sched.h 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/sched/deadline.h>
  5. #include <linux/mutex.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/stop_machine.h>
  8. #include <linux/irq_work.h>
  9. #include <linux/tick.h>
  10. #include <linux/slab.h>
  11. #include "cpupri.h"
  12. #include "cpudeadline.h"
  13. #include "cpuacct.h"
  14. struct rq;
  15. struct cpuidle_state;
  16. /* task_struct::on_rq states: */
  17. #define TASK_ON_RQ_QUEUED 1
  18. #define TASK_ON_RQ_MIGRATING 2
  19. extern __read_mostly int scheduler_running;
  20. extern unsigned long calc_load_update;
  21. extern atomic_long_t calc_load_tasks;
  22. extern void calc_global_load_tick(struct rq *this_rq);
  23. extern long calc_load_fold_active(struct rq *this_rq);
  24. #ifdef CONFIG_SMP
  25. extern void update_cpu_load_active(struct rq *this_rq);
  26. #else
  27. static inline void update_cpu_load_active(struct rq *this_rq) { }
  28. #endif
  29. /*
  30. * Helpers for converting nanosecond timing to jiffy resolution
  31. */
  32. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  33. /*
  34. * Increase resolution of nice-level calculations for 64-bit architectures.
  35. * The extra resolution improves shares distribution and load balancing of
  36. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  37. * hierarchies, especially on larger systems. This is not a user-visible change
  38. * and does not change the user-interface for setting shares/weights.
  39. *
  40. * We increase resolution only if we have enough bits to allow this increased
  41. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  42. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  43. * increased costs.
  44. */
  45. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  46. # define SCHED_LOAD_RESOLUTION 10
  47. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  48. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  49. #else
  50. # define SCHED_LOAD_RESOLUTION 0
  51. # define scale_load(w) (w)
  52. # define scale_load_down(w) (w)
  53. #endif
  54. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  55. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  56. #define NICE_0_LOAD SCHED_LOAD_SCALE
  57. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  58. /*
  59. * Single value that decides SCHED_DEADLINE internal math precision.
  60. * 10 -> just above 1us
  61. * 9 -> just above 0.5us
  62. */
  63. #define DL_SCALE (10)
  64. /*
  65. * These are the 'tuning knobs' of the scheduler:
  66. */
  67. /*
  68. * single value that denotes runtime == period, ie unlimited time.
  69. */
  70. #define RUNTIME_INF ((u64)~0ULL)
  71. static inline int fair_policy(int policy)
  72. {
  73. return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  74. }
  75. static inline int rt_policy(int policy)
  76. {
  77. return policy == SCHED_FIFO || policy == SCHED_RR;
  78. }
  79. static inline int dl_policy(int policy)
  80. {
  81. return policy == SCHED_DEADLINE;
  82. }
  83. static inline int task_has_rt_policy(struct task_struct *p)
  84. {
  85. return rt_policy(p->policy);
  86. }
  87. static inline int task_has_dl_policy(struct task_struct *p)
  88. {
  89. return dl_policy(p->policy);
  90. }
  91. static inline bool dl_time_before(u64 a, u64 b)
  92. {
  93. return (s64)(a - b) < 0;
  94. }
  95. /*
  96. * Tells if entity @a should preempt entity @b.
  97. */
  98. static inline bool
  99. dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
  100. {
  101. return dl_time_before(a->deadline, b->deadline);
  102. }
  103. /*
  104. * This is the priority-queue data structure of the RT scheduling class:
  105. */
  106. struct rt_prio_array {
  107. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  108. struct list_head queue[MAX_RT_PRIO];
  109. };
  110. struct rt_bandwidth {
  111. /* nests inside the rq lock: */
  112. raw_spinlock_t rt_runtime_lock;
  113. ktime_t rt_period;
  114. u64 rt_runtime;
  115. struct hrtimer rt_period_timer;
  116. unsigned int rt_period_active;
  117. };
  118. void __dl_clear_params(struct task_struct *p);
  119. /*
  120. * To keep the bandwidth of -deadline tasks and groups under control
  121. * we need some place where:
  122. * - store the maximum -deadline bandwidth of the system (the group);
  123. * - cache the fraction of that bandwidth that is currently allocated.
  124. *
  125. * This is all done in the data structure below. It is similar to the
  126. * one used for RT-throttling (rt_bandwidth), with the main difference
  127. * that, since here we are only interested in admission control, we
  128. * do not decrease any runtime while the group "executes", neither we
  129. * need a timer to replenish it.
  130. *
  131. * With respect to SMP, the bandwidth is given on a per-CPU basis,
  132. * meaning that:
  133. * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
  134. * - dl_total_bw array contains, in the i-eth element, the currently
  135. * allocated bandwidth on the i-eth CPU.
  136. * Moreover, groups consume bandwidth on each CPU, while tasks only
  137. * consume bandwidth on the CPU they're running on.
  138. * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
  139. * that will be shown the next time the proc or cgroup controls will
  140. * be red. It on its turn can be changed by writing on its own
  141. * control.
  142. */
  143. struct dl_bandwidth {
  144. raw_spinlock_t dl_runtime_lock;
  145. u64 dl_runtime;
  146. u64 dl_period;
  147. };
  148. static inline int dl_bandwidth_enabled(void)
  149. {
  150. return sysctl_sched_rt_runtime >= 0;
  151. }
  152. extern struct dl_bw *dl_bw_of(int i);
  153. struct dl_bw {
  154. raw_spinlock_t lock;
  155. u64 bw, total_bw;
  156. };
  157. static inline
  158. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  159. {
  160. dl_b->total_bw -= tsk_bw;
  161. }
  162. static inline
  163. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  164. {
  165. dl_b->total_bw += tsk_bw;
  166. }
  167. static inline
  168. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  169. {
  170. return dl_b->bw != -1 &&
  171. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  172. }
  173. extern struct mutex sched_domains_mutex;
  174. #ifdef CONFIG_CGROUP_SCHED
  175. #include <linux/cgroup.h>
  176. struct cfs_rq;
  177. struct rt_rq;
  178. extern struct list_head task_groups;
  179. struct cfs_bandwidth {
  180. #ifdef CONFIG_CFS_BANDWIDTH
  181. raw_spinlock_t lock;
  182. ktime_t period;
  183. u64 quota, runtime;
  184. s64 hierarchical_quota;
  185. u64 runtime_expires;
  186. int idle, period_active;
  187. struct hrtimer period_timer, slack_timer;
  188. struct list_head throttled_cfs_rq;
  189. /* statistics */
  190. int nr_periods, nr_throttled;
  191. u64 throttled_time;
  192. #endif
  193. };
  194. /* task group related information */
  195. struct task_group {
  196. struct cgroup_subsys_state css;
  197. #ifdef CONFIG_FAIR_GROUP_SCHED
  198. /* schedulable entities of this group on each cpu */
  199. struct sched_entity **se;
  200. /* runqueue "owned" by this group on each cpu */
  201. struct cfs_rq **cfs_rq;
  202. unsigned long shares;
  203. #ifdef CONFIG_SMP
  204. atomic_long_t load_avg;
  205. atomic_t runnable_avg;
  206. #endif
  207. #endif
  208. #ifdef CONFIG_RT_GROUP_SCHED
  209. struct sched_rt_entity **rt_se;
  210. struct rt_rq **rt_rq;
  211. struct rt_bandwidth rt_bandwidth;
  212. #endif
  213. struct rcu_head rcu;
  214. struct list_head list;
  215. struct task_group *parent;
  216. struct list_head siblings;
  217. struct list_head children;
  218. #ifdef CONFIG_SCHED_AUTOGROUP
  219. struct autogroup *autogroup;
  220. #endif
  221. struct cfs_bandwidth cfs_bandwidth;
  222. };
  223. #ifdef CONFIG_FAIR_GROUP_SCHED
  224. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  225. /*
  226. * A weight of 0 or 1 can cause arithmetics problems.
