1203. return -ENOMEM;
  1204. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1205. *s = '!';
  1206. rdev->mddev = mddev;
  1207. printk(KERN_INFO "md: bind<%s>\n", b);
  1208. rdev->kobj.parent = &mddev->kobj;
  1209. if ((err = kobject_add(&rdev->kobj)))
  1210. goto fail;
  1211. if (rdev->bdev->bd_part)
  1212. ko = &rdev->bdev->bd_part->kobj;
  1213. else
  1214. ko = &rdev->bdev->bd_disk->kobj;
  1215. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1216. kobject_del(&rdev->kobj);
  1217. goto fail;
  1218. }
  1219. list_add(&rdev->same_set, &mddev->disks);
  1220. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1221. return 0;
  1222. fail:
  1223. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1224. b, mdname(mddev));
  1225. return err;
  1226. }
  1227. static void delayed_delete(struct work_struct *ws)
  1228. {
  1229. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1230. kobject_del(&rdev->kobj);
  1231. }
  1232. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1233. {
  1234. char b[BDEVNAME_SIZE];
  1235. if (!rdev->mddev) {
  1236. MD_BUG();
  1237. return;
  1238. }
  1239. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1240. list_del_init(&rdev->same_set);
  1241. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1242. rdev->mddev = NULL;
  1243. sysfs_remove_link(&rdev->kobj, "block");
  1244. /* We need to delay this, otherwise we can deadlock when
  1245. * writing to 'remove' to "dev/state"
  1246. */
  1247. INIT_WORK(&rdev->del_work, delayed_delete);
  1248. schedule_work(&rdev->del_work);
  1249. }
  1250. /*
  1251. * prevent the device from being mounted, repartitioned or
  1252. * otherwise reused by a RAID array (or any other kernel
  1253. * subsystem), by bd_claiming the device.
  1254. */
  1255. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1256. {
  1257. int err = 0;
  1258. struct block_device *bdev;
  1259. char b[BDEVNAME_SIZE];
  1260. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1261. if (IS_ERR(bdev)) {
  1262. printk(KERN_ERR "md: could not open %s.\n",
  1263. __bdevname(dev, b));
  1264. return PTR_ERR(bdev);
  1265. }
  1266. err = bd_claim(bdev, rdev);
  1267. if (err) {
  1268. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1269. bdevname(bdev, b));
  1270. blkdev_put(bdev);
  1271. return err;
  1272. }
  1273. rdev->bdev = bdev;
  1274. return err;
  1275. }
  1276. static void unlock_rdev(mdk_rdev_t *rdev)
  1277. {
  1278. struct block_device *bdev = rdev->bdev;
  1279. rdev->bdev = NULL;
  1280. if (!bdev)
  1281. MD_BUG();
  1282. bd_release(bdev);
  1283. blkdev_put(bdev);
  1284. }
  1285. void md_autodetect_dev(dev_t dev);
  1286. static void export_rdev(mdk_rdev_t * rdev)
  1287. {
  1288. char b[BDEVNAME_SIZE];
  1289. printk(KERN_INFO "md: export_rdev(%s)\n",
  1290. bdevname(rdev->bdev,b));
  1291. if (rdev->mddev)
  1292. MD_BUG();
  1293. free_disk_sb(rdev);
  1294. list_del_init(&rdev->same_set);
  1295. #ifndef MODULE
  1296. md_autodetect_dev(rdev->bdev->bd_dev);
  1297. #endif
  1298. unlock_rdev(rdev);
  1299. kobject_put(&rdev->kobj);
  1300. }
  1301. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1302. {
  1303. unbind_rdev_from_array(rdev);
  1304. export_rdev(rdev);
  1305. }
  1306. static void export_array(mddev_t *mddev)
  1307. {
  1308. struct list_head *tmp;
  1309. mdk_rdev_t *rdev;
  1310. ITERATE_RDEV(mddev,rdev,tmp) {
  1311. if (!rdev->mddev) {
  1312. MD_BUG();
  1313. continue;
  1314. }
  1315. kick_rdev_from_array(rdev);
  1316. }
  1317. if (!list_empty(&mddev->disks))
  1318. MD_BUG();
  1319. mddev->raid_disks = 0;
  1320. mddev->major_version = 0;
  1321. }
  1322. static void print_desc(mdp_disk_t *desc)
  1323. {
  1324. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1325. desc->major,desc->minor,desc->raid_disk,desc->state);
  1326. }
  1327. static void print_sb(mdp_super_t *sb)
  1328. {
  1329. int i;
  1330. printk(KERN_INFO
  1331. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1332. sb->major_version, sb->minor_version, sb->patch_version,
  1333. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1334. sb->ctime);
  1335. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1336. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1337. sb->md_minor, sb->layout, sb->chunk_size);
  1338. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1339. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1340. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1341. sb->failed_disks, sb->spare_disks,
  1342. sb->sb_csum, (unsigned long)sb->events_lo);
  1343. printk(KERN_INFO);
  1344. for (i = 0; i < MD_SB_DISKS; i++) {
  1345. mdp_disk_t *desc;
  1346. desc = sb->disks + i;
  1347. if (desc->number || desc->major || desc->minor ||
  1348. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1349. printk(" D %2d: ", i);
  1350. print_desc(desc);
  1351. }
  1352. }
  1353. printk(KERN_INFO "md: THIS: ");
  1354. print_desc(&sb->this_disk);
  1355. }
  1356. static void print_rdev(mdk_rdev_t *rdev)
  1357. {
  1358. char b[BDEVNAME_SIZE];
  1359. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1360. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1361. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1362. rdev->desc_nr);
  1363. if (rdev->sb_loaded) {
  1364. printk(KERN_INFO "md: rdev superblock:\n");
  1365. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1366. } else
  1367. printk(KERN_INFO "md: no rdev superblock!\n");
  1368. }
  1369. static void md_print_devices(void)
  1370. {
  1371. struct list_head *tmp, *tmp2;
  1372. mdk_rdev_t *rdev;
  1373. mddev_t *mddev;
  1374. char b[BDEVNAME_SIZE];
  1375. printk("\n");
  1376. printk("md: **********************************\n");
  1377. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1378. printk("md: **********************************\n");
  1379. ITERATE_MDDEV(mddev,tmp) {
  1380. if (mddev->bitmap)
  1381. bitmap_print_sb(mddev->bitmap);
  1382. else
  1383. printk("%s: ", mdname(mddev));
  1384. ITERATE_RDEV(mddev,rdev,tmp2)
  1385. printk("<%s>", bdevname(rdev->bdev,b));
  1386. printk("\n");
  1387. ITERATE_RDEV(mddev,rdev,tmp2)
  1388. print_rdev(rdev);
  1389. }
  1390. printk("md: **********************************\n");
  1391. printk("\n");
  1392. }
  1393. static void sync_sbs(mddev_t * mddev, int nospares)
  1394. {
  1395. /* Update each superblock (in-memory image), but
  1396. * if we are allowed to, skip spares which already
  1397. * have the right event counter, or have one earlier
  1398. * (which would mean they aren't being marked as dirty
  1399. * with the rest of the array)
  1400. */
  1401. mdk_rdev_t *rdev;
  1402. struct list_head *tmp;
  1403. ITERATE_RDEV(mddev,rdev,tmp) {
  1404. if (rdev->sb_events == mddev->events ||
  1405. (nospares &&
  1406. rdev->raid_disk < 0 &&
  1407. (rdev->sb_events&1)==0 &&
  1408. rdev->sb_events+1 == mddev->events)) {
  1409. /* Don't update this superblock */
  1410. rdev->sb_loaded = 2;
  1411. } else {
  1412. super_types[mddev->major_version].
  1413. sync_super(mddev, rdev);
  1414. rdev->sb_loaded = 1;
  1415. }
  1416. }
  1417. }
  1418. static void md_update_sb(mddev_t * mddev, int force_change)
  1419. {
  1420. int err;
  1421. struct list_head *tmp;
  1422. mdk_rdev_t *rdev;
  1423. int sync_req;
  1424. int nospares = 0;
  1425. repeat:
  1426. spin_lock_irq(&mddev->write_lock);
  1427. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1428. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1429. force_change = 1;
  1430. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1431. /* just a clean<-> dirty transition, possibly leave spares alone,
  1432. * though if events isn't the right even/odd, we will have to do
  1433. * spares after all
  1434. */
  1435. nospares = 1;
  1436. if (force_change)
  1437. nospares = 0;
  1438. if (mddev->degraded)
  1439. /* If the array is degraded, then skipping spares is both
  1440. * dangerous and fairly pointless.
  1441. * Dangerous because a device that was removed from the array
  1442. * might have a event_count that still looks up-to-date,
  1443. * so it can be re-added without a resync.
  1444. * Pointless because if there are any spares to skip,
  1445. * then a recovery will happen and soon that array won't
  1446. * be degraded any more and the spare can go back to sleep then.
  1447. */
  1448. nospares = 0;
  1449. sync_req = mddev->in_sync;
  1450. mddev->utime = get_seconds();
  1451. /* If this is just a dirty<->clean transition, and the array is clean
  1452. * and 'events' is odd, we can roll back to the previous clean state */
  1453. if (nospares
  1454. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1455. && (mddev->events & 1)
  1456. && mddev->events != 1)
  1457. mddev->events--;
  1458. else {
  1459. /* otherwise we have to go forward and ... */
  1460. mddev->events ++;
  1461. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1462. /* .. if the array isn't clean, insist on an odd 'events' */
  1463. if ((mddev->events&1)==0) {
  1464. mddev->events++;
  1465. nospares = 0;
  1466. }
  1467. } else {
  1468. /* otherwise insist on an even 'events' (for clean states) */
  1469. if ((mddev->events&1)) {
  1470. mddev->events++;
  1471. nospares = 0;
  1472. }
  1473. }
  1474. }
  1475. if (!mddev->events) {
  1476. /*
  1477. * oops, this 64-bit counter should never wrap.
  1478. * Either we are in around ~1 trillion A.C., assuming
  1479. * 1 reboot per second, or we have a bug:
  1480. */
  1481. MD_BUG();
  1482. mddev->events --;
  1483. }
  1484. sync_sbs(mddev, nospares);
  1485. /*
  1486. * do not write anything to disk if using
  1487. * nonpersistent superblocks
  1488. */
  1489. if (!mddev->persistent) {
  1490. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1491. spin_unlock_irq(&mddev->write_lock);
  1492. wake_up(&mddev->sb_wait);
  1493. return;
  1494. }
  1495. spin_unlock_irq(&mddev->write_lock);
  1496. dprintk(KERN_INFO
  1497. "md: updating %s RAID superblock on device (in sync %d)\n",
  1498. mdname(mddev),mddev->in_sync);
  1499. err = bitmap_update_sb(mddev->bitmap);
  1500. ITERATE_RDEV(mddev,rdev,tmp) {
  1501. char b[BDEVNAME_SIZE];
  1502. dprintk(KERN_INFO "md: ");
  1503. if (rdev->sb_loaded != 1)
  1504. continue; /* no noise on spare devices */
  1505. if (test_bit(Faulty, &rdev->flags))
  1506. dprintk("(skipping faulty ");
  1507. dprintk("%s ", bdevname(rdev->bdev,b));
  1508. if (!test_bit(Faulty, &rdev->flags)) {
  1509. md_super_write(mddev,rdev,
  1510. rdev->sb_offset<<1, rdev->sb_size,
  1511. rdev->sb_page);
  1512. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1513. bdevname(rdev->bdev,b),
  1514. (unsigned long long)rdev->sb_offset);
  1515. rdev->sb_events = mddev->events;
  1516. } else
  1517. dprintk(")\n");
  1518. if (mddev->level == LEVEL_MULTIPATH)
  1519. /* only need to write one superblock... */
  1520. break;
  1521. }
  1522. md_super_wait(mddev);
  1523. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1524. spin_lock_irq(&mddev->write_lock);
  1525. if (mddev->in_sync != sync_req ||
  1526. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1527. /* have to write it out again */
  1528. spin_unlock_irq(&mddev->write_lock);
  1529. goto repeat;
  1530. }
  1531. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1532. spin_unlock_irq(&mddev->write_lock);
  1533. wake_up(&mddev->sb_wait);
  1534. }
  1535. /* words written to sysfs files may, or my not, be \n terminated.
  1536. * We want to accept with case. For this we use cmd_match.
  1537. */
  1538. static int cmd_match(const char *cmd, const char *str)
  1539. {
  1540. /* See if cmd, written into a sysfs file, matches
  1541. * str. They must either be the same, or cmd can
  1542. * have a trailing newline
  1543. */
  1544. while (*cmd && *str && *cmd == *str) {
  1545. cmd++;
  1546. str++;
  1547. }
  1548. if (*cmd == '\n')
  1549. cmd++;
  1550. if (*str || *cmd)
  1551. return 0;
  1552. return 1;
  1553. }
  1554. struct rdev_sysfs_entry {
  1555. struct attribute attr;
  1556. ssize_t (*show)(mdk_rdev_t *, char *);
  1557. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1558. };
  1559. static ssize_t
  1560. state_show(mdk_rdev_t *rdev, char *page)
  1561. {
  1562. char *sep = "";
  1563. int len=0;
  1564. if (test_bit(Faulty, &rdev->flags)) {
  1565. len+= sprintf(page+len, "%sfaulty",sep);
  1566. sep = ",";
  1567. }
  1568. if (test_bit(In_sync, &rdev->flags)) {
  1569. len += sprintf(page+len, "%sin_sync",sep);
  1570. sep = ",";
  1571. }
  1572. if (test_bit(WriteMostly, &rdev->flags)) {
  1573. len += sprintf(page+len, "%swrite_mostly",sep);
  1574. sep = ",";
  1575. }
  1576. if (!test_bit(Faulty, &rdev->flags) &&
  1577. !test_bit(In_sync, &rdev->flags)) {
  1578. len += sprintf(page+len, "%sspare", sep);
  1579. sep = ",";
  1580. }
  1581. return len+sprintf(page+len, "\n");
  1582. }
  1583. static ssize_t
  1584. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1585. {
  1586. /* can write
  1587. * faulty - simulates and error
  1588. * remove - disconnects the device
  1589. * writemostly - sets write_mostly
  1590. * -writemostly - clears write_mostly
  1591. */
  1592. int err = -EINVAL;
  1593. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1594. md_error(rdev->mddev, rdev);
  1595. err = 0;
  1596. } else if (cmd_match(buf, "remove")) {
  1597. if (rdev->raid_disk >= 0)
  1598. err = -EBUSY;
  1599. else {
  1600. mddev_t *mddev = rdev->mddev;
  1601. kick_rdev_from_array(rdev);
  1602. if (mddev->pers)
  1603. md_update_sb(mddev, 1);
  1604. md_new_event(mddev);
  1605. err = 0;
  1606. }
  1607. } else if (cmd_match(buf, "writemostly")) {
  1608. set_bit(WriteMostly, &rdev->flags);
  1609. err = 0;
  1610. } else if (cmd_match(buf, "-writemostly")) {
  1611. clear_bit(WriteMostly, &rdev->flags);
  1612. err = 0;
  1613. }
  1614. return err ? err : len;
  1615. }
  1616. static struct rdev_sysfs_entry rdev_state =
  1617. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1618. static ssize_t
  1619. super_show(mdk_rdev_t *rdev, char *page)
  1620. {
  1621. if (rdev->sb_loaded && rdev->sb_size) {
  1622. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1623. return rdev->sb_size;
  1624. } else
  1625. return 0;
  1626. }
  1627. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1628. static ssize_t
  1629. errors_show(mdk_rdev_t *rdev, char *page)
  1630. {
  1631. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1632. }
  1633. static ssize_t
  1634. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1635. {
  1636. char *e;
  1637. unsigned long n = simple_strtoul(buf, &e, 10);
  1638. if (*buf && (*e == 0 || *e == '\n')) {
  1639. atomic_set(&rdev->corrected_errors, n);
  1640. return len;
  1641. }
  1642. return -EINVAL;
  1643. }
  1644. static struct rdev_sysfs_entry rdev_errors =
  1645. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1646. static ssize_t
  1647. slot_show(mdk_rdev_t *rdev, char *page)
  1648. {
  1649. if (rdev->raid_disk < 0)
  1650. return sprintf(page, "none\n");
  1651. else
  1652. return sprintf(page, "%d\n", rdev->raid_disk);
  1653. }
  1654. static ssize_t
  1655. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1656. {
  1657. char *e;
  1658. int slot = simple_strtoul(buf, &e, 10);
  1659. if (strncmp(buf, "none", 4)==0)
  1660. slot = -1;
  1661. else if (e==buf || (*e && *e!= '\n'))
  1662. return -EINVAL;
  1663. if (rdev->mddev->pers)
  1664. /* Cannot set slot in active array (yet) */
  1665. return -EBUSY;
  1666. if (slot >= rdev->mddev->raid_disks)
  1667. return -ENOSPC;
  1668. rdev->raid_disk = slot;
  1669. /* assume it is working */
  1670. rdev->flags = 0;
  1671. set_bit(In_sync, &rdev->flags);
  1672. return len;
  1673. }
  1674. static struct rdev_sysfs_entry rdev_slot =
  1675. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1676. static ssize_t
  1677. offset_show(mdk_rdev_t *rdev, char *page)
  1678. {
  1679. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1680. }
  1681. static ssize_t
  1682. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1683. {
  1684. char *e;
  1685. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1686. if (e==buf || (*e && *e != '\n'))
  1687. return -EINVAL;
  1688. if (rdev->mddev->pers)
  1689. return -EBUSY;
  1690. rdev->data_offset = offset;
  1691. return len;
  1692. }
  1693. static struct rdev_sysfs_entry rdev_offset =
  1694. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1695. static ssize_t
  1696. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1697. {
  1698. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1699. }
  1700. static ssize_t
  1701. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1702. {
  1703. char *e;
  1704. unsigned long long size = simple_strtoull(buf, &e, 10);
  1705. if (e==buf || (*e && *e != '\n'))
  1706. return -EINVAL;
  1707. if (rdev->mddev->pers)
  1708. return -EBUSY;
  1709. rdev->size = size;
  1710. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1711. rdev->mddev->size = size;
  1712. return len;
  1713. }
  1714. static struct rdev_sysfs_entry rdev_size =
  1715. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1716. static struct attribute *rdev_default_attrs[] = {
  1717. &rdev_state.attr,
  1718. &rdev_super.attr,
  1719. &rdev_errors.attr,
  1720. &rdev_slot.attr,
  1721. &rdev_offset.attr,
  1722. &rdev_size.attr,
  1723. NULL,
  1724. };
  1725. static ssize_t
  1726. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1727. {
  1728. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1729. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1730. if (!entry->show)
  1731. return -EIO;
  1732. return entry->show(rdev, page);
  1733. }
  1734. static ssize_t
  1735. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1736. const char *page, size_t length)
  1737. {
  1738. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1739. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1740. if (!entry->store)
  1741. return -EIO;
  1742. if (!capable(CAP_SYS_ADMIN))
  1743. return -EACCES;
  1744. return entry->store(rdev, page, length);
  1745. }
  1746. static void rdev_free(struct kobject *ko)
  1747. {
  1748. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1749. kfree(rdev);
  1750. }
  1751. static struct sysfs_ops rdev_sysfs_ops = {
  1752. .show = rdev_attr_show,
  1753. .store = rdev_attr_store,
  1754. };
  1755. static struct kobj_type rdev_ktype = {
  1756. .release = rdev_free,
  1757. .sysfs_ops = &rdev_sysfs_ops,
  1758. .default_attrs = rdev_default_attrs,
  1759. };
  1760. /*
  1761. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1762. *
  1763. * mark the device faulty if:
  1764. *
  1765. * - the device is nonexistent (zero size)
  1766. * - the device has no valid superblock
  1767. *
  1768. * a faulty rdev _never_ has rdev->sb set.
