segment.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. 2 * reserved_sections(sbi));
  159. }
  160. void register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_inode_info *fi = F2FS_I(inode);
  163. struct inmem_pages *new;
  164. f2fs_trace_pid(page);
  165. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  166. SetPagePrivate(page);
  167. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  168. /* add atomic page indices to the list */
  169. new->page = page;
  170. INIT_LIST_HEAD(&new->list);
  171. /* increase reference count with clean state */
  172. mutex_lock(&fi->inmem_lock);
  173. get_page(page);
  174. list_add_tail(&new->list, &fi->inmem_pages);
  175. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  176. mutex_unlock(&fi->inmem_lock);
  177. trace_f2fs_register_inmem_page(page, INMEM);
  178. }
  179. static int __revoke_inmem_pages(struct inode *inode,
  180. struct list_head *head, bool drop, bool recover)
  181. {
  182. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  183. struct inmem_pages *cur, *tmp;
  184. int err = 0;
  185. list_for_each_entry_safe(cur, tmp, head, list) {
  186. struct page *page = cur->page;
  187. if (drop)
  188. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  189. lock_page(page);
  190. if (recover) {
  191. struct dnode_of_data dn;
  192. struct node_info ni;
  193. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  194. retry:
  195. set_new_dnode(&dn, inode, NULL, NULL, 0);
  196. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  197. if (err) {
  198. if (err == -ENOMEM) {
  199. congestion_wait(BLK_RW_ASYNC, HZ/50);
  200. cond_resched();
  201. goto retry;
  202. }
  203. err = -EAGAIN;
  204. goto next;
  205. }
  206. get_node_info(sbi, dn.nid, &ni);
  207. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  208. cur->old_addr, ni.version, true, true);
  209. f2fs_put_dnode(&dn);
  210. }
  211. next:
  212. /* we don't need to invalidate this in the sccessful status */
  213. if (drop || recover)
  214. ClearPageUptodate(page);
  215. set_page_private(page, 0);
  216. ClearPagePrivate(page);
  217. f2fs_put_page(page, 1);
  218. list_del(&cur->list);
  219. kmem_cache_free(inmem_entry_slab, cur);
  220. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  221. }
  222. return err;
  223. }
  224. void drop_inmem_pages(struct inode *inode)
  225. {
  226. struct f2fs_inode_info *fi = F2FS_I(inode);
  227. mutex_lock(&fi->inmem_lock);
  228. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  229. mutex_unlock(&fi->inmem_lock);
  230. clear_inode_flag(inode, FI_ATOMIC_FILE);
  231. clear_inode_flag(inode, FI_HOT_DATA);
  232. stat_dec_atomic_write(inode);
  233. }
  234. void drop_inmem_page(struct inode *inode, struct page *page)
  235. {
  236. struct f2fs_inode_info *fi = F2FS_I(inode);
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct list_head *head = &fi->inmem_pages;
  239. struct inmem_pages *cur = NULL;
  240. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  241. mutex_lock(&fi->inmem_lock);
  242. list_for_each_entry(cur, head, list) {
  243. if (cur->page == page)
  244. break;
  245. }
  246. f2fs_bug_on(sbi, !cur || cur->page != page);
  247. list_del(&cur->list);
  248. mutex_unlock(&fi->inmem_lock);
  249. dec_page_count(sbi, F2FS_INMEM_PAGES);
  250. kmem_cache_free(inmem_entry_slab, cur);
  251. ClearPageUptodate(page);
  252. set_page_private(page, 0);
  253. ClearPagePrivate(page);
  254. f2fs_put_page(page, 0);
  255. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  256. }
  257. static int __commit_inmem_pages(struct inode *inode,
  258. struct list_head *revoke_list)
  259. {
  260. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  261. struct f2fs_inode_info *fi = F2FS_I(inode);
  262. struct inmem_pages *cur, *tmp;
  263. struct f2fs_io_info fio = {
  264. .sbi = sbi,
  265. .ino = inode->i_ino,
  266. .type = DATA,
  267. .op = REQ_OP_WRITE,
  268. .op_flags = REQ_SYNC | REQ_PRIO,
  269. .io_type = FS_DATA_IO,
  270. };
  271. pgoff_t last_idx = ULONG_MAX;
  272. int err = 0;
  273. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  274. struct page *page = cur->page;
  275. lock_page(page);
  276. if (page->mapping == inode->i_mapping) {
  277. trace_f2fs_commit_inmem_page(page, INMEM);
  278. set_page_dirty(page);
  279. f2fs_wait_on_page_writeback(page, DATA, true);
  280. if (clear_page_dirty_for_io(page)) {
  281. inode_dec_dirty_pages(inode);
  282. remove_dirty_inode(inode);
  283. }
  284. retry:
  285. fio.page = page;
  286. fio.old_blkaddr = NULL_ADDR;
  287. fio.encrypted_page = NULL;
  288. fio.need_lock = LOCK_DONE;
  289. err = do_write_data_page(&fio);
  290. if (err) {
  291. if (err == -ENOMEM) {
  292. congestion_wait(BLK_RW_ASYNC, HZ/50);
  293. cond_resched();
  294. goto retry;
  295. }
  296. unlock_page(page);
  297. break;
  298. }
  299. /* record old blkaddr for revoking */
  300. cur->old_addr = fio.old_blkaddr;
  301. last_idx = page->index;
  302. }
  303. unlock_page(page);
  304. list_move_tail(&cur->list, revoke_list);
  305. }
  306. if (last_idx != ULONG_MAX)
  307. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  308. if (!err)
  309. __revoke_inmem_pages(inode, revoke_list, false, false);
  310. return err;
  311. }
  312. int commit_inmem_pages(struct inode *inode)
  313. {
  314. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  315. struct f2fs_inode_info *fi = F2FS_I(inode);
  316. struct list_head revoke_list;
  317. int err;
  318. INIT_LIST_HEAD(&revoke_list);
  319. f2fs_balance_fs(sbi, true);
  320. f2fs_lock_op(sbi);
  321. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  322. mutex_lock(&fi->inmem_lock);
  323. err = __commit_inmem_pages(inode, &revoke_list);
  324. if (err) {
  325. int ret;
  326. /*
  327. * try to revoke all committed pages, but still we could fail
  328. * due to no memory or other reason, if that happened, EAGAIN
  329. * will be returned, which means in such case, transaction is
  330. * already not integrity, caller should use journal to do the
  331. * recovery or rewrite & commit last transaction. For other
  332. * error number, revoking was done by filesystem itself.
  333. */
  334. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  335. if (ret)
  336. err = ret;
  337. /* drop all uncommitted pages */
  338. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  339. }
  340. mutex_unlock(&fi->inmem_lock);
  341. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  342. f2fs_unlock_op(sbi);
  343. return err;
  344. }
  345. /*
  346. * This function balances dirty node and dentry pages.
  347. * In addition, it controls garbage collection.
  348. */
  349. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  350. {
  351. #ifdef CONFIG_F2FS_FAULT_INJECTION
  352. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  353. f2fs_show_injection_info(FAULT_CHECKPOINT);
  354. f2fs_stop_checkpoint(sbi, false);
  355. }
  356. #endif
  357. /* balance_fs_bg is able to be pending */
  358. if (need && excess_cached_nats(sbi))
  359. f2fs_balance_fs_bg(sbi);
  360. /*
  361. * We should do GC or end up with checkpoint, if there are so many dirty
  362. * dir/node pages without enough free segments.
  363. */
  364. if (has_not_enough_free_secs(sbi, 0, 0)) {
  365. mutex_lock(&sbi->gc_mutex);
  366. f2fs_gc(sbi, false, false, NULL_SEGNO);
  367. }
  368. }
  369. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  370. {
  371. /* try to shrink extent cache when there is no enough memory */
  372. if (!available_free_memory(sbi, EXTENT_CACHE))
  373. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  374. /* check the # of cached NAT entries */
  375. if (!available_free_memory(sbi, NAT_ENTRIES))
  376. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  377. if (!available_free_memory(sbi, FREE_NIDS))
  378. try_to_free_nids(sbi, MAX_FREE_NIDS);
  379. else
  380. build_free_nids(sbi, false, false);
  381. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  382. return;
  383. /* checkpoint is the only way to shrink partial cached entries */
  384. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  385. !available_free_memory(sbi, INO_ENTRIES) ||
  386. excess_prefree_segs(sbi) ||
  387. excess_dirty_nats(sbi) ||
  388. f2fs_time_over(sbi, CP_TIME)) {
  389. if (test_opt(sbi, DATA_FLUSH)) {
  390. struct blk_plug plug;
  391. blk_start_plug(&plug);
  392. sync_dirty_inodes(sbi, FILE_INODE);
  393. blk_finish_plug(&plug);
  394. }
  395. f2fs_sync_fs(sbi->sb, true);
  396. stat_inc_bg_cp_count(sbi->stat_info);
  397. }
  398. }
  399. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  400. struct block_device *bdev)
  401. {
  402. struct bio *bio = f2fs_bio_alloc(0);
  403. int ret;
  404. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  405. bio_set_dev(bio, bdev);
  406. ret = submit_bio_wait(bio);
  407. bio_put(bio);
  408. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  409. test_opt(sbi, FLUSH_MERGE), ret);
  410. return ret;
  411. }
  412. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  413. {
  414. int ret = 0;
  415. int i;
  416. if (!sbi->s_ndevs)
  417. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  418. for (i = 0; i < sbi->s_ndevs; i++) {
  419. if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
  420. continue;
  421. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  422. if (ret)
  423. break;
  424. }
  425. return ret;
  426. }
  427. static int issue_flush_thread(void *data)
  428. {
  429. struct f2fs_sb_info *sbi = data;
  430. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  431. wait_queue_head_t *q = &fcc->flush_wait_queue;
  432. repeat:
  433. if (kthread_should_stop())
  434. return 0;
  435. sb_start_intwrite(sbi->sb);
  436. if (!llist_empty(&fcc->issue_list)) {
  437. struct flush_cmd *cmd, *next;
  438. int ret;
  439. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  440. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  441. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  442. ret = submit_flush_wait(sbi, cmd->ino);
  443. atomic_inc(&fcc->issued_flush);
  444. llist_for_each_entry_safe(cmd, next,
  445. fcc->dispatch_list, llnode) {
  446. cmd->ret = ret;
  447. complete(&cmd->wait);
  448. }
  449. fcc->dispatch_list = NULL;
  450. }
  451. sb_end_intwrite(sbi->sb);
  452. wait_event_interruptible(*q,
  453. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  454. goto repeat;
  455. }
  456. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  457. {
  458. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  459. struct flush_cmd cmd;
  460. int ret;
  461. if (test_opt(sbi, NOBARRIER))
  462. return 0;
  463. if (!test_opt(sbi, FLUSH_MERGE)) {
  464. ret = submit_flush_wait(sbi, ino);
  465. atomic_inc(&fcc->issued_flush);
  466. return ret;
  467. }
  468. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  469. ret = submit_flush_wait(sbi, ino);
  470. atomic_dec(&fcc->issing_flush);
  471. atomic_inc(&fcc->issued_flush);
  472. return ret;
  473. }
  474. cmd.ino = ino;
  475. init_completion(&cmd.wait);
  476. llist_add(&cmd.llnode, &fcc->issue_list);
  477. /* update issue_list before we wake up issue_flush thread */
  478. smp_mb();
  479. if (waitqueue_active(&fcc->flush_wait_queue))
  480. wake_up(&fcc->flush_wait_queue);
  481. if (fcc->f2fs_issue_flush) {
  482. wait_for_completion(&cmd.wait);
  483. atomic_dec(&fcc->issing_flush);
  484. } else {
  485. struct llist_node *list;
  486. list = llist_del_all(&fcc->issue_list);
  487. if (!list) {
  488. wait_for_completion(&cmd.wait);
  489. atomic_dec(&fcc->issing_flush);
  490. } else {
  491. struct flush_cmd *tmp, *next;
  492. ret = submit_flush_wait(sbi, ino);
  493. llist_for_each_entry_safe(tmp, next, list, llnode) {
  494. if (tmp == &cmd) {
  495. cmd.ret = ret;
  496. atomic_dec(&fcc->issing_flush);
  497. continue;
  498. }
  499. tmp->ret = ret;
  500. complete(&tmp->wait);
  501. }
  502. }
  503. }
  504. return cmd.ret;
  505. }
  506. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  507. {
  508. dev_t dev = sbi->sb->s_bdev->bd_dev;
  509. struct flush_cmd_control *fcc;
  510. int err = 0;
  511. if (SM_I(sbi)->fcc_info) {
  512. fcc = SM_I(sbi)->fcc_info;
  513. if (fcc->f2fs_issue_flush)
  514. return err;
  515. goto init_thread;
  516. }
  517. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  518. if (!fcc)
  519. return -ENOMEM;
  520. atomic_set(&fcc->issued_flush, 0);
  521. atomic_set(&fcc->issing_flush, 0);
  522. init_waitqueue_head(&fcc->flush_wait_queue);
  523. init_llist_head(&fcc->issue_list);
  524. SM_I(sbi)->fcc_info = fcc;
  525. if (!test_opt(sbi, FLUSH_MERGE))
  526. return err;
  527. init_thread:
  528. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  529. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  530. if (IS_ERR(fcc->f2fs_issue_flush)) {
  531. err = PTR_ERR(fcc->f2fs_issue_flush);
  532. kfree(fcc);
  533. SM_I(sbi)->fcc_info = NULL;
  534. return err;
  535. }
  536. return err;
  537. }
  538. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  539. {
  540. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  541. if (fcc && fcc->f2fs_issue_flush) {
  542. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  543. fcc->f2fs_issue_flush = NULL;
  544. kthread_stop(flush_thread);
  545. }
  546. if (free) {
  547. kfree(fcc);
  548. SM_I(sbi)->fcc_info = NULL;
  549. }
  550. }
  551. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  552. {
  553. int ret = 0, i;
  554. if (!sbi->s_ndevs)
  555. return 0;
  556. for (i = 1; i < sbi->s_ndevs; i++) {
  557. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  558. continue;
  559. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  560. if (ret)
  561. break;
  562. spin_lock(&sbi->dev_lock);
  563. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  564. spin_unlock(&sbi->dev_lock);
  565. }
  566. return ret;
  567. }
  568. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  569. enum dirty_type dirty_type)
  570. {
  571. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  572. /* need not be added */
  573. if (IS_CURSEG(sbi, segno))
  574. return;
  575. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  576. dirty_i->nr_dirty[dirty_type]++;
  577. if (dirty_type == DIRTY) {
  578. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  579. enum dirty_type t = sentry->type;
  580. if (unlikely(t >= DIRTY)) {
  581. f2fs_bug_on(sbi, 1);
  582. return;
  583. }
  584. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  585. dirty_i->nr_dirty[t]++;
  586. }
  587. }
  588. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  589. enum dirty_type dirty_type)
  590. {
  591. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  592. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  593. dirty_i->nr_dirty[dirty_type]--;
  594. if (dirty_type == DIRTY) {
  595. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  596. enum dirty_type t = sentry->type;
  597. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  598. dirty_i->nr_dirty[t]--;
  599. if (get_valid_blocks(sbi, segno, true) == 0)
  600. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  601. dirty_i->victim_secmap);
  602. }
  603. }
  604. /*
  605. * Should not occur error such as -ENOMEM.
