rmap.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_sem (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem
  24. *
  25. * When a page fault occurs in writing from user to file, down_read
  26. * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
  27. * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
  28. * taken together; in truncation, i_sem is taken outermost.
  29. *
  30. * mm->mmap_sem
  31. * page->flags PG_locked (lock_page)
  32. * mapping->i_mmap_lock
  33. * anon_vma->lock
  34. * mm->page_table_lock or pte_lock
  35. * zone->lru_lock (in mark_page_accessed)
  36. * swap_lock (in swap_duplicate, swap_info_get)
  37. * mmlist_lock (in mmput, drain_mmlist and others)
  38. * mapping->private_lock (in __set_page_dirty_buffers)
  39. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  40. * sb_lock (within inode_lock in fs/fs-writeback.c)
  41. * mapping->tree_lock (widely used, in set_page_dirty,
  42. * in arch-dependent flush_dcache_mmap_lock,
  43. * within inode_lock in __sync_single_inode)
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <asm/tlbflush.h>
  54. //#define RMAP_DEBUG /* can be enabled only for debugging */
  55. kmem_cache_t *anon_vma_cachep;
  56. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  57. {
  58. #ifdef RMAP_DEBUG
  59. struct anon_vma *anon_vma = find_vma->anon_vma;
  60. struct vm_area_struct *vma;
  61. unsigned int mapcount = 0;
  62. int found = 0;
  63. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  64. mapcount++;
  65. BUG_ON(mapcount > 100000);
  66. if (vma == find_vma)
  67. found = 1;
  68. }
  69. BUG_ON(!found);
  70. #endif
  71. }
  72. /* This must be called under the mmap_sem. */
  73. int anon_vma_prepare(struct vm_area_struct *vma)
  74. {
  75. struct anon_vma *anon_vma = vma->anon_vma;
  76. might_sleep();
  77. if (unlikely(!anon_vma)) {
  78. struct mm_struct *mm = vma->vm_mm;
  79. struct anon_vma *allocated, *locked;
  80. anon_vma = find_mergeable_anon_vma(vma);
  81. if (anon_vma) {
  82. allocated = NULL;
  83. locked = anon_vma;
  84. spin_lock(&locked->lock);
  85. } else {
  86. anon_vma = anon_vma_alloc();
  87. if (unlikely(!anon_vma))
  88. return -ENOMEM;
  89. allocated = anon_vma;
  90. locked = NULL;
  91. }
  92. /* page_table_lock to protect against threads */
  93. spin_lock(&mm->page_table_lock);
  94. if (likely(!vma->anon_vma)) {
  95. vma->anon_vma = anon_vma;
  96. list_add(&vma->anon_vma_node, &anon_vma->head);
  97. allocated = NULL;
  98. }
  99. spin_unlock(&mm->page_table_lock);
  100. if (locked)
  101. spin_unlock(&locked->lock);
  102. if (unlikely(allocated))
  103. anon_vma_free(allocated);
  104. }
  105. return 0;
  106. }
  107. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  108. {
  109. BUG_ON(vma->anon_vma != next->anon_vma);
  110. list_del(&next->anon_vma_node);
  111. }
  112. void __anon_vma_link(struct vm_area_struct *vma)
  113. {
  114. struct anon_vma *anon_vma = vma->anon_vma;
  115. if (anon_vma) {
  116. list_add(&vma->anon_vma_node, &anon_vma->head);
  117. validate_anon_vma(vma);
  118. }
  119. }
  120. void anon_vma_link(struct vm_area_struct *vma)
  121. {
  122. struct anon_vma *anon_vma = vma->anon_vma;
  123. if (anon_vma) {
  124. spin_lock(&anon_vma->lock);
  125. list_add(&vma->anon_vma_node, &anon_vma->head);
  126. validate_anon_vma(vma);
  127. spin_unlock(&anon_vma->lock);
  128. }
  129. }
  130. void anon_vma_unlink(struct vm_area_struct *vma)
  131. {
  132. struct anon_vma *anon_vma = vma->anon_vma;
  133. int empty;
  134. if (!anon_vma)
  135. return;
  136. spin_lock(&anon_vma->lock);
  137. validate_anon_vma(vma);
  138. list_del(&vma->anon_vma_node);
  139. /* We must garbage collect the anon_vma if it's empty */
  140. empty = list_empty(&anon_vma->head);
