page_alloc.c 181 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_ext.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/prefetch.h>
  56. #include <linux/mm_inline.h>
  57. #include <linux/migrate.h>
  58. #include <linux/page_ext.h>
  59. #include <linux/hugetlb.h>
  60. #include <linux/sched/rt.h>
  61. #include <linux/page_owner.h>
  62. #include <asm/sections.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/div64.h>
  65. #include "internal.h"
  66. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  67. static DEFINE_MUTEX(pcp_batch_high_lock);
  68. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  69. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  70. DEFINE_PER_CPU(int, numa_node);
  71. EXPORT_PER_CPU_SYMBOL(numa_node);
  72. #endif
  73. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  74. /*
  75. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  76. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  77. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  78. * defined in <linux/topology.h>.
  79. */
  80. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  81. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  82. int _node_numa_mem_[MAX_NUMNODES];
  83. #endif
  84. /*
  85. * Array of node states.
  86. */
  87. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  88. [N_POSSIBLE] = NODE_MASK_ALL,
  89. [N_ONLINE] = { { [0] = 1UL } },
  90. #ifndef CONFIG_NUMA
  91. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  92. #ifdef CONFIG_HIGHMEM
  93. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  94. #endif
  95. #ifdef CONFIG_MOVABLE_NODE
  96. [N_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. [N_CPU] = { { [0] = 1UL } },
  99. #endif /* NUMA */
  100. };
  101. EXPORT_SYMBOL(node_states);
  102. /* Protect totalram_pages and zone->managed_pages */
  103. static DEFINE_SPINLOCK(managed_page_count_lock);
  104. unsigned long totalram_pages __read_mostly;
  105. unsigned long totalreserve_pages __read_mostly;
  106. unsigned long totalcma_pages __read_mostly;
  107. /*
  108. * When calculating the number of globally allowed dirty pages, there
  109. * is a certain number of per-zone reserves that should not be
  110. * considered dirtyable memory. This is the sum of those reserves
  111. * over all existing zones that contribute dirtyable memory.
  112. */
  113. unsigned long dirty_balance_reserve __read_mostly;
  114. int percpu_pagelist_fraction;
  115. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  116. #ifdef CONFIG_PM_SLEEP
  117. /*
  118. * The following functions are used by the suspend/hibernate code to temporarily
  119. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  120. * while devices are suspended. To avoid races with the suspend/hibernate code,
  121. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  122. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  123. * guaranteed not to run in parallel with that modification).
  124. */
  125. static gfp_t saved_gfp_mask;
  126. void pm_restore_gfp_mask(void)
  127. {
  128. WARN_ON(!mutex_is_locked(&pm_mutex));
  129. if (saved_gfp_mask) {
  130. gfp_allowed_mask = saved_gfp_mask;
  131. saved_gfp_mask = 0;
  132. }
  133. }
  134. void pm_restrict_gfp_mask(void)
  135. {
  136. WARN_ON(!mutex_is_locked(&pm_mutex));
  137. WARN_ON(saved_gfp_mask);
  138. saved_gfp_mask = gfp_allowed_mask;
  139. gfp_allowed_mask &= ~GFP_IOFS;
  140. }
  141. bool pm_suspended_storage(void)
  142. {
  143. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  144. return false;
  145. return true;
  146. }
  147. #endif /* CONFIG_PM_SLEEP */
  148. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  149. int pageblock_order __read_mostly;
  150. #endif
  151. static void __free_pages_ok(struct page *page, unsigned int order);
  152. /*
  153. * results with 256, 32 in the lowmem_reserve sysctl:
  154. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  155. * 1G machine -> (16M dma, 784M normal, 224M high)
  156. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  157. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  158. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  159. *
  160. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  161. * don't need any ZONE_NORMAL reservation
  162. */
  163. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. 256,
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. 256,
  169. #endif
  170. #ifdef CONFIG_HIGHMEM
  171. 32,
  172. #endif
  173. 32,
  174. };
  175. EXPORT_SYMBOL(totalram_pages);
  176. static char * const zone_names[MAX_NR_ZONES] = {
  177. #ifdef CONFIG_ZONE_DMA
  178. "DMA",
  179. #endif
  180. #ifdef CONFIG_ZONE_DMA32
  181. "DMA32",
  182. #endif
  183. "Normal",
  184. #ifdef CONFIG_HIGHMEM
  185. "HighMem",
  186. #endif
  187. "Movable",
  188. };
  189. int min_free_kbytes = 1024;
  190. int user_min_free_kbytes = -1;
  191. static unsigned long __meminitdata nr_kernel_pages;
  192. static unsigned long __meminitdata nr_all_pages;
  193. static unsigned long __meminitdata dma_reserve;
  194. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  195. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  196. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  197. static unsigned long __initdata required_kernelcore;
  198. static unsigned long __initdata required_movablecore;
  199. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  200. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  201. int movable_zone;
  202. EXPORT_SYMBOL(movable_zone);
  203. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  204. #if MAX_NUMNODES > 1
  205. int nr_node_ids __read_mostly = MAX_NUMNODES;
  206. int nr_online_nodes __read_mostly = 1;
  207. EXPORT_SYMBOL(nr_node_ids);
  208. EXPORT_SYMBOL(nr_online_nodes);
  209. #endif
  210. int page_group_by_mobility_disabled __read_mostly;
  211. void set_pageblock_migratetype(struct page *page, int migratetype)
  212. {
  213. if (unlikely(page_group_by_mobility_disabled &&
  214. migratetype < MIGRATE_PCPTYPES))
  215. migratetype = MIGRATE_UNMOVABLE;
  216. set_pageblock_flags_group(page, (unsigned long)migratetype,
  217. PB_migrate, PB_migrate_end);
  218. }
  219. #ifdef CONFIG_DEBUG_VM
  220. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  221. {
  222. int ret = 0;
  223. unsigned seq;
  224. unsigned long pfn = page_to_pfn(page);
  225. unsigned long sp, start_pfn;
  226. do {
  227. seq = zone_span_seqbegin(zone);
  228. start_pfn = zone->zone_start_pfn;
  229. sp = zone->spanned_pages;
  230. if (!zone_spans_pfn(zone, pfn))
  231. ret = 1;
  232. } while (zone_span_seqretry(zone, seq));
  233. if (ret)
  234. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  235. pfn, zone_to_nid(zone), zone->name,
  236. start_pfn, start_pfn + sp);
  237. return ret;
  238. }
  239. static int page_is_consistent(struct zone *zone, struct page *page)
  240. {
  241. if (!pfn_valid_within(page_to_pfn(page)))
  242. return 0;
  243. if (zone != page_zone(page))
  244. return 0;
  245. return 1;
  246. }
  247. /*
  248. * Temporary debugging check for pages not lying within a given zone.
  249. */
  250. static int bad_range(struct zone *zone, struct page *page)
  251. {
  252. if (page_outside_zone_boundaries(zone, page))
  253. return 1;
  254. if (!page_is_consistent(zone, page))
  255. return 1;
  256. return 0;
  257. }
  258. #else
  259. static inline int bad_range(struct zone *zone, struct page *page)
  260. {
  261. return 0;
  262. }
  263. #endif
  264. static void bad_page(struct page *page, const char *reason,
  265. unsigned long bad_flags)
  266. {
  267. static unsigned long resume;
  268. static unsigned long nr_shown;
  269. static unsigned long nr_unshown;
  270. /* Don't complain about poisoned pages */
  271. if (PageHWPoison(page)) {
  272. page_mapcount_reset(page); /* remove PageBuddy */
  273. return;
  274. }
  275. /*
  276. * Allow a burst of 60 reports, then keep quiet for that minute;
  277. * or allow a steady drip of one report per second.
  278. */
  279. if (nr_shown == 60) {
  280. if (time_before(jiffies, resume)) {
  281. nr_unshown++;
  282. goto out;
  283. }
  284. if (nr_unshown) {
  285. printk(KERN_ALERT
  286. "BUG: Bad page state: %lu messages suppressed\n",
  287. nr_unshown);
  288. nr_unshown = 0;
  289. }
  290. nr_shown = 0;
  291. }
  292. if (nr_shown++ == 0)
  293. resume = jiffies + 60 * HZ;
  294. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  295. current->comm, page_to_pfn(page));
  296. dump_page_badflags(page, reason, bad_flags);
  297. print_modules();
  298. dump_stack();
  299. out:
  300. /* Leave bad fields for debug, except PageBuddy could make trouble */
  301. page_mapcount_reset(page); /* remove PageBuddy */
  302. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  303. }
  304. /*
  305. * Higher-order pages are called "compound pages". They are structured thusly:
  306. *
  307. * The first PAGE_SIZE page is called the "head page".
  308. *
  309. * The remaining PAGE_SIZE pages are called "tail pages".
  310. *
  311. * All pages have PG_compound set. All tail pages have their ->first_page
  312. * pointing at the head page.
  313. *
  314. * The first tail page's ->lru.next holds the address of the compound page's
  315. * put_page() function. Its ->lru.prev holds the order of allocation.
  316. * This usage means that zero-order pages may not be compound.
  317. */
  318. static void free_compound_page(struct page *page)
  319. {
  320. __free_pages_ok(page, compound_order(page));
  321. }
  322. void prep_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. set_compound_page_dtor(page, free_compound_page);
  327. set_compound_order(page, order);
  328. __SetPageHead(page);
  329. for (i = 1; i < nr_pages; i++) {
  330. struct page *p = page + i;
  331. set_page_count(p, 0);
  332. p->first_page = page;
  333. /* Make sure p->first_page is always valid for PageTail() */
  334. smp_wmb();
  335. __SetPageTail(p);
  336. }
  337. }
  338. static inline void prep_zero_page(struct page *page, unsigned int order,
  339. gfp_t gfp_flags)
  340. {
  341. int i;
  342. /*
  343. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  344. * and __GFP_HIGHMEM from hard or soft interrupt context.
  345. */
  346. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  347. for (i = 0; i < (1 << order); i++)
  348. clear_highpage(page + i);
  349. }
  350. #ifdef CONFIG_DEBUG_PAGEALLOC
  351. unsigned int _debug_guardpage_minorder;
  352. bool _debug_pagealloc_enabled __read_mostly;
  353. bool _debug_guardpage_enabled __read_mostly;
  354. static int __init early_debug_pagealloc(char *buf)
  355. {
  356. if (!buf)
  357. return -EINVAL;
  358. if (strcmp(buf, "on") == 0)
  359. _debug_pagealloc_enabled = true;
  360. return 0;
  361. }
  362. early_param("debug_pagealloc", early_debug_pagealloc);
  363. static bool need_debug_guardpage(void)
  364. {
  365. /* If we don't use debug_pagealloc, we don't need guard page */
  366. if (!debug_pagealloc_enabled())
  367. return false;
  368. return true;
  369. }
  370. static void init_debug_guardpage(void)
  371. {
  372. if (!debug_pagealloc_enabled())
  373. return;
  374. _debug_guardpage_enabled = true;
  375. }
  376. struct page_ext_operations debug_guardpage_ops = {
  377. .need = need_debug_guardpage,
  378. .init = init_debug_guardpage,
  379. };
  380. static int __init debug_guardpage_minorder_setup(char *buf)
  381. {
  382. unsigned long res;
  383. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  384. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  385. return 0;
  386. }
  387. _debug_guardpage_minorder = res;
  388. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  389. return 0;
  390. }
  391. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  392. static inline void set_page_guard(struct zone *zone, struct page *page,
  393. unsigned int order, int migratetype)
  394. {
  395. struct page_ext *page_ext;
  396. if (!debug_guardpage_enabled())
  397. return;
  398. page_ext = lookup_page_ext(page);
  399. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  400. INIT_LIST_HEAD(&page->lru);
  401. set_page_private(page, order);
  402. /* Guard pages are not available for any usage */
  403. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  404. }
  405. static inline void clear_page_guard(struct zone *zone, struct page *page,
  406. unsigned int order, int migratetype)
  407. {
  408. struct page_ext *page_ext;
  409. if (!debug_guardpage_enabled())
  410. return;
  411. page_ext = lookup_page_ext(page);
  412. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  413. set_page_private(page, 0);
  414. if (!is_migrate_isolate(migratetype))
  415. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  416. }
  417. #else
  418. struct page_ext_operations debug_guardpage_ops = { NULL, };
  419. static inline void set_page_guard(struct zone *zone, struct page *page,
  420. unsigned int order, int migratetype) {}
  421. static inline void clear_page_guard(struct zone *zone, struct page *page,
  422. unsigned int order, int migratetype) {}
  423. #endif
  424. static inline void set_page_order(struct page *page, unsigned int order)
  425. {
  426. set_page_private(page, order);
  427. __SetPageBuddy(page);
  428. }
  429. static inline void rmv_page_order(struct page *page)
  430. {
  431. __ClearPageBuddy(page);
  432. set_page_private(page, 0);
  433. }
  434. /*
  435. * This function checks whether a page is free && is the buddy
  436. * we can do coalesce a page and its buddy if
  437. * (a) the buddy is not in a hole &&
  438. * (b) the buddy is in the buddy system &&
  439. * (c) a page and its buddy have the same order &&
  440. * (d) a page and its buddy are in the same zone.
  441. *
  442. * For recording whether a page is in the buddy system, we set ->_mapcount
  443. * PAGE_BUDDY_MAPCOUNT_VALUE.
  444. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  445. * serialized by zone->lock.
  446. *
  447. * For recording page's order, we use page_private(page).
  448. */
  449. static inline int page_is_buddy(struct page *page, struct page *buddy,
  450. unsigned int order)
  451. {
  452. if (!pfn_valid_within(page_to_pfn(buddy)))
  453. return 0;
  454. if (page_is_guard(buddy) && page_order(buddy) == order) {
  455. if (page_zone_id(page) != page_zone_id(buddy))
  456. return 0;
  457. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  458. return 1;
  459. }
  460. if (PageBuddy(buddy) && page_order(buddy) == order) {
  461. /*
  462. * zone check is done late to avoid uselessly
  463. * calculating zone/node ids for pages that could
  464. * never merge.
  465. */
  466. if (page_zone_id(page) != page_zone_id(buddy))
  467. return 0;
  468. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  469. return 1;
  470. }
  471. return 0;
  472. }
  473. /*
  474. * Freeing function for a buddy system allocator.
  475. *
  476. * The concept of a buddy system is to maintain direct-mapped table
  477. * (containing bit values) for memory blocks of various "orders".
  478. * The bottom level table contains the map for the smallest allocatable
  479. * units of memory (here, pages), and each level above it describes
  480. * pairs of units from the levels below, hence, "buddies".
  481. * At a high level, all that happens here is marking the table entry
  482. * at the bottom level available, and propagating the changes upward
  483. * as necessary, plus some accounting needed to play nicely with other
  484. * parts of the VM system.
  485. * At each level, we keep a list of pages, which are heads of continuous
  486. * free pages of length of (1 << order) and marked with _mapcount
  487. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  488. * field.
  489. * So when we are allocating or freeing one, we can derive the state of the
  490. * other. That is, if we allocate a small block, and both were
  491. * free, the remainder of the region must be split into blocks.
  492. * If a block is freed, and its buddy is also free, then this
  493. * triggers coalescing into a block of larger size.
  494. *
  495. * -- nyc
  496. */
  497. static inline void __free_one_page(struct page *page,
  498. unsigned long pfn,
  499. struct zone *zone, unsigned int order,
  500. int migratetype)
  501. {
  502. unsigned long page_idx;
  503. unsigned long combined_idx;
  504. unsigned long uninitialized_var(buddy_idx);
  505. struct page *buddy;
  506. int max_order = MAX_ORDER;
  507. VM_BUG_ON(!zone_is_initialized(zone));
  508. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  509. VM_BUG_ON(migratetype == -1);
  510. if (is_migrate_isolate(migratetype)) {
  511. /*
  512. * We restrict max order of merging to prevent merge
  513. * between freepages on isolate pageblock and normal
  514. * pageblock. Without this, pageblock isolation
  515. * could cause incorrect freepage accounting.
  516. */
  517. max_order = min(MAX_ORDER, pageblock_order + 1);
  518. } else {
  519. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  520. }
  521. page_idx = pfn & ((1 << max_order) - 1);
  522. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  523. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  524. while (order < max_order - 1) {
  525. buddy_idx = __find_buddy_index(page_idx, order);
  526. buddy = page + (buddy_idx - page_idx);
  527. if (!page_is_buddy(page, buddy, order))
  528. break;
  529. /*
  530. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  531. * merge with it and move up one order.
  532. */
  533. if (page_is_guard(buddy)) {
  534. clear_page_guard(zone, buddy, order, migratetype);
  535. } else {
  536. list_del(&buddy->lru);
  537. zone->free_area[order].nr_free--;
  538. rmv_page_order(buddy);
  539. }
  540. combined_idx = buddy_idx & page_idx;
  541. page = page + (combined_idx - page_idx);
  542. page_idx = combined_idx;
  543. order++;
  544. }
  545. set_page_order(page, order);
  546. /*
  547. * If this is not the largest possible page, check if the buddy
  548. * of the next-highest order is free. If it is, it's possible
  549. * that pages are being freed that will coalesce soon. In case,
  550. * that is happening, add the free page to the tail of the list
  551. * so it's less likely to be used soon and more likely to be merged
  552. * as a higher order page
  553. */
  554. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  555. struct page *higher_page, *higher_buddy;
  556. combined_idx = buddy_idx & page_idx;
  557. higher_page = page + (combined_idx - page_idx);
  558. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  559. higher_buddy = higher_page + (buddy_idx - combined_idx);
  560. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  561. list_add_tail(&page->lru,
  562. &zone->free_area[order].free_list[migratetype]);
  563. goto out;
  564. }
  565. }
  566. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  567. out:
  568. zone->free_area[order].nr_free++;
  569. }
  570. static inline int free_pages_check(struct page *page)
  571. {
  572. const char *bad_reason = NULL;
  573. unsigned long bad_flags = 0;
  574. if (unlikely(page_mapcount(page)))
  575. bad_reason = "nonzero mapcount";
  576. if (unlikely(page->mapping != NULL))
  577. bad_reason = "non-NULL mapping";
  578. if (unlikely(atomic_read(&page->_count) != 0))
  579. bad_reason = "nonzero _count";
  580. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  581. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  582. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  583. }
  584. #ifdef CONFIG_MEMCG
  585. if (unlikely(page->mem_cgroup))
  586. bad_reason = "page still charged to cgroup";
  587. #endif
  588. if (unlikely(bad_reason)) {
  589. bad_page(page, bad_reason, bad_flags);
  590. return 1;
  591. }
  592. page_cpupid_reset_last(page);
  593. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  594. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  595. return 0;
  596. }
  597. /*
  598. * Frees a number of pages from the PCP lists
  599. * Assumes all pages on list are in same zone, and of same order.
  600. * count is the number of pages to free.
  601. *
  602. * If the zone was previously in an "all pages pinned" state then look to
  603. * see if this freeing clears that state.
  604. *
  605. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  606. * pinned" detection logic.
  607. */
  608. static void free_pcppages_bulk(struct zone *zone, int count,
  609. struct per_cpu_pages *pcp)
  610. {
  611. int migratetype = 0;
  612. int batch_free = 0;
  613. int to_free = count;
  614. unsigned long nr_scanned;
  615. spin_lock(&zone->lock);
  616. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  617. if (nr_scanned)
  618. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  619. while (to_free) {
  620. struct page *page;
  621. struct list_head *list;
  622. /*
  623. * Remove pages from lists in a round-robin fashion. A
  624. * batch_free count is maintained that is incremented when an
  625. * empty list is encountered. This is so more pages are freed
  626. * off fuller lists instead of spinning excessively around empty
  627. * lists
  628. */
  629. do {
  630. batch_free++;
  631. if (++migratetype == MIGRATE_PCPTYPES)
  632. migratetype = 0;
  633. list = &pcp->lists[migratetype];
  634. } while (list_empty(list));
  635. /* This is the only non-empty list. Free them all. */
  636. if (batch_free == MIGRATE_PCPTYPES)
  637. batch_free = to_free;
  638. do {
  639. int mt; /* migratetype of the to-be-freed page */
  640. page = list_entry(list->prev, struct page, lru);
  641. /* must delete as __free_one_page list manipulates */
  642. list_del(&page->lru);
  643. mt = get_freepage_migratetype(page);
  644. if (unlikely(has_isolate_pageblock(zone)))
  645. mt = get_pageblock_migratetype(page);
  646. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  647. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  648. trace_mm_page_pcpu_drain(page, 0, mt);
  649. } while (--to_free && --batch_free && !list_empty(list));
  650. }
  651. spin_unlock(&zone->lock);
  652. }
  653. static void free_one_page(struct zone *zone,
  654. struct page *page, unsigned long pfn,
  655. unsigned int order,
  656. int migratetype)
  657. {
  658. unsigned long nr_scanned;
  659. spin_lock(&zone->lock);
  660. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  661. if (nr_scanned)
  662. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  663. if (unlikely(has_isolate_pageblock(zone) ||
  664. is_migrate_isolate(migratetype))) {
  665. migratetype = get_pfnblock_migratetype(page, pfn);
  666. }
  667. __free_one_page(page, pfn, zone, order, migratetype);
  668. spin_unlock(&zone->lock);
  669. }
  670. static int free_tail_pages_check(struct page *head_page, struct page *page)
  671. {
  672. if (!IS_ENABLED(CONFIG_DEBUG_VM))
  673. return 0;
  674. if (unlikely(!PageTail(page))) {
  675. bad_page(page, "PageTail not set", 0);
  676. return 1;
  677. }
  678. if (unlikely(page->first_page != head_page)) {
  679. bad_page(page, "first_page not consistent", 0);
  680. return 1;
  681. }
  682. return 0;
  683. }
  684. static bool free_pages_prepare(struct page *page, unsigned int order)
  685. {
  686. bool compound = PageCompound(page);
  687. int i, bad = 0;
  688. VM_BUG_ON_PAGE(PageTail(page), page);
  689. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  690. trace_mm_page_free(page, order);
  691. kmemcheck_free_shadow(page, order);
  692. if (PageAnon(page))
  693. page->mapping = NULL;
  694. bad += free_pages_check(page);
  695. for (i = 1; i < (1 << order); i++) {
  696. if (compound)
  697. bad += free_tail_pages_check(page, page + i);
  698. bad += free_pages_check(page + i);
  699. }
  700. if (bad)
  701. return false;
  702. reset_page_owner(page, order);
  703. if (!PageHighMem(page)) {
  704. debug_check_no_locks_freed(page_address(page),
  705. PAGE_SIZE << order);
  706. debug_check_no_obj_freed(page_address(page),
  707. PAGE_SIZE << order);
  708. }
  709. arch_free_page(page, order);
  710. kernel_map_pages(page, 1 << order, 0);
  711. return true;
  712. }
  713. static void __free_pages_ok(struct page *page, unsigned int order)
  714. {
  715. unsigned long flags;
  716. int migratetype;
  717. unsigned long pfn = page_to_pfn(page);
  718. if (!free_pages_prepare(page, order))
  719. return;
  720. migratetype = get_pfnblock_migratetype(page, pfn);
  721. local_irq_save(flags);
  722. __count_vm_events(PGFREE, 1 << order);
  723. set_freepage_migratetype(page, migratetype);
  724. free_one_page(page_zone(page), page, pfn, order, migratetype);
  725. local_irq_restore(flags);
  726. }
  727. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  728. {
  729. unsigned int nr_pages = 1 << order;
  730. struct page *p = page;
  731. unsigned int loop;
  732. prefetchw(p);
  733. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  734. prefetchw(p + 1);
  735. __ClearPageReserved(p);
  736. set_page_count(p, 0);
  737. }
  738. __ClearPageReserved(p);
  739. set_page_count(p, 0);
  740. page_zone(page)->managed_pages += nr_pages;
  741. set_page_refcounted(page);
  742. __free_pages(page, order);
  743. }
  744. #ifdef CONFIG_CMA
  745. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  746. void __init init_cma_reserved_pageblock(struct page *page)
  747. {
  748. unsigned i = pageblock_nr_pages;
  749. struct page *p = page;
  750. do {
  751. __ClearPageReserved(p);
  752. set_page_count(p, 0);
  753. } while (++p, --i);
  754. set_pageblock_migratetype(page, MIGRATE_CMA);
  755. if (pageblock_order >= MAX_ORDER) {
  756. i = pageblock_nr_pages;
  757. p = page;
  758. do {
  759. set_page_refcounted(p);
  760. __free_pages(p, MAX_ORDER - 1);
  761. p += MAX_ORDER_NR_PAGES;
  762. } while (i -= MAX_ORDER_NR_PAGES);
  763. } else {
  764. set_page_refcounted(page);
  765. __free_pages(page, pageblock_order);
  766. }
  767. adjust_managed_page_count(page, pageblock_nr_pages);
  768. }
  769. #endif
  770. /*
  771. * The order of subdivision here is critical for the IO subsystem.