  1769. */
  1770. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1771. {
  1772. char b[BDEVNAME_SIZE];
  1773. int err;
  1774. mdk_rdev_t *rdev;
  1775. sector_t size;
  1776. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1777. if (!rdev) {
  1778. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1779. return ERR_PTR(-ENOMEM);
  1780. }
  1781. if ((err = alloc_disk_sb(rdev)))
  1782. goto abort_free;
  1783. err = lock_rdev(rdev, newdev);
  1784. if (err)
  1785. goto abort_free;
  1786. rdev->kobj.parent = NULL;
  1787. rdev->kobj.ktype = &rdev_ktype;
  1788. kobject_init(&rdev->kobj);
  1789. rdev->desc_nr = -1;
  1790. rdev->saved_raid_disk = -1;
  1791. rdev->raid_disk = -1;
  1792. rdev->flags = 0;
  1793. rdev->data_offset = 0;
  1794. rdev->sb_events = 0;
  1795. atomic_set(&rdev->nr_pending, 0);
  1796. atomic_set(&rdev->read_errors, 0);
  1797. atomic_set(&rdev->corrected_errors, 0);
  1798. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1799. if (!size) {
  1800. printk(KERN_WARNING
  1801. "md: %s has zero or unknown size, marking faulty!\n",
  1802. bdevname(rdev->bdev,b));
  1803. err = -EINVAL;
  1804. goto abort_free;
  1805. }
  1806. if (super_format >= 0) {
  1807. err = super_types[super_format].
  1808. load_super(rdev, NULL, super_minor);
  1809. if (err == -EINVAL) {
  1810. printk(KERN_WARNING
  1811. "md: %s has invalid sb, not importing!\n",
  1812. bdevname(rdev->bdev,b));
  1813. goto abort_free;
  1814. }
  1815. if (err < 0) {
  1816. printk(KERN_WARNING
  1817. "md: could not read %s's sb, not importing!\n",
  1818. bdevname(rdev->bdev,b));
  1819. goto abort_free;
  1820. }
  1821. }
  1822. INIT_LIST_HEAD(&rdev->same_set);
  1823. return rdev;
  1824. abort_free:
  1825. if (rdev->sb_page) {
  1826. if (rdev->bdev)
  1827. unlock_rdev(rdev);
  1828. free_disk_sb(rdev);
  1829. }
  1830. kfree(rdev);
  1831. return ERR_PTR(err);
  1832. }
  1833. /*
  1834. * Check a full RAID array for plausibility
  1835. */
  1836. static void analyze_sbs(mddev_t * mddev)
  1837. {
  1838. int i;
  1839. struct list_head *tmp;
  1840. mdk_rdev_t *rdev, *freshest;
  1841. char b[BDEVNAME_SIZE];
  1842. freshest = NULL;
  1843. ITERATE_RDEV(mddev,rdev,tmp)
  1844. switch (super_types[mddev->major_version].
  1845. load_super(rdev, freshest, mddev->minor_version)) {
  1846. case 1:
  1847. freshest = rdev;
  1848. break;
  1849. case 0:
  1850. break;
  1851. default:
  1852. printk( KERN_ERR \
  1853. "md: fatal superblock inconsistency in %s"
  1854. " -- removing from array\n",
  1855. bdevname(rdev->bdev,b));
  1856. kick_rdev_from_array(rdev);
  1857. }
  1858. super_types[mddev->major_version].
  1859. validate_super(mddev, freshest);
  1860. i = 0;
  1861. ITERATE_RDEV(mddev,rdev,tmp) {
  1862. if (rdev != freshest)
  1863. if (super_types[mddev->major_version].
  1864. validate_super(mddev, rdev)) {
  1865. printk(KERN_WARNING "md: kicking non-fresh %s"
  1866. " from array!\n",
  1867. bdevname(rdev->bdev,b));
  1868. kick_rdev_from_array(rdev);
  1869. continue;
  1870. }
  1871. if (mddev->level == LEVEL_MULTIPATH) {
  1872. rdev->desc_nr = i++;
  1873. rdev->raid_disk = rdev->desc_nr;
  1874. set_bit(In_sync, &rdev->flags);
  1875. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1876. rdev->raid_disk = -1;
  1877. clear_bit(In_sync, &rdev->flags);
  1878. }
  1879. }
  1880. if (mddev->recovery_cp != MaxSector &&
  1881. mddev->level >= 1)
  1882. printk(KERN_ERR "md: %s: raid array is not clean"
  1883. " -- starting background reconstruction\n",
  1884. mdname(mddev));
  1885. }
  1886. static ssize_t
  1887. safe_delay_show(mddev_t *mddev, char *page)
  1888. {
  1889. int msec = (mddev->safemode_delay*1000)/HZ;
  1890. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1891. }
  1892. static ssize_t
  1893. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1894. {
  1895. int scale=1;
  1896. int dot=0;
  1897. int i;
  1898. unsigned long msec;
  1899. char buf[30];
  1900. char *e;
  1901. /* remove a period, and count digits after it */
  1902. if (len >= sizeof(buf))
  1903. return -EINVAL;
  1904. strlcpy(buf, cbuf, len);
  1905. buf[len] = 0;
  1906. for (i=0; i<len; i++) {
  1907. if (dot) {
  1908. if (isdigit(buf[i])) {
  1909. buf[i-1] = buf[i];
  1910. scale *= 10;
  1911. }
  1912. buf[i] = 0;
  1913. } else if (buf[i] == '.') {
  1914. dot=1;
  1915. buf[i] = 0;
  1916. }
  1917. }
  1918. msec = simple_strtoul(buf, &e, 10);
  1919. if (e == buf || (*e && *e != '\n'))
  1920. return -EINVAL;
  1921. msec = (msec * 1000) / scale;
  1922. if (msec == 0)
  1923. mddev->safemode_delay = 0;
  1924. else {
  1925. mddev->safemode_delay = (msec*HZ)/1000;
  1926. if (mddev->safemode_delay == 0)
  1927. mddev->safemode_delay = 1;
  1928. }
  1929. return len;
  1930. }
  1931. static struct md_sysfs_entry md_safe_delay =
  1932. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1933. static ssize_t
  1934. level_show(mddev_t *mddev, char *page)
  1935. {
  1936. struct mdk_personality *p = mddev->pers;
  1937. if (p)
  1938. return sprintf(page, "%s\n", p->name);
  1939. else if (mddev->clevel[0])
  1940. return sprintf(page, "%s\n", mddev->clevel);
  1941. else if (mddev->level != LEVEL_NONE)
  1942. return sprintf(page, "%d\n", mddev->level);
  1943. else
  1944. return 0;
  1945. }
  1946. static ssize_t
  1947. level_store(mddev_t *mddev, const char *buf, size_t len)
  1948. {
  1949. int rv = len;
  1950. if (mddev->pers)
  1951. return -EBUSY;
  1952. if (len == 0)
  1953. return 0;
  1954. if (len >= sizeof(mddev->clevel))
  1955. return -ENOSPC;
  1956. strncpy(mddev->clevel, buf, len);
  1957. if (mddev->clevel[len-1] == '\n')
  1958. len--;
  1959. mddev->clevel[len] = 0;
  1960. mddev->level = LEVEL_NONE;
  1961. return rv;
  1962. }
  1963. static struct md_sysfs_entry md_level =
  1964. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1965. static ssize_t
  1966. layout_show(mddev_t *mddev, char *page)
  1967. {
  1968. /* just a number, not meaningful for all levels */
  1969. if (mddev->reshape_position != MaxSector &&
  1970. mddev->layout != mddev->new_layout)
  1971. return sprintf(page, "%d (%d)\n",
  1972. mddev->new_layout, mddev->layout);
  1973. return sprintf(page, "%d\n", mddev->layout);
  1974. }
  1975. static ssize_t
  1976. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1977. {
  1978. char *e;
  1979. unsigned long n = simple_strtoul(buf, &e, 10);
  1980. if (!*buf || (*e && *e != '\n'))
  1981. return -EINVAL;
  1982. if (mddev->pers)
  1983. return -EBUSY;
  1984. if (mddev->reshape_position != MaxSector)
  1985. mddev->new_layout = n;
  1986. else
  1987. mddev->layout = n;
  1988. return len;
  1989. }
  1990. static struct md_sysfs_entry md_layout =
  1991. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1992. static ssize_t
  1993. raid_disks_show(mddev_t *mddev, char *page)
  1994. {
  1995. if (mddev->raid_disks == 0)
  1996. return 0;
  1997. if (mddev->reshape_position != MaxSector &&
  1998. mddev->delta_disks != 0)
  1999. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2000. mddev->raid_disks - mddev->delta_disks);
  2001. return sprintf(page, "%d\n", mddev->raid_disks);
  2002. }
  2003. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2004. static ssize_t
  2005. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2006. {
  2007. char *e;
  2008. int rv = 0;
  2009. unsigned long n = simple_strtoul(buf, &e, 10);
  2010. if (!*buf || (*e && *e != '\n'))
  2011. return -EINVAL;
  2012. if (mddev->pers)
  2013. rv = update_raid_disks(mddev, n);
  2014. else if (mddev->reshape_position != MaxSector) {
  2015. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2016. mddev->delta_disks = n - olddisks;
  2017. mddev->raid_disks = n;
  2018. } else
  2019. mddev->raid_disks = n;
  2020. return rv ? rv : len;
  2021. }
  2022. static struct md_sysfs_entry md_raid_disks =
  2023. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2024. static ssize_t
  2025. chunk_size_show(mddev_t *mddev, char *page)
  2026. {
  2027. if (mddev->reshape_position != MaxSector &&
  2028. mddev->chunk_size != mddev->new_chunk)
  2029. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2030. mddev->chunk_size);
  2031. return sprintf(page, "%d\n", mddev->chunk_size);
  2032. }
  2033. static ssize_t
  2034. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2035. {
  2036. /* can only set chunk_size if array is not yet active */
  2037. char *e;
  2038. unsigned long n = simple_strtoul(buf, &e, 10);
  2039. if (!*buf || (*e && *e != '\n'))
  2040. return -EINVAL;
  2041. if (mddev->pers)
  2042. return -EBUSY;
  2043. else if (mddev->reshape_position != MaxSector)
  2044. mddev->new_chunk = n;
  2045. else
  2046. mddev->chunk_size = n;
  2047. return len;
  2048. }
  2049. static struct md_sysfs_entry md_chunk_size =
  2050. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2051. static ssize_t
  2052. resync_start_show(mddev_t *mddev, char *page)
  2053. {
  2054. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2055. }
  2056. static ssize_t
  2057. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2058. {
  2059. /* can only set chunk_size if array is not yet active */
  2060. char *e;
  2061. unsigned long long n = simple_strtoull(buf, &e, 10);
  2062. if (mddev->pers)
  2063. return -EBUSY;
  2064. if (!*buf || (*e && *e != '\n'))
  2065. return -EINVAL;
  2066. mddev->recovery_cp = n;
  2067. return len;
  2068. }
  2069. static struct md_sysfs_entry md_resync_start =
  2070. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2071. /*
  2072. * The array state can be:
  2073. *
  2074. * clear
  2075. * No devices, no size, no level
  2076. * Equivalent to STOP_ARRAY ioctl
  2077. * inactive
  2078. * May have some settings, but array is not active
  2079. * all IO results in error
  2080. * When written, doesn't tear down array, but just stops it
  2081. * suspended (not supported yet)
  2082. * All IO requests will block. The array can be reconfigured.
  2083. * Writing this, if accepted, will block until array is quiessent
  2084. * readonly
  2085. * no resync can happen. no superblocks get written.
  2086. * write requests fail
  2087. * read-auto
  2088. * like readonly, but behaves like 'clean' on a write request.
  2089. *
  2090. * clean - no pending writes, but otherwise active.
  2091. * When written to inactive array, starts without resync
  2092. * If a write request arrives then
  2093. * if metadata is known, mark 'dirty' and switch to 'active'.
  2094. * if not known, block and switch to write-pending
  2095. * If written to an active array that has pending writes, then fails.
  2096. * active
  2097. * fully active: IO and resync can be happening.
  2098. * When written to inactive array, starts with resync
  2099. *
  2100. * write-pending
  2101. * clean, but writes are blocked waiting for 'active' to be written.
  2102. *
  2103. * active-idle
  2104. * like active, but no writes have been seen for a while (100msec).
  2105. *
  2106. */
  2107. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2108. write_pending, active_idle, bad_word};
  2109. static char *array_states[] = {
  2110. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2111. "write-pending", "active-idle", NULL };
  2112. static int match_word(const char *word, char **list)
  2113. {
  2114. int n;
  2115. for (n=0; list[n]; n++)
  2116. if (cmd_match(word, list[n]))
  2117. break;
  2118. return n;
  2119. }
  2120. static ssize_t
  2121. array_state_show(mddev_t *mddev, char *page)
  2122. {
  2123. enum array_state st = inactive;
  2124. if (mddev->pers)
  2125. switch(mddev->ro) {
  2126. case 1:
  2127. st = readonly;
  2128. break;
  2129. case 2:
  2130. st = read_auto;
  2131. break;
  2132. case 0:
  2133. if (mddev->in_sync)
  2134. st = clean;
  2135. else if (mddev->safemode)
  2136. st = active_idle;
  2137. else
  2138. st = active;
  2139. }
  2140. else {
  2141. if (list_empty(&mddev->disks) &&
  2142. mddev->raid_disks == 0 &&
  2143. mddev->size == 0)
  2144. st = clear;
  2145. else
  2146. st = inactive;
  2147. }
  2148. return sprintf(page, "%s\n", array_states[st]);
  2149. }
  2150. static int do_md_stop(mddev_t * mddev, int ro);
  2151. static int do_md_run(mddev_t * mddev);
  2152. static int restart_array(mddev_t *mddev);
  2153. static ssize_t
  2154. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2155. {
  2156. int err = -EINVAL;
  2157. enum array_state st = match_word(buf, array_states);
  2158. switch(st) {
  2159. case bad_word:
  2160. break;
  2161. case clear:
  2162. /* stopping an active array */
  2163. if (mddev->pers) {
  2164. if (atomic_read(&mddev->active) > 1)
  2165. return -EBUSY;
  2166. err = do_md_stop(mddev, 0);
  2167. }
  2168. break;
  2169. case inactive:
  2170. /* stopping an active array */
  2171. if (mddev->pers) {
  2172. if (atomic_read(&mddev->active) > 1)
  2173. return -EBUSY;
  2174. err = do_md_stop(mddev, 2);
  2175. }
  2176. break;
  2177. case suspended:
  2178. break; /* not supported yet */
  2179. case readonly:
  2180. if (mddev->pers)
  2181. err = do_md_stop(mddev, 1);
  2182. else {
  2183. mddev->ro = 1;
  2184. err = do_md_run(mddev);
  2185. }
  2186. break;
  2187. case read_auto:
  2188. /* stopping an active array */
  2189. if (mddev->pers) {
  2190. err = do_md_stop(mddev, 1);
  2191. if (err == 0)
  2192. mddev->ro = 2; /* FIXME mark devices writable */
  2193. } else {
  2194. mddev->ro = 2;
  2195. err = do_md_run(mddev);
  2196. }
  2197. break;
  2198. case clean:
  2199. if (mddev->pers) {
  2200. restart_array(mddev);
  2201. spin_lock_irq(&mddev->write_lock);
  2202. if (atomic_read(&mddev->writes_pending) == 0) {
  2203. mddev->in_sync = 1;
  2204. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2205. }
  2206. spin_unlock_irq(&mddev->write_lock);
  2207. } else {
  2208. mddev->ro = 0;
  2209. mddev->recovery_cp = MaxSector;
  2210. err = do_md_run(mddev);
  2211. }
  2212. break;
  2213. case active:
  2214. if (mddev->pers) {
  2215. restart_array(mddev);
  2216. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2217. wake_up(&mddev->sb_wait);
  2218. err = 0;
  2219. } else {
  2220. mddev->ro = 0;
  2221. err = do_md_run(mddev);
  2222. }
  2223. break;
  2224. case write_pending:
  2225. case active_idle:
  2226. /* these cannot be set */
  2227. break;
  2228. }
  2229. if (err)
  2230. return err;
  2231. else
  2232. return len;
  2233. }
  2234. static struct md_sysfs_entry md_array_state =
  2235. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2236. static ssize_t
  2237. null_show(mddev_t *mddev, char *page)
  2238. {
  2239. return -EINVAL;
  2240. }
  2241. static ssize_t
  2242. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2243. {
  2244. /* buf must be %d:%d\n? giving major and minor numbers */
  2245. /* The new device is added to the array.