  141. spin_unlock(&anon_vma->lock);
  142. if (empty)
  143. anon_vma_free(anon_vma);
  144. }
  145. static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
  146. {
  147. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  148. SLAB_CTOR_CONSTRUCTOR) {
  149. struct anon_vma *anon_vma = data;
  150. spin_lock_init(&anon_vma->lock);
  151. INIT_LIST_HEAD(&anon_vma->head);
  152. }
  153. }
  154. void __init anon_vma_init(void)
  155. {
  156. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  157. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  158. }
  159. /*
  160. * Getting a lock on a stable anon_vma from a page off the LRU is
  161. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  162. */
  163. static struct anon_vma *page_lock_anon_vma(struct page *page)
  164. {
  165. struct anon_vma *anon_vma = NULL;
  166. unsigned long anon_mapping;
  167. rcu_read_lock();
  168. anon_mapping = (unsigned long) page->mapping;
  169. if (!(anon_mapping & PAGE_MAPPING_ANON))
  170. goto out;
  171. if (!page_mapped(page))
  172. goto out;
  173. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  174. spin_lock(&anon_vma->lock);
  175. out:
  176. rcu_read_unlock();
  177. return anon_vma;
  178. }
  179. /*
  180. * At what user virtual address is page expected in vma?
  181. */
  182. static inline unsigned long
  183. vma_address(struct page *page, struct vm_area_struct *vma)
  184. {
  185. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  186. unsigned long address;
  187. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  188. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  189. /* page should be within any vma from prio_tree_next */
  190. BUG_ON(!PageAnon(page));
  191. return -EFAULT;
  192. }
  193. return address;
  194. }
  195. /*
  196. * At what user virtual address is page expected in vma? checking that the
  197. * page matches the vma: currently only used on anon pages, by unuse_vma;
  198. * and by extraordinary checks on anon pages in VM_UNPAGED vmas, taking
  199. * care that an mmap of /dev/mem might window free and foreign pages.
  200. */
  201. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  202. {
  203. if (PageAnon(page)) {
  204. if ((void *)vma->anon_vma !=
  205. (void *)page->mapping - PAGE_MAPPING_ANON)
  206. return -EFAULT;
  207. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  208. if (!vma->vm_file ||
  209. vma->vm_file->f_mapping != page->mapping)
  210. return -EFAULT;
  211. } else
  212. return -EFAULT;
  213. return vma_address(page, vma);
  214. }
  215. /*
  216. * Check that @page is mapped at @address into @mm.
  217. *
  218. * On success returns with pte mapped and locked.
  219. */
  220. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  221. unsigned long address, spinlock_t **ptlp)
  222. {
  223. pgd_t *pgd;
  224. pud_t *pud;
  225. pmd_t *pmd;
  226. pte_t *pte;
  227. spinlock_t *ptl;
  228. pgd = pgd_offset(mm, address);
  229. if (!pgd_present(*pgd))
  230. return NULL;
  231. pud = pud_offset(pgd, address);
  232. if (!pud_present(*pud))
  233. return NULL;
  234. pmd = pmd_offset(pud, address);
  235. if (!pmd_present(*pmd))
  236. return NULL;
  237. pte = pte_offset_map(pmd, address);
  238. /* Make a quick check before getting the lock */
  239. if (!pte_present(*pte)) {
  240. pte_unmap(pte);
  241. return NULL;
  242. }
  243. ptl = pte_lockptr(mm, pmd);
  244. spin_lock(ptl);
  245. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  246. *ptlp = ptl;
  247. return pte;
  248. }
  249. pte_unmap_unlock(pte, ptl);
  250. return NULL;
  251. }
  252. /*
  253. * Subfunctions of page_referenced: page_referenced_one called
  254. * repeatedly from either page_referenced_anon or page_referenced_file.