  772. * Please do not alter this order without good reasons and regression
  773. * testing. Specifically, as large blocks of memory are subdivided,
  774. * the order in which smaller blocks are delivered depends on the order
  775. * they're subdivided in this function. This is the primary factor
  776. * influencing the order in which pages are delivered to the IO
  777. * subsystem according to empirical testing, and this is also justified
  778. * by considering the behavior of a buddy system containing a single
  779. * large block of memory acted on by a series of small allocations.
  780. * This behavior is a critical factor in sglist merging's success.
  781. *
  782. * -- nyc
  783. */
  784. static inline void expand(struct zone *zone, struct page *page,
  785. int low, int high, struct free_area *area,
  786. int migratetype)
  787. {
  788. unsigned long size = 1 << high;
  789. while (high > low) {
  790. area--;
  791. high--;
  792. size >>= 1;
  793. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  794. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  795. debug_guardpage_enabled() &&
  796. high < debug_guardpage_minorder()) {
  797. /*
  798. * Mark as guard pages (or page), that will allow to
  799. * merge back to allocator when buddy will be freed.
  800. * Corresponding page table entries will not be touched,
  801. * pages will stay not present in virtual address space
  802. */
  803. set_page_guard(zone, &page[size], high, migratetype);
  804. continue;
  805. }
  806. list_add(&page[size].lru, &area->free_list[migratetype]);
  807. area->nr_free++;
  808. set_page_order(&page[size], high);
  809. }
  810. }
  811. /*
  812. * This page is about to be returned from the page allocator
  813. */
  814. static inline int check_new_page(struct page *page)
  815. {
  816. const char *bad_reason = NULL;
  817. unsigned long bad_flags = 0;
  818. if (unlikely(page_mapcount(page)))
  819. bad_reason = "nonzero mapcount";
  820. if (unlikely(page->mapping != NULL))
  821. bad_reason = "non-NULL mapping";
  822. if (unlikely(atomic_read(&page->_count) != 0))
  823. bad_reason = "nonzero _count";
  824. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  825. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  826. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  827. }
  828. #ifdef CONFIG_MEMCG
  829. if (unlikely(page->mem_cgroup))
  830. bad_reason = "page still charged to cgroup";
  831. #endif
  832. if (unlikely(bad_reason)) {
  833. bad_page(page, bad_reason, bad_flags);
  834. return 1;
  835. }
  836. return 0;
  837. }
  838. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  839. int alloc_flags)
  840. {
  841. int i;
  842. for (i = 0; i < (1 << order); i++) {
  843. struct page *p = page + i;
  844. if (unlikely(check_new_page(p)))
  845. return 1;
  846. }
  847. set_page_private(page, 0);
  848. set_page_refcounted(page);
  849. arch_alloc_page(page, order);
  850. kernel_map_pages(page, 1 << order, 1);
  851. if (gfp_flags & __GFP_ZERO)
  852. prep_zero_page(page, order, gfp_flags);
  853. if (order && (gfp_flags & __GFP_COMP))
  854. prep_compound_page(page, order);
  855. set_page_owner(page, order, gfp_flags);
  856. /*
  857. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
  858. * allocate the page. The expectation is that the caller is taking
  859. * steps that will free more memory. The caller should avoid the page
  860. * being used for !PFMEMALLOC purposes.
  861. */
  862. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  863. return 0;
  864. }
  865. /*
  866. * Go through the free lists for the given migratetype and remove
  867. * the smallest available page from the freelists
  868. */
  869. static inline
  870. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  871. int migratetype)
  872. {
  873. unsigned int current_order;
  874. struct free_area *area;
  875. struct page *page;
  876. /* Find a page of the appropriate size in the preferred list */
  877. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  878. area = &(zone->free_area[current_order]);
  879. if (list_empty(&area->free_list[migratetype]))
  880. continue;
  881. page = list_entry(area->free_list[migratetype].next,
  882. struct page, lru);
  883. list_del(&page->lru);
  884. rmv_page_order(page);
  885. area->nr_free--;
  886. expand(zone, page, order, current_order, area, migratetype);
  887. set_freepage_migratetype(page, migratetype);
  888. return page;
  889. }
  890. return NULL;
  891. }
  892. /*
  893. * This array describes the order lists are fallen back to when
  894. * the free lists for the desirable migrate type are depleted
  895. */
  896. static int fallbacks[MIGRATE_TYPES][4] = {
  897. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  898. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  899. #ifdef CONFIG_CMA
  900. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  901. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  902. #else
  903. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  904. #endif
  905. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  906. #ifdef CONFIG_MEMORY_ISOLATION
  907. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  908. #endif
  909. };
  910. /*
  911. * Move the free pages in a range to the free lists of the requested type.
  912. * Note that start_page and end_pages are not aligned on a pageblock
  913. * boundary. If alignment is required, use move_freepages_block()
  914. */
  915. int move_freepages(struct zone *zone,
  916. struct page *start_page, struct page *end_page,
  917. int migratetype)
  918. {
  919. struct page *page;
  920. unsigned long order;
  921. int pages_moved = 0;
  922. #ifndef CONFIG_HOLES_IN_ZONE
  923. /*
  924. * page_zone is not safe to call in this context when
  925. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  926. * anyway as we check zone boundaries in move_freepages_block().
  927. * Remove at a later date when no bug reports exist related to
  928. * grouping pages by mobility
  929. */
  930. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  931. #endif
  932. for (page = start_page; page <= end_page;) {
  933. /* Make sure we are not inadvertently changing nodes */
  934. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  935. if (!pfn_valid_within(page_to_pfn(page))) {
  936. page++;
  937. continue;
  938. }
  939. if (!PageBuddy(page)) {
  940. page++;
  941. continue;
  942. }
  943. order = page_order(page);
  944. list_move(&page->lru,
  945. &zone->free_area[order].free_list[migratetype]);
  946. set_freepage_migratetype(page, migratetype);
  947. page += 1 << order;
  948. pages_moved += 1 << order;
  949. }
  950. return pages_moved;
  951. }
  952. int move_freepages_block(struct zone *zone, struct page *page,
  953. int migratetype)
  954. {
  955. unsigned long start_pfn, end_pfn;
  956. struct page *start_page, *end_page;
  957. start_pfn = page_to_pfn(page);
  958. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  959. start_page = pfn_to_page(start_pfn);
  960. end_page = start_page + pageblock_nr_pages - 1;
  961. end_pfn = start_pfn + pageblock_nr_pages - 1;
  962. /* Do not cross zone boundaries */
  963. if (!zone_spans_pfn(zone, start_pfn))
  964. start_page = page;
  965. if (!zone_spans_pfn(zone, end_pfn))
  966. return 0;
  967. return move_freepages(zone, start_page, end_page, migratetype);
  968. }
  969. static void change_pageblock_range(struct page *pageblock_page,
  970. int start_order, int migratetype)
  971. {
  972. int nr_pageblocks = 1 << (start_order - pageblock_order);
  973. while (nr_pageblocks--) {
  974. set_pageblock_migratetype(pageblock_page, migratetype);
  975. pageblock_page += pageblock_nr_pages;
  976. }
  977. }
  978. /*
  979. * If breaking a large block of pages, move all free pages to the preferred
  980. * allocation list. If falling back for a reclaimable kernel allocation, be
  981. * more aggressive about taking ownership of free pages. If we claim more than
  982. * half of the pageblock, change pageblock's migratetype as well.
  983. */
  984. static void try_to_steal_freepages(struct zone *zone, struct page *page,
  985. int start_type, int fallback_type)
  986. {
  987. int current_order = page_order(page);
  988. /* Take ownership for orders >= pageblock_order */
  989. if (current_order >= pageblock_order) {
  990. change_pageblock_range(page, current_order, start_type);
  991. return;
  992. }
  993. if (current_order >= pageblock_order / 2 ||
  994. start_type == MIGRATE_RECLAIMABLE ||
  995. page_group_by_mobility_disabled) {
  996. int pages;
  997. pages = move_freepages_block(zone, page, start_type);
  998. /* Claim the whole block if over half of it is free */
  999. if (pages >= (1 << (pageblock_order-1)) ||
  1000. page_group_by_mobility_disabled)
  1001. set_pageblock_migratetype(page, start_type);
  1002. }
  1003. }
  1004. /* Remove an element from the buddy allocator from the fallback list */
  1005. static inline struct page *
  1006. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1007. {
  1008. struct free_area *area;
  1009. unsigned int current_order;
  1010. struct page *page;
  1011. /* Find the largest possible block of pages in the other list */
  1012. for (current_order = MAX_ORDER-1;
  1013. current_order >= order && current_order <= MAX_ORDER-1;
  1014. --current_order) {
  1015. int i;
  1016. for (i = 0;; i++) {
  1017. int migratetype = fallbacks[start_migratetype][i];
  1018. int buddy_type = start_migratetype;
  1019. /* MIGRATE_RESERVE handled later if necessary */
  1020. if (migratetype == MIGRATE_RESERVE)
  1021. break;
  1022. area = &(zone->free_area[current_order]);
  1023. if (list_empty(&area->free_list[migratetype]))
  1024. continue;
  1025. page = list_entry(area->free_list[migratetype].next,
  1026. struct page, lru);
  1027. area->nr_free--;
  1028. if (!is_migrate_cma(migratetype)) {
  1029. try_to_steal_freepages(zone, page,
  1030. start_migratetype,
  1031. migratetype);
  1032. } else {
  1033. /*
  1034. * When borrowing from MIGRATE_CMA, we need to
  1035. * release the excess buddy pages to CMA
  1036. * itself, and we do not try to steal extra
  1037. * free pages.
  1038. */
  1039. buddy_type = migratetype;
  1040. }
  1041. /* Remove the page from the freelists */
  1042. list_del(&page->lru);
  1043. rmv_page_order(page);
  1044. expand(zone, page, order, current_order, area,
  1045. buddy_type);
  1046. /*
  1047. * The freepage_migratetype may differ from pageblock's
  1048. * migratetype depending on the decisions in
  1049. * try_to_steal_freepages(). This is OK as long as it
  1050. * does not differ for MIGRATE_CMA pageblocks. For CMA
  1051. * we need to make sure unallocated pages flushed from
  1052. * pcp lists are returned to the correct freelist.
  1053. */
  1054. set_freepage_migratetype(page, buddy_type);
  1055. trace_mm_page_alloc_extfrag(page, order, current_order,
  1056. start_migratetype, migratetype);
  1057. return page;
  1058. }
  1059. }
  1060. return NULL;
  1061. }
  1062. /*
  1063. * Do the hard work of removing an element from the buddy allocator.
  1064. * Call me with the zone->lock already held.
  1065. */
  1066. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1067. int migratetype)
  1068. {
  1069. struct page *page;
  1070. retry_reserve:
  1071. page = __rmqueue_smallest(zone, order, migratetype);
  1072. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1073. page = __rmqueue_fallback(zone, order, migratetype);
  1074. /*
  1075. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1076. * is used because __rmqueue_smallest is an inline function
  1077. * and we want just one call site
  1078. */
  1079. if (!page) {
  1080. migratetype = MIGRATE_RESERVE;
  1081. goto retry_reserve;
  1082. }
  1083. }
  1084. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1085. return page;
  1086. }
  1087. /*
  1088. * Obtain a specified number of elements from the buddy allocator, all under
  1089. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1090. * Returns the number of new pages which were placed at *list.
  1091. */
  1092. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1093. unsigned long count, struct list_head *list,
  1094. int migratetype, bool cold)
  1095. {
  1096. int i;
  1097. spin_lock(&zone->lock);
  1098. for (i = 0; i < count; ++i) {
  1099. struct page *page = __rmqueue(zone, order, migratetype);
  1100. if (unlikely(page == NULL))
  1101. break;
  1102. /*
  1103. * Split buddy pages returned by expand() are received here
  1104. * in physical page order. The page is added to the callers and
  1105. * list and the list head then moves forward. From the callers
  1106. * perspective, the linked list is ordered by page number in
  1107. * some conditions. This is useful for IO devices that can
  1108. * merge IO requests if the physical pages are ordered
  1109. * properly.
  1110. */
  1111. if (likely(!cold))
  1112. list_add(&page->lru, list);
  1113. else
  1114. list_add_tail(&page->lru, list);
  1115. list = &page->lru;
  1116. if (is_migrate_cma(get_freepage_migratetype(page)))
  1117. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1118. -(1 << order));
  1119. }
  1120. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1121. spin_unlock(&zone->lock);
  1122. return i;
  1123. }
  1124. #ifdef CONFIG_NUMA
  1125. /*
  1126. * Called from the vmstat counter updater to drain pagesets of this
  1127. * currently executing processor on remote nodes after they have
  1128. * expired.
  1129. *
  1130. * Note that this function must be called with the thread pinned to
  1131. * a single processor.
  1132. */
  1133. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1134. {
  1135. unsigned long flags;
  1136. int to_drain, batch;
  1137. local_irq_save(flags);
  1138. batch = ACCESS_ONCE(pcp->batch);
  1139. to_drain = min(pcp->count, batch);
  1140. if (to_drain > 0) {
  1141. free_pcppages_bulk(zone, to_drain, pcp);
  1142. pcp->count -= to_drain;
  1143. }
  1144. local_irq_restore(flags);
  1145. }
  1146. #endif
  1147. /*
  1148. * Drain pcplists of the indicated processor and zone.
  1149. *
  1150. * The processor must either be the current processor and the
  1151. * thread pinned to the current processor or a processor that
  1152. * is not online.
  1153. */
  1154. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1155. {
  1156. unsigned long flags;
  1157. struct per_cpu_pageset *pset;
  1158. struct per_cpu_pages *pcp;
  1159. local_irq_save(flags);
  1160. pset = per_cpu_ptr(zone->pageset, cpu);
  1161. pcp = &pset->pcp;
  1162. if (pcp->count) {
  1163. free_pcppages_bulk(zone, pcp->count, pcp);
  1164. pcp->count = 0;
  1165. }
  1166. local_irq_restore(flags);
  1167. }
  1168. /*
  1169. * Drain pcplists of all zones on the indicated processor.
  1170. *
  1171. * The processor must either be the current processor and the
  1172. * thread pinned to the current processor or a processor that
  1173. * is not online.
  1174. */
  1175. static void drain_pages(unsigned int cpu)
  1176. {
  1177. struct zone *zone;
  1178. for_each_populated_zone(zone) {
  1179. drain_pages_zone(cpu, zone);
  1180. }
  1181. }
  1182. /*
  1183. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1184. *
  1185. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1186. * the single zone's pages.
  1187. */
  1188. void drain_local_pages(struct zone *zone)
  1189. {
  1190. int cpu = smp_processor_id();
  1191. if (zone)
  1192. drain_pages_zone(cpu, zone);
  1193. else
  1194. drain_pages(cpu);
  1195. }
  1196. /*
  1197. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1198. *
  1199. * When zone parameter is non-NULL, spill just the single zone's pages.
  1200. *
  1201. * Note that this code is protected against sending an IPI to an offline
  1202. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1203. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1204. * nothing keeps CPUs from showing up after we populated the cpumask and
  1205. * before the call to on_each_cpu_mask().
  1206. */
  1207. void drain_all_pages(struct zone *zone)
  1208. {
  1209. int cpu;
  1210. /*
  1211. * Allocate in the BSS so we wont require allocation in
  1212. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1213. */
  1214. static cpumask_t cpus_with_pcps;
  1215. /*
  1216. * We don't care about racing with CPU hotplug event
  1217. * as offline notification will cause the notified
  1218. * cpu to drain that CPU pcps and on_each_cpu_mask
  1219. * disables preemption as part of its processing
  1220. */
  1221. for_each_online_cpu(cpu) {
  1222. struct per_cpu_pageset *pcp;
  1223. struct zone *z;
  1224. bool has_pcps = false;
  1225. if (zone) {
  1226. pcp = per_cpu_ptr(zone->pageset, cpu);
  1227. if (pcp->pcp.count)
  1228. has_pcps = true;
  1229. } else {
  1230. for_each_populated_zone(z) {
  1231. pcp = per_cpu_ptr(z->pageset, cpu);
  1232. if (pcp->pcp.count) {
  1233. has_pcps = true;
  1234. break;
  1235. }
  1236. }
  1237. }
  1238. if (has_pcps)
  1239. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1240. else
  1241. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1242. }
  1243. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  1244. zone, 1);
  1245. }
  1246. #ifdef CONFIG_HIBERNATION
  1247. void mark_free_pages(struct zone *zone)
  1248. {
  1249. unsigned long pfn, max_zone_pfn;
  1250. unsigned long flags;
  1251. unsigned int order, t;
  1252. struct list_head *curr;
  1253. if (zone_is_empty(zone))
  1254. return;
  1255. spin_lock_irqsave(&zone->lock, flags);
  1256. max_zone_pfn = zone_end_pfn(zone);
  1257. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1258. if (pfn_valid(pfn)) {
  1259. struct page *page = pfn_to_page(pfn);
  1260. if (!swsusp_page_is_forbidden(page))
  1261. swsusp_unset_page_free(page);
  1262. }
  1263. for_each_migratetype_order(order, t) {
  1264. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1265. unsigned long i;
  1266. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1267. for (i = 0; i < (1UL << order); i++)
  1268. swsusp_set_page_free(pfn_to_page(pfn + i));
  1269. }
  1270. }
  1271. spin_unlock_irqrestore(&zone->lock, flags);
  1272. }
  1273. #endif /* CONFIG_PM */
  1274. /*
  1275. * Free a 0-order page
  1276. * cold == true ? free a cold page : free a hot page
  1277. */
  1278. void free_hot_cold_page(struct page *page, bool cold)
  1279. {
  1280. struct zone *zone = page_zone(page);
  1281. struct per_cpu_pages *pcp;
  1282. unsigned long flags;
  1283. unsigned long pfn = page_to_pfn(page);
  1284. int migratetype;
  1285. if (!free_pages_prepare(page, 0))
  1286. return;
  1287. migratetype = get_pfnblock_migratetype(page, pfn);
  1288. set_freepage_migratetype(page, migratetype);
  1289. local_irq_save(flags);
  1290. __count_vm_event(PGFREE);
  1291. /*
  1292. * We only track unmovable, reclaimable and movable on pcp lists.
  1293. * Free ISOLATE pages back to the allocator because they are being
  1294. * offlined but treat RESERVE as movable pages so we can get those
  1295. * areas back if necessary. Otherwise, we may have to free
  1296. * excessively into the page allocator
  1297. */
  1298. if (migratetype >= MIGRATE_PCPTYPES) {
  1299. if (unlikely(is_migrate_isolate(migratetype))) {
  1300. free_one_page(zone, page, pfn, 0, migratetype);
  1301. goto out;
  1302. }
  1303. migratetype = MIGRATE_MOVABLE;
  1304. }
  1305. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1306. if (!cold)
  1307. list_add(&page->lru, &pcp->lists[migratetype]);
  1308. else
  1309. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1310. pcp->count++;
  1311. if (pcp->count >= pcp->high) {
  1312. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1313. free_pcppages_bulk(zone, batch, pcp);
  1314. pcp->count -= batch;
  1315. }
  1316. out:
  1317. local_irq_restore(flags);
  1318. }
  1319. /*
  1320. * Free a list of 0-order pages
  1321. */
  1322. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1323. {
  1324. struct page *page, *next;
  1325. list_for_each_entry_safe(page, next, list, lru) {
  1326. trace_mm_page_free_batched(page, cold);
  1327. free_hot_cold_page(page, cold);
  1328. }
  1329. }
  1330. /*
  1331. * split_page takes a non-compound higher-order page, and splits it into
  1332. * n (1<<order) sub-pages: page[0..n]
  1333. * Each sub-page must be freed individually.
  1334. *
  1335. * Note: this is probably too low level an operation for use in drivers.
  1336. * Please consult with lkml before using this in your driver.
  1337. */
  1338. void split_page(struct page *page, unsigned int order)
  1339. {
  1340. int i;
  1341. VM_BUG_ON_PAGE(PageCompound(page), page);
  1342. VM_BUG_ON_PAGE(!page_count(page), page);
  1343. #ifdef CONFIG_KMEMCHECK
  1344. /*
  1345. * Split shadow pages too, because free(page[0]) would
  1346. * otherwise free the whole shadow.
  1347. */
  1348. if (kmemcheck_page_is_tracked(page))
  1349. split_page(virt_to_page(page[0].shadow), order);
  1350. #endif
  1351. set_page_owner(page, 0, 0);
  1352. for (i = 1; i < (1 << order); i++) {
  1353. set_page_refcounted(page + i);
  1354. set_page_owner(page + i, 0, 0);
  1355. }
  1356. }
  1357. EXPORT_SYMBOL_GPL(split_page);
  1358. int __isolate_free_page(struct page *page, unsigned int order)
  1359. {
  1360. unsigned long watermark;
  1361. struct zone *zone;
  1362. int mt;
  1363. BUG_ON(!PageBuddy(page));
  1364. zone = page_zone(page);
  1365. mt = get_pageblock_migratetype(page);
  1366. if (!is_migrate_isolate(mt)) {
  1367. /* Obey watermarks as if the page was being allocated */
  1368. watermark = low_wmark_pages(zone) + (1 << order);
  1369. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1370. return 0;
  1371. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1372. }
  1373. /* Remove page from free list */
  1374. list_del(&page->lru);
  1375. zone->free_area[order].nr_free--;
  1376. rmv_page_order(page);
  1377. /* Set the pageblock if the isolated page is at least a pageblock */
  1378. if (order >= pageblock_order - 1) {
  1379. struct page *endpage = page + (1 << order) - 1;
  1380. for (; page < endpage; page += pageblock_nr_pages) {
  1381. int mt = get_pageblock_migratetype(page);
  1382. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1383. set_pageblock_migratetype(page,
  1384. MIGRATE_MOVABLE);
  1385. }
  1386. }
  1387. set_page_owner(page, order, 0);
  1388. return 1UL << order;
  1389. }
  1390. /*
  1391. * Similar to split_page except the page is already free. As this is only
  1392. * being used for migration, the migratetype of the block also changes.
  1393. * As this is called with interrupts disabled, the caller is responsible
  1394. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1395. * are enabled.
  1396. *
  1397. * Note: this is probably too low level an operation for use in drivers.
  1398. * Please consult with lkml before using this in your driver.
  1399. */
  1400. int split_free_page(struct page *page)
  1401. {
  1402. unsigned int order;
  1403. int nr_pages;
  1404. order = page_order(page);
  1405. nr_pages = __isolate_free_page(page, order);
  1406. if (!nr_pages)
  1407. return 0;
  1408. /* Split into individual pages */
  1409. set_page_refcounted(page);
  1410. split_page(page, order);
  1411. return nr_pages;
  1412. }
  1413. /*
  1414. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  1415. */
  1416. static inline
  1417. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1418. struct zone *zone, unsigned int order,
  1419. gfp_t gfp_flags, int migratetype)
  1420. {
  1421. unsigned long flags;
  1422. struct page *page;
  1423. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1424. if (likely(order == 0)) {
  1425. struct per_cpu_pages *pcp;
  1426. struct list_head *list;
  1427. local_irq_save(flags);
  1428. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1429. list = &pcp->lists[migratetype];
  1430. if (list_empty(list)) {
  1431. pcp->count += rmqueue_bulk(zone, 0,
  1432. pcp->batch, list,
  1433. migratetype, cold);
  1434. if (unlikely(list_empty(list)))
  1435. goto failed;
  1436. }
  1437. if (cold)
  1438. page = list_entry(list->prev, struct page, lru);
  1439. else
  1440. page = list_entry(list->next, struct page, lru);
  1441. list_del(&page->lru);
  1442. pcp->count--;
  1443. } else {
  1444. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1445. /*
  1446. * __GFP_NOFAIL is not to be used in new code.
  1447. *
  1448. * All __GFP_NOFAIL callers should be fixed so that they
  1449. * properly detect and handle allocation failures.
  1450. *
  1451. * We most definitely don't want callers attempting to
  1452. * allocate greater than order-1 page units with
  1453. * __GFP_NOFAIL.
