rtnetlink.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/pci.h>
  40. #include <linux/etherdevice.h>
  41. #include <asm/uaccess.h>
  42. #include <linux/inet.h>
  43. #include <linux/netdevice.h>
  44. #include <net/switchdev.h>
  45. #include <net/ip.h>
  46. #include <net/protocol.h>
  47. #include <net/arp.h>
  48. #include <net/route.h>
  49. #include <net/udp.h>
  50. #include <net/sock.h>
  51. #include <net/pkt_sched.h>
  52. #include <net/fib_rules.h>
  53. #include <net/rtnetlink.h>
  54. #include <net/net_namespace.h>
  55. struct rtnl_link {
  56. rtnl_doit_func doit;
  57. rtnl_dumpit_func dumpit;
  58. rtnl_calcit_func calcit;
  59. };
  60. static DEFINE_MUTEX(rtnl_mutex);
  61. void rtnl_lock(void)
  62. {
  63. mutex_lock(&rtnl_mutex);
  64. }
  65. EXPORT_SYMBOL(rtnl_lock);
  66. void __rtnl_unlock(void)
  67. {
  68. mutex_unlock(&rtnl_mutex);
  69. }
  70. void rtnl_unlock(void)
  71. {
  72. /* This fellow will unlock it for us. */
  73. netdev_run_todo();
  74. }
  75. EXPORT_SYMBOL(rtnl_unlock);
  76. int rtnl_trylock(void)
  77. {
  78. return mutex_trylock(&rtnl_mutex);
  79. }
  80. EXPORT_SYMBOL(rtnl_trylock);
  81. int rtnl_is_locked(void)
  82. {
  83. return mutex_is_locked(&rtnl_mutex);
  84. }
  85. EXPORT_SYMBOL(rtnl_is_locked);
  86. #ifdef CONFIG_PROVE_LOCKING
  87. int lockdep_rtnl_is_held(void)
  88. {
  89. return lockdep_is_held(&rtnl_mutex);
  90. }
  91. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  92. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  93. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  94. static inline int rtm_msgindex(int msgtype)
  95. {
  96. int msgindex = msgtype - RTM_BASE;
  97. /*
  98. * msgindex < 0 implies someone tried to register a netlink
  99. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  100. * the message type has not been added to linux/rtnetlink.h
  101. */
  102. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  103. return msgindex;
  104. }
  105. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  106. {
  107. struct rtnl_link *tab;
  108. if (protocol <= RTNL_FAMILY_MAX)
  109. tab = rtnl_msg_handlers[protocol];
  110. else
  111. tab = NULL;
  112. if (tab == NULL || tab[msgindex].doit == NULL)
  113. tab = rtnl_msg_handlers[PF_UNSPEC];
  114. return tab[msgindex].doit;
  115. }
  116. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  117. {
  118. struct rtnl_link *tab;
  119. if (protocol <= RTNL_FAMILY_MAX)
  120. tab = rtnl_msg_handlers[protocol];
  121. else
  122. tab = NULL;
  123. if (tab == NULL || tab[msgindex].dumpit == NULL)
  124. tab = rtnl_msg_handlers[PF_UNSPEC];
  125. return tab[msgindex].dumpit;
  126. }
  127. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  128. {
  129. struct rtnl_link *tab;
  130. if (protocol <= RTNL_FAMILY_MAX)
  131. tab = rtnl_msg_handlers[protocol];
  132. else
  133. tab = NULL;
  134. if (tab == NULL || tab[msgindex].calcit == NULL)
  135. tab = rtnl_msg_handlers[PF_UNSPEC];
  136. return tab[msgindex].calcit;
  137. }
  138. /**
  139. * __rtnl_register - Register a rtnetlink message type
  140. * @protocol: Protocol family or PF_UNSPEC
  141. * @msgtype: rtnetlink message type
  142. * @doit: Function pointer called for each request message
  143. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  144. * @calcit: Function pointer to calc size of dump message
  145. *
  146. * Registers the specified function pointers (at least one of them has
  147. * to be non-NULL) to be called whenever a request message for the
  148. * specified protocol family and message type is received.
  149. *
  150. * The special protocol family PF_UNSPEC may be used to define fallback
  151. * function pointers for the case when no entry for the specific protocol
  152. * family exists.
  153. *
  154. * Returns 0 on success or a negative error code.
  155. */
  156. int __rtnl_register(int protocol, int msgtype,
  157. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  158. rtnl_calcit_func calcit)
  159. {
  160. struct rtnl_link *tab;
  161. int msgindex;
  162. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  163. msgindex = rtm_msgindex(msgtype);
  164. tab = rtnl_msg_handlers[protocol];
  165. if (tab == NULL) {
  166. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  167. if (tab == NULL)
  168. return -ENOBUFS;
  169. rtnl_msg_handlers[protocol] = tab;
  170. }
  171. if (doit)
  172. tab[msgindex].doit = doit;
  173. if (dumpit)
  174. tab[msgindex].dumpit = dumpit;
  175. if (calcit)
  176. tab[msgindex].calcit = calcit;
  177. return 0;
  178. }
  179. EXPORT_SYMBOL_GPL(__rtnl_register);
  180. /**
  181. * rtnl_register - Register a rtnetlink message type
  182. *
  183. * Identical to __rtnl_register() but panics on failure. This is useful
  184. * as failure of this function is very unlikely, it can only happen due
  185. * to lack of memory when allocating the chain to store all message
  186. * handlers for a protocol. Meant for use in init functions where lack
  187. * of memory implies no sense in continuing.
  188. */
  189. void rtnl_register(int protocol, int msgtype,
  190. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  191. rtnl_calcit_func calcit)
  192. {
  193. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  194. panic("Unable to register rtnetlink message handler, "
  195. "protocol = %d, message type = %d\n",
  196. protocol, msgtype);
  197. }
  198. EXPORT_SYMBOL_GPL(rtnl_register);
  199. /**
  200. * rtnl_unregister - Unregister a rtnetlink message type
  201. * @protocol: Protocol family or PF_UNSPEC
  202. * @msgtype: rtnetlink message type
  203. *
  204. * Returns 0 on success or a negative error code.
  205. */
  206. int rtnl_unregister(int protocol, int msgtype)
  207. {
  208. int msgindex;
  209. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  210. msgindex = rtm_msgindex(msgtype);
  211. if (rtnl_msg_handlers[protocol] == NULL)
  212. return -ENOENT;
  213. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  214. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  215. return 0;
  216. }
  217. EXPORT_SYMBOL_GPL(rtnl_unregister);
  218. /**
  219. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  220. * @protocol : Protocol family or PF_UNSPEC
  221. *
  222. * Identical to calling rtnl_unregster() for all registered message types
  223. * of a certain protocol family.
  224. */
  225. void rtnl_unregister_all(int protocol)
  226. {
  227. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  228. kfree(rtnl_msg_handlers[protocol]);
  229. rtnl_msg_handlers[protocol] = NULL;
  230. }
  231. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  232. static LIST_HEAD(link_ops);
  233. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  234. {
  235. const struct rtnl_link_ops *ops;
  236. list_for_each_entry(ops, &link_ops, list) {
  237. if (!strcmp(ops->kind, kind))
  238. return ops;
  239. }
  240. return NULL;
  241. }
  242. /**
  243. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  244. * @ops: struct rtnl_link_ops * to register
  245. *
  246. * The caller must hold the rtnl_mutex. This function should be used
  247. * by drivers that create devices during module initialization. It
  248. * must be called before registering the devices.
  249. *
  250. * Returns 0 on success or a negative error code.
  251. */
  252. int __rtnl_link_register(struct rtnl_link_ops *ops)
  253. {
  254. if (rtnl_link_ops_get(ops->kind))
  255. return -EEXIST;
  256. /* The check for setup is here because if ops
  257. * does not have that filled up, it is not possible
  258. * to use the ops for creating device. So do not
  259. * fill up dellink as well. That disables rtnl_dellink.
  260. */
  261. if (ops->setup && !ops->dellink)
  262. ops->dellink = unregister_netdevice_queue;
  263. list_add_tail(&ops->list, &link_ops);
  264. return 0;
  265. }
  266. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  267. /**
  268. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  269. * @ops: struct rtnl_link_ops * to register
  270. *
  271. * Returns 0 on success or a negative error code.
  272. */
  273. int rtnl_link_register(struct rtnl_link_ops *ops)
  274. {
  275. int err;
  276. rtnl_lock();
  277. err = __rtnl_link_register(ops);
  278. rtnl_unlock();
  279. return err;
  280. }
  281. EXPORT_SYMBOL_GPL(rtnl_link_register);
  282. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  283. {
  284. struct net_device *dev;
  285. LIST_HEAD(list_kill);
  286. for_each_netdev(net, dev) {
  287. if (dev->rtnl_link_ops == ops)
  288. ops->dellink(dev, &list_kill);
  289. }
  290. unregister_netdevice_many(&list_kill);
  291. }
  292. /**
  293. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  294. * @ops: struct rtnl_link_ops * to unregister
  295. *
  296. * The caller must hold the rtnl_mutex.
  297. */
  298. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  299. {
  300. struct net *net;
  301. for_each_net(net) {
  302. __rtnl_kill_links(net, ops);
  303. }
  304. list_del(&ops->list);
  305. }
  306. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  307. /* Return with the rtnl_lock held when there are no network
  308. * devices unregistering in any network namespace.
  309. */
  310. static void rtnl_lock_unregistering_all(void)
  311. {
  312. struct net *net;
  313. bool unregistering;
  314. DEFINE_WAIT(wait);
  315. for (;;) {
  316. prepare_to_wait(&netdev_unregistering_wq, &wait,
  317. TASK_UNINTERRUPTIBLE);
  318. unregistering = false;
  319. rtnl_lock();
  320. for_each_net(net) {
  321. if (net->dev_unreg_count > 0) {
  322. unregistering = true;
  323. break;
  324. }
  325. }
  326. if (!unregistering)
  327. break;
  328. __rtnl_unlock();
  329. schedule();
  330. }
  331. finish_wait(&netdev_unregistering_wq, &wait);
  332. }
  333. /**
  334. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  335. * @ops: struct rtnl_link_ops * to unregister
  336. */
  337. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  338. {
  339. /* Close the race with cleanup_net() */
  340. mutex_lock(&net_mutex);
  341. rtnl_lock_unregistering_all();
  342. __rtnl_link_unregister(ops);
  343. rtnl_unlock();
  344. mutex_unlock(&net_mutex);
  345. }
  346. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  347. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  348. {
  349. struct net_device *master_dev;
  350. const struct rtnl_link_ops *ops;
  351. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  352. if (!master_dev)
  353. return 0;
  354. ops = master_dev->rtnl_link_ops;
  355. if (!ops || !ops->get_slave_size)
  356. return 0;
  357. /* IFLA_INFO_SLAVE_DATA + nested data */
  358. return nla_total_size(sizeof(struct nlattr)) +
  359. ops->get_slave_size(master_dev, dev);
  360. }
  361. static size_t rtnl_link_get_size(const struct net_device *dev)
  362. {
  363. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  364. size_t size;
  365. if (!ops)
  366. return 0;
  367. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  368. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  369. if (ops->get_size)
  370. /* IFLA_INFO_DATA + nested data */
  371. size += nla_total_size(sizeof(struct nlattr)) +
  372. ops->get_size(dev);
  373. if (ops->get_xstats_size)
  374. /* IFLA_INFO_XSTATS */
  375. size += nla_total_size(ops->get_xstats_size(dev));
  376. size += rtnl_link_get_slave_info_data_size(dev);
  377. return size;
  378. }
  379. static LIST_HEAD(rtnl_af_ops);
  380. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  381. {
  382. const struct rtnl_af_ops *ops;
  383. list_for_each_entry(ops, &rtnl_af_ops, list) {
  384. if (ops->family == family)
  385. return ops;
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  391. * @ops: struct rtnl_af_ops * to register
  392. *
  393. * Returns 0 on success or a negative error code.
