htt_tx.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/etherdevice.h>
  18. #include "htt.h"
  19. #include "mac.h"
  20. #include "hif.h"
  21. #include "txrx.h"
  22. #include "debug.h"
  23. static u8 ath10k_htt_tx_txq_calc_size(size_t count)
  24. {
  25. int exp;
  26. int factor;
  27. exp = 0;
  28. factor = count >> 7;
  29. while (factor >= 64 && exp < 4) {
  30. factor >>= 3;
  31. exp++;
  32. }
  33. if (exp == 4)
  34. return 0xff;
  35. if (count > 0)
  36. factor = max(1, factor);
  37. return SM(exp, HTT_TX_Q_STATE_ENTRY_EXP) |
  38. SM(factor, HTT_TX_Q_STATE_ENTRY_FACTOR);
  39. }
  40. static void __ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  41. struct ieee80211_txq *txq)
  42. {
  43. struct ath10k *ar = hw->priv;
  44. struct ath10k_sta *arsta;
  45. struct ath10k_vif *arvif = (void *)txq->vif->drv_priv;
  46. unsigned long frame_cnt;
  47. unsigned long byte_cnt;
  48. int idx;
  49. u32 bit;
  50. u16 peer_id;
  51. u8 tid;
  52. u8 count;
  53. lockdep_assert_held(&ar->htt.tx_lock);
  54. if (!ar->htt.tx_q_state.enabled)
  55. return;
  56. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  57. return;
  58. if (txq->sta) {
  59. arsta = (void *)txq->sta->drv_priv;
  60. peer_id = arsta->peer_id;
  61. } else {
  62. peer_id = arvif->peer_id;
  63. }
  64. tid = txq->tid;
  65. bit = BIT(peer_id % 32);
  66. idx = peer_id / 32;
  67. ieee80211_txq_get_depth(txq, &frame_cnt, &byte_cnt);
  68. count = ath10k_htt_tx_txq_calc_size(byte_cnt);
  69. if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
  70. unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
  71. ath10k_warn(ar, "refusing to update txq for peer_id %hu tid %hhu due to out of bounds\n",
  72. peer_id, tid);
  73. return;
  74. }
  75. ar->htt.tx_q_state.vaddr->count[tid][peer_id] = count;
  76. ar->htt.tx_q_state.vaddr->map[tid][idx] &= ~bit;
  77. ar->htt.tx_q_state.vaddr->map[tid][idx] |= count ? bit : 0;
  78. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update peer_id %hu tid %hhu count %hhu\n",
  79. peer_id, tid, count);
  80. }
  81. static void __ath10k_htt_tx_txq_sync(struct ath10k *ar)
  82. {
  83. u32 seq;
  84. size_t size;
  85. lockdep_assert_held(&ar->htt.tx_lock);
  86. if (!ar->htt.tx_q_state.enabled)
  87. return;
  88. if (ar->htt.tx_q_state.mode != HTT_TX_MODE_SWITCH_PUSH_PULL)
  89. return;
  90. seq = le32_to_cpu(ar->htt.tx_q_state.vaddr->seq);
  91. seq++;
  92. ar->htt.tx_q_state.vaddr->seq = cpu_to_le32(seq);
  93. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx txq state update commit seq %u\n",
  94. seq);
  95. size = sizeof(*ar->htt.tx_q_state.vaddr);
  96. dma_sync_single_for_device(ar->dev,
  97. ar->htt.tx_q_state.paddr,
  98. size,
  99. DMA_TO_DEVICE);
  100. }
  101. void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw,
  102. struct ieee80211_txq *txq)
  103. {
  104. struct ath10k *ar = hw->priv;
  105. spin_lock_bh(&ar->htt.tx_lock);
  106. __ath10k_htt_tx_txq_recalc(hw, txq);
  107. spin_unlock_bh(&ar->htt.tx_lock);
  108. }
  109. void ath10k_htt_tx_txq_sync(struct ath10k *ar)
  110. {
  111. spin_lock_bh(&ar->htt.tx_lock);
  112. __ath10k_htt_tx_txq_sync(ar);
  113. spin_unlock_bh(&ar->htt.tx_lock);
  114. }
  115. void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw,
  116. struct ieee80211_txq *txq)
  117. {
  118. struct ath10k *ar = hw->priv;
  119. spin_lock_bh(&ar->htt.tx_lock);
  120. __ath10k_htt_tx_txq_recalc(hw, txq);
  121. __ath10k_htt_tx_txq_sync(ar);
  122. spin_unlock_bh(&ar->htt.tx_lock);
  123. }
  124. void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt)
  125. {
  126. lockdep_assert_held(&htt->tx_lock);
  127. htt->num_pending_tx--;
  128. if (htt->num_pending_tx == htt->max_num_pending_tx - 1)
  129. ath10k_mac_tx_unlock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  130. }
  131. int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt)
  132. {
  133. lockdep_assert_held(&htt->tx_lock);
  134. if (htt->num_pending_tx >= htt->max_num_pending_tx)