  1454. */
  1455. WARN_ON_ONCE(order > 1);
  1456. }
  1457. spin_lock_irqsave(&zone->lock, flags);
  1458. page = __rmqueue(zone, order, migratetype);
  1459. spin_unlock(&zone->lock);
  1460. if (!page)
  1461. goto failed;
  1462. __mod_zone_freepage_state(zone, -(1 << order),
  1463. get_freepage_migratetype(page));
  1464. }
  1465. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1466. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  1467. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  1468. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1469. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1470. zone_statistics(preferred_zone, zone, gfp_flags);
  1471. local_irq_restore(flags);
  1472. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1473. return page;
  1474. failed:
  1475. local_irq_restore(flags);
  1476. return NULL;
  1477. }
  1478. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1479. static struct {
  1480. struct fault_attr attr;
  1481. u32 ignore_gfp_highmem;
  1482. u32 ignore_gfp_wait;
  1483. u32 min_order;
  1484. } fail_page_alloc = {
  1485. .attr = FAULT_ATTR_INITIALIZER,
  1486. .ignore_gfp_wait = 1,
  1487. .ignore_gfp_highmem = 1,
  1488. .min_order = 1,
  1489. };
  1490. static int __init setup_fail_page_alloc(char *str)
  1491. {
  1492. return setup_fault_attr(&fail_page_alloc.attr, str);
  1493. }
  1494. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1495. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1496. {
  1497. if (order < fail_page_alloc.min_order)
  1498. return false;
  1499. if (gfp_mask & __GFP_NOFAIL)
  1500. return false;
  1501. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1502. return false;
  1503. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1504. return false;
  1505. return should_fail(&fail_page_alloc.attr, 1 << order);
  1506. }
  1507. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1508. static int __init fail_page_alloc_debugfs(void)
  1509. {
  1510. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1511. struct dentry *dir;
  1512. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1513. &fail_page_alloc.attr);
  1514. if (IS_ERR(dir))
  1515. return PTR_ERR(dir);
  1516. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1517. &fail_page_alloc.ignore_gfp_wait))
  1518. goto fail;
  1519. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1520. &fail_page_alloc.ignore_gfp_highmem))
  1521. goto fail;
  1522. if (!debugfs_create_u32("min-order", mode, dir,
  1523. &fail_page_alloc.min_order))
  1524. goto fail;
  1525. return 0;
  1526. fail:
  1527. debugfs_remove_recursive(dir);
  1528. return -ENOMEM;
  1529. }
  1530. late_initcall(fail_page_alloc_debugfs);
  1531. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1532. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1533. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1534. {
  1535. return false;
  1536. }
  1537. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1538. /*
  1539. * Return true if free pages are above 'mark'. This takes into account the order
  1540. * of the allocation.
  1541. */
  1542. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1543. unsigned long mark, int classzone_idx, int alloc_flags,
  1544. long free_pages)
  1545. {
  1546. /* free_pages may go negative - that's OK */
  1547. long min = mark;
  1548. int o;
  1549. long free_cma = 0;
  1550. free_pages -= (1 << order) - 1;
  1551. if (alloc_flags & ALLOC_HIGH)
  1552. min -= min / 2;
  1553. if (alloc_flags & ALLOC_HARDER)
  1554. min -= min / 4;
  1555. #ifdef CONFIG_CMA
  1556. /* If allocation can't use CMA areas don't use free CMA pages */
  1557. if (!(alloc_flags & ALLOC_CMA))
  1558. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1559. #endif
  1560. if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
  1561. return false;
  1562. for (o = 0; o < order; o++) {
  1563. /* At the next order, this order's pages become unavailable */
  1564. free_pages -= z->free_area[o].nr_free << o;
  1565. /* Require fewer higher order pages to be free */
  1566. min >>= 1;
  1567. if (free_pages <= min)
  1568. return false;
  1569. }
  1570. return true;
  1571. }
  1572. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1573. int classzone_idx, int alloc_flags)
  1574. {
  1575. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1576. zone_page_state(z, NR_FREE_PAGES));
  1577. }
  1578. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1579. unsigned long mark, int classzone_idx, int alloc_flags)
  1580. {
  1581. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1582. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1583. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1584. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1585. free_pages);
  1586. }
  1587. #ifdef CONFIG_NUMA
  1588. /*
  1589. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1590. * skip over zones that are not allowed by the cpuset, or that have
  1591. * been recently (in last second) found to be nearly full. See further
  1592. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1593. * that have to skip over a lot of full or unallowed zones.
  1594. *
  1595. * If the zonelist cache is present in the passed zonelist, then
  1596. * returns a pointer to the allowed node mask (either the current
  1597. * tasks mems_allowed, or node_states[N_MEMORY].)
  1598. *
  1599. * If the zonelist cache is not available for this zonelist, does
  1600. * nothing and returns NULL.
  1601. *
  1602. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1603. * a second since last zap'd) then we zap it out (clear its bits.)
  1604. *
  1605. * We hold off even calling zlc_setup, until after we've checked the
  1606. * first zone in the zonelist, on the theory that most allocations will
  1607. * be satisfied from that first zone, so best to examine that zone as
  1608. * quickly as we can.
  1609. */
  1610. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1611. {
  1612. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1613. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1614. zlc = zonelist->zlcache_ptr;
  1615. if (!zlc)
  1616. return NULL;
  1617. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1618. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1619. zlc->last_full_zap = jiffies;
  1620. }
  1621. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1622. &cpuset_current_mems_allowed :
  1623. &node_states[N_MEMORY];
  1624. return allowednodes;
  1625. }
  1626. /*
  1627. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1628. * if it is worth looking at further for free memory:
  1629. * 1) Check that the zone isn't thought to be full (doesn't have its
  1630. * bit set in the zonelist_cache fullzones BITMAP).
  1631. * 2) Check that the zones node (obtained from the zonelist_cache
  1632. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1633. * Return true (non-zero) if zone is worth looking at further, or
  1634. * else return false (zero) if it is not.
  1635. *
  1636. * This check -ignores- the distinction between various watermarks,
  1637. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1638. * found to be full for any variation of these watermarks, it will
  1639. * be considered full for up to one second by all requests, unless
  1640. * we are so low on memory on all allowed nodes that we are forced
  1641. * into the second scan of the zonelist.
  1642. *
  1643. * In the second scan we ignore this zonelist cache and exactly
  1644. * apply the watermarks to all zones, even it is slower to do so.
  1645. * We are low on memory in the second scan, and should leave no stone
  1646. * unturned looking for a free page.
  1647. */
  1648. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1649. nodemask_t *allowednodes)
  1650. {
  1651. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1652. int i; /* index of *z in zonelist zones */
  1653. int n; /* node that zone *z is on */
  1654. zlc = zonelist->zlcache_ptr;
  1655. if (!zlc)
  1656. return 1;
  1657. i = z - zonelist->_zonerefs;
  1658. n = zlc->z_to_n[i];
  1659. /* This zone is worth trying if it is allowed but not full */
  1660. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1661. }
  1662. /*
  1663. * Given 'z' scanning a zonelist, set the corresponding bit in
  1664. * zlc->fullzones, so that subsequent attempts to allocate a page
  1665. * from that zone don't waste time re-examining it.
  1666. */
  1667. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1668. {
  1669. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1670. int i; /* index of *z in zonelist zones */
  1671. zlc = zonelist->zlcache_ptr;
  1672. if (!zlc)
  1673. return;
  1674. i = z - zonelist->_zonerefs;
  1675. set_bit(i, zlc->fullzones);
  1676. }
  1677. /*
  1678. * clear all zones full, called after direct reclaim makes progress so that
  1679. * a zone that was recently full is not skipped over for up to a second
  1680. */
  1681. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1682. {
  1683. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1684. zlc = zonelist->zlcache_ptr;
  1685. if (!zlc)
  1686. return;
  1687. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1688. }
  1689. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1690. {
  1691. return local_zone->node == zone->node;
  1692. }
  1693. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1694. {
  1695. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1696. RECLAIM_DISTANCE;
  1697. }
  1698. #else /* CONFIG_NUMA */
  1699. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1700. {
  1701. return NULL;
  1702. }
  1703. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1704. nodemask_t *allowednodes)
  1705. {
  1706. return 1;
  1707. }
  1708. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1709. {
  1710. }
  1711. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1712. {
  1713. }
  1714. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1715. {
  1716. return true;
  1717. }
  1718. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1719. {
  1720. return true;
  1721. }
  1722. #endif /* CONFIG_NUMA */
  1723. static void reset_alloc_batches(struct zone *preferred_zone)
  1724. {
  1725. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  1726. do {
  1727. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  1728. high_wmark_pages(zone) - low_wmark_pages(zone) -
  1729. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  1730. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  1731. } while (zone++ != preferred_zone);
  1732. }
  1733. /*
  1734. * get_page_from_freelist goes through the zonelist trying to allocate
  1735. * a page.
  1736. */
  1737. static struct page *
  1738. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  1739. const struct alloc_context *ac)
  1740. {
  1741. struct zonelist *zonelist = ac->zonelist;
  1742. struct zoneref *z;
  1743. struct page *page = NULL;
  1744. struct zone *zone;
  1745. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1746. int zlc_active = 0; /* set if using zonelist_cache */
  1747. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1748. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1749. (gfp_mask & __GFP_WRITE);
  1750. int nr_fair_skipped = 0;
  1751. bool zonelist_rescan;
  1752. zonelist_scan:
  1753. zonelist_rescan = false;
  1754. /*
  1755. * Scan zonelist, looking for a zone with enough free.
  1756. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  1757. */
  1758. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1759. ac->nodemask) {
  1760. unsigned long mark;
  1761. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1762. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1763. continue;
  1764. if (cpusets_enabled() &&
  1765. (alloc_flags & ALLOC_CPUSET) &&
  1766. !cpuset_zone_allowed(zone, gfp_mask))
  1767. continue;
  1768. /*
  1769. * Distribute pages in proportion to the individual
  1770. * zone size to ensure fair page aging. The zone a
  1771. * page was allocated in should have no effect on the
  1772. * time the page has in memory before being reclaimed.
  1773. */
  1774. if (alloc_flags & ALLOC_FAIR) {
  1775. if (!zone_local(ac->preferred_zone, zone))
  1776. break;
  1777. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  1778. nr_fair_skipped++;
  1779. continue;
  1780. }
  1781. }
  1782. /*
  1783. * When allocating a page cache page for writing, we
  1784. * want to get it from a zone that is within its dirty
  1785. * limit, such that no single zone holds more than its
  1786. * proportional share of globally allowed dirty pages.
  1787. * The dirty limits take into account the zone's
  1788. * lowmem reserves and high watermark so that kswapd
  1789. * should be able to balance it without having to
  1790. * write pages from its LRU list.
  1791. *
  1792. * This may look like it could increase pressure on
  1793. * lower zones by failing allocations in higher zones
  1794. * before they are full. But the pages that do spill
  1795. * over are limited as the lower zones are protected
  1796. * by this very same mechanism. It should not become
  1797. * a practical burden to them.
  1798. *
  1799. * XXX: For now, allow allocations to potentially
  1800. * exceed the per-zone dirty limit in the slowpath
  1801. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1802. * which is important when on a NUMA setup the allowed
  1803. * zones are together not big enough to reach the
  1804. * global limit. The proper fix for these situations
  1805. * will require awareness of zones in the
  1806. * dirty-throttling and the flusher threads.
  1807. */
  1808. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1809. continue;
  1810. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1811. if (!zone_watermark_ok(zone, order, mark,
  1812. ac->classzone_idx, alloc_flags)) {
  1813. int ret;
  1814. /* Checked here to keep the fast path fast */
  1815. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1816. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1817. goto try_this_zone;
  1818. if (IS_ENABLED(CONFIG_NUMA) &&
  1819. !did_zlc_setup && nr_online_nodes > 1) {
  1820. /*
  1821. * we do zlc_setup if there are multiple nodes
  1822. * and before considering the first zone allowed
  1823. * by the cpuset.
  1824. */
  1825. allowednodes = zlc_setup(zonelist, alloc_flags);
  1826. zlc_active = 1;
  1827. did_zlc_setup = 1;
  1828. }
  1829. if (zone_reclaim_mode == 0 ||
  1830. !zone_allows_reclaim(ac->preferred_zone, zone))
  1831. goto this_zone_full;
  1832. /*
  1833. * As we may have just activated ZLC, check if the first
  1834. * eligible zone has failed zone_reclaim recently.
  1835. */
  1836. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1837. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1838. continue;
  1839. ret = zone_reclaim(zone, gfp_mask, order);
  1840. switch (ret) {
  1841. case ZONE_RECLAIM_NOSCAN:
  1842. /* did not scan */
  1843. continue;
  1844. case ZONE_RECLAIM_FULL:
  1845. /* scanned but unreclaimable */
  1846. continue;
  1847. default:
  1848. /* did we reclaim enough */
  1849. if (zone_watermark_ok(zone, order, mark,
  1850. ac->classzone_idx, alloc_flags))
  1851. goto try_this_zone;
  1852. /*
  1853. * Failed to reclaim enough to meet watermark.
  1854. * Only mark the zone full if checking the min
  1855. * watermark or if we failed to reclaim just
  1856. * 1<<order pages or else the page allocator
  1857. * fastpath will prematurely mark zones full
  1858. * when the watermark is between the low and
  1859. * min watermarks.
  1860. */
  1861. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1862. ret == ZONE_RECLAIM_SOME)
  1863. goto this_zone_full;
  1864. continue;
  1865. }
  1866. }
  1867. try_this_zone:
  1868. page = buffered_rmqueue(ac->preferred_zone, zone, order,
  1869. gfp_mask, ac->migratetype);
  1870. if (page) {
  1871. if (prep_new_page(page, order, gfp_mask, alloc_flags))
  1872. goto try_this_zone;
  1873. return page;
  1874. }
  1875. this_zone_full:
  1876. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1877. zlc_mark_zone_full(zonelist, z);
  1878. }
  1879. /*
  1880. * The first pass makes sure allocations are spread fairly within the
  1881. * local node. However, the local node might have free pages left
  1882. * after the fairness batches are exhausted, and remote zones haven't
  1883. * even been considered yet. Try once more without fairness, and
  1884. * include remote zones now, before entering the slowpath and waking
  1885. * kswapd: prefer spilling to a remote zone over swapping locally.
  1886. */
  1887. if (alloc_flags & ALLOC_FAIR) {
  1888. alloc_flags &= ~ALLOC_FAIR;
  1889. if (nr_fair_skipped) {
  1890. zonelist_rescan = true;
  1891. reset_alloc_batches(ac->preferred_zone);
  1892. }
  1893. if (nr_online_nodes > 1)
  1894. zonelist_rescan = true;
  1895. }
  1896. if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
  1897. /* Disable zlc cache for second zonelist scan */
  1898. zlc_active = 0;
  1899. zonelist_rescan = true;
  1900. }
  1901. if (zonelist_rescan)
  1902. goto zonelist_scan;
  1903. return NULL;
  1904. }
  1905. /*
  1906. * Large machines with many possible nodes should not always dump per-node
  1907. * meminfo in irq context.
  1908. */
  1909. static inline bool should_suppress_show_mem(void)
  1910. {
  1911. bool ret = false;
  1912. #if NODES_SHIFT > 8
  1913. ret = in_interrupt();
  1914. #endif
  1915. return ret;
  1916. }
  1917. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1918. DEFAULT_RATELIMIT_INTERVAL,
  1919. DEFAULT_RATELIMIT_BURST);
  1920. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1921. {
  1922. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1923. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1924. debug_guardpage_minorder() > 0)
  1925. return;
  1926. /*
  1927. * This documents exceptions given to allocations in certain
  1928. * contexts that are allowed to allocate outside current's set
  1929. * of allowed nodes.
  1930. */
  1931. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1932. if (test_thread_flag(TIF_MEMDIE) ||
  1933. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1934. filter &= ~SHOW_MEM_FILTER_NODES;
  1935. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1936. filter &= ~SHOW_MEM_FILTER_NODES;
  1937. if (fmt) {
  1938. struct va_format vaf;
  1939. va_list args;
  1940. va_start(args, fmt);
  1941. vaf.fmt = fmt;
  1942. vaf.va = &args;
  1943. pr_warn("%pV", &vaf);
  1944. va_end(args);
  1945. }
  1946. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1947. current->comm, order, gfp_mask);
  1948. dump_stack();
  1949. if (!should_suppress_show_mem())
  1950. show_mem(filter);
  1951. }
  1952. static inline int
  1953. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1954. unsigned long did_some_progress,
  1955. unsigned long pages_reclaimed)
  1956. {
  1957. /* Do not loop if specifically requested */
  1958. if (gfp_mask & __GFP_NORETRY)
  1959. return 0;
  1960. /* Always retry if specifically requested */
  1961. if (gfp_mask & __GFP_NOFAIL)
  1962. return 1;
  1963. /*
  1964. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1965. * making forward progress without invoking OOM. Suspend also disables
  1966. * storage devices so kswapd will not help. Bail if we are suspending.
  1967. */
  1968. if (!did_some_progress && pm_suspended_storage())
  1969. return 0;
  1970. /*
  1971. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1972. * means __GFP_NOFAIL, but that may not be true in other
  1973. * implementations.
  1974. */
  1975. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1976. return 1;
  1977. /*
  1978. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1979. * specified, then we retry until we no longer reclaim any pages
  1980. * (above), or we've reclaimed an order of pages at least as
  1981. * large as the allocation's order. In both cases, if the
  1982. * allocation still fails, we stop retrying.
  1983. */
  1984. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1985. return 1;
  1986. return 0;
  1987. }
  1988. static inline struct page *
  1989. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1990. const struct alloc_context *ac, unsigned long *did_some_progress)
  1991. {
  1992. struct page *page;
  1993. *did_some_progress = 0;
  1994. /*
  1995. * Acquire the per-zone oom lock for each zone. If that
  1996. * fails, somebody else is making progress for us.
  1997. */
  1998. if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
  1999. *did_some_progress = 1;
  2000. schedule_timeout_uninterruptible(1);
  2001. return NULL;
  2002. }
  2003. /*
  2004. * Go through the zonelist yet one more time, keep very high watermark
  2005. * here, this is only to catch a parallel oom killing, we must fail if
  2006. * we're still under heavy pressure.
  2007. */
  2008. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2009. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2010. if (page)
  2011. goto out;
  2012. if (!(gfp_mask & __GFP_NOFAIL)) {
  2013. /* Coredumps can quickly deplete all memory reserves */
  2014. if (current->flags & PF_DUMPCORE)
  2015. goto out;
  2016. /* The OOM killer will not help higher order allocs */
  2017. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2018. goto out;
  2019. /* The OOM killer does not needlessly kill tasks for lowmem */
  2020. if (ac->high_zoneidx < ZONE_NORMAL)
  2021. goto out;
  2022. /* The OOM killer does not compensate for light reclaim */
  2023. if (!(gfp_mask & __GFP_FS))
  2024. goto out;
  2025. /*
  2026. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  2027. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  2028. * The caller should handle page allocation failure by itself if
  2029. * it specifies __GFP_THISNODE.
  2030. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  2031. */
  2032. if (gfp_mask & __GFP_THISNODE)
  2033. goto out;
  2034. }
  2035. /* Exhausted what can be done so it's blamo time */
  2036. if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
  2037. *did_some_progress = 1;
  2038. out:
  2039. oom_zonelist_unlock(ac->zonelist, gfp_mask);
  2040. return page;
  2041. }
  2042. #ifdef CONFIG_COMPACTION
  2043. /* Try memory compaction for high-order allocations before reclaim */
  2044. static struct page *
  2045. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2046. int alloc_flags, const struct alloc_context *ac,
  2047. enum migrate_mode mode, int *contended_compaction,
  2048. bool *deferred_compaction)
  2049. {
  2050. unsigned long compact_result;
  2051. struct page *page;
  2052. if (!order)
  2053. return NULL;
  2054. current->flags |= PF_MEMALLOC;
  2055. compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2056. mode, contended_compaction);
  2057. current->flags &= ~PF_MEMALLOC;
  2058. switch (compact_result) {
  2059. case COMPACT_DEFERRED:
  2060. *deferred_compaction = true;
  2061. /* fall-through */
  2062. case COMPACT_SKIPPED:
  2063. return NULL;
  2064. default:
  2065. break;
  2066. }
  2067. /*
  2068. * At least in one zone compaction wasn't deferred or skipped, so let's
  2069. * count a compaction stall
  2070. */
  2071. count_vm_event(COMPACTSTALL);
  2072. page = get_page_from_freelist(gfp_mask, order,
  2073. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2074. if (page) {
  2075. struct zone *zone = page_zone(page);
  2076. zone->compact_blockskip_flush = false;
  2077. compaction_defer_reset(zone, order, true);
  2078. count_vm_event(COMPACTSUCCESS);
  2079. return page;
  2080. }
  2081. /*
  2082. * It's bad if compaction run occurs and fails. The most likely reason
  2083. * is that pages exist, but not enough to satisfy watermarks.
  2084. */
  2085. count_vm_event(COMPACTFAIL);
  2086. cond_resched();
  2087. return NULL;
  2088. }
  2089. #else
  2090. static inline struct page *
  2091. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2092. int alloc_flags, const struct alloc_context *ac,
  2093. enum migrate_mode mode, int *contended_compaction,
  2094. bool *deferred_compaction)
  2095. {
  2096. return NULL;
  2097. }
  2098. #endif /* CONFIG_COMPACTION */
  2099. /* Perform direct synchronous page reclaim */
  2100. static int
  2101. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2102. const struct alloc_context *ac)
  2103. {
  2104. struct reclaim_state reclaim_state;
  2105. int progress;
  2106. cond_resched();
  2107. /* We now go into synchronous reclaim */
  2108. cpuset_memory_pressure_bump();
  2109. current->flags |= PF_MEMALLOC;
  2110. lockdep_set_current_reclaim_state(gfp_mask);
  2111. reclaim_state.reclaimed_slab = 0;
  2112. current->reclaim_state = &reclaim_state;
  2113. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2114. ac->nodemask);
  2115. current->reclaim_state = NULL;
  2116. lockdep_clear_current_reclaim_state();
  2117. current->flags &= ~PF_MEMALLOC;
  2118. cond_resched();
  2119. return progress;
  2120. }
  2121. /* The really slow allocator path where we enter direct reclaim */
  2122. static inline struct page *
  2123. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2124. int alloc_flags, const struct alloc_context *ac,
  2125. unsigned long *did_some_progress)
  2126. {
  2127. struct page *page = NULL;
  2128. bool drained = false;
  2129. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2130. if (unlikely(!(*did_some_progress)))
  2131. return NULL;
  2132. /* After successful reclaim, reconsider all zones for allocation */
  2133. if (IS_ENABLED(CONFIG_NUMA))
  2134. zlc_clear_zones_full(ac->zonelist);
  2135. retry:
  2136. page = get_page_from_freelist(gfp_mask, order,
  2137. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2138. /*
  2139. * If an allocation failed after direct reclaim, it could be because
  2140. * pages are pinned on the per-cpu lists. Drain them and try again
  2141. */
  2142. if (!page && !drained) {
  2143. drain_all_pages(NULL);
  2144. drained = true;
  2145. goto retry;
  2146. }
  2147. return page;
  2148. }
  2149. /*
  2150. * This is called in the allocator slow-path if the allocation request is of
  2151. * sufficient urgency to ignore watermarks and take other desperate measures
  2152. */
  2153. static inline struct page *
  2154. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2155. const struct alloc_context *ac)
  2156. {
  2157. struct page *page;
  2158. do {
  2159. page = get_page_from_freelist(gfp_mask, order,
  2160. ALLOC_NO_WATERMARKS, ac);
  2161. if (!page && gfp_mask & __GFP_NOFAIL)
  2162. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
  2163. HZ/50);
  2164. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2165. return page;
  2166. }
  2167. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2168. {
  2169. struct zoneref *z;
  2170. struct zone *zone;
  2171. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2172. ac->high_zoneidx, ac->nodemask)
  2173. wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
  2174. }
  2175. static inline int
  2176. gfp_to_alloc_flags(gfp_t gfp_mask)
  2177. {
  2178. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2179. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2180. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2181. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2182. /*
  2183. * The caller may dip into page reserves a bit more if the caller
  2184. * cannot run direct reclaim, or if the caller has realtime scheduling
  2185. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2186. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2187. */
  2188. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2189. if (atomic) {
  2190. /*
  2191. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2192. * if it can't schedule.
  2193. */
  2194. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2195. alloc_flags |= ALLOC_HARDER;
  2196. /*
  2197. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2198. * comment for __cpuset_node_allowed().
