page_alloc.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <asm/tlbflush.h>
  39. #include "internal.h"
  40. /*
  41. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  42. * initializer cleaner
  43. */
  44. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  45. EXPORT_SYMBOL(node_online_map);
  46. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  47. EXPORT_SYMBOL(node_possible_map);
  48. struct pglist_data *pgdat_list __read_mostly;
  49. unsigned long totalram_pages __read_mostly;
  50. unsigned long totalhigh_pages __read_mostly;
  51. long nr_swap_pages;
  52. /*
  53. * results with 256, 32 in the lowmem_reserve sysctl:
  54. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  55. * 1G machine -> (16M dma, 784M normal, 224M high)
  56. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  57. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  58. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  59. *
  60. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  61. * don't need any ZONE_NORMAL reservation
  62. */
  63. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  64. EXPORT_SYMBOL(totalram_pages);
  65. /*
  66. * Used by page_zone() to look up the address of the struct zone whose
  67. * id is encoded in the upper bits of page->flags
  68. */
  69. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  70. EXPORT_SYMBOL(zone_table);
  71. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  72. int min_free_kbytes = 1024;
  73. unsigned long __initdata nr_kernel_pages;
  74. unsigned long __initdata nr_all_pages;
  75. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  76. {
  77. int ret = 0;
  78. unsigned seq;
  79. unsigned long pfn = page_to_pfn(page);
  80. do {
  81. seq = zone_span_seqbegin(zone);
  82. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  83. ret = 1;
  84. else if (pfn < zone->zone_start_pfn)
  85. ret = 1;
  86. } while (zone_span_seqretry(zone, seq));
  87. return ret;
  88. }
  89. static int page_is_consistent(struct zone *zone, struct page *page)
  90. {
  91. #ifdef CONFIG_HOLES_IN_ZONE
  92. if (!pfn_valid(page_to_pfn(page)))
  93. return 0;
  94. #endif
  95. if (zone != page_zone(page))
  96. return 0;
  97. return 1;
  98. }
  99. /*
  100. * Temporary debugging check for pages not lying within a given zone.
  101. */
  102. static int bad_range(struct zone *zone, struct page *page)
  103. {
  104. if (page_outside_zone_boundaries(zone, page))
  105. return 1;
  106. if (!page_is_consistent(zone, page))
  107. return 1;
  108. return 0;
  109. }
  110. static void bad_page(const char *function, struct page *page)
  111. {
  112. printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
  113. function, current->comm, page);
  114. printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  115. (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
  116. page->mapping, page_mapcount(page), page_count(page));
  117. printk(KERN_EMERG "Backtrace:\n");
  118. dump_stack();
  119. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
  120. page->flags &= ~(1 << PG_lru |
  121. 1 << PG_private |
  122. 1 << PG_locked |
  123. 1 << PG_active |
  124. 1 << PG_dirty |
  125. 1 << PG_reclaim |
  126. 1 << PG_slab |
  127. 1 << PG_swapcache |
  128. 1 << PG_writeback );
  129. set_page_count(page, 0);
  130. reset_page_mapcount(page);
  131. page->mapping = NULL;
  132. add_taint(TAINT_BAD_PAGE);
  133. }
  134. /*
  135. * Higher-order pages are called "compound pages". They are structured thusly:
  136. *
  137. * The first PAGE_SIZE page is called the "head page".
  138. *
  139. * The remaining PAGE_SIZE pages are called "tail pages".
  140. *
  141. * All pages have PG_compound set. All pages have their ->private pointing at
  142. * the head page (even the head page has this).
  143. *
  144. * The first tail page's ->mapping, if non-zero, holds the address of the
  145. * compound page's put_page() function.
  146. *
  147. * The order of the allocation is stored in the first tail page's ->index
  148. * This is only for debug at present. This usage means that zero-order pages
  149. * may not be compound.
  150. */
  151. static void prep_compound_page(struct page *page, unsigned long order)
  152. {
  153. int i;
  154. int nr_pages = 1 << order;
  155. page[1].mapping = NULL;
  156. page[1].index = order;
  157. for (i = 0; i < nr_pages; i++) {
  158. struct page *p = page + i;
  159. SetPageCompound(p);
  160. set_page_private(p, (unsigned long)page);
  161. }
  162. }
  163. static void destroy_compound_page(struct page *page, unsigned long order)
  164. {
  165. int i;
  166. int nr_pages = 1 << order;
  167. if (!PageCompound(page))
  168. return;
  169. if (page[1].index != order)
  170. bad_page(__FUNCTION__, page);
  171. for (i = 0; i < nr_pages; i++) {
  172. struct page *p = page + i;
  173. if (!PageCompound(p))
  174. bad_page(__FUNCTION__, page);
  175. if (page_private(p) != (unsigned long)page)
  176. bad_page(__FUNCTION__, page);
  177. ClearPageCompound(p);
  178. }
  179. }
  180. /*
  181. * function for dealing with page's order in buddy system.
  182. * zone->lock is already acquired when we use these.
  183. * So, we don't need atomic page->flags operations here.
  184. */
  185. static inline unsigned long page_order(struct page *page) {
  186. return page_private(page);
  187. }
  188. static inline void set_page_order(struct page *page, int order) {
  189. set_page_private(page, order);
  190. __SetPagePrivate(page);
  191. }
  192. static inline void rmv_page_order(struct page *page)
  193. {
  194. __ClearPagePrivate(page);
  195. set_page_private(page, 0);
  196. }
  197. /*
  198. * Locate the struct page for both the matching buddy in our
  199. * pair (buddy1) and the combined O(n+1) page they form (page).
  200. *
  201. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  202. * the following equation:
  203. * B2 = B1 ^ (1 << O)
  204. * For example, if the starting buddy (buddy2) is #8 its order
  205. * 1 buddy is #10:
  206. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  207. *
  208. * 2) Any buddy B will have an order O+1 parent P which
  209. * satisfies the following equation:
  210. * P = B & ~(1 << O)
  211. *
  212. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  213. */
  214. static inline struct page *
  215. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  216. {
  217. unsigned long buddy_idx = page_idx ^ (1 << order);
  218. return page + (buddy_idx - page_idx);
  219. }
  220. static inline unsigned long
  221. __find_combined_index(unsigned long page_idx, unsigned int order)
  222. {
  223. return (page_idx & ~(1 << order));
  224. }
  225. /*
  226. * This function checks whether a page is free && is the buddy
  227. * we can do coalesce a page and its buddy if
  228. * (a) the buddy is free &&
  229. * (b) the buddy is on the buddy system &&
  230. * (c) a page and its buddy have the same order.
  231. * for recording page's order, we use page_private(page) and PG_private.
  232. *
  233. */
  234. static inline int page_is_buddy(struct page *page, int order)
  235. {
  236. if (PagePrivate(page) &&
  237. (page_order(page) == order) &&
  238. page_count(page) == 0)
  239. return 1;
  240. return 0;
  241. }
  242. /*
  243. * Freeing function for a buddy system allocator.
  244. *
  245. * The concept of a buddy system is to maintain direct-mapped table
  246. * (containing bit values) for memory blocks of various "orders".
  247. * The bottom level table contains the map for the smallest allocatable
  248. * units of memory (here, pages), and each level above it describes
  249. * pairs of units from the levels below, hence, "buddies".
  250. * At a high level, all that happens here is marking the table entry
  251. * at the bottom level available, and propagating the changes upward
  252. * as necessary, plus some accounting needed to play nicely with other
  253. * parts of the VM system.
  254. * At each level, we keep a list of pages, which are heads of continuous
  255. * free pages of length of (1 << order) and marked with PG_Private.Page's
  256. * order is recorded in page_private(page) field.
  257. * So when we are allocating or freeing one, we can derive the state of the
  258. * other. That is, if we allocate a small block, and both were
  259. * free, the remainder of the region must be split into blocks.
  260. * If a block is freed, and its buddy is also free, then this
  261. * triggers coalescing into a block of larger size.
  262. *
  263. * -- wli
  264. */
  265. static inline void __free_pages_bulk (struct page *page,
  266. struct zone *zone, unsigned int order)
  267. {
  268. unsigned long page_idx;
  269. int order_size = 1 << order;
  270. if (unlikely(order))
  271. destroy_compound_page(page, order);
  272. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  273. BUG_ON(page_idx & (order_size - 1));
  274. BUG_ON(bad_range(zone, page));
  275. zone->free_pages += order_size;
  276. while (order < MAX_ORDER-1) {
  277. unsigned long combined_idx;
  278. struct free_area *area;
  279. struct page *buddy;
  280. combined_idx = __find_combined_index(page_idx, order);
  281. buddy = __page_find_buddy(page, page_idx, order);
  282. if (bad_range(zone, buddy))
  283. break;
  284. if (!page_is_buddy(buddy, order))
  285. break; /* Move the buddy up one level. */
  286. list_del(&buddy->lru);
  287. area = zone->free_area + order;
  288. area->nr_free--;
  289. rmv_page_order(buddy);
  290. page = page + (combined_idx - page_idx);
  291. page_idx = combined_idx;
  292. order++;
  293. }
  294. set_page_order(page, order);
  295. list_add(&page->lru, &zone->free_area[order].free_list);
  296. zone->free_area[order].nr_free++;
  297. }
  298. static inline int free_pages_check(const char *function, struct page *page)
  299. {
  300. if ( page_mapcount(page) ||
  301. page->mapping != NULL ||
  302. page_count(page) != 0 ||
  303. (page->flags & (
  304. 1 << PG_lru |
  305. 1 << PG_private |
  306. 1 << PG_locked |
  307. 1 << PG_active |
  308. 1 << PG_reclaim |
  309. 1 << PG_slab |
  310. 1 << PG_swapcache |
  311. 1 << PG_writeback |
  312. 1 << PG_reserved )))
  313. bad_page(function, page);
  314. if (PageDirty(page))
  315. __ClearPageDirty(page);
  316. /*
  317. * For now, we report if PG_reserved was found set, but do not
  318. * clear it, and do not free the page. But we shall soon need
  319. * to do more, for when the ZERO_PAGE count wraps negative.