  227. * A weight of a cfs_rq is the sum of weights of which entities
  228. * are queued on this cfs_rq, so a weight of a entity should not be
  229. * too large, so as the shares value of a task group.
  230. * (The default weight is 1024 - so there's no practical
  231. * limitation from this.)
  232. */
  233. #define MIN_SHARES (1UL << 1)
  234. #define MAX_SHARES (1UL << 18)
  235. #endif
  236. typedef int (*tg_visitor)(struct task_group *, void *);
  237. extern int walk_tg_tree_from(struct task_group *from,
  238. tg_visitor down, tg_visitor up, void *data);
  239. /*
  240. * Iterate the full tree, calling @down when first entering a node and @up when
  241. * leaving it for the final time.
  242. *
  243. * Caller must hold rcu_lock or sufficient equivalent.
  244. */
  245. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  246. {
  247. return walk_tg_tree_from(&root_task_group, down, up, data);
  248. }
  249. extern int tg_nop(struct task_group *tg, void *data);
  250. extern void free_fair_sched_group(struct task_group *tg);
  251. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  252. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  253. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  254. struct sched_entity *se, int cpu,
  255. struct sched_entity *parent);
  256. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  257. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  258. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  259. extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  260. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  261. extern void free_rt_sched_group(struct task_group *tg);
  262. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  263. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  264. struct sched_rt_entity *rt_se, int cpu,
  265. struct sched_rt_entity *parent);
  266. extern struct task_group *sched_create_group(struct task_group *parent);
  267. extern void sched_online_group(struct task_group *tg,
  268. struct task_group *parent);
  269. extern void sched_destroy_group(struct task_group *tg);
  270. extern void sched_offline_group(struct task_group *tg);
  271. extern void sched_move_task(struct task_struct *tsk);
  272. #ifdef CONFIG_FAIR_GROUP_SCHED
  273. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  274. #endif
  275. #else /* CONFIG_CGROUP_SCHED */
  276. struct cfs_bandwidth { };
  277. #endif /* CONFIG_CGROUP_SCHED */
  278. /* CFS-related fields in a runqueue */
  279. struct cfs_rq {
  280. struct load_weight load;
  281. unsigned int nr_running, h_nr_running;
  282. u64 exec_clock;
  283. u64 min_vruntime;
  284. #ifndef CONFIG_64BIT
  285. u64 min_vruntime_copy;
  286. #endif
  287. struct rb_root tasks_timeline;
  288. struct rb_node *rb_leftmost;
  289. /*
  290. * 'curr' points to currently running entity on this cfs_rq.
  291. * It is set to NULL otherwise (i.e when none are currently running).
  292. */
  293. struct sched_entity *curr, *next, *last, *skip;
  294. #ifdef CONFIG_SCHED_DEBUG
  295. unsigned int nr_spread_over;
  296. #endif
  297. #ifdef CONFIG_SMP
  298. /*
  299. * CFS Load tracking
  300. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  301. * This allows for the description of both thread and group usage (in
  302. * the FAIR_GROUP_SCHED case).
  303. * runnable_load_avg is the sum of the load_avg_contrib of the
  304. * sched_entities on the rq.
  305. * blocked_load_avg is similar to runnable_load_avg except that its
  306. * the blocked sched_entities on the rq.
  307. * utilization_load_avg is the sum of the average running time of the
  308. * sched_entities on the rq.
  309. */
  310. unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
  311. atomic64_t decay_counter;
  312. u64 last_decay;
  313. atomic_long_t removed_load;
  314. #ifdef CONFIG_FAIR_GROUP_SCHED
  315. /* Required to track per-cpu representation of a task_group */
  316. u32 tg_runnable_contrib;
  317. unsigned long tg_load_contrib;
  318. /*
  319. * h_load = weight * f(tg)
  320. *
  321. * Where f(tg) is the recursive weight fraction assigned to
  322. * this group.
  323. */
  324. unsigned long h_load;
  325. u64 last_h_load_update;
  326. struct sched_entity *h_load_next;
  327. #endif /* CONFIG_FAIR_GROUP_SCHED */
  328. #endif /* CONFIG_SMP */
  329. #ifdef CONFIG_FAIR_GROUP_SCHED
  330. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  331. /*
  332. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  333. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  334. * (like users, containers etc.)
  335. *
  336. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  337. * list is used during load balance.