  2246. * If the array has a persistent superblock, we read the
  2247. * superblock to initialise info and check validity.
  2248. * Otherwise, only checking done is that in bind_rdev_to_array,
  2249. * which mainly checks size.
  2250. */
  2251. char *e;
  2252. int major = simple_strtoul(buf, &e, 10);
  2253. int minor;
  2254. dev_t dev;
  2255. mdk_rdev_t *rdev;
  2256. int err;
  2257. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2258. return -EINVAL;
  2259. minor = simple_strtoul(e+1, &e, 10);
  2260. if (*e && *e != '\n')
  2261. return -EINVAL;
  2262. dev = MKDEV(major, minor);
  2263. if (major != MAJOR(dev) ||
  2264. minor != MINOR(dev))
  2265. return -EOVERFLOW;
  2266. if (mddev->persistent) {
  2267. rdev = md_import_device(dev, mddev->major_version,
  2268. mddev->minor_version);
  2269. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2270. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2271. mdk_rdev_t, same_set);
  2272. err = super_types[mddev->major_version]
  2273. .load_super(rdev, rdev0, mddev->minor_version);
  2274. if (err < 0)
  2275. goto out;
  2276. }
  2277. } else
  2278. rdev = md_import_device(dev, -1, -1);
  2279. if (IS_ERR(rdev))
  2280. return PTR_ERR(rdev);
  2281. err = bind_rdev_to_array(rdev, mddev);
  2282. out:
  2283. if (err)
  2284. export_rdev(rdev);
  2285. return err ? err : len;
  2286. }
  2287. static struct md_sysfs_entry md_new_device =
  2288. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2289. static ssize_t
  2290. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2291. {
  2292. char *end;
  2293. unsigned long chunk, end_chunk;
  2294. if (!mddev->bitmap)
  2295. goto out;
  2296. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2297. while (*buf) {
  2298. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2299. if (buf == end) break;
  2300. if (*end == '-') { /* range */
  2301. buf = end + 1;
  2302. end_chunk = simple_strtoul(buf, &end, 0);
  2303. if (buf == end) break;
  2304. }
  2305. if (*end && !isspace(*end)) break;
  2306. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2307. buf = end;
  2308. while (isspace(*buf)) buf++;
  2309. }
  2310. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2311. out:
  2312. return len;
  2313. }
  2314. static struct md_sysfs_entry md_bitmap =
  2315. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2316. static ssize_t
  2317. size_show(mddev_t *mddev, char *page)
  2318. {
  2319. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2320. }
  2321. static int update_size(mddev_t *mddev, unsigned long size);
  2322. static ssize_t
  2323. size_store(mddev_t *mddev, const char *buf, size_t len)
  2324. {
  2325. /* If array is inactive, we can reduce the component size, but
  2326. * not increase it (except from 0).
  2327. * If array is active, we can try an on-line resize
  2328. */
  2329. char *e;
  2330. int err = 0;
  2331. unsigned long long size = simple_strtoull(buf, &e, 10);
  2332. if (!*buf || *buf == '\n' ||
  2333. (*e && *e != '\n'))
  2334. return -EINVAL;
  2335. if (mddev->pers) {
  2336. err = update_size(mddev, size);
  2337. md_update_sb(mddev, 1);
  2338. } else {
  2339. if (mddev->size == 0 ||
  2340. mddev->size > size)
  2341. mddev->size = size;
  2342. else
  2343. err = -ENOSPC;
  2344. }
  2345. return err ? err : len;
  2346. }
  2347. static struct md_sysfs_entry md_size =
  2348. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2349. /* Metdata version.
  2350. * This is either 'none' for arrays with externally managed metadata,
  2351. * or N.M for internally known formats
  2352. */
  2353. static ssize_t
  2354. metadata_show(mddev_t *mddev, char *page)
  2355. {
  2356. if (mddev->persistent)
  2357. return sprintf(page, "%d.%d\n",
  2358. mddev->major_version, mddev->minor_version);
  2359. else
  2360. return sprintf(page, "none\n");
  2361. }
  2362. static ssize_t
  2363. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2364. {
  2365. int major, minor;
  2366. char *e;
  2367. if (!list_empty(&mddev->disks))
  2368. return -EBUSY;
  2369. if (cmd_match(buf, "none")) {
  2370. mddev->persistent = 0;
  2371. mddev->major_version = 0;
  2372. mddev->minor_version = 90;
  2373. return len;
  2374. }
  2375. major = simple_strtoul(buf, &e, 10);
  2376. if (e==buf || *e != '.')
  2377. return -EINVAL;
  2378. buf = e+1;
  2379. minor = simple_strtoul(buf, &e, 10);
  2380. if (e==buf || (*e && *e != '\n') )
  2381. return -EINVAL;
  2382. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2383. return -ENOENT;
  2384. mddev->major_version = major;
  2385. mddev->minor_version = minor;
  2386. mddev->persistent = 1;
  2387. return len;
  2388. }
  2389. static struct md_sysfs_entry md_metadata =
  2390. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2391. static ssize_t
  2392. action_show(mddev_t *mddev, char *page)
  2393. {
  2394. char *type = "idle";
  2395. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2396. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2397. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2398. type = "reshape";
  2399. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2400. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2401. type = "resync";
  2402. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2403. type = "check";
  2404. else
  2405. type = "repair";
  2406. } else
  2407. type = "recover";
  2408. }
  2409. return sprintf(page, "%s\n", type);
  2410. }
  2411. static ssize_t
  2412. action_store(mddev_t *mddev, const char *page, size_t len)
  2413. {
  2414. if (!mddev->pers || !mddev->pers->sync_request)
  2415. return -EINVAL;
  2416. if (cmd_match(page, "idle")) {
  2417. if (mddev->sync_thread) {
  2418. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2419. md_unregister_thread(mddev->sync_thread);
  2420. mddev->sync_thread = NULL;
  2421. mddev->recovery = 0;
  2422. }
  2423. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2424. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2425. return -EBUSY;
  2426. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2427. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2428. else if (cmd_match(page, "reshape")) {
  2429. int err;
  2430. if (mddev->pers->start_reshape == NULL)
  2431. return -EINVAL;
  2432. err = mddev->pers->start_reshape(mddev);
  2433. if (err)
  2434. return err;
  2435. } else {
  2436. if (cmd_match(page, "check"))
  2437. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2438. else if (!cmd_match(page, "repair"))
  2439. return -EINVAL;
  2440. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2441. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2442. }
  2443. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2444. md_wakeup_thread(mddev->thread);
  2445. return len;
  2446. }
  2447. static ssize_t
  2448. mismatch_cnt_show(mddev_t *mddev, char *page)
  2449. {
  2450. return sprintf(page, "%llu\n",
  2451. (unsigned long long) mddev->resync_mismatches);
  2452. }
  2453. static struct md_sysfs_entry md_scan_mode =
  2454. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2455. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2456. static ssize_t
  2457. sync_min_show(mddev_t *mddev, char *page)
  2458. {
  2459. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2460. mddev->sync_speed_min ? "local": "system");
  2461. }
  2462. static ssize_t
  2463. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2464. {
  2465. int min;
  2466. char *e;
  2467. if (strncmp(buf, "system", 6)==0) {
  2468. mddev->sync_speed_min = 0;
  2469. return len;
  2470. }
  2471. min = simple_strtoul(buf, &e, 10);
  2472. if (buf == e || (*e && *e != '\n') || min <= 0)
  2473. return -EINVAL;
  2474. mddev->sync_speed_min = min;
  2475. return len;
  2476. }
  2477. static struct md_sysfs_entry md_sync_min =
  2478. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2479. static ssize_t
  2480. sync_max_show(mddev_t *mddev, char *page)
  2481. {
  2482. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2483. mddev->sync_speed_max ? "local": "system");
  2484. }
  2485. static ssize_t
  2486. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2487. {
  2488. int max;
  2489. char *e;
  2490. if (strncmp(buf, "system", 6)==0) {
  2491. mddev->sync_speed_max = 0;
  2492. return len;
  2493. }
  2494. max = simple_strtoul(buf, &e, 10);
  2495. if (buf == e || (*e && *e != '\n') || max <= 0)
  2496. return -EINVAL;
  2497. mddev->sync_speed_max = max;
  2498. return len;
  2499. }
  2500. static struct md_sysfs_entry md_sync_max =
  2501. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2502. static ssize_t
  2503. sync_speed_show(mddev_t *mddev, char *page)
  2504. {
  2505. unsigned long resync, dt, db;
  2506. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2507. dt = ((jiffies - mddev->resync_mark) / HZ);
  2508. if (!dt) dt++;
  2509. db = resync - (mddev->resync_mark_cnt);
  2510. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2511. }
  2512. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2513. static ssize_t
  2514. sync_completed_show(mddev_t *mddev, char *page)
  2515. {
  2516. unsigned long max_blocks, resync;
  2517. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2518. max_blocks = mddev->resync_max_sectors;
  2519. else
  2520. max_blocks = mddev->size << 1;
  2521. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2522. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2523. }
  2524. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2525. static ssize_t
  2526. suspend_lo_show(mddev_t *mddev, char *page)
  2527. {
  2528. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2529. }
  2530. static ssize_t
  2531. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2532. {
  2533. char *e;
  2534. unsigned long long new = simple_strtoull(buf, &e, 10);
  2535. if (mddev->pers->quiesce == NULL)
  2536. return -EINVAL;
  2537. if (buf == e || (*e && *e != '\n'))
  2538. return -EINVAL;
  2539. if (new >= mddev->suspend_hi ||
  2540. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2541. mddev->suspend_lo = new;
  2542. mddev->pers->quiesce(mddev, 2);
  2543. return len;
  2544. } else
  2545. return -EINVAL;
  2546. }
  2547. static struct md_sysfs_entry md_suspend_lo =
  2548. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2549. static ssize_t
  2550. suspend_hi_show(mddev_t *mddev, char *page)
  2551. {
  2552. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2553. }
  2554. static ssize_t
  2555. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2556. {
  2557. char *e;
  2558. unsigned long long new = simple_strtoull(buf, &e, 10);
  2559. if (mddev->pers->quiesce == NULL)
  2560. return -EINVAL;
  2561. if (buf == e || (*e && *e != '\n'))
  2562. return -EINVAL;
  2563. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2564. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2565. mddev->suspend_hi = new;
  2566. mddev->pers->quiesce(mddev, 1);
  2567. mddev->pers->quiesce(mddev, 0);
  2568. return len;
  2569. } else
  2570. return -EINVAL;
  2571. }
  2572. static struct md_sysfs_entry md_suspend_hi =
  2573. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2574. static ssize_t
  2575. reshape_position_show(mddev_t *mddev, char *page)
  2576. {
  2577. if (mddev->reshape_position != MaxSector)
  2578. return sprintf(page, "%llu\n",
  2579. (unsigned long long)mddev->reshape_position);
  2580. strcpy(page, "none\n");
  2581. return 5;
  2582. }
  2583. static ssize_t
  2584. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2585. {
  2586. char *e;
  2587. unsigned long long new = simple_strtoull(buf, &e, 10);
  2588. if (mddev->pers)
  2589. return -EBUSY;
  2590. if (buf == e || (*e && *e != '\n'))
  2591. return -EINVAL;
  2592. mddev->reshape_position = new;
  2593. mddev->delta_disks = 0;
  2594. mddev->new_level = mddev->level;
  2595. mddev->new_layout = mddev->layout;
  2596. mddev->new_chunk = mddev->chunk_size;
  2597. return len;
  2598. }
  2599. static struct md_sysfs_entry md_reshape_position =
  2600. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2601. reshape_position_store);
  2602. static struct attribute *md_default_attrs[] = {
  2603. &md_level.attr,
  2604. &md_layout.attr,
  2605. &md_raid_disks.attr,
  2606. &md_chunk_size.attr,
  2607. &md_size.attr,
  2608. &md_resync_start.attr,
  2609. &md_metadata.attr,
  2610. &md_new_device.attr,
  2611. &md_safe_delay.attr,
  2612. &md_array_state.attr,
  2613. &md_reshape_position.attr,
  2614. NULL,
  2615. };
  2616. static struct attribute *md_redundancy_attrs[] = {
  2617. &md_scan_mode.attr,
  2618. &md_mismatches.attr,
  2619. &md_sync_min.attr,
  2620. &md_sync_max.attr,
  2621. &md_sync_speed.attr,
  2622. &md_sync_completed.attr,
  2623. &md_suspend_lo.attr,
  2624. &md_suspend_hi.attr,
  2625. &md_bitmap.attr,
  2626. NULL,
  2627. };
  2628. static struct attribute_group md_redundancy_group = {
  2629. .name = NULL,
  2630. .attrs = md_redundancy_attrs,
  2631. };
  2632. static ssize_t
  2633. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2634. {
  2635. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2636. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2637. ssize_t rv;
  2638. if (!entry->show)
  2639. return -EIO;
  2640. rv = mddev_lock(mddev);
  2641. if (!rv) {
  2642. rv = entry->show(mddev, page);
  2643. mddev_unlock(mddev);
  2644. }
  2645. return rv;
  2646. }
  2647. static ssize_t
  2648. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2649. const char *page, size_t length)
  2650. {
  2651. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2652. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2653. ssize_t rv;
  2654. if (!entry->store)
  2655. return -EIO;
  2656. if (!capable(CAP_SYS_ADMIN))
  2657. return -EACCES;
  2658. rv = mddev_lock(mddev);
  2659. if (!rv) {
  2660. rv = entry->store(mddev, page, length);
  2661. mddev_unlock(mddev);
  2662. }
  2663. return rv;
  2664. }
  2665. static void md_free(struct kobject *ko)
  2666. {
  2667. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2668. kfree(mddev);
  2669. }
  2670. static struct sysfs_ops md_sysfs_ops = {
  2671. .show = md_attr_show,
  2672. .store = md_attr_store,
  2673. };
  2674. static struct kobj_type md_ktype = {
  2675. .release = md_free,
  2676. .sysfs_ops = &md_sysfs_ops,
  2677. .default_attrs = md_default_attrs,
  2678. };
  2679. int mdp_major = 0;
  2680. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2681. {
  2682. static DEFINE_MUTEX(disks_mutex);
  2683. mddev_t *mddev = mddev_find(dev);
  2684. struct gendisk *disk;
  2685. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2686. int shift = partitioned ? MdpMinorShift : 0;
  2687. int unit = MINOR(dev) >> shift;
  2688. if (!mddev)
  2689. return NULL;
  2690. mutex_lock(&disks_mutex);
  2691. if (mddev->gendisk) {
  2692. mutex_unlock(&disks_mutex);
  2693. mddev_put(mddev);
  2694. return NULL;
  2695. }
  2696. disk = alloc_disk(1 << shift);
  2697. if (!disk) {
  2698. mutex_unlock(&disks_mutex);
  2699. mddev_put(mddev);
  2700. return NULL;
  2701. }
  2702. disk->major = MAJOR(dev);
  2703. disk->first_minor = unit << shift;
  2704. if (partitioned)
  2705. sprintf(disk->disk_name, "md_d%d", unit);
  2706. else
  2707. sprintf(disk->disk_name, "md%d", unit);
  2708. disk->fops = &md_fops;
  2709. disk->private_data = mddev;
  2710. disk->queue = mddev->queue;
  2711. add_disk(disk);
  2712. mddev->gendisk = disk;
  2713. mutex_unlock(&disks_mutex);
  2714. mddev->kobj.parent = &disk->kobj;
  2715. mddev->kobj.k_name = NULL;
  2716. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  2717. mddev->kobj.ktype = &md_ktype;
  2718. if (kobject_register(&mddev->kobj))
  2719. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2720. disk->disk_name);
  2721. return NULL;
  2722. }
  2723. static void md_safemode_timeout(unsigned long data)
  2724. {
  2725. mddev_t *mddev = (mddev_t *) data;
  2726. mddev->safemode = 1;
  2727. md_wakeup_thread(mddev->thread);
  2728. }
  2729. static int start_dirty_degraded;
  2730. static int do_md_run(mddev_t * mddev)
  2731. {
  2732. int err;
  2733. int chunk_size;
  2734. struct list_head *tmp;
  2735. mdk_rdev_t *rdev;
  2736. struct gendisk *disk;
  2737. struct mdk_personality *pers;
  2738. char b[BDEVNAME_SIZE];
  2739. if (list_empty(&mddev->disks))
  2740. /* cannot run an array with no devices.. */
  2741. return -EINVAL;
  2742. if (mddev->pers)
  2743. return -EBUSY;
  2744. /*
  2745. * Analyze all RAID superblock(s)
  2746. */
  2747. if (!mddev->raid_disks)
  2748. analyze_sbs(mddev);
  2749. chunk_size = mddev->chunk_size;
  2750. if (chunk_size) {
  2751. if (chunk_size > MAX_CHUNK_SIZE) {
  2752. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2753. chunk_size, MAX_CHUNK_SIZE);
  2754. return -EINVAL;
  2755. }
  2756. /*
  2757. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2758. */
  2759. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2760. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2761. return -EINVAL;
  2762. }
  2763. if (chunk_size < PAGE_SIZE) {
  2764. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2765. chunk_size, PAGE_SIZE);
  2766. return -EINVAL;
  2767. }
  2768. /* devices must have minimum size of one chunk */
  2769. ITERATE_RDEV(mddev,rdev,tmp) {
  2770. if (test_bit(Faulty, &rdev->flags))
  2771. continue;
  2772. if (rdev->size < chunk_size / 1024) {
  2773. printk(KERN_WARNING
  2774. "md: Dev %s smaller than chunk_size:"
  2775. " %lluk < %dk\n",
  2776. bdevname(rdev->bdev,b),
  2777. (unsigned long long)rdev->size,
  2778. chunk_size / 1024);
  2779. return -EINVAL;
  2780. }
  2781. }
  2782. }
  2783. #ifdef CONFIG_KMOD
  2784. if (mddev->level != LEVEL_NONE)
  2785. request_module("md-level-%d", mddev->level);
  2786. else if (mddev->clevel[0])
  2787. request_module("md-%s", mddev->clevel);
  2788. #endif
  2789. /*
  2790. * Drop all container device buffers, from now on
  2791. * the only valid external interface is through the md
  2792. * device.