  606. * Adding dirty entry into seglist is not critical operation.
  607. * If a given segment is one of current working segments, it won't be added.
  608. */
  609. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  610. {
  611. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  612. unsigned short valid_blocks;
  613. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  614. return;
  615. mutex_lock(&dirty_i->seglist_lock);
  616. valid_blocks = get_valid_blocks(sbi, segno, false);
  617. if (valid_blocks == 0) {
  618. __locate_dirty_segment(sbi, segno, PRE);
  619. __remove_dirty_segment(sbi, segno, DIRTY);
  620. } else if (valid_blocks < sbi->blocks_per_seg) {
  621. __locate_dirty_segment(sbi, segno, DIRTY);
  622. } else {
  623. /* Recovery routine with SSR needs this */
  624. __remove_dirty_segment(sbi, segno, DIRTY);
  625. }
  626. mutex_unlock(&dirty_i->seglist_lock);
  627. }
  628. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  629. struct block_device *bdev, block_t lstart,
  630. block_t start, block_t len)
  631. {
  632. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  633. struct list_head *pend_list;
  634. struct discard_cmd *dc;
  635. f2fs_bug_on(sbi, !len);
  636. pend_list = &dcc->pend_list[plist_idx(len)];
  637. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  638. INIT_LIST_HEAD(&dc->list);
  639. dc->bdev = bdev;
  640. dc->lstart = lstart;
  641. dc->start = start;
  642. dc->len = len;
  643. dc->ref = 0;
  644. dc->state = D_PREP;
  645. dc->error = 0;
  646. init_completion(&dc->wait);
  647. list_add_tail(&dc->list, pend_list);
  648. atomic_inc(&dcc->discard_cmd_cnt);
  649. dcc->undiscard_blks += len;
  650. return dc;
  651. }
  652. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  653. struct block_device *bdev, block_t lstart,
  654. block_t start, block_t len,
  655. struct rb_node *parent, struct rb_node **p)
  656. {
  657. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  658. struct discard_cmd *dc;
  659. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  660. rb_link_node(&dc->rb_node, parent, p);
  661. rb_insert_color(&dc->rb_node, &dcc->root);
  662. return dc;
  663. }
  664. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  665. struct discard_cmd *dc)
  666. {
  667. if (dc->state == D_DONE)
  668. atomic_dec(&dcc->issing_discard);
  669. list_del(&dc->list);
  670. rb_erase(&dc->rb_node, &dcc->root);
  671. dcc->undiscard_blks -= dc->len;
  672. kmem_cache_free(discard_cmd_slab, dc);
  673. atomic_dec(&dcc->discard_cmd_cnt);
  674. }
  675. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  676. struct discard_cmd *dc)
  677. {
  678. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  679. f2fs_bug_on(sbi, dc->ref);
  680. if (dc->error == -EOPNOTSUPP)
  681. dc->error = 0;
  682. if (dc->error)
  683. f2fs_msg(sbi->sb, KERN_INFO,
  684. "Issue discard(%u, %u, %u) failed, ret: %d",
  685. dc->lstart, dc->start, dc->len, dc->error);
  686. __detach_discard_cmd(dcc, dc);
  687. }
  688. static void f2fs_submit_discard_endio(struct bio *bio)
  689. {
  690. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  691. dc->error = blk_status_to_errno(bio->bi_status);
  692. dc->state = D_DONE;
  693. complete_all(&dc->wait);
  694. bio_put(bio);
  695. }
  696. void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  697. block_t start, block_t end)
  698. {
  699. #ifdef CONFIG_F2FS_CHECK_FS
  700. struct seg_entry *sentry;
  701. unsigned int segno;
  702. block_t blk = start;
  703. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  704. unsigned long *map;
  705. while (blk < end) {
  706. segno = GET_SEGNO(sbi, blk);
  707. sentry = get_seg_entry(sbi, segno);
  708. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  709. if (end < START_BLOCK(sbi, segno + 1))
  710. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  711. else
  712. size = max_blocks;
  713. map = (unsigned long *)(sentry->cur_valid_map);
  714. offset = __find_rev_next_bit(map, size, offset);
  715. f2fs_bug_on(sbi, offset != size);
  716. blk = START_BLOCK(sbi, segno + 1);
  717. }
  718. #endif
  719. }
  720. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  721. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  722. struct discard_policy *dpolicy,
  723. struct discard_cmd *dc)
  724. {
  725. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  726. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  727. &(dcc->fstrim_list) : &(dcc->wait_list);
  728. struct bio *bio = NULL;
  729. int flag = dpolicy->sync ? REQ_SYNC : 0;
  730. if (dc->state != D_PREP)
  731. return;
  732. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  733. dc->error = __blkdev_issue_discard(dc->bdev,
  734. SECTOR_FROM_BLOCK(dc->start),
  735. SECTOR_FROM_BLOCK(dc->len),
  736. GFP_NOFS, 0, &bio);
  737. if (!dc->error) {
  738. /* should keep before submission to avoid D_DONE right away */
  739. dc->state = D_SUBMIT;
  740. atomic_inc(&dcc->issued_discard);
  741. atomic_inc(&dcc->issing_discard);
  742. if (bio) {
  743. bio->bi_private = dc;
  744. bio->bi_end_io = f2fs_submit_discard_endio;
  745. bio->bi_opf |= flag;
  746. submit_bio(bio);
  747. list_move_tail(&dc->list, wait_list);
  748. __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
  749. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  750. }
  751. } else {
  752. __remove_discard_cmd(sbi, dc);
  753. }
  754. }
  755. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  756. struct block_device *bdev, block_t lstart,
  757. block_t start, block_t len,
  758. struct rb_node **insert_p,
  759. struct rb_node *insert_parent)
  760. {
  761. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  762. struct rb_node **p = &dcc->root.rb_node;
  763. struct rb_node *parent = NULL;
  764. struct discard_cmd *dc = NULL;
  765. if (insert_p && insert_parent) {
  766. parent = insert_parent;
  767. p = insert_p;
  768. goto do_insert;
  769. }
  770. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  771. do_insert:
  772. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  773. if (!dc)
  774. return NULL;
  775. return dc;
  776. }
  777. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  778. struct discard_cmd *dc)
  779. {
  780. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  781. }
  782. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  783. struct discard_cmd *dc, block_t blkaddr)
  784. {
  785. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  786. struct discard_info di = dc->di;
  787. bool modified = false;
  788. if (dc->state == D_DONE || dc->len == 1) {
  789. __remove_discard_cmd(sbi, dc);
  790. return;
  791. }
  792. dcc->undiscard_blks -= di.len;
  793. if (blkaddr > di.lstart) {
  794. dc->len = blkaddr - dc->lstart;
  795. dcc->undiscard_blks += dc->len;
  796. __relocate_discard_cmd(dcc, dc);
  797. modified = true;
  798. }
  799. if (blkaddr < di.lstart + di.len - 1) {
  800. if (modified) {
  801. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  802. di.start + blkaddr + 1 - di.lstart,
  803. di.lstart + di.len - 1 - blkaddr,
  804. NULL, NULL);
  805. } else {
  806. dc->lstart++;
  807. dc->len--;
  808. dc->start++;
  809. dcc->undiscard_blks += dc->len;
  810. __relocate_discard_cmd(dcc, dc);
  811. }
  812. }
  813. }
  814. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  815. struct block_device *bdev, block_t lstart,
  816. block_t start, block_t len)
  817. {
  818. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  819. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  820. struct discard_cmd *dc;
  821. struct discard_info di = {0};
  822. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  823. block_t end = lstart + len;
  824. mutex_lock(&dcc->cmd_lock);
  825. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  826. NULL, lstart,
  827. (struct rb_entry **)&prev_dc,
  828. (struct rb_entry **)&next_dc,
  829. &insert_p, &insert_parent, true);
  830. if (dc)
  831. prev_dc = dc;
  832. if (!prev_dc) {
  833. di.lstart = lstart;
  834. di.len = next_dc ? next_dc->lstart - lstart : len;
  835. di.len = min(di.len, len);
  836. di.start = start;
  837. }
  838. while (1) {
  839. struct rb_node *node;
  840. bool merged = false;
  841. struct discard_cmd *tdc = NULL;
  842. if (prev_dc) {
  843. di.lstart = prev_dc->lstart + prev_dc->len;
  844. if (di.lstart < lstart)
  845. di.lstart = lstart;
  846. if (di.lstart >= end)
  847. break;
  848. if (!next_dc || next_dc->lstart > end)
  849. di.len = end - di.lstart;
  850. else
  851. di.len = next_dc->lstart - di.lstart;
  852. di.start = start + di.lstart - lstart;
  853. }
  854. if (!di.len)
  855. goto next;
  856. if (prev_dc && prev_dc->state == D_PREP &&
  857. prev_dc->bdev == bdev &&
  858. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  859. prev_dc->di.len += di.len;
  860. dcc->undiscard_blks += di.len;
  861. __relocate_discard_cmd(dcc, prev_dc);
  862. di = prev_dc->di;
  863. tdc = prev_dc;
  864. merged = true;
  865. }
  866. if (next_dc && next_dc->state == D_PREP &&
  867. next_dc->bdev == bdev &&
  868. __is_discard_front_mergeable(&di, &next_dc->di)) {
  869. next_dc->di.lstart = di.lstart;
  870. next_dc->di.len += di.len;
  871. next_dc->di.start = di.start;
  872. dcc->undiscard_blks += di.len;
  873. __relocate_discard_cmd(dcc, next_dc);
  874. if (tdc)
  875. __remove_discard_cmd(sbi, tdc);
  876. merged = true;
  877. }
  878. if (!merged) {
  879. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  880. di.len, NULL, NULL);
  881. }
  882. next:
  883. prev_dc = next_dc;
  884. if (!prev_dc)
  885. break;
  886. node = rb_next(&prev_dc->rb_node);
  887. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  888. }
  889. mutex_unlock(&dcc->cmd_lock);
  890. }
  891. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  892. struct block_device *bdev, block_t blkstart, block_t blklen)
  893. {
  894. block_t lblkstart = blkstart;
  895. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  896. if (sbi->s_ndevs) {
  897. int devi = f2fs_target_device_index(sbi, blkstart);
  898. blkstart -= FDEV(devi).start_blk;
  899. }
  900. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  901. return 0;
  902. }
  903. static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  904. struct discard_policy *dpolicy,
  905. unsigned int start, unsigned int end)
  906. {
  907. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  908. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  909. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  910. struct discard_cmd *dc;
  911. struct blk_plug plug;
  912. int issued;
  913. next:
  914. issued = 0;
  915. mutex_lock(&dcc->cmd_lock);
  916. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  917. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  918. NULL, start,
  919. (struct rb_entry **)&prev_dc,
  920. (struct rb_entry **)&next_dc,
  921. &insert_p, &insert_parent, true);
  922. if (!dc)
  923. dc = next_dc;
  924. blk_start_plug(&plug);
  925. while (dc && dc->lstart <= end) {
  926. struct rb_node *node;
  927. if (dc->len < dpolicy->granularity)
  928. goto skip;
  929. if (dc->state != D_PREP) {
  930. list_move_tail(&dc->list, &dcc->fstrim_list);
  931. goto skip;
  932. }
  933. __submit_discard_cmd(sbi, dpolicy, dc);
  934. if (++issued >= dpolicy->max_requests) {
  935. start = dc->lstart + dc->len;
  936. blk_finish_plug(&plug);
  937. mutex_unlock(&dcc->cmd_lock);
  938. schedule();
  939. goto next;
  940. }
  941. skip:
  942. node = rb_next(&dc->rb_node);
  943. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  944. if (fatal_signal_pending(current))
  945. break;