  2199. */
  2200. alloc_flags &= ~ALLOC_CPUSET;
  2201. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2202. alloc_flags |= ALLOC_HARDER;
  2203. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2204. if (gfp_mask & __GFP_MEMALLOC)
  2205. alloc_flags |= ALLOC_NO_WATERMARKS;
  2206. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2207. alloc_flags |= ALLOC_NO_WATERMARKS;
  2208. else if (!in_interrupt() &&
  2209. ((current->flags & PF_MEMALLOC) ||
  2210. unlikely(test_thread_flag(TIF_MEMDIE))))
  2211. alloc_flags |= ALLOC_NO_WATERMARKS;
  2212. }
  2213. #ifdef CONFIG_CMA
  2214. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2215. alloc_flags |= ALLOC_CMA;
  2216. #endif
  2217. return alloc_flags;
  2218. }
  2219. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2220. {
  2221. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2222. }
  2223. static inline struct page *
  2224. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2225. struct alloc_context *ac)
  2226. {
  2227. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2228. struct page *page = NULL;
  2229. int alloc_flags;
  2230. unsigned long pages_reclaimed = 0;
  2231. unsigned long did_some_progress;
  2232. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2233. bool deferred_compaction = false;
  2234. int contended_compaction = COMPACT_CONTENDED_NONE;
  2235. /*
  2236. * In the slowpath, we sanity check order to avoid ever trying to
  2237. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2238. * be using allocators in order of preference for an area that is
  2239. * too large.
  2240. */
  2241. if (order >= MAX_ORDER) {
  2242. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2243. return NULL;
  2244. }
  2245. /*
  2246. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2247. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2248. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2249. * using a larger set of nodes after it has established that the
  2250. * allowed per node queues are empty and that nodes are
  2251. * over allocated.
  2252. */
  2253. if (IS_ENABLED(CONFIG_NUMA) &&
  2254. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2255. goto nopage;
  2256. retry:
  2257. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2258. wake_all_kswapds(order, ac);
  2259. /*
  2260. * OK, we're below the kswapd watermark and have kicked background
  2261. * reclaim. Now things get more complex, so set up alloc_flags according
  2262. * to how we want to proceed.
  2263. */
  2264. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2265. /*
  2266. * Find the true preferred zone if the allocation is unconstrained by
  2267. * cpusets.
  2268. */
  2269. if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
  2270. struct zoneref *preferred_zoneref;
  2271. preferred_zoneref = first_zones_zonelist(ac->zonelist,
  2272. ac->high_zoneidx, NULL, &ac->preferred_zone);
  2273. ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2274. }
  2275. /* This is the last chance, in general, before the goto nopage. */
  2276. page = get_page_from_freelist(gfp_mask, order,
  2277. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2278. if (page)
  2279. goto got_pg;
  2280. /* Allocate without watermarks if the context allows */
  2281. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2282. /*
  2283. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2284. * the allocation is high priority and these type of
  2285. * allocations are system rather than user orientated
  2286. */
  2287. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2288. page = __alloc_pages_high_priority(gfp_mask, order, ac);
  2289. if (page) {
  2290. goto got_pg;
  2291. }
  2292. }
  2293. /* Atomic allocations - we can't balance anything */
  2294. if (!wait) {
  2295. /*
  2296. * All existing users of the deprecated __GFP_NOFAIL are
  2297. * blockable, so warn of any new users that actually allow this
  2298. * type of allocation to fail.
  2299. */
  2300. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2301. goto nopage;
  2302. }
  2303. /* Avoid recursion of direct reclaim */
  2304. if (current->flags & PF_MEMALLOC)
  2305. goto nopage;
  2306. /* Avoid allocations with no watermarks from looping endlessly */
  2307. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2308. goto nopage;
  2309. /*
  2310. * Try direct compaction. The first pass is asynchronous. Subsequent
  2311. * attempts after direct reclaim are synchronous
  2312. */
  2313. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  2314. migration_mode,
  2315. &contended_compaction,
  2316. &deferred_compaction);
  2317. if (page)
  2318. goto got_pg;
  2319. /* Checks for THP-specific high-order allocations */
  2320. if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
  2321. /*
  2322. * If compaction is deferred for high-order allocations, it is
  2323. * because sync compaction recently failed. If this is the case
  2324. * and the caller requested a THP allocation, we do not want
  2325. * to heavily disrupt the system, so we fail the allocation
  2326. * instead of entering direct reclaim.
  2327. */
  2328. if (deferred_compaction)
  2329. goto nopage;
  2330. /*
  2331. * In all zones where compaction was attempted (and not
  2332. * deferred or skipped), lock contention has been detected.
  2333. * For THP allocation we do not want to disrupt the others
  2334. * so we fallback to base pages instead.
  2335. */
  2336. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2337. goto nopage;
  2338. /*
  2339. * If compaction was aborted due to need_resched(), we do not
  2340. * want to further increase allocation latency, unless it is
  2341. * khugepaged trying to collapse.
  2342. */
  2343. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2344. && !(current->flags & PF_KTHREAD))
  2345. goto nopage;
  2346. }
  2347. /*
  2348. * It can become very expensive to allocate transparent hugepages at
  2349. * fault, so use asynchronous memory compaction for THP unless it is
  2350. * khugepaged trying to collapse.
  2351. */
  2352. if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
  2353. (current->flags & PF_KTHREAD))
  2354. migration_mode = MIGRATE_SYNC_LIGHT;
  2355. /* Try direct reclaim and then allocating */
  2356. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  2357. &did_some_progress);
  2358. if (page)
  2359. goto got_pg;
  2360. /* Check if we should retry the allocation */
  2361. pages_reclaimed += did_some_progress;
  2362. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2363. pages_reclaimed)) {
  2364. /*
  2365. * If we fail to make progress by freeing individual
  2366. * pages, but the allocation wants us to keep going,
  2367. * start OOM killing tasks.
  2368. */
  2369. if (!did_some_progress) {
  2370. page = __alloc_pages_may_oom(gfp_mask, order, ac,
  2371. &did_some_progress);
  2372. if (page)
  2373. goto got_pg;
  2374. if (!did_some_progress)
  2375. goto nopage;
  2376. }
  2377. /* Wait for some write requests to complete then retry */
  2378. wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
  2379. goto retry;
  2380. } else {
  2381. /*
  2382. * High-order allocations do not necessarily loop after
  2383. * direct reclaim and reclaim/compaction depends on compaction
  2384. * being called after reclaim so call directly if necessary
  2385. */
  2386. page = __alloc_pages_direct_compact(gfp_mask, order,
  2387. alloc_flags, ac, migration_mode,
  2388. &contended_compaction,
  2389. &deferred_compaction);
  2390. if (page)
  2391. goto got_pg;
  2392. }
  2393. nopage:
  2394. warn_alloc_failed(gfp_mask, order, NULL);
  2395. got_pg:
  2396. return page;
  2397. }
  2398. /*
  2399. * This is the 'heart' of the zoned buddy allocator.
  2400. */
  2401. struct page *
  2402. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2403. struct zonelist *zonelist, nodemask_t *nodemask)
  2404. {
  2405. struct zoneref *preferred_zoneref;
  2406. struct page *page = NULL;
  2407. unsigned int cpuset_mems_cookie;
  2408. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2409. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  2410. struct alloc_context ac = {
  2411. .high_zoneidx = gfp_zone(gfp_mask),
  2412. .nodemask = nodemask,
  2413. .migratetype = gfpflags_to_migratetype(gfp_mask),
  2414. };
  2415. gfp_mask &= gfp_allowed_mask;
  2416. lockdep_trace_alloc(gfp_mask);
  2417. might_sleep_if(gfp_mask & __GFP_WAIT);
  2418. if (should_fail_alloc_page(gfp_mask, order))
  2419. return NULL;
  2420. /*
  2421. * Check the zones suitable for the gfp_mask contain at least one
  2422. * valid zone. It's possible to have an empty zonelist as a result
  2423. * of GFP_THISNODE and a memoryless node
  2424. */
  2425. if (unlikely(!zonelist->_zonerefs->zone))
  2426. return NULL;
  2427. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  2428. alloc_flags |= ALLOC_CMA;
  2429. retry_cpuset:
  2430. cpuset_mems_cookie = read_mems_allowed_begin();
  2431. /* We set it here, as __alloc_pages_slowpath might have changed it */
  2432. ac.zonelist = zonelist;
  2433. /* The preferred zone is used for statistics later */
  2434. preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
  2435. ac.nodemask ? : &cpuset_current_mems_allowed,
  2436. &ac.preferred_zone);
  2437. if (!ac.preferred_zone)
  2438. goto out;
  2439. ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2440. /* First allocation attempt */
  2441. alloc_mask = gfp_mask|__GFP_HARDWALL;
  2442. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  2443. if (unlikely(!page)) {
  2444. /*
  2445. * Runtime PM, block IO and its error handling path
  2446. * can deadlock because I/O on the device might not
  2447. * complete.
  2448. */
  2449. alloc_mask = memalloc_noio_flags(gfp_mask);
  2450. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  2451. }
  2452. if (kmemcheck_enabled && page)
  2453. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2454. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  2455. out:
  2456. /*
  2457. * When updating a task's mems_allowed, it is possible to race with
  2458. * parallel threads in such a way that an allocation can fail while
  2459. * the mask is being updated. If a page allocation is about to fail,
  2460. * check if the cpuset changed during allocation and if so, retry.
  2461. */
  2462. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2463. goto retry_cpuset;
  2464. return page;
  2465. }
  2466. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2467. /*
  2468. * Common helper functions.
  2469. */
  2470. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2471. {
  2472. struct page *page;
  2473. /*
  2474. * __get_free_pages() returns a 32-bit address, which cannot represent
  2475. * a highmem page
  2476. */
  2477. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2478. page = alloc_pages(gfp_mask, order);
  2479. if (!page)
  2480. return 0;
  2481. return (unsigned long) page_address(page);
  2482. }
  2483. EXPORT_SYMBOL(__get_free_pages);
  2484. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2485. {
  2486. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2487. }
  2488. EXPORT_SYMBOL(get_zeroed_page);
  2489. void __free_pages(struct page *page, unsigned int order)
  2490. {
  2491. if (put_page_testzero(page)) {
  2492. if (order == 0)
  2493. free_hot_cold_page(page, false);
  2494. else
  2495. __free_pages_ok(page, order);
  2496. }
  2497. }
  2498. EXPORT_SYMBOL(__free_pages);
  2499. void free_pages(unsigned long addr, unsigned int order)
  2500. {
  2501. if (addr != 0) {
  2502. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2503. __free_pages(virt_to_page((void *)addr), order);
  2504. }
  2505. }
  2506. EXPORT_SYMBOL(free_pages);
  2507. /*
  2508. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2509. * of the current memory cgroup.
  2510. *
  2511. * It should be used when the caller would like to use kmalloc, but since the
  2512. * allocation is large, it has to fall back to the page allocator.
  2513. */
  2514. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2515. {
  2516. struct page *page;
  2517. struct mem_cgroup *memcg = NULL;
  2518. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2519. return NULL;
  2520. page = alloc_pages(gfp_mask, order);
  2521. memcg_kmem_commit_charge(page, memcg, order);
  2522. return page;
  2523. }
  2524. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2525. {
  2526. struct page *page;
  2527. struct mem_cgroup *memcg = NULL;
  2528. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2529. return NULL;
  2530. page = alloc_pages_node(nid, gfp_mask, order);
  2531. memcg_kmem_commit_charge(page, memcg, order);
  2532. return page;
  2533. }
  2534. /*
  2535. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2536. * alloc_kmem_pages.
  2537. */
  2538. void __free_kmem_pages(struct page *page, unsigned int order)
  2539. {
  2540. memcg_kmem_uncharge_pages(page, order);
  2541. __free_pages(page, order);
  2542. }
  2543. void free_kmem_pages(unsigned long addr, unsigned int order)
  2544. {
  2545. if (addr != 0) {
  2546. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2547. __free_kmem_pages(virt_to_page((void *)addr), order);
  2548. }
  2549. }
  2550. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2551. {
  2552. if (addr) {
  2553. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2554. unsigned long used = addr + PAGE_ALIGN(size);
  2555. split_page(virt_to_page((void *)addr), order);
  2556. while (used < alloc_end) {
  2557. free_page(used);
  2558. used += PAGE_SIZE;
  2559. }
  2560. }
  2561. return (void *)addr;
  2562. }
  2563. /**
  2564. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2565. * @size: the number of bytes to allocate
  2566. * @gfp_mask: GFP flags for the allocation
  2567. *
  2568. * This function is similar to alloc_pages(), except that it allocates the
  2569. * minimum number of pages to satisfy the request. alloc_pages() can only
  2570. * allocate memory in power-of-two pages.
  2571. *
  2572. * This function is also limited by MAX_ORDER.
  2573. *
  2574. * Memory allocated by this function must be released by free_pages_exact().
  2575. */
  2576. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2577. {
  2578. unsigned int order = get_order(size);
  2579. unsigned long addr;
  2580. addr = __get_free_pages(gfp_mask, order);
  2581. return make_alloc_exact(addr, order, size);
  2582. }
  2583. EXPORT_SYMBOL(alloc_pages_exact);
  2584. /**
  2585. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2586. * pages on a node.
  2587. * @nid: the preferred node ID where memory should be allocated
  2588. * @size: the number of bytes to allocate
  2589. * @gfp_mask: GFP flags for the allocation
  2590. *
  2591. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2592. * back.
  2593. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2594. * but is not exact.
  2595. */
  2596. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2597. {
  2598. unsigned order = get_order(size);
  2599. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2600. if (!p)
  2601. return NULL;
  2602. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2603. }
  2604. /**
  2605. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2606. * @virt: the value returned by alloc_pages_exact.
  2607. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2608. *
  2609. * Release the memory allocated by a previous call to alloc_pages_exact.
  2610. */
  2611. void free_pages_exact(void *virt, size_t size)
  2612. {
  2613. unsigned long addr = (unsigned long)virt;
  2614. unsigned long end = addr + PAGE_ALIGN(size);
  2615. while (addr < end) {
  2616. free_page(addr);
  2617. addr += PAGE_SIZE;
  2618. }
  2619. }
  2620. EXPORT_SYMBOL(free_pages_exact);
  2621. /**
  2622. * nr_free_zone_pages - count number of pages beyond high watermark
  2623. * @offset: The zone index of the highest zone
  2624. *
  2625. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2626. * high watermark within all zones at or below a given zone index. For each
  2627. * zone, the number of pages is calculated as:
  2628. * managed_pages - high_pages
  2629. */
  2630. static unsigned long nr_free_zone_pages(int offset)
  2631. {
  2632. struct zoneref *z;
  2633. struct zone *zone;
  2634. /* Just pick one node, since fallback list is circular */
  2635. unsigned long sum = 0;
  2636. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2637. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2638. unsigned long size = zone->managed_pages;
  2639. unsigned long high = high_wmark_pages(zone);
  2640. if (size > high)
  2641. sum += size - high;
  2642. }
  2643. return sum;
  2644. }
  2645. /**
  2646. * nr_free_buffer_pages - count number of pages beyond high watermark
  2647. *
  2648. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2649. * watermark within ZONE_DMA and ZONE_NORMAL.
  2650. */
  2651. unsigned long nr_free_buffer_pages(void)
  2652. {
  2653. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2654. }
  2655. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2656. /**
  2657. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2658. *
  2659. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2660. * high watermark within all zones.
  2661. */
  2662. unsigned long nr_free_pagecache_pages(void)
  2663. {
  2664. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2665. }
  2666. static inline void show_node(struct zone *zone)
  2667. {
  2668. if (IS_ENABLED(CONFIG_NUMA))
  2669. printk("Node %d ", zone_to_nid(zone));
  2670. }
  2671. void si_meminfo(struct sysinfo *val)
  2672. {
  2673. val->totalram = totalram_pages;
  2674. val->sharedram = global_page_state(NR_SHMEM);
  2675. val->freeram = global_page_state(NR_FREE_PAGES);
  2676. val->bufferram = nr_blockdev_pages();
  2677. val->totalhigh = totalhigh_pages;
  2678. val->freehigh = nr_free_highpages();
  2679. val->mem_unit = PAGE_SIZE;
  2680. }
  2681. EXPORT_SYMBOL(si_meminfo);
  2682. #ifdef CONFIG_NUMA
  2683. void si_meminfo_node(struct sysinfo *val, int nid)
  2684. {
  2685. int zone_type; /* needs to be signed */
  2686. unsigned long managed_pages = 0;
  2687. pg_data_t *pgdat = NODE_DATA(nid);
  2688. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2689. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2690. val->totalram = managed_pages;
  2691. val->sharedram = node_page_state(nid, NR_SHMEM);
  2692. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2693. #ifdef CONFIG_HIGHMEM
  2694. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2695. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2696. NR_FREE_PAGES);
  2697. #else
  2698. val->totalhigh = 0;
  2699. val->freehigh = 0;
  2700. #endif
  2701. val->mem_unit = PAGE_SIZE;
  2702. }
  2703. #endif
  2704. /*
  2705. * Determine whether the node should be displayed or not, depending on whether
  2706. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2707. */
  2708. bool skip_free_areas_node(unsigned int flags, int nid)
  2709. {
  2710. bool ret = false;
  2711. unsigned int cpuset_mems_cookie;
  2712. if (!(flags & SHOW_MEM_FILTER_NODES))
  2713. goto out;
  2714. do {
  2715. cpuset_mems_cookie = read_mems_allowed_begin();
  2716. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2717. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2718. out:
  2719. return ret;
  2720. }
  2721. #define K(x) ((x) << (PAGE_SHIFT-10))
  2722. static void show_migration_types(unsigned char type)
  2723. {
  2724. static const char types[MIGRATE_TYPES] = {
  2725. [MIGRATE_UNMOVABLE] = 'U',
  2726. [MIGRATE_RECLAIMABLE] = 'E',
  2727. [MIGRATE_MOVABLE] = 'M',
  2728. [MIGRATE_RESERVE] = 'R',
  2729. #ifdef CONFIG_CMA
  2730. [MIGRATE_CMA] = 'C',
  2731. #endif
  2732. #ifdef CONFIG_MEMORY_ISOLATION
  2733. [MIGRATE_ISOLATE] = 'I',
  2734. #endif
  2735. };
  2736. char tmp[MIGRATE_TYPES + 1];
  2737. char *p = tmp;
  2738. int i;
  2739. for (i = 0; i < MIGRATE_TYPES; i++) {
  2740. if (type & (1 << i))
  2741. *p++ = types[i];
  2742. }
  2743. *p = '\0';
  2744. printk("(%s) ", tmp);
  2745. }
  2746. /*
  2747. * Show free area list (used inside shift_scroll-lock stuff)
  2748. * We also calculate the percentage fragmentation. We do this by counting the
  2749. * memory on each free list with the exception of the first item on the list.
  2750. * Suppresses nodes that are not allowed by current's cpuset if
  2751. * SHOW_MEM_FILTER_NODES is passed.
  2752. */
  2753. void show_free_areas(unsigned int filter)
  2754. {
  2755. int cpu;
  2756. struct zone *zone;
  2757. for_each_populated_zone(zone) {
  2758. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2759. continue;
  2760. show_node(zone);
  2761. printk("%s per-cpu:\n", zone->name);
  2762. for_each_online_cpu(cpu) {
  2763. struct per_cpu_pageset *pageset;
  2764. pageset = per_cpu_ptr(zone->pageset, cpu);
  2765. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2766. cpu, pageset->pcp.high,
  2767. pageset->pcp.batch, pageset->pcp.count);
  2768. }
  2769. }
  2770. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2771. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2772. " unevictable:%lu"
  2773. " dirty:%lu writeback:%lu unstable:%lu\n"
  2774. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2775. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2776. " free_cma:%lu\n",
  2777. global_page_state(NR_ACTIVE_ANON),
  2778. global_page_state(NR_INACTIVE_ANON),
  2779. global_page_state(NR_ISOLATED_ANON),
  2780. global_page_state(NR_ACTIVE_FILE),
  2781. global_page_state(NR_INACTIVE_FILE),
  2782. global_page_state(NR_ISOLATED_FILE),
  2783. global_page_state(NR_UNEVICTABLE),
  2784. global_page_state(NR_FILE_DIRTY),
  2785. global_page_state(NR_WRITEBACK),
  2786. global_page_state(NR_UNSTABLE_NFS),
  2787. global_page_state(NR_FREE_PAGES),
  2788. global_page_state(NR_SLAB_RECLAIMABLE),
  2789. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2790. global_page_state(NR_FILE_MAPPED),
  2791. global_page_state(NR_SHMEM),
  2792. global_page_state(NR_PAGETABLE),
  2793. global_page_state(NR_BOUNCE),
  2794. global_page_state(NR_FREE_CMA_PAGES));
  2795. for_each_populated_zone(zone) {
  2796. int i;
  2797. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2798. continue;
  2799. show_node(zone);
  2800. printk("%s"
  2801. " free:%lukB"
  2802. " min:%lukB"
  2803. " low:%lukB"
  2804. " high:%lukB"
  2805. " active_anon:%lukB"
  2806. " inactive_anon:%lukB"
  2807. " active_file:%lukB"
  2808. " inactive_file:%lukB"
  2809. " unevictable:%lukB"
  2810. " isolated(anon):%lukB"
  2811. " isolated(file):%lukB"
  2812. " present:%lukB"
  2813. " managed:%lukB"
  2814. " mlocked:%lukB"
  2815. " dirty:%lukB"
  2816. " writeback:%lukB"
  2817. " mapped:%lukB"
  2818. " shmem:%lukB"
  2819. " slab_reclaimable:%lukB"
  2820. " slab_unreclaimable:%lukB"
  2821. " kernel_stack:%lukB"
  2822. " pagetables:%lukB"
  2823. " unstable:%lukB"
  2824. " bounce:%lukB"
  2825. " free_cma:%lukB"
  2826. " writeback_tmp:%lukB"
  2827. " pages_scanned:%lu"
  2828. " all_unreclaimable? %s"
  2829. "\n",
  2830. zone->name,
  2831. K(zone_page_state(zone, NR_FREE_PAGES)),
  2832. K(min_wmark_pages(zone)),
  2833. K(low_wmark_pages(zone)),
  2834. K(high_wmark_pages(zone)),
  2835. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2836. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2837. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2838. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2839. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2840. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2841. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2842. K(zone->present_pages),
  2843. K(zone->managed_pages),
  2844. K(zone_page_state(zone, NR_MLOCK)),
  2845. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2846. K(zone_page_state(zone, NR_WRITEBACK)),
  2847. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2848. K(zone_page_state(zone, NR_SHMEM)),
  2849. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2850. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2851. zone_page_state(zone, NR_KERNEL_STACK) *
  2852. THREAD_SIZE / 1024,
  2853. K(zone_page_state(zone, NR_PAGETABLE)),
  2854. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2855. K(zone_page_state(zone, NR_BOUNCE)),
  2856. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2857. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2858. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  2859. (!zone_reclaimable(zone) ? "yes" : "no")
  2860. );
  2861. printk("lowmem_reserve[]:");
  2862. for (i = 0; i < MAX_NR_ZONES; i++)
  2863. printk(" %ld", zone->lowmem_reserve[i]);
  2864. printk("\n");
  2865. }
  2866. for_each_populated_zone(zone) {
  2867. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2868. unsigned char types[MAX_ORDER];
  2869. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2870. continue;
  2871. show_node(zone);
  2872. printk("%s: ", zone->name);
  2873. spin_lock_irqsave(&zone->lock, flags);
  2874. for (order = 0; order < MAX_ORDER; order++) {
  2875. struct free_area *area = &zone->free_area[order];
  2876. int type;
  2877. nr[order] = area->nr_free;
  2878. total += nr[order] << order;
  2879. types[order] = 0;
  2880. for (type = 0; type < MIGRATE_TYPES; type++) {
  2881. if (!list_empty(&area->free_list[type]))
  2882. types[order] |= 1 << type;
  2883. }
  2884. }
  2885. spin_unlock_irqrestore(&zone->lock, flags);
  2886. for (order = 0; order < MAX_ORDER; order++) {
  2887. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2888. if (nr[order])
  2889. show_migration_types(types[order]);
  2890. }
  2891. printk("= %lukB\n", K(total));
  2892. }
  2893. hugetlb_show_meminfo();
  2894. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2895. show_swap_cache_info();
  2896. }
  2897. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2898. {
  2899. zoneref->zone = zone;
  2900. zoneref->zone_idx = zone_idx(zone);
  2901. }
  2902. /*
  2903. * Builds allocation fallback zone lists.
  2904. *
  2905. * Add all populated zones of a node to the zonelist.
  2906. */
  2907. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2908. int nr_zones)
  2909. {
  2910. struct zone *zone;
  2911. enum zone_type zone_type = MAX_NR_ZONES;
  2912. do {
  2913. zone_type--;
  2914. zone = pgdat->node_zones + zone_type;
  2915. if (populated_zone(zone)) {
  2916. zoneref_set_zone(zone,
  2917. &zonelist->_zonerefs[nr_zones++]);
  2918. check_highest_zone(zone_type);
  2919. }
  2920. } while (zone_type);
  2921. return nr_zones;
  2922. }
  2923. /*
  2924. * zonelist_order:
  2925. * 0 = automatic detection of better ordering.
  2926. * 1 = order by ([node] distance, -zonetype)
  2927. * 2 = order by (-zonetype, [node] distance)
  2928. *
  2929. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2930. * the same zonelist. So only NUMA can configure this param.