  394. */
  395. void rtnl_af_register(struct rtnl_af_ops *ops)
  396. {
  397. rtnl_lock();
  398. list_add_tail(&ops->list, &rtnl_af_ops);
  399. rtnl_unlock();
  400. }
  401. EXPORT_SYMBOL_GPL(rtnl_af_register);
  402. /**
  403. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  404. * @ops: struct rtnl_af_ops * to unregister
  405. *
  406. * The caller must hold the rtnl_mutex.
  407. */
  408. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  409. {
  410. list_del(&ops->list);
  411. }
  412. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  413. /**
  414. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  415. * @ops: struct rtnl_af_ops * to unregister
  416. */
  417. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  418. {
  419. rtnl_lock();
  420. __rtnl_af_unregister(ops);
  421. rtnl_unlock();
  422. }
  423. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  424. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  425. {
  426. struct rtnl_af_ops *af_ops;
  427. size_t size;
  428. /* IFLA_AF_SPEC */
  429. size = nla_total_size(sizeof(struct nlattr));
  430. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  431. if (af_ops->get_link_af_size) {
  432. /* AF_* + nested data */
  433. size += nla_total_size(sizeof(struct nlattr)) +
  434. af_ops->get_link_af_size(dev);
  435. }
  436. }
  437. return size;
  438. }
  439. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  440. {
  441. struct net_device *master_dev;
  442. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  443. if (master_dev && master_dev->rtnl_link_ops)
  444. return true;
  445. return false;
  446. }
  447. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  448. const struct net_device *dev)
  449. {
  450. struct net_device *master_dev;
  451. const struct rtnl_link_ops *ops;
  452. struct nlattr *slave_data;
  453. int err;
  454. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  455. if (!master_dev)
  456. return 0;
  457. ops = master_dev->rtnl_link_ops;
  458. if (!ops)
  459. return 0;
  460. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  461. return -EMSGSIZE;
  462. if (ops->fill_slave_info) {
  463. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  464. if (!slave_data)
  465. return -EMSGSIZE;
  466. err = ops->fill_slave_info(skb, master_dev, dev);
  467. if (err < 0)
  468. goto err_cancel_slave_data;
  469. nla_nest_end(skb, slave_data);
  470. }
  471. return 0;
  472. err_cancel_slave_data:
  473. nla_nest_cancel(skb, slave_data);
  474. return err;
  475. }
  476. static int rtnl_link_info_fill(struct sk_buff *skb,
  477. const struct net_device *dev)
  478. {
  479. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  480. struct nlattr *data;
  481. int err;
  482. if (!ops)
  483. return 0;
  484. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  485. return -EMSGSIZE;
  486. if (ops->fill_xstats) {
  487. err = ops->fill_xstats(skb, dev);
  488. if (err < 0)
  489. return err;
  490. }
  491. if (ops->fill_info) {
  492. data = nla_nest_start(skb, IFLA_INFO_DATA);
  493. if (data == NULL)
  494. return -EMSGSIZE;
  495. err = ops->fill_info(skb, dev);
  496. if (err < 0)
  497. goto err_cancel_data;
  498. nla_nest_end(skb, data);
  499. }
  500. return 0;
  501. err_cancel_data:
  502. nla_nest_cancel(skb, data);
  503. return err;
  504. }
  505. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  506. {
  507. struct nlattr *linkinfo;
  508. int err = -EMSGSIZE;
  509. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  510. if (linkinfo == NULL)
  511. goto out;
  512. err = rtnl_link_info_fill(skb, dev);
  513. if (err < 0)
  514. goto err_cancel_link;
  515. err = rtnl_link_slave_info_fill(skb, dev);
  516. if (err < 0)
  517. goto err_cancel_link;
  518. nla_nest_end(skb, linkinfo);
  519. return 0;
  520. err_cancel_link:
  521. nla_nest_cancel(skb, linkinfo);
  522. out:
  523. return err;
  524. }
  525. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  526. {
  527. struct sock *rtnl = net->rtnl;
  528. int err = 0;
  529. NETLINK_CB(skb).dst_group = group;
  530. if (echo)
  531. atomic_inc(&skb->users);
  532. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  533. if (echo)
  534. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  535. return err;
  536. }
  537. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  538. {
  539. struct sock *rtnl = net->rtnl;
  540. return nlmsg_unicast(rtnl, skb, pid);
  541. }
  542. EXPORT_SYMBOL(rtnl_unicast);
  543. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  544. struct nlmsghdr *nlh, gfp_t flags)
  545. {
  546. struct sock *rtnl = net->rtnl;
  547. int report = 0;
  548. if (nlh)
  549. report = nlmsg_report(nlh);
  550. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  551. }
  552. EXPORT_SYMBOL(rtnl_notify);
  553. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  554. {
  555. struct sock *rtnl = net->rtnl;
  556. netlink_set_err(rtnl, 0, group, error);
  557. }
  558. EXPORT_SYMBOL(rtnl_set_sk_err);
  559. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  560. {
  561. struct nlattr *mx;
  562. int i, valid = 0;
  563. mx = nla_nest_start(skb, RTA_METRICS);
  564. if (mx == NULL)
  565. return -ENOBUFS;
  566. for (i = 0; i < RTAX_MAX; i++) {
  567. if (metrics[i]) {
  568. valid++;
  569. if (nla_put_u32(skb, i+1, metrics[i]))
  570. goto nla_put_failure;
  571. }
  572. }
  573. if (!valid) {
  574. nla_nest_cancel(skb, mx);
  575. return 0;
  576. }
  577. return nla_nest_end(skb, mx);
  578. nla_put_failure:
  579. nla_nest_cancel(skb, mx);
  580. return -EMSGSIZE;
  581. }
  582. EXPORT_SYMBOL(rtnetlink_put_metrics);
  583. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  584. long expires, u32 error)
  585. {
  586. struct rta_cacheinfo ci = {
  587. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  588. .rta_used = dst->__use,
  589. .rta_clntref = atomic_read(&(dst->__refcnt)),
  590. .rta_error = error,
  591. .rta_id = id,
  592. };
  593. if (expires) {
  594. unsigned long clock;
  595. clock = jiffies_to_clock_t(abs(expires));
  596. clock = min_t(unsigned long, clock, INT_MAX);
  597. ci.rta_expires = (expires > 0) ? clock : -clock;
  598. }
  599. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  600. }
  601. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  602. static void set_operstate(struct net_device *dev, unsigned char transition)
  603. {
  604. unsigned char operstate = dev->operstate;
  605. switch (transition) {
  606. case IF_OPER_UP:
  607. if ((operstate == IF_OPER_DORMANT ||
  608. operstate == IF_OPER_UNKNOWN) &&
  609. !netif_dormant(dev))
  610. operstate = IF_OPER_UP;
  611. break;
  612. case IF_OPER_DORMANT:
  613. if (operstate == IF_OPER_UP ||
  614. operstate == IF_OPER_UNKNOWN)
  615. operstate = IF_OPER_DORMANT;
  616. break;
  617. }
  618. if (dev->operstate != operstate) {
  619. write_lock_bh(&dev_base_lock);
  620. dev->operstate = operstate;
  621. write_unlock_bh(&dev_base_lock);
  622. netdev_state_change(dev);
  623. }
  624. }
  625. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  626. {
  627. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  628. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  629. }
  630. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  631. const struct ifinfomsg *ifm)
  632. {
  633. unsigned int flags = ifm->ifi_flags;
  634. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  635. if (ifm->ifi_change)
  636. flags = (flags & ifm->ifi_change) |
  637. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  638. return flags;
  639. }
  640. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  641. const struct rtnl_link_stats64 *b)
  642. {
  643. a->rx_packets = b->rx_packets;
  644. a->tx_packets = b->tx_packets;
  645. a->rx_bytes = b->rx_bytes;
  646. a->tx_bytes = b->tx_bytes;
  647. a->rx_errors = b->rx_errors;
  648. a->tx_errors = b->tx_errors;
  649. a->rx_dropped = b->rx_dropped;
  650. a->tx_dropped = b->tx_dropped;
  651. a->multicast = b->multicast;
  652. a->collisions = b->collisions;
  653. a->rx_length_errors = b->rx_length_errors;
  654. a->rx_over_errors = b->rx_over_errors;
  655. a->rx_crc_errors = b->rx_crc_errors;
  656. a->rx_frame_errors = b->rx_frame_errors;
  657. a->rx_fifo_errors = b->rx_fifo_errors;
  658. a->rx_missed_errors = b->rx_missed_errors;
  659. a->tx_aborted_errors = b->tx_aborted_errors;
  660. a->tx_carrier_errors = b->tx_carrier_errors;
  661. a->tx_fifo_errors = b->tx_fifo_errors;
  662. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  663. a->tx_window_errors = b->tx_window_errors;
  664. a->rx_compressed = b->rx_compressed;
  665. a->tx_compressed = b->tx_compressed;
  666. }
  667. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  668. {
  669. memcpy(v, b, sizeof(*b));
  670. }
  671. /* All VF info */
  672. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  673. u32 ext_filter_mask)
  674. {
  675. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  676. (ext_filter_mask & RTEXT_FILTER_VF)) {
  677. int num_vfs = dev_num_vf(dev->dev.parent);
  678. size_t size = nla_total_size(sizeof(struct nlattr));
  679. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  680. size += num_vfs *
  681. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  682. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  683. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  684. nla_total_size(sizeof(struct ifla_vf_rate)) +
  685. nla_total_size(sizeof(struct ifla_vf_link_state)));
  686. return size;
  687. } else
  688. return 0;
  689. }
  690. static size_t rtnl_port_size(const struct net_device *dev,
  691. u32 ext_filter_mask)
  692. {
  693. size_t port_size = nla_total_size(4) /* PORT_VF */
  694. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  695. + nla_total_size(sizeof(struct ifla_port_vsi))
  696. /* PORT_VSI_TYPE */
  697. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  698. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  699. + nla_total_size(1) /* PROT_VDP_REQUEST */
  700. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  701. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  702. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  703. + port_size;
  704. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  705. + port_size;
  706. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  707. !(ext_filter_mask & RTEXT_FILTER_VF))
  708. return 0;
  709. if (dev_num_vf(dev->dev.parent))
  710. return port_self_size + vf_ports_size +
  711. vf_port_size * dev_num_vf(dev->dev.parent);
  712. else