  320. */
  321. return PageReserved(page);
  322. }
  323. /*
  324. * Frees a list of pages.
  325. * Assumes all pages on list are in same zone, and of same order.
  326. * count is the number of pages to free.
  327. *
  328. * If the zone was previously in an "all pages pinned" state then look to
  329. * see if this freeing clears that state.
  330. *
  331. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  332. * pinned" detection logic.
  333. */
  334. static int
  335. free_pages_bulk(struct zone *zone, int count,
  336. struct list_head *list, unsigned int order)
  337. {
  338. unsigned long flags;
  339. struct page *page = NULL;
  340. int ret = 0;
  341. spin_lock_irqsave(&zone->lock, flags);
  342. zone->all_unreclaimable = 0;
  343. zone->pages_scanned = 0;
  344. while (!list_empty(list) && count--) {
  345. page = list_entry(list->prev, struct page, lru);
  346. /* have to delete it as __free_pages_bulk list manipulates */
  347. list_del(&page->lru);
  348. __free_pages_bulk(page, zone, order);
  349. ret++;
  350. }
  351. spin_unlock_irqrestore(&zone->lock, flags);
  352. return ret;
  353. }
  354. void __free_pages_ok(struct page *page, unsigned int order)
  355. {
  356. LIST_HEAD(list);
  357. int i;
  358. int reserved = 0;
  359. arch_free_page(page, order);
  360. #ifndef CONFIG_MMU
  361. if (order > 0)
  362. for (i = 1 ; i < (1 << order) ; ++i)
  363. __put_page(page + i);
  364. #endif
  365. for (i = 0 ; i < (1 << order) ; ++i)
  366. reserved += free_pages_check(__FUNCTION__, page + i);
  367. if (reserved)
  368. return;
  369. list_add(&page->lru, &list);
  370. mod_page_state(pgfree, 1 << order);
  371. kernel_map_pages(page, 1<<order, 0);
  372. free_pages_bulk(page_zone(page), 1, &list, order);
  373. }
  374. /*
  375. * The order of subdivision here is critical for the IO subsystem.
  376. * Please do not alter this order without good reasons and regression
  377. * testing. Specifically, as large blocks of memory are subdivided,
  378. * the order in which smaller blocks are delivered depends on the order
  379. * they're subdivided in this function. This is the primary factor
  380. * influencing the order in which pages are delivered to the IO
  381. * subsystem according to empirical testing, and this is also justified
  382. * by considering the behavior of a buddy system containing a single
  383. * large block of memory acted on by a series of small allocations.
  384. * This behavior is a critical factor in sglist merging's success.
  385. *
  386. * -- wli
  387. */
  388. static inline struct page *
  389. expand(struct zone *zone, struct page *page,
  390. int low, int high, struct free_area *area)
  391. {
  392. unsigned long size = 1 << high;
  393. while (high > low) {
  394. area--;
  395. high--;
  396. size >>= 1;
  397. BUG_ON(bad_range(zone, &page[size]));
  398. list_add(&page[size].lru, &area->free_list);
  399. area->nr_free++;
  400. set_page_order(&page[size], high);
  401. }
  402. return page;
  403. }
  404. void set_page_refs(struct page *page, int order)
  405. {
  406. #ifdef CONFIG_MMU
  407. set_page_count(page, 1);
  408. #else
  409. int i;
  410. /*
  411. * We need to reference all the pages for this order, otherwise if
  412. * anyone accesses one of the pages with (get/put) it will be freed.
  413. * - eg: access_process_vm()
  414. */
  415. for (i = 0; i < (1 << order); i++)
  416. set_page_count(page + i, 1);
  417. #endif /* CONFIG_MMU */
  418. }
  419. /*
  420. * This page is about to be returned from the page allocator
  421. */
  422. static int prep_new_page(struct page *page, int order)
  423. {
  424. if ( page_mapcount(page) ||
  425. page->mapping != NULL ||
  426. page_count(page) != 0 ||
  427. (page->flags & (
  428. 1 << PG_lru |
  429. 1 << PG_private |
  430. 1 << PG_locked |
  431. 1 << PG_active |
  432. 1 << PG_dirty |
  433. 1 << PG_reclaim |
  434. 1 << PG_slab |
  435. 1 << PG_swapcache |
  436. 1 << PG_writeback |
  437. 1 << PG_reserved )))
  438. bad_page(__FUNCTION__, page);
  439. /*
  440. * For now, we report if PG_reserved was found set, but do not
  441. * clear it, and do not allocate the page: as a safety net.
  442. */
  443. if (PageReserved(page))
  444. return 1;
  445. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  446. 1 << PG_referenced | 1 << PG_arch_1 |
  447. 1 << PG_checked | 1 << PG_mappedtodisk);
  448. set_page_private(page, 0);
  449. set_page_refs(page, order);
  450. kernel_map_pages(page, 1 << order, 1);
  451. return 0;
  452. }
  453. /*
  454. * Do the hard work of removing an element from the buddy allocator.
  455. * Call me with the zone->lock already held.
  456. */
  457. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  458. {
  459. struct free_area * area;
  460. unsigned int current_order;
  461. struct page *page;
  462. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  463. area = zone->free_area + current_order;
  464. if (list_empty(&area->free_list))
  465. continue;
  466. page = list_entry(area->free_list.next, struct page, lru);
  467. list_del(&page->lru);
  468. rmv_page_order(page);
  469. area->nr_free--;
  470. zone->free_pages -= 1UL << order;
  471. return expand(zone, page, order, current_order, area);
  472. }
  473. return NULL;
  474. }
  475. /*
  476. * Obtain a specified number of elements from the buddy allocator, all under
  477. * a single hold of the lock, for efficiency. Add them to the supplied list.
  478. * Returns the number of new pages which were placed at *list.
  479. */
  480. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  481. unsigned long count, struct list_head *list)
  482. {
  483. unsigned long flags;
  484. int i;
  485. int allocated = 0;
  486. struct page *page;
  487. spin_lock_irqsave(&zone->lock, flags);
  488. for (i = 0; i < count; ++i) {
  489. page = __rmqueue(zone, order);
  490. if (page == NULL)
  491. break;
  492. allocated++;
  493. list_add_tail(&page->lru, list);
  494. }
  495. spin_unlock_irqrestore(&zone->lock, flags);
  496. return allocated;
  497. }
  498. #ifdef CONFIG_NUMA
  499. /* Called from the slab reaper to drain remote pagesets */
  500. void drain_remote_pages(void)
  501. {
  502. struct zone *zone;
  503. int i;
  504. unsigned long flags;
  505. local_irq_save(flags);
  506. for_each_zone(zone) {
  507. struct per_cpu_pageset *pset;
  508. /* Do not drain local pagesets */
  509. if (zone->zone_pgdat->node_id == numa_node_id())
  510. continue;
  511. pset = zone->pageset[smp_processor_id()];
  512. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  513. struct per_cpu_pages *pcp;
  514. pcp = &pset->pcp[i];
  515. if (pcp->count)
  516. pcp->count -= free_pages_bulk(zone, pcp->count,
  517. &pcp->list, 0);
  518. }
  519. }
  520. local_irq_restore(flags);
  521. }
  522. #endif
  523. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  524. static void __drain_pages(unsigned int cpu)
  525. {
  526. struct zone *zone;
  527. int i;
  528. for_each_zone(zone) {
  529. struct per_cpu_pageset *pset;
  530. pset = zone_pcp(zone, cpu);
  531. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  532. struct per_cpu_pages *pcp;
  533. pcp = &pset->pcp[i];
  534. pcp->count -= free_pages_bulk(zone, pcp->count,
  535. &pcp->list, 0);
  536. }
  537. }
  538. }
  539. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  540. #ifdef CONFIG_PM
  541. void mark_free_pages(struct zone *zone)
  542. {
  543. unsigned long zone_pfn, flags;
  544. int order;
  545. struct list_head *curr;
  546. if (!zone->spanned_pages)
  547. return;
  548. spin_lock_irqsave(&zone->lock, flags);
  549. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  550. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  551. for (order = MAX_ORDER - 1; order >= 0; --order)
  552. list_for_each(curr, &zone->free_area[order].free_list) {
  553. unsigned long start_pfn, i;
  554. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  555. for (i=0; i < (1<<order); i++)
  556. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  557. }
  558. spin_unlock_irqrestore(&zone->lock, flags);
  559. }
  560. /*
  561. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  562. */
  563. void drain_local_pages(void)
  564. {
  565. unsigned long flags;
  566. local_irq_save(flags);
  567. __drain_pages(smp_processor_id());
  568. local_irq_restore(flags);
  569. }
  570. #endif /* CONFIG_PM */
  571. static void zone_statistics(struct zonelist *zonelist, struct zone *z)
  572. {
  573. #ifdef CONFIG_NUMA
  574. unsigned long flags;
  575. int cpu;
  576. pg_data_t *pg = z->zone_pgdat;
  577. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  578. struct per_cpu_pageset *p;
  579. local_irq_save(flags);
  580. cpu = smp_processor_id();
  581. p = zone_pcp(z,cpu);
  582. if (pg == orig) {
  583. p->numa_hit++;
  584. } else {
  585. p->numa_miss++;
  586. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  587. }
  588. if (pg == NODE_DATA(numa_node_id()))
  589. p->local_node++;
  590. else
  591. p->other_node++;
  592. local_irq_restore(flags);
  593. #endif
  594. }
  595. /*
  596. * Free a 0-order page
  597. */
  598. static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
  599. static void fastcall free_hot_cold_page(struct page *page, int cold)
  600. {
  601. struct zone *zone = page_zone(page);
  602. struct per_cpu_pages *pcp;
  603. unsigned long flags;
  604. arch_free_page(page, 0);
  605. if (PageAnon(page))
  606. page->mapping = NULL;
  607. if (free_pages_check(__FUNCTION__, page))
  608. return;
  609. inc_page_state(pgfree);
  610. kernel_map_pages(page, 1, 0);
  611. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  612. local_irq_save(flags);
  613. list_add(&page->lru, &pcp->list);
  614. pcp->count++;
  615. if (pcp->count >= pcp->high)
  616. pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  617. local_irq_restore(flags);
  618. put_cpu();
  619. }
  620. void fastcall free_hot_page(struct page *page)
  621. {
  622. free_hot_cold_page(page, 0);
  623. }
  624. void fastcall free_cold_page(struct page *page)
  625. {
  626. free_hot_cold_page(page, 1);
  627. }
  628. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  629. {
  630. int i;
  631. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  632. for(i = 0; i < (1 << order); i++)
  633. clear_highpage(page + i);
  634. }
  635. /*
  636. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  637. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  638. * or two.