  2931. */
  2932. #define ZONELIST_ORDER_DEFAULT 0
  2933. #define ZONELIST_ORDER_NODE 1
  2934. #define ZONELIST_ORDER_ZONE 2
  2935. /* zonelist order in the kernel.
  2936. * set_zonelist_order() will set this to NODE or ZONE.
  2937. */
  2938. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2939. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2940. #ifdef CONFIG_NUMA
  2941. /* The value user specified ....changed by config */
  2942. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2943. /* string for sysctl */
  2944. #define NUMA_ZONELIST_ORDER_LEN 16
  2945. char numa_zonelist_order[16] = "default";
  2946. /*
  2947. * interface for configure zonelist ordering.
  2948. * command line option "numa_zonelist_order"
  2949. * = "[dD]efault - default, automatic configuration.
  2950. * = "[nN]ode - order by node locality, then by zone within node
  2951. * = "[zZ]one - order by zone, then by locality within zone
  2952. */
  2953. static int __parse_numa_zonelist_order(char *s)
  2954. {
  2955. if (*s == 'd' || *s == 'D') {
  2956. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2957. } else if (*s == 'n' || *s == 'N') {
  2958. user_zonelist_order = ZONELIST_ORDER_NODE;
  2959. } else if (*s == 'z' || *s == 'Z') {
  2960. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2961. } else {
  2962. printk(KERN_WARNING
  2963. "Ignoring invalid numa_zonelist_order value: "
  2964. "%s\n", s);
  2965. return -EINVAL;
  2966. }
  2967. return 0;
  2968. }
  2969. static __init int setup_numa_zonelist_order(char *s)
  2970. {
  2971. int ret;
  2972. if (!s)
  2973. return 0;
  2974. ret = __parse_numa_zonelist_order(s);
  2975. if (ret == 0)
  2976. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2977. return ret;
  2978. }
  2979. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2980. /*
  2981. * sysctl handler for numa_zonelist_order
  2982. */
  2983. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  2984. void __user *buffer, size_t *length,
  2985. loff_t *ppos)
  2986. {
  2987. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2988. int ret;
  2989. static DEFINE_MUTEX(zl_order_mutex);
  2990. mutex_lock(&zl_order_mutex);
  2991. if (write) {
  2992. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2993. ret = -EINVAL;
  2994. goto out;
  2995. }
  2996. strcpy(saved_string, (char *)table->data);
  2997. }
  2998. ret = proc_dostring(table, write, buffer, length, ppos);
  2999. if (ret)
  3000. goto out;
  3001. if (write) {
  3002. int oldval = user_zonelist_order;
  3003. ret = __parse_numa_zonelist_order((char *)table->data);
  3004. if (ret) {
  3005. /*
  3006. * bogus value. restore saved string
  3007. */
  3008. strncpy((char *)table->data, saved_string,
  3009. NUMA_ZONELIST_ORDER_LEN);
  3010. user_zonelist_order = oldval;
  3011. } else if (oldval != user_zonelist_order) {
  3012. mutex_lock(&zonelists_mutex);
  3013. build_all_zonelists(NULL, NULL);
  3014. mutex_unlock(&zonelists_mutex);
  3015. }
  3016. }
  3017. out:
  3018. mutex_unlock(&zl_order_mutex);
  3019. return ret;
  3020. }
  3021. #define MAX_NODE_LOAD (nr_online_nodes)
  3022. static int node_load[MAX_NUMNODES];
  3023. /**
  3024. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3025. * @node: node whose fallback list we're appending
  3026. * @used_node_mask: nodemask_t of already used nodes
  3027. *
  3028. * We use a number of factors to determine which is the next node that should
  3029. * appear on a given node's fallback list. The node should not have appeared
  3030. * already in @node's fallback list, and it should be the next closest node
  3031. * according to the distance array (which contains arbitrary distance values
  3032. * from each node to each node in the system), and should also prefer nodes
  3033. * with no CPUs, since presumably they'll have very little allocation pressure
  3034. * on them otherwise.
  3035. * It returns -1 if no node is found.
  3036. */
  3037. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3038. {
  3039. int n, val;
  3040. int min_val = INT_MAX;
  3041. int best_node = NUMA_NO_NODE;
  3042. const struct cpumask *tmp = cpumask_of_node(0);
  3043. /* Use the local node if we haven't already */
  3044. if (!node_isset(node, *used_node_mask)) {
  3045. node_set(node, *used_node_mask);
  3046. return node;
  3047. }
  3048. for_each_node_state(n, N_MEMORY) {
  3049. /* Don't want a node to appear more than once */
  3050. if (node_isset(n, *used_node_mask))
  3051. continue;
  3052. /* Use the distance array to find the distance */
  3053. val = node_distance(node, n);
  3054. /* Penalize nodes under us ("prefer the next node") */
  3055. val += (n < node);
  3056. /* Give preference to headless and unused nodes */
  3057. tmp = cpumask_of_node(n);
  3058. if (!cpumask_empty(tmp))
  3059. val += PENALTY_FOR_NODE_WITH_CPUS;
  3060. /* Slight preference for less loaded node */
  3061. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3062. val += node_load[n];
  3063. if (val < min_val) {
  3064. min_val = val;
  3065. best_node = n;
  3066. }
  3067. }
  3068. if (best_node >= 0)
  3069. node_set(best_node, *used_node_mask);
  3070. return best_node;
  3071. }
  3072. /*
  3073. * Build zonelists ordered by node and zones within node.
  3074. * This results in maximum locality--normal zone overflows into local
  3075. * DMA zone, if any--but risks exhausting DMA zone.
  3076. */
  3077. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3078. {
  3079. int j;
  3080. struct zonelist *zonelist;
  3081. zonelist = &pgdat->node_zonelists[0];
  3082. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3083. ;
  3084. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3085. zonelist->_zonerefs[j].zone = NULL;
  3086. zonelist->_zonerefs[j].zone_idx = 0;
  3087. }
  3088. /*
  3089. * Build gfp_thisnode zonelists
  3090. */
  3091. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3092. {
  3093. int j;
  3094. struct zonelist *zonelist;
  3095. zonelist = &pgdat->node_zonelists[1];
  3096. j = build_zonelists_node(pgdat, zonelist, 0);
  3097. zonelist->_zonerefs[j].zone = NULL;
  3098. zonelist->_zonerefs[j].zone_idx = 0;
  3099. }
  3100. /*
  3101. * Build zonelists ordered by zone and nodes within zones.
  3102. * This results in conserving DMA zone[s] until all Normal memory is
  3103. * exhausted, but results in overflowing to remote node while memory
  3104. * may still exist in local DMA zone.
  3105. */
  3106. static int node_order[MAX_NUMNODES];
  3107. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3108. {
  3109. int pos, j, node;
  3110. int zone_type; /* needs to be signed */
  3111. struct zone *z;
  3112. struct zonelist *zonelist;
  3113. zonelist = &pgdat->node_zonelists[0];
  3114. pos = 0;
  3115. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3116. for (j = 0; j < nr_nodes; j++) {
  3117. node = node_order[j];
  3118. z = &NODE_DATA(node)->node_zones[zone_type];
  3119. if (populated_zone(z)) {
  3120. zoneref_set_zone(z,
  3121. &zonelist->_zonerefs[pos++]);
  3122. check_highest_zone(zone_type);
  3123. }
  3124. }
  3125. }
  3126. zonelist->_zonerefs[pos].zone = NULL;
  3127. zonelist->_zonerefs[pos].zone_idx = 0;
  3128. }
  3129. #if defined(CONFIG_64BIT)
  3130. /*
  3131. * Devices that require DMA32/DMA are relatively rare and do not justify a
  3132. * penalty to every machine in case the specialised case applies. Default
  3133. * to Node-ordering on 64-bit NUMA machines
  3134. */
  3135. static int default_zonelist_order(void)
  3136. {
  3137. return ZONELIST_ORDER_NODE;
  3138. }
  3139. #else
  3140. /*
  3141. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  3142. * by the kernel. If processes running on node 0 deplete the low memory zone
  3143. * then reclaim will occur more frequency increasing stalls and potentially
  3144. * be easier to OOM if a large percentage of the zone is under writeback or
  3145. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  3146. * Hence, default to zone ordering on 32-bit.
  3147. */
  3148. static int default_zonelist_order(void)
  3149. {
  3150. return ZONELIST_ORDER_ZONE;
  3151. }
  3152. #endif /* CONFIG_64BIT */
  3153. static void set_zonelist_order(void)
  3154. {
  3155. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3156. current_zonelist_order = default_zonelist_order();
  3157. else
  3158. current_zonelist_order = user_zonelist_order;
  3159. }
  3160. static void build_zonelists(pg_data_t *pgdat)
  3161. {
  3162. int j, node, load;
  3163. enum zone_type i;
  3164. nodemask_t used_mask;
  3165. int local_node, prev_node;
  3166. struct zonelist *zonelist;
  3167. int order = current_zonelist_order;
  3168. /* initialize zonelists */
  3169. for (i = 0; i < MAX_ZONELISTS; i++) {
  3170. zonelist = pgdat->node_zonelists + i;
  3171. zonelist->_zonerefs[0].zone = NULL;
  3172. zonelist->_zonerefs[0].zone_idx = 0;
  3173. }
  3174. /* NUMA-aware ordering of nodes */
  3175. local_node = pgdat->node_id;
  3176. load = nr_online_nodes;
  3177. prev_node = local_node;
  3178. nodes_clear(used_mask);
  3179. memset(node_order, 0, sizeof(node_order));
  3180. j = 0;
  3181. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3182. /*
  3183. * We don't want to pressure a particular node.
  3184. * So adding penalty to the first node in same
  3185. * distance group to make it round-robin.
  3186. */
  3187. if (node_distance(local_node, node) !=
  3188. node_distance(local_node, prev_node))
  3189. node_load[node] = load;
  3190. prev_node = node;
  3191. load--;
  3192. if (order == ZONELIST_ORDER_NODE)
  3193. build_zonelists_in_node_order(pgdat, node);
  3194. else
  3195. node_order[j++] = node; /* remember order */
  3196. }
  3197. if (order == ZONELIST_ORDER_ZONE) {
  3198. /* calculate node order -- i.e., DMA last! */
  3199. build_zonelists_in_zone_order(pgdat, j);
  3200. }
  3201. build_thisnode_zonelists(pgdat);
  3202. }
  3203. /* Construct the zonelist performance cache - see further mmzone.h */
  3204. static void build_zonelist_cache(pg_data_t *pgdat)
  3205. {
  3206. struct zonelist *zonelist;
  3207. struct zonelist_cache *zlc;
  3208. struct zoneref *z;
  3209. zonelist = &pgdat->node_zonelists[0];
  3210. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3211. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3212. for (z = zonelist->_zonerefs; z->zone; z++)
  3213. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3214. }
  3215. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3216. /*
  3217. * Return node id of node used for "local" allocations.
  3218. * I.e., first node id of first zone in arg node's generic zonelist.
  3219. * Used for initializing percpu 'numa_mem', which is used primarily
  3220. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3221. */
  3222. int local_memory_node(int node)
  3223. {
  3224. struct zone *zone;
  3225. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3226. gfp_zone(GFP_KERNEL),
  3227. NULL,
  3228. &zone);
  3229. return zone->node;
  3230. }
  3231. #endif
  3232. #else /* CONFIG_NUMA */
  3233. static void set_zonelist_order(void)
  3234. {
  3235. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3236. }
  3237. static void build_zonelists(pg_data_t *pgdat)
  3238. {
  3239. int node, local_node;
  3240. enum zone_type j;
  3241. struct zonelist *zonelist;
  3242. local_node = pgdat->node_id;
  3243. zonelist = &pgdat->node_zonelists[0];
  3244. j = build_zonelists_node(pgdat, zonelist, 0);
  3245. /*
  3246. * Now we build the zonelist so that it contains the zones
  3247. * of all the other nodes.
  3248. * We don't want to pressure a particular node, so when
  3249. * building the zones for node N, we make sure that the
  3250. * zones coming right after the local ones are those from
  3251. * node N+1 (modulo N)
  3252. */
  3253. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3254. if (!node_online(node))
  3255. continue;
  3256. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3257. }
  3258. for (node = 0; node < local_node; node++) {
  3259. if (!node_online(node))
  3260. continue;
  3261. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3262. }
  3263. zonelist->_zonerefs[j].zone = NULL;
  3264. zonelist->_zonerefs[j].zone_idx = 0;
  3265. }
  3266. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3267. static void build_zonelist_cache(pg_data_t *pgdat)
  3268. {
  3269. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3270. }
  3271. #endif /* CONFIG_NUMA */
  3272. /*
  3273. * Boot pageset table. One per cpu which is going to be used for all
  3274. * zones and all nodes. The parameters will be set in such a way
  3275. * that an item put on a list will immediately be handed over to
  3276. * the buddy list. This is safe since pageset manipulation is done
  3277. * with interrupts disabled.
  3278. *
  3279. * The boot_pagesets must be kept even after bootup is complete for
  3280. * unused processors and/or zones. They do play a role for bootstrapping
  3281. * hotplugged processors.
  3282. *
  3283. * zoneinfo_show() and maybe other functions do
  3284. * not check if the processor is online before following the pageset pointer.
  3285. * Other parts of the kernel may not check if the zone is available.
  3286. */
  3287. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3288. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3289. static void setup_zone_pageset(struct zone *zone);
  3290. /*
  3291. * Global mutex to protect against size modification of zonelists
  3292. * as well as to serialize pageset setup for the new populated zone.
  3293. */
  3294. DEFINE_MUTEX(zonelists_mutex);
  3295. /* return values int ....just for stop_machine() */
  3296. static int __build_all_zonelists(void *data)
  3297. {
  3298. int nid;
  3299. int cpu;
  3300. pg_data_t *self = data;
  3301. #ifdef CONFIG_NUMA
  3302. memset(node_load, 0, sizeof(node_load));
  3303. #endif
  3304. if (self && !node_online(self->node_id)) {
  3305. build_zonelists(self);
  3306. build_zonelist_cache(self);
  3307. }
  3308. for_each_online_node(nid) {
  3309. pg_data_t *pgdat = NODE_DATA(nid);
  3310. build_zonelists(pgdat);
  3311. build_zonelist_cache(pgdat);
  3312. }
  3313. /*
  3314. * Initialize the boot_pagesets that are going to be used
  3315. * for bootstrapping processors. The real pagesets for
  3316. * each zone will be allocated later when the per cpu
  3317. * allocator is available.
  3318. *
  3319. * boot_pagesets are used also for bootstrapping offline
  3320. * cpus if the system is already booted because the pagesets
  3321. * are needed to initialize allocators on a specific cpu too.
  3322. * F.e. the percpu allocator needs the page allocator which
  3323. * needs the percpu allocator in order to allocate its pagesets
  3324. * (a chicken-egg dilemma).
  3325. */
  3326. for_each_possible_cpu(cpu) {
  3327. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3328. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3329. /*
  3330. * We now know the "local memory node" for each node--
  3331. * i.e., the node of the first zone in the generic zonelist.
  3332. * Set up numa_mem percpu variable for on-line cpus. During
  3333. * boot, only the boot cpu should be on-line; we'll init the
  3334. * secondary cpus' numa_mem as they come on-line. During
  3335. * node/memory hotplug, we'll fixup all on-line cpus.
  3336. */
  3337. if (cpu_online(cpu))
  3338. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3339. #endif
  3340. }
  3341. return 0;
  3342. }
  3343. /*
  3344. * Called with zonelists_mutex held always
  3345. * unless system_state == SYSTEM_BOOTING.
  3346. */
  3347. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3348. {
  3349. set_zonelist_order();
  3350. if (system_state == SYSTEM_BOOTING) {
  3351. __build_all_zonelists(NULL);
  3352. mminit_verify_zonelist();
  3353. cpuset_init_current_mems_allowed();
  3354. } else {
  3355. #ifdef CONFIG_MEMORY_HOTPLUG
  3356. if (zone)
  3357. setup_zone_pageset(zone);
  3358. #endif
  3359. /* we have to stop all cpus to guarantee there is no user
  3360. of zonelist */
  3361. stop_machine(__build_all_zonelists, pgdat, NULL);
  3362. /* cpuset refresh routine should be here */
  3363. }
  3364. vm_total_pages = nr_free_pagecache_pages();
  3365. /*
  3366. * Disable grouping by mobility if the number of pages in the
  3367. * system is too low to allow the mechanism to work. It would be
  3368. * more accurate, but expensive to check per-zone. This check is
  3369. * made on memory-hotadd so a system can start with mobility
  3370. * disabled and enable it later
  3371. */
  3372. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3373. page_group_by_mobility_disabled = 1;
  3374. else
  3375. page_group_by_mobility_disabled = 0;
  3376. pr_info("Built %i zonelists in %s order, mobility grouping %s. "
  3377. "Total pages: %ld\n",
  3378. nr_online_nodes,
  3379. zonelist_order_name[current_zonelist_order],
  3380. page_group_by_mobility_disabled ? "off" : "on",
  3381. vm_total_pages);
  3382. #ifdef CONFIG_NUMA
  3383. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  3384. #endif
  3385. }
  3386. /*
  3387. * Helper functions to size the waitqueue hash table.
  3388. * Essentially these want to choose hash table sizes sufficiently
  3389. * large so that collisions trying to wait on pages are rare.
  3390. * But in fact, the number of active page waitqueues on typical
  3391. * systems is ridiculously low, less than 200. So this is even
  3392. * conservative, even though it seems large.
  3393. *
  3394. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3395. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3396. */
  3397. #define PAGES_PER_WAITQUEUE 256
  3398. #ifndef CONFIG_MEMORY_HOTPLUG
  3399. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3400. {
  3401. unsigned long size = 1;
  3402. pages /= PAGES_PER_WAITQUEUE;
  3403. while (size < pages)
  3404. size <<= 1;
  3405. /*
  3406. * Once we have dozens or even hundreds of threads sleeping
  3407. * on IO we've got bigger problems than wait queue collision.
  3408. * Limit the size of the wait table to a reasonable size.
  3409. */
  3410. size = min(size, 4096UL);
  3411. return max(size, 4UL);
  3412. }
  3413. #else
  3414. /*
  3415. * A zone's size might be changed by hot-add, so it is not possible to determine
  3416. * a suitable size for its wait_table. So we use the maximum size now.
  3417. *
  3418. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3419. *
  3420. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3421. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3422. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3423. *
  3424. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3425. * or more by the traditional way. (See above). It equals:
  3426. *
  3427. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3428. * ia64(16K page size) : = ( 8G + 4M)byte.
  3429. * powerpc (64K page size) : = (32G +16M)byte.
  3430. */
  3431. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3432. {
  3433. return 4096UL;
  3434. }
  3435. #endif
  3436. /*
  3437. * This is an integer logarithm so that shifts can be used later
  3438. * to extract the more random high bits from the multiplicative
  3439. * hash function before the remainder is taken.
  3440. */
  3441. static inline unsigned long wait_table_bits(unsigned long size)
  3442. {
  3443. return ffz(~size);
  3444. }
  3445. /*
  3446. * Check if a pageblock contains reserved pages
  3447. */
  3448. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3449. {
  3450. unsigned long pfn;
  3451. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3452. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3453. return 1;
  3454. }
  3455. return 0;
  3456. }
  3457. /*
  3458. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3459. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3460. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3461. * higher will lead to a bigger reserve which will get freed as contiguous
  3462. * blocks as reclaim kicks in
  3463. */
  3464. static void setup_zone_migrate_reserve(struct zone *zone)
  3465. {
  3466. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3467. struct page *page;
  3468. unsigned long block_migratetype;
  3469. int reserve;
  3470. int old_reserve;
  3471. /*
  3472. * Get the start pfn, end pfn and the number of blocks to reserve
  3473. * We have to be careful to be aligned to pageblock_nr_pages to
  3474. * make sure that we always check pfn_valid for the first page in
  3475. * the block.
  3476. */
  3477. start_pfn = zone->zone_start_pfn;
  3478. end_pfn = zone_end_pfn(zone);
  3479. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3480. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3481. pageblock_order;
  3482. /*
  3483. * Reserve blocks are generally in place to help high-order atomic
  3484. * allocations that are short-lived. A min_free_kbytes value that
  3485. * would result in more than 2 reserve blocks for atomic allocations
  3486. * is assumed to be in place to help anti-fragmentation for the
  3487. * future allocation of hugepages at runtime.
  3488. */
  3489. reserve = min(2, reserve);
  3490. old_reserve = zone->nr_migrate_reserve_block;
  3491. /* When memory hot-add, we almost always need to do nothing */
  3492. if (reserve == old_reserve)
  3493. return;
  3494. zone->nr_migrate_reserve_block = reserve;
  3495. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3496. if (!pfn_valid(pfn))
  3497. continue;
  3498. page = pfn_to_page(pfn);
  3499. /* Watch out for overlapping nodes */
  3500. if (page_to_nid(page) != zone_to_nid(zone))
  3501. continue;
  3502. block_migratetype = get_pageblock_migratetype(page);
  3503. /* Only test what is necessary when the reserves are not met */
  3504. if (reserve > 0) {
  3505. /*
  3506. * Blocks with reserved pages will never free, skip
  3507. * them.
  3508. */
  3509. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3510. if (pageblock_is_reserved(pfn, block_end_pfn))
  3511. continue;
  3512. /* If this block is reserved, account for it */
  3513. if (block_migratetype == MIGRATE_RESERVE) {
  3514. reserve--;
  3515. continue;
  3516. }
  3517. /* Suitable for reserving if this block is movable */
  3518. if (block_migratetype == MIGRATE_MOVABLE) {
  3519. set_pageblock_migratetype(page,
  3520. MIGRATE_RESERVE);
  3521. move_freepages_block(zone, page,
  3522. MIGRATE_RESERVE);
  3523. reserve--;
  3524. continue;
  3525. }
  3526. } else if (!old_reserve) {
  3527. /*
  3528. * At boot time we don't need to scan the whole zone
  3529. * for turning off MIGRATE_RESERVE.
  3530. */
  3531. break;
  3532. }
  3533. /*
  3534. * If the reserve is met and this is a previous reserved block,
  3535. * take it back
  3536. */
  3537. if (block_migratetype == MIGRATE_RESERVE) {
  3538. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3539. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3540. }
  3541. }
  3542. }
  3543. /*
  3544. * Initially all pages are reserved - free ones are freed
  3545. * up by free_all_bootmem() once the early boot process is
  3546. * done. Non-atomic initialization, single-pass.
  3547. */
  3548. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3549. unsigned long start_pfn, enum memmap_context context)
  3550. {
  3551. struct page *page;
  3552. unsigned long end_pfn = start_pfn + size;
  3553. unsigned long pfn;
  3554. struct zone *z;
  3555. if (highest_memmap_pfn < end_pfn - 1)
  3556. highest_memmap_pfn = end_pfn - 1;
  3557. z = &NODE_DATA(nid)->node_zones[zone];
  3558. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3559. /*
  3560. * There can be holes in boot-time mem_map[]s
  3561. * handed to this function. They do not
  3562. * exist on hotplugged memory.
  3563. */
  3564. if (context == MEMMAP_EARLY) {
  3565. if (!early_pfn_valid(pfn))
  3566. continue;
  3567. if (!early_pfn_in_nid(pfn, nid))
  3568. continue;
  3569. }
  3570. page = pfn_to_page(pfn);
  3571. set_page_links(page, zone, nid, pfn);
  3572. mminit_verify_page_links(page, zone, nid, pfn);
  3573. init_page_count(page);
  3574. page_mapcount_reset(page);
  3575. page_cpupid_reset_last(page);
  3576. SetPageReserved(page);
  3577. /*
  3578. * Mark the block movable so that blocks are reserved for
  3579. * movable at startup. This will force kernel allocations
  3580. * to reserve their blocks rather than leaking throughout
  3581. * the address space during boot when many long-lived
  3582. * kernel allocations are made. Later some blocks near
  3583. * the start are marked MIGRATE_RESERVE by
  3584. * setup_zone_migrate_reserve()
  3585. *
  3586. * bitmap is created for zone's valid pfn range. but memmap
  3587. * can be created for invalid pages (for alignment)
  3588. * check here not to call set_pageblock_migratetype() against
  3589. * pfn out of zone.