  338. */
  339. int on_list;
  340. struct list_head leaf_cfs_rq_list;
  341. struct task_group *tg; /* group that "owns" this runqueue */
  342. #ifdef CONFIG_CFS_BANDWIDTH
  343. int runtime_enabled;
  344. u64 runtime_expires;
  345. s64 runtime_remaining;
  346. u64 throttled_clock, throttled_clock_task;
  347. u64 throttled_clock_task_time;
  348. int throttled, throttle_count;
  349. struct list_head throttled_list;
  350. #endif /* CONFIG_CFS_BANDWIDTH */
  351. #endif /* CONFIG_FAIR_GROUP_SCHED */
  352. };
  353. static inline int rt_bandwidth_enabled(void)
  354. {
  355. return sysctl_sched_rt_runtime >= 0;
  356. }
  357. /* RT IPI pull logic requires IRQ_WORK */
  358. #ifdef CONFIG_IRQ_WORK
  359. # define HAVE_RT_PUSH_IPI
  360. #endif
  361. /* Real-Time classes' related field in a runqueue: */
  362. struct rt_rq {
  363. struct rt_prio_array active;
  364. unsigned int rt_nr_running;
  365. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  366. struct {
  367. int curr; /* highest queued rt task prio */
  368. #ifdef CONFIG_SMP
  369. int next; /* next highest */
  370. #endif
  371. } highest_prio;
  372. #endif
  373. #ifdef CONFIG_SMP
  374. unsigned long rt_nr_migratory;
  375. unsigned long rt_nr_total;
  376. int overloaded;
  377. struct plist_head pushable_tasks;
  378. #ifdef HAVE_RT_PUSH_IPI
  379. int push_flags;
  380. int push_cpu;
  381. struct irq_work push_work;
  382. raw_spinlock_t push_lock;
  383. #endif
  384. #endif /* CONFIG_SMP */
  385. int rt_queued;
  386. int rt_throttled;
  387. u64 rt_time;
  388. u64 rt_runtime;
  389. /* Nests inside the rq lock: */
  390. raw_spinlock_t rt_runtime_lock;
  391. #ifdef CONFIG_RT_GROUP_SCHED
  392. unsigned long rt_nr_boosted;
  393. struct rq *rq;
  394. struct task_group *tg;
  395. #endif
  396. };
  397. /* Deadline class' related fields in a runqueue */
  398. struct dl_rq {
  399. /* runqueue is an rbtree, ordered by deadline */
  400. struct rb_root rb_root;
  401. struct rb_node *rb_leftmost;
  402. unsigned long dl_nr_running;
  403. #ifdef CONFIG_SMP
  404. /*
  405. * Deadline values of the currently executing and the
  406. * earliest ready task on this rq. Caching these facilitates
  407. * the decision wether or not a ready but not running task
  408. * should migrate somewhere else.
  409. */
  410. struct {
  411. u64 curr;
  412. u64 next;
  413. } earliest_dl;
  414. unsigned long dl_nr_migratory;
  415. int overloaded;
  416. /*
  417. * Tasks on this rq that can be pushed away. They are kept in
  418. * an rb-tree, ordered by tasks' deadlines, with caching
  419. * of the leftmost (earliest deadline) element.
  420. */
  421. struct rb_root pushable_dl_tasks_root;
  422. struct rb_node *pushable_dl_tasks_leftmost;
  423. #else
  424. struct dl_bw dl_bw;
  425. #endif
  426. };
  427. #ifdef CONFIG_SMP
  428. /*
  429. * We add the notion of a root-domain which will be used to define per-domain
  430. * variables. Each exclusive cpuset essentially defines an island domain by
  431. * fully partitioning the member cpus from any other cpuset. Whenever a new
  432. * exclusive cpuset is created, we also create and attach a new root-domain
  433. * object.
  434. *
  435. */
  436. struct root_domain {
  437. atomic_t refcount;
  438. atomic_t rto_count;
  439. struct rcu_head rcu;
  440. cpumask_var_t span;
  441. cpumask_var_t online;
  442. /* Indicate more than one runnable task for any CPU */
  443. bool overload;
  444. /*
  445. * The bit corresponding to a CPU gets set here if such CPU has more
  446. * than one runnable -deadline task (as it is below for RT tasks).
  447. */
  448. cpumask_var_t dlo_mask;
  449. atomic_t dlo_count;
  450. struct dl_bw dl_bw;
  451. struct cpudl cpudl;
  452. /*
  453. * The "RT overload" flag: it gets set if a CPU has more than
  454. * one runnable RT task.
  455. */
  456. cpumask_var_t rto_mask;
  457. struct cpupri cpupri;
  458. };
  459. extern struct root_domain def_root_domain;
  460. #endif /* CONFIG_SMP */
  461. /*
  462. * This is the main, per-CPU runqueue data structure.
  463. *
  464. * Locking rule: those places that want to lock multiple runqueues
  465. * (such as the load balancing or the thread migration code), lock
  466. * acquire operations must be ordered by ascending &runqueue.
  467. */
  468. struct rq {
  469. /* runqueue lock: */
  470. raw_spinlock_t lock;
  471. /*
  472. * nr_running and cpu_load should be in the same cacheline because
  473. * remote CPUs use both these fields when doing load calculation.
  474. */
  475. unsigned int nr_running;
  476. #ifdef CONFIG_NUMA_BALANCING
  477. unsigned int nr_numa_running;
  478. unsigned int nr_preferred_running;
  479. #endif
  480. #define CPU_LOAD_IDX_MAX 5
  481. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  482. unsigned long last_load_update_tick;
  483. #ifdef CONFIG_NO_HZ_COMMON
  484. u64 nohz_stamp;
  485. unsigned long nohz_flags;
  486. #endif
  487. #ifdef CONFIG_NO_HZ_FULL
  488. unsigned long last_sched_tick;
  489. #endif
  490. /* capture load from *all* tasks on this cpu: */
  491. struct load_weight load;
  492. unsigned long nr_load_updates;
  493. u64 nr_switches;
  494. struct cfs_rq cfs;
  495. struct rt_rq rt;
  496. struct dl_rq dl;
  497. #ifdef CONFIG_FAIR_GROUP_SCHED
  498. /* list of leaf cfs_rq on this cpu: */
  499. struct list_head leaf_cfs_rq_list;
  500. struct sched_avg avg;
  501. #endif /* CONFIG_FAIR_GROUP_SCHED */
  502. /*
  503. * This is part of a global counter where only the total sum
  504. * over all CPUs matters. A task can increase this counter on
  505. * one CPU and if it got migrated afterwards it may decrease
  506. * it on another CPU. Always updated under the runqueue lock:
  507. */
  508. unsigned long nr_uninterruptible;
  509. struct task_struct *curr, *idle, *stop;
  510. unsigned long next_balance;
  511. struct mm_struct *prev_mm;
  512. unsigned int clock_skip_update;
  513. u64 clock;
  514. u64 clock_task;
  515. atomic_t nr_iowait;
  516. #ifdef CONFIG_SMP
  517. struct root_domain *rd;
  518. struct sched_domain *sd;
  519. unsigned long cpu_capacity;
  520. unsigned long cpu_capacity_orig;
  521. unsigned char idle_balance;