  135. return -EBUSY;
  136. htt->num_pending_tx++;
  137. if (htt->num_pending_tx == htt->max_num_pending_tx)
  138. ath10k_mac_tx_lock(htt->ar, ATH10K_TX_PAUSE_Q_FULL);
  139. return 0;
  140. }
  141. int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt,
  142. bool is_presp)
  143. {
  144. struct ath10k *ar = htt->ar;
  145. lockdep_assert_held(&htt->tx_lock);
  146. if (!is_mgmt || !ar->hw_params.max_probe_resp_desc_thres)
  147. return 0;
  148. if (is_presp &&
  149. ar->hw_params.max_probe_resp_desc_thres < htt->num_pending_mgmt_tx)
  150. return -EBUSY;
  151. htt->num_pending_mgmt_tx++;
  152. return 0;
  153. }
  154. void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt)
  155. {
  156. lockdep_assert_held(&htt->tx_lock);
  157. if (!htt->ar->hw_params.max_probe_resp_desc_thres)
  158. return;
  159. htt->num_pending_mgmt_tx--;
  160. }
  161. int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb)
  162. {
  163. struct ath10k *ar = htt->ar;
  164. int ret;
  165. lockdep_assert_held(&htt->tx_lock);
  166. ret = idr_alloc(&htt->pending_tx, skb, 0,
  167. htt->max_num_pending_tx, GFP_ATOMIC);
  168. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx alloc msdu_id %d\n", ret);
  169. return ret;
  170. }
  171. void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id)
  172. {
  173. struct ath10k *ar = htt->ar;
  174. lockdep_assert_held(&htt->tx_lock);
  175. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx free msdu_id %hu\n", msdu_id);
  176. idr_remove(&htt->pending_tx, msdu_id);
  177. }
  178. static void ath10k_htt_tx_free_cont_txbuf(struct ath10k_htt *htt)
  179. {
  180. struct ath10k *ar = htt->ar;
  181. size_t size;
  182. if (!htt->txbuf.vaddr)
  183. return;
  184. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  185. dma_free_coherent(ar->dev, size, htt->txbuf.vaddr, htt->txbuf.paddr);
  186. }
  187. static int ath10k_htt_tx_alloc_cont_txbuf(struct ath10k_htt *htt)
  188. {
  189. struct ath10k *ar = htt->ar;
  190. size_t size;
  191. size = htt->max_num_pending_tx * sizeof(struct ath10k_htt_txbuf);
  192. htt->txbuf.vaddr = dma_alloc_coherent(ar->dev, size, &htt->txbuf.paddr,
  193. GFP_KERNEL);
  194. if (!htt->txbuf.vaddr)
  195. return -ENOMEM;
  196. return 0;
  197. }
  198. static void ath10k_htt_tx_free_cont_frag_desc(struct ath10k_htt *htt)
  199. {
  200. size_t size;
  201. if (!htt->frag_desc.vaddr)
  202. return;
  203. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  204. dma_free_coherent(htt->ar->dev,
  205. size,
  206. htt->frag_desc.vaddr,
  207. htt->frag_desc.paddr);
  208. }
  209. static int ath10k_htt_tx_alloc_cont_frag_desc(struct ath10k_htt *htt)
  210. {
  211. struct ath10k *ar = htt->ar;
  212. size_t size;
  213. if (!ar->hw_params.continuous_frag_desc)
  214. return 0;
  215. size = htt->max_num_pending_tx * sizeof(struct htt_msdu_ext_desc);
  216. htt->frag_desc.vaddr = dma_alloc_coherent(ar->dev, size,
  217. &htt->frag_desc.paddr,
  218. GFP_KERNEL);
  219. if (!htt->frag_desc.vaddr)
  220. return -ENOMEM;
  221. return 0;
  222. }
  223. static void ath10k_htt_tx_free_txq(struct ath10k_htt *htt)
  224. {
  225. struct ath10k *ar = htt->ar;
  226. size_t size;
  227. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  228. ar->running_fw->fw_file.fw_features))
  229. return;
  230. size = sizeof(*htt->tx_q_state.vaddr);
  231. dma_unmap_single(ar->dev, htt->tx_q_state.paddr, size, DMA_TO_DEVICE);
  232. kfree(htt->tx_q_state.vaddr);
  233. }
  234. static int ath10k_htt_tx_alloc_txq(struct ath10k_htt *htt)
  235. {
  236. struct ath10k *ar = htt->ar;
  237. size_t size;
  238. int ret;
  239. if (!test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  240. ar->running_fw->fw_file.fw_features))
  241. return 0;
  242. htt->tx_q_state.num_peers = HTT_TX_Q_STATE_NUM_PEERS;
  243. htt->tx_q_state.num_tids = HTT_TX_Q_STATE_NUM_TIDS;
  244. htt->tx_q_state.type = HTT_Q_DEPTH_TYPE_BYTES;
  245. size = sizeof(*htt->tx_q_state.vaddr);
  246. htt->tx_q_state.vaddr = kzalloc(size, GFP_KERNEL);