  255. */
  256. static int page_referenced_one(struct page *page,
  257. struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
  258. {
  259. struct mm_struct *mm = vma->vm_mm;
  260. unsigned long address;
  261. pte_t *pte;
  262. spinlock_t *ptl;
  263. int referenced = 0;
  264. address = vma_address(page, vma);
  265. if (address == -EFAULT)
  266. goto out;
  267. pte = page_check_address(page, mm, address, &ptl);
  268. if (!pte)
  269. goto out;
  270. if (ptep_clear_flush_young(vma, address, pte))
  271. referenced++;
  272. /* Pretend the page is referenced if the task has the
  273. swap token and is in the middle of a page fault. */
  274. if (mm != current->mm && !ignore_token && has_swap_token(mm) &&
  275. rwsem_is_locked(&mm->mmap_sem))
  276. referenced++;
  277. (*mapcount)--;
  278. pte_unmap_unlock(pte, ptl);
  279. out:
  280. return referenced;
  281. }
  282. static int page_referenced_anon(struct page *page, int ignore_token)
  283. {
  284. unsigned int mapcount;
  285. struct anon_vma *anon_vma;
  286. struct vm_area_struct *vma;
  287. int referenced = 0;
  288. anon_vma = page_lock_anon_vma(page);
  289. if (!anon_vma)
  290. return referenced;
  291. mapcount = page_mapcount(page);
  292. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  293. referenced += page_referenced_one(page, vma, &mapcount,
  294. ignore_token);
  295. if (!mapcount)
  296. break;
  297. }
  298. spin_unlock(&anon_vma->lock);
  299. return referenced;
  300. }
  301. /**
  302. * page_referenced_file - referenced check for object-based rmap
  303. * @page: the page we're checking references on.
  304. *
  305. * For an object-based mapped page, find all the places it is mapped and
  306. * check/clear the referenced flag. This is done by following the page->mapping
  307. * pointer, then walking the chain of vmas it holds. It returns the number
  308. * of references it found.
  309. *
  310. * This function is only called from page_referenced for object-based pages.
  311. */
  312. static int page_referenced_file(struct page *page, int ignore_token)
  313. {
  314. unsigned int mapcount;
  315. struct address_space *mapping = page->mapping;
  316. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  317. struct vm_area_struct *vma;
  318. struct prio_tree_iter iter;
  319. int referenced = 0;
  320. /*
  321. * The caller's checks on page->mapping and !PageAnon have made
  322. * sure that this is a file page: the check for page->mapping
  323. * excludes the case just before it gets set on an anon page.
  324. */
  325. BUG_ON(PageAnon(page));
  326. /*
  327. * The page lock not only makes sure that page->mapping cannot
  328. * suddenly be NULLified by truncation, it makes sure that the
  329. * structure at mapping cannot be freed and reused yet,
  330. * so we can safely take mapping->i_mmap_lock.
  331. */
  332. BUG_ON(!PageLocked(page));
  333. spin_lock(&mapping->i_mmap_lock);
  334. /*
  335. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  336. * is more likely to be accurate if we note it after spinning.
  337. */
  338. mapcount = page_mapcount(page);
  339. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  340. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  341. == (VM_LOCKED|VM_MAYSHARE)) {
  342. referenced++;
  343. break;
  344. }
  345. referenced += page_referenced_one(page, vma, &mapcount,
  346. ignore_token);
  347. if (!mapcount)
  348. break;
  349. }
  350. spin_unlock(&mapping->i_mmap_lock);
  351. return referenced;
  352. }
  353. /**
  354. * page_referenced - test if the page was referenced
  355. * @page: the page to test
  356. * @is_locked: caller holds lock on the page
  357. *
  358. * Quick test_and_clear_referenced for all mappings to a page,
  359. * returns the number of ptes which referenced the page.
  360. */
  361. int page_referenced(struct page *page, int is_locked, int ignore_token)
  362. {
  363. int referenced = 0;
  364. if (!swap_token_default_timeout)
  365. ignore_token = 1;
  366. if (page_test_and_clear_young(page))
  367. referenced++;
  368. if (TestClearPageReferenced(page))
  369. referenced++;
  370. if (page_mapped(page) && page->mapping) {
  371. if (PageAnon(page))
  372. referenced += page_referenced_anon(page, ignore_token);
  373. else if (is_locked)
  374. referenced += page_referenced_file(page, ignore_token);
  375. else if (TestSetPageLocked(page))
  376. referenced++;
  377. else {
  378. if (page->mapping)
  379. referenced += page_referenced_file(page,
  380. ignore_token);
  381. unlock_page(page);
  382. }
  383. }
  384. return referenced;
  385. }
  386. /**
  387. * page_add_anon_rmap - add pte mapping to an anonymous page
  388. * @page: the page to add the mapping to
  389. * @vma: the vm area in which the mapping is added
  390. * @address: the user virtual address mapped
  391. *
  392. * The caller needs to hold the pte lock.