  522. /* For active balancing */
  523. int post_schedule;
  524. int active_balance;
  525. int push_cpu;
  526. struct cpu_stop_work active_balance_work;
  527. /* cpu of this runqueue: */
  528. int cpu;
  529. int online;
  530. struct list_head cfs_tasks;
  531. u64 rt_avg;
  532. u64 age_stamp;
  533. u64 idle_stamp;
  534. u64 avg_idle;
  535. /* This is used to determine avg_idle's max value */
  536. u64 max_idle_balance_cost;
  537. #endif
  538. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  539. u64 prev_irq_time;
  540. #endif
  541. #ifdef CONFIG_PARAVIRT
  542. u64 prev_steal_time;
  543. #endif
  544. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  545. u64 prev_steal_time_rq;
  546. #endif
  547. /* calc_load related fields */
  548. unsigned long calc_load_update;
  549. long calc_load_active;
  550. #ifdef CONFIG_SCHED_HRTICK
  551. #ifdef CONFIG_SMP
  552. int hrtick_csd_pending;
  553. struct call_single_data hrtick_csd;
  554. #endif
  555. struct hrtimer hrtick_timer;
  556. #endif
  557. #ifdef CONFIG_SCHEDSTATS
  558. /* latency stats */
  559. struct sched_info rq_sched_info;
  560. unsigned long long rq_cpu_time;
  561. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  562. /* sys_sched_yield() stats */
  563. unsigned int yld_count;
  564. /* schedule() stats */
  565. unsigned int sched_count;
  566. unsigned int sched_goidle;
  567. /* try_to_wake_up() stats */
  568. unsigned int ttwu_count;
  569. unsigned int ttwu_local;
  570. #endif
  571. #ifdef CONFIG_SMP
  572. struct llist_head wake_list;
  573. #endif
  574. #ifdef CONFIG_CPU_IDLE
  575. /* Must be inspected within a rcu lock section */
  576. struct cpuidle_state *idle_state;
  577. #endif
  578. };
  579. static inline int cpu_of(struct rq *rq)
  580. {
  581. #ifdef CONFIG_SMP
  582. return rq->cpu;
  583. #else
  584. return 0;
  585. #endif
  586. }
  587. DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  588. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  589. #define this_rq() this_cpu_ptr(&runqueues)
  590. #define task_rq(p) cpu_rq(task_cpu(p))
  591. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  592. #define raw_rq() raw_cpu_ptr(&runqueues)
  593. static inline u64 __rq_clock_broken(struct rq *rq)
  594. {
  595. return READ_ONCE(rq->clock);
  596. }
  597. static inline u64 rq_clock(struct rq *rq)
  598. {
  599. lockdep_assert_held(&rq->lock);
  600. return rq->clock;
  601. }
  602. static inline u64 rq_clock_task(struct rq *rq)
  603. {
  604. lockdep_assert_held(&rq->lock);
  605. return rq->clock_task;
  606. }
  607. #define RQCF_REQ_SKIP 0x01
  608. #define RQCF_ACT_SKIP 0x02
  609. static inline void rq_clock_skip_update(struct rq *rq, bool skip)
  610. {
  611. lockdep_assert_held(&rq->lock);
  612. if (skip)
  613. rq->clock_skip_update |= RQCF_REQ_SKIP;
  614. else
  615. rq->clock_skip_update &= ~RQCF_REQ_SKIP;
  616. }
  617. #ifdef CONFIG_NUMA
  618. enum numa_topology_type {
  619. NUMA_DIRECT,
  620. NUMA_GLUELESS_MESH,
  621. NUMA_BACKPLANE,
  622. };
  623. extern enum numa_topology_type sched_numa_topology_type;
  624. extern int sched_max_numa_distance;
  625. extern bool find_numa_distance(int distance);
  626. #endif
  627. #ifdef CONFIG_NUMA_BALANCING
  628. /* The regions in numa_faults array from task_struct */
  629. enum numa_faults_stats {
  630. NUMA_MEM = 0,
  631. NUMA_CPU,
  632. NUMA_MEMBUF,
  633. NUMA_CPUBUF
  634. };
  635. extern void sched_setnuma(struct task_struct *p, int node);
  636. extern int migrate_task_to(struct task_struct *p, int cpu);
  637. extern int migrate_swap(struct task_struct *, struct task_struct *);
  638. #endif /* CONFIG_NUMA_BALANCING */
  639. #ifdef CONFIG_SMP
  640. extern void sched_ttwu_pending(void);
  641. #define rcu_dereference_check_sched_domain(p) \
  642. rcu_dereference_check((p), \
  643. lockdep_is_held(&sched_domains_mutex))
  644. /*
  645. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  646. * See detach_destroy_domains: synchronize_sched for details.
  647. *
  648. * The domain tree of any CPU may only be accessed from within
  649. * preempt-disabled sections.
  650. */
  651. #define for_each_domain(cpu, __sd) \
  652. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  653. __sd; __sd = __sd->parent)
  654. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  655. /**
  656. * highest_flag_domain - Return highest sched_domain containing flag.
  657. * @cpu: The cpu whose highest level of sched domain is to
  658. * be returned.
  659. * @flag: The flag to check for the highest sched_domain
  660. * for the given cpu.
  661. *
  662. * Returns the highest sched_domain of a cpu which contains the given flag.
  663. */
  664. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  665. {
  666. struct sched_domain *sd, *hsd = NULL;
  667. for_each_domain(cpu, sd) {
  668. if (!(sd->flags & flag))
  669. break;
  670. hsd = sd;
  671. }
  672. return hsd;
  673. }
  674. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  675. {
  676. struct sched_domain *sd;
  677. for_each_domain(cpu, sd) {
  678. if (sd->flags & flag)
  679. break;
  680. }
  681. return sd;
  682. }
  683. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  684. DECLARE_PER_CPU(int, sd_llc_size);
  685. DECLARE_PER_CPU(int, sd_llc_id);
  686. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  687. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  688. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  689. struct sched_group_capacity {
  690. atomic_t ref;
  691. /*
  692. * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
  693. * for a single CPU.
  694. */
  695. unsigned int capacity;
  696. unsigned long next_update;
  697. int imbalance; /* XXX unrelated to capacity but shared group state */
  698. /*
  699. * Number of busy cpus in this group.
  700. */
  701. atomic_t nr_busy_cpus;
  702. unsigned long cpumask[0]; /* iteration mask */
  703. };
  704. struct sched_group {
  705. struct sched_group *next; /* Must be a circular list */
  706. atomic_t ref;
  707. unsigned int group_weight;
  708. struct sched_group_capacity *sgc;
  709. /*
  710. * The CPUs this group covers.