  946. }
  947. blk_finish_plug(&plug);
  948. mutex_unlock(&dcc->cmd_lock);
  949. }
  950. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  951. struct discard_policy *dpolicy)
  952. {
  953. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  954. struct list_head *pend_list;
  955. struct discard_cmd *dc, *tmp;
  956. struct blk_plug plug;
  957. int i, iter = 0, issued = 0;
  958. bool io_interrupted = false;
  959. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  960. if (i + 1 < dpolicy->granularity)
  961. break;
  962. pend_list = &dcc->pend_list[i];
  963. mutex_lock(&dcc->cmd_lock);
  964. f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
  965. blk_start_plug(&plug);
  966. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  967. f2fs_bug_on(sbi, dc->state != D_PREP);
  968. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  969. !is_idle(sbi)) {
  970. io_interrupted = true;
  971. goto skip;
  972. }
  973. __submit_discard_cmd(sbi, dpolicy, dc);
  974. issued++;
  975. skip:
  976. if (++iter >= dpolicy->max_requests)
  977. break;
  978. }
  979. blk_finish_plug(&plug);
  980. mutex_unlock(&dcc->cmd_lock);
  981. if (iter >= dpolicy->max_requests)
  982. break;
  983. }
  984. if (!issued && io_interrupted)
  985. issued = -1;
  986. return issued;
  987. }
  988. static void __drop_discard_cmd(struct f2fs_sb_info *sbi)
  989. {
  990. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  991. struct list_head *pend_list;
  992. struct discard_cmd *dc, *tmp;
  993. int i;
  994. mutex_lock(&dcc->cmd_lock);
  995. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  996. pend_list = &dcc->pend_list[i];
  997. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  998. f2fs_bug_on(sbi, dc->state != D_PREP);
  999. __remove_discard_cmd(sbi, dc);
  1000. }
  1001. }
  1002. mutex_unlock(&dcc->cmd_lock);
  1003. }
  1004. static void __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1005. struct discard_cmd *dc)
  1006. {
  1007. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1008. wait_for_completion_io(&dc->wait);
  1009. mutex_lock(&dcc->cmd_lock);
  1010. f2fs_bug_on(sbi, dc->state != D_DONE);
  1011. dc->ref--;
  1012. if (!dc->ref)
  1013. __remove_discard_cmd(sbi, dc);
  1014. mutex_unlock(&dcc->cmd_lock);
  1015. }
  1016. static void __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1017. struct discard_policy *dpolicy,
  1018. block_t start, block_t end)
  1019. {
  1020. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1021. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1022. &(dcc->fstrim_list) : &(dcc->wait_list);
  1023. struct discard_cmd *dc, *tmp;
  1024. bool need_wait;
  1025. next:
  1026. need_wait = false;
  1027. mutex_lock(&dcc->cmd_lock);
  1028. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1029. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1030. continue;
  1031. if (dc->len < dpolicy->granularity)
  1032. continue;
  1033. if (dc->state == D_DONE && !dc->ref) {
  1034. wait_for_completion_io(&dc->wait);
  1035. __remove_discard_cmd(sbi, dc);
  1036. } else {
  1037. dc->ref++;
  1038. need_wait = true;
  1039. break;
  1040. }
  1041. }
  1042. mutex_unlock(&dcc->cmd_lock);
  1043. if (need_wait) {
  1044. __wait_one_discard_bio(sbi, dc);
  1045. goto next;
  1046. }
  1047. }
  1048. static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1049. struct discard_policy *dpolicy)
  1050. {
  1051. __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1052. }
  1053. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1054. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1055. {
  1056. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1057. struct discard_cmd *dc;
  1058. bool need_wait = false;
  1059. mutex_lock(&dcc->cmd_lock);
  1060. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  1061. if (dc) {
  1062. if (dc->state == D_PREP) {
  1063. __punch_discard_cmd(sbi, dc, blkaddr);
  1064. } else {
  1065. dc->ref++;
  1066. need_wait = true;
  1067. }
  1068. }
  1069. mutex_unlock(&dcc->cmd_lock);
  1070. if (need_wait)
  1071. __wait_one_discard_bio(sbi, dc);
  1072. }
  1073. void stop_discard_thread(struct f2fs_sb_info *sbi)
  1074. {
  1075. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1076. if (dcc && dcc->f2fs_issue_discard) {
  1077. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1078. dcc->f2fs_issue_discard = NULL;
  1079. kthread_stop(discard_thread);
  1080. }
  1081. }
  1082. /* This comes from f2fs_put_super */
  1083. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1084. {
  1085. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1086. struct discard_policy dpolicy;
  1087. init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
  1088. __issue_discard_cmd(sbi, &dpolicy);
  1089. __drop_discard_cmd(sbi);
  1090. __wait_all_discard_cmd(sbi, &dpolicy);
  1091. }
  1092. static int issue_discard_thread(void *data)
  1093. {
  1094. struct f2fs_sb_info *sbi = data;
  1095. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1096. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1097. struct discard_policy dpolicy;
  1098. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1099. int issued;
  1100. set_freezable();
  1101. do {
  1102. init_discard_policy(&dpolicy, DPOLICY_BG,
  1103. dcc->discard_granularity);
  1104. wait_event_interruptible_timeout(*q,
  1105. kthread_should_stop() || freezing(current) ||
  1106. dcc->discard_wake,
  1107. msecs_to_jiffies(wait_ms));
  1108. if (try_to_freeze())
  1109. continue;
  1110. if (kthread_should_stop())
  1111. return 0;
  1112. if (dcc->discard_wake) {
  1113. dcc->discard_wake = 0;
  1114. if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
  1115. init_discard_policy(&dpolicy,
  1116. DPOLICY_FORCE, 1);
  1117. }
  1118. sb_start_intwrite(sbi->sb);
  1119. issued = __issue_discard_cmd(sbi, &dpolicy);
  1120. if (issued) {
  1121. __wait_all_discard_cmd(sbi, &dpolicy);
  1122. wait_ms = dpolicy.min_interval;
  1123. } else {
  1124. wait_ms = dpolicy.max_interval;
  1125. }
  1126. sb_end_intwrite(sbi->sb);
  1127. } while (!kthread_should_stop());
  1128. return 0;
  1129. }
  1130. #ifdef CONFIG_BLK_DEV_ZONED
  1131. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1132. struct block_device *bdev, block_t blkstart, block_t blklen)
  1133. {
  1134. sector_t sector, nr_sects;
  1135. block_t lblkstart = blkstart;
  1136. int devi = 0;
  1137. if (sbi->s_ndevs) {
  1138. devi = f2fs_target_device_index(sbi, blkstart);
  1139. blkstart -= FDEV(devi).start_blk;
  1140. }
  1141. /*
  1142. * We need to know the type of the zone: for conventional zones,
  1143. * use regular discard if the drive supports it. For sequential
  1144. * zones, reset the zone write pointer.
  1145. */
  1146. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1147. case BLK_ZONE_TYPE_CONVENTIONAL:
  1148. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1149. return 0;
  1150. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1151. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1152. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1153. sector = SECTOR_FROM_BLOCK(blkstart);
  1154. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1155. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1156. nr_sects != bdev_zone_sectors(bdev)) {
  1157. f2fs_msg(sbi->sb, KERN_INFO,
  1158. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1159. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1160. blkstart, blklen);
  1161. return -EIO;
  1162. }
  1163. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1164. return blkdev_reset_zones(bdev, sector,
  1165. nr_sects, GFP_NOFS);
  1166. default:
  1167. /* Unknown zone type: broken device ? */
  1168. return -EIO;
  1169. }
  1170. }
  1171. #endif
  1172. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1173. struct block_device *bdev, block_t blkstart, block_t blklen)
  1174. {
  1175. #ifdef CONFIG_BLK_DEV_ZONED
  1176. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  1177. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1178. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1179. #endif
  1180. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1181. }
  1182. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1183. block_t blkstart, block_t blklen)
  1184. {
  1185. sector_t start = blkstart, len = 0;
  1186. struct block_device *bdev;
  1187. struct seg_entry *se;
  1188. unsigned int offset;
  1189. block_t i;
  1190. int err = 0;
  1191. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1192. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1193. if (i != start) {
  1194. struct block_device *bdev2 =
  1195. f2fs_target_device(sbi, i, NULL);
  1196. if (bdev2 != bdev) {
  1197. err = __issue_discard_async(sbi, bdev,
  1198. start, len);
  1199. if (err)
  1200. return err;
  1201. bdev = bdev2;
  1202. start = i;
  1203. len = 0;
  1204. }
  1205. }
  1206. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1207. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1208. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1209. sbi->discard_blks--;
  1210. }
  1211. if (len)
  1212. err = __issue_discard_async(sbi, bdev, start, len);
  1213. return err;
  1214. }
  1215. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1216. bool check_only)
  1217. {
  1218. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1219. int max_blocks = sbi->blocks_per_seg;
  1220. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1221. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1222. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1223. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1224. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1225. unsigned int start = 0, end = -1;
  1226. bool force = (cpc->reason & CP_DISCARD);
  1227. struct discard_entry *de = NULL;
  1228. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1229. int i;
  1230. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1231. return false;
  1232. if (!force) {
  1233. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1234. SM_I(sbi)->dcc_info->nr_discards >=
  1235. SM_I(sbi)->dcc_info->max_discards)
  1236. return false;
  1237. }
  1238. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1239. for (i = 0; i < entries; i++)
  1240. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1241. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1242. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1243. SM_I(sbi)->dcc_info->max_discards) {
  1244. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1245. if (start >= max_blocks)
  1246. break;
  1247. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1248. if (force && start && end != max_blocks
  1249. && (end - start) < cpc->trim_minlen)
  1250. continue;
  1251. if (check_only)
  1252. return true;
  1253. if (!de) {
  1254. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1255. GFP_F2FS_ZERO);
  1256. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1257. list_add_tail(&de->list, head);
  1258. }
  1259. for (i = start; i < end; i++)
  1260. __set_bit_le(i, (void *)de->discard_map);
  1261. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1262. }
  1263. return false;
  1264. }
  1265. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1266. {
  1267. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1268. struct discard_entry *entry, *this;
  1269. /* drop caches */
  1270. list_for_each_entry_safe(entry, this, head, list) {
  1271. list_del(&entry->list);
  1272. kmem_cache_free(discard_entry_slab, entry);
  1273. }
  1274. }
  1275. /*
  1276. * Should call clear_prefree_segments after checkpoint is done.