  393. */
  394. void page_add_anon_rmap(struct page *page,
  395. struct vm_area_struct *vma, unsigned long address)
  396. {
  397. if (atomic_inc_and_test(&page->_mapcount)) {
  398. struct anon_vma *anon_vma = vma->anon_vma;
  399. BUG_ON(!anon_vma);
  400. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  401. page->mapping = (struct address_space *) anon_vma;
  402. page->index = linear_page_index(vma, address);
  403. inc_page_state(nr_mapped);
  404. }
  405. /* else checking page index and mapping is racy */
  406. }
  407. /**
  408. * page_add_file_rmap - add pte mapping to a file page
  409. * @page: the page to add the mapping to
  410. *
  411. * The caller needs to hold the pte lock.
  412. */
  413. void page_add_file_rmap(struct page *page)
  414. {
  415. BUG_ON(PageAnon(page));
  416. BUG_ON(!pfn_valid(page_to_pfn(page)));
  417. if (atomic_inc_and_test(&page->_mapcount))
  418. inc_page_state(nr_mapped);
  419. }
  420. /**
  421. * page_remove_rmap - take down pte mapping from a page
  422. * @page: page to remove mapping from
  423. *
  424. * The caller needs to hold the pte lock.
  425. */
  426. void page_remove_rmap(struct page *page)
  427. {
  428. if (atomic_add_negative(-1, &page->_mapcount)) {
  429. BUG_ON(page_mapcount(page) < 0);
  430. /*
  431. * It would be tidy to reset the PageAnon mapping here,
  432. * but that might overwrite a racing page_add_anon_rmap
  433. * which increments mapcount after us but sets mapping
  434. * before us: so leave the reset to free_hot_cold_page,
  435. * and remember that it's only reliable while mapped.
  436. * Leaving it set also helps swapoff to reinstate ptes
  437. * faster for those pages still in swapcache.
  438. */
  439. if (page_test_and_clear_dirty(page))
  440. set_page_dirty(page);
  441. dec_page_state(nr_mapped);
  442. }
  443. }
  444. /*
  445. * Subfunctions of try_to_unmap: try_to_unmap_one called
  446. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  447. */
  448. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
  449. {
  450. struct mm_struct *mm = vma->vm_mm;
  451. unsigned long address;
  452. pte_t *pte;
  453. pte_t pteval;
  454. spinlock_t *ptl;
  455. int ret = SWAP_AGAIN;
  456. address = vma_address(page, vma);
  457. if (address == -EFAULT)
  458. goto out;
  459. pte = page_check_address(page, mm, address, &ptl);
  460. if (!pte)
  461. goto out;
  462. /*
  463. * If the page is mlock()d, we cannot swap it out.
  464. * If it's recently referenced (perhaps page_referenced
  465. * skipped over this mm) then we should reactivate it.
  466. */
  467. if ((vma->vm_flags & VM_LOCKED) ||
  468. ptep_clear_flush_young(vma, address, pte)) {
  469. ret = SWAP_FAIL;
  470. goto out_unmap;
  471. }
  472. /* Nuke the page table entry. */
  473. flush_cache_page(vma, address, page_to_pfn(page));
  474. pteval = ptep_clear_flush(vma, address, pte);
  475. /* Move the dirty bit to the physical page now the pte is gone. */
  476. if (pte_dirty(pteval))
  477. set_page_dirty(page);
  478. /* Update high watermark before we lower rss */
  479. update_hiwater_rss(mm);
  480. if (PageAnon(page)) {
  481. swp_entry_t entry = { .val = page_private(page) };
  482. /*
  483. * Store the swap location in the pte.
  484. * See handle_pte_fault() ...