  247. if (!htt->tx_q_state.vaddr)
  248. return -ENOMEM;
  249. htt->tx_q_state.paddr = dma_map_single(ar->dev, htt->tx_q_state.vaddr,
  250. size, DMA_TO_DEVICE);
  251. ret = dma_mapping_error(ar->dev, htt->tx_q_state.paddr);
  252. if (ret) {
  253. ath10k_warn(ar, "failed to dma map tx_q_state: %d\n", ret);
  254. kfree(htt->tx_q_state.vaddr);
  255. return -EIO;
  256. }
  257. return 0;
  258. }
  259. static void ath10k_htt_tx_free_txdone_fifo(struct ath10k_htt *htt)
  260. {
  261. WARN_ON(!kfifo_is_empty(&htt->txdone_fifo));
  262. kfifo_free(&htt->txdone_fifo);
  263. }
  264. static int ath10k_htt_tx_alloc_txdone_fifo(struct ath10k_htt *htt)
  265. {
  266. int ret;
  267. size_t size;
  268. size = roundup_pow_of_two(htt->max_num_pending_tx);
  269. ret = kfifo_alloc(&htt->txdone_fifo, size, GFP_KERNEL);
  270. return ret;
  271. }
  272. int ath10k_htt_tx_alloc(struct ath10k_htt *htt)
  273. {
  274. struct ath10k *ar = htt->ar;
  275. int ret;
  276. ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt tx max num pending tx %d\n",
  277. htt->max_num_pending_tx);
  278. spin_lock_init(&htt->tx_lock);
  279. idr_init(&htt->pending_tx);
  280. ret = ath10k_htt_tx_alloc_cont_txbuf(htt);
  281. if (ret) {
  282. ath10k_err(ar, "failed to alloc cont tx buffer: %d\n", ret);
  283. goto free_idr_pending_tx;
  284. }
  285. ret = ath10k_htt_tx_alloc_cont_frag_desc(htt);
  286. if (ret) {
  287. ath10k_err(ar, "failed to alloc cont frag desc: %d\n", ret);
  288. goto free_txbuf;
  289. }
  290. ret = ath10k_htt_tx_alloc_txq(htt);
  291. if (ret) {
  292. ath10k_err(ar, "failed to alloc txq: %d\n", ret);
  293. goto free_frag_desc;
  294. }
  295. ret = ath10k_htt_tx_alloc_txdone_fifo(htt);
  296. if (ret) {
  297. ath10k_err(ar, "failed to alloc txdone fifo: %d\n", ret);
  298. goto free_txq;
  299. }
  300. return 0;
  301. free_txq:
  302. ath10k_htt_tx_free_txq(htt);
  303. free_frag_desc:
  304. ath10k_htt_tx_free_cont_frag_desc(htt);
  305. free_txbuf:
  306. ath10k_htt_tx_free_cont_txbuf(htt);
  307. free_idr_pending_tx:
  308. idr_destroy(&htt->pending_tx);
  309. return ret;
  310. }
  311. static int ath10k_htt_tx_clean_up_pending(int msdu_id, void *skb, void *ctx)
  312. {
  313. struct ath10k *ar = ctx;
  314. struct ath10k_htt *htt = &ar->htt;
  315. struct htt_tx_done tx_done = {0};
  316. ath10k_dbg(ar, ATH10K_DBG_HTT, "force cleanup msdu_id %hu\n", msdu_id);
  317. tx_done.msdu_id = msdu_id;
  318. tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
  319. ath10k_txrx_tx_unref(htt, &tx_done);
  320. return 0;
  321. }
  322. void ath10k_htt_tx_free(struct ath10k_htt *htt)
  323. {
  324. idr_for_each(&htt->pending_tx, ath10k_htt_tx_clean_up_pending, htt->ar);
  325. idr_destroy(&htt->pending_tx);
  326. ath10k_htt_tx_free_cont_txbuf(htt);
  327. ath10k_htt_tx_free_txq(htt);
  328. ath10k_htt_tx_free_cont_frag_desc(htt);
  329. ath10k_htt_tx_free_txdone_fifo(htt);
  330. }
  331. void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  332. {
  333. dev_kfree_skb_any(skb);
  334. }
  335. void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  336. {
  337. dev_kfree_skb_any(skb);
  338. }
  339. EXPORT_SYMBOL(ath10k_htt_hif_tx_complete);
  340. int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt)
  341. {
  342. struct ath10k *ar = htt->ar;
  343. struct sk_buff *skb;
  344. struct htt_cmd *cmd;
  345. int len = 0;
  346. int ret;
  347. len += sizeof(cmd->hdr);
  348. len += sizeof(cmd->ver_req);
  349. skb = ath10k_htc_alloc_skb(ar, len);
  350. if (!skb)
  351. return -ENOMEM;
  352. skb_put(skb, len);
  353. cmd = (struct htt_cmd *)skb->data;
  354. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_VERSION_REQ;
  355. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  356. if (ret) {
  357. dev_kfree_skb_any(skb);
  358. return ret;
  359. }
  360. return 0;
  361. }
  362. int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u8 mask, u64 cookie)
  363. {
  364. struct ath10k *ar = htt->ar;