  1277. */
  1278. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1279. {
  1280. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1281. unsigned int segno;
  1282. mutex_lock(&dirty_i->seglist_lock);
  1283. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1284. __set_test_and_free(sbi, segno);
  1285. mutex_unlock(&dirty_i->seglist_lock);
  1286. }
  1287. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1288. {
  1289. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1290. struct list_head *head = &dcc->entry_list;
  1291. struct discard_entry *entry, *this;
  1292. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1293. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1294. unsigned int start = 0, end = -1;
  1295. unsigned int secno, start_segno;
  1296. bool force = (cpc->reason & CP_DISCARD);
  1297. mutex_lock(&dirty_i->seglist_lock);
  1298. while (1) {
  1299. int i;
  1300. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1301. if (start >= MAIN_SEGS(sbi))
  1302. break;
  1303. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1304. start + 1);
  1305. for (i = start; i < end; i++)
  1306. clear_bit(i, prefree_map);
  1307. dirty_i->nr_dirty[PRE] -= end - start;
  1308. if (!test_opt(sbi, DISCARD))
  1309. continue;
  1310. if (force && start >= cpc->trim_start &&
  1311. (end - 1) <= cpc->trim_end)
  1312. continue;
  1313. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1314. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1315. (end - start) << sbi->log_blocks_per_seg);
  1316. continue;
  1317. }
  1318. next:
  1319. secno = GET_SEC_FROM_SEG(sbi, start);
  1320. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1321. if (!IS_CURSEC(sbi, secno) &&
  1322. !get_valid_blocks(sbi, start, true))
  1323. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1324. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1325. start = start_segno + sbi->segs_per_sec;
  1326. if (start < end)
  1327. goto next;
  1328. else
  1329. end = start - 1;
  1330. }
  1331. mutex_unlock(&dirty_i->seglist_lock);
  1332. /* send small discards */
  1333. list_for_each_entry_safe(entry, this, head, list) {
  1334. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1335. bool is_valid = test_bit_le(0, entry->discard_map);
  1336. find_next:
  1337. if (is_valid) {
  1338. next_pos = find_next_zero_bit_le(entry->discard_map,
  1339. sbi->blocks_per_seg, cur_pos);
  1340. len = next_pos - cur_pos;
  1341. if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
  1342. (force && len < cpc->trim_minlen))
  1343. goto skip;
  1344. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1345. len);
  1346. cpc->trimmed += len;
  1347. total_len += len;
  1348. } else {
  1349. next_pos = find_next_bit_le(entry->discard_map,
  1350. sbi->blocks_per_seg, cur_pos);
  1351. }
  1352. skip:
  1353. cur_pos = next_pos;
  1354. is_valid = !is_valid;
  1355. if (cur_pos < sbi->blocks_per_seg)
  1356. goto find_next;
  1357. list_del(&entry->list);
  1358. dcc->nr_discards -= total_len;
  1359. kmem_cache_free(discard_entry_slab, entry);
  1360. }
  1361. wake_up_discard_thread(sbi, false);
  1362. }
  1363. void init_discard_policy(struct discard_policy *dpolicy,
  1364. int discard_type, unsigned int granularity)
  1365. {
  1366. /* common policy */
  1367. dpolicy->type = discard_type;
  1368. dpolicy->sync = true;
  1369. dpolicy->granularity = granularity;
  1370. if (discard_type == DPOLICY_BG) {
  1371. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1372. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1373. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1374. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1375. dpolicy->io_aware = true;
  1376. } else if (discard_type == DPOLICY_FORCE) {
  1377. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  1378. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  1379. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1380. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1381. dpolicy->io_aware = true;
  1382. } else if (discard_type == DPOLICY_FSTRIM) {
  1383. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1384. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1385. dpolicy->io_aware = false;
  1386. } else if (discard_type == DPOLICY_UMOUNT) {
  1387. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  1388. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  1389. dpolicy->io_aware = false;
  1390. }
  1391. }
  1392. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1393. {
  1394. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1395. struct discard_cmd_control *dcc;
  1396. int err = 0, i;
  1397. if (SM_I(sbi)->dcc_info) {
  1398. dcc = SM_I(sbi)->dcc_info;
  1399. goto init_thread;
  1400. }
  1401. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1402. if (!dcc)
  1403. return -ENOMEM;
  1404. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1405. INIT_LIST_HEAD(&dcc->entry_list);
  1406. for (i = 0; i < MAX_PLIST_NUM; i++)
  1407. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1408. INIT_LIST_HEAD(&dcc->wait_list);
  1409. INIT_LIST_HEAD(&dcc->fstrim_list);
  1410. mutex_init(&dcc->cmd_lock);
  1411. atomic_set(&dcc->issued_discard, 0);
  1412. atomic_set(&dcc->issing_discard, 0);
  1413. atomic_set(&dcc->discard_cmd_cnt, 0);
  1414. dcc->nr_discards = 0;
  1415. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1416. dcc->undiscard_blks = 0;
  1417. dcc->root = RB_ROOT;
  1418. init_waitqueue_head(&dcc->discard_wait_queue);
  1419. SM_I(sbi)->dcc_info = dcc;
  1420. init_thread:
  1421. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1422. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1423. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1424. err = PTR_ERR(dcc->f2fs_issue_discard);
  1425. kfree(dcc);
  1426. SM_I(sbi)->dcc_info = NULL;
  1427. return err;
  1428. }
  1429. return err;
  1430. }
  1431. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1432. {
  1433. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1434. if (!dcc)
  1435. return;
  1436. stop_discard_thread(sbi);
  1437. kfree(dcc);
  1438. SM_I(sbi)->dcc_info = NULL;
  1439. }
  1440. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1441. {
  1442. struct sit_info *sit_i = SIT_I(sbi);
  1443. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1444. sit_i->dirty_sentries++;
  1445. return false;
  1446. }
  1447. return true;
  1448. }
  1449. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1450. unsigned int segno, int modified)
  1451. {
  1452. struct seg_entry *se = get_seg_entry(sbi, segno);
  1453. se->type = type;
  1454. if (modified)
  1455. __mark_sit_entry_dirty(sbi, segno);
  1456. }
  1457. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1458. {
  1459. struct seg_entry *se;
  1460. unsigned int segno, offset;
  1461. long int new_vblocks;
  1462. bool exist;
  1463. #ifdef CONFIG_F2FS_CHECK_FS
  1464. bool mir_exist;
  1465. #endif
  1466. segno = GET_SEGNO(sbi, blkaddr);
  1467. se = get_seg_entry(sbi, segno);
  1468. new_vblocks = se->valid_blocks + del;
  1469. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1470. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1471. (new_vblocks > sbi->blocks_per_seg)));
  1472. se->valid_blocks = new_vblocks;
  1473. se->mtime = get_mtime(sbi);
  1474. SIT_I(sbi)->max_mtime = se->mtime;
  1475. /* Update valid block bitmap */
  1476. if (del > 0) {
  1477. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1478. #ifdef CONFIG_F2FS_CHECK_FS
  1479. mir_exist = f2fs_test_and_set_bit(offset,
  1480. se->cur_valid_map_mir);
  1481. if (unlikely(exist != mir_exist)) {
  1482. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1483. "when setting bitmap, blk:%u, old bit:%d",
  1484. blkaddr, exist);
  1485. f2fs_bug_on(sbi, 1);
  1486. }
  1487. #endif
  1488. if (unlikely(exist)) {
  1489. f2fs_msg(sbi->sb, KERN_ERR,
  1490. "Bitmap was wrongly set, blk:%u", blkaddr);
  1491. f2fs_bug_on(sbi, 1);
  1492. se->valid_blocks--;
  1493. del = 0;
  1494. }
  1495. if (f2fs_discard_en(sbi) &&
  1496. !f2fs_test_and_set_bit(offset, se->discard_map))
  1497. sbi->discard_blks--;
  1498. /* don't overwrite by SSR to keep node chain */
  1499. if (se->type == CURSEG_WARM_NODE) {
  1500. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1501. se->ckpt_valid_blocks++;
  1502. }
  1503. } else {
  1504. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1505. #ifdef CONFIG_F2FS_CHECK_FS
  1506. mir_exist = f2fs_test_and_clear_bit(offset,
  1507. se->cur_valid_map_mir);
  1508. if (unlikely(exist != mir_exist)) {
  1509. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1510. "when clearing bitmap, blk:%u, old bit:%d",
  1511. blkaddr, exist);
  1512. f2fs_bug_on(sbi, 1);
  1513. }
  1514. #endif
  1515. if (unlikely(!exist)) {
  1516. f2fs_msg(sbi->sb, KERN_ERR,
  1517. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1518. f2fs_bug_on(sbi, 1);
  1519. se->valid_blocks++;
  1520. del = 0;
  1521. }
  1522. if (f2fs_discard_en(sbi) &&
  1523. f2fs_test_and_clear_bit(offset, se->discard_map))
  1524. sbi->discard_blks++;
  1525. }
  1526. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1527. se->ckpt_valid_blocks += del;
  1528. __mark_sit_entry_dirty(sbi, segno);
  1529. /* update total number of valid blocks to be written in ckpt area */
  1530. SIT_I(sbi)->written_valid_blocks += del;
  1531. if (sbi->segs_per_sec > 1)
  1532. get_sec_entry(sbi, segno)->valid_blocks += del;
  1533. }
  1534. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1535. {
  1536. update_sit_entry(sbi, new, 1);
  1537. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1538. update_sit_entry(sbi, old, -1);
  1539. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1540. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1541. }
  1542. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1543. {
  1544. unsigned int segno = GET_SEGNO(sbi, addr);
  1545. struct sit_info *sit_i = SIT_I(sbi);
  1546. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1547. if (addr == NEW_ADDR)
  1548. return;
  1549. /* add it into sit main buffer */
  1550. mutex_lock(&sit_i->sentry_lock);
  1551. update_sit_entry(sbi, addr, -1);
  1552. /* add it into dirty seglist */
  1553. locate_dirty_segment(sbi, segno);
  1554. mutex_unlock(&sit_i->sentry_lock);
  1555. }
  1556. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1557. {
  1558. struct sit_info *sit_i = SIT_I(sbi);
  1559. unsigned int segno, offset;
  1560. struct seg_entry *se;
  1561. bool is_cp = false;
  1562. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1563. return true;
  1564. mutex_lock(&sit_i->sentry_lock);
  1565. segno = GET_SEGNO(sbi, blkaddr);
  1566. se = get_seg_entry(sbi, segno);
  1567. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1568. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1569. is_cp = true;
  1570. mutex_unlock(&sit_i->sentry_lock);
  1571. return is_cp;
  1572. }
  1573. /*
  1574. * This function should be resided under the curseg_mutex lock
  1575. */
  1576. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1577. struct f2fs_summary *sum)
  1578. {
  1579. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1580. void *addr = curseg->sum_blk;
  1581. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1582. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1583. }
  1584. /*
  1585. * Calculate the number of current summary pages for writing
  1586. */
  1587. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1588. {
  1589. int valid_sum_count = 0;
  1590. int i, sum_in_page;
  1591. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1592. if (sbi->ckpt->alloc_type[i] == SSR)
  1593. valid_sum_count += sbi->blocks_per_seg;
  1594. else {
  1595. if (for_ra)
  1596. valid_sum_count += le16_to_cpu(
  1597. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1598. else
  1599. valid_sum_count += curseg_blkoff(sbi, i);
  1600. }
  1601. }
  1602. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1603. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1604. if (valid_sum_count <= sum_in_page)
  1605. return 1;
  1606. else if ((valid_sum_count - sum_in_page) <=
  1607. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1608. return 2;
  1609. return 3;
  1610. }
  1611. /*
  1612. * Caller should put this summary page
  1613. */
  1614. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1615. {
  1616. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1617. }
  1618. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1619. {
  1620. struct page *page = grab_meta_page(sbi, blk_addr);
  1621. void *dst = page_address(page);
  1622. if (src)
  1623. memcpy(dst, src, PAGE_SIZE);
  1624. else
  1625. memset(dst, 0, PAGE_SIZE);
  1626. set_page_dirty(page);
  1627. f2fs_put_page(page, 1);
  1628. }
  1629. static void write_sum_page(struct f2fs_sb_info *sbi,
  1630. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1631. {
  1632. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1633. }
  1634. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1635. int type, block_t blk_addr)
  1636. {
  1637. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1638. struct page *page = grab_meta_page(sbi, blk_addr);
  1639. struct f2fs_summary_block *src = curseg->sum_blk;
  1640. struct f2fs_summary_block *dst;
  1641. dst = (struct f2fs_summary_block *)page_address(page);
  1642. mutex_lock(&curseg->curseg_mutex);
  1643. down_read(&curseg->journal_rwsem);
  1644. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1645. up_read(&curseg->journal_rwsem);
  1646. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1647. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1648. mutex_unlock(&curseg->curseg_mutex);
  1649. set_page_dirty(page);
  1650. f2fs_put_page(page, 1);
  1651. }
  1652. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1653. {
  1654. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1655. unsigned int segno = curseg->segno + 1;
  1656. struct free_segmap_info *free_i = FREE_I(sbi);
  1657. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1658. return !test_bit(segno, free_i->free_segmap);
  1659. return 0;
  1660. }
  1661. /*
  1662. * Find a new segment from the free segments bitmap to right order
  1663. * This function should be returned with success, otherwise BUG
  1664. */
  1665. static void get_new_segment(struct f2fs_sb_info *sbi,
  1666. unsigned int *newseg, bool new_sec, int dir)
  1667. {
  1668. struct free_segmap_info *free_i = FREE_I(sbi);
  1669. unsigned int segno, secno, zoneno;
  1670. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1671. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1672. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1673. unsigned int left_start = hint;
  1674. bool init = true;
  1675. int go_left = 0;
  1676. int i;
  1677. spin_lock(&free_i->segmap_lock);
  1678. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1679. segno = find_next_zero_bit(free_i->free_segmap,
  1680. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1681. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1682. goto got_it;
  1683. }
  1684. find_other_zone:
  1685. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1686. if (secno >= MAIN_SECS(sbi)) {
  1687. if (dir == ALLOC_RIGHT) {
  1688. secno = find_next_zero_bit(free_i->free_secmap,
  1689. MAIN_SECS(sbi), 0);
  1690. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1691. } else {
  1692. go_left = 1;
  1693. left_start = hint - 1;
  1694. }
  1695. }
  1696. if (go_left == 0)
  1697. goto skip_left;
  1698. while (test_bit(left_start, free_i->free_secmap)) {
  1699. if (left_start > 0) {
  1700. left_start--;
  1701. continue;
  1702. }
  1703. left_start = find_next_zero_bit(free_i->free_secmap,
  1704. MAIN_SECS(sbi), 0);
  1705. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1706. break;
  1707. }
  1708. secno = left_start;
  1709. skip_left:
  1710. hint = secno;
  1711. segno = GET_SEG_FROM_SEC(sbi, secno);
  1712. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1713. /* give up on finding another zone */
  1714. if (!init)
  1715. goto got_it;
  1716. if (sbi->secs_per_zone == 1)
  1717. goto got_it;
  1718. if (zoneno == old_zoneno)
  1719. goto got_it;
  1720. if (dir == ALLOC_LEFT) {
  1721. if (!go_left && zoneno + 1 >= total_zones)
  1722. goto got_it;
  1723. if (go_left && zoneno == 0)
  1724. goto got_it;
  1725. }
  1726. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1727. if (CURSEG_I(sbi, i)->zone == zoneno)
  1728. break;
  1729. if (i < NR_CURSEG_TYPE) {
  1730. /* zone is in user, try another */
  1731. if (go_left)
  1732. hint = zoneno * sbi->secs_per_zone - 1;
  1733. else if (zoneno + 1 >= total_zones)
  1734. hint = 0;
  1735. else
  1736. hint = (zoneno + 1) * sbi->secs_per_zone;
  1737. init = false;
  1738. goto find_other_zone;
  1739. }
  1740. got_it:
  1741. /* set it as dirty segment in free segmap */
  1742. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1743. __set_inuse(sbi, segno);
  1744. *newseg = segno;
  1745. spin_unlock(&free_i->segmap_lock);
  1746. }
  1747. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1748. {
  1749. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1750. struct summary_footer *sum_footer;
  1751. curseg->segno = curseg->next_segno;
  1752. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1753. curseg->next_blkoff = 0;
  1754. curseg->next_segno = NULL_SEGNO;
  1755. sum_footer = &(curseg->sum_blk->footer);
  1756. memset(sum_footer, 0, sizeof(struct summary_footer));
  1757. if (IS_DATASEG(type))
  1758. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1759. if (IS_NODESEG(type))
  1760. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1761. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1762. }
  1763. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1764. {
  1765. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1766. if (sbi->segs_per_sec != 1)
  1767. return CURSEG_I(sbi, type)->segno;
  1768. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1769. return 0;
  1770. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1771. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1772. return CURSEG_I(sbi, type)->segno;
  1773. }
  1774. /*
  1775. * Allocate a current working segment.