  713. return port_self_size;
  714. }
  715. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  716. u32 ext_filter_mask)
  717. {
  718. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  719. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  720. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  721. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  722. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  723. + nla_total_size(sizeof(struct rtnl_link_stats))
  724. + nla_total_size(sizeof(struct rtnl_link_stats64))
  725. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  726. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  727. + nla_total_size(4) /* IFLA_TXQLEN */
  728. + nla_total_size(4) /* IFLA_WEIGHT */
  729. + nla_total_size(4) /* IFLA_MTU */
  730. + nla_total_size(4) /* IFLA_LINK */
  731. + nla_total_size(4) /* IFLA_MASTER */
  732. + nla_total_size(1) /* IFLA_CARRIER */
  733. + nla_total_size(4) /* IFLA_PROMISCUITY */
  734. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  735. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  736. + nla_total_size(1) /* IFLA_OPERSTATE */
  737. + nla_total_size(1) /* IFLA_LINKMODE */
  738. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  739. + nla_total_size(ext_filter_mask
  740. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  741. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  742. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  743. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  744. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  745. + nla_total_size(MAX_PHYS_ITEM_ID_LEN) /* IFLA_PHYS_PORT_ID */
  746. + nla_total_size(MAX_PHYS_ITEM_ID_LEN); /* IFLA_PHYS_SWITCH_ID */
  747. }
  748. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  749. {
  750. struct nlattr *vf_ports;
  751. struct nlattr *vf_port;
  752. int vf;
  753. int err;
  754. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  755. if (!vf_ports)
  756. return -EMSGSIZE;
  757. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  758. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  759. if (!vf_port)
  760. goto nla_put_failure;
  761. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  762. goto nla_put_failure;
  763. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  764. if (err == -EMSGSIZE)
  765. goto nla_put_failure;
  766. if (err) {
  767. nla_nest_cancel(skb, vf_port);
  768. continue;
  769. }
  770. nla_nest_end(skb, vf_port);
  771. }
  772. nla_nest_end(skb, vf_ports);
  773. return 0;
  774. nla_put_failure:
  775. nla_nest_cancel(skb, vf_ports);
  776. return -EMSGSIZE;
  777. }
  778. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  779. {
  780. struct nlattr *port_self;
  781. int err;
  782. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  783. if (!port_self)
  784. return -EMSGSIZE;
  785. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  786. if (err) {
  787. nla_nest_cancel(skb, port_self);
  788. return (err == -EMSGSIZE) ? err : 0;
  789. }
  790. nla_nest_end(skb, port_self);
  791. return 0;
  792. }
  793. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  794. u32 ext_filter_mask)
  795. {
  796. int err;
  797. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  798. !(ext_filter_mask & RTEXT_FILTER_VF))
  799. return 0;
  800. err = rtnl_port_self_fill(skb, dev);
  801. if (err)
  802. return err;
  803. if (dev_num_vf(dev->dev.parent)) {
  804. err = rtnl_vf_ports_fill(skb, dev);
  805. if (err)
  806. return err;
  807. }
  808. return 0;
  809. }
  810. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  811. {
  812. int err;
  813. struct netdev_phys_item_id ppid;
  814. err = dev_get_phys_port_id(dev, &ppid);
  815. if (err) {
  816. if (err == -EOPNOTSUPP)
  817. return 0;
  818. return err;
  819. }
  820. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  821. return -EMSGSIZE;
  822. return 0;
  823. }
  824. static int rtnl_phys_switch_id_fill(struct sk_buff *skb, struct net_device *dev)
  825. {
  826. int err;
  827. struct netdev_phys_item_id psid;
  828. err = netdev_switch_parent_id_get(dev, &psid);
  829. if (err) {
  830. if (err == -EOPNOTSUPP)
  831. return 0;
  832. return err;
  833. }
  834. if (nla_put(skb, IFLA_PHYS_SWITCH_ID, psid.id_len, psid.id))
  835. return -EMSGSIZE;
  836. return 0;
  837. }
  838. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  839. int type, u32 pid, u32 seq, u32 change,
  840. unsigned int flags, u32 ext_filter_mask)
  841. {
  842. struct ifinfomsg *ifm;
  843. struct nlmsghdr *nlh;
  844. struct rtnl_link_stats64 temp;
  845. const struct rtnl_link_stats64 *stats;
  846. struct nlattr *attr, *af_spec;
  847. struct rtnl_af_ops *af_ops;
  848. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  849. ASSERT_RTNL();
  850. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  851. if (nlh == NULL)
  852. return -EMSGSIZE;
  853. ifm = nlmsg_data(nlh);
  854. ifm->ifi_family = AF_UNSPEC;
  855. ifm->__ifi_pad = 0;
  856. ifm->ifi_type = dev->type;
  857. ifm->ifi_index = dev->ifindex;
  858. ifm->ifi_flags = dev_get_flags(dev);
  859. ifm->ifi_change = change;
  860. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  861. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  862. nla_put_u8(skb, IFLA_OPERSTATE,
  863. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  864. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  865. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  866. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  867. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  868. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  869. #ifdef CONFIG_RPS
  870. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  871. #endif
  872. (dev->ifindex != dev->iflink &&
  873. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  874. (upper_dev &&
  875. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  876. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  877. (dev->qdisc &&
  878. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  879. (dev->ifalias &&
  880. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  881. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  882. atomic_read(&dev->carrier_changes)))
  883. goto nla_put_failure;
  884. if (1) {
  885. struct rtnl_link_ifmap map = {
  886. .mem_start = dev->mem_start,
  887. .mem_end = dev->mem_end,
  888. .base_addr = dev->base_addr,
  889. .irq = dev->irq,
  890. .dma = dev->dma,
  891. .port = dev->if_port,
  892. };
  893. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  894. goto nla_put_failure;
  895. }
  896. if (dev->addr_len) {
  897. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  898. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  899. goto nla_put_failure;
  900. }
  901. if (rtnl_phys_port_id_fill(skb, dev))
  902. goto nla_put_failure;
  903. if (rtnl_phys_switch_id_fill(skb, dev))
  904. goto nla_put_failure;
  905. attr = nla_reserve(skb, IFLA_STATS,
  906. sizeof(struct rtnl_link_stats));
  907. if (attr == NULL)
  908. goto nla_put_failure;
  909. stats = dev_get_stats(dev, &temp);
  910. copy_rtnl_link_stats(nla_data(attr), stats);
  911. attr = nla_reserve(skb, IFLA_STATS64,
  912. sizeof(struct rtnl_link_stats64));
  913. if (attr == NULL)
  914. goto nla_put_failure;
  915. copy_rtnl_link_stats64(nla_data(attr), stats);
  916. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  917. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  918. goto nla_put_failure;
  919. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  920. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  921. int i;
  922. struct nlattr *vfinfo, *vf;
  923. int num_vfs = dev_num_vf(dev->dev.parent);
  924. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  925. if (!vfinfo)
  926. goto nla_put_failure;
  927. for (i = 0; i < num_vfs; i++) {
  928. struct ifla_vf_info ivi;
  929. struct ifla_vf_mac vf_mac;
  930. struct ifla_vf_vlan vf_vlan;
  931. struct ifla_vf_rate vf_rate;
  932. struct ifla_vf_tx_rate vf_tx_rate;
  933. struct ifla_vf_spoofchk vf_spoofchk;
  934. struct ifla_vf_link_state vf_linkstate;
  935. /*
  936. * Not all SR-IOV capable drivers support the
  937. * spoofcheck query. Preset to -1 so the user
  938. * space tool can detect that the driver didn't
  939. * report anything.
  940. */
  941. ivi.spoofchk = -1;
  942. memset(ivi.mac, 0, sizeof(ivi.mac));
  943. /* The default value for VF link state is "auto"
  944. * IFLA_VF_LINK_STATE_AUTO which equals zero
  945. */
  946. ivi.linkstate = 0;
  947. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  948. break;
  949. vf_mac.vf =
  950. vf_vlan.vf =
  951. vf_rate.vf =
  952. vf_tx_rate.vf =
  953. vf_spoofchk.vf =
  954. vf_linkstate.vf = ivi.vf;
  955. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  956. vf_vlan.vlan = ivi.vlan;
  957. vf_vlan.qos = ivi.qos;
  958. vf_tx_rate.rate = ivi.max_tx_rate;
  959. vf_rate.min_tx_rate = ivi.min_tx_rate;
  960. vf_rate.max_tx_rate = ivi.max_tx_rate;
  961. vf_spoofchk.setting = ivi.spoofchk;
  962. vf_linkstate.link_state = ivi.linkstate;
  963. vf = nla_nest_start(skb, IFLA_VF_INFO);
  964. if (!vf) {
  965. nla_nest_cancel(skb, vfinfo);
  966. goto nla_put_failure;
  967. }
  968. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  969. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  970. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  971. &vf_rate) ||
  972. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  973. &vf_tx_rate) ||
  974. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  975. &vf_spoofchk) ||
  976. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  977. &vf_linkstate))
  978. goto nla_put_failure;
  979. nla_nest_end(skb, vf);
  980. }
  981. nla_nest_end(skb, vfinfo);
  982. }
  983. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  984. goto nla_put_failure;
  985. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  986. if (rtnl_link_fill(skb, dev) < 0)
  987. goto nla_put_failure;
  988. }
  989. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  990. goto nla_put_failure;
  991. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  992. if (af_ops->fill_link_af) {
  993. struct nlattr *af;
  994. int err;
  995. if (!(af = nla_nest_start(skb, af_ops->family)))
  996. goto nla_put_failure;
  997. err = af_ops->fill_link_af(skb, dev);
  998. /*
  999. * Caller may return ENODATA to indicate that there
  1000. * was no data to be dumped. This is not an error, it
  1001. * means we should trim the attribute header and
  1002. * continue.