  365. struct htt_stats_req *req;
  366. struct sk_buff *skb;
  367. struct htt_cmd *cmd;
  368. int len = 0, ret;
  369. len += sizeof(cmd->hdr);
  370. len += sizeof(cmd->stats_req);
  371. skb = ath10k_htc_alloc_skb(ar, len);
  372. if (!skb)
  373. return -ENOMEM;
  374. skb_put(skb, len);
  375. cmd = (struct htt_cmd *)skb->data;
  376. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_STATS_REQ;
  377. req = &cmd->stats_req;
  378. memset(req, 0, sizeof(*req));
  379. /* currently we support only max 8 bit masks so no need to worry
  380. * about endian support */
  381. req->upload_types[0] = mask;
  382. req->reset_types[0] = mask;
  383. req->stat_type = HTT_STATS_REQ_CFG_STAT_TYPE_INVALID;
  384. req->cookie_lsb = cpu_to_le32(cookie & 0xffffffff);
  385. req->cookie_msb = cpu_to_le32((cookie & 0xffffffff00000000ULL) >> 32);
  386. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  387. if (ret) {
  388. ath10k_warn(ar, "failed to send htt type stats request: %d",
  389. ret);
  390. dev_kfree_skb_any(skb);
  391. return ret;
  392. }
  393. return 0;
  394. }
  395. int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt)
  396. {
  397. struct ath10k *ar = htt->ar;
  398. struct sk_buff *skb;
  399. struct htt_cmd *cmd;
  400. struct htt_frag_desc_bank_cfg *cfg;
  401. int ret, size;
  402. u8 info;
  403. if (!ar->hw_params.continuous_frag_desc)
  404. return 0;
  405. if (!htt->frag_desc.paddr) {
  406. ath10k_warn(ar, "invalid frag desc memory\n");
  407. return -EINVAL;
  408. }
  409. size = sizeof(cmd->hdr) + sizeof(cmd->frag_desc_bank_cfg);
  410. skb = ath10k_htc_alloc_skb(ar, size);
  411. if (!skb)
  412. return -ENOMEM;
  413. skb_put(skb, size);
  414. cmd = (struct htt_cmd *)skb->data;
  415. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG;
  416. info = 0;
  417. info |= SM(htt->tx_q_state.type,
  418. HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE);
  419. if (test_bit(ATH10K_FW_FEATURE_PEER_FLOW_CONTROL,
  420. ar->running_fw->fw_file.fw_features))
  421. info |= HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID;
  422. cfg = &cmd->frag_desc_bank_cfg;
  423. cfg->info = info;
  424. cfg->num_banks = 1;
  425. cfg->desc_size = sizeof(struct htt_msdu_ext_desc);
  426. cfg->bank_base_addrs[0] = __cpu_to_le32(htt->frag_desc.paddr);
  427. cfg->bank_id[0].bank_min_id = 0;
  428. cfg->bank_id[0].bank_max_id = __cpu_to_le16(htt->max_num_pending_tx -
  429. 1);
  430. cfg->q_state.paddr = cpu_to_le32(htt->tx_q_state.paddr);
  431. cfg->q_state.num_peers = cpu_to_le16(htt->tx_q_state.num_peers);
  432. cfg->q_state.num_tids = cpu_to_le16(htt->tx_q_state.num_tids);
  433. cfg->q_state.record_size = HTT_TX_Q_STATE_ENTRY_SIZE;
  434. cfg->q_state.record_multiplier = HTT_TX_Q_STATE_ENTRY_MULTIPLIER;
  435. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt frag desc bank cmd\n");
  436. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  437. if (ret) {
  438. ath10k_warn(ar, "failed to send frag desc bank cfg request: %d\n",
  439. ret);
  440. dev_kfree_skb_any(skb);
  441. return ret;
  442. }
  443. return 0;
  444. }
  445. int ath10k_htt_send_rx_ring_cfg_ll(struct ath10k_htt *htt)
  446. {
  447. struct ath10k *ar = htt->ar;
  448. struct sk_buff *skb;
  449. struct htt_cmd *cmd;
  450. struct htt_rx_ring_setup_ring *ring;
  451. const int num_rx_ring = 1;
  452. u16 flags;
  453. u32 fw_idx;
  454. int len;
  455. int ret;
  456. /*
  457. * the HW expects the buffer to be an integral number of 4-byte
  458. * "words"
  459. */
  460. BUILD_BUG_ON(!IS_ALIGNED(HTT_RX_BUF_SIZE, 4));
  461. BUILD_BUG_ON((HTT_RX_BUF_SIZE & HTT_MAX_CACHE_LINE_SIZE_MASK) != 0);
  462. len = sizeof(cmd->hdr) + sizeof(cmd->rx_setup.hdr)
  463. + (sizeof(*ring) * num_rx_ring);
  464. skb = ath10k_htc_alloc_skb(ar, len);
  465. if (!skb)
  466. return -ENOMEM;
  467. skb_put(skb, len);
  468. cmd = (struct htt_cmd *)skb->data;
  469. ring = &cmd->rx_setup.rings[0];
  470. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_RX_RING_CFG;