  711. *
  712. * NOTE: this field is variable length. (Allocated dynamically
  713. * by attaching extra space to the end of the structure,
  714. * depending on how many CPUs the kernel has booted up with)
  715. */
  716. unsigned long cpumask[0];
  717. };
  718. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  719. {
  720. return to_cpumask(sg->cpumask);
  721. }
  722. /*
  723. * cpumask masking which cpus in the group are allowed to iterate up the domain
  724. * tree.
  725. */
  726. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  727. {
  728. return to_cpumask(sg->sgc->cpumask);
  729. }
  730. /**
  731. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  732. * @group: The group whose first cpu is to be returned.
  733. */
  734. static inline unsigned int group_first_cpu(struct sched_group *group)
  735. {
  736. return cpumask_first(sched_group_cpus(group));
  737. }
  738. extern int group_balance_cpu(struct sched_group *sg);
  739. #else
  740. static inline void sched_ttwu_pending(void) { }
  741. #endif /* CONFIG_SMP */
  742. #include "stats.h"
  743. #include "auto_group.h"
  744. #ifdef CONFIG_CGROUP_SCHED
  745. /*
  746. * Return the group to which this tasks belongs.
  747. *
  748. * We cannot use task_css() and friends because the cgroup subsystem
  749. * changes that value before the cgroup_subsys::attach() method is called,
  750. * therefore we cannot pin it and might observe the wrong value.
  751. *
  752. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  753. * core changes this before calling sched_move_task().
  754. *
  755. * Instead we use a 'copy' which is updated from sched_move_task() while
  756. * holding both task_struct::pi_lock and rq::lock.
  757. */
  758. static inline struct task_group *task_group(struct task_struct *p)
  759. {
  760. return p->sched_task_group;
  761. }
  762. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  763. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  764. {
  765. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  766. struct task_group *tg = task_group(p);
  767. #endif
  768. #ifdef CONFIG_FAIR_GROUP_SCHED
  769. p->se.cfs_rq = tg->cfs_rq[cpu];
  770. p->se.parent = tg->se[cpu];
  771. #endif
  772. #ifdef CONFIG_RT_GROUP_SCHED
  773. p->rt.rt_rq = tg->rt_rq[cpu];
  774. p->rt.parent = tg->rt_se[cpu];
  775. #endif
  776. }
  777. #else /* CONFIG_CGROUP_SCHED */
  778. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  779. static inline struct task_group *task_group(struct task_struct *p)
  780. {
  781. return NULL;
  782. }
  783. #endif /* CONFIG_CGROUP_SCHED */
  784. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  785. {
  786. set_task_rq(p, cpu);
  787. #ifdef CONFIG_SMP
  788. /*
  789. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  790. * successfuly executed on another CPU. We must ensure that updates of
  791. * per-task data have been completed by this moment.
  792. */
  793. smp_wmb();
  794. task_thread_info(p)->cpu = cpu;
  795. p->wake_cpu = cpu;
  796. #endif
  797. }
  798. /*
  799. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  800. */
  801. #ifdef CONFIG_SCHED_DEBUG
  802. # include <linux/static_key.h>
  803. # define const_debug __read_mostly
  804. #else
  805. # define const_debug const
  806. #endif
  807. extern const_debug unsigned int sysctl_sched_features;
  808. #define SCHED_FEAT(name, enabled) \
  809. __SCHED_FEAT_##name ,
  810. enum {
  811. #include "features.h"
  812. __SCHED_FEAT_NR,
  813. };
  814. #undef SCHED_FEAT
  815. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  816. #define SCHED_FEAT(name, enabled) \
  817. static __always_inline bool static_branch_##name(struct static_key *key) \
  818. { \
  819. return static_key_##enabled(key); \
  820. }
  821. #include "features.h"
  822. #undef SCHED_FEAT
  823. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  824. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  825. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  826. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  827. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  828. #ifdef CONFIG_NUMA_BALANCING
  829. #define sched_feat_numa(x) sched_feat(x)
  830. #ifdef CONFIG_SCHED_DEBUG
  831. #define numabalancing_enabled sched_feat_numa(NUMA)
  832. #else
  833. extern bool numabalancing_enabled;
  834. #endif /* CONFIG_SCHED_DEBUG */
  835. #else
  836. #define sched_feat_numa(x) (0)
  837. #define numabalancing_enabled (0)
  838. #endif /* CONFIG_NUMA_BALANCING */
  839. static inline u64 global_rt_period(void)
  840. {
  841. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  842. }
  843. static inline u64 global_rt_runtime(void)
  844. {
  845. if (sysctl_sched_rt_runtime < 0)
  846. return RUNTIME_INF;
  847. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  848. }
  849. static inline int task_current(struct rq *rq, struct task_struct *p)
  850. {
  851. return rq->curr == p;
  852. }
  853. static inline int task_running(struct rq *rq, struct task_struct *p)
  854. {
  855. #ifdef CONFIG_SMP
  856. return p->on_cpu;
  857. #else
  858. return task_current(rq, p);
  859. #endif
  860. }
  861. static inline int task_on_rq_queued(struct task_struct *p)
  862. {
  863. return p->on_rq == TASK_ON_RQ_QUEUED;
  864. }
  865. static inline int task_on_rq_migrating(struct task_struct *p)
  866. {
  867. return p->on_rq == TASK_ON_RQ_MIGRATING;
  868. }
  869. #ifndef prepare_arch_switch
  870. # define prepare_arch_switch(next) do { } while (0)
  871. #endif
  872. #ifndef finish_arch_switch
  873. # define finish_arch_switch(prev) do { } while (0)
  874. #endif
  875. #ifndef finish_arch_post_lock_switch
  876. # define finish_arch_post_lock_switch() do { } while (0)
  877. #endif
  878. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  879. {
  880. #ifdef CONFIG_SMP
  881. /*
  882. * We can optimise this out completely for !SMP, because the
  883. * SMP rebalancing from interrupt is the only thing that cares
  884. * here.
  885. */
  886. next->on_cpu = 1;
  887. #endif
  888. }
  889. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  890. {
  891. #ifdef CONFIG_SMP
  892. /*
  893. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  894. * We must ensure this doesn't happen until the switch is completely
  895. * finished.