  639. */
  640. static struct page *
  641. buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
  642. {
  643. unsigned long flags;
  644. struct page *page;
  645. int cold = !!(gfp_flags & __GFP_COLD);
  646. again:
  647. if (order == 0) {
  648. struct per_cpu_pages *pcp;
  649. page = NULL;
  650. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  651. local_irq_save(flags);
  652. if (pcp->count <= pcp->low)
  653. pcp->count += rmqueue_bulk(zone, 0,
  654. pcp->batch, &pcp->list);
  655. if (pcp->count) {
  656. page = list_entry(pcp->list.next, struct page, lru);
  657. list_del(&page->lru);
  658. pcp->count--;
  659. }
  660. local_irq_restore(flags);
  661. put_cpu();
  662. } else {
  663. spin_lock_irqsave(&zone->lock, flags);
  664. page = __rmqueue(zone, order);
  665. spin_unlock_irqrestore(&zone->lock, flags);
  666. }
  667. if (page != NULL) {
  668. BUG_ON(bad_range(zone, page));
  669. mod_page_state_zone(zone, pgalloc, 1 << order);
  670. if (prep_new_page(page, order))
  671. goto again;
  672. if (gfp_flags & __GFP_ZERO)
  673. prep_zero_page(page, order, gfp_flags);
  674. if (order && (gfp_flags & __GFP_COMP))
  675. prep_compound_page(page, order);
  676. }
  677. return page;
  678. }
  679. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  680. #define ALLOC_HARDER 0x02 /* try to alloc harder */
  681. #define ALLOC_HIGH 0x04 /* __GFP_HIGH set */
  682. #define ALLOC_CPUSET 0x08 /* check for correct cpuset */
  683. /*
  684. * Return 1 if free pages are above 'mark'. This takes into account the order
  685. * of the allocation.
  686. */
  687. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  688. int classzone_idx, int alloc_flags)
  689. {
  690. /* free_pages my go negative - that's OK */
  691. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  692. int o;
  693. if (alloc_flags & ALLOC_HIGH)
  694. min -= min / 2;
  695. if (alloc_flags & ALLOC_HARDER)
  696. min -= min / 4;
  697. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  698. return 0;
  699. for (o = 0; o < order; o++) {
  700. /* At the next order, this order's pages become unavailable */
  701. free_pages -= z->free_area[o].nr_free << o;
  702. /* Require fewer higher order pages to be free */
  703. min >>= 1;
  704. if (free_pages <= min)
  705. return 0;
  706. }
  707. return 1;
  708. }
  709. /*
  710. * get_page_from_freeliest goes through the zonelist trying to allocate
  711. * a page.
  712. */
  713. static struct page *
  714. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  715. struct zonelist *zonelist, int alloc_flags)
  716. {
  717. struct zone **z = zonelist->zones;
  718. struct page *page = NULL;
  719. int classzone_idx = zone_idx(*z);
  720. /*
  721. * Go through the zonelist once, looking for a zone with enough free.
  722. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  723. */
  724. do {
  725. if ((alloc_flags & ALLOC_CPUSET) &&
  726. !cpuset_zone_allowed(*z, gfp_mask))
  727. continue;
  728. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  729. if (!zone_watermark_ok(*z, order, (*z)->pages_low,
  730. classzone_idx, alloc_flags))
  731. continue;
  732. }
  733. page = buffered_rmqueue(*z, order, gfp_mask);
  734. if (page) {
  735. zone_statistics(zonelist, *z);
  736. break;
  737. }
  738. } while (*(++z) != NULL);
  739. return page;
  740. }
  741. /*
  742. * This is the 'heart' of the zoned buddy allocator.
  743. */
  744. struct page * fastcall
  745. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  746. struct zonelist *zonelist)
  747. {
  748. const gfp_t wait = gfp_mask & __GFP_WAIT;
  749. struct zone **z;
  750. struct page *page;
  751. struct reclaim_state reclaim_state;
  752. struct task_struct *p = current;
  753. int do_retry;
  754. int alloc_flags;
  755. int did_some_progress;
  756. might_sleep_if(wait);
  757. restart:
  758. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  759. if (unlikely(*z == NULL)) {
  760. /* Should this ever happen?? */
  761. return NULL;
  762. }
  763. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  764. zonelist, ALLOC_CPUSET);
  765. if (page)
  766. goto got_pg;
  767. do {
  768. wakeup_kswapd(*z, order);
  769. } while (*(++z));
  770. /*
  771. * OK, we're below the kswapd watermark and have kicked background
  772. * reclaim. Now things get more complex, so set up alloc_flags according
  773. * to how we want to proceed.
  774. *
  775. * The caller may dip into page reserves a bit more if the caller
  776. * cannot run direct reclaim, or if the caller has realtime scheduling
  777. * policy.
  778. */
  779. alloc_flags = 0;
  780. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  781. alloc_flags |= ALLOC_HARDER;
  782. if (gfp_mask & __GFP_HIGH)
  783. alloc_flags |= ALLOC_HIGH;
  784. if (wait)
  785. alloc_flags |= ALLOC_CPUSET;
  786. /*
  787. * Go through the zonelist again. Let __GFP_HIGH and allocations
  788. * coming from realtime tasks go deeper into reserves.
  789. *
  790. * This is the last chance, in general, before the goto nopage.
  791. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  792. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  793. */
  794. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  795. if (page)
  796. goto got_pg;
  797. /* This allocation should allow future memory freeing. */
  798. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  799. && !in_interrupt()) {
  800. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  801. nofail_alloc:
  802. /* go through the zonelist yet again, ignoring mins */
  803. page = get_page_from_freelist(gfp_mask, order,
  804. zonelist, ALLOC_NO_WATERMARKS|ALLOC_CPUSET);
  805. if (page)
  806. goto got_pg;
  807. if (gfp_mask & __GFP_NOFAIL) {
  808. blk_congestion_wait(WRITE, HZ/50);
  809. goto nofail_alloc;
  810. }
  811. }
  812. goto nopage;
  813. }
  814. /* Atomic allocations - we can't balance anything */
  815. if (!wait)
  816. goto nopage;
  817. rebalance:
  818. cond_resched();
  819. /* We now go into synchronous reclaim */
  820. p->flags |= PF_MEMALLOC;
  821. reclaim_state.reclaimed_slab = 0;
  822. p->reclaim_state = &reclaim_state;
  823. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  824. p->reclaim_state = NULL;
  825. p->flags &= ~PF_MEMALLOC;
  826. cond_resched();
  827. if (likely(did_some_progress)) {
  828. page = get_page_from_freelist(gfp_mask, order,
  829. zonelist, alloc_flags);
  830. if (page)
  831. goto got_pg;
  832. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  833. /*
  834. * Go through the zonelist yet one more time, keep
  835. * very high watermark here, this is only to catch
  836. * a parallel oom killing, we must fail if we're still
  837. * under heavy pressure.
  838. */
  839. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  840. zonelist, ALLOC_CPUSET);
  841. if (page)
  842. goto got_pg;
  843. out_of_memory(gfp_mask, order);
  844. goto restart;
  845. }
  846. /*
  847. * Don't let big-order allocations loop unless the caller explicitly
  848. * requests that. Wait for some write requests to complete then retry.
  849. *
  850. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  851. * <= 3, but that may not be true in other implementations.
  852. */
  853. do_retry = 0;
  854. if (!(gfp_mask & __GFP_NORETRY)) {
  855. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  856. do_retry = 1;
  857. if (gfp_mask & __GFP_NOFAIL)
  858. do_retry = 1;
  859. }
  860. if (do_retry) {
  861. blk_congestion_wait(WRITE, HZ/50);
  862. goto rebalance;
  863. }
  864. nopage:
  865. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  866. printk(KERN_WARNING "%s: page allocation failure."
  867. " order:%d, mode:0x%x\n",
  868. p->comm, order, gfp_mask);
  869. dump_stack();
  870. show_mem();
  871. }
  872. got_pg:
  873. return page;
  874. }
  875. EXPORT_SYMBOL(__alloc_pages);
  876. /*
  877. * Common helper functions.