  2793. * Also find largest hardsector size
  2794. */
  2795. ITERATE_RDEV(mddev,rdev,tmp) {
  2796. if (test_bit(Faulty, &rdev->flags))
  2797. continue;
  2798. sync_blockdev(rdev->bdev);
  2799. invalidate_bdev(rdev->bdev);
  2800. }
  2801. md_probe(mddev->unit, NULL, NULL);
  2802. disk = mddev->gendisk;
  2803. if (!disk)
  2804. return -ENOMEM;
  2805. spin_lock(&pers_lock);
  2806. pers = find_pers(mddev->level, mddev->clevel);
  2807. if (!pers || !try_module_get(pers->owner)) {
  2808. spin_unlock(&pers_lock);
  2809. if (mddev->level != LEVEL_NONE)
  2810. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2811. mddev->level);
  2812. else
  2813. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2814. mddev->clevel);
  2815. return -EINVAL;
  2816. }
  2817. mddev->pers = pers;
  2818. spin_unlock(&pers_lock);
  2819. mddev->level = pers->level;
  2820. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2821. if (mddev->reshape_position != MaxSector &&
  2822. pers->start_reshape == NULL) {
  2823. /* This personality cannot handle reshaping... */
  2824. mddev->pers = NULL;
  2825. module_put(pers->owner);
  2826. return -EINVAL;
  2827. }
  2828. if (pers->sync_request) {
  2829. /* Warn if this is a potentially silly
  2830. * configuration.
  2831. */
  2832. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2833. mdk_rdev_t *rdev2;
  2834. struct list_head *tmp2;
  2835. int warned = 0;
  2836. ITERATE_RDEV(mddev, rdev, tmp) {
  2837. ITERATE_RDEV(mddev, rdev2, tmp2) {
  2838. if (rdev < rdev2 &&
  2839. rdev->bdev->bd_contains ==
  2840. rdev2->bdev->bd_contains) {
  2841. printk(KERN_WARNING
  2842. "%s: WARNING: %s appears to be"
  2843. " on the same physical disk as"
  2844. " %s.\n",
  2845. mdname(mddev),
  2846. bdevname(rdev->bdev,b),
  2847. bdevname(rdev2->bdev,b2));
  2848. warned = 1;
  2849. }
  2850. }
  2851. }
  2852. if (warned)
  2853. printk(KERN_WARNING
  2854. "True protection against single-disk"
  2855. " failure might be compromised.\n");
  2856. }
  2857. mddev->recovery = 0;
  2858. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2859. mddev->barriers_work = 1;
  2860. mddev->ok_start_degraded = start_dirty_degraded;
  2861. if (start_readonly)
  2862. mddev->ro = 2; /* read-only, but switch on first write */
  2863. err = mddev->pers->run(mddev);
  2864. if (!err && mddev->pers->sync_request) {
  2865. err = bitmap_create(mddev);
  2866. if (err) {
  2867. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2868. mdname(mddev), err);
  2869. mddev->pers->stop(mddev);
  2870. }
  2871. }
  2872. if (err) {
  2873. printk(KERN_ERR "md: pers->run() failed ...\n");
  2874. module_put(mddev->pers->owner);
  2875. mddev->pers = NULL;
  2876. bitmap_destroy(mddev);
  2877. return err;
  2878. }
  2879. if (mddev->pers->sync_request) {
  2880. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2881. printk(KERN_WARNING
  2882. "md: cannot register extra attributes for %s\n",
  2883. mdname(mddev));
  2884. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2885. mddev->ro = 0;
  2886. atomic_set(&mddev->writes_pending,0);
  2887. mddev->safemode = 0;
  2888. mddev->safemode_timer.function = md_safemode_timeout;
  2889. mddev->safemode_timer.data = (unsigned long) mddev;
  2890. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2891. mddev->in_sync = 1;
  2892. ITERATE_RDEV(mddev,rdev,tmp)
  2893. if (rdev->raid_disk >= 0) {
  2894. char nm[20];
  2895. sprintf(nm, "rd%d", rdev->raid_disk);
  2896. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  2897. printk("md: cannot register %s for %s\n",
  2898. nm, mdname(mddev));
  2899. }
  2900. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2901. if (mddev->flags)
  2902. md_update_sb(mddev, 0);
  2903. set_capacity(disk, mddev->array_size<<1);
  2904. /* If we call blk_queue_make_request here, it will
  2905. * re-initialise max_sectors etc which may have been
  2906. * refined inside -> run. So just set the bits we need to set.
  2907. * Most initialisation happended when we called
  2908. * blk_queue_make_request(..., md_fail_request)
  2909. * earlier.
  2910. */
  2911. mddev->queue->queuedata = mddev;
  2912. mddev->queue->make_request_fn = mddev->pers->make_request;
  2913. /* If there is a partially-recovered drive we need to
  2914. * start recovery here. If we leave it to md_check_recovery,
  2915. * it will remove the drives and not do the right thing
  2916. */
  2917. if (mddev->degraded && !mddev->sync_thread) {
  2918. struct list_head *rtmp;
  2919. int spares = 0;
  2920. ITERATE_RDEV(mddev,rdev,rtmp)
  2921. if (rdev->raid_disk >= 0 &&
  2922. !test_bit(In_sync, &rdev->flags) &&
  2923. !test_bit(Faulty, &rdev->flags))
  2924. /* complete an interrupted recovery */
  2925. spares++;
  2926. if (spares && mddev->pers->sync_request) {
  2927. mddev->recovery = 0;
  2928. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2929. mddev->sync_thread = md_register_thread(md_do_sync,
  2930. mddev,
  2931. "%s_resync");
  2932. if (!mddev->sync_thread) {
  2933. printk(KERN_ERR "%s: could not start resync"
  2934. " thread...\n",
  2935. mdname(mddev));
  2936. /* leave the spares where they are, it shouldn't hurt */
  2937. mddev->recovery = 0;
  2938. }
  2939. }
  2940. }
  2941. md_wakeup_thread(mddev->thread);
  2942. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2943. mddev->changed = 1;
  2944. md_new_event(mddev);
  2945. kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
  2946. return 0;
  2947. }
  2948. static int restart_array(mddev_t *mddev)
  2949. {
  2950. struct gendisk *disk = mddev->gendisk;
  2951. int err;
  2952. /*
  2953. * Complain if it has no devices
  2954. */
  2955. err = -ENXIO;
  2956. if (list_empty(&mddev->disks))
  2957. goto out;
  2958. if (mddev->pers) {
  2959. err = -EBUSY;
  2960. if (!mddev->ro)
  2961. goto out;
  2962. mddev->safemode = 0;
  2963. mddev->ro = 0;
  2964. set_disk_ro(disk, 0);
  2965. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2966. mdname(mddev));
  2967. /*
  2968. * Kick recovery or resync if necessary
  2969. */
  2970. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2971. md_wakeup_thread(mddev->thread);
  2972. md_wakeup_thread(mddev->sync_thread);
  2973. err = 0;
  2974. } else
  2975. err = -EINVAL;
  2976. out:
  2977. return err;
  2978. }
  2979. /* similar to deny_write_access, but accounts for our holding a reference
  2980. * to the file ourselves */
  2981. static int deny_bitmap_write_access(struct file * file)
  2982. {
  2983. struct inode *inode = file->f_mapping->host;
  2984. spin_lock(&inode->i_lock);
  2985. if (atomic_read(&inode->i_writecount) > 1) {
  2986. spin_unlock(&inode->i_lock);
  2987. return -ETXTBSY;
  2988. }
  2989. atomic_set(&inode->i_writecount, -1);
  2990. spin_unlock(&inode->i_lock);
  2991. return 0;
  2992. }
  2993. static void restore_bitmap_write_access(struct file *file)
  2994. {
  2995. struct inode *inode = file->f_mapping->host;
  2996. spin_lock(&inode->i_lock);
  2997. atomic_set(&inode->i_writecount, 1);
  2998. spin_unlock(&inode->i_lock);
  2999. }
  3000. /* mode:
  3001. * 0 - completely stop and dis-assemble array
  3002. * 1 - switch to readonly
  3003. * 2 - stop but do not disassemble array
  3004. */
  3005. static int do_md_stop(mddev_t * mddev, int mode)
  3006. {
  3007. int err = 0;
  3008. struct gendisk *disk = mddev->gendisk;
  3009. if (mddev->pers) {
  3010. if (atomic_read(&mddev->active)>2) {
  3011. printk("md: %s still in use.\n",mdname(mddev));
  3012. return -EBUSY;
  3013. }
  3014. if (mddev->sync_thread) {
  3015. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3016. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3017. md_unregister_thread(mddev->sync_thread);
  3018. mddev->sync_thread = NULL;
  3019. }
  3020. del_timer_sync(&mddev->safemode_timer);
  3021. invalidate_partition(disk, 0);
  3022. switch(mode) {
  3023. case 1: /* readonly */
  3024. err = -ENXIO;
  3025. if (mddev->ro==1)
  3026. goto out;
  3027. mddev->ro = 1;
  3028. break;
  3029. case 0: /* disassemble */
  3030. case 2: /* stop */
  3031. bitmap_flush(mddev);
  3032. md_super_wait(mddev);
  3033. if (mddev->ro)
  3034. set_disk_ro(disk, 0);
  3035. blk_queue_make_request(mddev->queue, md_fail_request);
  3036. mddev->pers->stop(mddev);
  3037. mddev->queue->merge_bvec_fn = NULL;
  3038. mddev->queue->unplug_fn = NULL;
  3039. mddev->queue->issue_flush_fn = NULL;
  3040. mddev->queue->backing_dev_info.congested_fn = NULL;
  3041. if (mddev->pers->sync_request)
  3042. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3043. module_put(mddev->pers->owner);
  3044. mddev->pers = NULL;
  3045. set_capacity(disk, 0);
  3046. mddev->changed = 1;
  3047. if (mddev->ro)
  3048. mddev->ro = 0;
  3049. }
  3050. if (!mddev->in_sync || mddev->flags) {
  3051. /* mark array as shutdown cleanly */
  3052. mddev->in_sync = 1;
  3053. md_update_sb(mddev, 1);
  3054. }
  3055. if (mode == 1)
  3056. set_disk_ro(disk, 1);
  3057. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3058. }
  3059. /*
  3060. * Free resources if final stop
  3061. */
  3062. if (mode == 0) {
  3063. mdk_rdev_t *rdev;
  3064. struct list_head *tmp;
  3065. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3066. bitmap_destroy(mddev);
  3067. if (mddev->bitmap_file) {
  3068. restore_bitmap_write_access(mddev->bitmap_file);
  3069. fput(mddev->bitmap_file);
  3070. mddev->bitmap_file = NULL;
  3071. }
  3072. mddev->bitmap_offset = 0;
  3073. ITERATE_RDEV(mddev,rdev,tmp)
  3074. if (rdev->raid_disk >= 0) {
  3075. char nm[20];
  3076. sprintf(nm, "rd%d", rdev->raid_disk);
  3077. sysfs_remove_link(&mddev->kobj, nm);
  3078. }
  3079. /* make sure all delayed_delete calls have finished */
  3080. flush_scheduled_work();
  3081. export_array(mddev);
  3082. mddev->array_size = 0;
  3083. mddev->size = 0;
  3084. mddev->raid_disks = 0;
  3085. mddev->recovery_cp = 0;
  3086. mddev->reshape_position = MaxSector;
  3087. } else if (mddev->pers)
  3088. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3089. mdname(mddev));
  3090. err = 0;
  3091. md_new_event(mddev);
  3092. out:
  3093. return err;
  3094. }
  3095. #ifndef MODULE
  3096. static void autorun_array(mddev_t *mddev)
  3097. {
  3098. mdk_rdev_t *rdev;
  3099. struct list_head *tmp;
  3100. int err;
  3101. if (list_empty(&mddev->disks))
  3102. return;
  3103. printk(KERN_INFO "md: running: ");
  3104. ITERATE_RDEV(mddev,rdev,tmp) {
  3105. char b[BDEVNAME_SIZE];
  3106. printk("<%s>", bdevname(rdev->bdev,b));
  3107. }
  3108. printk("\n");
  3109. err = do_md_run (mddev);
  3110. if (err) {
  3111. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3112. do_md_stop (mddev, 0);
  3113. }
  3114. }
  3115. /*
  3116. * lets try to run arrays based on all disks that have arrived
  3117. * until now. (those are in pending_raid_disks)
  3118. *
  3119. * the method: pick the first pending disk, collect all disks with
  3120. * the same UUID, remove all from the pending list and put them into
  3121. * the 'same_array' list. Then order this list based on superblock
  3122. * update time (freshest comes first), kick out 'old' disks and
  3123. * compare superblocks. If everything's fine then run it.
  3124. *
  3125. * If "unit" is allocated, then bump its reference count
  3126. */
  3127. static void autorun_devices(int part)
  3128. {
  3129. struct list_head *tmp;
  3130. mdk_rdev_t *rdev0, *rdev;
  3131. mddev_t *mddev;
  3132. char b[BDEVNAME_SIZE];
  3133. printk(KERN_INFO "md: autorun ...\n");
  3134. while (!list_empty(&pending_raid_disks)) {
  3135. int unit;
  3136. dev_t dev;
  3137. LIST_HEAD(candidates);
  3138. rdev0 = list_entry(pending_raid_disks.next,
  3139. mdk_rdev_t, same_set);
  3140. printk(KERN_INFO "md: considering %s ...\n",
  3141. bdevname(rdev0->bdev,b));
  3142. INIT_LIST_HEAD(&candidates);
  3143. ITERATE_RDEV_PENDING(rdev,tmp)
  3144. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3145. printk(KERN_INFO "md: adding %s ...\n",
  3146. bdevname(rdev->bdev,b));
  3147. list_move(&rdev->same_set, &candidates);
  3148. }
  3149. /*
  3150. * now we have a set of devices, with all of them having
  3151. * mostly sane superblocks. It's time to allocate the
  3152. * mddev.
  3153. */
  3154. if (part) {
  3155. dev = MKDEV(mdp_major,
  3156. rdev0->preferred_minor << MdpMinorShift);
  3157. unit = MINOR(dev) >> MdpMinorShift;
  3158. } else {
  3159. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3160. unit = MINOR(dev);
  3161. }
  3162. if (rdev0->preferred_minor != unit) {
  3163. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3164. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3165. break;
  3166. }
  3167. md_probe(dev, NULL, NULL);
  3168. mddev = mddev_find(dev);
  3169. if (!mddev) {
  3170. printk(KERN_ERR
  3171. "md: cannot allocate memory for md drive.\n");
  3172. break;
  3173. }
  3174. if (mddev_lock(mddev))
  3175. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3176. mdname(mddev));
  3177. else if (mddev->raid_disks || mddev->major_version
  3178. || !list_empty(&mddev->disks)) {
  3179. printk(KERN_WARNING
  3180. "md: %s already running, cannot run %s\n",
  3181. mdname(mddev), bdevname(rdev0->bdev,b));
  3182. mddev_unlock(mddev);
  3183. } else {
  3184. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3185. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3186. list_del_init(&rdev->same_set);
  3187. if (bind_rdev_to_array(rdev, mddev))
  3188. export_rdev(rdev);
  3189. }
  3190. autorun_array(mddev);
  3191. mddev_unlock(mddev);
  3192. }
  3193. /* on success, candidates will be empty, on error
  3194. * it won't...