  1003. */
  1004. if (err == -ENODATA)
  1005. nla_nest_cancel(skb, af);
  1006. else if (err < 0)
  1007. goto nla_put_failure;
  1008. nla_nest_end(skb, af);
  1009. }
  1010. }
  1011. nla_nest_end(skb, af_spec);
  1012. return nlmsg_end(skb, nlh);
  1013. nla_put_failure:
  1014. nlmsg_cancel(skb, nlh);
  1015. return -EMSGSIZE;
  1016. }
  1017. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  1018. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  1019. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1020. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1021. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1022. [IFLA_MTU] = { .type = NLA_U32 },
  1023. [IFLA_LINK] = { .type = NLA_U32 },
  1024. [IFLA_MASTER] = { .type = NLA_U32 },
  1025. [IFLA_CARRIER] = { .type = NLA_U8 },
  1026. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1027. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1028. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1029. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1030. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1031. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1032. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1033. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1034. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1035. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1036. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1037. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1038. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1039. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1040. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1041. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1042. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1043. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1044. [IFLA_PHYS_SWITCH_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_ITEM_ID_LEN },
  1045. };
  1046. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1047. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1048. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1049. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1050. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1051. };
  1052. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  1053. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  1054. };
  1055. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1056. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  1057. .len = sizeof(struct ifla_vf_mac) },
  1058. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  1059. .len = sizeof(struct ifla_vf_vlan) },
  1060. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  1061. .len = sizeof(struct ifla_vf_tx_rate) },
  1062. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  1063. .len = sizeof(struct ifla_vf_spoofchk) },
  1064. [IFLA_VF_RATE] = { .type = NLA_BINARY,
  1065. .len = sizeof(struct ifla_vf_rate) },
  1066. [IFLA_VF_LINK_STATE] = { .type = NLA_BINARY,
  1067. .len = sizeof(struct ifla_vf_link_state) },
  1068. };
  1069. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1070. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1071. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1072. .len = PORT_PROFILE_MAX },
  1073. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1074. .len = sizeof(struct ifla_port_vsi)},
  1075. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1076. .len = PORT_UUID_MAX },
  1077. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1078. .len = PORT_UUID_MAX },
  1079. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1080. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1081. };
  1082. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1083. {
  1084. struct net *net = sock_net(skb->sk);
  1085. int h, s_h;
  1086. int idx = 0, s_idx;
  1087. struct net_device *dev;
  1088. struct hlist_head *head;
  1089. struct nlattr *tb[IFLA_MAX+1];
  1090. u32 ext_filter_mask = 0;
  1091. int err;
  1092. int hdrlen;
  1093. s_h = cb->args[0];
  1094. s_idx = cb->args[1];
  1095. rcu_read_lock();
  1096. cb->seq = net->dev_base_seq;
  1097. /* A hack to preserve kernel<->userspace interface.
  1098. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1099. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1100. * what iproute2 < v3.9.0 used.
  1101. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1102. * attribute, its netlink message is shorter than struct ifinfomsg.
  1103. */
  1104. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1105. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1106. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1107. if (tb[IFLA_EXT_MASK])
  1108. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1109. }
  1110. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1111. idx = 0;
  1112. head = &net->dev_index_head[h];
  1113. hlist_for_each_entry_rcu(dev, head, index_hlist) {
  1114. if (idx < s_idx)
  1115. goto cont;
  1116. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1117. NETLINK_CB(cb->skb).portid,
  1118. cb->nlh->nlmsg_seq, 0,
  1119. NLM_F_MULTI,
  1120. ext_filter_mask);
  1121. /* If we ran out of room on the first message,
  1122. * we're in trouble
  1123. */
  1124. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1125. if (err <= 0)
  1126. goto out;
  1127. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1128. cont:
  1129. idx++;
  1130. }
  1131. }
  1132. out:
  1133. rcu_read_unlock();
  1134. cb->args[1] = idx;
  1135. cb->args[0] = h;
  1136. return skb->len;
  1137. }
  1138. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1139. {
  1140. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1141. }
  1142. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1143. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1144. {
  1145. struct net *net;
  1146. /* Examine the link attributes and figure out which
  1147. * network namespace we are talking about.
  1148. */
  1149. if (tb[IFLA_NET_NS_PID])
  1150. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1151. else if (tb[IFLA_NET_NS_FD])
  1152. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1153. else
  1154. net = get_net(src_net);
  1155. return net;
  1156. }
  1157. EXPORT_SYMBOL(rtnl_link_get_net);
  1158. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1159. {
  1160. if (dev) {
  1161. if (tb[IFLA_ADDRESS] &&
  1162. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1163. return -EINVAL;
  1164. if (tb[IFLA_BROADCAST] &&
  1165. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1166. return -EINVAL;
  1167. }
  1168. if (tb[IFLA_AF_SPEC]) {
  1169. struct nlattr *af;
  1170. int rem, err;
  1171. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1172. const struct rtnl_af_ops *af_ops;
  1173. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1174. return -EAFNOSUPPORT;
  1175. if (!af_ops->set_link_af)
  1176. return -EOPNOTSUPP;
  1177. if (af_ops->validate_link_af) {
  1178. err = af_ops->validate_link_af(dev, af);
  1179. if (err < 0)
  1180. return err;
  1181. }
  1182. }
  1183. }
  1184. return 0;
  1185. }
  1186. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1187. {
  1188. int rem, err = -EINVAL;
  1189. struct nlattr *vf;
  1190. const struct net_device_ops *ops = dev->netdev_ops;
  1191. nla_for_each_nested(vf, attr, rem) {
  1192. switch (nla_type(vf)) {
  1193. case IFLA_VF_MAC: {
  1194. struct ifla_vf_mac *ivm;
  1195. ivm = nla_data(vf);
  1196. err = -EOPNOTSUPP;
  1197. if (ops->ndo_set_vf_mac)
  1198. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1199. ivm->mac);
  1200. break;
  1201. }
  1202. case IFLA_VF_VLAN: {
  1203. struct ifla_vf_vlan *ivv;
  1204. ivv = nla_data(vf);
  1205. err = -EOPNOTSUPP;
  1206. if (ops->ndo_set_vf_vlan)
  1207. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1208. ivv->vlan,
  1209. ivv->qos);
  1210. break;
  1211. }
  1212. case IFLA_VF_TX_RATE: {
  1213. struct ifla_vf_tx_rate *ivt;
  1214. struct ifla_vf_info ivf;
  1215. ivt = nla_data(vf);
  1216. err = -EOPNOTSUPP;
  1217. if (ops->ndo_get_vf_config)
  1218. err = ops->ndo_get_vf_config(dev, ivt->vf,
  1219. &ivf);
  1220. if (err)
  1221. break;
  1222. err = -EOPNOTSUPP;
  1223. if (ops->ndo_set_vf_rate)
  1224. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1225. ivf.min_tx_rate,
  1226. ivt->rate);
  1227. break;
  1228. }
  1229. case IFLA_VF_RATE: {
  1230. struct ifla_vf_rate *ivt;
  1231. ivt = nla_data(vf);
  1232. err = -EOPNOTSUPP;
  1233. if (ops->ndo_set_vf_rate)
  1234. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1235. ivt->min_tx_rate,
  1236. ivt->max_tx_rate);
  1237. break;
  1238. }
  1239. case IFLA_VF_SPOOFCHK: {
  1240. struct ifla_vf_spoofchk *ivs;
  1241. ivs = nla_data(vf);
  1242. err = -EOPNOTSUPP;
  1243. if (ops->ndo_set_vf_spoofchk)
  1244. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1245. ivs->setting);
  1246. break;
  1247. }
  1248. case IFLA_VF_LINK_STATE: {
  1249. struct ifla_vf_link_state *ivl;
  1250. ivl = nla_data(vf);
  1251. err = -EOPNOTSUPP;
  1252. if (ops->ndo_set_vf_link_state)
  1253. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1254. ivl->link_state);
  1255. break;
  1256. }
  1257. default:
  1258. err = -EINVAL;
  1259. break;
  1260. }
  1261. if (err)
  1262. break;
  1263. }
  1264. return err;
  1265. }
  1266. static int do_set_master(struct net_device *dev, int ifindex)
  1267. {
  1268. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1269. const struct net_device_ops *ops;
  1270. int err;
  1271. if (upper_dev) {
  1272. if (upper_dev->ifindex == ifindex)
  1273. return 0;
  1274. ops = upper_dev->netdev_ops;
  1275. if (ops->ndo_del_slave) {
  1276. err = ops->ndo_del_slave(upper_dev, dev);
  1277. if (err)
  1278. return err;
  1279. } else {
  1280. return -EOPNOTSUPP;
  1281. }
  1282. }
  1283. if (ifindex) {
  1284. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1285. if (!upper_dev)
  1286. return -EINVAL;
  1287. ops = upper_dev->netdev_ops;
  1288. if (ops->ndo_add_slave) {
  1289. err = ops->ndo_add_slave(upper_dev, dev);
  1290. if (err)
  1291. return err;
  1292. } else {
  1293. return -EOPNOTSUPP;
  1294. }
  1295. }
  1296. return 0;
  1297. }
  1298. #define DO_SETLINK_MODIFIED 0x01
  1299. /* notify flag means notify + modified. */
  1300. #define DO_SETLINK_NOTIFY 0x03
  1301. static int do_setlink(const struct sk_buff *skb,
  1302. struct net_device *dev, struct ifinfomsg *ifm,
  1303. struct nlattr **tb, char *ifname, int status)
  1304. {
  1305. const struct net_device_ops *ops = dev->netdev_ops;
  1306. int err;
  1307. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1308. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1309. if (IS_ERR(net)) {
  1310. err = PTR_ERR(net);
  1311. goto errout;
  1312. }
  1313. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1314. err = -EPERM;
  1315. goto errout;
  1316. }
  1317. err = dev_change_net_namespace(dev, net, ifname);
  1318. put_net(net);
  1319. if (err)
  1320. goto errout;
  1321. status |= DO_SETLINK_MODIFIED;
  1322. }
  1323. if (tb[IFLA_MAP]) {
  1324. struct rtnl_link_ifmap *u_map;
  1325. struct ifmap k_map;
  1326. if (!ops->ndo_set_config) {
  1327. err = -EOPNOTSUPP;
  1328. goto errout;
  1329. }
  1330. if (!netif_device_present(dev)) {
  1331. err = -ENODEV;
  1332. goto errout;
  1333. }
  1334. u_map = nla_data(tb[IFLA_MAP]);
  1335. k_map.mem_start = (unsigned long) u_map->mem_start;
  1336. k_map.mem_end = (unsigned long) u_map->mem_end;
  1337. k_map.base_addr = (unsigned short) u_map->base_addr;
  1338. k_map.irq = (unsigned char) u_map->irq;
  1339. k_map.dma = (unsigned char) u_map->dma;
  1340. k_map.port = (unsigned char) u_map->port;
  1341. err = ops->ndo_set_config(dev, &k_map);
  1342. if (err < 0)
  1343. goto errout;
  1344. status |= DO_SETLINK_NOTIFY;
  1345. }
  1346. if (tb[IFLA_ADDRESS]) {
  1347. struct sockaddr *sa;
  1348. int len;
  1349. len = sizeof(sa_family_t) + dev->addr_len;
  1350. sa = kmalloc(len, GFP_KERNEL);
  1351. if (!sa) {
  1352. err = -ENOMEM;
  1353. goto errout;
  1354. }
  1355. sa->sa_family = dev->type;
  1356. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1357. dev->addr_len);
  1358. err = dev_set_mac_address(dev, sa);
  1359. kfree(sa);
  1360. if (err)
  1361. goto errout;
  1362. status |= DO_SETLINK_MODIFIED;
  1363. }
  1364. if (tb[IFLA_MTU]) {
  1365. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1366. if (err < 0)
  1367. goto errout;
  1368. status |= DO_SETLINK_MODIFIED;
  1369. }
  1370. if (tb[IFLA_GROUP]) {
  1371. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1372. status |= DO_SETLINK_NOTIFY;
  1373. }
  1374. /*
  1375. * Interface selected by interface index but interface
  1376. * name provided implies that a name change has been
  1377. * requested.