  878. */
  879. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  880. {
  881. struct page * page;
  882. page = alloc_pages(gfp_mask, order);
  883. if (!page)
  884. return 0;
  885. return (unsigned long) page_address(page);
  886. }
  887. EXPORT_SYMBOL(__get_free_pages);
  888. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  889. {
  890. struct page * page;
  891. /*
  892. * get_zeroed_page() returns a 32-bit address, which cannot represent
  893. * a highmem page
  894. */
  895. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  896. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  897. if (page)
  898. return (unsigned long) page_address(page);
  899. return 0;
  900. }
  901. EXPORT_SYMBOL(get_zeroed_page);
  902. void __pagevec_free(struct pagevec *pvec)
  903. {
  904. int i = pagevec_count(pvec);
  905. while (--i >= 0)
  906. free_hot_cold_page(pvec->pages[i], pvec->cold);
  907. }
  908. fastcall void __free_pages(struct page *page, unsigned int order)
  909. {
  910. if (put_page_testzero(page)) {
  911. if (order == 0)
  912. free_hot_page(page);
  913. else
  914. __free_pages_ok(page, order);
  915. }
  916. }
  917. EXPORT_SYMBOL(__free_pages);
  918. fastcall void free_pages(unsigned long addr, unsigned int order)
  919. {
  920. if (addr != 0) {
  921. BUG_ON(!virt_addr_valid((void *)addr));
  922. __free_pages(virt_to_page((void *)addr), order);
  923. }
  924. }
  925. EXPORT_SYMBOL(free_pages);
  926. /*
  927. * Total amount of free (allocatable) RAM:
  928. */
  929. unsigned int nr_free_pages(void)
  930. {
  931. unsigned int sum = 0;
  932. struct zone *zone;
  933. for_each_zone(zone)
  934. sum += zone->free_pages;
  935. return sum;
  936. }
  937. EXPORT_SYMBOL(nr_free_pages);
  938. #ifdef CONFIG_NUMA
  939. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  940. {
  941. unsigned int i, sum = 0;
  942. for (i = 0; i < MAX_NR_ZONES; i++)
  943. sum += pgdat->node_zones[i].free_pages;
  944. return sum;
  945. }
  946. #endif
  947. static unsigned int nr_free_zone_pages(int offset)
  948. {
  949. /* Just pick one node, since fallback list is circular */
  950. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  951. unsigned int sum = 0;
  952. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  953. struct zone **zonep = zonelist->zones;
  954. struct zone *zone;
  955. for (zone = *zonep++; zone; zone = *zonep++) {
  956. unsigned long size = zone->present_pages;
  957. unsigned long high = zone->pages_high;
  958. if (size > high)
  959. sum += size - high;
  960. }
  961. return sum;
  962. }
  963. /*
  964. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  965. */
  966. unsigned int nr_free_buffer_pages(void)
  967. {
  968. return nr_free_zone_pages(gfp_zone(GFP_USER));
  969. }
  970. /*
  971. * Amount of free RAM allocatable within all zones
  972. */
  973. unsigned int nr_free_pagecache_pages(void)
  974. {
  975. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  976. }
  977. #ifdef CONFIG_HIGHMEM
  978. unsigned int nr_free_highpages (void)
  979. {
  980. pg_data_t *pgdat;
  981. unsigned int pages = 0;
  982. for_each_pgdat(pgdat)
  983. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  984. return pages;
  985. }
  986. #endif
  987. #ifdef CONFIG_NUMA
  988. static void show_node(struct zone *zone)
  989. {
  990. printk("Node %d ", zone->zone_pgdat->node_id);
  991. }
  992. #else
  993. #define show_node(zone) do { } while (0)
  994. #endif
  995. /*
  996. * Accumulate the page_state information across all CPUs.
  997. * The result is unavoidably approximate - it can change
  998. * during and after execution of this function.
  999. */
  1000. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  1001. atomic_t nr_pagecache = ATOMIC_INIT(0);
  1002. EXPORT_SYMBOL(nr_pagecache);
  1003. #ifdef CONFIG_SMP
  1004. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  1005. #endif
  1006. void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
  1007. {
  1008. int cpu = 0;
  1009. memset(ret, 0, sizeof(*ret));
  1010. cpus_and(*cpumask, *cpumask, cpu_online_map);
  1011. cpu = first_cpu(*cpumask);
  1012. while (cpu < NR_CPUS) {
  1013. unsigned long *in, *out, off;
  1014. in = (unsigned long *)&per_cpu(page_states, cpu);
  1015. cpu = next_cpu(cpu, *cpumask);
  1016. if (cpu < NR_CPUS)
  1017. prefetch(&per_cpu(page_states, cpu));
  1018. out = (unsigned long *)ret;
  1019. for (off = 0; off < nr; off++)
  1020. *out++ += *in++;
  1021. }
  1022. }
  1023. void get_page_state_node(struct page_state *ret, int node)
  1024. {
  1025. int nr;
  1026. cpumask_t mask = node_to_cpumask(node);
  1027. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1028. nr /= sizeof(unsigned long);
  1029. __get_page_state(ret, nr+1, &mask);
  1030. }
  1031. void get_page_state(struct page_state *ret)
  1032. {
  1033. int nr;
  1034. cpumask_t mask = CPU_MASK_ALL;
  1035. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1036. nr /= sizeof(unsigned long);
  1037. __get_page_state(ret, nr + 1, &mask);
  1038. }
  1039. void get_full_page_state(struct page_state *ret)
  1040. {
  1041. cpumask_t mask = CPU_MASK_ALL;
  1042. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
  1043. }
  1044. unsigned long __read_page_state(unsigned long offset)
  1045. {
  1046. unsigned long ret = 0;
  1047. int cpu;
  1048. for_each_online_cpu(cpu) {
  1049. unsigned long in;
  1050. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1051. ret += *((unsigned long *)in);
  1052. }
  1053. return ret;
  1054. }
  1055. void __mod_page_state(unsigned long offset, unsigned long delta)
  1056. {
  1057. unsigned long flags;
  1058. void* ptr;
  1059. local_irq_save(flags);
  1060. ptr = &__get_cpu_var(page_states);
  1061. *(unsigned long*)(ptr + offset) += delta;
  1062. local_irq_restore(flags);
  1063. }
  1064. EXPORT_SYMBOL(__mod_page_state);
  1065. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1066. unsigned long *free, struct pglist_data *pgdat)
  1067. {
  1068. struct zone *zones = pgdat->node_zones;
  1069. int i;
  1070. *active = 0;
  1071. *inactive = 0;
  1072. *free = 0;
  1073. for (i = 0; i < MAX_NR_ZONES; i++) {
  1074. *active += zones[i].nr_active;
  1075. *inactive += zones[i].nr_inactive;
  1076. *free += zones[i].free_pages;
  1077. }
  1078. }
  1079. void get_zone_counts(unsigned long *active,
  1080. unsigned long *inactive, unsigned long *free)
  1081. {
  1082. struct pglist_data *pgdat;
  1083. *active = 0;
  1084. *inactive = 0;
  1085. *free = 0;
  1086. for_each_pgdat(pgdat) {
  1087. unsigned long l, m, n;
  1088. __get_zone_counts(&l, &m, &n, pgdat);
  1089. *active += l;
  1090. *inactive += m;
  1091. *free += n;
  1092. }
  1093. }
  1094. void si_meminfo(struct sysinfo *val)
  1095. {
  1096. val->totalram = totalram_pages;
  1097. val->sharedram = 0;
  1098. val->freeram = nr_free_pages();
  1099. val->bufferram = nr_blockdev_pages();
  1100. #ifdef CONFIG_HIGHMEM
  1101. val->totalhigh = totalhigh_pages;
  1102. val->freehigh = nr_free_highpages();
  1103. #else
  1104. val->totalhigh = 0;
  1105. val->freehigh = 0;
  1106. #endif
  1107. val->mem_unit = PAGE_SIZE;
  1108. }
  1109. EXPORT_SYMBOL(si_meminfo);
  1110. #ifdef CONFIG_NUMA
  1111. void si_meminfo_node(struct sysinfo *val, int nid)
  1112. {
  1113. pg_data_t *pgdat = NODE_DATA(nid);
  1114. val->totalram = pgdat->node_present_pages;
  1115. val->freeram = nr_free_pages_pgdat(pgdat);
  1116. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1117. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1118. val->mem_unit = PAGE_SIZE;
  1119. }
  1120. #endif
  1121. #define K(x) ((x) << (PAGE_SHIFT-10))
  1122. /*
  1123. * Show free area list (used inside shift_scroll-lock stuff)
  1124. * We also calculate the percentage fragmentation. We do this by counting the
  1125. * memory on each free list with the exception of the first item on the list.
  1126. */
  1127. void show_free_areas(void)
  1128. {
  1129. struct page_state ps;
  1130. int cpu, temperature;
  1131. unsigned long active;
  1132. unsigned long inactive;
  1133. unsigned long free;
  1134. struct zone *zone;
  1135. for_each_zone(zone) {
  1136. show_node(zone);
  1137. printk("%s per-cpu:", zone->name);
  1138. if (!zone->present_pages) {
  1139. printk(" empty\n");
  1140. continue;
  1141. } else
  1142. printk("\n");
  1143. for_each_online_cpu(cpu) {
  1144. struct per_cpu_pageset *pageset;
  1145. pageset = zone_pcp(zone, cpu);
  1146. for (temperature = 0; temperature < 2; temperature++)
  1147. printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
  1148. cpu,
  1149. temperature ? "cold" : "hot",
  1150. pageset->pcp[temperature].low,
  1151. pageset->pcp[temperature].high,
  1152. pageset->pcp[temperature].batch,
  1153. pageset->pcp[temperature].count);
  1154. }
  1155. }
  1156. get_page_state(&ps);
  1157. get_zone_counts(&active, &inactive, &free);
  1158. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1159. K(nr_free_pages()),
  1160. K(nr_free_highpages()));
  1161. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1162. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1163. active,
  1164. inactive,
  1165. ps.nr_dirty,
  1166. ps.nr_writeback,
  1167. ps.nr_unstable,
  1168. nr_free_pages(),
  1169. ps.nr_slab,
  1170. ps.nr_mapped,
  1171. ps.nr_page_table_pages);
  1172. for_each_zone(zone) {
  1173. int i;
  1174. show_node(zone);
  1175. printk("%s"
  1176. " free:%lukB"
  1177. " min:%lukB"
  1178. " low:%lukB"
  1179. " high:%lukB"
  1180. " active:%lukB"
  1181. " inactive:%lukB"
  1182. " present:%lukB"
  1183. " pages_scanned:%lu"
  1184. " all_unreclaimable? %s"
  1185. "\n",
  1186. zone->name,
  1187. K(zone->free_pages),
  1188. K(zone->pages_min),
  1189. K(zone->pages_low),
  1190. K(zone->pages_high),
  1191. K(zone->nr_active),
  1192. K(zone->nr_inactive),
  1193. K(zone->present_pages),
  1194. zone->pages_scanned,
  1195. (zone->all_unreclaimable ? "yes" : "no")
  1196. );
  1197. printk("lowmem_reserve[]:");
  1198. for (i = 0; i < MAX_NR_ZONES; i++)
  1199. printk(" %lu", zone->lowmem_reserve[i]);
  1200. printk("\n");
  1201. }
  1202. for_each_zone(zone) {
  1203. unsigned long nr, flags, order, total = 0;
  1204. show_node(zone);
  1205. printk("%s: ", zone->name);
  1206. if (!zone->present_pages) {
  1207. printk("empty\n");
  1208. continue;
  1209. }
  1210. spin_lock_irqsave(&zone->lock, flags);
  1211. for (order = 0; order < MAX_ORDER; order++) {
  1212. nr = zone->free_area[order].nr_free;
  1213. total += nr << order;
  1214. printk("%lu*%lukB ", nr, K(1UL) << order);
  1215. }
  1216. spin_unlock_irqrestore(&zone->lock, flags);
  1217. printk("= %lukB\n", K(total));
  1218. }
  1219. show_swap_cache_info();
  1220. }
  1221. /*
  1222. * Builds allocation fallback zone lists.