  485. */
  486. BUG_ON(!PageSwapCache(page));
  487. swap_duplicate(entry);
  488. if (list_empty(&mm->mmlist)) {
  489. spin_lock(&mmlist_lock);
  490. if (list_empty(&mm->mmlist))
  491. list_add(&mm->mmlist, &init_mm.mmlist);
  492. spin_unlock(&mmlist_lock);
  493. }
  494. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  495. BUG_ON(pte_file(*pte));
  496. dec_mm_counter(mm, anon_rss);
  497. } else
  498. dec_mm_counter(mm, file_rss);
  499. page_remove_rmap(page);
  500. page_cache_release(page);
  501. out_unmap:
  502. pte_unmap_unlock(pte, ptl);
  503. out:
  504. return ret;
  505. }
  506. /*
  507. * objrmap doesn't work for nonlinear VMAs because the assumption that
  508. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  509. * Consequently, given a particular page and its ->index, we cannot locate the
  510. * ptes which are mapping that page without an exhaustive linear search.
  511. *
  512. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  513. * maps the file to which the target page belongs. The ->vm_private_data field
  514. * holds the current cursor into that scan. Successive searches will circulate
  515. * around the vma's virtual address space.
  516. *
  517. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  518. * more scanning pressure is placed against them as well. Eventually pages
  519. * will become fully unmapped and are eligible for eviction.
  520. *
  521. * For very sparsely populated VMAs this is a little inefficient - chances are
  522. * there there won't be many ptes located within the scan cluster. In this case
  523. * maybe we could scan further - to the end of the pte page, perhaps.
  524. */
  525. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  526. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  527. static void try_to_unmap_cluster(unsigned long cursor,
  528. unsigned int *mapcount, struct vm_area_struct *vma)
  529. {
  530. struct mm_struct *mm = vma->vm_mm;
  531. pgd_t *pgd;
  532. pud_t *pud;
  533. pmd_t *pmd;
  534. pte_t *pte;
  535. pte_t pteval;
  536. spinlock_t *ptl;
  537. struct page *page;
  538. unsigned long address;
  539. unsigned long end;
  540. unsigned long pfn;
  541. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  542. end = address + CLUSTER_SIZE;
  543. if (address < vma->vm_start)
  544. address = vma->vm_start;
  545. if (end > vma->vm_end)
  546. end = vma->vm_end;
  547. pgd = pgd_offset(mm, address);
  548. if (!pgd_present(*pgd))
  549. return;
  550. pud = pud_offset(pgd, address);
  551. if (!pud_present(*pud))
  552. return;
  553. pmd = pmd_offset(pud, address);
  554. if (!pmd_present(*pmd))
  555. return;
  556. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  557. /* Update high watermark before we lower rss */
  558. update_hiwater_rss(mm);
  559. for (; address < end; pte++, address += PAGE_SIZE) {
  560. if (!pte_present(*pte))
  561. continue;
  562. pfn = pte_pfn(*pte);
  563. if (unlikely(!pfn_valid(pfn))) {
  564. print_bad_pte(vma, *pte, address);
  565. continue;
  566. }
  567. page = pfn_to_page(pfn);
  568. BUG_ON(PageAnon(page));
  569. if (ptep_clear_flush_young(vma, address, pte))
  570. continue;
  571. /* Nuke the page table entry. */
  572. flush_cache_page(vma, address, pfn);
  573. pteval = ptep_clear_flush(vma, address, pte);
  574. /* If nonlinear, store the file page offset in the pte. */
  575. if (page->index != linear_page_index(vma, address))
  576. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  577. /* Move the dirty bit to the physical page now the pte is gone. */
  578. if (pte_dirty(pteval))
  579. set_page_dirty(page);
  580. page_remove_rmap(page);
  581. page_cache_release(page);
  582. dec_mm_counter(mm, file_rss);
  583. (*mapcount)--;
  584. }
  585. pte_unmap_unlock(pte - 1, ptl);
  586. }
  587. static int try_to_unmap_anon(struct page *page)
  588. {
  589. struct anon_vma *anon_vma;
  590. struct vm_area_struct *vma;
  591. int ret = SWAP_AGAIN;
  592. anon_vma = page_lock_anon_vma(page);
  593. if (!anon_vma)
  594. return ret;
  595. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  596. ret = try_to_unmap_one(page, vma);
  597. if (ret == SWAP_FAIL || !page_mapped(page))
  598. break;
  599. }
  600. spin_unlock(&anon_vma->lock);
  601. return ret;
  602. }
  603. /**
  604. * try_to_unmap_file - unmap file page using the object-based rmap method
  605. * @page: the page to unmap
  606. *
  607. * Find all the mappings of a page using the mapping pointer and the vma chains
  608. * contained in the address_space struct it points to.