  471. cmd->rx_setup.hdr.num_rings = 1;
  472. /* FIXME: do we need all of this? */
  473. flags = 0;
  474. flags |= HTT_RX_RING_FLAGS_MAC80211_HDR;
  475. flags |= HTT_RX_RING_FLAGS_MSDU_PAYLOAD;
  476. flags |= HTT_RX_RING_FLAGS_PPDU_START;
  477. flags |= HTT_RX_RING_FLAGS_PPDU_END;
  478. flags |= HTT_RX_RING_FLAGS_MPDU_START;
  479. flags |= HTT_RX_RING_FLAGS_MPDU_END;
  480. flags |= HTT_RX_RING_FLAGS_MSDU_START;
  481. flags |= HTT_RX_RING_FLAGS_MSDU_END;
  482. flags |= HTT_RX_RING_FLAGS_RX_ATTENTION;
  483. flags |= HTT_RX_RING_FLAGS_FRAG_INFO;
  484. flags |= HTT_RX_RING_FLAGS_UNICAST_RX;
  485. flags |= HTT_RX_RING_FLAGS_MULTICAST_RX;
  486. flags |= HTT_RX_RING_FLAGS_CTRL_RX;
  487. flags |= HTT_RX_RING_FLAGS_MGMT_RX;
  488. flags |= HTT_RX_RING_FLAGS_NULL_RX;
  489. flags |= HTT_RX_RING_FLAGS_PHY_DATA_RX;
  490. fw_idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
  491. ring->fw_idx_shadow_reg_paddr =
  492. __cpu_to_le32(htt->rx_ring.alloc_idx.paddr);
  493. ring->rx_ring_base_paddr = __cpu_to_le32(htt->rx_ring.base_paddr);
  494. ring->rx_ring_len = __cpu_to_le16(htt->rx_ring.size);
  495. ring->rx_ring_bufsize = __cpu_to_le16(HTT_RX_BUF_SIZE);
  496. ring->flags = __cpu_to_le16(flags);
  497. ring->fw_idx_init_val = __cpu_to_le16(fw_idx);
  498. #define desc_offset(x) (offsetof(struct htt_rx_desc, x) / 4)
  499. ring->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status));
  500. ring->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload));
  501. ring->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start));
  502. ring->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end));
  503. ring->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start));
  504. ring->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end));
  505. ring->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start));
  506. ring->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end));
  507. ring->rx_attention_offset = __cpu_to_le16(desc_offset(attention));
  508. ring->frag_info_offset = __cpu_to_le16(desc_offset(frag_info));
  509. #undef desc_offset
  510. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  511. if (ret) {
  512. dev_kfree_skb_any(skb);
  513. return ret;
  514. }
  515. return 0;
  516. }
  517. int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt,
  518. u8 max_subfrms_ampdu,
  519. u8 max_subfrms_amsdu)
  520. {
  521. struct ath10k *ar = htt->ar;
  522. struct htt_aggr_conf *aggr_conf;
  523. struct sk_buff *skb;
  524. struct htt_cmd *cmd;
  525. int len;
  526. int ret;
  527. /* Firmware defaults are: amsdu = 3 and ampdu = 64 */
  528. if (max_subfrms_ampdu == 0 || max_subfrms_ampdu > 64)
  529. return -EINVAL;
  530. if (max_subfrms_amsdu == 0 || max_subfrms_amsdu > 31)
  531. return -EINVAL;
  532. len = sizeof(cmd->hdr);
  533. len += sizeof(cmd->aggr_conf);
  534. skb = ath10k_htc_alloc_skb(ar, len);
  535. if (!skb)
  536. return -ENOMEM;
  537. skb_put(skb, len);
  538. cmd = (struct htt_cmd *)skb->data;
  539. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_AGGR_CFG;
  540. aggr_conf = &cmd->aggr_conf;
  541. aggr_conf->max_num_ampdu_subframes = max_subfrms_ampdu;
  542. aggr_conf->max_num_amsdu_subframes = max_subfrms_amsdu;
  543. ath10k_dbg(ar, ATH10K_DBG_HTT, "htt h2t aggr cfg msg amsdu %d ampdu %d",
  544. aggr_conf->max_num_amsdu_subframes,
  545. aggr_conf->max_num_ampdu_subframes);
  546. ret = ath10k_htc_send(&htt->ar->htc, htt->eid, skb);
  547. if (ret) {
  548. dev_kfree_skb_any(skb);
  549. return ret;
  550. }
  551. return 0;
  552. }
  553. int ath10k_htt_tx_fetch_resp(struct ath10k *ar,
  554. __le32 token,
  555. __le16 fetch_seq_num,
  556. struct htt_tx_fetch_record *records,
  557. size_t num_records)
  558. {
  559. struct sk_buff *skb;
  560. struct htt_cmd *cmd;
  561. const u16 resp_id = 0;
  562. int len = 0;
  563. int ret;
  564. /* Response IDs are echo-ed back only for host driver convienence
  565. * purposes. They aren't used for anything in the driver yet so use 0.