  1378. */
  1379. if (ifm->ifi_index > 0 && ifname[0]) {
  1380. err = dev_change_name(dev, ifname);
  1381. if (err < 0)
  1382. goto errout;
  1383. status |= DO_SETLINK_MODIFIED;
  1384. }
  1385. if (tb[IFLA_IFALIAS]) {
  1386. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1387. nla_len(tb[IFLA_IFALIAS]));
  1388. if (err < 0)
  1389. goto errout;
  1390. status |= DO_SETLINK_NOTIFY;
  1391. }
  1392. if (tb[IFLA_BROADCAST]) {
  1393. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1394. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1395. }
  1396. if (ifm->ifi_flags || ifm->ifi_change) {
  1397. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1398. if (err < 0)
  1399. goto errout;
  1400. }
  1401. if (tb[IFLA_MASTER]) {
  1402. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1403. if (err)
  1404. goto errout;
  1405. status |= DO_SETLINK_MODIFIED;
  1406. }
  1407. if (tb[IFLA_CARRIER]) {
  1408. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1409. if (err)
  1410. goto errout;
  1411. status |= DO_SETLINK_MODIFIED;
  1412. }
  1413. if (tb[IFLA_TXQLEN]) {
  1414. unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
  1415. if (dev->tx_queue_len ^ value)
  1416. status |= DO_SETLINK_NOTIFY;
  1417. dev->tx_queue_len = value;
  1418. }
  1419. if (tb[IFLA_OPERSTATE])
  1420. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1421. if (tb[IFLA_LINKMODE]) {
  1422. unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
  1423. write_lock_bh(&dev_base_lock);
  1424. if (dev->link_mode ^ value)
  1425. status |= DO_SETLINK_NOTIFY;
  1426. dev->link_mode = value;
  1427. write_unlock_bh(&dev_base_lock);
  1428. }
  1429. if (tb[IFLA_VFINFO_LIST]) {
  1430. struct nlattr *attr;
  1431. int rem;
  1432. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1433. if (nla_type(attr) != IFLA_VF_INFO) {
  1434. err = -EINVAL;
  1435. goto errout;
  1436. }
  1437. err = do_setvfinfo(dev, attr);
  1438. if (err < 0)
  1439. goto errout;
  1440. status |= DO_SETLINK_NOTIFY;
  1441. }
  1442. }
  1443. err = 0;
  1444. if (tb[IFLA_VF_PORTS]) {
  1445. struct nlattr *port[IFLA_PORT_MAX+1];
  1446. struct nlattr *attr;
  1447. int vf;
  1448. int rem;
  1449. err = -EOPNOTSUPP;
  1450. if (!ops->ndo_set_vf_port)
  1451. goto errout;
  1452. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1453. if (nla_type(attr) != IFLA_VF_PORT)
  1454. continue;
  1455. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1456. attr, ifla_port_policy);
  1457. if (err < 0)
  1458. goto errout;
  1459. if (!port[IFLA_PORT_VF]) {
  1460. err = -EOPNOTSUPP;
  1461. goto errout;
  1462. }
  1463. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1464. err = ops->ndo_set_vf_port(dev, vf, port);
  1465. if (err < 0)
  1466. goto errout;
  1467. status |= DO_SETLINK_NOTIFY;
  1468. }
  1469. }
  1470. err = 0;
  1471. if (tb[IFLA_PORT_SELF]) {
  1472. struct nlattr *port[IFLA_PORT_MAX+1];
  1473. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1474. tb[IFLA_PORT_SELF], ifla_port_policy);
  1475. if (err < 0)
  1476. goto errout;
  1477. err = -EOPNOTSUPP;
  1478. if (ops->ndo_set_vf_port)
  1479. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1480. if (err < 0)
  1481. goto errout;
  1482. status |= DO_SETLINK_NOTIFY;
  1483. }
  1484. if (tb[IFLA_AF_SPEC]) {
  1485. struct nlattr *af;
  1486. int rem;
  1487. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1488. const struct rtnl_af_ops *af_ops;
  1489. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1490. BUG();
  1491. err = af_ops->set_link_af(dev, af);
  1492. if (err < 0)
  1493. goto errout;
  1494. status |= DO_SETLINK_NOTIFY;
  1495. }
  1496. }
  1497. err = 0;
  1498. errout:
  1499. if (status & DO_SETLINK_MODIFIED) {
  1500. if (status & DO_SETLINK_NOTIFY)
  1501. netdev_state_change(dev);
  1502. if (err < 0)
  1503. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1504. dev->name);
  1505. }
  1506. return err;
  1507. }
  1508. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1509. {
  1510. struct net *net = sock_net(skb->sk);
  1511. struct ifinfomsg *ifm;
  1512. struct net_device *dev;
  1513. int err;
  1514. struct nlattr *tb[IFLA_MAX+1];
  1515. char ifname[IFNAMSIZ];
  1516. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1517. if (err < 0)
  1518. goto errout;
  1519. if (tb[IFLA_IFNAME])
  1520. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1521. else
  1522. ifname[0] = '\0';
  1523. err = -EINVAL;
  1524. ifm = nlmsg_data(nlh);
  1525. if (ifm->ifi_index > 0)
  1526. dev = __dev_get_by_index(net, ifm->ifi_index);
  1527. else if (tb[IFLA_IFNAME])
  1528. dev = __dev_get_by_name(net, ifname);
  1529. else
  1530. goto errout;
  1531. if (dev == NULL) {
  1532. err = -ENODEV;
  1533. goto errout;
  1534. }
  1535. err = validate_linkmsg(dev, tb);
  1536. if (err < 0)
  1537. goto errout;
  1538. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1539. errout:
  1540. return err;
  1541. }
  1542. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1543. {
  1544. struct net *net = sock_net(skb->sk);
  1545. const struct rtnl_link_ops *ops;
  1546. struct net_device *dev;
  1547. struct ifinfomsg *ifm;
  1548. char ifname[IFNAMSIZ];
  1549. struct nlattr *tb[IFLA_MAX+1];
  1550. int err;
  1551. LIST_HEAD(list_kill);
  1552. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1553. if (err < 0)
  1554. return err;
  1555. if (tb[IFLA_IFNAME])
  1556. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1557. ifm = nlmsg_data(nlh);
  1558. if (ifm->ifi_index > 0)
  1559. dev = __dev_get_by_index(net, ifm->ifi_index);
  1560. else if (tb[IFLA_IFNAME])
  1561. dev = __dev_get_by_name(net, ifname);
  1562. else
  1563. return -EINVAL;
  1564. if (!dev)
  1565. return -ENODEV;
  1566. ops = dev->rtnl_link_ops;
  1567. if (!ops || !ops->dellink)
  1568. return -EOPNOTSUPP;
  1569. ops->dellink(dev, &list_kill);
  1570. unregister_netdevice_many(&list_kill);
  1571. return 0;
  1572. }
  1573. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1574. {
  1575. unsigned int old_flags;
  1576. int err;
  1577. old_flags = dev->flags;
  1578. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1579. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1580. if (err < 0)
  1581. return err;
  1582. }
  1583. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1584. __dev_notify_flags(dev, old_flags, ~0U);
  1585. return 0;
  1586. }
  1587. EXPORT_SYMBOL(rtnl_configure_link);
  1588. struct net_device *rtnl_create_link(struct net *net,
  1589. char *ifname, unsigned char name_assign_type,
  1590. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1591. {
  1592. int err;
  1593. struct net_device *dev;
  1594. unsigned int num_tx_queues = 1;
  1595. unsigned int num_rx_queues = 1;
  1596. if (tb[IFLA_NUM_TX_QUEUES])
  1597. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1598. else if (ops->get_num_tx_queues)
  1599. num_tx_queues = ops->get_num_tx_queues();
  1600. if (tb[IFLA_NUM_RX_QUEUES])
  1601. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1602. else if (ops->get_num_rx_queues)
  1603. num_rx_queues = ops->get_num_rx_queues();
  1604. err = -ENOMEM;
  1605. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1606. ops->setup, num_tx_queues, num_rx_queues);
  1607. if (!dev)
  1608. goto err;
  1609. dev_net_set(dev, net);
  1610. dev->rtnl_link_ops = ops;
  1611. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1612. if (tb[IFLA_MTU])
  1613. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1614. if (tb[IFLA_ADDRESS]) {
  1615. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1616. nla_len(tb[IFLA_ADDRESS]));
  1617. dev->addr_assign_type = NET_ADDR_SET;
  1618. }
  1619. if (tb[IFLA_BROADCAST])
  1620. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1621. nla_len(tb[IFLA_BROADCAST]));
  1622. if (tb[IFLA_TXQLEN])
  1623. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1624. if (tb[IFLA_OPERSTATE])
  1625. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1626. if (tb[IFLA_LINKMODE])
  1627. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1628. if (tb[IFLA_GROUP])
  1629. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1630. return dev;
  1631. err:
  1632. return ERR_PTR(err);
  1633. }
  1634. EXPORT_SYMBOL(rtnl_create_link);
  1635. static int rtnl_group_changelink(const struct sk_buff *skb,
  1636. struct net *net, int group,
  1637. struct ifinfomsg *ifm,
  1638. struct nlattr **tb)
  1639. {
  1640. struct net_device *dev;
  1641. int err;
  1642. for_each_netdev(net, dev) {
  1643. if (dev->group == group) {
  1644. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1645. if (err < 0)
  1646. return err;
  1647. }
  1648. }
  1649. return 0;
  1650. }
  1651. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1652. {
  1653. struct net *net = sock_net(skb->sk);
  1654. const struct rtnl_link_ops *ops;
  1655. const struct rtnl_link_ops *m_ops = NULL;
  1656. struct net_device *dev;
  1657. struct net_device *master_dev = NULL;
  1658. struct ifinfomsg *ifm;
  1659. char kind[MODULE_NAME_LEN];
  1660. char ifname[IFNAMSIZ];
  1661. struct nlattr *tb[IFLA_MAX+1];
  1662. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1663. unsigned char name_assign_type = NET_NAME_USER;
  1664. int err;
  1665. #ifdef CONFIG_MODULES
  1666. replay:
  1667. #endif
  1668. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1669. if (err < 0)
  1670. return err;
  1671. if (tb[IFLA_IFNAME])
  1672. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1673. else
  1674. ifname[0] = '\0';
  1675. ifm = nlmsg_data(nlh);
  1676. if (ifm->ifi_index > 0)
  1677. dev = __dev_get_by_index(net, ifm->ifi_index);
  1678. else {
  1679. if (ifname[0])
  1680. dev = __dev_get_by_name(net, ifname);
  1681. else
  1682. dev = NULL;
  1683. }
  1684. if (dev) {
  1685. master_dev = netdev_master_upper_dev_get(dev);
  1686. if (master_dev)
  1687. m_ops = master_dev->rtnl_link_ops;
  1688. }
  1689. err = validate_linkmsg(dev, tb);
  1690. if (err < 0)
  1691. return err;
  1692. if (tb[IFLA_LINKINFO]) {
  1693. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1694. tb[IFLA_LINKINFO], ifla_info_policy);
  1695. if (err < 0)
  1696. return err;
  1697. } else
  1698. memset(linkinfo, 0, sizeof(linkinfo));
  1699. if (linkinfo[IFLA_INFO_KIND]) {