  3195. */
  3196. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3197. export_rdev(rdev);
  3198. mddev_put(mddev);
  3199. }
  3200. printk(KERN_INFO "md: ... autorun DONE.\n");
  3201. }
  3202. #endif /* !MODULE */
  3203. static int get_version(void __user * arg)
  3204. {
  3205. mdu_version_t ver;
  3206. ver.major = MD_MAJOR_VERSION;
  3207. ver.minor = MD_MINOR_VERSION;
  3208. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3209. if (copy_to_user(arg, &ver, sizeof(ver)))
  3210. return -EFAULT;
  3211. return 0;
  3212. }
  3213. static int get_array_info(mddev_t * mddev, void __user * arg)
  3214. {
  3215. mdu_array_info_t info;
  3216. int nr,working,active,failed,spare;
  3217. mdk_rdev_t *rdev;
  3218. struct list_head *tmp;
  3219. nr=working=active=failed=spare=0;
  3220. ITERATE_RDEV(mddev,rdev,tmp) {
  3221. nr++;
  3222. if (test_bit(Faulty, &rdev->flags))
  3223. failed++;
  3224. else {
  3225. working++;
  3226. if (test_bit(In_sync, &rdev->flags))
  3227. active++;
  3228. else
  3229. spare++;
  3230. }
  3231. }
  3232. info.major_version = mddev->major_version;
  3233. info.minor_version = mddev->minor_version;
  3234. info.patch_version = MD_PATCHLEVEL_VERSION;
  3235. info.ctime = mddev->ctime;
  3236. info.level = mddev->level;
  3237. info.size = mddev->size;
  3238. if (info.size != mddev->size) /* overflow */
  3239. info.size = -1;
  3240. info.nr_disks = nr;
  3241. info.raid_disks = mddev->raid_disks;
  3242. info.md_minor = mddev->md_minor;
  3243. info.not_persistent= !mddev->persistent;
  3244. info.utime = mddev->utime;
  3245. info.state = 0;
  3246. if (mddev->in_sync)
  3247. info.state = (1<<MD_SB_CLEAN);
  3248. if (mddev->bitmap && mddev->bitmap_offset)
  3249. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3250. info.active_disks = active;
  3251. info.working_disks = working;
  3252. info.failed_disks = failed;
  3253. info.spare_disks = spare;
  3254. info.layout = mddev->layout;
  3255. info.chunk_size = mddev->chunk_size;
  3256. if (copy_to_user(arg, &info, sizeof(info)))
  3257. return -EFAULT;
  3258. return 0;
  3259. }
  3260. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3261. {
  3262. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3263. char *ptr, *buf = NULL;
  3264. int err = -ENOMEM;
  3265. md_allow_write(mddev);
  3266. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3267. if (!file)
  3268. goto out;
  3269. /* bitmap disabled, zero the first byte and copy out */
  3270. if (!mddev->bitmap || !mddev->bitmap->file) {
  3271. file->pathname[0] = '\0';
  3272. goto copy_out;
  3273. }
  3274. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3275. if (!buf)
  3276. goto out;
  3277. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3278. if (!ptr)
  3279. goto out;
  3280. strcpy(file->pathname, ptr);
  3281. copy_out:
  3282. err = 0;
  3283. if (copy_to_user(arg, file, sizeof(*file)))
  3284. err = -EFAULT;
  3285. out:
  3286. kfree(buf);
  3287. kfree(file);
  3288. return err;
  3289. }
  3290. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3291. {
  3292. mdu_disk_info_t info;
  3293. unsigned int nr;
  3294. mdk_rdev_t *rdev;
  3295. if (copy_from_user(&info, arg, sizeof(info)))
  3296. return -EFAULT;
  3297. nr = info.number;
  3298. rdev = find_rdev_nr(mddev, nr);
  3299. if (rdev) {
  3300. info.major = MAJOR(rdev->bdev->bd_dev);
  3301. info.minor = MINOR(rdev->bdev->bd_dev);
  3302. info.raid_disk = rdev->raid_disk;
  3303. info.state = 0;
  3304. if (test_bit(Faulty, &rdev->flags))
  3305. info.state |= (1<<MD_DISK_FAULTY);
  3306. else if (test_bit(In_sync, &rdev->flags)) {
  3307. info.state |= (1<<MD_DISK_ACTIVE);
  3308. info.state |= (1<<MD_DISK_SYNC);
  3309. }
  3310. if (test_bit(WriteMostly, &rdev->flags))
  3311. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3312. } else {
  3313. info.major = info.minor = 0;
  3314. info.raid_disk = -1;
  3315. info.state = (1<<MD_DISK_REMOVED);
  3316. }
  3317. if (copy_to_user(arg, &info, sizeof(info)))
  3318. return -EFAULT;
  3319. return 0;
  3320. }
  3321. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3322. {
  3323. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3324. mdk_rdev_t *rdev;
  3325. dev_t dev = MKDEV(info->major,info->minor);
  3326. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3327. return -EOVERFLOW;
  3328. if (!mddev->raid_disks) {
  3329. int err;
  3330. /* expecting a device which has a superblock */
  3331. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3332. if (IS_ERR(rdev)) {
  3333. printk(KERN_WARNING
  3334. "md: md_import_device returned %ld\n",
  3335. PTR_ERR(rdev));
  3336. return PTR_ERR(rdev);
  3337. }
  3338. if (!list_empty(&mddev->disks)) {
  3339. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3340. mdk_rdev_t, same_set);
  3341. int err = super_types[mddev->major_version]
  3342. .load_super(rdev, rdev0, mddev->minor_version);
  3343. if (err < 0) {
  3344. printk(KERN_WARNING
  3345. "md: %s has different UUID to %s\n",
  3346. bdevname(rdev->bdev,b),
  3347. bdevname(rdev0->bdev,b2));
  3348. export_rdev(rdev);
  3349. return -EINVAL;
  3350. }
  3351. }
  3352. err = bind_rdev_to_array(rdev, mddev);
  3353. if (err)
  3354. export_rdev(rdev);
  3355. return err;
  3356. }
  3357. /*
  3358. * add_new_disk can be used once the array is assembled
  3359. * to add "hot spares". They must already have a superblock
  3360. * written
  3361. */
  3362. if (mddev->pers) {
  3363. int err;
  3364. if (!mddev->pers->hot_add_disk) {
  3365. printk(KERN_WARNING
  3366. "%s: personality does not support diskops!\n",
  3367. mdname(mddev));
  3368. return -EINVAL;
  3369. }
  3370. if (mddev->persistent)
  3371. rdev = md_import_device(dev, mddev->major_version,
  3372. mddev->minor_version);
  3373. else
  3374. rdev = md_import_device(dev, -1, -1);
  3375. if (IS_ERR(rdev)) {
  3376. printk(KERN_WARNING
  3377. "md: md_import_device returned %ld\n",
  3378. PTR_ERR(rdev));
  3379. return PTR_ERR(rdev);
  3380. }
  3381. /* set save_raid_disk if appropriate */
  3382. if (!mddev->persistent) {
  3383. if (info->state & (1<<MD_DISK_SYNC) &&
  3384. info->raid_disk < mddev->raid_disks)
  3385. rdev->raid_disk = info->raid_disk;
  3386. else
  3387. rdev->raid_disk = -1;
  3388. } else
  3389. super_types[mddev->major_version].
  3390. validate_super(mddev, rdev);
  3391. rdev->saved_raid_disk = rdev->raid_disk;
  3392. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3393. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3394. set_bit(WriteMostly, &rdev->flags);
  3395. rdev->raid_disk = -1;
  3396. err = bind_rdev_to_array(rdev, mddev);
  3397. if (!err && !mddev->pers->hot_remove_disk) {
  3398. /* If there is hot_add_disk but no hot_remove_disk
  3399. * then added disks for geometry changes,
  3400. * and should be added immediately.
  3401. */
  3402. super_types[mddev->major_version].
  3403. validate_super(mddev, rdev);
  3404. err = mddev->pers->hot_add_disk(mddev, rdev);
  3405. if (err)
  3406. unbind_rdev_from_array(rdev);
  3407. }
  3408. if (err)
  3409. export_rdev(rdev);
  3410. md_update_sb(mddev, 1);
  3411. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3412. md_wakeup_thread(mddev->thread);
  3413. return err;
  3414. }
  3415. /* otherwise, add_new_disk is only allowed
  3416. * for major_version==0 superblocks
  3417. */
  3418. if (mddev->major_version != 0) {
  3419. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3420. mdname(mddev));
  3421. return -EINVAL;
  3422. }
  3423. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3424. int err;
  3425. rdev = md_import_device (dev, -1, 0);
  3426. if (IS_ERR(rdev)) {
  3427. printk(KERN_WARNING
  3428. "md: error, md_import_device() returned %ld\n",
  3429. PTR_ERR(rdev));
  3430. return PTR_ERR(rdev);
  3431. }
  3432. rdev->desc_nr = info->number;
  3433. if (info->raid_disk < mddev->raid_disks)
  3434. rdev->raid_disk = info->raid_disk;
  3435. else
  3436. rdev->raid_disk = -1;
  3437. rdev->flags = 0;
  3438. if (rdev->raid_disk < mddev->raid_disks)
  3439. if (info->state & (1<<MD_DISK_SYNC))
  3440. set_bit(In_sync, &rdev->flags);
  3441. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3442. set_bit(WriteMostly, &rdev->flags);
  3443. if (!mddev->persistent) {
  3444. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3445. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3446. } else
  3447. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3448. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3449. err = bind_rdev_to_array(rdev, mddev);
  3450. if (err) {
  3451. export_rdev(rdev);
  3452. return err;
  3453. }
  3454. }
  3455. return 0;
  3456. }
  3457. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3458. {
  3459. char b[BDEVNAME_SIZE];
  3460. mdk_rdev_t *rdev;
  3461. if (!mddev->pers)
  3462. return -ENODEV;
  3463. rdev = find_rdev(mddev, dev);
  3464. if (!rdev)
  3465. return -ENXIO;
  3466. if (rdev->raid_disk >= 0)
  3467. goto busy;
  3468. kick_rdev_from_array(rdev);
  3469. md_update_sb(mddev, 1);
  3470. md_new_event(mddev);
  3471. return 0;
  3472. busy:
  3473. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3474. bdevname(rdev->bdev,b), mdname(mddev));
  3475. return -EBUSY;
  3476. }
  3477. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3478. {
  3479. char b[BDEVNAME_SIZE];
  3480. int err;
  3481. unsigned int size;
  3482. mdk_rdev_t *rdev;
  3483. if (!mddev->pers)
  3484. return -ENODEV;
  3485. if (mddev->major_version != 0) {
  3486. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3487. " version-0 superblocks.\n",
  3488. mdname(mddev));
  3489. return -EINVAL;
  3490. }
  3491. if (!mddev->pers->hot_add_disk) {
  3492. printk(KERN_WARNING
  3493. "%s: personality does not support diskops!\n",
  3494. mdname(mddev));
  3495. return -EINVAL;
  3496. }
  3497. rdev = md_import_device (dev, -1, 0);
  3498. if (IS_ERR(rdev)) {
  3499. printk(KERN_WARNING
  3500. "md: error, md_import_device() returned %ld\n",
  3501. PTR_ERR(rdev));
  3502. return -EINVAL;
  3503. }
  3504. if (mddev->persistent)
  3505. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3506. else
  3507. rdev->sb_offset =
  3508. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3509. size = calc_dev_size(rdev, mddev->chunk_size);
  3510. rdev->size = size;
  3511. if (test_bit(Faulty, &rdev->flags)) {
  3512. printk(KERN_WARNING
  3513. "md: can not hot-add faulty %s disk to %s!\n",
  3514. bdevname(rdev->bdev,b), mdname(mddev));
  3515. err = -EINVAL;
  3516. goto abort_export;
  3517. }
  3518. clear_bit(In_sync, &rdev->flags);
  3519. rdev->desc_nr = -1;
  3520. rdev->saved_raid_disk = -1;
  3521. err = bind_rdev_to_array(rdev, mddev);
  3522. if (err)
  3523. goto abort_export;
  3524. /*
  3525. * The rest should better be atomic, we can have disk failures
  3526. * noticed in interrupt contexts ...
  3527. */
  3528. if (rdev->desc_nr == mddev->max_disks) {
  3529. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3530. mdname(mddev));
  3531. err = -EBUSY;
  3532. goto abort_unbind_export;
  3533. }
  3534. rdev->raid_disk = -1;
  3535. md_update_sb(mddev, 1);
  3536. /*
  3537. * Kick recovery, maybe this spare has to be added to the
  3538. * array immediately.
  3539. */
  3540. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3541. md_wakeup_thread(mddev->thread);
  3542. md_new_event(mddev);
  3543. return 0;
  3544. abort_unbind_export:
  3545. unbind_rdev_from_array(rdev);
  3546. abort_export:
  3547. export_rdev(rdev);
  3548. return err;
  3549. }
  3550. static int set_bitmap_file(mddev_t *mddev, int fd)
  3551. {
  3552. int err;
  3553. if (mddev->pers) {
  3554. if (!mddev->pers->quiesce)
  3555. return -EBUSY;
  3556. if (mddev->recovery || mddev->sync_thread)
  3557. return -EBUSY;
  3558. /* we should be able to change the bitmap.. */
  3559. }
  3560. if (fd >= 0) {
  3561. if (mddev->bitmap)
  3562. return -EEXIST; /* cannot add when bitmap is present */
  3563. mddev->bitmap_file = fget(fd);
  3564. if (mddev->bitmap_file == NULL) {
  3565. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3566. mdname(mddev));
  3567. return -EBADF;
  3568. }
  3569. err = deny_bitmap_write_access(mddev->bitmap_file);
  3570. if (err) {
  3571. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3572. mdname(mddev));
  3573. fput(mddev->bitmap_file);
  3574. mddev->bitmap_file = NULL;
  3575. return err;
  3576. }
  3577. mddev->bitmap_offset = 0; /* file overrides offset */
  3578. } else if (mddev->bitmap == NULL)
  3579. return -ENOENT; /* cannot remove what isn't there */
  3580. err = 0;
  3581. if (mddev->pers) {
  3582. mddev->pers->quiesce(mddev, 1);
  3583. if (fd >= 0)
  3584. err = bitmap_create(mddev);
  3585. if (fd < 0 || err) {
  3586. bitmap_destroy(mddev);
  3587. fd = -1; /* make sure to put the file */
  3588. }
  3589. mddev->pers->quiesce(mddev, 0);
  3590. }
  3591. if (fd < 0) {
  3592. if (mddev->bitmap_file) {
  3593. restore_bitmap_write_access(mddev->bitmap_file);
  3594. fput(mddev->bitmap_file);
  3595. }
  3596. mddev->bitmap_file = NULL;
  3597. }
  3598. return err;
  3599. }
  3600. /*
  3601. * set_array_info is used two different ways
  3602. * The original usage is when creating a new array.
  3603. * In this usage, raid_disks is > 0 and it together with
  3604. * level, size, not_persistent,layout,chunksize determine the
  3605. * shape of the array.
  3606. * This will always create an array with a type-0.90.0 superblock.
  3607. * The newer usage is when assembling an array.
  3608. * In this case raid_disks will be 0, and the major_version field is
  3609. * use to determine which style super-blocks are to be found on the devices.
  3610. * The minor and patch _version numbers are also kept incase the
  3611. * super_block handler wishes to interpret them.
  3612. */
  3613. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3614. {
  3615. if (info->raid_disks == 0) {
  3616. /* just setting version number for superblock loading */
  3617. if (info->major_version < 0 ||
  3618. info->major_version >= ARRAY_SIZE(super_types) ||
  3619. super_types[info->major_version].name == NULL) {
  3620. /* maybe try to auto-load a module? */
  3621. printk(KERN_INFO
  3622. "md: superblock version %d not known\n",
  3623. info->major_version);
  3624. return -EINVAL;
  3625. }
  3626. mddev->major_version = info->major_version;
  3627. mddev->minor_version = info->minor_version;
  3628. mddev->patch_version = info->patch_version;
  3629. mddev->persistent = !info->not_persistent;
  3630. return 0;
  3631. }
  3632. mddev->major_version = MD_MAJOR_VERSION;
  3633. mddev->minor_version = MD_MINOR_VERSION;
  3634. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3635. mddev->ctime = get_seconds();
  3636. mddev->level = info->level;
  3637. mddev->clevel[0] = 0;
  3638. mddev->size = info->size;
  3639. mddev->raid_disks = info->raid_disks;
  3640. /* don't set md_minor, it is determined by which /dev/md* was
  3641. * openned
  3642. */
  3643. if (info->state & (1<<MD_SB_CLEAN))
  3644. mddev->recovery_cp = MaxSector;
  3645. else
  3646. mddev->recovery_cp = 0;
  3647. mddev->persistent = ! info->not_persistent;
  3648. mddev->layout = info->layout;
  3649. mddev->chunk_size = info->chunk_size;
  3650. mddev->max_disks = MD_SB_DISKS;
  3651. mddev->flags = 0;
  3652. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3653. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3654. mddev->bitmap_offset = 0;
  3655. mddev->reshape_position = MaxSector;
  3656. /*
  3657. * Generate a 128 bit UUID
  3658. */
  3659. get_random_bytes(mddev->uuid, 16);
  3660. mddev->new_level = mddev->level;
  3661. mddev->new_chunk = mddev->chunk_size;
  3662. mddev->new_layout = mddev->layout;
  3663. mddev->delta_disks = 0;
  3664. return 0;
  3665. }
  3666. static int update_size(mddev_t *mddev, unsigned long size)
  3667. {
  3668. mdk_rdev_t * rdev;
  3669. int rv;
  3670. struct list_head *tmp;
  3671. int fit = (size == 0);
  3672. if (mddev->pers->resize == NULL)
  3673. return -EINVAL;
  3674. /* The "size" is the amount of each device that is used.