  1223. */
  1224. static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
  1225. {
  1226. switch (k) {
  1227. struct zone *zone;
  1228. default:
  1229. BUG();
  1230. case ZONE_HIGHMEM:
  1231. zone = pgdat->node_zones + ZONE_HIGHMEM;
  1232. if (zone->present_pages) {
  1233. #ifndef CONFIG_HIGHMEM
  1234. BUG();
  1235. #endif
  1236. zonelist->zones[j++] = zone;
  1237. }
  1238. case ZONE_NORMAL:
  1239. zone = pgdat->node_zones + ZONE_NORMAL;
  1240. if (zone->present_pages)
  1241. zonelist->zones[j++] = zone;
  1242. case ZONE_DMA32:
  1243. zone = pgdat->node_zones + ZONE_DMA32;
  1244. if (zone->present_pages)
  1245. zonelist->zones[j++] = zone;
  1246. case ZONE_DMA:
  1247. zone = pgdat->node_zones + ZONE_DMA;
  1248. if (zone->present_pages)
  1249. zonelist->zones[j++] = zone;
  1250. }
  1251. return j;
  1252. }
  1253. static inline int highest_zone(int zone_bits)
  1254. {
  1255. int res = ZONE_NORMAL;
  1256. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1257. res = ZONE_HIGHMEM;
  1258. if (zone_bits & (__force int)__GFP_DMA32)
  1259. res = ZONE_DMA32;
  1260. if (zone_bits & (__force int)__GFP_DMA)
  1261. res = ZONE_DMA;
  1262. return res;
  1263. }
  1264. #ifdef CONFIG_NUMA
  1265. #define MAX_NODE_LOAD (num_online_nodes())
  1266. static int __initdata node_load[MAX_NUMNODES];
  1267. /**
  1268. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1269. * @node: node whose fallback list we're appending
  1270. * @used_node_mask: nodemask_t of already used nodes
  1271. *
  1272. * We use a number of factors to determine which is the next node that should
  1273. * appear on a given node's fallback list. The node should not have appeared
  1274. * already in @node's fallback list, and it should be the next closest node
  1275. * according to the distance array (which contains arbitrary distance values
  1276. * from each node to each node in the system), and should also prefer nodes
  1277. * with no CPUs, since presumably they'll have very little allocation pressure
  1278. * on them otherwise.
  1279. * It returns -1 if no node is found.
  1280. */
  1281. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1282. {
  1283. int i, n, val;
  1284. int min_val = INT_MAX;
  1285. int best_node = -1;
  1286. for_each_online_node(i) {
  1287. cpumask_t tmp;
  1288. /* Start from local node */
  1289. n = (node+i) % num_online_nodes();
  1290. /* Don't want a node to appear more than once */
  1291. if (node_isset(n, *used_node_mask))
  1292. continue;
  1293. /* Use the local node if we haven't already */
  1294. if (!node_isset(node, *used_node_mask)) {
  1295. best_node = node;
  1296. break;
  1297. }
  1298. /* Use the distance array to find the distance */
  1299. val = node_distance(node, n);
  1300. /* Give preference to headless and unused nodes */
  1301. tmp = node_to_cpumask(n);
  1302. if (!cpus_empty(tmp))
  1303. val += PENALTY_FOR_NODE_WITH_CPUS;
  1304. /* Slight preference for less loaded node */
  1305. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1306. val += node_load[n];
  1307. if (val < min_val) {
  1308. min_val = val;
  1309. best_node = n;
  1310. }
  1311. }
  1312. if (best_node >= 0)
  1313. node_set(best_node, *used_node_mask);
  1314. return best_node;
  1315. }
  1316. static void __init build_zonelists(pg_data_t *pgdat)
  1317. {
  1318. int i, j, k, node, local_node;
  1319. int prev_node, load;
  1320. struct zonelist *zonelist;
  1321. nodemask_t used_mask;
  1322. /* initialize zonelists */
  1323. for (i = 0; i < GFP_ZONETYPES; i++) {
  1324. zonelist = pgdat->node_zonelists + i;
  1325. zonelist->zones[0] = NULL;
  1326. }
  1327. /* NUMA-aware ordering of nodes */
  1328. local_node = pgdat->node_id;
  1329. load = num_online_nodes();
  1330. prev_node = local_node;
  1331. nodes_clear(used_mask);
  1332. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1333. /*
  1334. * We don't want to pressure a particular node.
  1335. * So adding penalty to the first node in same
  1336. * distance group to make it round-robin.
  1337. */
  1338. if (node_distance(local_node, node) !=
  1339. node_distance(local_node, prev_node))
  1340. node_load[node] += load;
  1341. prev_node = node;
  1342. load--;
  1343. for (i = 0; i < GFP_ZONETYPES; i++) {
  1344. zonelist = pgdat->node_zonelists + i;
  1345. for (j = 0; zonelist->zones[j] != NULL; j++);
  1346. k = highest_zone(i);
  1347. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1348. zonelist->zones[j] = NULL;
  1349. }
  1350. }
  1351. }
  1352. #else /* CONFIG_NUMA */
  1353. static void __init build_zonelists(pg_data_t *pgdat)
  1354. {
  1355. int i, j, k, node, local_node;
  1356. local_node = pgdat->node_id;
  1357. for (i = 0; i < GFP_ZONETYPES; i++) {
  1358. struct zonelist *zonelist;
  1359. zonelist = pgdat->node_zonelists + i;
  1360. j = 0;
  1361. k = highest_zone(i);
  1362. j = build_zonelists_node(pgdat, zonelist, j, k);
  1363. /*
  1364. * Now we build the zonelist so that it contains the zones
  1365. * of all the other nodes.
  1366. * We don't want to pressure a particular node, so when
  1367. * building the zones for node N, we make sure that the
  1368. * zones coming right after the local ones are those from
  1369. * node N+1 (modulo N)
  1370. */
  1371. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1372. if (!node_online(node))
  1373. continue;
  1374. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1375. }
  1376. for (node = 0; node < local_node; node++) {
  1377. if (!node_online(node))
  1378. continue;
  1379. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1380. }
  1381. zonelist->zones[j] = NULL;
  1382. }
  1383. }
  1384. #endif /* CONFIG_NUMA */
  1385. void __init build_all_zonelists(void)
  1386. {
  1387. int i;
  1388. for_each_online_node(i)
  1389. build_zonelists(NODE_DATA(i));
  1390. printk("Built %i zonelists\n", num_online_nodes());
  1391. cpuset_init_current_mems_allowed();
  1392. }
  1393. /*
  1394. * Helper functions to size the waitqueue hash table.
  1395. * Essentially these want to choose hash table sizes sufficiently
  1396. * large so that collisions trying to wait on pages are rare.
  1397. * But in fact, the number of active page waitqueues on typical
  1398. * systems is ridiculously low, less than 200. So this is even
  1399. * conservative, even though it seems large.
  1400. *
  1401. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1402. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1403. */
  1404. #define PAGES_PER_WAITQUEUE 256
  1405. static inline unsigned long wait_table_size(unsigned long pages)
  1406. {
  1407. unsigned long size = 1;
  1408. pages /= PAGES_PER_WAITQUEUE;
  1409. while (size < pages)
  1410. size <<= 1;
  1411. /*
  1412. * Once we have dozens or even hundreds of threads sleeping
  1413. * on IO we've got bigger problems than wait queue collision.
  1414. * Limit the size of the wait table to a reasonable size.
  1415. */
  1416. size = min(size, 4096UL);
  1417. return max(size, 4UL);
  1418. }
  1419. /*
  1420. * This is an integer logarithm so that shifts can be used later
  1421. * to extract the more random high bits from the multiplicative
  1422. * hash function before the remainder is taken.
  1423. */
  1424. static inline unsigned long wait_table_bits(unsigned long size)
  1425. {
  1426. return ffz(~size);
  1427. }
  1428. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1429. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1430. unsigned long *zones_size, unsigned long *zholes_size)
  1431. {
  1432. unsigned long realtotalpages, totalpages = 0;
  1433. int i;
  1434. for (i = 0; i < MAX_NR_ZONES; i++)
  1435. totalpages += zones_size[i];
  1436. pgdat->node_spanned_pages = totalpages;
  1437. realtotalpages = totalpages;
  1438. if (zholes_size)
  1439. for (i = 0; i < MAX_NR_ZONES; i++)
  1440. realtotalpages -= zholes_size[i];
  1441. pgdat->node_present_pages = realtotalpages;
  1442. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1443. }
  1444. /*
  1445. * Initially all pages are reserved - free ones are freed
  1446. * up by free_all_bootmem() once the early boot process is
  1447. * done. Non-atomic initialization, single-pass.