  1700. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1701. ops = rtnl_link_ops_get(kind);
  1702. } else {
  1703. kind[0] = '\0';
  1704. ops = NULL;
  1705. }
  1706. if (1) {
  1707. struct nlattr *attr[ops ? ops->maxtype + 1 : 0];
  1708. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 0];
  1709. struct nlattr **data = NULL;
  1710. struct nlattr **slave_data = NULL;
  1711. struct net *dest_net;
  1712. if (ops) {
  1713. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1714. err = nla_parse_nested(attr, ops->maxtype,
  1715. linkinfo[IFLA_INFO_DATA],
  1716. ops->policy);
  1717. if (err < 0)
  1718. return err;
  1719. data = attr;
  1720. }
  1721. if (ops->validate) {
  1722. err = ops->validate(tb, data);
  1723. if (err < 0)
  1724. return err;
  1725. }
  1726. }
  1727. if (m_ops) {
  1728. if (m_ops->slave_maxtype &&
  1729. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1730. err = nla_parse_nested(slave_attr,
  1731. m_ops->slave_maxtype,
  1732. linkinfo[IFLA_INFO_SLAVE_DATA],
  1733. m_ops->slave_policy);
  1734. if (err < 0)
  1735. return err;
  1736. slave_data = slave_attr;
  1737. }
  1738. if (m_ops->slave_validate) {
  1739. err = m_ops->slave_validate(tb, slave_data);
  1740. if (err < 0)
  1741. return err;
  1742. }
  1743. }
  1744. if (dev) {
  1745. int status = 0;
  1746. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1747. return -EEXIST;
  1748. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1749. return -EOPNOTSUPP;
  1750. if (linkinfo[IFLA_INFO_DATA]) {
  1751. if (!ops || ops != dev->rtnl_link_ops ||
  1752. !ops->changelink)
  1753. return -EOPNOTSUPP;
  1754. err = ops->changelink(dev, tb, data);
  1755. if (err < 0)
  1756. return err;
  1757. status |= DO_SETLINK_NOTIFY;
  1758. }
  1759. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1760. if (!m_ops || !m_ops->slave_changelink)
  1761. return -EOPNOTSUPP;
  1762. err = m_ops->slave_changelink(master_dev, dev,
  1763. tb, slave_data);
  1764. if (err < 0)
  1765. return err;
  1766. status |= DO_SETLINK_NOTIFY;
  1767. }
  1768. return do_setlink(skb, dev, ifm, tb, ifname, status);
  1769. }
  1770. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1771. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1772. return rtnl_group_changelink(skb, net,
  1773. nla_get_u32(tb[IFLA_GROUP]),
  1774. ifm, tb);
  1775. return -ENODEV;
  1776. }
  1777. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1778. return -EOPNOTSUPP;
  1779. if (!ops) {
  1780. #ifdef CONFIG_MODULES
  1781. if (kind[0]) {
  1782. __rtnl_unlock();
  1783. request_module("rtnl-link-%s", kind);
  1784. rtnl_lock();
  1785. ops = rtnl_link_ops_get(kind);
  1786. if (ops)
  1787. goto replay;
  1788. }
  1789. #endif
  1790. return -EOPNOTSUPP;
  1791. }
  1792. if (!ops->setup)
  1793. return -EOPNOTSUPP;
  1794. if (!ifname[0]) {
  1795. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1796. name_assign_type = NET_NAME_ENUM;
  1797. }
  1798. dest_net = rtnl_link_get_net(net, tb);
  1799. if (IS_ERR(dest_net))
  1800. return PTR_ERR(dest_net);
  1801. dev = rtnl_create_link(dest_net, ifname, name_assign_type, ops, tb);
  1802. if (IS_ERR(dev)) {
  1803. err = PTR_ERR(dev);
  1804. goto out;
  1805. }
  1806. dev->ifindex = ifm->ifi_index;
  1807. if (ops->newlink) {
  1808. err = ops->newlink(net, dev, tb, data);
  1809. /* Drivers should call free_netdev() in ->destructor
  1810. * and unregister it on failure after registration
  1811. * so that device could be finally freed in rtnl_unlock.
  1812. */
  1813. if (err < 0) {
  1814. /* If device is not registered at all, free it now */
  1815. if (dev->reg_state == NETREG_UNINITIALIZED)
  1816. free_netdev(dev);
  1817. goto out;
  1818. }
  1819. } else {
  1820. err = register_netdevice(dev);
  1821. if (err < 0) {
  1822. free_netdev(dev);
  1823. goto out;
  1824. }
  1825. }
  1826. err = rtnl_configure_link(dev, ifm);
  1827. if (err < 0)
  1828. unregister_netdevice(dev);
  1829. out:
  1830. put_net(dest_net);
  1831. return err;
  1832. }
  1833. }
  1834. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1835. {
  1836. struct net *net = sock_net(skb->sk);
  1837. struct ifinfomsg *ifm;
  1838. char ifname[IFNAMSIZ];
  1839. struct nlattr *tb[IFLA_MAX+1];
  1840. struct net_device *dev = NULL;
  1841. struct sk_buff *nskb;
  1842. int err;
  1843. u32 ext_filter_mask = 0;
  1844. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1845. if (err < 0)
  1846. return err;
  1847. if (tb[IFLA_IFNAME])
  1848. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1849. if (tb[IFLA_EXT_MASK])
  1850. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1851. ifm = nlmsg_data(nlh);
  1852. if (ifm->ifi_index > 0)
  1853. dev = __dev_get_by_index(net, ifm->ifi_index);
  1854. else if (tb[IFLA_IFNAME])
  1855. dev = __dev_get_by_name(net, ifname);
  1856. else
  1857. return -EINVAL;
  1858. if (dev == NULL)
  1859. return -ENODEV;
  1860. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1861. if (nskb == NULL)
  1862. return -ENOBUFS;
  1863. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1864. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1865. if (err < 0) {
  1866. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1867. WARN_ON(err == -EMSGSIZE);
  1868. kfree_skb(nskb);
  1869. } else
  1870. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1871. return err;
  1872. }
  1873. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1874. {
  1875. struct net *net = sock_net(skb->sk);
  1876. struct net_device *dev;
  1877. struct nlattr *tb[IFLA_MAX+1];
  1878. u32 ext_filter_mask = 0;
  1879. u16 min_ifinfo_dump_size = 0;
  1880. int hdrlen;
  1881. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  1882. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  1883. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1884. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1885. if (tb[IFLA_EXT_MASK])
  1886. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1887. }
  1888. if (!ext_filter_mask)
  1889. return NLMSG_GOODSIZE;
  1890. /*
  1891. * traverse the list of net devices and compute the minimum
  1892. * buffer size based upon the filter mask.
  1893. */
  1894. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1895. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1896. if_nlmsg_size(dev,
  1897. ext_filter_mask));
  1898. }
  1899. return min_ifinfo_dump_size;
  1900. }
  1901. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1902. {
  1903. int idx;
  1904. int s_idx = cb->family;
  1905. if (s_idx == 0)
  1906. s_idx = 1;
  1907. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1908. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1909. if (idx < s_idx || idx == PF_PACKET)
  1910. continue;
  1911. if (rtnl_msg_handlers[idx] == NULL ||
  1912. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1913. continue;
  1914. if (idx > s_idx) {
  1915. memset(&cb->args[0], 0, sizeof(cb->args));
  1916. cb->prev_seq = 0;
  1917. cb->seq = 0;
  1918. }
  1919. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1920. break;
  1921. }
  1922. cb->family = idx;
  1923. return skb->len;
  1924. }
  1925. struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev,
  1926. unsigned int change, gfp_t flags)
  1927. {
  1928. struct net *net = dev_net(dev);
  1929. struct sk_buff *skb;
  1930. int err = -ENOBUFS;
  1931. size_t if_info_size;
  1932. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  1933. if (skb == NULL)
  1934. goto errout;
  1935. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1936. if (err < 0) {
  1937. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1938. WARN_ON(err == -EMSGSIZE);
  1939. kfree_skb(skb);
  1940. goto errout;
  1941. }
  1942. return skb;
  1943. errout:
  1944. if (err < 0)
  1945. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1946. return NULL;
  1947. }
  1948. void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags)
  1949. {
  1950. struct net *net = dev_net(dev);
  1951. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  1952. }
  1953. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  1954. gfp_t flags)
  1955. {
  1956. struct sk_buff *skb;
  1957. skb = rtmsg_ifinfo_build_skb(type, dev, change, flags);
  1958. if (skb)
  1959. rtmsg_ifinfo_send(skb, dev, flags);
  1960. }
  1961. EXPORT_SYMBOL(rtmsg_ifinfo);
  1962. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  1963. struct net_device *dev,
  1964. u8 *addr, u32 pid, u32 seq,
  1965. int type, unsigned int flags,
  1966. int nlflags)
  1967. {
  1968. struct nlmsghdr *nlh;
  1969. struct ndmsg *ndm;
  1970. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  1971. if (!nlh)
  1972. return -EMSGSIZE;
  1973. ndm = nlmsg_data(nlh);
  1974. ndm->ndm_family = AF_BRIDGE;
  1975. ndm->ndm_pad1 = 0;
  1976. ndm->ndm_pad2 = 0;
  1977. ndm->ndm_flags = flags;
  1978. ndm->ndm_type = 0;
  1979. ndm->ndm_ifindex = dev->ifindex;
  1980. ndm->ndm_state = NUD_PERMANENT;
  1981. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  1982. goto nla_put_failure;
  1983. return nlmsg_end(skb, nlh);
  1984. nla_put_failure:
  1985. nlmsg_cancel(skb, nlh);
  1986. return -EMSGSIZE;
  1987. }
  1988. static inline size_t rtnl_fdb_nlmsg_size(void)
  1989. {
  1990. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  1991. }
  1992. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  1993. {
  1994. struct net *net = dev_net(dev);
  1995. struct sk_buff *skb;
  1996. int err = -ENOBUFS;
  1997. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  1998. if (!skb)
  1999. goto errout;
  2000. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF, 0);
  2001. if (err < 0) {
  2002. kfree_skb(skb);
  2003. goto errout;
  2004. }
  2005. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  2006. return;
  2007. errout:
  2008. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  2009. }
  2010. /**
  2011. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  2012. */
  2013. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  2014. struct nlattr *tb[],
  2015. struct net_device *dev,
  2016. const unsigned char *addr, u16 vid,
  2017. u16 flags)
  2018. {
  2019. int err = -EINVAL;
  2020. /* If aging addresses are supported device will need to
  2021. * implement its own handler for this.