  3590. */
  3591. if ((z->zone_start_pfn <= pfn)
  3592. && (pfn < zone_end_pfn(z))
  3593. && !(pfn & (pageblock_nr_pages - 1)))
  3594. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3595. INIT_LIST_HEAD(&page->lru);
  3596. #ifdef WANT_PAGE_VIRTUAL
  3597. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3598. if (!is_highmem_idx(zone))
  3599. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3600. #endif
  3601. }
  3602. }
  3603. static void __meminit zone_init_free_lists(struct zone *zone)
  3604. {
  3605. unsigned int order, t;
  3606. for_each_migratetype_order(order, t) {
  3607. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3608. zone->free_area[order].nr_free = 0;
  3609. }
  3610. }
  3611. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3612. #define memmap_init(size, nid, zone, start_pfn) \
  3613. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3614. #endif
  3615. static int zone_batchsize(struct zone *zone)
  3616. {
  3617. #ifdef CONFIG_MMU
  3618. int batch;
  3619. /*
  3620. * The per-cpu-pages pools are set to around 1000th of the
  3621. * size of the zone. But no more than 1/2 of a meg.
  3622. *
  3623. * OK, so we don't know how big the cache is. So guess.
  3624. */
  3625. batch = zone->managed_pages / 1024;
  3626. if (batch * PAGE_SIZE > 512 * 1024)
  3627. batch = (512 * 1024) / PAGE_SIZE;
  3628. batch /= 4; /* We effectively *= 4 below */
  3629. if (batch < 1)
  3630. batch = 1;
  3631. /*
  3632. * Clamp the batch to a 2^n - 1 value. Having a power
  3633. * of 2 value was found to be more likely to have
  3634. * suboptimal cache aliasing properties in some cases.
  3635. *
  3636. * For example if 2 tasks are alternately allocating
  3637. * batches of pages, one task can end up with a lot
  3638. * of pages of one half of the possible page colors
  3639. * and the other with pages of the other colors.
  3640. */
  3641. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3642. return batch;
  3643. #else
  3644. /* The deferral and batching of frees should be suppressed under NOMMU
  3645. * conditions.
  3646. *
  3647. * The problem is that NOMMU needs to be able to allocate large chunks
  3648. * of contiguous memory as there's no hardware page translation to
  3649. * assemble apparent contiguous memory from discontiguous pages.
  3650. *
  3651. * Queueing large contiguous runs of pages for batching, however,
  3652. * causes the pages to actually be freed in smaller chunks. As there
  3653. * can be a significant delay between the individual batches being
  3654. * recycled, this leads to the once large chunks of space being
  3655. * fragmented and becoming unavailable for high-order allocations.
  3656. */
  3657. return 0;
  3658. #endif
  3659. }
  3660. /*
  3661. * pcp->high and pcp->batch values are related and dependent on one another:
  3662. * ->batch must never be higher then ->high.
  3663. * The following function updates them in a safe manner without read side
  3664. * locking.
  3665. *
  3666. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3667. * those fields changing asynchronously (acording the the above rule).
  3668. *
  3669. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3670. * outside of boot time (or some other assurance that no concurrent updaters
  3671. * exist).
  3672. */
  3673. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3674. unsigned long batch)
  3675. {
  3676. /* start with a fail safe value for batch */
  3677. pcp->batch = 1;
  3678. smp_wmb();
  3679. /* Update high, then batch, in order */
  3680. pcp->high = high;
  3681. smp_wmb();
  3682. pcp->batch = batch;
  3683. }
  3684. /* a companion to pageset_set_high() */
  3685. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3686. {
  3687. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3688. }
  3689. static void pageset_init(struct per_cpu_pageset *p)
  3690. {
  3691. struct per_cpu_pages *pcp;
  3692. int migratetype;
  3693. memset(p, 0, sizeof(*p));
  3694. pcp = &p->pcp;
  3695. pcp->count = 0;
  3696. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3697. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3698. }
  3699. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3700. {
  3701. pageset_init(p);
  3702. pageset_set_batch(p, batch);
  3703. }
  3704. /*
  3705. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3706. * to the value high for the pageset p.
  3707. */
  3708. static void pageset_set_high(struct per_cpu_pageset *p,
  3709. unsigned long high)
  3710. {
  3711. unsigned long batch = max(1UL, high / 4);
  3712. if ((high / 4) > (PAGE_SHIFT * 8))
  3713. batch = PAGE_SHIFT * 8;
  3714. pageset_update(&p->pcp, high, batch);
  3715. }
  3716. static void pageset_set_high_and_batch(struct zone *zone,
  3717. struct per_cpu_pageset *pcp)
  3718. {
  3719. if (percpu_pagelist_fraction)
  3720. pageset_set_high(pcp,
  3721. (zone->managed_pages /
  3722. percpu_pagelist_fraction));
  3723. else
  3724. pageset_set_batch(pcp, zone_batchsize(zone));
  3725. }
  3726. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3727. {
  3728. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3729. pageset_init(pcp);
  3730. pageset_set_high_and_batch(zone, pcp);
  3731. }
  3732. static void __meminit setup_zone_pageset(struct zone *zone)
  3733. {
  3734. int cpu;
  3735. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3736. for_each_possible_cpu(cpu)
  3737. zone_pageset_init(zone, cpu);
  3738. }
  3739. /*
  3740. * Allocate per cpu pagesets and initialize them.
  3741. * Before this call only boot pagesets were available.
  3742. */
  3743. void __init setup_per_cpu_pageset(void)
  3744. {
  3745. struct zone *zone;
  3746. for_each_populated_zone(zone)
  3747. setup_zone_pageset(zone);
  3748. }
  3749. static noinline __init_refok
  3750. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3751. {
  3752. int i;
  3753. size_t alloc_size;
  3754. /*
  3755. * The per-page waitqueue mechanism uses hashed waitqueues
  3756. * per zone.
  3757. */
  3758. zone->wait_table_hash_nr_entries =
  3759. wait_table_hash_nr_entries(zone_size_pages);
  3760. zone->wait_table_bits =
  3761. wait_table_bits(zone->wait_table_hash_nr_entries);
  3762. alloc_size = zone->wait_table_hash_nr_entries
  3763. * sizeof(wait_queue_head_t);
  3764. if (!slab_is_available()) {
  3765. zone->wait_table = (wait_queue_head_t *)
  3766. memblock_virt_alloc_node_nopanic(
  3767. alloc_size, zone->zone_pgdat->node_id);
  3768. } else {
  3769. /*
  3770. * This case means that a zone whose size was 0 gets new memory
  3771. * via memory hot-add.
  3772. * But it may be the case that a new node was hot-added. In
  3773. * this case vmalloc() will not be able to use this new node's
  3774. * memory - this wait_table must be initialized to use this new
  3775. * node itself as well.
  3776. * To use this new node's memory, further consideration will be
  3777. * necessary.
  3778. */
  3779. zone->wait_table = vmalloc(alloc_size);
  3780. }
  3781. if (!zone->wait_table)
  3782. return -ENOMEM;
  3783. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3784. init_waitqueue_head(zone->wait_table + i);
  3785. return 0;
  3786. }
  3787. static __meminit void zone_pcp_init(struct zone *zone)
  3788. {
  3789. /*
  3790. * per cpu subsystem is not up at this point. The following code
  3791. * relies on the ability of the linker to provide the
  3792. * offset of a (static) per cpu variable into the per cpu area.
  3793. */
  3794. zone->pageset = &boot_pageset;
  3795. if (populated_zone(zone))
  3796. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3797. zone->name, zone->present_pages,
  3798. zone_batchsize(zone));
  3799. }
  3800. int __meminit init_currently_empty_zone(struct zone *zone,
  3801. unsigned long zone_start_pfn,
  3802. unsigned long size,
  3803. enum memmap_context context)
  3804. {
  3805. struct pglist_data *pgdat = zone->zone_pgdat;
  3806. int ret;
  3807. ret = zone_wait_table_init(zone, size);
  3808. if (ret)
  3809. return ret;
  3810. pgdat->nr_zones = zone_idx(zone) + 1;
  3811. zone->zone_start_pfn = zone_start_pfn;
  3812. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3813. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3814. pgdat->node_id,
  3815. (unsigned long)zone_idx(zone),
  3816. zone_start_pfn, (zone_start_pfn + size));
  3817. zone_init_free_lists(zone);
  3818. return 0;
  3819. }
  3820. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3821. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3822. /*
  3823. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3824. */
  3825. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3826. {
  3827. unsigned long start_pfn, end_pfn;
  3828. int nid;
  3829. /*
  3830. * NOTE: The following SMP-unsafe globals are only used early in boot
  3831. * when the kernel is running single-threaded.
  3832. */
  3833. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3834. static int __meminitdata last_nid;
  3835. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3836. return last_nid;
  3837. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3838. if (nid != -1) {
  3839. last_start_pfn = start_pfn;
  3840. last_end_pfn = end_pfn;
  3841. last_nid = nid;
  3842. }
  3843. return nid;
  3844. }
  3845. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3846. int __meminit early_pfn_to_nid(unsigned long pfn)
  3847. {
  3848. int nid;
  3849. nid = __early_pfn_to_nid(pfn);
  3850. if (nid >= 0)
  3851. return nid;
  3852. /* just returns 0 */
  3853. return 0;
  3854. }
  3855. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3856. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3857. {
  3858. int nid;
  3859. nid = __early_pfn_to_nid(pfn);
  3860. if (nid >= 0 && nid != node)
  3861. return false;
  3862. return true;
  3863. }
  3864. #endif
  3865. /**
  3866. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3867. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3868. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3869. *
  3870. * If an architecture guarantees that all ranges registered contain no holes
  3871. * and may be freed, this this function may be used instead of calling
  3872. * memblock_free_early_nid() manually.
  3873. */
  3874. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3875. {
  3876. unsigned long start_pfn, end_pfn;
  3877. int i, this_nid;
  3878. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3879. start_pfn = min(start_pfn, max_low_pfn);
  3880. end_pfn = min(end_pfn, max_low_pfn);
  3881. if (start_pfn < end_pfn)
  3882. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3883. (end_pfn - start_pfn) << PAGE_SHIFT,
  3884. this_nid);
  3885. }
  3886. }
  3887. /**
  3888. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3889. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3890. *
  3891. * If an architecture guarantees that all ranges registered contain no holes and may
  3892. * be freed, this function may be used instead of calling memory_present() manually.
  3893. */
  3894. void __init sparse_memory_present_with_active_regions(int nid)
  3895. {
  3896. unsigned long start_pfn, end_pfn;
  3897. int i, this_nid;
  3898. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3899. memory_present(this_nid, start_pfn, end_pfn);
  3900. }
  3901. /**
  3902. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3903. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3904. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3905. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3906. *
  3907. * It returns the start and end page frame of a node based on information
  3908. * provided by memblock_set_node(). If called for a node
  3909. * with no available memory, a warning is printed and the start and end
  3910. * PFNs will be 0.
  3911. */
  3912. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3913. unsigned long *start_pfn, unsigned long *end_pfn)
  3914. {
  3915. unsigned long this_start_pfn, this_end_pfn;
  3916. int i;
  3917. *start_pfn = -1UL;
  3918. *end_pfn = 0;
  3919. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3920. *start_pfn = min(*start_pfn, this_start_pfn);
  3921. *end_pfn = max(*end_pfn, this_end_pfn);
  3922. }
  3923. if (*start_pfn == -1UL)
  3924. *start_pfn = 0;
  3925. }
  3926. /*
  3927. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3928. * assumption is made that zones within a node are ordered in monotonic
  3929. * increasing memory addresses so that the "highest" populated zone is used
  3930. */
  3931. static void __init find_usable_zone_for_movable(void)
  3932. {
  3933. int zone_index;
  3934. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3935. if (zone_index == ZONE_MOVABLE)
  3936. continue;
  3937. if (arch_zone_highest_possible_pfn[zone_index] >
  3938. arch_zone_lowest_possible_pfn[zone_index])
  3939. break;
  3940. }
  3941. VM_BUG_ON(zone_index == -1);
  3942. movable_zone = zone_index;
  3943. }
  3944. /*
  3945. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3946. * because it is sized independent of architecture. Unlike the other zones,
  3947. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3948. * in each node depending on the size of each node and how evenly kernelcore
  3949. * is distributed. This helper function adjusts the zone ranges
  3950. * provided by the architecture for a given node by using the end of the
  3951. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3952. * zones within a node are in order of monotonic increases memory addresses
  3953. */
  3954. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3955. unsigned long zone_type,
  3956. unsigned long node_start_pfn,
  3957. unsigned long node_end_pfn,
  3958. unsigned long *zone_start_pfn,
  3959. unsigned long *zone_end_pfn)
  3960. {
  3961. /* Only adjust if ZONE_MOVABLE is on this node */
  3962. if (zone_movable_pfn[nid]) {
  3963. /* Size ZONE_MOVABLE */
  3964. if (zone_type == ZONE_MOVABLE) {
  3965. *zone_start_pfn = zone_movable_pfn[nid];
  3966. *zone_end_pfn = min(node_end_pfn,
  3967. arch_zone_highest_possible_pfn[movable_zone]);
  3968. /* Adjust for ZONE_MOVABLE starting within this range */
  3969. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3970. *zone_end_pfn > zone_movable_pfn[nid]) {
  3971. *zone_end_pfn = zone_movable_pfn[nid];
  3972. /* Check if this whole range is within ZONE_MOVABLE */
  3973. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3974. *zone_start_pfn = *zone_end_pfn;
  3975. }
  3976. }
  3977. /*
  3978. * Return the number of pages a zone spans in a node, including holes
  3979. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3980. */
  3981. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3982. unsigned long zone_type,
  3983. unsigned long node_start_pfn,
  3984. unsigned long node_end_pfn,
  3985. unsigned long *ignored)
  3986. {
  3987. unsigned long zone_start_pfn, zone_end_pfn;
  3988. /* Get the start and end of the zone */
  3989. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3990. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3991. adjust_zone_range_for_zone_movable(nid, zone_type,
  3992. node_start_pfn, node_end_pfn,
  3993. &zone_start_pfn, &zone_end_pfn);
  3994. /* Check that this node has pages within the zone's required range */
  3995. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3996. return 0;
  3997. /* Move the zone boundaries inside the node if necessary */
  3998. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3999. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4000. /* Return the spanned pages */
  4001. return zone_end_pfn - zone_start_pfn;
  4002. }
  4003. /*
  4004. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4005. * then all holes in the requested range will be accounted for.
  4006. */
  4007. unsigned long __meminit __absent_pages_in_range(int nid,
  4008. unsigned long range_start_pfn,
  4009. unsigned long range_end_pfn)
  4010. {
  4011. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4012. unsigned long start_pfn, end_pfn;
  4013. int i;
  4014. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4015. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4016. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4017. nr_absent -= end_pfn - start_pfn;
  4018. }
  4019. return nr_absent;
  4020. }
  4021. /**
  4022. * absent_pages_in_range - Return number of page frames in holes within a range
  4023. * @start_pfn: The start PFN to start searching for holes
  4024. * @end_pfn: The end PFN to stop searching for holes
  4025. *
  4026. * It returns the number of pages frames in memory holes within a range.
  4027. */
  4028. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4029. unsigned long end_pfn)
  4030. {
  4031. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4032. }
  4033. /* Return the number of page frames in holes in a zone on a node */
  4034. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4035. unsigned long zone_type,
  4036. unsigned long node_start_pfn,
  4037. unsigned long node_end_pfn,
  4038. unsigned long *ignored)
  4039. {
  4040. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4041. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4042. unsigned long zone_start_pfn, zone_end_pfn;
  4043. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4044. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4045. adjust_zone_range_for_zone_movable(nid, zone_type,
  4046. node_start_pfn, node_end_pfn,
  4047. &zone_start_pfn, &zone_end_pfn);
  4048. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4049. }
  4050. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4051. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4052. unsigned long zone_type,
  4053. unsigned long node_start_pfn,
  4054. unsigned long node_end_pfn,
  4055. unsigned long *zones_size)
  4056. {
  4057. return zones_size[zone_type];
  4058. }
  4059. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4060. unsigned long zone_type,
  4061. unsigned long node_start_pfn,
  4062. unsigned long node_end_pfn,
  4063. unsigned long *zholes_size)
  4064. {
  4065. if (!zholes_size)
  4066. return 0;
  4067. return zholes_size[zone_type];
  4068. }
  4069. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4070. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4071. unsigned long node_start_pfn,
  4072. unsigned long node_end_pfn,
  4073. unsigned long *zones_size,
  4074. unsigned long *zholes_size)
  4075. {
  4076. unsigned long realtotalpages, totalpages = 0;
  4077. enum zone_type i;
  4078. for (i = 0; i < MAX_NR_ZONES; i++)
  4079. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4080. node_start_pfn,
  4081. node_end_pfn,
  4082. zones_size);
  4083. pgdat->node_spanned_pages = totalpages;
  4084. realtotalpages = totalpages;
  4085. for (i = 0; i < MAX_NR_ZONES; i++)
  4086. realtotalpages -=
  4087. zone_absent_pages_in_node(pgdat->node_id, i,
  4088. node_start_pfn, node_end_pfn,
  4089. zholes_size);
  4090. pgdat->node_present_pages = realtotalpages;
  4091. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4092. realtotalpages);
  4093. }
  4094. #ifndef CONFIG_SPARSEMEM
  4095. /*
  4096. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4097. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4098. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4099. * round what is now in bits to nearest long in bits, then return it in
  4100. * bytes.
  4101. */
  4102. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4103. {
  4104. unsigned long usemapsize;
  4105. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4106. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4107. usemapsize = usemapsize >> pageblock_order;
  4108. usemapsize *= NR_PAGEBLOCK_BITS;
  4109. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4110. return usemapsize / 8;
  4111. }
  4112. static void __init setup_usemap(struct pglist_data *pgdat,
  4113. struct zone *zone,
  4114. unsigned long zone_start_pfn,
  4115. unsigned long zonesize)
  4116. {
  4117. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4118. zone->pageblock_flags = NULL;
  4119. if (usemapsize)
  4120. zone->pageblock_flags =
  4121. memblock_virt_alloc_node_nopanic(usemapsize,
  4122. pgdat->node_id);
  4123. }
  4124. #else
  4125. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4126. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4127. #endif /* CONFIG_SPARSEMEM */
  4128. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4129. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4130. void __paginginit set_pageblock_order(void)
  4131. {
  4132. unsigned int order;
  4133. /* Check that pageblock_nr_pages has not already been setup */
  4134. if (pageblock_order)
  4135. return;
  4136. if (HPAGE_SHIFT > PAGE_SHIFT)
  4137. order = HUGETLB_PAGE_ORDER;
  4138. else
  4139. order = MAX_ORDER - 1;
  4140. /*
  4141. * Assume the largest contiguous order of interest is a huge page.
  4142. * This value may be variable depending on boot parameters on IA64 and
  4143. * powerpc.
  4144. */
  4145. pageblock_order = order;
  4146. }
  4147. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4148. /*
  4149. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4150. * is unused as pageblock_order is set at compile-time. See
  4151. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4152. * the kernel config
  4153. */
  4154. void __paginginit set_pageblock_order(void)
  4155. {
  4156. }
  4157. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4158. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4159. unsigned long present_pages)
  4160. {
  4161. unsigned long pages = spanned_pages;
  4162. /*
  4163. * Provide a more accurate estimation if there are holes within
  4164. * the zone and SPARSEMEM is in use. If there are holes within the
  4165. * zone, each populated memory region may cost us one or two extra
  4166. * memmap pages due to alignment because memmap pages for each
  4167. * populated regions may not naturally algined on page boundary.
  4168. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4169. */
  4170. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4171. IS_ENABLED(CONFIG_SPARSEMEM))
  4172. pages = present_pages;
  4173. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4174. }
  4175. /*
  4176. * Set up the zone data structures:
  4177. * - mark all pages reserved
  4178. * - mark all memory queues empty
  4179. * - clear the memory bitmaps
  4180. *
  4181. * NOTE: pgdat should get zeroed by caller.
  4182. */
  4183. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4184. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4185. unsigned long *zones_size, unsigned long *zholes_size)
  4186. {
  4187. enum zone_type j;
  4188. int nid = pgdat->node_id;
  4189. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4190. int ret;
  4191. pgdat_resize_init(pgdat);
  4192. #ifdef CONFIG_NUMA_BALANCING
  4193. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4194. pgdat->numabalancing_migrate_nr_pages = 0;
  4195. pgdat->numabalancing_migrate_next_window = jiffies;
  4196. #endif
  4197. init_waitqueue_head(&pgdat->kswapd_wait);
  4198. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4199. pgdat_page_ext_init(pgdat);
  4200. for (j = 0; j < MAX_NR_ZONES; j++) {
  4201. struct zone *zone = pgdat->node_zones + j;
  4202. unsigned long size, realsize, freesize, memmap_pages;
  4203. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4204. node_end_pfn, zones_size);
  4205. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4206. node_start_pfn,
  4207. node_end_pfn,
  4208. zholes_size);
  4209. /*
  4210. * Adjust freesize so that it accounts for how much memory
  4211. * is used by this zone for memmap. This affects the watermark
  4212. * and per-cpu initialisations
  4213. */
  4214. memmap_pages = calc_memmap_size(size, realsize);
  4215. if (!is_highmem_idx(j)) {
  4216. if (freesize >= memmap_pages) {
  4217. freesize -= memmap_pages;
  4218. if (memmap_pages)
  4219. printk(KERN_DEBUG
  4220. " %s zone: %lu pages used for memmap\n",
  4221. zone_names[j], memmap_pages);
  4222. } else
  4223. printk(KERN_WARNING
  4224. " %s zone: %lu pages exceeds freesize %lu\n",
  4225. zone_names[j], memmap_pages, freesize);
  4226. }
  4227. /* Account for reserved pages */
  4228. if (j == 0 && freesize > dma_reserve) {
  4229. freesize -= dma_reserve;
  4230. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4231. zone_names[0], dma_reserve);
  4232. }
  4233. if (!is_highmem_idx(j))
  4234. nr_kernel_pages += freesize;
  4235. /* Charge for highmem memmap if there are enough kernel pages */
  4236. else if (nr_kernel_pages > memmap_pages * 2)
  4237. nr_kernel_pages -= memmap_pages;
  4238. nr_all_pages += freesize;
  4239. zone->spanned_pages = size;
  4240. zone->present_pages = realsize;
  4241. /*
  4242. * Set an approximate value for lowmem here, it will be adjusted
  4243. * when the bootmem allocator frees pages into the buddy system.
  4244. * And all highmem pages will be managed by the buddy system.
  4245. */
  4246. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4247. #ifdef CONFIG_NUMA
  4248. zone->node = nid;
  4249. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4250. / 100;
  4251. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4252. #endif
  4253. zone->name = zone_names[j];
  4254. spin_lock_init(&zone->lock);
  4255. spin_lock_init(&zone->lru_lock);
  4256. zone_seqlock_init(zone);
  4257. zone->zone_pgdat = pgdat;
  4258. zone_pcp_init(zone);
  4259. /* For bootup, initialized properly in watermark setup */
  4260. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4261. lruvec_init(&zone->lruvec);
  4262. if (!size)
  4263. continue;
  4264. set_pageblock_order();
  4265. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4266. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4267. size, MEMMAP_EARLY);
  4268. BUG_ON(ret);
  4269. memmap_init(size, nid, j, zone_start_pfn);
  4270. zone_start_pfn += size;
  4271. }
  4272. }
  4273. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4274. {
  4275. /* Skip empty nodes */
  4276. if (!pgdat->node_spanned_pages)
  4277. return;
  4278. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4279. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4280. if (!pgdat->node_mem_map) {
  4281. unsigned long size, start, end;
  4282. struct page *map;
  4283. /*
  4284. * The zone's endpoints aren't required to be MAX_ORDER
  4285. * aligned but the node_mem_map endpoints must be in order
  4286. * for the buddy allocator to function correctly.
  4287. */
  4288. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4289. end = pgdat_end_pfn(pgdat);
  4290. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4291. size = (end - start) * sizeof(struct page);
  4292. map = alloc_remap(pgdat->node_id, size);
  4293. if (!map)
  4294. map = memblock_virt_alloc_node_nopanic(size,
  4295. pgdat->node_id);
  4296. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4297. }
  4298. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4299. /*
  4300. * With no DISCONTIG, the global mem_map is just set as node 0's
  4301. */
  4302. if (pgdat == NODE_DATA(0)) {
  4303. mem_map = NODE_DATA(0)->node_mem_map;
  4304. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4305. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4306. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4307. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4308. }
  4309. #endif
  4310. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4311. }
  4312. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4313. unsigned long node_start_pfn, unsigned long *zholes_size)
  4314. {
  4315. pg_data_t *pgdat = NODE_DATA(nid);
  4316. unsigned long start_pfn = 0;
  4317. unsigned long end_pfn = 0;
  4318. /* pg_data_t should be reset to zero when it's allocated */
  4319. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4320. pgdat->node_id = nid;
  4321. pgdat->node_start_pfn = node_start_pfn;
  4322. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4323. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4324. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  4325. (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
  4326. #endif
  4327. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4328. zones_size, zholes_size);
  4329. alloc_node_mem_map(pgdat);
  4330. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4331. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4332. nid, (unsigned long)pgdat,
  4333. (unsigned long)pgdat->node_mem_map);
  4334. #endif
  4335. free_area_init_core(pgdat, start_pfn, end_pfn,
  4336. zones_size, zholes_size);
  4337. }
  4338. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4339. #if MAX_NUMNODES > 1
  4340. /*
  4341. * Figure out the number of possible node ids.