  1448. */
  1449. void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1450. unsigned long start_pfn)
  1451. {
  1452. struct page *page;
  1453. unsigned long end_pfn = start_pfn + size;
  1454. unsigned long pfn;
  1455. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1456. if (!early_pfn_valid(pfn))
  1457. continue;
  1458. if (!early_pfn_in_nid(pfn, nid))
  1459. continue;
  1460. page = pfn_to_page(pfn);
  1461. set_page_links(page, zone, nid, pfn);
  1462. set_page_count(page, 1);
  1463. reset_page_mapcount(page);
  1464. SetPageReserved(page);
  1465. INIT_LIST_HEAD(&page->lru);
  1466. #ifdef WANT_PAGE_VIRTUAL
  1467. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1468. if (!is_highmem_idx(zone))
  1469. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1470. #endif
  1471. }
  1472. }
  1473. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1474. unsigned long size)
  1475. {
  1476. int order;
  1477. for (order = 0; order < MAX_ORDER ; order++) {
  1478. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1479. zone->free_area[order].nr_free = 0;
  1480. }
  1481. }
  1482. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1483. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1484. unsigned long size)
  1485. {
  1486. unsigned long snum = pfn_to_section_nr(pfn);
  1487. unsigned long end = pfn_to_section_nr(pfn + size);
  1488. if (FLAGS_HAS_NODE)
  1489. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1490. else
  1491. for (; snum <= end; snum++)
  1492. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1493. }
  1494. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1495. #define memmap_init(size, nid, zone, start_pfn) \
  1496. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1497. #endif
  1498. static int __devinit zone_batchsize(struct zone *zone)
  1499. {
  1500. int batch;
  1501. /*
  1502. * The per-cpu-pages pools are set to around 1000th of the
  1503. * size of the zone. But no more than 1/2 of a meg.
  1504. *
  1505. * OK, so we don't know how big the cache is. So guess.
  1506. */
  1507. batch = zone->present_pages / 1024;
  1508. if (batch * PAGE_SIZE > 512 * 1024)
  1509. batch = (512 * 1024) / PAGE_SIZE;
  1510. batch /= 4; /* We effectively *= 4 below */
  1511. if (batch < 1)
  1512. batch = 1;
  1513. /*
  1514. * We will be trying to allcoate bigger chunks of contiguous
  1515. * memory of the order of fls(batch). This should result in
  1516. * better cache coloring.
  1517. *
  1518. * A sanity check also to ensure that batch is still in limits.
  1519. */
  1520. batch = (1 << fls(batch + batch/2));
  1521. if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
  1522. batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
  1523. return batch;
  1524. }
  1525. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1526. {
  1527. struct per_cpu_pages *pcp;
  1528. memset(p, 0, sizeof(*p));
  1529. pcp = &p->pcp[0]; /* hot */
  1530. pcp->count = 0;
  1531. pcp->low = 0;
  1532. pcp->high = 6 * batch;
  1533. pcp->batch = max(1UL, 1 * batch);
  1534. INIT_LIST_HEAD(&pcp->list);
  1535. pcp = &p->pcp[1]; /* cold*/
  1536. pcp->count = 0;
  1537. pcp->low = 0;
  1538. pcp->high = 2 * batch;
  1539. pcp->batch = max(1UL, batch/2);
  1540. INIT_LIST_HEAD(&pcp->list);
  1541. }
  1542. #ifdef CONFIG_NUMA
  1543. /*
  1544. * Boot pageset table. One per cpu which is going to be used for all
  1545. * zones and all nodes. The parameters will be set in such a way
  1546. * that an item put on a list will immediately be handed over to
  1547. * the buddy list. This is safe since pageset manipulation is done
  1548. * with interrupts disabled.
  1549. *
  1550. * Some NUMA counter updates may also be caught by the boot pagesets.
  1551. *
  1552. * The boot_pagesets must be kept even after bootup is complete for
  1553. * unused processors and/or zones. They do play a role for bootstrapping
  1554. * hotplugged processors.
  1555. *
  1556. * zoneinfo_show() and maybe other functions do
  1557. * not check if the processor is online before following the pageset pointer.
  1558. * Other parts of the kernel may not check if the zone is available.
  1559. */
  1560. static struct per_cpu_pageset
  1561. boot_pageset[NR_CPUS];
  1562. /*
  1563. * Dynamically allocate memory for the
  1564. * per cpu pageset array in struct zone.
  1565. */
  1566. static int __devinit process_zones(int cpu)
  1567. {
  1568. struct zone *zone, *dzone;
  1569. for_each_zone(zone) {
  1570. zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
  1571. GFP_KERNEL, cpu_to_node(cpu));
  1572. if (!zone->pageset[cpu])
  1573. goto bad;
  1574. setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
  1575. }
  1576. return 0;
  1577. bad:
  1578. for_each_zone(dzone) {
  1579. if (dzone == zone)
  1580. break;
  1581. kfree(dzone->pageset[cpu]);
  1582. dzone->pageset[cpu] = NULL;
  1583. }
  1584. return -ENOMEM;
  1585. }
  1586. static inline void free_zone_pagesets(int cpu)
  1587. {
  1588. #ifdef CONFIG_NUMA
  1589. struct zone *zone;
  1590. for_each_zone(zone) {
  1591. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1592. zone_pcp(zone, cpu) = NULL;
  1593. kfree(pset);
  1594. }
  1595. #endif
  1596. }
  1597. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1598. unsigned long action,
  1599. void *hcpu)
  1600. {
  1601. int cpu = (long)hcpu;
  1602. int ret = NOTIFY_OK;
  1603. switch (action) {
  1604. case CPU_UP_PREPARE:
  1605. if (process_zones(cpu))
  1606. ret = NOTIFY_BAD;
  1607. break;
  1608. case CPU_UP_CANCELED:
  1609. case CPU_DEAD:
  1610. free_zone_pagesets(cpu);
  1611. break;
  1612. default:
  1613. break;
  1614. }
  1615. return ret;
  1616. }
  1617. static struct notifier_block pageset_notifier =
  1618. { &pageset_cpuup_callback, NULL, 0 };
  1619. void __init setup_per_cpu_pageset()
  1620. {
  1621. int err;
  1622. /* Initialize per_cpu_pageset for cpu 0.
  1623. * A cpuup callback will do this for every cpu
  1624. * as it comes online
  1625. */
  1626. err = process_zones(smp_processor_id());
  1627. BUG_ON(err);
  1628. register_cpu_notifier(&pageset_notifier);
  1629. }
  1630. #endif
  1631. static __devinit
  1632. void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1633. {
  1634. int i;
  1635. struct pglist_data *pgdat = zone->zone_pgdat;
  1636. /*
  1637. * The per-page waitqueue mechanism uses hashed waitqueues
  1638. * per zone.