  896. */
  897. smp_wmb();
  898. prev->on_cpu = 0;
  899. #endif
  900. #ifdef CONFIG_DEBUG_SPINLOCK
  901. /* this is a valid case when another task releases the spinlock */
  902. rq->lock.owner = current;
  903. #endif
  904. /*
  905. * If we are tracking spinlock dependencies then we have to
  906. * fix up the runqueue lock - which gets 'carried over' from
  907. * prev into current:
  908. */
  909. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  910. raw_spin_unlock_irq(&rq->lock);
  911. }
  912. /*
  913. * wake flags
  914. */
  915. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  916. #define WF_FORK 0x02 /* child wakeup after fork */
  917. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  918. /*
  919. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  920. * of tasks with abnormal "nice" values across CPUs the contribution that
  921. * each task makes to its run queue's load is weighted according to its
  922. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  923. * scaled version of the new time slice allocation that they receive on time
  924. * slice expiry etc.
  925. */
  926. #define WEIGHT_IDLEPRIO 3
  927. #define WMULT_IDLEPRIO 1431655765
  928. /*
  929. * Nice levels are multiplicative, with a gentle 10% change for every
  930. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  931. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  932. * that remained on nice 0.
  933. *
  934. * The "10% effect" is relative and cumulative: from _any_ nice level,
  935. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  936. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  937. * If a task goes up by ~10% and another task goes down by ~10% then
  938. * the relative distance between them is ~25%.)
  939. */
  940. static const int prio_to_weight[40] = {
  941. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  942. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  943. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  944. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  945. /* 0 */ 1024, 820, 655, 526, 423,
  946. /* 5 */ 335, 272, 215, 172, 137,
  947. /* 10 */ 110, 87, 70, 56, 45,
  948. /* 15 */ 36, 29, 23, 18, 15,
  949. };
  950. /*
  951. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  952. *
  953. * In cases where the weight does not change often, we can use the
  954. * precalculated inverse to speed up arithmetics by turning divisions
  955. * into multiplications:
  956. */
  957. static const u32 prio_to_wmult[40] = {
  958. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  959. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  960. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  961. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  962. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  963. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  964. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  965. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  966. };
  967. #define ENQUEUE_WAKEUP 1
  968. #define ENQUEUE_HEAD 2
  969. #ifdef CONFIG_SMP
  970. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  971. #else
  972. #define ENQUEUE_WAKING 0
  973. #endif
  974. #define ENQUEUE_REPLENISH 8
  975. #define DEQUEUE_SLEEP 1
  976. #define RETRY_TASK ((void *)-1UL)
  977. struct sched_class {
  978. const struct sched_class *next;
  979. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  980. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  981. void (*yield_task) (struct rq *rq);
  982. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  983. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  984. /*
  985. * It is the responsibility of the pick_next_task() method that will
  986. * return the next task to call put_prev_task() on the @prev task or
  987. * something equivalent.
  988. *
  989. * May return RETRY_TASK when it finds a higher prio class has runnable
  990. * tasks.
  991. */
  992. struct task_struct * (*pick_next_task) (struct rq *rq,
  993. struct task_struct *prev);
  994. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  995. #ifdef CONFIG_SMP
  996. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  997. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  998. void (*post_schedule) (struct rq *this_rq);
  999. void (*task_waking) (struct task_struct *task);
  1000. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  1001. void (*set_cpus_allowed)(struct task_struct *p,
  1002. const struct cpumask *newmask);
  1003. void (*rq_online)(struct rq *rq);
  1004. void (*rq_offline)(struct rq *rq);
  1005. #endif
  1006. void (*set_curr_task) (struct rq *rq);
  1007. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  1008. void (*task_fork) (struct task_struct *p);
  1009. void (*task_dead) (struct task_struct *p);
  1010. /*
  1011. * The switched_from() call is allowed to drop rq->lock, therefore we
  1012. * cannot assume the switched_from/switched_to pair is serliazed by
  1013. * rq->lock. They are however serialized by p->pi_lock.
  1014. */
  1015. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  1016. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  1017. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  1018. int oldprio);
  1019. unsigned int (*get_rr_interval) (struct rq *rq,
  1020. struct task_struct *task);
  1021. void (*update_curr) (struct rq *rq);
  1022. #ifdef CONFIG_FAIR_GROUP_SCHED
  1023. void (*task_move_group) (struct task_struct *p, int on_rq);
  1024. #endif
  1025. };
  1026. static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
  1027. {
  1028. prev->sched_class->put_prev_task(rq, prev);
  1029. }
  1030. #define sched_class_highest (&stop_sched_class)
  1031. #define for_each_class(class) \
  1032. for (class = sched_class_highest; class; class = class->next)
  1033. extern const struct sched_class stop_sched_class;
  1034. extern const struct sched_class dl_sched_class;
  1035. extern const struct sched_class rt_sched_class;
  1036. extern const struct sched_class fair_sched_class;
  1037. extern const struct sched_class idle_sched_class;
  1038. #ifdef CONFIG_SMP
  1039. extern void update_group_capacity(struct sched_domain *sd, int cpu);
  1040. extern void trigger_load_balance(struct rq *rq);
  1041. extern void idle_enter_fair(struct rq *this_rq);
  1042. extern void idle_exit_fair(struct rq *this_rq);
  1043. #else
  1044. static inline void idle_enter_fair(struct rq *rq) { }
  1045. static inline void idle_exit_fair(struct rq *rq) { }
  1046. #endif
  1047. #ifdef CONFIG_CPU_IDLE
  1048. static inline void idle_set_state(struct rq *rq,
  1049. struct cpuidle_state *idle_state)
  1050. {
  1051. rq->idle_state = idle_state;
  1052. }
  1053. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1054. {
  1055. WARN_ON(!rcu_read_lock_held());
  1056. return rq->idle_state;
  1057. }
  1058. #else
  1059. static inline void idle_set_state(struct rq *rq,
  1060. struct cpuidle_state *idle_state)
  1061. {
  1062. }
  1063. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1064. {
  1065. return NULL;
  1066. }
  1067. #endif
  1068. extern void sysrq_sched_debug_show(void);
  1069. extern void sched_init_granularity(void);
  1070. extern void update_max_interval(void);
  1071. extern void init_sched_dl_class(void);
  1072. extern void init_sched_rt_class(void);
  1073. extern void init_sched_fair_class(void);
  1074. extern void resched_curr(struct rq *rq);
  1075. extern void resched_cpu(int cpu);
  1076. extern struct rt_bandwidth def_rt_bandwidth;
  1077. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  1078. extern struct dl_bandwidth def_dl_bandwidth;
  1079. extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
  1080. extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
  1081. unsigned long to_ratio(u64 period, u64 runtime);
  1082. extern void init_task_runnable_average(struct task_struct *p);
  1083. static inline void add_nr_running(struct rq *rq, unsigned count)
  1084. {
  1085. unsigned prev_nr = rq->nr_running;
  1086. rq->nr_running = prev_nr + count;
  1087. if (prev_nr < 2 && rq->nr_running >= 2) {
  1088. #ifdef CONFIG_SMP
  1089. if (!rq->rd->overload)
  1090. rq->rd->overload = true;
  1091. #endif
  1092. #ifdef CONFIG_NO_HZ_FULL
  1093. if (tick_nohz_full_cpu(rq->cpu)) {
  1094. /*
  1095. * Tick is needed if more than one task runs on a CPU.