  2022. */
  2023. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  2024. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2025. return err;
  2026. }
  2027. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2028. err = dev_uc_add_excl(dev, addr);
  2029. else if (is_multicast_ether_addr(addr))
  2030. err = dev_mc_add_excl(dev, addr);
  2031. /* Only return duplicate errors if NLM_F_EXCL is set */
  2032. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  2033. err = 0;
  2034. return err;
  2035. }
  2036. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  2037. static int fdb_vid_parse(struct nlattr *vlan_attr, u16 *p_vid)
  2038. {
  2039. u16 vid = 0;
  2040. if (vlan_attr) {
  2041. if (nla_len(vlan_attr) != sizeof(u16)) {
  2042. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan\n");
  2043. return -EINVAL;
  2044. }
  2045. vid = nla_get_u16(vlan_attr);
  2046. if (!vid || vid >= VLAN_VID_MASK) {
  2047. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid vlan id %d\n",
  2048. vid);
  2049. return -EINVAL;
  2050. }
  2051. }
  2052. *p_vid = vid;
  2053. return 0;
  2054. }
  2055. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  2056. {
  2057. struct net *net = sock_net(skb->sk);
  2058. struct ndmsg *ndm;
  2059. struct nlattr *tb[NDA_MAX+1];
  2060. struct net_device *dev;
  2061. u8 *addr;
  2062. u16 vid;
  2063. int err;
  2064. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2065. if (err < 0)
  2066. return err;
  2067. ndm = nlmsg_data(nlh);
  2068. if (ndm->ndm_ifindex == 0) {
  2069. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2070. return -EINVAL;
  2071. }
  2072. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2073. if (dev == NULL) {
  2074. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2075. return -ENODEV;
  2076. }
  2077. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2078. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2079. return -EINVAL;
  2080. }
  2081. addr = nla_data(tb[NDA_LLADDR]);
  2082. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2083. if (err)
  2084. return err;
  2085. err = -EOPNOTSUPP;
  2086. /* Support fdb on master device the net/bridge default case */
  2087. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2088. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2089. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2090. const struct net_device_ops *ops = br_dev->netdev_ops;
  2091. err = ops->ndo_fdb_add(ndm, tb, dev, addr, vid,
  2092. nlh->nlmsg_flags);
  2093. if (err)
  2094. goto out;
  2095. else
  2096. ndm->ndm_flags &= ~NTF_MASTER;
  2097. }
  2098. /* Embedded bridge, macvlan, and any other device support */
  2099. if ((ndm->ndm_flags & NTF_SELF)) {
  2100. if (dev->netdev_ops->ndo_fdb_add)
  2101. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2102. vid,
  2103. nlh->nlmsg_flags);
  2104. else
  2105. err = ndo_dflt_fdb_add(ndm, tb, dev, addr, vid,
  2106. nlh->nlmsg_flags);
  2107. if (!err) {
  2108. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  2109. ndm->ndm_flags &= ~NTF_SELF;
  2110. }
  2111. }
  2112. out:
  2113. return err;
  2114. }
  2115. /**
  2116. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2117. */
  2118. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2119. struct nlattr *tb[],
  2120. struct net_device *dev,
  2121. const unsigned char *addr, u16 vid)
  2122. {
  2123. int err = -EINVAL;
  2124. /* If aging addresses are supported device will need to
  2125. * implement its own handler for this.
  2126. */
  2127. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2128. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2129. return err;
  2130. }
  2131. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2132. err = dev_uc_del(dev, addr);
  2133. else if (is_multicast_ether_addr(addr))
  2134. err = dev_mc_del(dev, addr);
  2135. return err;
  2136. }
  2137. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2138. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2139. {
  2140. struct net *net = sock_net(skb->sk);
  2141. struct ndmsg *ndm;
  2142. struct nlattr *tb[NDA_MAX+1];
  2143. struct net_device *dev;
  2144. int err = -EINVAL;
  2145. __u8 *addr;
  2146. u16 vid;
  2147. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2148. return -EPERM;
  2149. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2150. if (err < 0)
  2151. return err;
  2152. ndm = nlmsg_data(nlh);
  2153. if (ndm->ndm_ifindex == 0) {
  2154. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2155. return -EINVAL;
  2156. }
  2157. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2158. if (dev == NULL) {
  2159. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2160. return -ENODEV;
  2161. }
  2162. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2163. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2164. return -EINVAL;
  2165. }
  2166. addr = nla_data(tb[NDA_LLADDR]);
  2167. err = fdb_vid_parse(tb[NDA_VLAN], &vid);
  2168. if (err)
  2169. return err;
  2170. err = -EOPNOTSUPP;
  2171. /* Support fdb on master device the net/bridge default case */
  2172. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2173. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2174. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2175. const struct net_device_ops *ops = br_dev->netdev_ops;
  2176. if (ops->ndo_fdb_del)
  2177. err = ops->ndo_fdb_del(ndm, tb, dev, addr, vid);
  2178. if (err)
  2179. goto out;
  2180. else
  2181. ndm->ndm_flags &= ~NTF_MASTER;
  2182. }
  2183. /* Embedded bridge, macvlan, and any other device support */
  2184. if (ndm->ndm_flags & NTF_SELF) {
  2185. if (dev->netdev_ops->ndo_fdb_del)
  2186. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr,
  2187. vid);
  2188. else
  2189. err = ndo_dflt_fdb_del(ndm, tb, dev, addr, vid);
  2190. if (!err) {
  2191. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  2192. ndm->ndm_flags &= ~NTF_SELF;
  2193. }
  2194. }
  2195. out:
  2196. return err;
  2197. }
  2198. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2199. struct netlink_callback *cb,
  2200. struct net_device *dev,
  2201. int *idx,
  2202. struct netdev_hw_addr_list *list)
  2203. {
  2204. struct netdev_hw_addr *ha;
  2205. int err;
  2206. u32 portid, seq;
  2207. portid = NETLINK_CB(cb->skb).portid;
  2208. seq = cb->nlh->nlmsg_seq;
  2209. list_for_each_entry(ha, &list->list, list) {
  2210. if (*idx < cb->args[0])
  2211. goto skip;
  2212. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  2213. portid, seq,
  2214. RTM_NEWNEIGH, NTF_SELF,
  2215. NLM_F_MULTI);
  2216. if (err < 0)
  2217. return err;
  2218. skip:
  2219. *idx += 1;
  2220. }
  2221. return 0;
  2222. }
  2223. /**
  2224. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2225. * @nlh: netlink message header
  2226. * @dev: netdevice
  2227. *
  2228. * Default netdevice operation to dump the existing unicast address list.
  2229. * Returns number of addresses from list put in skb.
  2230. */
  2231. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2232. struct netlink_callback *cb,
  2233. struct net_device *dev,
  2234. struct net_device *filter_dev,
  2235. int idx)
  2236. {
  2237. int err;
  2238. netif_addr_lock_bh(dev);
  2239. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2240. if (err)
  2241. goto out;
  2242. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2243. out:
  2244. netif_addr_unlock_bh(dev);
  2245. return idx;
  2246. }
  2247. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2248. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2249. {
  2250. struct net_device *dev;
  2251. struct nlattr *tb[IFLA_MAX+1];
  2252. struct net_device *bdev = NULL;
  2253. struct net_device *br_dev = NULL;
  2254. const struct net_device_ops *ops = NULL;
  2255. const struct net_device_ops *cops = NULL;
  2256. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2257. struct net *net = sock_net(skb->sk);
  2258. int brport_idx = 0;
  2259. int br_idx = 0;
  2260. int idx = 0;
  2261. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2262. ifla_policy) == 0) {
  2263. if (tb[IFLA_MASTER])
  2264. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2265. }
  2266. brport_idx = ifm->ifi_index;
  2267. if (br_idx) {
  2268. br_dev = __dev_get_by_index(net, br_idx);
  2269. if (!br_dev)
  2270. return -ENODEV;
  2271. ops = br_dev->netdev_ops;
  2272. bdev = br_dev;
  2273. }
  2274. for_each_netdev(net, dev) {
  2275. if (brport_idx && (dev->ifindex != brport_idx))
  2276. continue;
  2277. if (!br_idx) { /* user did not specify a specific bridge */
  2278. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2279. br_dev = netdev_master_upper_dev_get(dev);
  2280. cops = br_dev->netdev_ops;
  2281. }
  2282. bdev = dev;
  2283. } else {
  2284. if (dev != br_dev &&
  2285. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2286. continue;
  2287. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2288. !(dev->priv_flags & IFF_EBRIDGE))
  2289. continue;
  2290. bdev = br_dev;
  2291. cops = ops;
  2292. }
  2293. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2294. if (cops && cops->ndo_fdb_dump)
  2295. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2296. idx);
  2297. }
  2298. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2299. if (dev->netdev_ops->ndo_fdb_dump)
  2300. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, bdev, dev,
  2301. idx);
  2302. cops = NULL;
  2303. }
  2304. cb->args[0] = idx;
  2305. return skb->len;
  2306. }
  2307. static int brport_nla_put_flag(struct sk_buff *skb, u32 flags, u32 mask,
  2308. unsigned int attrnum, unsigned int flag)
  2309. {
  2310. if (mask & flag)
  2311. return nla_put_u8(skb, attrnum, !!(flags & flag));
  2312. return 0;
  2313. }
  2314. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2315. struct net_device *dev, u16 mode,
  2316. u32 flags, u32 mask)
  2317. {
  2318. struct nlmsghdr *nlh;
  2319. struct ifinfomsg *ifm;
  2320. struct nlattr *br_afspec;
  2321. struct nlattr *protinfo;
  2322. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2323. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2324. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  2325. if (nlh == NULL)
  2326. return -EMSGSIZE;
  2327. ifm = nlmsg_data(nlh);
  2328. ifm->ifi_family = AF_BRIDGE;
  2329. ifm->__ifi_pad = 0;
  2330. ifm->ifi_type = dev->type;
  2331. ifm->ifi_index = dev->ifindex;
  2332. ifm->ifi_flags = dev_get_flags(dev);
  2333. ifm->ifi_change = 0;
  2334. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2335. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2336. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2337. (br_dev &&
  2338. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2339. (dev->addr_len &&
  2340. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2341. (dev->ifindex != dev->iflink &&
  2342. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  2343. goto nla_put_failure;
  2344. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2345. if (!br_afspec)
  2346. goto nla_put_failure;
  2347. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF) ||
  2348. nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2349. nla_nest_cancel(skb, br_afspec);
  2350. goto nla_put_failure;
  2351. }
  2352. nla_nest_end(skb, br_afspec);
  2353. protinfo = nla_nest_start(skb, IFLA_PROTINFO | NLA_F_NESTED);
  2354. if (!protinfo)
  2355. goto nla_put_failure;
  2356. if (brport_nla_put_flag(skb, flags, mask,
  2357. IFLA_BRPORT_MODE, BR_HAIRPIN_MODE) ||
  2358. brport_nla_put_flag(skb, flags, mask,
  2359. IFLA_BRPORT_GUARD, BR_BPDU_GUARD) ||
  2360. brport_nla_put_flag(skb, flags, mask,
  2361. IFLA_BRPORT_FAST_LEAVE,
  2362. BR_MULTICAST_FAST_LEAVE) ||
  2363. brport_nla_put_flag(skb, flags, mask,