  1639. */
  1640. zone->wait_table_size = wait_table_size(zone_size_pages);
  1641. zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
  1642. zone->wait_table = (wait_queue_head_t *)
  1643. alloc_bootmem_node(pgdat, zone->wait_table_size
  1644. * sizeof(wait_queue_head_t));
  1645. for(i = 0; i < zone->wait_table_size; ++i)
  1646. init_waitqueue_head(zone->wait_table + i);
  1647. }
  1648. static __devinit void zone_pcp_init(struct zone *zone)
  1649. {
  1650. int cpu;
  1651. unsigned long batch = zone_batchsize(zone);
  1652. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1653. #ifdef CONFIG_NUMA
  1654. /* Early boot. Slab allocator not functional yet */
  1655. zone->pageset[cpu] = &boot_pageset[cpu];
  1656. setup_pageset(&boot_pageset[cpu],0);
  1657. #else
  1658. setup_pageset(zone_pcp(zone,cpu), batch);
  1659. #endif
  1660. }
  1661. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1662. zone->name, zone->present_pages, batch);
  1663. }
  1664. static __devinit void init_currently_empty_zone(struct zone *zone,
  1665. unsigned long zone_start_pfn, unsigned long size)
  1666. {
  1667. struct pglist_data *pgdat = zone->zone_pgdat;
  1668. zone_wait_table_init(zone, size);
  1669. pgdat->nr_zones = zone_idx(zone) + 1;
  1670. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1671. zone->zone_start_pfn = zone_start_pfn;
  1672. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1673. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1674. }
  1675. /*
  1676. * Set up the zone data structures:
  1677. * - mark all pages reserved
  1678. * - mark all memory queues empty
  1679. * - clear the memory bitmaps
  1680. */
  1681. static void __init free_area_init_core(struct pglist_data *pgdat,
  1682. unsigned long *zones_size, unsigned long *zholes_size)
  1683. {
  1684. unsigned long j;
  1685. int nid = pgdat->node_id;
  1686. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1687. pgdat_resize_init(pgdat);
  1688. pgdat->nr_zones = 0;
  1689. init_waitqueue_head(&pgdat->kswapd_wait);
  1690. pgdat->kswapd_max_order = 0;
  1691. for (j = 0; j < MAX_NR_ZONES; j++) {
  1692. struct zone *zone = pgdat->node_zones + j;
  1693. unsigned long size, realsize;
  1694. realsize = size = zones_size[j];
  1695. if (zholes_size)
  1696. realsize -= zholes_size[j];
  1697. if (j < ZONE_HIGHMEM)
  1698. nr_kernel_pages += realsize;
  1699. nr_all_pages += realsize;
  1700. zone->spanned_pages = size;
  1701. zone->present_pages = realsize;
  1702. zone->name = zone_names[j];
  1703. spin_lock_init(&zone->lock);
  1704. spin_lock_init(&zone->lru_lock);
  1705. zone_seqlock_init(zone);
  1706. zone->zone_pgdat = pgdat;
  1707. zone->free_pages = 0;
  1708. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1709. zone_pcp_init(zone);
  1710. INIT_LIST_HEAD(&zone->active_list);
  1711. INIT_LIST_HEAD(&zone->inactive_list);
  1712. zone->nr_scan_active = 0;
  1713. zone->nr_scan_inactive = 0;
  1714. zone->nr_active = 0;
  1715. zone->nr_inactive = 0;
  1716. atomic_set(&zone->reclaim_in_progress, 0);
  1717. if (!size)
  1718. continue;
  1719. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1720. init_currently_empty_zone(zone, zone_start_pfn, size);
  1721. zone_start_pfn += size;
  1722. }
  1723. }
  1724. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1725. {
  1726. /* Skip empty nodes */
  1727. if (!pgdat->node_spanned_pages)
  1728. return;
  1729. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1730. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1731. if (!pgdat->node_mem_map) {
  1732. unsigned long size;
  1733. struct page *map;
  1734. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1735. map = alloc_remap(pgdat->node_id, size);
  1736. if (!map)
  1737. map = alloc_bootmem_node(pgdat, size);
  1738. pgdat->node_mem_map = map;
  1739. }
  1740. #ifdef CONFIG_FLATMEM
  1741. /*
  1742. * With no DISCONTIG, the global mem_map is just set as node 0's
  1743. */
  1744. if (pgdat == NODE_DATA(0))
  1745. mem_map = NODE_DATA(0)->node_mem_map;
  1746. #endif
  1747. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1748. }
  1749. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1750. unsigned long *zones_size, unsigned long node_start_pfn,
  1751. unsigned long *zholes_size)
  1752. {
  1753. pgdat->node_id = nid;
  1754. pgdat->node_start_pfn = node_start_pfn;
  1755. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1756. alloc_node_mem_map(pgdat);
  1757. free_area_init_core(pgdat, zones_size, zholes_size);
  1758. }
  1759. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1760. static bootmem_data_t contig_bootmem_data;
  1761. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1762. EXPORT_SYMBOL(contig_page_data);
  1763. #endif
  1764. void __init free_area_init(unsigned long *zones_size)
  1765. {
  1766. free_area_init_node(0, NODE_DATA(0), zones_size,
  1767. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1768. }
  1769. #ifdef CONFIG_PROC_FS
  1770. #include <linux/seq_file.h>
  1771. static void *frag_start(struct seq_file *m, loff_t *pos)
  1772. {
  1773. pg_data_t *pgdat;
  1774. loff_t node = *pos;
  1775. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1776. --node;
  1777. return pgdat;
  1778. }
  1779. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1780. {
  1781. pg_data_t *pgdat = (pg_data_t *)arg;
  1782. (*pos)++;
  1783. return pgdat->pgdat_next;
  1784. }
  1785. static void frag_stop(struct seq_file *m, void *arg)
  1786. {
  1787. }
  1788. /*
  1789. * This walks the free areas for each zone.
  1790. */
  1791. static int frag_show(struct seq_file *m, void *arg)
  1792. {
  1793. pg_data_t *pgdat = (pg_data_t *)arg;
  1794. struct zone *zone;
  1795. struct zone *node_zones = pgdat->node_zones;
  1796. unsigned long flags;
  1797. int order;
  1798. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1799. if (!zone->present_pages)
  1800. continue;
  1801. spin_lock_irqsave(&zone->lock, flags);
  1802. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1803. for (order = 0; order < MAX_ORDER; ++order)
  1804. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1805. spin_unlock_irqrestore(&zone->lock, flags);
  1806. seq_putc(m, '\n');
  1807. }
  1808. return 0;
  1809. }
  1810. struct seq_operations fragmentation_op = {
  1811. .start = frag_start,
  1812. .next = frag_next,
  1813. .stop = frag_stop,
  1814. .show = frag_show,
  1815. };
  1816. /*
  1817. * Output information about zones in @pgdat.
  1818. */
  1819. static int zoneinfo_show(struct seq_file *m, void *arg)
  1820. {
  1821. pg_data_t *pgdat = arg;
  1822. struct zone *zone;
  1823. struct zone *node_zones = pgdat->node_zones;
  1824. unsigned long flags;
  1825. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1826. int i;
  1827. if (!zone->present_pages)
  1828. continue;
  1829. spin_lock_irqsave(&zone->lock, flags);
  1830. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1831. seq_printf(m,
  1832. "\n pages free %lu"
  1833. "\n min %lu"
  1834. "\n low %lu"
  1835. "\n high %lu"
  1836. "\n active %lu"
  1837. "\n inactive %lu"
  1838. "\n scanned %lu (a: %lu i: %lu)"
  1839. "\n spanned %lu"
  1840. "\n present %lu",
  1841. zone->free_pages,
  1842. zone->pages_min,
  1843. zone->pages_low,
  1844. zone->pages_high,
  1845. zone->nr_active,
  1846. zone->nr_inactive,
  1847. zone->pages_scanned,
  1848. zone->nr_scan_active, zone->nr_scan_inactive,
  1849. zone->spanned_pages,
  1850. zone->present_pages);
  1851. seq_printf(m,
  1852. "\n protection: (%lu",
  1853. zone->lowmem_reserve[0]);
  1854. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1855. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1856. seq_printf(m,
  1857. ")"
  1858. "\n pagesets");
  1859. for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
  1860. struct per_cpu_pageset *pageset;
  1861. int j;
  1862. pageset = zone_pcp(zone, i);
  1863. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1864. if (pageset->pcp[j].count)
  1865. break;
  1866. }
  1867. if (j == ARRAY_SIZE(pageset->pcp))
  1868. continue;
  1869. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1870. seq_printf(m,
  1871. "\n cpu: %i pcp: %i"
  1872. "\n count: %i"
  1873. "\n low: %i"
  1874. "\n high: %i"
  1875. "\n batch: %i",
  1876. i, j,
  1877. pageset->pcp[j].count,
  1878. pageset->pcp[j].low,
  1879. pageset->pcp[j].high,
  1880. pageset->pcp[j].batch);
  1881. }
  1882. #ifdef CONFIG_NUMA
  1883. seq_printf(m,
  1884. "\n numa_hit: %lu"
  1885. "\n numa_miss: %lu"
  1886. "\n numa_foreign: %lu"
  1887. "\n interleave_hit: %lu"
  1888. "\n local_node: %lu"
  1889. "\n other_node: %lu",
  1890. pageset->numa_hit,
  1891. pageset->numa_miss,
  1892. pageset->numa_foreign,
  1893. pageset->interleave_hit,
  1894. pageset->local_node,
  1895. pageset->other_node);
  1896. #endif
  1897. }
  1898. seq_printf(m,
  1899. "\n all_unreclaimable: %u"
  1900. "\n prev_priority: %i"
  1901. "\n temp_priority: %i"
  1902. "\n start_pfn: %lu",
  1903. zone->all_unreclaimable,
  1904. zone->prev_priority,
  1905. zone->temp_priority,
  1906. zone->zone_start_pfn);
  1907. spin_unlock_irqrestore(&zone->lock, flags);
  1908. seq_putc(m, '\n');
  1909. }
  1910. return 0;
  1911. }
  1912. struct seq_operations zoneinfo_op = {
  1913. .start = frag_start, /* iterate over all zones. The same as in
  1914. * fragmentation. */
  1915. .next = frag_next,
  1916. .stop = frag_stop,
  1917. .show = zoneinfo_show,
  1918. };
  1919. static char *vmstat_text[] = {
  1920. "nr_dirty",
  1921. "nr_writeback",
  1922. "nr_unstable",
  1923. "nr_page_table_pages",
  1924. "nr_mapped",
  1925. "nr_slab",
  1926. "pgpgin",
  1927. "pgpgout",
  1928. "pswpin",
  1929. "pswpout",
  1930. "pgalloc_high",
  1931. "pgalloc_normal",
  1932. "pgalloc_dma",
  1933. "pgfree",
  1934. "pgactivate",
  1935. "pgdeactivate",
  1936. "pgfault",
  1937. "pgmajfault",
  1938. "pgrefill_high",
  1939. "pgrefill_normal",
  1940. "pgrefill_dma",
  1941. "pgsteal_high",
  1942. "pgsteal_normal",
  1943. "pgsteal_dma",
  1944. "pgscan_kswapd_high",
  1945. "pgscan_kswapd_normal",
  1946. "pgscan_kswapd_dma",
  1947. "pgscan_direct_high",
  1948. "pgscan_direct_normal",
  1949. "pgscan_direct_dma",
  1950. "pginodesteal",
  1951. "slabs_scanned",
  1952. "kswapd_steal",
  1953. "kswapd_inodesteal",
  1954. "pageoutrun",
  1955. "allocstall",
  1956. "pgrotated",
  1957. "nr_bounce",
  1958. };
  1959. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1960. {
  1961. struct page_state *ps;
  1962. if (*pos >= ARRAY_SIZE(vmstat_text))
  1963. return NULL;
  1964. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  1965. m->private = ps;
  1966. if (!ps)
  1967. return ERR_PTR(-ENOMEM);
  1968. get_full_page_state(ps);
  1969. ps->pgpgin /= 2; /* sectors -> kbytes */
  1970. ps->pgpgout /= 2;
  1971. return (unsigned long *)ps + *pos;
  1972. }
  1973. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1974. {
  1975. (*pos)++;
  1976. if (*pos >= ARRAY_SIZE(vmstat_text))
  1977. return NULL;
  1978. return (unsigned long *)m->private + *pos;
  1979. }
  1980. static int vmstat_show(struct seq_file *m, void *arg)
  1981. {
  1982. unsigned long *l = arg;
  1983. unsigned long off = l - (unsigned long *)m->private;
  1984. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1985. return 0;
  1986. }
  1987. static void vmstat_stop(struct seq_file *m, void *arg)
  1988. {
  1989. kfree(m->private);
  1990. m->private = NULL;
  1991. }
  1992. struct seq_operations vmstat_op = {
  1993. .start = vmstat_start,
  1994. .next = vmstat_next,
  1995. .stop = vmstat_stop,
  1996. .show = vmstat_show,
  1997. };
  1998. #endif /* CONFIG_PROC_FS */
  1999. #ifdef CONFIG_HOTPLUG_CPU
  2000. static int page_alloc_cpu_notify(struct notifier_block *self,
  2001. unsigned long action, void *hcpu)
  2002. {
  2003. int cpu = (unsigned long)hcpu;
  2004. long *count;
  2005. unsigned long *src, *dest;
  2006. if (action == CPU_DEAD) {
  2007. int i;
  2008. /* Drain local pagecache count. */
  2009. count = &per_cpu(nr_pagecache_local, cpu);
  2010. atomic_add(*count, &nr_pagecache);
  2011. *count = 0;
  2012. local_irq_disable();
  2013. __drain_pages(cpu);
  2014. /* Add dead cpu's page_states to our own. */
  2015. dest = (unsigned long *)&__get_cpu_var(page_states);
  2016. src = (unsigned long *)&per_cpu(page_states, cpu);
  2017. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  2018. i++) {
  2019. dest[i] += src[i];
  2020. src[i] = 0;
  2021. }
  2022. local_irq_enable();
  2023. }
  2024. return NOTIFY_OK;
  2025. }
  2026. #endif /* CONFIG_HOTPLUG_CPU */
  2027. void __init page_alloc_init(void)
  2028. {
  2029. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2030. }
  2031. /*
  2032. * setup_per_zone_lowmem_reserve - called whenever
  2033. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2034. * has a correct pages reserved value, so an adequate number of
  2035. * pages are left in the zone after a successful __alloc_pages().