  1776. * This function always allocates a free segment in LFS manner.
  1777. */
  1778. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1779. {
  1780. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1781. unsigned int segno = curseg->segno;
  1782. int dir = ALLOC_LEFT;
  1783. write_sum_page(sbi, curseg->sum_blk,
  1784. GET_SUM_BLOCK(sbi, segno));
  1785. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1786. dir = ALLOC_RIGHT;
  1787. if (test_opt(sbi, NOHEAP))
  1788. dir = ALLOC_RIGHT;
  1789. segno = __get_next_segno(sbi, type);
  1790. get_new_segment(sbi, &segno, new_sec, dir);
  1791. curseg->next_segno = segno;
  1792. reset_curseg(sbi, type, 1);
  1793. curseg->alloc_type = LFS;
  1794. }
  1795. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1796. struct curseg_info *seg, block_t start)
  1797. {
  1798. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1799. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1800. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1801. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1802. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1803. int i, pos;
  1804. for (i = 0; i < entries; i++)
  1805. target_map[i] = ckpt_map[i] | cur_map[i];
  1806. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1807. seg->next_blkoff = pos;
  1808. }
  1809. /*
  1810. * If a segment is written by LFS manner, next block offset is just obtained
  1811. * by increasing the current block offset. However, if a segment is written by
  1812. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1813. */
  1814. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1815. struct curseg_info *seg)
  1816. {
  1817. if (seg->alloc_type == SSR)
  1818. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1819. else
  1820. seg->next_blkoff++;
  1821. }
  1822. /*
  1823. * This function always allocates a used segment(from dirty seglist) by SSR
  1824. * manner, so it should recover the existing segment information of valid blocks
  1825. */
  1826. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  1827. {
  1828. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1829. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1830. unsigned int new_segno = curseg->next_segno;
  1831. struct f2fs_summary_block *sum_node;
  1832. struct page *sum_page;
  1833. write_sum_page(sbi, curseg->sum_blk,
  1834. GET_SUM_BLOCK(sbi, curseg->segno));
  1835. __set_test_and_inuse(sbi, new_segno);
  1836. mutex_lock(&dirty_i->seglist_lock);
  1837. __remove_dirty_segment(sbi, new_segno, PRE);
  1838. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1839. mutex_unlock(&dirty_i->seglist_lock);
  1840. reset_curseg(sbi, type, 1);
  1841. curseg->alloc_type = SSR;
  1842. __next_free_blkoff(sbi, curseg, 0);
  1843. sum_page = get_sum_page(sbi, new_segno);
  1844. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1845. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1846. f2fs_put_page(sum_page, 1);
  1847. }
  1848. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1849. {
  1850. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1851. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1852. unsigned segno = NULL_SEGNO;
  1853. int i, cnt;
  1854. bool reversed = false;
  1855. /* need_SSR() already forces to do this */
  1856. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1857. curseg->next_segno = segno;
  1858. return 1;
  1859. }
  1860. /* For node segments, let's do SSR more intensively */
  1861. if (IS_NODESEG(type)) {
  1862. if (type >= CURSEG_WARM_NODE) {
  1863. reversed = true;
  1864. i = CURSEG_COLD_NODE;
  1865. } else {
  1866. i = CURSEG_HOT_NODE;
  1867. }
  1868. cnt = NR_CURSEG_NODE_TYPE;
  1869. } else {
  1870. if (type >= CURSEG_WARM_DATA) {
  1871. reversed = true;
  1872. i = CURSEG_COLD_DATA;
  1873. } else {
  1874. i = CURSEG_HOT_DATA;
  1875. }
  1876. cnt = NR_CURSEG_DATA_TYPE;
  1877. }
  1878. for (; cnt-- > 0; reversed ? i-- : i++) {
  1879. if (i == type)
  1880. continue;
  1881. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1882. curseg->next_segno = segno;
  1883. return 1;
  1884. }
  1885. }
  1886. return 0;
  1887. }
  1888. /*
  1889. * flush out current segment and replace it with new segment
  1890. * This function should be returned with success, otherwise BUG
  1891. */
  1892. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1893. int type, bool force)
  1894. {
  1895. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1896. if (force)
  1897. new_curseg(sbi, type, true);
  1898. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1899. type == CURSEG_WARM_NODE)
  1900. new_curseg(sbi, type, false);
  1901. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1902. new_curseg(sbi, type, false);
  1903. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1904. change_curseg(sbi, type);
  1905. else
  1906. new_curseg(sbi, type, false);
  1907. stat_inc_seg_type(sbi, curseg);
  1908. }
  1909. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1910. {
  1911. struct curseg_info *curseg;
  1912. unsigned int old_segno;
  1913. int i;
  1914. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1915. curseg = CURSEG_I(sbi, i);
  1916. old_segno = curseg->segno;
  1917. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1918. locate_dirty_segment(sbi, old_segno);
  1919. }
  1920. }
  1921. static const struct segment_allocation default_salloc_ops = {
  1922. .allocate_segment = allocate_segment_by_default,
  1923. };
  1924. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1925. {
  1926. __u64 trim_start = cpc->trim_start;
  1927. bool has_candidate = false;
  1928. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1929. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1930. if (add_discard_addrs(sbi, cpc, true)) {
  1931. has_candidate = true;
  1932. break;
  1933. }
  1934. }
  1935. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1936. cpc->trim_start = trim_start;
  1937. return has_candidate;
  1938. }
  1939. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1940. {
  1941. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1942. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1943. unsigned int start_segno, end_segno, cur_segno;
  1944. block_t start_block, end_block;
  1945. struct cp_control cpc;
  1946. struct discard_policy dpolicy;
  1947. int err = 0;
  1948. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1949. return -EINVAL;
  1950. cpc.trimmed = 0;
  1951. if (end <= MAIN_BLKADDR(sbi))
  1952. goto out;
  1953. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1954. f2fs_msg(sbi->sb, KERN_WARNING,
  1955. "Found FS corruption, run fsck to fix.");
  1956. goto out;
  1957. }
  1958. /* start/end segment number in main_area */
  1959. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1960. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1961. GET_SEGNO(sbi, end);
  1962. start_block = START_BLOCK(sbi, start_segno);
  1963. end_block = START_BLOCK(sbi, end_segno + 1);
  1964. cpc.reason = CP_DISCARD;
  1965. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1966. /* do checkpoint to issue discard commands safely */
  1967. for (cur_segno = start_segno; cur_segno <= end_segno;
  1968. cur_segno = cpc.trim_end + 1) {
  1969. cpc.trim_start = cur_segno;
  1970. if (sbi->discard_blks == 0)
  1971. break;
  1972. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1973. cpc.trim_end = end_segno;
  1974. else
  1975. cpc.trim_end = min_t(unsigned int,
  1976. rounddown(cur_segno +
  1977. BATCHED_TRIM_SEGMENTS(sbi),
  1978. sbi->segs_per_sec) - 1, end_segno);
  1979. mutex_lock(&sbi->gc_mutex);
  1980. err = write_checkpoint(sbi, &cpc);
  1981. mutex_unlock(&sbi->gc_mutex);
  1982. if (err)
  1983. break;
  1984. schedule();
  1985. }
  1986. start_block = START_BLOCK(sbi, start_segno);
  1987. end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
  1988. init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  1989. __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
  1990. __wait_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
  1991. out:
  1992. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1993. return err;
  1994. }
  1995. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1996. {
  1997. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1998. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1999. return true;
  2000. return false;
  2001. }
  2002. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2003. {
  2004. if (fio->type == DATA)
  2005. return CURSEG_HOT_DATA;
  2006. else
  2007. return CURSEG_HOT_NODE;
  2008. }
  2009. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2010. {
  2011. if (fio->type == DATA) {
  2012. struct inode *inode = fio->page->mapping->host;
  2013. if (S_ISDIR(inode->i_mode))
  2014. return CURSEG_HOT_DATA;
  2015. else
  2016. return CURSEG_COLD_DATA;
  2017. } else {
  2018. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2019. return CURSEG_WARM_NODE;
  2020. else
  2021. return CURSEG_COLD_NODE;
  2022. }
  2023. }
  2024. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2025. {
  2026. if (fio->type == DATA) {
  2027. struct inode *inode = fio->page->mapping->host;
  2028. if (is_cold_data(fio->page) || file_is_cold(inode))
  2029. return CURSEG_COLD_DATA;
  2030. if (is_inode_flag_set(inode, FI_HOT_DATA))
  2031. return CURSEG_HOT_DATA;
  2032. return CURSEG_WARM_DATA;
  2033. } else {
  2034. if (IS_DNODE(fio->page))
  2035. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2036. CURSEG_HOT_NODE;
  2037. return CURSEG_COLD_NODE;
  2038. }
  2039. }
  2040. static int __get_segment_type(struct f2fs_io_info *fio)
  2041. {
  2042. int type = 0;
  2043. switch (fio->sbi->active_logs) {
  2044. case 2:
  2045. type = __get_segment_type_2(fio);
  2046. break;
  2047. case 4:
  2048. type = __get_segment_type_4(fio);
  2049. break;
  2050. case 6:
  2051. type = __get_segment_type_6(fio);
  2052. break;
  2053. default:
  2054. f2fs_bug_on(fio->sbi, true);
  2055. }
  2056. if (IS_HOT(type))
  2057. fio->temp = HOT;
  2058. else if (IS_WARM(type))
  2059. fio->temp = WARM;
  2060. else
  2061. fio->temp = COLD;
  2062. return type;
  2063. }
  2064. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2065. block_t old_blkaddr, block_t *new_blkaddr,
  2066. struct f2fs_summary *sum, int type,
  2067. struct f2fs_io_info *fio, bool add_list)
  2068. {
  2069. struct sit_info *sit_i = SIT_I(sbi);
  2070. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2071. mutex_lock(&curseg->curseg_mutex);
  2072. mutex_lock(&sit_i->sentry_lock);
  2073. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2074. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2075. /*
  2076. * __add_sum_entry should be resided under the curseg_mutex
  2077. * because, this function updates a summary entry in the
  2078. * current summary block.