  3675. * This can only make sense for arrays with redundancy.
  3676. * linear and raid0 always use whatever space is available
  3677. * We can only consider changing the size if no resync
  3678. * or reconstruction is happening, and if the new size
  3679. * is acceptable. It must fit before the sb_offset or,
  3680. * if that is <data_offset, it must fit before the
  3681. * size of each device.
  3682. * If size is zero, we find the largest size that fits.
  3683. */
  3684. if (mddev->sync_thread)
  3685. return -EBUSY;
  3686. ITERATE_RDEV(mddev,rdev,tmp) {
  3687. sector_t avail;
  3688. avail = rdev->size * 2;
  3689. if (fit && (size == 0 || size > avail/2))
  3690. size = avail/2;
  3691. if (avail < ((sector_t)size << 1))
  3692. return -ENOSPC;
  3693. }
  3694. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3695. if (!rv) {
  3696. struct block_device *bdev;
  3697. bdev = bdget_disk(mddev->gendisk, 0);
  3698. if (bdev) {
  3699. mutex_lock(&bdev->bd_inode->i_mutex);
  3700. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3701. mutex_unlock(&bdev->bd_inode->i_mutex);
  3702. bdput(bdev);
  3703. }
  3704. }
  3705. return rv;
  3706. }
  3707. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3708. {
  3709. int rv;
  3710. /* change the number of raid disks */
  3711. if (mddev->pers->check_reshape == NULL)
  3712. return -EINVAL;
  3713. if (raid_disks <= 0 ||
  3714. raid_disks >= mddev->max_disks)
  3715. return -EINVAL;
  3716. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3717. return -EBUSY;
  3718. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3719. rv = mddev->pers->check_reshape(mddev);
  3720. return rv;
  3721. }
  3722. /*
  3723. * update_array_info is used to change the configuration of an
  3724. * on-line array.
  3725. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3726. * fields in the info are checked against the array.
  3727. * Any differences that cannot be handled will cause an error.
  3728. * Normally, only one change can be managed at a time.
  3729. */
  3730. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3731. {
  3732. int rv = 0;
  3733. int cnt = 0;
  3734. int state = 0;
  3735. /* calculate expected state,ignoring low bits */
  3736. if (mddev->bitmap && mddev->bitmap_offset)
  3737. state |= (1 << MD_SB_BITMAP_PRESENT);
  3738. if (mddev->major_version != info->major_version ||
  3739. mddev->minor_version != info->minor_version ||
  3740. /* mddev->patch_version != info->patch_version || */
  3741. mddev->ctime != info->ctime ||
  3742. mddev->level != info->level ||
  3743. /* mddev->layout != info->layout || */
  3744. !mddev->persistent != info->not_persistent||
  3745. mddev->chunk_size != info->chunk_size ||
  3746. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3747. ((state^info->state) & 0xfffffe00)
  3748. )
  3749. return -EINVAL;
  3750. /* Check there is only one change */
  3751. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3752. if (mddev->raid_disks != info->raid_disks) cnt++;
  3753. if (mddev->layout != info->layout) cnt++;
  3754. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3755. if (cnt == 0) return 0;
  3756. if (cnt > 1) return -EINVAL;
  3757. if (mddev->layout != info->layout) {
  3758. /* Change layout
  3759. * we don't need to do anything at the md level, the
  3760. * personality will take care of it all.
  3761. */
  3762. if (mddev->pers->reconfig == NULL)
  3763. return -EINVAL;
  3764. else
  3765. return mddev->pers->reconfig(mddev, info->layout, -1);
  3766. }
  3767. if (info->size >= 0 && mddev->size != info->size)
  3768. rv = update_size(mddev, info->size);
  3769. if (mddev->raid_disks != info->raid_disks)
  3770. rv = update_raid_disks(mddev, info->raid_disks);
  3771. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3772. if (mddev->pers->quiesce == NULL)
  3773. return -EINVAL;
  3774. if (mddev->recovery || mddev->sync_thread)
  3775. return -EBUSY;
  3776. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3777. /* add the bitmap */
  3778. if (mddev->bitmap)
  3779. return -EEXIST;
  3780. if (mddev->default_bitmap_offset == 0)
  3781. return -EINVAL;
  3782. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3783. mddev->pers->quiesce(mddev, 1);
  3784. rv = bitmap_create(mddev);
  3785. if (rv)
  3786. bitmap_destroy(mddev);
  3787. mddev->pers->quiesce(mddev, 0);
  3788. } else {
  3789. /* remove the bitmap */
  3790. if (!mddev->bitmap)
  3791. return -ENOENT;
  3792. if (mddev->bitmap->file)
  3793. return -EINVAL;
  3794. mddev->pers->quiesce(mddev, 1);
  3795. bitmap_destroy(mddev);
  3796. mddev->pers->quiesce(mddev, 0);
  3797. mddev->bitmap_offset = 0;
  3798. }
  3799. }
  3800. md_update_sb(mddev, 1);
  3801. return rv;
  3802. }
  3803. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3804. {
  3805. mdk_rdev_t *rdev;
  3806. if (mddev->pers == NULL)
  3807. return -ENODEV;
  3808. rdev = find_rdev(mddev, dev);
  3809. if (!rdev)
  3810. return -ENODEV;
  3811. md_error(mddev, rdev);
  3812. return 0;
  3813. }
  3814. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3815. {
  3816. mddev_t *mddev = bdev->bd_disk->private_data;
  3817. geo->heads = 2;
  3818. geo->sectors = 4;
  3819. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3820. return 0;
  3821. }
  3822. static int md_ioctl(struct inode *inode, struct file *file,
  3823. unsigned int cmd, unsigned long arg)
  3824. {
  3825. int err = 0;
  3826. void __user *argp = (void __user *)arg;
  3827. mddev_t *mddev = NULL;
  3828. if (!capable(CAP_SYS_ADMIN))
  3829. return -EACCES;
  3830. /*
  3831. * Commands dealing with the RAID driver but not any
  3832. * particular array:
  3833. */
  3834. switch (cmd)
  3835. {
  3836. case RAID_VERSION:
  3837. err = get_version(argp);
  3838. goto done;
  3839. case PRINT_RAID_DEBUG:
  3840. err = 0;
  3841. md_print_devices();
  3842. goto done;
  3843. #ifndef MODULE
  3844. case RAID_AUTORUN:
  3845. err = 0;
  3846. autostart_arrays(arg);
  3847. goto done;
  3848. #endif
  3849. default:;
  3850. }
  3851. /*
  3852. * Commands creating/starting a new array:
  3853. */
  3854. mddev = inode->i_bdev->bd_disk->private_data;
  3855. if (!mddev) {
  3856. BUG();
  3857. goto abort;
  3858. }
  3859. err = mddev_lock(mddev);
  3860. if (err) {
  3861. printk(KERN_INFO
  3862. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3863. err, cmd);
  3864. goto abort;
  3865. }
  3866. switch (cmd)
  3867. {
  3868. case SET_ARRAY_INFO:
  3869. {
  3870. mdu_array_info_t info;
  3871. if (!arg)
  3872. memset(&info, 0, sizeof(info));
  3873. else if (copy_from_user(&info, argp, sizeof(info))) {
  3874. err = -EFAULT;
  3875. goto abort_unlock;
  3876. }
  3877. if (mddev->pers) {
  3878. err = update_array_info(mddev, &info);
  3879. if (err) {
  3880. printk(KERN_WARNING "md: couldn't update"
  3881. " array info. %d\n", err);
  3882. goto abort_unlock;
  3883. }
  3884. goto done_unlock;
  3885. }
  3886. if (!list_empty(&mddev->disks)) {
  3887. printk(KERN_WARNING
  3888. "md: array %s already has disks!\n",
  3889. mdname(mddev));
  3890. err = -EBUSY;
  3891. goto abort_unlock;
  3892. }
  3893. if (mddev->raid_disks) {
  3894. printk(KERN_WARNING
  3895. "md: array %s already initialised!\n",
  3896. mdname(mddev));
  3897. err = -EBUSY;
  3898. goto abort_unlock;
  3899. }
  3900. err = set_array_info(mddev, &info);
  3901. if (err) {
  3902. printk(KERN_WARNING "md: couldn't set"
  3903. " array info. %d\n", err);
  3904. goto abort_unlock;
  3905. }
  3906. }
  3907. goto done_unlock;
  3908. default:;
  3909. }
  3910. /*
  3911. * Commands querying/configuring an existing array:
  3912. */
  3913. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3914. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  3915. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3916. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  3917. && cmd != GET_BITMAP_FILE) {
  3918. err = -ENODEV;
  3919. goto abort_unlock;
  3920. }
  3921. /*
  3922. * Commands even a read-only array can execute:
  3923. */
  3924. switch (cmd)
  3925. {
  3926. case GET_ARRAY_INFO:
  3927. err = get_array_info(mddev, argp);
  3928. goto done_unlock;
  3929. case GET_BITMAP_FILE:
  3930. err = get_bitmap_file(mddev, argp);
  3931. goto done_unlock;
  3932. case GET_DISK_INFO:
  3933. err = get_disk_info(mddev, argp);
  3934. goto done_unlock;
  3935. case RESTART_ARRAY_RW:
  3936. err = restart_array(mddev);
  3937. goto done_unlock;
  3938. case STOP_ARRAY:
  3939. err = do_md_stop (mddev, 0);
  3940. goto done_unlock;
  3941. case STOP_ARRAY_RO:
  3942. err = do_md_stop (mddev, 1);
  3943. goto done_unlock;
  3944. /*
  3945. * We have a problem here : there is no easy way to give a CHS
  3946. * virtual geometry. We currently pretend that we have a 2 heads
  3947. * 4 sectors (with a BIG number of cylinders...). This drives
  3948. * dosfs just mad... ;-)
  3949. */
  3950. }
  3951. /*
  3952. * The remaining ioctls are changing the state of the
  3953. * superblock, so we do not allow them on read-only arrays.
  3954. * However non-MD ioctls (e.g. get-size) will still come through
  3955. * here and hit the 'default' below, so only disallow
  3956. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3957. */
  3958. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3959. mddev->ro && mddev->pers) {
  3960. if (mddev->ro == 2) {
  3961. mddev->ro = 0;
  3962. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3963. md_wakeup_thread(mddev->thread);
  3964. } else {
  3965. err = -EROFS;
  3966. goto abort_unlock;
  3967. }
  3968. }
  3969. switch (cmd)
  3970. {
  3971. case ADD_NEW_DISK:
  3972. {
  3973. mdu_disk_info_t info;
  3974. if (copy_from_user(&info, argp, sizeof(info)))
  3975. err = -EFAULT;
  3976. else
  3977. err = add_new_disk(mddev, &info);
  3978. goto done_unlock;
  3979. }
  3980. case HOT_REMOVE_DISK:
  3981. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3982. goto done_unlock;
  3983. case HOT_ADD_DISK:
  3984. err = hot_add_disk(mddev, new_decode_dev(arg));
  3985. goto done_unlock;
  3986. case SET_DISK_FAULTY:
  3987. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3988. goto done_unlock;
  3989. case RUN_ARRAY:
  3990. err = do_md_run (mddev);
  3991. goto done_unlock;
  3992. case SET_BITMAP_FILE:
  3993. err = set_bitmap_file(mddev, (int)arg);
  3994. goto done_unlock;
  3995. default:
  3996. err = -EINVAL;
  3997. goto abort_unlock;
  3998. }
  3999. done_unlock:
  4000. abort_unlock:
  4001. mddev_unlock(mddev);
  4002. return err;
  4003. done:
  4004. if (err)
  4005. MD_BUG();
  4006. abort:
  4007. return err;
  4008. }
  4009. static int md_open(struct inode *inode, struct file *file)
  4010. {
  4011. /*
  4012. * Succeed if we can lock the mddev, which confirms that
  4013. * it isn't being stopped right now.
  4014. */
  4015. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4016. int err;
  4017. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4018. goto out;
  4019. err = 0;
  4020. mddev_get(mddev);
  4021. mddev_unlock(mddev);
  4022. check_disk_change(inode->i_bdev);
  4023. out:
  4024. return err;
  4025. }
  4026. static int md_release(struct inode *inode, struct file * file)
  4027. {
  4028. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4029. BUG_ON(!mddev);
  4030. mddev_put(mddev);
  4031. return 0;
  4032. }
  4033. static int md_media_changed(struct gendisk *disk)
  4034. {
  4035. mddev_t *mddev = disk->private_data;
  4036. return mddev->changed;
  4037. }
  4038. static int md_revalidate(struct gendisk *disk)
  4039. {
  4040. mddev_t *mddev = disk->private_data;
  4041. mddev->changed = 0;
  4042. return 0;
  4043. }
  4044. static struct block_device_operations md_fops =
  4045. {
  4046. .owner = THIS_MODULE,
  4047. .open = md_open,
  4048. .release = md_release,
  4049. .ioctl = md_ioctl,
  4050. .getgeo = md_getgeo,
  4051. .media_changed = md_media_changed,
  4052. .revalidate_disk= md_revalidate,
  4053. };
  4054. static int md_thread(void * arg)
  4055. {
  4056. mdk_thread_t *thread = arg;
  4057. /*
  4058. * md_thread is a 'system-thread', it's priority should be very
  4059. * high. We avoid resource deadlocks individually in each
  4060. * raid personality. (RAID5 does preallocation) We also use RR and
  4061. * the very same RT priority as kswapd, thus we will never get
  4062. * into a priority inversion deadlock.
  4063. *
  4064. * we definitely have to have equal or higher priority than
  4065. * bdflush, otherwise bdflush will deadlock if there are too
  4066. * many dirty RAID5 blocks.
  4067. */
  4068. allow_signal(SIGKILL);
  4069. while (!kthread_should_stop()) {
  4070. /* We need to wait INTERRUPTIBLE so that
  4071. * we don't add to the load-average.
  4072. * That means we need to be sure no signals are
  4073. * pending
  4074. */
  4075. if (signal_pending(current))
  4076. flush_signals(current);
  4077. wait_event_interruptible_timeout
  4078. (thread->wqueue,
  4079. test_bit(THREAD_WAKEUP, &thread->flags)
  4080. || kthread_should_stop(),
  4081. thread->timeout);
  4082. clear_bit(THREAD_WAKEUP, &thread->flags);
  4083. thread->run(thread->mddev);
  4084. }
  4085. return 0;
  4086. }
  4087. void md_wakeup_thread(mdk_thread_t *thread)
  4088. {
  4089. if (thread) {
  4090. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4091. set_bit(THREAD_WAKEUP, &thread->flags);
  4092. wake_up(&thread->wqueue);
  4093. }
  4094. }
  4095. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4096. const char *name)
  4097. {
  4098. mdk_thread_t *thread;
  4099. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4100. if (!thread)
  4101. return NULL;
  4102. init_waitqueue_head(&thread->wqueue);
  4103. thread->run = run;
  4104. thread->mddev = mddev;
  4105. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4106. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4107. if (IS_ERR(thread->tsk)) {
  4108. kfree(thread);
  4109. return NULL;
  4110. }
  4111. return thread;
  4112. }
  4113. void md_unregister_thread(mdk_thread_t *thread)
  4114. {
  4115. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4116. kthread_stop(thread->tsk);
  4117. kfree(thread);
  4118. }
  4119. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4120. {
  4121. if (!mddev) {
  4122. MD_BUG();
  4123. return;
  4124. }
  4125. if (!rdev || test_bit(Faulty, &rdev->flags))
  4126. return;
  4127. /*
  4128. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4129. mdname(mddev),
  4130. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4131. __builtin_return_address(0),__builtin_return_address(1),
  4132. __builtin_return_address(2),__builtin_return_address(3));
  4133. */
  4134. if (!mddev->pers)
  4135. return;
  4136. if (!mddev->pers->error_handler)
  4137. return;
  4138. mddev->pers->error_handler(mddev,rdev);
  4139. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4140. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4141. md_wakeup_thread(mddev->thread);
  4142. md_new_event_inintr(mddev);
  4143. }
  4144. /* seq_file implementation /proc/mdstat */
  4145. static void status_unused(struct seq_file *seq)
  4146. {
  4147. int i = 0;
  4148. mdk_rdev_t *rdev;
  4149. struct list_head *tmp;
  4150. seq_printf(seq, "unused devices: ");
  4151. ITERATE_RDEV_PENDING(rdev,tmp) {
  4152. char b[BDEVNAME_SIZE];
  4153. i++;
  4154. seq_printf(seq, "%s ",
  4155. bdevname(rdev->bdev,b));
  4156. }
  4157. if (!i)
  4158. seq_printf(seq, "<none>");
  4159. seq_printf(seq, "\n");
  4160. }
  4161. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4162. {
  4163. sector_t max_blocks, resync, res;
  4164. unsigned long dt, db, rt;
  4165. int scale;
  4166. unsigned int per_milli;
  4167. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4168. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4169. max_blocks = mddev->resync_max_sectors >> 1;
  4170. else
  4171. max_blocks = mddev->size;
  4172. /*
  4173. * Should not happen.