  2036. */
  2037. static void setup_per_zone_lowmem_reserve(void)
  2038. {
  2039. struct pglist_data *pgdat;
  2040. int j, idx;
  2041. for_each_pgdat(pgdat) {
  2042. for (j = 0; j < MAX_NR_ZONES; j++) {
  2043. struct zone *zone = pgdat->node_zones + j;
  2044. unsigned long present_pages = zone->present_pages;
  2045. zone->lowmem_reserve[j] = 0;
  2046. for (idx = j-1; idx >= 0; idx--) {
  2047. struct zone *lower_zone;
  2048. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2049. sysctl_lowmem_reserve_ratio[idx] = 1;
  2050. lower_zone = pgdat->node_zones + idx;
  2051. lower_zone->lowmem_reserve[j] = present_pages /
  2052. sysctl_lowmem_reserve_ratio[idx];
  2053. present_pages += lower_zone->present_pages;
  2054. }
  2055. }
  2056. }
  2057. }
  2058. /*
  2059. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  2060. * that the pages_{min,low,high} values for each zone are set correctly
  2061. * with respect to min_free_kbytes.
  2062. */
  2063. void setup_per_zone_pages_min(void)
  2064. {
  2065. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2066. unsigned long lowmem_pages = 0;
  2067. struct zone *zone;
  2068. unsigned long flags;
  2069. /* Calculate total number of !ZONE_HIGHMEM pages */
  2070. for_each_zone(zone) {
  2071. if (!is_highmem(zone))
  2072. lowmem_pages += zone->present_pages;
  2073. }
  2074. for_each_zone(zone) {
  2075. unsigned long tmp;
  2076. spin_lock_irqsave(&zone->lru_lock, flags);
  2077. tmp = (pages_min * zone->present_pages) / lowmem_pages;
  2078. if (is_highmem(zone)) {
  2079. /*
  2080. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2081. * need highmem pages, so cap pages_min to a small
  2082. * value here.
  2083. *
  2084. * The (pages_high-pages_low) and (pages_low-pages_min)
  2085. * deltas controls asynch page reclaim, and so should
  2086. * not be capped for highmem.
  2087. */
  2088. int min_pages;
  2089. min_pages = zone->present_pages / 1024;
  2090. if (min_pages < SWAP_CLUSTER_MAX)
  2091. min_pages = SWAP_CLUSTER_MAX;
  2092. if (min_pages > 128)
  2093. min_pages = 128;
  2094. zone->pages_min = min_pages;
  2095. } else {
  2096. /*
  2097. * If it's a lowmem zone, reserve a number of pages
  2098. * proportionate to the zone's size.
  2099. */
  2100. zone->pages_min = tmp;
  2101. }
  2102. zone->pages_low = zone->pages_min + tmp / 4;
  2103. zone->pages_high = zone->pages_min + tmp / 2;
  2104. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2105. }
  2106. }
  2107. /*
  2108. * Initialise min_free_kbytes.
  2109. *
  2110. * For small machines we want it small (128k min). For large machines
  2111. * we want it large (64MB max). But it is not linear, because network
  2112. * bandwidth does not increase linearly with machine size. We use
  2113. *
  2114. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2115. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2116. *
  2117. * which yields
  2118. *
  2119. * 16MB: 512k
  2120. * 32MB: 724k
  2121. * 64MB: 1024k
  2122. * 128MB: 1448k
  2123. * 256MB: 2048k
  2124. * 512MB: 2896k
  2125. * 1024MB: 4096k
  2126. * 2048MB: 5792k
  2127. * 4096MB: 8192k
  2128. * 8192MB: 11584k
  2129. * 16384MB: 16384k
  2130. */
  2131. static int __init init_per_zone_pages_min(void)
  2132. {
  2133. unsigned long lowmem_kbytes;
  2134. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2135. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2136. if (min_free_kbytes < 128)
  2137. min_free_kbytes = 128;
  2138. if (min_free_kbytes > 65536)
  2139. min_free_kbytes = 65536;
  2140. setup_per_zone_pages_min();
  2141. setup_per_zone_lowmem_reserve();
  2142. return 0;
  2143. }
  2144. module_init(init_per_zone_pages_min)
  2145. /*
  2146. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2147. * that we can call two helper functions whenever min_free_kbytes
  2148. * changes.
  2149. */
  2150. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2151. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2152. {
  2153. proc_dointvec(table, write, file, buffer, length, ppos);
  2154. setup_per_zone_pages_min();
  2155. return 0;
  2156. }
  2157. /*
  2158. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2159. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2160. * whenever sysctl_lowmem_reserve_ratio changes.
  2161. *
  2162. * The reserve ratio obviously has absolutely no relation with the
  2163. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2164. * if in function of the boot time zone sizes.
  2165. */
  2166. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2167. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2168. {
  2169. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2170. setup_per_zone_lowmem_reserve();
  2171. return 0;
  2172. }
  2173. __initdata int hashdist = HASHDIST_DEFAULT;
  2174. #ifdef CONFIG_NUMA
  2175. static int __init set_hashdist(char *str)
  2176. {
  2177. if (!str)
  2178. return 0;
  2179. hashdist = simple_strtoul(str, &str, 0);
  2180. return 1;
  2181. }
  2182. __setup("hashdist=", set_hashdist);
  2183. #endif
  2184. /*
  2185. * allocate a large system hash table from bootmem
  2186. * - it is assumed that the hash table must contain an exact power-of-2
  2187. * quantity of entries
  2188. * - limit is the number of hash buckets, not the total allocation size
  2189. */
  2190. void *__init alloc_large_system_hash(const char *tablename,
  2191. unsigned long bucketsize,
  2192. unsigned long numentries,
  2193. int scale,
  2194. int flags,
  2195. unsigned int *_hash_shift,
  2196. unsigned int *_hash_mask,
  2197. unsigned long limit)
  2198. {
  2199. unsigned long long max = limit;
  2200. unsigned long log2qty, size;
  2201. void *table = NULL;
  2202. /* allow the kernel cmdline to have a say */
  2203. if (!numentries) {
  2204. /* round applicable memory size up to nearest megabyte */
  2205. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2206. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2207. numentries >>= 20 - PAGE_SHIFT;
  2208. numentries <<= 20 - PAGE_SHIFT;
  2209. /* limit to 1 bucket per 2^scale bytes of low memory */
  2210. if (scale > PAGE_SHIFT)
  2211. numentries >>= (scale - PAGE_SHIFT);
  2212. else
  2213. numentries <<= (PAGE_SHIFT - scale);
  2214. }
  2215. /* rounded up to nearest power of 2 in size */
  2216. numentries = 1UL << (long_log2(numentries) + 1);
  2217. /* limit allocation size to 1/16 total memory by default */
  2218. if (max == 0) {
  2219. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2220. do_div(max, bucketsize);
  2221. }
  2222. if (numentries > max)
  2223. numentries = max;
  2224. log2qty = long_log2(numentries);
  2225. do {
  2226. size = bucketsize << log2qty;
  2227. if (flags & HASH_EARLY)
  2228. table = alloc_bootmem(size);
  2229. else if (hashdist)
  2230. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2231. else {
  2232. unsigned long order;
  2233. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2234. ;
  2235. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2236. }
  2237. } while (!table && size > PAGE_SIZE && --log2qty);
  2238. if (!table)
  2239. panic("Failed to allocate %s hash table\n", tablename);
  2240. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2241. tablename,
  2242. (1U << log2qty),
  2243. long_log2(size) - PAGE_SHIFT,
  2244. size);
  2245. if (_hash_shift)
  2246. *_hash_shift = log2qty;
  2247. if (_hash_mask)
  2248. *_hash_mask = (1 << log2qty) - 1;
  2249. return table;
  2250. }