  2079. */
  2080. __add_sum_entry(sbi, type, sum);
  2081. __refresh_next_blkoff(sbi, curseg);
  2082. stat_inc_block_count(sbi, curseg);
  2083. if (!__has_curseg_space(sbi, type))
  2084. sit_i->s_ops->allocate_segment(sbi, type, false);
  2085. /*
  2086. * SIT information should be updated after segment allocation,
  2087. * since we need to keep dirty segments precisely under SSR.
  2088. */
  2089. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  2090. mutex_unlock(&sit_i->sentry_lock);
  2091. if (page && IS_NODESEG(type)) {
  2092. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2093. f2fs_inode_chksum_set(sbi, page);
  2094. }
  2095. if (add_list) {
  2096. struct f2fs_bio_info *io;
  2097. INIT_LIST_HEAD(&fio->list);
  2098. fio->in_list = true;
  2099. io = sbi->write_io[fio->type] + fio->temp;
  2100. spin_lock(&io->io_lock);
  2101. list_add_tail(&fio->list, &io->io_list);
  2102. spin_unlock(&io->io_lock);
  2103. }
  2104. mutex_unlock(&curseg->curseg_mutex);
  2105. }
  2106. static void update_device_state(struct f2fs_io_info *fio)
  2107. {
  2108. struct f2fs_sb_info *sbi = fio->sbi;
  2109. unsigned int devidx;
  2110. if (!sbi->s_ndevs)
  2111. return;
  2112. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2113. /* update device state for fsync */
  2114. set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2115. /* update device state for checkpoint */
  2116. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2117. spin_lock(&sbi->dev_lock);
  2118. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2119. spin_unlock(&sbi->dev_lock);
  2120. }
  2121. }
  2122. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2123. {
  2124. int type = __get_segment_type(fio);
  2125. int err;
  2126. reallocate:
  2127. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2128. &fio->new_blkaddr, sum, type, fio, true);
  2129. /* writeout dirty page into bdev */
  2130. err = f2fs_submit_page_write(fio);
  2131. if (err == -EAGAIN) {
  2132. fio->old_blkaddr = fio->new_blkaddr;
  2133. goto reallocate;
  2134. } else if (!err) {
  2135. update_device_state(fio);
  2136. }
  2137. }
  2138. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2139. enum iostat_type io_type)
  2140. {
  2141. struct f2fs_io_info fio = {
  2142. .sbi = sbi,
  2143. .type = META,
  2144. .op = REQ_OP_WRITE,
  2145. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2146. .old_blkaddr = page->index,
  2147. .new_blkaddr = page->index,
  2148. .page = page,
  2149. .encrypted_page = NULL,
  2150. .in_list = false,
  2151. };
  2152. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2153. fio.op_flags &= ~REQ_META;
  2154. set_page_writeback(page);
  2155. f2fs_submit_page_write(&fio);
  2156. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2157. }
  2158. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2159. {
  2160. struct f2fs_summary sum;
  2161. set_summary(&sum, nid, 0, 0);
  2162. do_write_page(&sum, fio);
  2163. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2164. }
  2165. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  2166. {
  2167. struct f2fs_sb_info *sbi = fio->sbi;
  2168. struct f2fs_summary sum;
  2169. struct node_info ni;
  2170. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2171. get_node_info(sbi, dn->nid, &ni);
  2172. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  2173. do_write_page(&sum, fio);
  2174. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2175. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2176. }
  2177. int rewrite_data_page(struct f2fs_io_info *fio)
  2178. {
  2179. int err;
  2180. fio->new_blkaddr = fio->old_blkaddr;
  2181. stat_inc_inplace_blocks(fio->sbi);
  2182. err = f2fs_submit_page_bio(fio);
  2183. if (!err)
  2184. update_device_state(fio);
  2185. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2186. return err;
  2187. }
  2188. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2189. block_t old_blkaddr, block_t new_blkaddr,
  2190. bool recover_curseg, bool recover_newaddr)
  2191. {
  2192. struct sit_info *sit_i = SIT_I(sbi);
  2193. struct curseg_info *curseg;
  2194. unsigned int segno, old_cursegno;
  2195. struct seg_entry *se;
  2196. int type;
  2197. unsigned short old_blkoff;
  2198. segno = GET_SEGNO(sbi, new_blkaddr);
  2199. se = get_seg_entry(sbi, segno);
  2200. type = se->type;
  2201. if (!recover_curseg) {
  2202. /* for recovery flow */
  2203. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2204. if (old_blkaddr == NULL_ADDR)
  2205. type = CURSEG_COLD_DATA;
  2206. else
  2207. type = CURSEG_WARM_DATA;
  2208. }
  2209. } else {
  2210. if (!IS_CURSEG(sbi, segno))
  2211. type = CURSEG_WARM_DATA;
  2212. }
  2213. curseg = CURSEG_I(sbi, type);
  2214. mutex_lock(&curseg->curseg_mutex);
  2215. mutex_lock(&sit_i->sentry_lock);
  2216. old_cursegno = curseg->segno;
  2217. old_blkoff = curseg->next_blkoff;
  2218. /* change the current segment */
  2219. if (segno != curseg->segno) {
  2220. curseg->next_segno = segno;
  2221. change_curseg(sbi, type);
  2222. }
  2223. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2224. __add_sum_entry(sbi, type, sum);
  2225. if (!recover_curseg || recover_newaddr)
  2226. update_sit_entry(sbi, new_blkaddr, 1);
  2227. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2228. update_sit_entry(sbi, old_blkaddr, -1);
  2229. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2230. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2231. locate_dirty_segment(sbi, old_cursegno);
  2232. if (recover_curseg) {
  2233. if (old_cursegno != curseg->segno) {
  2234. curseg->next_segno = old_cursegno;
  2235. change_curseg(sbi, type);
  2236. }
  2237. curseg->next_blkoff = old_blkoff;
  2238. }
  2239. mutex_unlock(&sit_i->sentry_lock);
  2240. mutex_unlock(&curseg->curseg_mutex);
  2241. }
  2242. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2243. block_t old_addr, block_t new_addr,
  2244. unsigned char version, bool recover_curseg,
  2245. bool recover_newaddr)
  2246. {
  2247. struct f2fs_summary sum;
  2248. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2249. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  2250. recover_curseg, recover_newaddr);
  2251. f2fs_update_data_blkaddr(dn, new_addr);
  2252. }
  2253. void f2fs_wait_on_page_writeback(struct page *page,
  2254. enum page_type type, bool ordered)
  2255. {
  2256. if (PageWriteback(page)) {
  2257. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2258. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2259. 0, page->index, type);
  2260. if (ordered)
  2261. wait_on_page_writeback(page);
  2262. else
  2263. wait_for_stable_page(page);
  2264. }
  2265. }
  2266. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2267. {
  2268. struct page *cpage;
  2269. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  2270. return;
  2271. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2272. if (cpage) {
  2273. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2274. f2fs_put_page(cpage, 1);
  2275. }
  2276. }
  2277. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  2278. {
  2279. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2280. struct curseg_info *seg_i;
  2281. unsigned char *kaddr;
  2282. struct page *page;
  2283. block_t start;
  2284. int i, j, offset;
  2285. start = start_sum_block(sbi);
  2286. page = get_meta_page(sbi, start++);
  2287. kaddr = (unsigned char *)page_address(page);
  2288. /* Step 1: restore nat cache */
  2289. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2290. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2291. /* Step 2: restore sit cache */
  2292. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2293. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2294. offset = 2 * SUM_JOURNAL_SIZE;
  2295. /* Step 3: restore summary entries */
  2296. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2297. unsigned short blk_off;
  2298. unsigned int segno;
  2299. seg_i = CURSEG_I(sbi, i);
  2300. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2301. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2302. seg_i->next_segno = segno;
  2303. reset_curseg(sbi, i, 0);
  2304. seg_i->alloc_type = ckpt->alloc_type[i];
  2305. seg_i->next_blkoff = blk_off;
  2306. if (seg_i->alloc_type == SSR)
  2307. blk_off = sbi->blocks_per_seg;
  2308. for (j = 0; j < blk_off; j++) {
  2309. struct f2fs_summary *s;
  2310. s = (struct f2fs_summary *)(kaddr + offset);
  2311. seg_i->sum_blk->entries[j] = *s;
  2312. offset += SUMMARY_SIZE;
  2313. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2314. SUM_FOOTER_SIZE)
  2315. continue;
  2316. f2fs_put_page(page, 1);
  2317. page = NULL;
  2318. page = get_meta_page(sbi, start++);
  2319. kaddr = (unsigned char *)page_address(page);
  2320. offset = 0;
  2321. }
  2322. }
  2323. f2fs_put_page(page, 1);
  2324. return 0;
  2325. }
  2326. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2327. {
  2328. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2329. struct f2fs_summary_block *sum;
  2330. struct curseg_info *curseg;
  2331. struct page *new;
  2332. unsigned short blk_off;
  2333. unsigned int segno = 0;
  2334. block_t blk_addr = 0;
  2335. /* get segment number and block addr */
  2336. if (IS_DATASEG(type)) {
  2337. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2338. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2339. CURSEG_HOT_DATA]);
  2340. if (__exist_node_summaries(sbi))
  2341. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2342. else
  2343. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2344. } else {
  2345. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2346. CURSEG_HOT_NODE]);
  2347. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2348. CURSEG_HOT_NODE]);
  2349. if (__exist_node_summaries(sbi))
  2350. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2351. type - CURSEG_HOT_NODE);
  2352. else
  2353. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2354. }
  2355. new = get_meta_page(sbi, blk_addr);
  2356. sum = (struct f2fs_summary_block *)page_address(new);
  2357. if (IS_NODESEG(type)) {
  2358. if (__exist_node_summaries(sbi)) {
  2359. struct f2fs_summary *ns = &sum->entries[0];
  2360. int i;
  2361. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2362. ns->version = 0;
  2363. ns->ofs_in_node = 0;
  2364. }
  2365. } else {
  2366. int err;
  2367. err = restore_node_summary(sbi, segno, sum);
  2368. if (err) {
  2369. f2fs_put_page(new, 1);
  2370. return err;
  2371. }
  2372. }
  2373. }
  2374. /* set uncompleted segment to curseg */
  2375. curseg = CURSEG_I(sbi, type);
  2376. mutex_lock(&curseg->curseg_mutex);
  2377. /* update journal info */
  2378. down_write(&curseg->journal_rwsem);
  2379. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2380. up_write(&curseg->journal_rwsem);
  2381. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2382. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2383. curseg->next_segno = segno;
  2384. reset_curseg(sbi, type, 0);
  2385. curseg->alloc_type = ckpt->alloc_type[type];
  2386. curseg->next_blkoff = blk_off;
  2387. mutex_unlock(&curseg->curseg_mutex);
  2388. f2fs_put_page(new, 1);
  2389. return 0;
  2390. }
  2391. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2392. {
  2393. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2394. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2395. int type = CURSEG_HOT_DATA;
  2396. int err;
  2397. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2398. int npages = npages_for_summary_flush(sbi, true);
  2399. if (npages >= 2)
  2400. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2401. META_CP, true);
  2402. /* restore for compacted data summary */
  2403. if (read_compacted_summaries(sbi))
  2404. return -EINVAL;
  2405. type = CURSEG_HOT_NODE;
  2406. }
  2407. if (__exist_node_summaries(sbi))
  2408. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2409. NR_CURSEG_TYPE - type, META_CP, true);
  2410. for (; type <= CURSEG_COLD_NODE; type++) {
  2411. err = read_normal_summaries(sbi, type);
  2412. if (err)
  2413. return err;
  2414. }
  2415. /* sanity check for summary blocks */
  2416. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2417. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2418. return -EINVAL;
  2419. return 0;
  2420. }
  2421. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2422. {
  2423. struct page *page;
  2424. unsigned char *kaddr;
  2425. struct f2fs_summary *summary;
  2426. struct curseg_info *seg_i;
  2427. int written_size = 0;
  2428. int i, j;
  2429. page = grab_meta_page(sbi, blkaddr++);
  2430. kaddr = (unsigned char *)page_address(page);
  2431. /* Step 1: write nat cache */
  2432. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2433. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2434. written_size += SUM_JOURNAL_SIZE;
  2435. /* Step 2: write sit cache */
  2436. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2437. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2438. written_size += SUM_JOURNAL_SIZE;
  2439. /* Step 3: write summary entries */
  2440. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2441. unsigned short blkoff;