  1096. * Send the target an IPI to kick it out of nohz mode.
  1097. *
  1098. * We assume that IPI implies full memory barrier and the
  1099. * new value of rq->nr_running is visible on reception
  1100. * from the target.
  1101. */
  1102. tick_nohz_full_kick_cpu(rq->cpu);
  1103. }
  1104. #endif
  1105. }
  1106. }
  1107. static inline void sub_nr_running(struct rq *rq, unsigned count)
  1108. {
  1109. rq->nr_running -= count;
  1110. }
  1111. static inline void rq_last_tick_reset(struct rq *rq)
  1112. {
  1113. #ifdef CONFIG_NO_HZ_FULL
  1114. rq->last_sched_tick = jiffies;
  1115. #endif
  1116. }
  1117. extern void update_rq_clock(struct rq *rq);
  1118. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  1119. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  1120. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  1121. extern const_debug unsigned int sysctl_sched_time_avg;
  1122. extern const_debug unsigned int sysctl_sched_nr_migrate;
  1123. extern const_debug unsigned int sysctl_sched_migration_cost;
  1124. static inline u64 sched_avg_period(void)
  1125. {
  1126. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1127. }
  1128. #ifdef CONFIG_SCHED_HRTICK
  1129. /*
  1130. * Use hrtick when:
  1131. * - enabled by features
  1132. * - hrtimer is actually high res
  1133. */
  1134. static inline int hrtick_enabled(struct rq *rq)
  1135. {
  1136. if (!sched_feat(HRTICK))
  1137. return 0;
  1138. if (!cpu_active(cpu_of(rq)))
  1139. return 0;
  1140. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1141. }
  1142. void hrtick_start(struct rq *rq, u64 delay);
  1143. #else
  1144. static inline int hrtick_enabled(struct rq *rq)
  1145. {
  1146. return 0;
  1147. }
  1148. #endif /* CONFIG_SCHED_HRTICK */
  1149. #ifdef CONFIG_SMP
  1150. extern void sched_avg_update(struct rq *rq);
  1151. #ifndef arch_scale_freq_capacity
  1152. static __always_inline
  1153. unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
  1154. {
  1155. return SCHED_CAPACITY_SCALE;
  1156. }
  1157. #endif
  1158. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1159. {
  1160. rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
  1161. sched_avg_update(rq);
  1162. }
  1163. #else
  1164. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  1165. static inline void sched_avg_update(struct rq *rq) { }
  1166. #endif
  1167. /*
  1168. * __task_rq_lock - lock the rq @p resides on.
  1169. */
  1170. static inline struct rq *__task_rq_lock(struct task_struct *p)
  1171. __acquires(rq->lock)
  1172. {
  1173. struct rq *rq;
  1174. lockdep_assert_held(&p->pi_lock);
  1175. for (;;) {
  1176. rq = task_rq(p);
  1177. raw_spin_lock(&rq->lock);
  1178. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  1179. return rq;
  1180. raw_spin_unlock(&rq->lock);
  1181. while (unlikely(task_on_rq_migrating(p)))
  1182. cpu_relax();
  1183. }
  1184. }
  1185. /*
  1186. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  1187. */
  1188. static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  1189. __acquires(p->pi_lock)
  1190. __acquires(rq->lock)
  1191. {
  1192. struct rq *rq;
  1193. for (;;) {
  1194. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  1195. rq = task_rq(p);
  1196. raw_spin_lock(&rq->lock);
  1197. /*
  1198. * move_queued_task() task_rq_lock()
  1199. *
  1200. * ACQUIRE (rq->lock)
  1201. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  1202. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  1203. * [S] ->cpu = new_cpu [L] task_rq()
  1204. * [L] ->on_rq
  1205. * RELEASE (rq->lock)
  1206. *
  1207. * If we observe the old cpu in task_rq_lock, the acquire of
  1208. * the old rq->lock will fully serialize against the stores.
  1209. *
  1210. * If we observe the new cpu in task_rq_lock, the acquire will
  1211. * pair with the WMB to ensure we must then also see migrating.
  1212. */
  1213. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
  1214. return rq;
  1215. raw_spin_unlock(&rq->lock);
  1216. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  1217. while (unlikely(task_on_rq_migrating(p)))
  1218. cpu_relax();
  1219. }
  1220. }
  1221. static inline void __task_rq_unlock(struct rq *rq)
  1222. __releases(rq->lock)
  1223. {
  1224. raw_spin_unlock(&rq->lock);
  1225. }
  1226. static inline void
  1227. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  1228. __releases(rq->lock)
  1229. __releases(p->pi_lock)
  1230. {
  1231. raw_spin_unlock(&rq->lock);
  1232. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  1233. }
  1234. #ifdef CONFIG_SMP
  1235. #ifdef CONFIG_PREEMPT
  1236. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1237. /*
  1238. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1239. * way at the expense of forcing extra atomic operations in all
  1240. * invocations. This assures that the double_lock is acquired using the
  1241. * same underlying policy as the spinlock_t on this architecture, which
  1242. * reduces latency compared to the unfair variant below. However, it
  1243. * also adds more overhead and therefore may reduce throughput.
  1244. */
  1245. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1246. __releases(this_rq->lock)
  1247. __acquires(busiest->lock)
  1248. __acquires(this_rq->lock)
  1249. {
  1250. raw_spin_unlock(&this_rq->lock);
  1251. double_rq_lock(this_rq, busiest);
  1252. return 1;
  1253. }
  1254. #else
  1255. /*
  1256. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1257. * latency by eliminating extra atomic operations when the locks are
  1258. * already in proper order on entry. This favors lower cpu-ids and will
  1259. * grant the double lock to lower cpus over higher ids under contention,
  1260. * regardless of entry order into the function.