  566. */
  567. len += sizeof(cmd->hdr);
  568. len += sizeof(cmd->tx_fetch_resp);
  569. len += sizeof(cmd->tx_fetch_resp.records[0]) * num_records;
  570. skb = ath10k_htc_alloc_skb(ar, len);
  571. if (!skb)
  572. return -ENOMEM;
  573. skb_put(skb, len);
  574. cmd = (struct htt_cmd *)skb->data;
  575. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FETCH_RESP;
  576. cmd->tx_fetch_resp.resp_id = cpu_to_le16(resp_id);
  577. cmd->tx_fetch_resp.fetch_seq_num = fetch_seq_num;
  578. cmd->tx_fetch_resp.num_records = cpu_to_le16(num_records);
  579. cmd->tx_fetch_resp.token = token;
  580. memcpy(cmd->tx_fetch_resp.records, records,
  581. sizeof(records[0]) * num_records);
  582. ret = ath10k_htc_send(&ar->htc, ar->htt.eid, skb);
  583. if (ret) {
  584. ath10k_warn(ar, "failed to submit htc command: %d\n", ret);
  585. goto err_free_skb;
  586. }
  587. return 0;
  588. err_free_skb:
  589. dev_kfree_skb_any(skb);
  590. return ret;
  591. }
  592. static u8 ath10k_htt_tx_get_vdev_id(struct ath10k *ar, struct sk_buff *skb)
  593. {
  594. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  595. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  596. struct ath10k_vif *arvif;
  597. if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) {
  598. return ar->scan.vdev_id;
  599. } else if (cb->vif) {
  600. arvif = (void *)cb->vif->drv_priv;
  601. return arvif->vdev_id;
  602. } else if (ar->monitor_started) {
  603. return ar->monitor_vdev_id;
  604. } else {
  605. return 0;
  606. }
  607. }
  608. static u8 ath10k_htt_tx_get_tid(struct sk_buff *skb, bool is_eth)
  609. {
  610. struct ieee80211_hdr *hdr = (void *)skb->data;
  611. struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
  612. if (!is_eth && ieee80211_is_mgmt(hdr->frame_control))
  613. return HTT_DATA_TX_EXT_TID_MGMT;
  614. else if (cb->flags & ATH10K_SKB_F_QOS)
  615. return skb->priority % IEEE80211_QOS_CTL_TID_MASK;
  616. else
  617. return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST;
  618. }
  619. int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu)
  620. {
  621. struct ath10k *ar = htt->ar;
  622. struct device *dev = ar->dev;
  623. struct sk_buff *txdesc = NULL;
  624. struct htt_cmd *cmd;
  625. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  626. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  627. int len = 0;
  628. int msdu_id = -1;
  629. int res;
  630. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  631. len += sizeof(cmd->hdr);
  632. len += sizeof(cmd->mgmt_tx);
  633. spin_lock_bh(&htt->tx_lock);
  634. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  635. spin_unlock_bh(&htt->tx_lock);
  636. if (res < 0)
  637. goto err;
  638. msdu_id = res;
  639. if ((ieee80211_is_action(hdr->frame_control) ||
  640. ieee80211_is_deauth(hdr->frame_control) ||
  641. ieee80211_is_disassoc(hdr->frame_control)) &&
  642. ieee80211_has_protected(hdr->frame_control)) {
  643. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  644. }
  645. txdesc = ath10k_htc_alloc_skb(ar, len);
  646. if (!txdesc) {
  647. res = -ENOMEM;
  648. goto err_free_msdu_id;
  649. }
  650. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  651. DMA_TO_DEVICE);
  652. res = dma_mapping_error(dev, skb_cb->paddr);
  653. if (res) {
  654. res = -EIO;
  655. goto err_free_txdesc;
  656. }
  657. skb_put(txdesc, len);
  658. cmd = (struct htt_cmd *)txdesc->data;
  659. memset(cmd, 0, len);
  660. cmd->hdr.msg_type = HTT_H2T_MSG_TYPE_MGMT_TX;
  661. cmd->mgmt_tx.msdu_paddr = __cpu_to_le32(ATH10K_SKB_CB(msdu)->paddr);
  662. cmd->mgmt_tx.len = __cpu_to_le32(msdu->len);
  663. cmd->mgmt_tx.desc_id = __cpu_to_le32(msdu_id);
  664. cmd->mgmt_tx.vdev_id = __cpu_to_le32(vdev_id);
  665. memcpy(cmd->mgmt_tx.hdr, msdu->data,
  666. min_t(int, msdu->len, HTT_MGMT_FRM_HDR_DOWNLOAD_LEN));
  667. res = ath10k_htc_send(&htt->ar->htc, htt->eid, txdesc);
  668. if (res)
  669. goto err_unmap_msdu;
  670. return 0;
  671. err_unmap_msdu:
  672. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  673. err_free_txdesc:
  674. dev_kfree_skb_any(txdesc);
  675. err_free_msdu_id:
  676. spin_lock_bh(&htt->tx_lock);
  677. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  678. spin_unlock_bh(&htt->tx_lock);
  679. err:
  680. return res;
  681. }
  682. int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode,
  683. struct sk_buff *msdu)
  684. {
  685. struct ath10k *ar = htt->ar;
  686. struct device *dev = ar->dev;
  687. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)msdu->data;
  688. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(msdu);
  689. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(msdu);
  690. struct ath10k_hif_sg_item sg_items[2];
  691. struct ath10k_htt_txbuf *txbuf;
  692. struct htt_data_tx_desc_frag *frags;
  693. bool is_eth = (txmode == ATH10K_HW_TXRX_ETHERNET);
  694. u8 vdev_id = ath10k_htt_tx_get_vdev_id(ar, msdu);
  695. u8 tid = ath10k_htt_tx_get_tid(msdu, is_eth);
  696. int prefetch_len;
  697. int res;
  698. u8 flags0 = 0;
  699. u16 msdu_id, flags1 = 0;
  700. u16 freq = 0;
  701. u32 frags_paddr = 0;
  702. u32 txbuf_paddr;
  703. struct htt_msdu_ext_desc *ext_desc = NULL;
  704. spin_lock_bh(&htt->tx_lock);
  705. res = ath10k_htt_tx_alloc_msdu_id(htt, msdu);
  706. spin_unlock_bh(&htt->tx_lock);
  707. if (res < 0)
  708. goto err;
  709. msdu_id = res;
  710. prefetch_len = min(htt->prefetch_len, msdu->len);
  711. prefetch_len = roundup(prefetch_len, 4);
  712. txbuf = &htt->txbuf.vaddr[msdu_id];
  713. txbuf_paddr = htt->txbuf.paddr +
  714. (sizeof(struct ath10k_htt_txbuf) * msdu_id);
  715. if ((ieee80211_is_action(hdr->frame_control) ||
  716. ieee80211_is_deauth(hdr->frame_control) ||
  717. ieee80211_is_disassoc(hdr->frame_control)) &&
  718. ieee80211_has_protected(hdr->frame_control)) {
  719. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  720. } else if (!(skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT) &&
  721. txmode == ATH10K_HW_TXRX_RAW &&
  722. ieee80211_has_protected(hdr->frame_control)) {
  723. skb_put(msdu, IEEE80211_CCMP_MIC_LEN);
  724. }
  725. skb_cb->paddr = dma_map_single(dev, msdu->data, msdu->len,
  726. DMA_TO_DEVICE);
  727. res = dma_mapping_error(dev, skb_cb->paddr);
  728. if (res) {
  729. res = -EIO;
  730. goto err_free_msdu_id;
  731. }
  732. if (unlikely(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN))
  733. freq = ar->scan.roc_freq;
  734. switch (txmode) {
  735. case ATH10K_HW_TXRX_RAW:
  736. case ATH10K_HW_TXRX_NATIVE_WIFI:
  737. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  738. /* pass through */
  739. case ATH10K_HW_TXRX_ETHERNET:
  740. if (ar->hw_params.continuous_frag_desc) {
  741. memset(&htt->frag_desc.vaddr[msdu_id], 0,
  742. sizeof(struct htt_msdu_ext_desc));
  743. frags = (struct htt_data_tx_desc_frag *)
  744. &htt->frag_desc.vaddr[msdu_id].frags;
  745. ext_desc = &htt->frag_desc.vaddr[msdu_id];
  746. frags[0].tword_addr.paddr_lo =
  747. __cpu_to_le32(skb_cb->paddr);
  748. frags[0].tword_addr.paddr_hi = 0;
  749. frags[0].tword_addr.len_16 = __cpu_to_le16(msdu->len);
  750. frags_paddr = htt->frag_desc.paddr +
  751. (sizeof(struct htt_msdu_ext_desc) * msdu_id);
  752. } else {
  753. frags = txbuf->frags;
  754. frags[0].dword_addr.paddr =
  755. __cpu_to_le32(skb_cb->paddr);
  756. frags[0].dword_addr.len = __cpu_to_le32(msdu->len);
  757. frags[1].dword_addr.paddr = 0;
  758. frags[1].dword_addr.len = 0;
  759. frags_paddr = txbuf_paddr;
  760. }
  761. flags0 |= SM(txmode, HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  762. break;
  763. case ATH10K_HW_TXRX_MGMT:
  764. flags0 |= SM(ATH10K_HW_TXRX_MGMT,
  765. HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE);
  766. flags0 |= HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT;
  767. frags_paddr = skb_cb->paddr;
  768. break;
  769. }
  770. /* Normally all commands go through HTC which manages tx credits for
  771. * each endpoint and notifies when tx is completed.