  4174. */
  4175. if (!max_blocks) {
  4176. MD_BUG();
  4177. return;
  4178. }
  4179. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4180. * in a sector_t, and (max_blocks>>scale) will fit in a
  4181. * u32, as those are the requirements for sector_div.
  4182. * Thus 'scale' must be at least 10
  4183. */
  4184. scale = 10;
  4185. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4186. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4187. scale++;
  4188. }
  4189. res = (resync>>scale)*1000;
  4190. sector_div(res, (u32)((max_blocks>>scale)+1));
  4191. per_milli = res;
  4192. {
  4193. int i, x = per_milli/50, y = 20-x;
  4194. seq_printf(seq, "[");
  4195. for (i = 0; i < x; i++)
  4196. seq_printf(seq, "=");
  4197. seq_printf(seq, ">");
  4198. for (i = 0; i < y; i++)
  4199. seq_printf(seq, ".");
  4200. seq_printf(seq, "] ");
  4201. }
  4202. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4203. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4204. "reshape" :
  4205. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4206. "check" :
  4207. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4208. "resync" : "recovery"))),
  4209. per_milli/10, per_milli % 10,
  4210. (unsigned long long) resync,
  4211. (unsigned long long) max_blocks);
  4212. /*
  4213. * We do not want to overflow, so the order of operands and
  4214. * the * 100 / 100 trick are important. We do a +1 to be
  4215. * safe against division by zero. We only estimate anyway.
  4216. *
  4217. * dt: time from mark until now
  4218. * db: blocks written from mark until now
  4219. * rt: remaining time
  4220. */
  4221. dt = ((jiffies - mddev->resync_mark) / HZ);
  4222. if (!dt) dt++;
  4223. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4224. - mddev->resync_mark_cnt;
  4225. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4226. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4227. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4228. }
  4229. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4230. {
  4231. struct list_head *tmp;
  4232. loff_t l = *pos;
  4233. mddev_t *mddev;
  4234. if (l >= 0x10000)
  4235. return NULL;
  4236. if (!l--)
  4237. /* header */
  4238. return (void*)1;
  4239. spin_lock(&all_mddevs_lock);
  4240. list_for_each(tmp,&all_mddevs)
  4241. if (!l--) {
  4242. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4243. mddev_get(mddev);
  4244. spin_unlock(&all_mddevs_lock);
  4245. return mddev;
  4246. }
  4247. spin_unlock(&all_mddevs_lock);
  4248. if (!l--)
  4249. return (void*)2;/* tail */
  4250. return NULL;
  4251. }
  4252. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4253. {
  4254. struct list_head *tmp;
  4255. mddev_t *next_mddev, *mddev = v;
  4256. ++*pos;
  4257. if (v == (void*)2)
  4258. return NULL;
  4259. spin_lock(&all_mddevs_lock);
  4260. if (v == (void*)1)
  4261. tmp = all_mddevs.next;
  4262. else
  4263. tmp = mddev->all_mddevs.next;
  4264. if (tmp != &all_mddevs)
  4265. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4266. else {
  4267. next_mddev = (void*)2;
  4268. *pos = 0x10000;
  4269. }
  4270. spin_unlock(&all_mddevs_lock);
  4271. if (v != (void*)1)
  4272. mddev_put(mddev);
  4273. return next_mddev;
  4274. }
  4275. static void md_seq_stop(struct seq_file *seq, void *v)
  4276. {
  4277. mddev_t *mddev = v;
  4278. if (mddev && v != (void*)1 && v != (void*)2)
  4279. mddev_put(mddev);
  4280. }
  4281. struct mdstat_info {
  4282. int event;
  4283. };
  4284. static int md_seq_show(struct seq_file *seq, void *v)
  4285. {
  4286. mddev_t *mddev = v;
  4287. sector_t size;
  4288. struct list_head *tmp2;
  4289. mdk_rdev_t *rdev;
  4290. struct mdstat_info *mi = seq->private;
  4291. struct bitmap *bitmap;
  4292. if (v == (void*)1) {
  4293. struct mdk_personality *pers;
  4294. seq_printf(seq, "Personalities : ");
  4295. spin_lock(&pers_lock);
  4296. list_for_each_entry(pers, &pers_list, list)
  4297. seq_printf(seq, "[%s] ", pers->name);
  4298. spin_unlock(&pers_lock);
  4299. seq_printf(seq, "\n");
  4300. mi->event = atomic_read(&md_event_count);
  4301. return 0;
  4302. }
  4303. if (v == (void*)2) {
  4304. status_unused(seq);
  4305. return 0;
  4306. }
  4307. if (mddev_lock(mddev) < 0)
  4308. return -EINTR;
  4309. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4310. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4311. mddev->pers ? "" : "in");
  4312. if (mddev->pers) {
  4313. if (mddev->ro==1)
  4314. seq_printf(seq, " (read-only)");
  4315. if (mddev->ro==2)
  4316. seq_printf(seq, "(auto-read-only)");
  4317. seq_printf(seq, " %s", mddev->pers->name);
  4318. }
  4319. size = 0;
  4320. ITERATE_RDEV(mddev,rdev,tmp2) {
  4321. char b[BDEVNAME_SIZE];
  4322. seq_printf(seq, " %s[%d]",
  4323. bdevname(rdev->bdev,b), rdev->desc_nr);
  4324. if (test_bit(WriteMostly, &rdev->flags))
  4325. seq_printf(seq, "(W)");
  4326. if (test_bit(Faulty, &rdev->flags)) {
  4327. seq_printf(seq, "(F)");
  4328. continue;
  4329. } else if (rdev->raid_disk < 0)
  4330. seq_printf(seq, "(S)"); /* spare */
  4331. size += rdev->size;
  4332. }
  4333. if (!list_empty(&mddev->disks)) {
  4334. if (mddev->pers)
  4335. seq_printf(seq, "\n %llu blocks",
  4336. (unsigned long long)mddev->array_size);
  4337. else
  4338. seq_printf(seq, "\n %llu blocks",
  4339. (unsigned long long)size);
  4340. }
  4341. if (mddev->persistent) {
  4342. if (mddev->major_version != 0 ||
  4343. mddev->minor_version != 90) {
  4344. seq_printf(seq," super %d.%d",
  4345. mddev->major_version,
  4346. mddev->minor_version);
  4347. }
  4348. } else
  4349. seq_printf(seq, " super non-persistent");
  4350. if (mddev->pers) {
  4351. mddev->pers->status (seq, mddev);
  4352. seq_printf(seq, "\n ");
  4353. if (mddev->pers->sync_request) {
  4354. if (mddev->curr_resync > 2) {
  4355. status_resync (seq, mddev);
  4356. seq_printf(seq, "\n ");
  4357. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4358. seq_printf(seq, "\tresync=DELAYED\n ");
  4359. else if (mddev->recovery_cp < MaxSector)
  4360. seq_printf(seq, "\tresync=PENDING\n ");
  4361. }
  4362. } else
  4363. seq_printf(seq, "\n ");
  4364. if ((bitmap = mddev->bitmap)) {
  4365. unsigned long chunk_kb;
  4366. unsigned long flags;
  4367. spin_lock_irqsave(&bitmap->lock, flags);
  4368. chunk_kb = bitmap->chunksize >> 10;
  4369. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4370. "%lu%s chunk",
  4371. bitmap->pages - bitmap->missing_pages,
  4372. bitmap->pages,
  4373. (bitmap->pages - bitmap->missing_pages)
  4374. << (PAGE_SHIFT - 10),
  4375. chunk_kb ? chunk_kb : bitmap->chunksize,
  4376. chunk_kb ? "KB" : "B");
  4377. if (bitmap->file) {
  4378. seq_printf(seq, ", file: ");
  4379. seq_path(seq, bitmap->file->f_path.mnt,
  4380. bitmap->file->f_path.dentry," \t\n");
  4381. }
  4382. seq_printf(seq, "\n");
  4383. spin_unlock_irqrestore(&bitmap->lock, flags);
  4384. }
  4385. seq_printf(seq, "\n");
  4386. }
  4387. mddev_unlock(mddev);
  4388. return 0;
  4389. }
  4390. static struct seq_operations md_seq_ops = {
  4391. .start = md_seq_start,
  4392. .next = md_seq_next,
  4393. .stop = md_seq_stop,
  4394. .show = md_seq_show,
  4395. };
  4396. static int md_seq_open(struct inode *inode, struct file *file)
  4397. {
  4398. int error;
  4399. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4400. if (mi == NULL)
  4401. return -ENOMEM;
  4402. error = seq_open(file, &md_seq_ops);
  4403. if (error)
  4404. kfree(mi);
  4405. else {
  4406. struct seq_file *p = file->private_data;
  4407. p->private = mi;
  4408. mi->event = atomic_read(&md_event_count);
  4409. }
  4410. return error;
  4411. }
  4412. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4413. {
  4414. struct seq_file *m = filp->private_data;
  4415. struct mdstat_info *mi = m->private;
  4416. int mask;
  4417. poll_wait(filp, &md_event_waiters, wait);
  4418. /* always allow read */
  4419. mask = POLLIN | POLLRDNORM;
  4420. if (mi->event != atomic_read(&md_event_count))
  4421. mask |= POLLERR | POLLPRI;
  4422. return mask;
  4423. }
  4424. static const struct file_operations md_seq_fops = {
  4425. .owner = THIS_MODULE,
  4426. .open = md_seq_open,
  4427. .read = seq_read,
  4428. .llseek = seq_lseek,
  4429. .release = seq_release_private,
  4430. .poll = mdstat_poll,
  4431. };
  4432. int register_md_personality(struct mdk_personality *p)
  4433. {
  4434. spin_lock(&pers_lock);
  4435. list_add_tail(&p->list, &pers_list);
  4436. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4437. spin_unlock(&pers_lock);
  4438. return 0;
  4439. }
  4440. int unregister_md_personality(struct mdk_personality *p)
  4441. {
  4442. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4443. spin_lock(&pers_lock);
  4444. list_del_init(&p->list);
  4445. spin_unlock(&pers_lock);
  4446. return 0;
  4447. }
  4448. static int is_mddev_idle(mddev_t *mddev)
  4449. {
  4450. mdk_rdev_t * rdev;
  4451. struct list_head *tmp;
  4452. int idle;
  4453. unsigned long curr_events;
  4454. idle = 1;
  4455. ITERATE_RDEV(mddev,rdev,tmp) {
  4456. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4457. curr_events = disk_stat_read(disk, sectors[0]) +
  4458. disk_stat_read(disk, sectors[1]) -
  4459. atomic_read(&disk->sync_io);
  4460. /* The difference between curr_events and last_events
  4461. * will be affected by any new non-sync IO (making
  4462. * curr_events bigger) and any difference in the amount of
  4463. * in-flight syncio (making current_events bigger or smaller)
  4464. * The amount in-flight is currently limited to
  4465. * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
  4466. * which is at most 4096 sectors.
  4467. * These numbers are fairly fragile and should be made
  4468. * more robust, probably by enforcing the
  4469. * 'window size' that md_do_sync sort-of uses.
  4470. *
  4471. * Note: the following is an unsigned comparison.
  4472. */
  4473. if ((long)curr_events - (long)rdev->last_events > 4096) {
  4474. rdev->last_events = curr_events;
  4475. idle = 0;
  4476. }
  4477. }
  4478. return idle;
  4479. }
  4480. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4481. {
  4482. /* another "blocks" (512byte) blocks have been synced */
  4483. atomic_sub(blocks, &mddev->recovery_active);
  4484. wake_up(&mddev->recovery_wait);
  4485. if (!ok) {
  4486. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4487. md_wakeup_thread(mddev->thread);
  4488. // stop recovery, signal do_sync ....
  4489. }
  4490. }
  4491. /* md_write_start(mddev, bi)
  4492. * If we need to update some array metadata (e.g. 'active' flag
  4493. * in superblock) before writing, schedule a superblock update
  4494. * and wait for it to complete.
  4495. */
  4496. void md_write_start(mddev_t *mddev, struct bio *bi)
  4497. {
  4498. if (bio_data_dir(bi) != WRITE)
  4499. return;
  4500. BUG_ON(mddev->ro == 1);
  4501. if (mddev->ro == 2) {
  4502. /* need to switch to read/write */
  4503. mddev->ro = 0;
  4504. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4505. md_wakeup_thread(mddev->thread);
  4506. }
  4507. atomic_inc(&mddev->writes_pending);
  4508. if (mddev->in_sync) {
  4509. spin_lock_irq(&mddev->write_lock);
  4510. if (mddev->in_sync) {
  4511. mddev->in_sync = 0;
  4512. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4513. md_wakeup_thread(mddev->thread);
  4514. }
  4515. spin_unlock_irq(&mddev->write_lock);
  4516. }
  4517. wait_event(mddev->sb_wait, mddev->flags==0);
  4518. }
  4519. void md_write_end(mddev_t *mddev)
  4520. {
  4521. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4522. if (mddev->safemode == 2)
  4523. md_wakeup_thread(mddev->thread);
  4524. else if (mddev->safemode_delay)
  4525. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4526. }
  4527. }
  4528. /* md_allow_write(mddev)
  4529. * Calling this ensures that the array is marked 'active' so that writes
  4530. * may proceed without blocking. It is important to call this before
  4531. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4532. * Must be called with mddev_lock held.
  4533. */
  4534. void md_allow_write(mddev_t *mddev)
  4535. {
  4536. if (!mddev->pers)
  4537. return;
  4538. if (mddev->ro)
  4539. return;
  4540. spin_lock_irq(&mddev->write_lock);
  4541. if (mddev->in_sync) {
  4542. mddev->in_sync = 0;
  4543. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4544. if (mddev->safemode_delay &&
  4545. mddev->safemode == 0)
  4546. mddev->safemode = 1;
  4547. spin_unlock_irq(&mddev->write_lock);
  4548. md_update_sb(mddev, 0);
  4549. } else
  4550. spin_unlock_irq(&mddev->write_lock);
  4551. }
  4552. EXPORT_SYMBOL_GPL(md_allow_write);
  4553. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4554. #define SYNC_MARKS 10
  4555. #define SYNC_MARK_STEP (3*HZ)
  4556. void md_do_sync(mddev_t *mddev)
  4557. {
  4558. mddev_t *mddev2;
  4559. unsigned int currspeed = 0,
  4560. window;
  4561. sector_t max_sectors,j, io_sectors;
  4562. unsigned long mark[SYNC_MARKS];
  4563. sector_t mark_cnt[SYNC_MARKS];
  4564. int last_mark,m;
  4565. struct list_head *tmp;
  4566. sector_t last_check;
  4567. int skipped = 0;
  4568. struct list_head *rtmp;
  4569. mdk_rdev_t *rdev;
  4570. char *desc;
  4571. /* just incase thread restarts... */
  4572. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4573. return;
  4574. if (mddev->ro) /* never try to sync a read-only array */
  4575. return;
  4576. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4577. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4578. desc = "data-check";
  4579. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4580. desc = "requested-resync";
  4581. else
  4582. desc = "resync";
  4583. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4584. desc = "reshape";
  4585. else
  4586. desc = "recovery";
  4587. /* we overload curr_resync somewhat here.
  4588. * 0 == not engaged in resync at all
  4589. * 2 == checking that there is no conflict with another sync
  4590. * 1 == like 2, but have yielded to allow conflicting resync to
  4591. * commense
  4592. * other == active in resync - this many blocks
  4593. *
  4594. * Before starting a resync we must have set curr_resync to
  4595. * 2, and then checked that every "conflicting" array has curr_resync
  4596. * less than ours. When we find one that is the same or higher
  4597. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4598. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4599. * This will mean we have to start checking from the beginning again.