  609. *
  610. * This function is only called from try_to_unmap for object-based pages.
  611. */
  612. static int try_to_unmap_file(struct page *page)
  613. {
  614. struct address_space *mapping = page->mapping;
  615. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  616. struct vm_area_struct *vma;
  617. struct prio_tree_iter iter;
  618. int ret = SWAP_AGAIN;
  619. unsigned long cursor;
  620. unsigned long max_nl_cursor = 0;
  621. unsigned long max_nl_size = 0;
  622. unsigned int mapcount;
  623. spin_lock(&mapping->i_mmap_lock);
  624. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  625. ret = try_to_unmap_one(page, vma);
  626. if (ret == SWAP_FAIL || !page_mapped(page))
  627. goto out;
  628. }
  629. if (list_empty(&mapping->i_mmap_nonlinear))
  630. goto out;
  631. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  632. shared.vm_set.list) {
  633. if (vma->vm_flags & VM_LOCKED)
  634. continue;
  635. cursor = (unsigned long) vma->vm_private_data;
  636. if (cursor > max_nl_cursor)
  637. max_nl_cursor = cursor;
  638. cursor = vma->vm_end - vma->vm_start;
  639. if (cursor > max_nl_size)
  640. max_nl_size = cursor;
  641. }
  642. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  643. ret = SWAP_FAIL;
  644. goto out;
  645. }
  646. /*
  647. * We don't try to search for this page in the nonlinear vmas,
  648. * and page_referenced wouldn't have found it anyway. Instead
  649. * just walk the nonlinear vmas trying to age and unmap some.
  650. * The mapcount of the page we came in with is irrelevant,
  651. * but even so use it as a guide to how hard we should try?
  652. */
  653. mapcount = page_mapcount(page);
  654. if (!mapcount)
  655. goto out;
  656. cond_resched_lock(&mapping->i_mmap_lock);
  657. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  658. if (max_nl_cursor == 0)
  659. max_nl_cursor = CLUSTER_SIZE;
  660. do {
  661. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  662. shared.vm_set.list) {
  663. if (vma->vm_flags & VM_LOCKED)
  664. continue;
  665. cursor = (unsigned long) vma->vm_private_data;
  666. while ( cursor < max_nl_cursor &&
  667. cursor < vma->vm_end - vma->vm_start) {
  668. try_to_unmap_cluster(cursor, &mapcount, vma);
  669. cursor += CLUSTER_SIZE;
  670. vma->vm_private_data = (void *) cursor;
  671. if ((int)mapcount <= 0)
  672. goto out;
  673. }
  674. vma->vm_private_data = (void *) max_nl_cursor;
  675. }
  676. cond_resched_lock(&mapping->i_mmap_lock);
  677. max_nl_cursor += CLUSTER_SIZE;
  678. } while (max_nl_cursor <= max_nl_size);
  679. /*
  680. * Don't loop forever (perhaps all the remaining pages are
  681. * in locked vmas). Reset cursor on all unreserved nonlinear
  682. * vmas, now forgetting on which ones it had fallen behind.
  683. */
  684. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  685. vma->vm_private_data = NULL;
  686. out:
  687. spin_unlock(&mapping->i_mmap_lock);
  688. return ret;
  689. }
  690. /**
  691. * try_to_unmap - try to remove all page table mappings to a page
  692. * @page: the page to get unmapped
  693. *
  694. * Tries to remove all the page table entries which are mapping this
  695. * page, used in the pageout path. Caller must hold the page lock.
  696. * Return values are:
  697. *
  698. * SWAP_SUCCESS - we succeeded in removing all mappings
  699. * SWAP_AGAIN - we missed a mapping, try again later
  700. * SWAP_FAIL - the page is unswappable
  701. */
  702. int try_to_unmap(struct page *page)
  703. {
  704. int ret;
  705. BUG_ON(!PageLocked(page));
  706. if (PageAnon(page))
  707. ret = try_to_unmap_anon(page);
  708. else
  709. ret = try_to_unmap_file(page);
  710. if (!page_mapped(page))
  711. ret = SWAP_SUCCESS;
  712. return ret;
  713. }