  4342. */
  4343. void __init setup_nr_node_ids(void)
  4344. {
  4345. unsigned int node;
  4346. unsigned int highest = 0;
  4347. for_each_node_mask(node, node_possible_map)
  4348. highest = node;
  4349. nr_node_ids = highest + 1;
  4350. }
  4351. #endif
  4352. /**
  4353. * node_map_pfn_alignment - determine the maximum internode alignment
  4354. *
  4355. * This function should be called after node map is populated and sorted.
  4356. * It calculates the maximum power of two alignment which can distinguish
  4357. * all the nodes.
  4358. *
  4359. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4360. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4361. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4362. * shifted, 1GiB is enough and this function will indicate so.
  4363. *
  4364. * This is used to test whether pfn -> nid mapping of the chosen memory
  4365. * model has fine enough granularity to avoid incorrect mapping for the
  4366. * populated node map.
  4367. *
  4368. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4369. * requirement (single node).
  4370. */
  4371. unsigned long __init node_map_pfn_alignment(void)
  4372. {
  4373. unsigned long accl_mask = 0, last_end = 0;
  4374. unsigned long start, end, mask;
  4375. int last_nid = -1;
  4376. int i, nid;
  4377. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4378. if (!start || last_nid < 0 || last_nid == nid) {
  4379. last_nid = nid;
  4380. last_end = end;
  4381. continue;
  4382. }
  4383. /*
  4384. * Start with a mask granular enough to pin-point to the
  4385. * start pfn and tick off bits one-by-one until it becomes
  4386. * too coarse to separate the current node from the last.
  4387. */
  4388. mask = ~((1 << __ffs(start)) - 1);
  4389. while (mask && last_end <= (start & (mask << 1)))
  4390. mask <<= 1;
  4391. /* accumulate all internode masks */
  4392. accl_mask |= mask;
  4393. }
  4394. /* convert mask to number of pages */
  4395. return ~accl_mask + 1;
  4396. }
  4397. /* Find the lowest pfn for a node */
  4398. static unsigned long __init find_min_pfn_for_node(int nid)
  4399. {
  4400. unsigned long min_pfn = ULONG_MAX;
  4401. unsigned long start_pfn;
  4402. int i;
  4403. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4404. min_pfn = min(min_pfn, start_pfn);
  4405. if (min_pfn == ULONG_MAX) {
  4406. printk(KERN_WARNING
  4407. "Could not find start_pfn for node %d\n", nid);
  4408. return 0;
  4409. }
  4410. return min_pfn;
  4411. }
  4412. /**
  4413. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4414. *
  4415. * It returns the minimum PFN based on information provided via
  4416. * memblock_set_node().
  4417. */
  4418. unsigned long __init find_min_pfn_with_active_regions(void)
  4419. {
  4420. return find_min_pfn_for_node(MAX_NUMNODES);
  4421. }
  4422. /*
  4423. * early_calculate_totalpages()
  4424. * Sum pages in active regions for movable zone.
  4425. * Populate N_MEMORY for calculating usable_nodes.
  4426. */
  4427. static unsigned long __init early_calculate_totalpages(void)
  4428. {
  4429. unsigned long totalpages = 0;
  4430. unsigned long start_pfn, end_pfn;
  4431. int i, nid;
  4432. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4433. unsigned long pages = end_pfn - start_pfn;
  4434. totalpages += pages;
  4435. if (pages)
  4436. node_set_state(nid, N_MEMORY);
  4437. }
  4438. return totalpages;
  4439. }
  4440. /*
  4441. * Find the PFN the Movable zone begins in each node. Kernel memory
  4442. * is spread evenly between nodes as long as the nodes have enough
  4443. * memory. When they don't, some nodes will have more kernelcore than
  4444. * others
  4445. */
  4446. static void __init find_zone_movable_pfns_for_nodes(void)
  4447. {
  4448. int i, nid;
  4449. unsigned long usable_startpfn;
  4450. unsigned long kernelcore_node, kernelcore_remaining;
  4451. /* save the state before borrow the nodemask */
  4452. nodemask_t saved_node_state = node_states[N_MEMORY];
  4453. unsigned long totalpages = early_calculate_totalpages();
  4454. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4455. struct memblock_region *r;
  4456. /* Need to find movable_zone earlier when movable_node is specified. */
  4457. find_usable_zone_for_movable();
  4458. /*
  4459. * If movable_node is specified, ignore kernelcore and movablecore
  4460. * options.
  4461. */
  4462. if (movable_node_is_enabled()) {
  4463. for_each_memblock(memory, r) {
  4464. if (!memblock_is_hotpluggable(r))
  4465. continue;
  4466. nid = r->nid;
  4467. usable_startpfn = PFN_DOWN(r->base);
  4468. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4469. min(usable_startpfn, zone_movable_pfn[nid]) :
  4470. usable_startpfn;
  4471. }
  4472. goto out2;
  4473. }
  4474. /*
  4475. * If movablecore=nn[KMG] was specified, calculate what size of
  4476. * kernelcore that corresponds so that memory usable for
  4477. * any allocation type is evenly spread. If both kernelcore
  4478. * and movablecore are specified, then the value of kernelcore
  4479. * will be used for required_kernelcore if it's greater than
  4480. * what movablecore would have allowed.
  4481. */
  4482. if (required_movablecore) {
  4483. unsigned long corepages;
  4484. /*
  4485. * Round-up so that ZONE_MOVABLE is at least as large as what
  4486. * was requested by the user
  4487. */
  4488. required_movablecore =
  4489. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4490. corepages = totalpages - required_movablecore;
  4491. required_kernelcore = max(required_kernelcore, corepages);
  4492. }
  4493. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4494. if (!required_kernelcore)
  4495. goto out;
  4496. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4497. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4498. restart:
  4499. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4500. kernelcore_node = required_kernelcore / usable_nodes;
  4501. for_each_node_state(nid, N_MEMORY) {
  4502. unsigned long start_pfn, end_pfn;
  4503. /*
  4504. * Recalculate kernelcore_node if the division per node
  4505. * now exceeds what is necessary to satisfy the requested
  4506. * amount of memory for the kernel
  4507. */
  4508. if (required_kernelcore < kernelcore_node)
  4509. kernelcore_node = required_kernelcore / usable_nodes;
  4510. /*
  4511. * As the map is walked, we track how much memory is usable
  4512. * by the kernel using kernelcore_remaining. When it is
  4513. * 0, the rest of the node is usable by ZONE_MOVABLE
  4514. */
  4515. kernelcore_remaining = kernelcore_node;
  4516. /* Go through each range of PFNs within this node */
  4517. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4518. unsigned long size_pages;
  4519. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4520. if (start_pfn >= end_pfn)
  4521. continue;
  4522. /* Account for what is only usable for kernelcore */
  4523. if (start_pfn < usable_startpfn) {
  4524. unsigned long kernel_pages;
  4525. kernel_pages = min(end_pfn, usable_startpfn)
  4526. - start_pfn;
  4527. kernelcore_remaining -= min(kernel_pages,
  4528. kernelcore_remaining);
  4529. required_kernelcore -= min(kernel_pages,
  4530. required_kernelcore);
  4531. /* Continue if range is now fully accounted */
  4532. if (end_pfn <= usable_startpfn) {
  4533. /*
  4534. * Push zone_movable_pfn to the end so
  4535. * that if we have to rebalance
  4536. * kernelcore across nodes, we will
  4537. * not double account here
  4538. */
  4539. zone_movable_pfn[nid] = end_pfn;
  4540. continue;
  4541. }
  4542. start_pfn = usable_startpfn;
  4543. }
  4544. /*
  4545. * The usable PFN range for ZONE_MOVABLE is from
  4546. * start_pfn->end_pfn. Calculate size_pages as the
  4547. * number of pages used as kernelcore
  4548. */
  4549. size_pages = end_pfn - start_pfn;
  4550. if (size_pages > kernelcore_remaining)
  4551. size_pages = kernelcore_remaining;
  4552. zone_movable_pfn[nid] = start_pfn + size_pages;
  4553. /*
  4554. * Some kernelcore has been met, update counts and
  4555. * break if the kernelcore for this node has been
  4556. * satisfied
  4557. */
  4558. required_kernelcore -= min(required_kernelcore,
  4559. size_pages);
  4560. kernelcore_remaining -= size_pages;
  4561. if (!kernelcore_remaining)
  4562. break;
  4563. }
  4564. }
  4565. /*
  4566. * If there is still required_kernelcore, we do another pass with one
  4567. * less node in the count. This will push zone_movable_pfn[nid] further
  4568. * along on the nodes that still have memory until kernelcore is
  4569. * satisfied
  4570. */
  4571. usable_nodes--;
  4572. if (usable_nodes && required_kernelcore > usable_nodes)
  4573. goto restart;
  4574. out2:
  4575. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4576. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4577. zone_movable_pfn[nid] =
  4578. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4579. out:
  4580. /* restore the node_state */
  4581. node_states[N_MEMORY] = saved_node_state;
  4582. }
  4583. /* Any regular or high memory on that node ? */
  4584. static void check_for_memory(pg_data_t *pgdat, int nid)
  4585. {
  4586. enum zone_type zone_type;
  4587. if (N_MEMORY == N_NORMAL_MEMORY)
  4588. return;
  4589. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4590. struct zone *zone = &pgdat->node_zones[zone_type];
  4591. if (populated_zone(zone)) {
  4592. node_set_state(nid, N_HIGH_MEMORY);
  4593. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4594. zone_type <= ZONE_NORMAL)
  4595. node_set_state(nid, N_NORMAL_MEMORY);
  4596. break;
  4597. }
  4598. }
  4599. }
  4600. /**
  4601. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4602. * @max_zone_pfn: an array of max PFNs for each zone
  4603. *
  4604. * This will call free_area_init_node() for each active node in the system.
  4605. * Using the page ranges provided by memblock_set_node(), the size of each
  4606. * zone in each node and their holes is calculated. If the maximum PFN
  4607. * between two adjacent zones match, it is assumed that the zone is empty.
  4608. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4609. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4610. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4611. * at arch_max_dma_pfn.
  4612. */
  4613. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4614. {
  4615. unsigned long start_pfn, end_pfn;
  4616. int i, nid;
  4617. /* Record where the zone boundaries are */
  4618. memset(arch_zone_lowest_possible_pfn, 0,
  4619. sizeof(arch_zone_lowest_possible_pfn));
  4620. memset(arch_zone_highest_possible_pfn, 0,
  4621. sizeof(arch_zone_highest_possible_pfn));
  4622. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4623. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4624. for (i = 1; i < MAX_NR_ZONES; i++) {
  4625. if (i == ZONE_MOVABLE)
  4626. continue;
  4627. arch_zone_lowest_possible_pfn[i] =
  4628. arch_zone_highest_possible_pfn[i-1];
  4629. arch_zone_highest_possible_pfn[i] =
  4630. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4631. }
  4632. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4633. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4634. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4635. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4636. find_zone_movable_pfns_for_nodes();
  4637. /* Print out the zone ranges */
  4638. pr_info("Zone ranges:\n");
  4639. for (i = 0; i < MAX_NR_ZONES; i++) {
  4640. if (i == ZONE_MOVABLE)
  4641. continue;
  4642. pr_info(" %-8s ", zone_names[i]);
  4643. if (arch_zone_lowest_possible_pfn[i] ==
  4644. arch_zone_highest_possible_pfn[i])
  4645. pr_cont("empty\n");
  4646. else
  4647. pr_cont("[mem %#018Lx-%#018Lx]\n",
  4648. (u64)arch_zone_lowest_possible_pfn[i]
  4649. << PAGE_SHIFT,
  4650. ((u64)arch_zone_highest_possible_pfn[i]
  4651. << PAGE_SHIFT) - 1);
  4652. }
  4653. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4654. pr_info("Movable zone start for each node\n");
  4655. for (i = 0; i < MAX_NUMNODES; i++) {
  4656. if (zone_movable_pfn[i])
  4657. pr_info(" Node %d: %#018Lx\n", i,
  4658. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  4659. }
  4660. /* Print out the early node map */
  4661. pr_info("Early memory node ranges\n");
  4662. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4663. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  4664. (u64)start_pfn << PAGE_SHIFT,
  4665. ((u64)end_pfn << PAGE_SHIFT) - 1);
  4666. /* Initialise every node */
  4667. mminit_verify_pageflags_layout();
  4668. setup_nr_node_ids();
  4669. for_each_online_node(nid) {
  4670. pg_data_t *pgdat = NODE_DATA(nid);
  4671. free_area_init_node(nid, NULL,
  4672. find_min_pfn_for_node(nid), NULL);
  4673. /* Any memory on that node */
  4674. if (pgdat->node_present_pages)
  4675. node_set_state(nid, N_MEMORY);
  4676. check_for_memory(pgdat, nid);
  4677. }
  4678. }
  4679. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4680. {
  4681. unsigned long long coremem;
  4682. if (!p)
  4683. return -EINVAL;
  4684. coremem = memparse(p, &p);
  4685. *core = coremem >> PAGE_SHIFT;
  4686. /* Paranoid check that UL is enough for the coremem value */
  4687. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4688. return 0;
  4689. }
  4690. /*
  4691. * kernelcore=size sets the amount of memory for use for allocations that
  4692. * cannot be reclaimed or migrated.
  4693. */
  4694. static int __init cmdline_parse_kernelcore(char *p)
  4695. {
  4696. return cmdline_parse_core(p, &required_kernelcore);
  4697. }
  4698. /*
  4699. * movablecore=size sets the amount of memory for use for allocations that
  4700. * can be reclaimed or migrated.
  4701. */
  4702. static int __init cmdline_parse_movablecore(char *p)
  4703. {
  4704. return cmdline_parse_core(p, &required_movablecore);
  4705. }
  4706. early_param("kernelcore", cmdline_parse_kernelcore);
  4707. early_param("movablecore", cmdline_parse_movablecore);
  4708. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4709. void adjust_managed_page_count(struct page *page, long count)
  4710. {
  4711. spin_lock(&managed_page_count_lock);
  4712. page_zone(page)->managed_pages += count;
  4713. totalram_pages += count;
  4714. #ifdef CONFIG_HIGHMEM
  4715. if (PageHighMem(page))
  4716. totalhigh_pages += count;
  4717. #endif
  4718. spin_unlock(&managed_page_count_lock);
  4719. }
  4720. EXPORT_SYMBOL(adjust_managed_page_count);
  4721. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4722. {
  4723. void *pos;
  4724. unsigned long pages = 0;
  4725. start = (void *)PAGE_ALIGN((unsigned long)start);
  4726. end = (void *)((unsigned long)end & PAGE_MASK);
  4727. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4728. if ((unsigned int)poison <= 0xFF)
  4729. memset(pos, poison, PAGE_SIZE);
  4730. free_reserved_page(virt_to_page(pos));
  4731. }
  4732. if (pages && s)
  4733. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4734. s, pages << (PAGE_SHIFT - 10), start, end);
  4735. return pages;
  4736. }
  4737. EXPORT_SYMBOL(free_reserved_area);
  4738. #ifdef CONFIG_HIGHMEM
  4739. void free_highmem_page(struct page *page)
  4740. {
  4741. __free_reserved_page(page);
  4742. totalram_pages++;
  4743. page_zone(page)->managed_pages++;
  4744. totalhigh_pages++;
  4745. }
  4746. #endif
  4747. void __init mem_init_print_info(const char *str)
  4748. {
  4749. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4750. unsigned long init_code_size, init_data_size;
  4751. physpages = get_num_physpages();
  4752. codesize = _etext - _stext;
  4753. datasize = _edata - _sdata;
  4754. rosize = __end_rodata - __start_rodata;
  4755. bss_size = __bss_stop - __bss_start;
  4756. init_data_size = __init_end - __init_begin;
  4757. init_code_size = _einittext - _sinittext;
  4758. /*
  4759. * Detect special cases and adjust section sizes accordingly:
  4760. * 1) .init.* may be embedded into .data sections
  4761. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4762. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4763. * 3) .rodata.* may be embedded into .text or .data sections.
  4764. */
  4765. #define adj_init_size(start, end, size, pos, adj) \
  4766. do { \
  4767. if (start <= pos && pos < end && size > adj) \
  4768. size -= adj; \
  4769. } while (0)
  4770. adj_init_size(__init_begin, __init_end, init_data_size,
  4771. _sinittext, init_code_size);
  4772. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4773. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4774. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4775. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4776. #undef adj_init_size
  4777. pr_info("Memory: %luK/%luK available "
  4778. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4779. "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
  4780. #ifdef CONFIG_HIGHMEM
  4781. ", %luK highmem"
  4782. #endif
  4783. "%s%s)\n",
  4784. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4785. codesize >> 10, datasize >> 10, rosize >> 10,
  4786. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4787. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
  4788. totalcma_pages << (PAGE_SHIFT-10),
  4789. #ifdef CONFIG_HIGHMEM
  4790. totalhigh_pages << (PAGE_SHIFT-10),
  4791. #endif
  4792. str ? ", " : "", str ? str : "");
  4793. }
  4794. /**
  4795. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4796. * @new_dma_reserve: The number of pages to mark reserved
  4797. *
  4798. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4799. * In the DMA zone, a significant percentage may be consumed by kernel image
  4800. * and other unfreeable allocations which can skew the watermarks badly. This
  4801. * function may optionally be used to account for unfreeable pages in the
  4802. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4803. * smaller per-cpu batchsize.
  4804. */
  4805. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4806. {
  4807. dma_reserve = new_dma_reserve;
  4808. }
  4809. void __init free_area_init(unsigned long *zones_size)
  4810. {
  4811. free_area_init_node(0, zones_size,
  4812. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4813. }
  4814. static int page_alloc_cpu_notify(struct notifier_block *self,
  4815. unsigned long action, void *hcpu)
  4816. {
  4817. int cpu = (unsigned long)hcpu;
  4818. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4819. lru_add_drain_cpu(cpu);
  4820. drain_pages(cpu);
  4821. /*
  4822. * Spill the event counters of the dead processor
  4823. * into the current processors event counters.
  4824. * This artificially elevates the count of the current
  4825. * processor.
  4826. */
  4827. vm_events_fold_cpu(cpu);
  4828. /*
  4829. * Zero the differential counters of the dead processor
  4830. * so that the vm statistics are consistent.
  4831. *
  4832. * This is only okay since the processor is dead and cannot
  4833. * race with what we are doing.
  4834. */
  4835. cpu_vm_stats_fold(cpu);
  4836. }
  4837. return NOTIFY_OK;
  4838. }
  4839. void __init page_alloc_init(void)
  4840. {
  4841. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4842. }
  4843. /*
  4844. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4845. * or min_free_kbytes changes.
  4846. */
  4847. static void calculate_totalreserve_pages(void)
  4848. {
  4849. struct pglist_data *pgdat;
  4850. unsigned long reserve_pages = 0;
  4851. enum zone_type i, j;
  4852. for_each_online_pgdat(pgdat) {
  4853. for (i = 0; i < MAX_NR_ZONES; i++) {
  4854. struct zone *zone = pgdat->node_zones + i;
  4855. long max = 0;
  4856. /* Find valid and maximum lowmem_reserve in the zone */
  4857. for (j = i; j < MAX_NR_ZONES; j++) {
  4858. if (zone->lowmem_reserve[j] > max)
  4859. max = zone->lowmem_reserve[j];
  4860. }
  4861. /* we treat the high watermark as reserved pages. */
  4862. max += high_wmark_pages(zone);
  4863. if (max > zone->managed_pages)
  4864. max = zone->managed_pages;
  4865. reserve_pages += max;
  4866. /*
  4867. * Lowmem reserves are not available to
  4868. * GFP_HIGHUSER page cache allocations and
  4869. * kswapd tries to balance zones to their high
  4870. * watermark. As a result, neither should be
  4871. * regarded as dirtyable memory, to prevent a
  4872. * situation where reclaim has to clean pages
  4873. * in order to balance the zones.
  4874. */
  4875. zone->dirty_balance_reserve = max;
  4876. }
  4877. }
  4878. dirty_balance_reserve = reserve_pages;
  4879. totalreserve_pages = reserve_pages;
  4880. }
  4881. /*
  4882. * setup_per_zone_lowmem_reserve - called whenever
  4883. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4884. * has a correct pages reserved value, so an adequate number of
  4885. * pages are left in the zone after a successful __alloc_pages().
  4886. */
  4887. static void setup_per_zone_lowmem_reserve(void)
  4888. {
  4889. struct pglist_data *pgdat;
  4890. enum zone_type j, idx;
  4891. for_each_online_pgdat(pgdat) {
  4892. for (j = 0; j < MAX_NR_ZONES; j++) {
  4893. struct zone *zone = pgdat->node_zones + j;
  4894. unsigned long managed_pages = zone->managed_pages;
  4895. zone->lowmem_reserve[j] = 0;
  4896. idx = j;
  4897. while (idx) {
  4898. struct zone *lower_zone;
  4899. idx--;
  4900. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4901. sysctl_lowmem_reserve_ratio[idx] = 1;
  4902. lower_zone = pgdat->node_zones + idx;
  4903. lower_zone->lowmem_reserve[j] = managed_pages /
  4904. sysctl_lowmem_reserve_ratio[idx];
  4905. managed_pages += lower_zone->managed_pages;
  4906. }
  4907. }
  4908. }
  4909. /* update totalreserve_pages */
  4910. calculate_totalreserve_pages();
  4911. }
  4912. static void __setup_per_zone_wmarks(void)
  4913. {
  4914. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4915. unsigned long lowmem_pages = 0;
  4916. struct zone *zone;
  4917. unsigned long flags;
  4918. /* Calculate total number of !ZONE_HIGHMEM pages */
  4919. for_each_zone(zone) {
  4920. if (!is_highmem(zone))
  4921. lowmem_pages += zone->managed_pages;
  4922. }
  4923. for_each_zone(zone) {
  4924. u64 tmp;
  4925. spin_lock_irqsave(&zone->lock, flags);
  4926. tmp = (u64)pages_min * zone->managed_pages;
  4927. do_div(tmp, lowmem_pages);
  4928. if (is_highmem(zone)) {
  4929. /*
  4930. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4931. * need highmem pages, so cap pages_min to a small
  4932. * value here.
  4933. *
  4934. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4935. * deltas controls asynch page reclaim, and so should
  4936. * not be capped for highmem.
  4937. */
  4938. unsigned long min_pages;
  4939. min_pages = zone->managed_pages / 1024;
  4940. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4941. zone->watermark[WMARK_MIN] = min_pages;
  4942. } else {
  4943. /*
  4944. * If it's a lowmem zone, reserve a number of pages
  4945. * proportionate to the zone's size.
  4946. */
  4947. zone->watermark[WMARK_MIN] = tmp;
  4948. }
  4949. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4950. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4951. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4952. high_wmark_pages(zone) - low_wmark_pages(zone) -
  4953. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  4954. setup_zone_migrate_reserve(zone);
  4955. spin_unlock_irqrestore(&zone->lock, flags);
  4956. }
  4957. /* update totalreserve_pages */
  4958. calculate_totalreserve_pages();
  4959. }
  4960. /**
  4961. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4962. * or when memory is hot-{added|removed}
  4963. *
  4964. * Ensures that the watermark[min,low,high] values for each zone are set
  4965. * correctly with respect to min_free_kbytes.
  4966. */
  4967. void setup_per_zone_wmarks(void)
  4968. {
  4969. mutex_lock(&zonelists_mutex);
  4970. __setup_per_zone_wmarks();
  4971. mutex_unlock(&zonelists_mutex);
  4972. }
  4973. /*
  4974. * The inactive anon list should be small enough that the VM never has to
  4975. * do too much work, but large enough that each inactive page has a chance
  4976. * to be referenced again before it is swapped out.
  4977. *
  4978. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4979. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4980. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4981. * the anonymous pages are kept on the inactive list.
  4982. *
  4983. * total target max
  4984. * memory ratio inactive anon
  4985. * -------------------------------------
  4986. * 10MB 1 5MB
  4987. * 100MB 1 50MB
  4988. * 1GB 3 250MB
  4989. * 10GB 10 0.9GB
  4990. * 100GB 31 3GB
  4991. * 1TB 101 10GB
  4992. * 10TB 320 32GB
  4993. */
  4994. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4995. {
  4996. unsigned int gb, ratio;
  4997. /* Zone size in gigabytes */
  4998. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  4999. if (gb)
  5000. ratio = int_sqrt(10 * gb);
  5001. else
  5002. ratio = 1;
  5003. zone->inactive_ratio = ratio;
  5004. }
  5005. static void __meminit setup_per_zone_inactive_ratio(void)
  5006. {
  5007. struct zone *zone;
  5008. for_each_zone(zone)
  5009. calculate_zone_inactive_ratio(zone);
  5010. }
  5011. /*
  5012. * Initialise min_free_kbytes.