  772. *
  773. * HTT endpoint is creditless so there's no need to care about HTC
  774. * flags. In that case it is trivial to fill the HTC header here.
  775. *
  776. * MSDU transmission is considered completed upon HTT event. This
  777. * implies no relevant resources can be freed until after the event is
  778. * received. That's why HTC tx completion handler itself is ignored by
  779. * setting NULL to transfer_context for all sg items.
  780. *
  781. * There is simply no point in pushing HTT TX_FRM through HTC tx path
  782. * as it's a waste of resources. By bypassing HTC it is possible to
  783. * avoid extra memory allocations, compress data structures and thus
  784. * improve performance. */
  785. txbuf->htc_hdr.eid = htt->eid;
  786. txbuf->htc_hdr.len = __cpu_to_le16(sizeof(txbuf->cmd_hdr) +
  787. sizeof(txbuf->cmd_tx) +
  788. prefetch_len);
  789. txbuf->htc_hdr.flags = 0;
  790. if (skb_cb->flags & ATH10K_SKB_F_NO_HWCRYPT)
  791. flags0 |= HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT;
  792. flags1 |= SM((u16)vdev_id, HTT_DATA_TX_DESC_FLAGS1_VDEV_ID);
  793. flags1 |= SM((u16)tid, HTT_DATA_TX_DESC_FLAGS1_EXT_TID);
  794. if (msdu->ip_summed == CHECKSUM_PARTIAL &&
  795. !test_bit(ATH10K_FLAG_RAW_MODE, &ar->dev_flags)) {
  796. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD;
  797. flags1 |= HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD;
  798. if (ar->hw_params.continuous_frag_desc)
  799. ext_desc->flags |= HTT_MSDU_CHECKSUM_ENABLE;
  800. }
  801. /* Prevent firmware from sending up tx inspection requests. There's
  802. * nothing ath10k can do with frames requested for inspection so force
  803. * it to simply rely a regular tx completion with discard status.
  804. */
  805. flags1 |= HTT_DATA_TX_DESC_FLAGS1_POSTPONED;
  806. txbuf->cmd_hdr.msg_type = HTT_H2T_MSG_TYPE_TX_FRM;
  807. txbuf->cmd_tx.flags0 = flags0;
  808. txbuf->cmd_tx.flags1 = __cpu_to_le16(flags1);
  809. txbuf->cmd_tx.len = __cpu_to_le16(msdu->len);
  810. txbuf->cmd_tx.id = __cpu_to_le16(msdu_id);
  811. txbuf->cmd_tx.frags_paddr = __cpu_to_le32(frags_paddr);
  812. if (ath10k_mac_tx_frm_has_freq(ar)) {
  813. txbuf->cmd_tx.offchan_tx.peerid =
  814. __cpu_to_le16(HTT_INVALID_PEERID);
  815. txbuf->cmd_tx.offchan_tx.freq =
  816. __cpu_to_le16(freq);
  817. } else {
  818. txbuf->cmd_tx.peerid =
  819. __cpu_to_le32(HTT_INVALID_PEERID);
  820. }
  821. trace_ath10k_htt_tx(ar, msdu_id, msdu->len, vdev_id, tid);
  822. ath10k_dbg(ar, ATH10K_DBG_HTT,
  823. "htt tx flags0 %hhu flags1 %hu len %d id %hu frags_paddr %08x, msdu_paddr %08x vdev %hhu tid %hhu freq %hu\n",
  824. flags0, flags1, msdu->len, msdu_id, frags_paddr,
  825. (u32)skb_cb->paddr, vdev_id, tid, freq);
  826. ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt tx msdu: ",
  827. msdu->data, msdu->len);
  828. trace_ath10k_tx_hdr(ar, msdu->data, msdu->len);
  829. trace_ath10k_tx_payload(ar, msdu->data, msdu->len);
  830. sg_items[0].transfer_id = 0;
  831. sg_items[0].transfer_context = NULL;
  832. sg_items[0].vaddr = &txbuf->htc_hdr;
  833. sg_items[0].paddr = txbuf_paddr +
  834. sizeof(txbuf->frags);
  835. sg_items[0].len = sizeof(txbuf->htc_hdr) +
  836. sizeof(txbuf->cmd_hdr) +
  837. sizeof(txbuf->cmd_tx);
  838. sg_items[1].transfer_id = 0;
  839. sg_items[1].transfer_context = NULL;
  840. sg_items[1].vaddr = msdu->data;
  841. sg_items[1].paddr = skb_cb->paddr;
  842. sg_items[1].len = prefetch_len;
  843. res = ath10k_hif_tx_sg(htt->ar,
  844. htt->ar->htc.endpoint[htt->eid].ul_pipe_id,
  845. sg_items, ARRAY_SIZE(sg_items));
  846. if (res)
  847. goto err_unmap_msdu;
  848. return 0;
  849. err_unmap_msdu:
  850. dma_unmap_single(dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE);
  851. err_free_msdu_id:
  852. ath10k_htt_tx_free_msdu_id(htt, msdu_id);
  853. err:
  854. return res;
  855. }