  2442. seg_i = CURSEG_I(sbi, i);
  2443. if (sbi->ckpt->alloc_type[i] == SSR)
  2444. blkoff = sbi->blocks_per_seg;
  2445. else
  2446. blkoff = curseg_blkoff(sbi, i);
  2447. for (j = 0; j < blkoff; j++) {
  2448. if (!page) {
  2449. page = grab_meta_page(sbi, blkaddr++);
  2450. kaddr = (unsigned char *)page_address(page);
  2451. written_size = 0;
  2452. }
  2453. summary = (struct f2fs_summary *)(kaddr + written_size);
  2454. *summary = seg_i->sum_blk->entries[j];
  2455. written_size += SUMMARY_SIZE;
  2456. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2457. SUM_FOOTER_SIZE)
  2458. continue;
  2459. set_page_dirty(page);
  2460. f2fs_put_page(page, 1);
  2461. page = NULL;
  2462. }
  2463. }
  2464. if (page) {
  2465. set_page_dirty(page);
  2466. f2fs_put_page(page, 1);
  2467. }
  2468. }
  2469. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2470. block_t blkaddr, int type)
  2471. {
  2472. int i, end;
  2473. if (IS_DATASEG(type))
  2474. end = type + NR_CURSEG_DATA_TYPE;
  2475. else
  2476. end = type + NR_CURSEG_NODE_TYPE;
  2477. for (i = type; i < end; i++)
  2478. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2479. }
  2480. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2481. {
  2482. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2483. write_compacted_summaries(sbi, start_blk);
  2484. else
  2485. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2486. }
  2487. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2488. {
  2489. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2490. }
  2491. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2492. unsigned int val, int alloc)
  2493. {
  2494. int i;
  2495. if (type == NAT_JOURNAL) {
  2496. for (i = 0; i < nats_in_cursum(journal); i++) {
  2497. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2498. return i;
  2499. }
  2500. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2501. return update_nats_in_cursum(journal, 1);
  2502. } else if (type == SIT_JOURNAL) {
  2503. for (i = 0; i < sits_in_cursum(journal); i++)
  2504. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2505. return i;
  2506. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2507. return update_sits_in_cursum(journal, 1);
  2508. }
  2509. return -1;
  2510. }
  2511. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2512. unsigned int segno)
  2513. {
  2514. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2515. }
  2516. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2517. unsigned int start)
  2518. {
  2519. struct sit_info *sit_i = SIT_I(sbi);
  2520. struct page *src_page, *dst_page;
  2521. pgoff_t src_off, dst_off;
  2522. void *src_addr, *dst_addr;
  2523. src_off = current_sit_addr(sbi, start);
  2524. dst_off = next_sit_addr(sbi, src_off);
  2525. /* get current sit block page without lock */
  2526. src_page = get_meta_page(sbi, src_off);
  2527. dst_page = grab_meta_page(sbi, dst_off);
  2528. f2fs_bug_on(sbi, PageDirty(src_page));
  2529. src_addr = page_address(src_page);
  2530. dst_addr = page_address(dst_page);
  2531. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2532. set_page_dirty(dst_page);
  2533. f2fs_put_page(src_page, 1);
  2534. set_to_next_sit(sit_i, start);
  2535. return dst_page;
  2536. }
  2537. static struct sit_entry_set *grab_sit_entry_set(void)
  2538. {
  2539. struct sit_entry_set *ses =
  2540. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2541. ses->entry_cnt = 0;
  2542. INIT_LIST_HEAD(&ses->set_list);
  2543. return ses;
  2544. }
  2545. static void release_sit_entry_set(struct sit_entry_set *ses)
  2546. {
  2547. list_del(&ses->set_list);
  2548. kmem_cache_free(sit_entry_set_slab, ses);
  2549. }
  2550. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2551. struct list_head *head)
  2552. {
  2553. struct sit_entry_set *next = ses;
  2554. if (list_is_last(&ses->set_list, head))
  2555. return;
  2556. list_for_each_entry_continue(next, head, set_list)
  2557. if (ses->entry_cnt <= next->entry_cnt)
  2558. break;
  2559. list_move_tail(&ses->set_list, &next->set_list);
  2560. }
  2561. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2562. {
  2563. struct sit_entry_set *ses;
  2564. unsigned int start_segno = START_SEGNO(segno);
  2565. list_for_each_entry(ses, head, set_list) {
  2566. if (ses->start_segno == start_segno) {
  2567. ses->entry_cnt++;
  2568. adjust_sit_entry_set(ses, head);
  2569. return;
  2570. }
  2571. }
  2572. ses = grab_sit_entry_set();
  2573. ses->start_segno = start_segno;
  2574. ses->entry_cnt++;
  2575. list_add(&ses->set_list, head);
  2576. }
  2577. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2578. {
  2579. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2580. struct list_head *set_list = &sm_info->sit_entry_set;
  2581. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2582. unsigned int segno;
  2583. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2584. add_sit_entry(segno, set_list);
  2585. }
  2586. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2587. {
  2588. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2589. struct f2fs_journal *journal = curseg->journal;
  2590. int i;
  2591. down_write(&curseg->journal_rwsem);
  2592. for (i = 0; i < sits_in_cursum(journal); i++) {
  2593. unsigned int segno;
  2594. bool dirtied;
  2595. segno = le32_to_cpu(segno_in_journal(journal, i));
  2596. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2597. if (!dirtied)
  2598. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2599. }
  2600. update_sits_in_cursum(journal, -i);
  2601. up_write(&curseg->journal_rwsem);
  2602. }
  2603. /*
  2604. * CP calls this function, which flushes SIT entries including sit_journal,
  2605. * and moves prefree segs to free segs.
  2606. */
  2607. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2608. {
  2609. struct sit_info *sit_i = SIT_I(sbi);
  2610. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2611. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2612. struct f2fs_journal *journal = curseg->journal;
  2613. struct sit_entry_set *ses, *tmp;
  2614. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2615. bool to_journal = true;
  2616. struct seg_entry *se;
  2617. mutex_lock(&sit_i->sentry_lock);
  2618. if (!sit_i->dirty_sentries)
  2619. goto out;
  2620. /*
  2621. * add and account sit entries of dirty bitmap in sit entry
  2622. * set temporarily
  2623. */
  2624. add_sits_in_set(sbi);
  2625. /*
  2626. * if there are no enough space in journal to store dirty sit
  2627. * entries, remove all entries from journal and add and account
  2628. * them in sit entry set.
  2629. */
  2630. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2631. remove_sits_in_journal(sbi);
  2632. /*
  2633. * there are two steps to flush sit entries:
  2634. * #1, flush sit entries to journal in current cold data summary block.
  2635. * #2, flush sit entries to sit page.
  2636. */
  2637. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2638. struct page *page = NULL;
  2639. struct f2fs_sit_block *raw_sit = NULL;
  2640. unsigned int start_segno = ses->start_segno;
  2641. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2642. (unsigned long)MAIN_SEGS(sbi));
  2643. unsigned int segno = start_segno;
  2644. if (to_journal &&
  2645. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2646. to_journal = false;
  2647. if (to_journal) {
  2648. down_write(&curseg->journal_rwsem);
  2649. } else {
  2650. page = get_next_sit_page(sbi, start_segno);
  2651. raw_sit = page_address(page);
  2652. }
  2653. /* flush dirty sit entries in region of current sit set */
  2654. for_each_set_bit_from(segno, bitmap, end) {
  2655. int offset, sit_offset;
  2656. se = get_seg_entry(sbi, segno);
  2657. /* add discard candidates */
  2658. if (!(cpc->reason & CP_DISCARD)) {
  2659. cpc->trim_start = segno;
  2660. add_discard_addrs(sbi, cpc, false);
  2661. }
  2662. if (to_journal) {
  2663. offset = lookup_journal_in_cursum(journal,
  2664. SIT_JOURNAL, segno, 1);
  2665. f2fs_bug_on(sbi, offset < 0);
  2666. segno_in_journal(journal, offset) =
  2667. cpu_to_le32(segno);
  2668. seg_info_to_raw_sit(se,
  2669. &sit_in_journal(journal, offset));
  2670. } else {
  2671. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2672. seg_info_to_raw_sit(se,
  2673. &raw_sit->entries[sit_offset]);
  2674. }
  2675. __clear_bit(segno, bitmap);
  2676. sit_i->dirty_sentries--;
  2677. ses->entry_cnt--;
  2678. }
  2679. if (to_journal)
  2680. up_write(&curseg->journal_rwsem);
  2681. else
  2682. f2fs_put_page(page, 1);
  2683. f2fs_bug_on(sbi, ses->entry_cnt);
  2684. release_sit_entry_set(ses);
  2685. }
  2686. f2fs_bug_on(sbi, !list_empty(head));
  2687. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2688. out:
  2689. if (cpc->reason & CP_DISCARD) {
  2690. __u64 trim_start = cpc->trim_start;
  2691. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2692. add_discard_addrs(sbi, cpc, false);
  2693. cpc->trim_start = trim_start;
  2694. }
  2695. mutex_unlock(&sit_i->sentry_lock);
  2696. set_prefree_as_free_segments(sbi);
  2697. }
  2698. static int build_sit_info(struct f2fs_sb_info *sbi)
  2699. {
  2700. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2701. struct sit_info *sit_i;
  2702. unsigned int sit_segs, start;
  2703. char *src_bitmap;
  2704. unsigned int bitmap_size;
  2705. /* allocate memory for SIT information */
  2706. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2707. if (!sit_i)
  2708. return -ENOMEM;
  2709. SM_I(sbi)->sit_info = sit_i;
  2710. sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
  2711. sizeof(struct seg_entry), GFP_KERNEL);
  2712. if (!sit_i->sentries)
  2713. return -ENOMEM;
  2714. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2715. sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2716. if (!sit_i->dirty_sentries_bitmap)
  2717. return -ENOMEM;
  2718. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2719. sit_i->sentries[start].cur_valid_map
  2720. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2721. sit_i->sentries[start].ckpt_valid_map
  2722. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2723. if (!sit_i->sentries[start].cur_valid_map ||
  2724. !sit_i->sentries[start].ckpt_valid_map)
  2725. return -ENOMEM;
  2726. #ifdef CONFIG_F2FS_CHECK_FS
  2727. sit_i->sentries[start].cur_valid_map_mir
  2728. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2729. if (!sit_i->sentries[start].cur_valid_map_mir)
  2730. return -ENOMEM;
  2731. #endif
  2732. if (f2fs_discard_en(sbi)) {
  2733. sit_i->sentries[start].discard_map
  2734. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2735. if (!sit_i->sentries[start].discard_map)
  2736. return -ENOMEM;
  2737. }
  2738. }
  2739. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2740. if (!sit_i->tmp_map)
  2741. return -ENOMEM;
  2742. if (sbi->segs_per_sec > 1) {
  2743. sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
  2744. sizeof(struct sec_entry), GFP_KERNEL);
  2745. if (!sit_i->sec_entries)
  2746. return -ENOMEM;
  2747. }
  2748. /* get information related with SIT */
  2749. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2750. /* setup SIT bitmap from ckeckpoint pack */
  2751. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2752. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2753. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2754. if (!sit_i->sit_bitmap)
  2755. return -ENOMEM;
  2756. #ifdef CONFIG_F2FS_CHECK_FS
  2757. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2758. if (!sit_i->sit_bitmap_mir)
  2759. return -ENOMEM;
  2760. #endif
  2761. /* init SIT information */
  2762. sit_i->s_ops = &default_salloc_ops;
  2763. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2764. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2765. sit_i->written_valid_blocks = 0;
  2766. sit_i->bitmap_size = bitmap_size;
  2767. sit_i->dirty_sentries = 0;
  2768. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2769. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2770. sit_i->mounted_time = ktime_get_real_seconds();
  2771. mutex_init(&sit_i->sentry_lock);
  2772. return 0;
  2773. }
  2774. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2775. {
  2776. struct free_segmap_info *free_i;
  2777. unsigned int bitmap_size, sec_bitmap_size;
  2778. /* allocate memory for free segmap information */
  2779. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2780. if (!free_i)
  2781. return -ENOMEM;
  2782. SM_I(sbi)->free_info = free_i;
  2783. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2784. free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
  2785. if (!free_i->free_segmap)
  2786. return -ENOMEM;
  2787. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2788. free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2789. if (!free_i->free_secmap)
  2790. return -ENOMEM;
  2791. /* set all segments as dirty temporarily */
  2792. memset(free_i->free_segmap, 0xff, bitmap_size);
  2793. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2794. /* init free segmap information */
  2795. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2796. free_i->free_segments = 0;