  5013. *
  5014. * For small machines we want it small (128k min). For large machines
  5015. * we want it large (64MB max). But it is not linear, because network
  5016. * bandwidth does not increase linearly with machine size. We use
  5017. *
  5018. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5019. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5020. *
  5021. * which yields
  5022. *
  5023. * 16MB: 512k
  5024. * 32MB: 724k
  5025. * 64MB: 1024k
  5026. * 128MB: 1448k
  5027. * 256MB: 2048k
  5028. * 512MB: 2896k
  5029. * 1024MB: 4096k
  5030. * 2048MB: 5792k
  5031. * 4096MB: 8192k
  5032. * 8192MB: 11584k
  5033. * 16384MB: 16384k
  5034. */
  5035. int __meminit init_per_zone_wmark_min(void)
  5036. {
  5037. unsigned long lowmem_kbytes;
  5038. int new_min_free_kbytes;
  5039. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5040. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5041. if (new_min_free_kbytes > user_min_free_kbytes) {
  5042. min_free_kbytes = new_min_free_kbytes;
  5043. if (min_free_kbytes < 128)
  5044. min_free_kbytes = 128;
  5045. if (min_free_kbytes > 65536)
  5046. min_free_kbytes = 65536;
  5047. } else {
  5048. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5049. new_min_free_kbytes, user_min_free_kbytes);
  5050. }
  5051. setup_per_zone_wmarks();
  5052. refresh_zone_stat_thresholds();
  5053. setup_per_zone_lowmem_reserve();
  5054. setup_per_zone_inactive_ratio();
  5055. return 0;
  5056. }
  5057. module_init(init_per_zone_wmark_min)
  5058. /*
  5059. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5060. * that we can call two helper functions whenever min_free_kbytes
  5061. * changes.
  5062. */
  5063. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5064. void __user *buffer, size_t *length, loff_t *ppos)
  5065. {
  5066. int rc;
  5067. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5068. if (rc)
  5069. return rc;
  5070. if (write) {
  5071. user_min_free_kbytes = min_free_kbytes;
  5072. setup_per_zone_wmarks();
  5073. }
  5074. return 0;
  5075. }
  5076. #ifdef CONFIG_NUMA
  5077. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5078. void __user *buffer, size_t *length, loff_t *ppos)
  5079. {
  5080. struct zone *zone;
  5081. int rc;
  5082. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5083. if (rc)
  5084. return rc;
  5085. for_each_zone(zone)
  5086. zone->min_unmapped_pages = (zone->managed_pages *
  5087. sysctl_min_unmapped_ratio) / 100;
  5088. return 0;
  5089. }
  5090. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5091. void __user *buffer, size_t *length, loff_t *ppos)
  5092. {
  5093. struct zone *zone;
  5094. int rc;
  5095. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5096. if (rc)
  5097. return rc;
  5098. for_each_zone(zone)
  5099. zone->min_slab_pages = (zone->managed_pages *
  5100. sysctl_min_slab_ratio) / 100;
  5101. return 0;
  5102. }
  5103. #endif
  5104. /*
  5105. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5106. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5107. * whenever sysctl_lowmem_reserve_ratio changes.
  5108. *
  5109. * The reserve ratio obviously has absolutely no relation with the
  5110. * minimum watermarks. The lowmem reserve ratio can only make sense
  5111. * if in function of the boot time zone sizes.
  5112. */
  5113. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5114. void __user *buffer, size_t *length, loff_t *ppos)
  5115. {
  5116. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5117. setup_per_zone_lowmem_reserve();
  5118. return 0;
  5119. }
  5120. /*
  5121. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5122. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5123. * pagelist can have before it gets flushed back to buddy allocator.
  5124. */
  5125. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5126. void __user *buffer, size_t *length, loff_t *ppos)
  5127. {
  5128. struct zone *zone;
  5129. int old_percpu_pagelist_fraction;
  5130. int ret;
  5131. mutex_lock(&pcp_batch_high_lock);
  5132. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5133. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5134. if (!write || ret < 0)
  5135. goto out;
  5136. /* Sanity checking to avoid pcp imbalance */
  5137. if (percpu_pagelist_fraction &&
  5138. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5139. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5140. ret = -EINVAL;
  5141. goto out;
  5142. }
  5143. /* No change? */
  5144. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5145. goto out;
  5146. for_each_populated_zone(zone) {
  5147. unsigned int cpu;
  5148. for_each_possible_cpu(cpu)
  5149. pageset_set_high_and_batch(zone,
  5150. per_cpu_ptr(zone->pageset, cpu));
  5151. }
  5152. out:
  5153. mutex_unlock(&pcp_batch_high_lock);
  5154. return ret;
  5155. }
  5156. int hashdist = HASHDIST_DEFAULT;
  5157. #ifdef CONFIG_NUMA
  5158. static int __init set_hashdist(char *str)
  5159. {
  5160. if (!str)
  5161. return 0;
  5162. hashdist = simple_strtoul(str, &str, 0);
  5163. return 1;
  5164. }
  5165. __setup("hashdist=", set_hashdist);
  5166. #endif
  5167. /*
  5168. * allocate a large system hash table from bootmem
  5169. * - it is assumed that the hash table must contain an exact power-of-2
  5170. * quantity of entries
  5171. * - limit is the number of hash buckets, not the total allocation size
  5172. */
  5173. void *__init alloc_large_system_hash(const char *tablename,
  5174. unsigned long bucketsize,
  5175. unsigned long numentries,
  5176. int scale,
  5177. int flags,
  5178. unsigned int *_hash_shift,
  5179. unsigned int *_hash_mask,
  5180. unsigned long low_limit,
  5181. unsigned long high_limit)
  5182. {
  5183. unsigned long long max = high_limit;
  5184. unsigned long log2qty, size;
  5185. void *table = NULL;
  5186. /* allow the kernel cmdline to have a say */
  5187. if (!numentries) {
  5188. /* round applicable memory size up to nearest megabyte */
  5189. numentries = nr_kernel_pages;
  5190. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5191. if (PAGE_SHIFT < 20)
  5192. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5193. /* limit to 1 bucket per 2^scale bytes of low memory */
  5194. if (scale > PAGE_SHIFT)
  5195. numentries >>= (scale - PAGE_SHIFT);
  5196. else
  5197. numentries <<= (PAGE_SHIFT - scale);
  5198. /* Make sure we've got at least a 0-order allocation.. */
  5199. if (unlikely(flags & HASH_SMALL)) {
  5200. /* Makes no sense without HASH_EARLY */
  5201. WARN_ON(!(flags & HASH_EARLY));
  5202. if (!(numentries >> *_hash_shift)) {
  5203. numentries = 1UL << *_hash_shift;
  5204. BUG_ON(!numentries);
  5205. }
  5206. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5207. numentries = PAGE_SIZE / bucketsize;
  5208. }
  5209. numentries = roundup_pow_of_two(numentries);
  5210. /* limit allocation size to 1/16 total memory by default */
  5211. if (max == 0) {
  5212. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5213. do_div(max, bucketsize);
  5214. }
  5215. max = min(max, 0x80000000ULL);
  5216. if (numentries < low_limit)
  5217. numentries = low_limit;
  5218. if (numentries > max)
  5219. numentries = max;
  5220. log2qty = ilog2(numentries);
  5221. do {
  5222. size = bucketsize << log2qty;
  5223. if (flags & HASH_EARLY)
  5224. table = memblock_virt_alloc_nopanic(size, 0);
  5225. else if (hashdist)
  5226. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5227. else {
  5228. /*
  5229. * If bucketsize is not a power-of-two, we may free
  5230. * some pages at the end of hash table which
  5231. * alloc_pages_exact() automatically does
  5232. */
  5233. if (get_order(size) < MAX_ORDER) {
  5234. table = alloc_pages_exact(size, GFP_ATOMIC);
  5235. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5236. }
  5237. }
  5238. } while (!table && size > PAGE_SIZE && --log2qty);
  5239. if (!table)
  5240. panic("Failed to allocate %s hash table\n", tablename);
  5241. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5242. tablename,
  5243. (1UL << log2qty),
  5244. ilog2(size) - PAGE_SHIFT,
  5245. size);
  5246. if (_hash_shift)
  5247. *_hash_shift = log2qty;
  5248. if (_hash_mask)
  5249. *_hash_mask = (1 << log2qty) - 1;
  5250. return table;
  5251. }
  5252. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5253. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5254. unsigned long pfn)
  5255. {
  5256. #ifdef CONFIG_SPARSEMEM
  5257. return __pfn_to_section(pfn)->pageblock_flags;
  5258. #else
  5259. return zone->pageblock_flags;
  5260. #endif /* CONFIG_SPARSEMEM */
  5261. }
  5262. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5263. {
  5264. #ifdef CONFIG_SPARSEMEM
  5265. pfn &= (PAGES_PER_SECTION-1);
  5266. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5267. #else
  5268. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5269. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5270. #endif /* CONFIG_SPARSEMEM */
  5271. }
  5272. /**
  5273. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5274. * @page: The page within the block of interest
  5275. * @pfn: The target page frame number
  5276. * @end_bitidx: The last bit of interest to retrieve
  5277. * @mask: mask of bits that the caller is interested in
  5278. *
  5279. * Return: pageblock_bits flags
  5280. */
  5281. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5282. unsigned long end_bitidx,
  5283. unsigned long mask)
  5284. {
  5285. struct zone *zone;
  5286. unsigned long *bitmap;
  5287. unsigned long bitidx, word_bitidx;
  5288. unsigned long word;
  5289. zone = page_zone(page);
  5290. bitmap = get_pageblock_bitmap(zone, pfn);
  5291. bitidx = pfn_to_bitidx(zone, pfn);
  5292. word_bitidx = bitidx / BITS_PER_LONG;
  5293. bitidx &= (BITS_PER_LONG-1);
  5294. word = bitmap[word_bitidx];
  5295. bitidx += end_bitidx;
  5296. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5297. }
  5298. /**
  5299. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5300. * @page: The page within the block of interest
  5301. * @flags: The flags to set
  5302. * @pfn: The target page frame number
  5303. * @end_bitidx: The last bit of interest
  5304. * @mask: mask of bits that the caller is interested in
  5305. */
  5306. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5307. unsigned long pfn,
  5308. unsigned long end_bitidx,
  5309. unsigned long mask)
  5310. {
  5311. struct zone *zone;
  5312. unsigned long *bitmap;
  5313. unsigned long bitidx, word_bitidx;
  5314. unsigned long old_word, word;
  5315. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5316. zone = page_zone(page);
  5317. bitmap = get_pageblock_bitmap(zone, pfn);
  5318. bitidx = pfn_to_bitidx(zone, pfn);
  5319. word_bitidx = bitidx / BITS_PER_LONG;
  5320. bitidx &= (BITS_PER_LONG-1);
  5321. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5322. bitidx += end_bitidx;
  5323. mask <<= (BITS_PER_LONG - bitidx - 1);
  5324. flags <<= (BITS_PER_LONG - bitidx - 1);
  5325. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5326. for (;;) {
  5327. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5328. if (word == old_word)
  5329. break;
  5330. word = old_word;
  5331. }
  5332. }
  5333. /*
  5334. * This function checks whether pageblock includes unmovable pages or not.
  5335. * If @count is not zero, it is okay to include less @count unmovable pages
  5336. *
  5337. * PageLRU check without isolation or lru_lock could race so that
  5338. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5339. * expect this function should be exact.
  5340. */
  5341. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5342. bool skip_hwpoisoned_pages)
  5343. {
  5344. unsigned long pfn, iter, found;
  5345. int mt;
  5346. /*
  5347. * For avoiding noise data, lru_add_drain_all() should be called
  5348. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5349. */
  5350. if (zone_idx(zone) == ZONE_MOVABLE)
  5351. return false;
  5352. mt = get_pageblock_migratetype(page);
  5353. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5354. return false;
  5355. pfn = page_to_pfn(page);
  5356. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5357. unsigned long check = pfn + iter;
  5358. if (!pfn_valid_within(check))
  5359. continue;
  5360. page = pfn_to_page(check);
  5361. /*
  5362. * Hugepages are not in LRU lists, but they're movable.
  5363. * We need not scan over tail pages bacause we don't
  5364. * handle each tail page individually in migration.
  5365. */
  5366. if (PageHuge(page)) {
  5367. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5368. continue;
  5369. }
  5370. /*
  5371. * We can't use page_count without pin a page
  5372. * because another CPU can free compound page.
  5373. * This check already skips compound tails of THP
  5374. * because their page->_count is zero at all time.
  5375. */
  5376. if (!atomic_read(&page->_count)) {
  5377. if (PageBuddy(page))
  5378. iter += (1 << page_order(page)) - 1;
  5379. continue;
  5380. }
  5381. /*
  5382. * The HWPoisoned page may be not in buddy system, and
  5383. * page_count() is not 0.
  5384. */
  5385. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5386. continue;
  5387. if (!PageLRU(page))
  5388. found++;
  5389. /*
  5390. * If there are RECLAIMABLE pages, we need to check
  5391. * it. But now, memory offline itself doesn't call
  5392. * shrink_node_slabs() and it still to be fixed.
  5393. */
  5394. /*
  5395. * If the page is not RAM, page_count()should be 0.
  5396. * we don't need more check. This is an _used_ not-movable page.
  5397. *
  5398. * The problematic thing here is PG_reserved pages. PG_reserved
  5399. * is set to both of a memory hole page and a _used_ kernel
  5400. * page at boot.
  5401. */
  5402. if (found > count)
  5403. return true;
  5404. }
  5405. return false;
  5406. }
  5407. bool is_pageblock_removable_nolock(struct page *page)
  5408. {
  5409. struct zone *zone;
  5410. unsigned long pfn;
  5411. /*
  5412. * We have to be careful here because we are iterating over memory
  5413. * sections which are not zone aware so we might end up outside of
  5414. * the zone but still within the section.
  5415. * We have to take care about the node as well. If the node is offline
  5416. * its NODE_DATA will be NULL - see page_zone.
  5417. */
  5418. if (!node_online(page_to_nid(page)))
  5419. return false;
  5420. zone = page_zone(page);
  5421. pfn = page_to_pfn(page);
  5422. if (!zone_spans_pfn(zone, pfn))
  5423. return false;
  5424. return !has_unmovable_pages(zone, page, 0, true);
  5425. }
  5426. #ifdef CONFIG_CMA
  5427. static unsigned long pfn_max_align_down(unsigned long pfn)
  5428. {
  5429. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5430. pageblock_nr_pages) - 1);
  5431. }
  5432. static unsigned long pfn_max_align_up(unsigned long pfn)
  5433. {
  5434. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5435. pageblock_nr_pages));
  5436. }
  5437. /* [start, end) must belong to a single zone. */
  5438. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5439. unsigned long start, unsigned long end)
  5440. {
  5441. /* This function is based on compact_zone() from compaction.c. */
  5442. unsigned long nr_reclaimed;
  5443. unsigned long pfn = start;
  5444. unsigned int tries = 0;
  5445. int ret = 0;
  5446. migrate_prep();
  5447. while (pfn < end || !list_empty(&cc->migratepages)) {
  5448. if (fatal_signal_pending(current)) {
  5449. ret = -EINTR;
  5450. break;
  5451. }
  5452. if (list_empty(&cc->migratepages)) {
  5453. cc->nr_migratepages = 0;
  5454. pfn = isolate_migratepages_range(cc, pfn, end);
  5455. if (!pfn) {
  5456. ret = -EINTR;
  5457. break;
  5458. }
  5459. tries = 0;
  5460. } else if (++tries == 5) {
  5461. ret = ret < 0 ? ret : -EBUSY;
  5462. break;
  5463. }
  5464. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5465. &cc->migratepages);
  5466. cc->nr_migratepages -= nr_reclaimed;
  5467. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5468. NULL, 0, cc->mode, MR_CMA);
  5469. }
  5470. if (ret < 0) {
  5471. putback_movable_pages(&cc->migratepages);
  5472. return ret;
  5473. }
  5474. return 0;
  5475. }
  5476. /**
  5477. * alloc_contig_range() -- tries to allocate given range of pages
  5478. * @start: start PFN to allocate
  5479. * @end: one-past-the-last PFN to allocate
  5480. * @migratetype: migratetype of the underlaying pageblocks (either
  5481. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5482. * in range must have the same migratetype and it must
  5483. * be either of the two.
  5484. *
  5485. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5486. * aligned, however it's the caller's responsibility to guarantee that
  5487. * we are the only thread that changes migrate type of pageblocks the
  5488. * pages fall in.
  5489. *
  5490. * The PFN range must belong to a single zone.
  5491. *
  5492. * Returns zero on success or negative error code. On success all
  5493. * pages which PFN is in [start, end) are allocated for the caller and
  5494. * need to be freed with free_contig_range().
  5495. */
  5496. int alloc_contig_range(unsigned long start, unsigned long end,
  5497. unsigned migratetype)
  5498. {
  5499. unsigned long outer_start, outer_end;
  5500. int ret = 0, order;
  5501. struct compact_control cc = {
  5502. .nr_migratepages = 0,
  5503. .order = -1,
  5504. .zone = page_zone(pfn_to_page(start)),
  5505. .mode = MIGRATE_SYNC,
  5506. .ignore_skip_hint = true,
  5507. };
  5508. INIT_LIST_HEAD(&cc.migratepages);
  5509. /*
  5510. * What we do here is we mark all pageblocks in range as
  5511. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5512. * have different sizes, and due to the way page allocator
  5513. * work, we align the range to biggest of the two pages so
  5514. * that page allocator won't try to merge buddies from
  5515. * different pageblocks and change MIGRATE_ISOLATE to some
  5516. * other migration type.
  5517. *
  5518. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5519. * migrate the pages from an unaligned range (ie. pages that
  5520. * we are interested in). This will put all the pages in
  5521. * range back to page allocator as MIGRATE_ISOLATE.
  5522. *
  5523. * When this is done, we take the pages in range from page
  5524. * allocator removing them from the buddy system. This way
  5525. * page allocator will never consider using them.
  5526. *
  5527. * This lets us mark the pageblocks back as
  5528. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5529. * aligned range but not in the unaligned, original range are
  5530. * put back to page allocator so that buddy can use them.
  5531. */
  5532. ret = start_isolate_page_range(pfn_max_align_down(start),
  5533. pfn_max_align_up(end), migratetype,
  5534. false);
  5535. if (ret)
  5536. return ret;
  5537. ret = __alloc_contig_migrate_range(&cc, start, end);
  5538. if (ret)
  5539. goto done;
  5540. /*
  5541. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5542. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5543. * more, all pages in [start, end) are free in page allocator.
  5544. * What we are going to do is to allocate all pages from
  5545. * [start, end) (that is remove them from page allocator).
  5546. *
  5547. * The only problem is that pages at the beginning and at the
  5548. * end of interesting range may be not aligned with pages that
  5549. * page allocator holds, ie. they can be part of higher order
  5550. * pages. Because of this, we reserve the bigger range and
  5551. * once this is done free the pages we are not interested in.
  5552. *
  5553. * We don't have to hold zone->lock here because the pages are
  5554. * isolated thus they won't get removed from buddy.
  5555. */
  5556. lru_add_drain_all();
  5557. drain_all_pages(cc.zone);
  5558. order = 0;
  5559. outer_start = start;
  5560. while (!PageBuddy(pfn_to_page(outer_start))) {
  5561. if (++order >= MAX_ORDER) {
  5562. ret = -EBUSY;
  5563. goto done;
  5564. }
  5565. outer_start &= ~0UL << order;
  5566. }
  5567. /* Make sure the range is really isolated. */
  5568. if (test_pages_isolated(outer_start, end, false)) {
  5569. pr_info("%s: [%lx, %lx) PFNs busy\n",
  5570. __func__, outer_start, end);
  5571. ret = -EBUSY;
  5572. goto done;
  5573. }
  5574. /* Grab isolated pages from freelists. */
  5575. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5576. if (!outer_end) {
  5577. ret = -EBUSY;
  5578. goto done;
  5579. }
  5580. /* Free head and tail (if any) */
  5581. if (start != outer_start)
  5582. free_contig_range(outer_start, start - outer_start);
  5583. if (end != outer_end)
  5584. free_contig_range(end, outer_end - end);
  5585. done:
  5586. undo_isolate_page_range(pfn_max_align_down(start),
  5587. pfn_max_align_up(end), migratetype);
  5588. return ret;
  5589. }
  5590. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5591. {
  5592. unsigned int count = 0;
  5593. for (; nr_pages--; pfn++) {
  5594. struct page *page = pfn_to_page(pfn);
  5595. count += page_count(page) != 1;
  5596. __free_page(page);
  5597. }
  5598. WARN(count != 0, "%d pages are still in use!\n", count);
  5599. }
  5600. #endif
  5601. #ifdef CONFIG_MEMORY_HOTPLUG
  5602. /*
  5603. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5604. * page high values need to be recalulated.
  5605. */
  5606. void __meminit zone_pcp_update(struct zone *zone)
  5607. {
  5608. unsigned cpu;
  5609. mutex_lock(&pcp_batch_high_lock);
  5610. for_each_possible_cpu(cpu)
  5611. pageset_set_high_and_batch(zone,
  5612. per_cpu_ptr(zone->pageset, cpu));
  5613. mutex_unlock(&pcp_batch_high_lock);
  5614. }
  5615. #endif
  5616. void zone_pcp_reset(struct zone *zone)
  5617. {
  5618. unsigned long flags;
  5619. int cpu;
  5620. struct per_cpu_pageset *pset;
  5621. /* avoid races with drain_pages() */
  5622. local_irq_save(flags);
  5623. if (zone->pageset != &boot_pageset) {
  5624. for_each_online_cpu(cpu) {
  5625. pset = per_cpu_ptr(zone->pageset, cpu);
  5626. drain_zonestat(zone, pset);
  5627. }
  5628. free_percpu(zone->pageset);
  5629. zone->pageset = &boot_pageset;
  5630. }
  5631. local_irq_restore(flags);
  5632. }
  5633. #ifdef CONFIG_MEMORY_HOTREMOVE
  5634. /*
  5635. * All pages in the range must be isolated before calling this.
  5636. */
  5637. void
  5638. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5639. {
  5640. struct page *page;
  5641. struct zone *zone;
  5642. unsigned int order, i;
  5643. unsigned long pfn;
  5644. unsigned long flags;
  5645. /* find the first valid pfn */
  5646. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5647. if (pfn_valid(pfn))
  5648. break;
  5649. if (pfn == end_pfn)
  5650. return;
  5651. zone = page_zone(pfn_to_page(pfn));
  5652. spin_lock_irqsave(&zone->lock, flags);
  5653. pfn = start_pfn;
  5654. while (pfn < end_pfn) {
  5655. if (!pfn_valid(pfn)) {
  5656. pfn++;
  5657. continue;
  5658. }
  5659. page = pfn_to_page(pfn);
  5660. /*
  5661. * The HWPoisoned page may be not in buddy system, and
  5662. * page_count() is not 0.
  5663. */
  5664. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5665. pfn++;
  5666. SetPageReserved(page);
  5667. continue;
  5668. }
  5669. BUG_ON(page_count(page));
  5670. BUG_ON(!PageBuddy(page));
  5671. order = page_order(page);
  5672. #ifdef CONFIG_DEBUG_VM
  5673. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5674. pfn, 1 << order, end_pfn);
  5675. #endif
  5676. list_del(&page->lru);
  5677. rmv_page_order(page);
  5678. zone->free_area[order].nr_free--;
  5679. for (i = 0; i < (1 << order); i++)
  5680. SetPageReserved((page+i));
  5681. pfn += (1 << order);
  5682. }
  5683. spin_unlock_irqrestore(&zone->lock, flags);
  5684. }
  5685. #endif
  5686. #ifdef CONFIG_MEMORY_FAILURE
  5687. bool is_free_buddy_page(struct page *page)
  5688. {
  5689. struct zone *zone = page_zone(page);
  5690. unsigned long pfn = page_to_pfn(page);
  5691. unsigned long flags;
  5692. unsigned int order;
  5693. spin_lock_irqsave(&zone->lock, flags);
  5694. for (order = 0; order < MAX_ORDER; order++) {
  5695. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5696. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5697. break;
  5698. }
  5699. spin_unlock_irqrestore(&zone->lock, flags);
  5700. return order < MAX_ORDER;
  5701. }
  5702. #endif