  4600. *
  4601. */
  4602. do {
  4603. mddev->curr_resync = 2;
  4604. try_again:
  4605. if (kthread_should_stop()) {
  4606. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4607. goto skip;
  4608. }
  4609. ITERATE_MDDEV(mddev2,tmp) {
  4610. if (mddev2 == mddev)
  4611. continue;
  4612. if (mddev2->curr_resync &&
  4613. match_mddev_units(mddev,mddev2)) {
  4614. DEFINE_WAIT(wq);
  4615. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4616. /* arbitrarily yield */
  4617. mddev->curr_resync = 1;
  4618. wake_up(&resync_wait);
  4619. }
  4620. if (mddev > mddev2 && mddev->curr_resync == 1)
  4621. /* no need to wait here, we can wait the next
  4622. * time 'round when curr_resync == 2
  4623. */
  4624. continue;
  4625. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4626. if (!kthread_should_stop() &&
  4627. mddev2->curr_resync >= mddev->curr_resync) {
  4628. printk(KERN_INFO "md: delaying %s of %s"
  4629. " until %s has finished (they"
  4630. " share one or more physical units)\n",
  4631. desc, mdname(mddev), mdname(mddev2));
  4632. mddev_put(mddev2);
  4633. schedule();
  4634. finish_wait(&resync_wait, &wq);
  4635. goto try_again;
  4636. }
  4637. finish_wait(&resync_wait, &wq);
  4638. }
  4639. }
  4640. } while (mddev->curr_resync < 2);
  4641. j = 0;
  4642. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4643. /* resync follows the size requested by the personality,
  4644. * which defaults to physical size, but can be virtual size
  4645. */
  4646. max_sectors = mddev->resync_max_sectors;
  4647. mddev->resync_mismatches = 0;
  4648. /* we don't use the checkpoint if there's a bitmap */
  4649. if (!mddev->bitmap &&
  4650. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4651. j = mddev->recovery_cp;
  4652. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4653. max_sectors = mddev->size << 1;
  4654. else {
  4655. /* recovery follows the physical size of devices */
  4656. max_sectors = mddev->size << 1;
  4657. j = MaxSector;
  4658. ITERATE_RDEV(mddev,rdev,rtmp)
  4659. if (rdev->raid_disk >= 0 &&
  4660. !test_bit(Faulty, &rdev->flags) &&
  4661. !test_bit(In_sync, &rdev->flags) &&
  4662. rdev->recovery_offset < j)
  4663. j = rdev->recovery_offset;
  4664. }
  4665. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4666. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4667. " %d KB/sec/disk.\n", speed_min(mddev));
  4668. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4669. "(but not more than %d KB/sec) for %s.\n",
  4670. speed_max(mddev), desc);
  4671. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4672. io_sectors = 0;
  4673. for (m = 0; m < SYNC_MARKS; m++) {
  4674. mark[m] = jiffies;
  4675. mark_cnt[m] = io_sectors;
  4676. }
  4677. last_mark = 0;
  4678. mddev->resync_mark = mark[last_mark];
  4679. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4680. /*
  4681. * Tune reconstruction:
  4682. */
  4683. window = 32*(PAGE_SIZE/512);
  4684. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4685. window/2,(unsigned long long) max_sectors/2);
  4686. atomic_set(&mddev->recovery_active, 0);
  4687. init_waitqueue_head(&mddev->recovery_wait);
  4688. last_check = 0;
  4689. if (j>2) {
  4690. printk(KERN_INFO
  4691. "md: resuming %s of %s from checkpoint.\n",
  4692. desc, mdname(mddev));
  4693. mddev->curr_resync = j;
  4694. }
  4695. while (j < max_sectors) {
  4696. sector_t sectors;
  4697. skipped = 0;
  4698. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4699. currspeed < speed_min(mddev));
  4700. if (sectors == 0) {
  4701. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4702. goto out;
  4703. }
  4704. if (!skipped) { /* actual IO requested */
  4705. io_sectors += sectors;
  4706. atomic_add(sectors, &mddev->recovery_active);
  4707. }
  4708. j += sectors;
  4709. if (j>1) mddev->curr_resync = j;
  4710. mddev->curr_mark_cnt = io_sectors;
  4711. if (last_check == 0)
  4712. /* this is the earliers that rebuilt will be
  4713. * visible in /proc/mdstat
  4714. */
  4715. md_new_event(mddev);
  4716. if (last_check + window > io_sectors || j == max_sectors)
  4717. continue;
  4718. last_check = io_sectors;
  4719. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4720. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4721. break;
  4722. repeat:
  4723. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4724. /* step marks */
  4725. int next = (last_mark+1) % SYNC_MARKS;
  4726. mddev->resync_mark = mark[next];
  4727. mddev->resync_mark_cnt = mark_cnt[next];
  4728. mark[next] = jiffies;
  4729. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4730. last_mark = next;
  4731. }
  4732. if (kthread_should_stop()) {
  4733. /*
  4734. * got a signal, exit.
  4735. */
  4736. printk(KERN_INFO
  4737. "md: md_do_sync() got signal ... exiting\n");
  4738. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4739. goto out;
  4740. }
  4741. /*
  4742. * this loop exits only if either when we are slower than
  4743. * the 'hard' speed limit, or the system was IO-idle for
  4744. * a jiffy.
  4745. * the system might be non-idle CPU-wise, but we only care
  4746. * about not overloading the IO subsystem. (things like an
  4747. * e2fsck being done on the RAID array should execute fast)
  4748. */
  4749. mddev->queue->unplug_fn(mddev->queue);
  4750. cond_resched();
  4751. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4752. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4753. if (currspeed > speed_min(mddev)) {
  4754. if ((currspeed > speed_max(mddev)) ||
  4755. !is_mddev_idle(mddev)) {
  4756. msleep(500);
  4757. goto repeat;
  4758. }
  4759. }
  4760. }
  4761. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4762. /*
  4763. * this also signals 'finished resyncing' to md_stop
  4764. */
  4765. out:
  4766. mddev->queue->unplug_fn(mddev->queue);
  4767. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4768. /* tell personality that we are finished */
  4769. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4770. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4771. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4772. mddev->curr_resync > 2) {
  4773. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4774. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4775. if (mddev->curr_resync >= mddev->recovery_cp) {
  4776. printk(KERN_INFO
  4777. "md: checkpointing %s of %s.\n",
  4778. desc, mdname(mddev));
  4779. mddev->recovery_cp = mddev->curr_resync;
  4780. }
  4781. } else
  4782. mddev->recovery_cp = MaxSector;
  4783. } else {
  4784. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4785. mddev->curr_resync = MaxSector;
  4786. ITERATE_RDEV(mddev,rdev,rtmp)
  4787. if (rdev->raid_disk >= 0 &&
  4788. !test_bit(Faulty, &rdev->flags) &&
  4789. !test_bit(In_sync, &rdev->flags) &&
  4790. rdev->recovery_offset < mddev->curr_resync)
  4791. rdev->recovery_offset = mddev->curr_resync;
  4792. }
  4793. }
  4794. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4795. skip:
  4796. mddev->curr_resync = 0;
  4797. wake_up(&resync_wait);
  4798. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4799. md_wakeup_thread(mddev->thread);
  4800. }
  4801. EXPORT_SYMBOL_GPL(md_do_sync);
  4802. static int remove_and_add_spares(mddev_t *mddev)
  4803. {
  4804. mdk_rdev_t *rdev;
  4805. struct list_head *rtmp;
  4806. int spares = 0;
  4807. ITERATE_RDEV(mddev,rdev,rtmp)
  4808. if (rdev->raid_disk >= 0 &&
  4809. (test_bit(Faulty, &rdev->flags) ||
  4810. ! test_bit(In_sync, &rdev->flags)) &&
  4811. atomic_read(&rdev->nr_pending)==0) {
  4812. if (mddev->pers->hot_remove_disk(
  4813. mddev, rdev->raid_disk)==0) {
  4814. char nm[20];
  4815. sprintf(nm,"rd%d", rdev->raid_disk);
  4816. sysfs_remove_link(&mddev->kobj, nm);
  4817. rdev->raid_disk = -1;
  4818. }
  4819. }
  4820. if (mddev->degraded) {
  4821. ITERATE_RDEV(mddev,rdev,rtmp)
  4822. if (rdev->raid_disk < 0
  4823. && !test_bit(Faulty, &rdev->flags)) {
  4824. rdev->recovery_offset = 0;
  4825. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4826. char nm[20];
  4827. sprintf(nm, "rd%d", rdev->raid_disk);
  4828. if (sysfs_create_link(&mddev->kobj,
  4829. &rdev->kobj, nm))
  4830. printk(KERN_WARNING
  4831. "md: cannot register "
  4832. "%s for %s\n",
  4833. nm, mdname(mddev));
  4834. spares++;
  4835. md_new_event(mddev);
  4836. } else
  4837. break;
  4838. }
  4839. }
  4840. return spares;
  4841. }
  4842. /*
  4843. * This routine is regularly called by all per-raid-array threads to
  4844. * deal with generic issues like resync and super-block update.
  4845. * Raid personalities that don't have a thread (linear/raid0) do not
  4846. * need this as they never do any recovery or update the superblock.
  4847. *
  4848. * It does not do any resync itself, but rather "forks" off other threads
  4849. * to do that as needed.
  4850. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4851. * "->recovery" and create a thread at ->sync_thread.
  4852. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4853. * and wakeups up this thread which will reap the thread and finish up.
  4854. * This thread also removes any faulty devices (with nr_pending == 0).
  4855. *
  4856. * The overall approach is:
  4857. * 1/ if the superblock needs updating, update it.
  4858. * 2/ If a recovery thread is running, don't do anything else.
  4859. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4860. * 4/ If there are any faulty devices, remove them.
  4861. * 5/ If array is degraded, try to add spares devices
  4862. * 6/ If array has spares or is not in-sync, start a resync thread.
  4863. */
  4864. void md_check_recovery(mddev_t *mddev)
  4865. {
  4866. mdk_rdev_t *rdev;
  4867. struct list_head *rtmp;
  4868. if (mddev->bitmap)
  4869. bitmap_daemon_work(mddev->bitmap);
  4870. if (mddev->ro)
  4871. return;
  4872. if (signal_pending(current)) {
  4873. if (mddev->pers->sync_request) {
  4874. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4875. mdname(mddev));
  4876. mddev->safemode = 2;
  4877. }
  4878. flush_signals(current);
  4879. }
  4880. if ( ! (
  4881. mddev->flags ||
  4882. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4883. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4884. (mddev->safemode == 1) ||
  4885. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4886. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4887. ))
  4888. return;
  4889. if (mddev_trylock(mddev)) {
  4890. int spares = 0;
  4891. spin_lock_irq(&mddev->write_lock);
  4892. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4893. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4894. mddev->in_sync = 1;
  4895. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4896. }
  4897. if (mddev->safemode == 1)
  4898. mddev->safemode = 0;
  4899. spin_unlock_irq(&mddev->write_lock);
  4900. if (mddev->flags)
  4901. md_update_sb(mddev, 0);
  4902. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4903. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4904. /* resync/recovery still happening */
  4905. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4906. goto unlock;
  4907. }
  4908. if (mddev->sync_thread) {
  4909. /* resync has finished, collect result */
  4910. md_unregister_thread(mddev->sync_thread);
  4911. mddev->sync_thread = NULL;
  4912. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4913. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4914. /* success...*/
  4915. /* activate any spares */
  4916. mddev->pers->spare_active(mddev);
  4917. }
  4918. md_update_sb(mddev, 1);
  4919. /* if array is no-longer degraded, then any saved_raid_disk
  4920. * information must be scrapped
  4921. */
  4922. if (!mddev->degraded)
  4923. ITERATE_RDEV(mddev,rdev,rtmp)
  4924. rdev->saved_raid_disk = -1;
  4925. mddev->recovery = 0;
  4926. /* flag recovery needed just to double check */
  4927. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4928. md_new_event(mddev);
  4929. goto unlock;
  4930. }
  4931. /* Clear some bits that don't mean anything, but
  4932. * might be left set
  4933. */
  4934. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4935. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4936. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4937. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4938. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4939. goto unlock;
  4940. /* no recovery is running.
  4941. * remove any failed drives, then
  4942. * add spares if possible.
  4943. * Spare are also removed and re-added, to allow
  4944. * the personality to fail the re-add.
  4945. */
  4946. if (mddev->reshape_position != MaxSector) {
  4947. if (mddev->pers->check_reshape(mddev) != 0)
  4948. /* Cannot proceed */
  4949. goto unlock;
  4950. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4951. } else if ((spares = remove_and_add_spares(mddev))) {
  4952. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4953. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4954. } else if (mddev->recovery_cp < MaxSector) {
  4955. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4956. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4957. /* nothing to be done ... */
  4958. goto unlock;
  4959. if (mddev->pers->sync_request) {
  4960. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4961. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4962. /* We are adding a device or devices to an array
  4963. * which has the bitmap stored on all devices.
  4964. * So make sure all bitmap pages get written
  4965. */
  4966. bitmap_write_all(mddev->bitmap);
  4967. }
  4968. mddev->sync_thread = md_register_thread(md_do_sync,
  4969. mddev,
  4970. "%s_resync");
  4971. if (!mddev->sync_thread) {
  4972. printk(KERN_ERR "%s: could not start resync"
  4973. " thread...\n",
  4974. mdname(mddev));
  4975. /* leave the spares where they are, it shouldn't hurt */
  4976. mddev->recovery = 0;
  4977. } else
  4978. md_wakeup_thread(mddev->sync_thread);
  4979. md_new_event(mddev);
  4980. }
  4981. unlock:
  4982. mddev_unlock(mddev);
  4983. }
  4984. }
  4985. static int md_notify_reboot(struct notifier_block *this,
  4986. unsigned long code, void *x)
  4987. {
  4988. struct list_head *tmp;
  4989. mddev_t *mddev;
  4990. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  4991. printk(KERN_INFO "md: stopping all md devices.\n");
  4992. ITERATE_MDDEV(mddev,tmp)
  4993. if (mddev_trylock(mddev)) {
  4994. do_md_stop (mddev, 1);
  4995. mddev_unlock(mddev);
  4996. }
  4997. /*
  4998. * certain more exotic SCSI devices are known to be
  4999. * volatile wrt too early system reboots. While the
  5000. * right place to handle this issue is the given
  5001. * driver, we do want to have a safe RAID driver ...
  5002. */
  5003. mdelay(1000*1);
  5004. }
  5005. return NOTIFY_DONE;
  5006. }
  5007. static struct notifier_block md_notifier = {
  5008. .notifier_call = md_notify_reboot,
  5009. .next = NULL,
  5010. .priority = INT_MAX, /* before any real devices */
  5011. };
  5012. static void md_geninit(void)
  5013. {
  5014. struct proc_dir_entry *p;
  5015. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5016. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5017. if (p)
  5018. p->proc_fops = &md_seq_fops;
  5019. }
  5020. static int __init md_init(void)
  5021. {
  5022. if (register_blkdev(MAJOR_NR, "md"))
  5023. return -1;
  5024. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5025. unregister_blkdev(MAJOR_NR, "md");
  5026. return -1;
  5027. }
  5028. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5029. md_probe, NULL, NULL);
  5030. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5031. md_probe, NULL, NULL);
  5032. register_reboot_notifier(&md_notifier);
  5033. raid_table_header = register_sysctl_table(raid_root_table);
  5034. md_geninit();
  5035. return (0);
  5036. }
  5037. #ifndef MODULE
  5038. /*
  5039. * Searches all registered partitions for autorun RAID arrays
  5040. * at boot time.
  5041. */
  5042. static dev_t detected_devices[128];
  5043. static int dev_cnt;
  5044. void md_autodetect_dev(dev_t dev)
  5045. {
  5046. if (dev_cnt >= 0 && dev_cnt < 127)
  5047. detected_devices[dev_cnt++] = dev;
  5048. }
  5049. static void autostart_arrays(int part)
  5050. {
  5051. mdk_rdev_t *rdev;
  5052. int i;
  5053. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5054. for (i = 0; i < dev_cnt; i++) {
  5055. dev_t dev = detected_devices[i];
  5056. rdev = md_import_device(dev,0, 0);
  5057. if (IS_ERR(rdev))
  5058. continue;
  5059. if (test_bit(Faulty, &rdev->flags)) {
  5060. MD_BUG();
  5061. continue;
  5062. }
  5063. list_add(&rdev->same_set, &pending_raid_disks);
  5064. }
  5065. dev_cnt = 0;
  5066. autorun_devices(part);
  5067. }
  5068. #endif /* !MODULE */
  5069. static __exit void md_exit(void)
  5070. {
  5071. mddev_t *mddev;
  5072. struct list_head *tmp;
  5073. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5074. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5075. unregister_blkdev(MAJOR_NR,"md");
  5076. unregister_blkdev(mdp_major, "mdp");
  5077. unregister_reboot_notifier(&md_notifier);
  5078. unregister_sysctl_table(raid_table_header);
  5079. remove_proc_entry("mdstat", NULL);
  5080. ITERATE_MDDEV(mddev,tmp) {
  5081. struct gendisk *disk = mddev->gendisk;
  5082. if (!disk)
  5083. continue;
  5084. export_array(mddev);
  5085. del_gendisk(disk);
  5086. put_disk(disk);
  5087. mddev->gendisk = NULL;
  5088. mddev_put(mddev);
  5089. }
  5090. }
  5091. subsys_initcall(md_init);
  5092. module_exit(md_exit)
  5093. static int get_ro(char *buffer, struct kernel_param *kp)
  5094. {
  5095. return sprintf(buffer, "%d", start_readonly);
  5096. }
  5097. static int set_ro(const char *val, struct kernel_param *kp)
  5098. {
  5099. char *e;
  5100. int num = simple_strtoul(val, &e, 10);
  5101. if (*val && (*e == '\0' || *e == '\n')) {
  5102. start_readonly = num;
  5103. return 0;
  5104. }
  5105. return -EINVAL;
  5106. }
  5107. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5108. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5109. EXPORT_SYMBOL(register_md_personality);
  5110. EXPORT_SYMBOL(unregister_md_personality);
  5111. EXPORT_SYMBOL(md_error);
  5112. EXPORT_SYMBOL(md_done_sync);
  5113. EXPORT_SYMBOL(md_write_start);
  5114. EXPORT_SYMBOL(md_write_end);
  5115. EXPORT_SYMBOL(md_register_thread);
  5116. EXPORT_SYMBOL(md_unregister_thread);
  5117. EXPORT_SYMBOL(md_wakeup_thread);
  5118. EXPORT_SYMBOL(md_check_recovery);
  5119. MODULE_LICENSE("GPL");
  5120. MODULE_ALIAS("md");
  5121. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);