  2364. IFLA_BRPORT_PROTECT, BR_ROOT_BLOCK) ||
  2365. brport_nla_put_flag(skb, flags, mask,
  2366. IFLA_BRPORT_LEARNING, BR_LEARNING) ||
  2367. brport_nla_put_flag(skb, flags, mask,
  2368. IFLA_BRPORT_LEARNING_SYNC, BR_LEARNING_SYNC) ||
  2369. brport_nla_put_flag(skb, flags, mask,
  2370. IFLA_BRPORT_UNICAST_FLOOD, BR_FLOOD) ||
  2371. brport_nla_put_flag(skb, flags, mask,
  2372. IFLA_BRPORT_PROXYARP, BR_PROXYARP)) {
  2373. nla_nest_cancel(skb, protinfo);
  2374. goto nla_put_failure;
  2375. }
  2376. nla_nest_end(skb, protinfo);
  2377. return nlmsg_end(skb, nlh);
  2378. nla_put_failure:
  2379. nlmsg_cancel(skb, nlh);
  2380. return -EMSGSIZE;
  2381. }
  2382. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  2383. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2384. {
  2385. struct net *net = sock_net(skb->sk);
  2386. struct net_device *dev;
  2387. int idx = 0;
  2388. u32 portid = NETLINK_CB(cb->skb).portid;
  2389. u32 seq = cb->nlh->nlmsg_seq;
  2390. u32 filter_mask = 0;
  2391. if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
  2392. struct nlattr *extfilt;
  2393. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2394. IFLA_EXT_MASK);
  2395. if (extfilt) {
  2396. if (nla_len(extfilt) < sizeof(filter_mask))
  2397. return -EINVAL;
  2398. filter_mask = nla_get_u32(extfilt);
  2399. }
  2400. }
  2401. rcu_read_lock();
  2402. for_each_netdev_rcu(net, dev) {
  2403. const struct net_device_ops *ops = dev->netdev_ops;
  2404. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2405. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2406. if (idx >= cb->args[0] &&
  2407. br_dev->netdev_ops->ndo_bridge_getlink(
  2408. skb, portid, seq, dev, filter_mask) < 0)
  2409. break;
  2410. idx++;
  2411. }
  2412. if (ops->ndo_bridge_getlink) {
  2413. if (idx >= cb->args[0] &&
  2414. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2415. filter_mask) < 0)
  2416. break;
  2417. idx++;
  2418. }
  2419. }
  2420. rcu_read_unlock();
  2421. cb->args[0] = idx;
  2422. return skb->len;
  2423. }
  2424. static inline size_t bridge_nlmsg_size(void)
  2425. {
  2426. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2427. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2428. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2429. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2430. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2431. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2432. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2433. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2434. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2435. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2436. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2437. }
  2438. static int rtnl_bridge_notify(struct net_device *dev, u16 flags)
  2439. {
  2440. struct net *net = dev_net(dev);
  2441. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2442. struct sk_buff *skb;
  2443. int err = -EOPNOTSUPP;
  2444. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2445. if (!skb) {
  2446. err = -ENOMEM;
  2447. goto errout;
  2448. }
  2449. if ((!flags || (flags & BRIDGE_FLAGS_MASTER)) &&
  2450. br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2451. err = br_dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2452. if (err < 0)
  2453. goto errout;
  2454. }
  2455. if ((flags & BRIDGE_FLAGS_SELF) &&
  2456. dev->netdev_ops->ndo_bridge_getlink) {
  2457. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2458. if (err < 0)
  2459. goto errout;
  2460. }
  2461. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2462. return 0;
  2463. errout:
  2464. WARN_ON(err == -EMSGSIZE);
  2465. kfree_skb(skb);
  2466. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2467. return err;
  2468. }
  2469. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2470. {
  2471. struct net *net = sock_net(skb->sk);
  2472. struct ifinfomsg *ifm;
  2473. struct net_device *dev;
  2474. struct nlattr *br_spec, *attr = NULL;
  2475. int rem, err = -EOPNOTSUPP;
  2476. u16 oflags, flags = 0;
  2477. bool have_flags = false;
  2478. if (nlmsg_len(nlh) < sizeof(*ifm))
  2479. return -EINVAL;
  2480. ifm = nlmsg_data(nlh);
  2481. if (ifm->ifi_family != AF_BRIDGE)
  2482. return -EPFNOSUPPORT;
  2483. dev = __dev_get_by_index(net, ifm->ifi_index);
  2484. if (!dev) {
  2485. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2486. return -ENODEV;
  2487. }
  2488. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2489. if (br_spec) {
  2490. nla_for_each_nested(attr, br_spec, rem) {
  2491. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2492. if (nla_len(attr) < sizeof(flags))
  2493. return -EINVAL;
  2494. have_flags = true;
  2495. flags = nla_get_u16(attr);
  2496. break;
  2497. }
  2498. }
  2499. }
  2500. oflags = flags;
  2501. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2502. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2503. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2504. err = -EOPNOTSUPP;
  2505. goto out;
  2506. }
  2507. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2508. if (err)
  2509. goto out;
  2510. flags &= ~BRIDGE_FLAGS_MASTER;
  2511. }
  2512. if ((flags & BRIDGE_FLAGS_SELF)) {
  2513. if (!dev->netdev_ops->ndo_bridge_setlink)
  2514. err = -EOPNOTSUPP;
  2515. else
  2516. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2517. if (!err)
  2518. flags &= ~BRIDGE_FLAGS_SELF;
  2519. }
  2520. if (have_flags)
  2521. memcpy(nla_data(attr), &flags, sizeof(flags));
  2522. /* Generate event to notify upper layer of bridge change */
  2523. if (!err)
  2524. err = rtnl_bridge_notify(dev, oflags);
  2525. out:
  2526. return err;
  2527. }
  2528. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2529. {
  2530. struct net *net = sock_net(skb->sk);
  2531. struct ifinfomsg *ifm;
  2532. struct net_device *dev;
  2533. struct nlattr *br_spec, *attr = NULL;
  2534. int rem, err = -EOPNOTSUPP;
  2535. u16 oflags, flags = 0;
  2536. bool have_flags = false;
  2537. if (nlmsg_len(nlh) < sizeof(*ifm))
  2538. return -EINVAL;
  2539. ifm = nlmsg_data(nlh);
  2540. if (ifm->ifi_family != AF_BRIDGE)
  2541. return -EPFNOSUPPORT;
  2542. dev = __dev_get_by_index(net, ifm->ifi_index);
  2543. if (!dev) {
  2544. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2545. return -ENODEV;
  2546. }
  2547. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2548. if (br_spec) {
  2549. nla_for_each_nested(attr, br_spec, rem) {
  2550. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2551. if (nla_len(attr) < sizeof(flags))
  2552. return -EINVAL;
  2553. have_flags = true;
  2554. flags = nla_get_u16(attr);
  2555. break;
  2556. }
  2557. }
  2558. }
  2559. oflags = flags;
  2560. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2561. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2562. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2563. err = -EOPNOTSUPP;
  2564. goto out;
  2565. }
  2566. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2567. if (err)
  2568. goto out;
  2569. flags &= ~BRIDGE_FLAGS_MASTER;
  2570. }
  2571. if ((flags & BRIDGE_FLAGS_SELF)) {
  2572. if (!dev->netdev_ops->ndo_bridge_dellink)
  2573. err = -EOPNOTSUPP;
  2574. else
  2575. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2576. if (!err)
  2577. flags &= ~BRIDGE_FLAGS_SELF;
  2578. }
  2579. if (have_flags)
  2580. memcpy(nla_data(attr), &flags, sizeof(flags));
  2581. /* Generate event to notify upper layer of bridge change */
  2582. if (!err)
  2583. err = rtnl_bridge_notify(dev, oflags);
  2584. out:
  2585. return err;
  2586. }
  2587. /* Process one rtnetlink message. */
  2588. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2589. {
  2590. struct net *net = sock_net(skb->sk);
  2591. rtnl_doit_func doit;
  2592. int sz_idx, kind;
  2593. int family;
  2594. int type;
  2595. int err;
  2596. type = nlh->nlmsg_type;
  2597. if (type > RTM_MAX)
  2598. return -EOPNOTSUPP;
  2599. type -= RTM_BASE;
  2600. /* All the messages must have at least 1 byte length */
  2601. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2602. return 0;
  2603. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2604. sz_idx = type>>2;
  2605. kind = type&3;
  2606. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2607. return -EPERM;
  2608. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2609. struct sock *rtnl;
  2610. rtnl_dumpit_func dumpit;
  2611. rtnl_calcit_func calcit;
  2612. u16 min_dump_alloc = 0;
  2613. dumpit = rtnl_get_dumpit(family, type);
  2614. if (dumpit == NULL)
  2615. return -EOPNOTSUPP;
  2616. calcit = rtnl_get_calcit(family, type);
  2617. if (calcit)
  2618. min_dump_alloc = calcit(skb, nlh);
  2619. __rtnl_unlock();
  2620. rtnl = net->rtnl;
  2621. {
  2622. struct netlink_dump_control c = {
  2623. .dump = dumpit,
  2624. .min_dump_alloc = min_dump_alloc,
  2625. };
  2626. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2627. }
  2628. rtnl_lock();
  2629. return err;
  2630. }
  2631. doit = rtnl_get_doit(family, type);
  2632. if (doit == NULL)
  2633. return -EOPNOTSUPP;
  2634. return doit(skb, nlh);
  2635. }
  2636. static void rtnetlink_rcv(struct sk_buff *skb)
  2637. {
  2638. rtnl_lock();
  2639. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2640. rtnl_unlock();
  2641. }
  2642. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2643. {
  2644. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2645. switch (event) {
  2646. case NETDEV_UP:
  2647. case NETDEV_DOWN:
  2648. case NETDEV_PRE_UP:
  2649. case NETDEV_POST_INIT:
  2650. case NETDEV_REGISTER:
  2651. case NETDEV_CHANGE:
  2652. case NETDEV_PRE_TYPE_CHANGE:
  2653. case NETDEV_GOING_DOWN:
  2654. case NETDEV_UNREGISTER:
  2655. case NETDEV_UNREGISTER_FINAL:
  2656. case NETDEV_RELEASE:
  2657. case NETDEV_JOIN:
  2658. break;
  2659. default:
  2660. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2661. break;
  2662. }
  2663. return NOTIFY_DONE;
  2664. }
  2665. static struct notifier_block rtnetlink_dev_notifier = {
  2666. .notifier_call = rtnetlink_event,
  2667. };
  2668. static int __net_init rtnetlink_net_init(struct net *net)
  2669. {
  2670. struct sock *sk;
  2671. struct netlink_kernel_cfg cfg = {
  2672. .groups = RTNLGRP_MAX,
  2673. .input = rtnetlink_rcv,
  2674. .cb_mutex = &rtnl_mutex,
  2675. .flags = NL_CFG_F_NONROOT_RECV,
  2676. };
  2677. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2678. if (!sk)
  2679. return -ENOMEM;
  2680. net->rtnl = sk;
  2681. return 0;
  2682. }
  2683. static void __net_exit rtnetlink_net_exit(struct net *net)
  2684. {
  2685. netlink_kernel_release(net->rtnl);
  2686. net->rtnl = NULL;
  2687. }
  2688. static struct pernet_operations rtnetlink_net_ops = {
  2689. .init = rtnetlink_net_init,
  2690. .exit = rtnetlink_net_exit,
  2691. };
  2692. void __init rtnetlink_init(void)
  2693. {
  2694. if (register_pernet_subsys(&rtnetlink_net_ops))
  2695. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2696. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2697. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2698. rtnl_dump_ifinfo, rtnl_calcit);
  2699. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2700. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2701. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2702. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2703. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2704. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2705. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2706. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2707. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2708. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2709. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2710. }