  2797. free_i->free_sections = 0;
  2798. spin_lock_init(&free_i->segmap_lock);
  2799. return 0;
  2800. }
  2801. static int build_curseg(struct f2fs_sb_info *sbi)
  2802. {
  2803. struct curseg_info *array;
  2804. int i;
  2805. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2806. if (!array)
  2807. return -ENOMEM;
  2808. SM_I(sbi)->curseg_array = array;
  2809. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2810. mutex_init(&array[i].curseg_mutex);
  2811. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2812. if (!array[i].sum_blk)
  2813. return -ENOMEM;
  2814. init_rwsem(&array[i].journal_rwsem);
  2815. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2816. GFP_KERNEL);
  2817. if (!array[i].journal)
  2818. return -ENOMEM;
  2819. array[i].segno = NULL_SEGNO;
  2820. array[i].next_blkoff = 0;
  2821. }
  2822. return restore_curseg_summaries(sbi);
  2823. }
  2824. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2825. {
  2826. struct sit_info *sit_i = SIT_I(sbi);
  2827. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2828. struct f2fs_journal *journal = curseg->journal;
  2829. struct seg_entry *se;
  2830. struct f2fs_sit_entry sit;
  2831. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2832. unsigned int i, start, end;
  2833. unsigned int readed, start_blk = 0;
  2834. do {
  2835. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2836. META_SIT, true);
  2837. start = start_blk * sit_i->sents_per_block;
  2838. end = (start_blk + readed) * sit_i->sents_per_block;
  2839. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2840. struct f2fs_sit_block *sit_blk;
  2841. struct page *page;
  2842. se = &sit_i->sentries[start];
  2843. page = get_current_sit_page(sbi, start);
  2844. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2845. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2846. f2fs_put_page(page, 1);
  2847. check_block_count(sbi, start, &sit);
  2848. seg_info_from_raw_sit(se, &sit);
  2849. /* build discard map only one time */
  2850. if (f2fs_discard_en(sbi)) {
  2851. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2852. memset(se->discard_map, 0xff,
  2853. SIT_VBLOCK_MAP_SIZE);
  2854. } else {
  2855. memcpy(se->discard_map,
  2856. se->cur_valid_map,
  2857. SIT_VBLOCK_MAP_SIZE);
  2858. sbi->discard_blks +=
  2859. sbi->blocks_per_seg -
  2860. se->valid_blocks;
  2861. }
  2862. }
  2863. if (sbi->segs_per_sec > 1)
  2864. get_sec_entry(sbi, start)->valid_blocks +=
  2865. se->valid_blocks;
  2866. }
  2867. start_blk += readed;
  2868. } while (start_blk < sit_blk_cnt);
  2869. down_read(&curseg->journal_rwsem);
  2870. for (i = 0; i < sits_in_cursum(journal); i++) {
  2871. unsigned int old_valid_blocks;
  2872. start = le32_to_cpu(segno_in_journal(journal, i));
  2873. se = &sit_i->sentries[start];
  2874. sit = sit_in_journal(journal, i);
  2875. old_valid_blocks = se->valid_blocks;
  2876. check_block_count(sbi, start, &sit);
  2877. seg_info_from_raw_sit(se, &sit);
  2878. if (f2fs_discard_en(sbi)) {
  2879. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  2880. memset(se->discard_map, 0xff,
  2881. SIT_VBLOCK_MAP_SIZE);
  2882. } else {
  2883. memcpy(se->discard_map, se->cur_valid_map,
  2884. SIT_VBLOCK_MAP_SIZE);
  2885. sbi->discard_blks += old_valid_blocks -
  2886. se->valid_blocks;
  2887. }
  2888. }
  2889. if (sbi->segs_per_sec > 1)
  2890. get_sec_entry(sbi, start)->valid_blocks +=
  2891. se->valid_blocks - old_valid_blocks;
  2892. }
  2893. up_read(&curseg->journal_rwsem);
  2894. }
  2895. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2896. {
  2897. unsigned int start;
  2898. int type;
  2899. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2900. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2901. if (!sentry->valid_blocks)
  2902. __set_free(sbi, start);
  2903. else
  2904. SIT_I(sbi)->written_valid_blocks +=
  2905. sentry->valid_blocks;
  2906. }
  2907. /* set use the current segments */
  2908. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2909. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2910. __set_test_and_inuse(sbi, curseg_t->segno);
  2911. }
  2912. }
  2913. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2914. {
  2915. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2916. struct free_segmap_info *free_i = FREE_I(sbi);
  2917. unsigned int segno = 0, offset = 0;
  2918. unsigned short valid_blocks;
  2919. while (1) {
  2920. /* find dirty segment based on free segmap */
  2921. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2922. if (segno >= MAIN_SEGS(sbi))
  2923. break;
  2924. offset = segno + 1;
  2925. valid_blocks = get_valid_blocks(sbi, segno, false);
  2926. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2927. continue;
  2928. if (valid_blocks > sbi->blocks_per_seg) {
  2929. f2fs_bug_on(sbi, 1);
  2930. continue;
  2931. }
  2932. mutex_lock(&dirty_i->seglist_lock);
  2933. __locate_dirty_segment(sbi, segno, DIRTY);
  2934. mutex_unlock(&dirty_i->seglist_lock);
  2935. }
  2936. }
  2937. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2938. {
  2939. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2940. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2941. dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
  2942. if (!dirty_i->victim_secmap)
  2943. return -ENOMEM;
  2944. return 0;
  2945. }
  2946. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2947. {
  2948. struct dirty_seglist_info *dirty_i;
  2949. unsigned int bitmap_size, i;
  2950. /* allocate memory for dirty segments list information */
  2951. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2952. if (!dirty_i)
  2953. return -ENOMEM;
  2954. SM_I(sbi)->dirty_info = dirty_i;
  2955. mutex_init(&dirty_i->seglist_lock);
  2956. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2957. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2958. dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
  2959. if (!dirty_i->dirty_segmap[i])
  2960. return -ENOMEM;
  2961. }
  2962. init_dirty_segmap(sbi);
  2963. return init_victim_secmap(sbi);
  2964. }
  2965. /*
  2966. * Update min, max modified time for cost-benefit GC algorithm
  2967. */
  2968. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2969. {
  2970. struct sit_info *sit_i = SIT_I(sbi);
  2971. unsigned int segno;
  2972. mutex_lock(&sit_i->sentry_lock);
  2973. sit_i->min_mtime = LLONG_MAX;
  2974. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2975. unsigned int i;
  2976. unsigned long long mtime = 0;
  2977. for (i = 0; i < sbi->segs_per_sec; i++)
  2978. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2979. mtime = div_u64(mtime, sbi->segs_per_sec);
  2980. if (sit_i->min_mtime > mtime)
  2981. sit_i->min_mtime = mtime;
  2982. }
  2983. sit_i->max_mtime = get_mtime(sbi);
  2984. mutex_unlock(&sit_i->sentry_lock);
  2985. }
  2986. int build_segment_manager(struct f2fs_sb_info *sbi)
  2987. {
  2988. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2989. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2990. struct f2fs_sm_info *sm_info;
  2991. int err;
  2992. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2993. if (!sm_info)
  2994. return -ENOMEM;
  2995. /* init sm info */
  2996. sbi->sm_info = sm_info;
  2997. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2998. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2999. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3000. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3001. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3002. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3003. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3004. sm_info->rec_prefree_segments = sm_info->main_segments *
  3005. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3006. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3007. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3008. if (!test_opt(sbi, LFS))
  3009. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3010. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3011. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3012. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3013. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  3014. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3015. if (!f2fs_readonly(sbi->sb)) {
  3016. err = create_flush_cmd_control(sbi);
  3017. if (err)
  3018. return err;
  3019. }
  3020. err = create_discard_cmd_control(sbi);
  3021. if (err)
  3022. return err;
  3023. err = build_sit_info(sbi);
  3024. if (err)
  3025. return err;
  3026. err = build_free_segmap(sbi);
  3027. if (err)
  3028. return err;
  3029. err = build_curseg(sbi);
  3030. if (err)
  3031. return err;
  3032. /* reinit free segmap based on SIT */
  3033. build_sit_entries(sbi);
  3034. init_free_segmap(sbi);
  3035. err = build_dirty_segmap(sbi);
  3036. if (err)
  3037. return err;
  3038. init_min_max_mtime(sbi);
  3039. return 0;
  3040. }
  3041. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3042. enum dirty_type dirty_type)
  3043. {
  3044. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3045. mutex_lock(&dirty_i->seglist_lock);
  3046. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3047. dirty_i->nr_dirty[dirty_type] = 0;
  3048. mutex_unlock(&dirty_i->seglist_lock);
  3049. }
  3050. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3051. {
  3052. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3053. kvfree(dirty_i->victim_secmap);
  3054. }
  3055. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3056. {
  3057. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3058. int i;
  3059. if (!dirty_i)
  3060. return;
  3061. /* discard pre-free/dirty segments list */
  3062. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3063. discard_dirty_segmap(sbi, i);
  3064. destroy_victim_secmap(sbi);
  3065. SM_I(sbi)->dirty_info = NULL;
  3066. kfree(dirty_i);
  3067. }
  3068. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3069. {
  3070. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3071. int i;
  3072. if (!array)
  3073. return;
  3074. SM_I(sbi)->curseg_array = NULL;
  3075. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3076. kfree(array[i].sum_blk);
  3077. kfree(array[i].journal);
  3078. }
  3079. kfree(array);
  3080. }
  3081. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3082. {
  3083. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3084. if (!free_i)
  3085. return;
  3086. SM_I(sbi)->free_info = NULL;
  3087. kvfree(free_i->free_segmap);
  3088. kvfree(free_i->free_secmap);
  3089. kfree(free_i);
  3090. }
  3091. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3092. {
  3093. struct sit_info *sit_i = SIT_I(sbi);
  3094. unsigned int start;
  3095. if (!sit_i)
  3096. return;
  3097. if (sit_i->sentries) {
  3098. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3099. kfree(sit_i->sentries[start].cur_valid_map);
  3100. #ifdef CONFIG_F2FS_CHECK_FS
  3101. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3102. #endif
  3103. kfree(sit_i->sentries[start].ckpt_valid_map);
  3104. kfree(sit_i->sentries[start].discard_map);
  3105. }
  3106. }
  3107. kfree(sit_i->tmp_map);
  3108. kvfree(sit_i->sentries);
  3109. kvfree(sit_i->sec_entries);
  3110. kvfree(sit_i->dirty_sentries_bitmap);
  3111. SM_I(sbi)->sit_info = NULL;
  3112. kfree(sit_i->sit_bitmap);
  3113. #ifdef CONFIG_F2FS_CHECK_FS
  3114. kfree(sit_i->sit_bitmap_mir);
  3115. #endif
  3116. kfree(sit_i);
  3117. }
  3118. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  3119. {
  3120. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3121. if (!sm_info)
  3122. return;
  3123. destroy_flush_cmd_control(sbi, true);
  3124. destroy_discard_cmd_control(sbi);
  3125. destroy_dirty_segmap(sbi);
  3126. destroy_curseg(sbi);
  3127. destroy_free_segmap(sbi);
  3128. destroy_sit_info(sbi);
  3129. sbi->sm_info = NULL;
  3130. kfree(sm_info);
  3131. }
  3132. int __init create_segment_manager_caches(void)
  3133. {
  3134. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3135. sizeof(struct discard_entry));
  3136. if (!discard_entry_slab)
  3137. goto fail;
  3138. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3139. sizeof(struct discard_cmd));
  3140. if (!discard_cmd_slab)
  3141. goto destroy_discard_entry;
  3142. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3143. sizeof(struct sit_entry_set));
  3144. if (!sit_entry_set_slab)
  3145. goto destroy_discard_cmd;
  3146. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3147. sizeof(struct inmem_pages));
  3148. if (!inmem_entry_slab)
  3149. goto destroy_sit_entry_set;
  3150. return 0;
  3151. destroy_sit_entry_set:
  3152. kmem_cache_destroy(sit_entry_set_slab);
  3153. destroy_discard_cmd:
  3154. kmem_cache_destroy(discard_cmd_slab);
  3155. destroy_discard_entry:
  3156. kmem_cache_destroy(discard_entry_slab);
  3157. fail:
  3158. return -ENOMEM;
  3159. }
  3160. void destroy_segment_manager_caches(void)
  3161. {
  3162. kmem_cache_destroy(sit_entry_set_slab);
  3163. kmem_cache_destroy(discard_cmd_slab);
  3164. kmem_cache_destroy(discard_entry_slab);
  3165. kmem_cache_destroy(inmem_entry_slab);
  3166. }