  1261. */
  1262. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1263. __releases(this_rq->lock)
  1264. __acquires(busiest->lock)
  1265. __acquires(this_rq->lock)
  1266. {
  1267. int ret = 0;
  1268. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1269. if (busiest < this_rq) {
  1270. raw_spin_unlock(&this_rq->lock);
  1271. raw_spin_lock(&busiest->lock);
  1272. raw_spin_lock_nested(&this_rq->lock,
  1273. SINGLE_DEPTH_NESTING);
  1274. ret = 1;
  1275. } else
  1276. raw_spin_lock_nested(&busiest->lock,
  1277. SINGLE_DEPTH_NESTING);
  1278. }
  1279. return ret;
  1280. }
  1281. #endif /* CONFIG_PREEMPT */
  1282. /*
  1283. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1284. */
  1285. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1286. {
  1287. if (unlikely(!irqs_disabled())) {
  1288. /* printk() doesn't work good under rq->lock */
  1289. raw_spin_unlock(&this_rq->lock);
  1290. BUG_ON(1);
  1291. }
  1292. return _double_lock_balance(this_rq, busiest);
  1293. }
  1294. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1295. __releases(busiest->lock)
  1296. {
  1297. raw_spin_unlock(&busiest->lock);
  1298. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1299. }
  1300. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1301. {
  1302. if (l1 > l2)
  1303. swap(l1, l2);
  1304. spin_lock(l1);
  1305. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1306. }
  1307. static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
  1308. {
  1309. if (l1 > l2)
  1310. swap(l1, l2);
  1311. spin_lock_irq(l1);
  1312. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1313. }
  1314. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1315. {
  1316. if (l1 > l2)
  1317. swap(l1, l2);
  1318. raw_spin_lock(l1);
  1319. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1320. }
  1321. /*
  1322. * double_rq_lock - safely lock two runqueues
  1323. *
  1324. * Note this does not disable interrupts like task_rq_lock,
  1325. * you need to do so manually before calling.
  1326. */
  1327. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1328. __acquires(rq1->lock)
  1329. __acquires(rq2->lock)
  1330. {
  1331. BUG_ON(!irqs_disabled());
  1332. if (rq1 == rq2) {
  1333. raw_spin_lock(&rq1->lock);
  1334. __acquire(rq2->lock); /* Fake it out ;) */
  1335. } else {
  1336. if (rq1 < rq2) {
  1337. raw_spin_lock(&rq1->lock);
  1338. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1339. } else {
  1340. raw_spin_lock(&rq2->lock);
  1341. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1342. }
  1343. }
  1344. }
  1345. /*
  1346. * double_rq_unlock - safely unlock two runqueues
  1347. *
  1348. * Note this does not restore interrupts like task_rq_unlock,
  1349. * you need to do so manually after calling.
  1350. */
  1351. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1352. __releases(rq1->lock)
  1353. __releases(rq2->lock)
  1354. {
  1355. raw_spin_unlock(&rq1->lock);
  1356. if (rq1 != rq2)
  1357. raw_spin_unlock(&rq2->lock);
  1358. else
  1359. __release(rq2->lock);
  1360. }
  1361. #else /* CONFIG_SMP */
  1362. /*
  1363. * double_rq_lock - safely lock two runqueues
  1364. *
  1365. * Note this does not disable interrupts like task_rq_lock,
  1366. * you need to do so manually before calling.
  1367. */
  1368. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1369. __acquires(rq1->lock)
  1370. __acquires(rq2->lock)
  1371. {
  1372. BUG_ON(!irqs_disabled());
  1373. BUG_ON(rq1 != rq2);
  1374. raw_spin_lock(&rq1->lock);
  1375. __acquire(rq2->lock); /* Fake it out ;) */
  1376. }
  1377. /*
  1378. * double_rq_unlock - safely unlock two runqueues
  1379. *
  1380. * Note this does not restore interrupts like task_rq_unlock,
  1381. * you need to do so manually after calling.
  1382. */
  1383. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1384. __releases(rq1->lock)
  1385. __releases(rq2->lock)
  1386. {
  1387. BUG_ON(rq1 != rq2);
  1388. raw_spin_unlock(&rq1->lock);
  1389. __release(rq2->lock);
  1390. }
  1391. #endif
  1392. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1393. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1394. #ifdef CONFIG_SCHED_DEBUG
  1395. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1396. extern void print_rt_stats(struct seq_file *m, int cpu);
  1397. extern void print_dl_stats(struct seq_file *m, int cpu);
  1398. extern void
  1399. print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
  1400. #ifdef CONFIG_NUMA_BALANCING
  1401. extern void
  1402. show_numa_stats(struct task_struct *p, struct seq_file *m);
  1403. extern void
  1404. print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
  1405. unsigned long tpf, unsigned long gsf, unsigned long gpf);
  1406. #endif /* CONFIG_NUMA_BALANCING */
  1407. #endif /* CONFIG_SCHED_DEBUG */
  1408. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1409. extern void init_rt_rq(struct rt_rq *rt_rq);
  1410. extern void init_dl_rq(struct dl_rq *dl_rq);
  1411. extern void cfs_bandwidth_usage_inc(void);
  1412. extern void cfs_bandwidth_usage_dec(void);
  1413. #ifdef CONFIG_NO_HZ_COMMON
  1414. enum rq_nohz_flag_bits {
  1415. NOHZ_TICK_STOPPED,
  1416. NOHZ_BALANCE_KICK,
  1417. };
  1418. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1419. #endif
  1420. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1421. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1422. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1423. #ifndef CONFIG_64BIT
  1424. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1425. static inline void irq_time_write_begin(void)
  1426. {
  1427. __this_cpu_inc(irq_time_seq.sequence);
  1428. smp_wmb();
  1429. }
  1430. static inline void irq_time_write_end(void)
  1431. {
  1432. smp_wmb();
  1433. __this_cpu_inc(irq_time_seq.sequence);
  1434. }
  1435. static inline u64 irq_time_read(int cpu)
  1436. {
  1437. u64 irq_time;
  1438. unsigned seq;
  1439. do {
  1440. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1441. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1442. per_cpu(cpu_hardirq_time, cpu);
  1443. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1444. return irq_time;
  1445. }
  1446. #else /* CONFIG_64BIT */
  1447. static inline void irq_time_write_begin(void)
  1448. {
  1449. }
  1450. static inline void irq_time_write_end(void)
  1451. {
  1452. }
  1453. static inline u64 irq_time_read(int cpu)
  1454. {
  1455. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1456. }
  1457. #endif /* CONFIG_64BIT */
  1458. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */