spi-sh-msiof.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293
  1. /*
  2. * SuperH MSIOF SPI Master Interface
  3. *
  4. * Copyright (c) 2009 Magnus Damm
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. */
  12. #include <linux/bitmap.h>
  13. #include <linux/clk.h>
  14. #include <linux/completion.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/err.h>
  19. #include <linux/gpio.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/sh_dma.h>
  29. #include <linux/spi/sh_msiof.h>
  30. #include <linux/spi/spi.h>
  31. #include <asm/unaligned.h>
  32. struct sh_msiof_chipdata {
  33. u16 tx_fifo_size;
  34. u16 rx_fifo_size;
  35. u16 master_flags;
  36. };
  37. struct sh_msiof_spi_priv {
  38. struct spi_master *master;
  39. void __iomem *mapbase;
  40. struct clk *clk;
  41. struct platform_device *pdev;
  42. const struct sh_msiof_chipdata *chipdata;
  43. struct sh_msiof_spi_info *info;
  44. struct completion done;
  45. int tx_fifo_size;
  46. int rx_fifo_size;
  47. void *tx_dma_page;
  48. void *rx_dma_page;
  49. dma_addr_t tx_dma_addr;
  50. dma_addr_t rx_dma_addr;
  51. };
  52. #define TMDR1 0x00 /* Transmit Mode Register 1 */
  53. #define TMDR2 0x04 /* Transmit Mode Register 2 */
  54. #define TMDR3 0x08 /* Transmit Mode Register 3 */
  55. #define RMDR1 0x10 /* Receive Mode Register 1 */
  56. #define RMDR2 0x14 /* Receive Mode Register 2 */
  57. #define RMDR3 0x18 /* Receive Mode Register 3 */
  58. #define TSCR 0x20 /* Transmit Clock Select Register */
  59. #define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  60. #define CTR 0x28 /* Control Register */
  61. #define FCTR 0x30 /* FIFO Control Register */
  62. #define STR 0x40 /* Status Register */
  63. #define IER 0x44 /* Interrupt Enable Register */
  64. #define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  65. #define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  66. #define TFDR 0x50 /* Transmit FIFO Data Register */
  67. #define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  68. #define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  69. #define RFDR 0x60 /* Receive FIFO Data Register */
  70. /* TMDR1 and RMDR1 */
  71. #define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
  72. #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  73. #define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
  74. #define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
  75. #define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  76. #define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  77. #define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  78. #define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  79. #define MDR1_FLD_MASK 0x000000c0 /* Frame Sync Signal Interval (0-3) */
  80. #define MDR1_FLD_SHIFT 2
  81. #define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
  82. /* TMDR1 */
  83. #define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
  84. /* TMDR2 and RMDR2 */
  85. #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  86. #define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  87. #define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
  88. #define MAX_WDLEN 256U
  89. /* TSCR and RSCR */
  90. #define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
  91. #define SCR_BRPS(i) (((i) - 1) << 8)
  92. #define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
  93. #define SCR_BRDV_DIV_2 0x0000
  94. #define SCR_BRDV_DIV_4 0x0001
  95. #define SCR_BRDV_DIV_8 0x0002
  96. #define SCR_BRDV_DIV_16 0x0003
  97. #define SCR_BRDV_DIV_32 0x0004
  98. #define SCR_BRDV_DIV_1 0x0007
  99. /* CTR */
  100. #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
  101. #define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
  102. #define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  103. #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
  104. #define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
  105. #define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  106. #define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  107. #define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  108. #define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
  109. #define CTR_TXDIZ_LOW 0x00000000 /* 0 */
  110. #define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
  111. #define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
  112. #define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
  113. #define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
  114. #define CTR_TXE 0x00000200 /* Transmit Enable */
  115. #define CTR_RXE 0x00000100 /* Receive Enable */
  116. /* FCTR */
  117. #define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
  118. #define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
  119. #define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
  120. #define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
  121. #define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
  122. #define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
  123. #define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
  124. #define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
  125. #define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
  126. #define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
  127. #define FCTR_TFUA_SHIFT 20
  128. #define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
  129. #define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
  130. #define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
  131. #define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
  132. #define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
  133. #define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
  134. #define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
  135. #define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
  136. #define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
  137. #define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
  138. #define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
  139. #define FCTR_RFUA_SHIFT 4
  140. #define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
  141. /* STR */
  142. #define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
  143. #define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
  144. #define STR_TEOF 0x00800000 /* Frame Transmission End */
  145. #define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
  146. #define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
  147. #define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
  148. #define STR_RFFUL 0x00002000 /* Receive FIFO Full */
  149. #define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
  150. #define STR_REOF 0x00000080 /* Frame Reception End */
  151. #define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
  152. #define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
  153. #define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
  154. /* IER */
  155. #define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
  156. #define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
  157. #define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
  158. #define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
  159. #define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
  160. #define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
  161. #define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
  162. #define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
  163. #define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
  164. #define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
  165. #define IER_REOFE 0x00000080 /* Frame Reception End Enable */
  166. #define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
  167. #define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
  168. #define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
  169. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  170. {
  171. switch (reg_offs) {
  172. case TSCR:
  173. case RSCR:
  174. return ioread16(p->mapbase + reg_offs);
  175. default:
  176. return ioread32(p->mapbase + reg_offs);
  177. }
  178. }
  179. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  180. u32 value)
  181. {
  182. switch (reg_offs) {
  183. case TSCR:
  184. case RSCR:
  185. iowrite16(value, p->mapbase + reg_offs);
  186. break;
  187. default:
  188. iowrite32(value, p->mapbase + reg_offs);
  189. break;
  190. }
  191. }
  192. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  193. u32 clr, u32 set)
  194. {
  195. u32 mask = clr | set;
  196. u32 data;
  197. int k;
  198. data = sh_msiof_read(p, CTR);
  199. data &= ~clr;
  200. data |= set;
  201. sh_msiof_write(p, CTR, data);
  202. for (k = 100; k > 0; k--) {
  203. if ((sh_msiof_read(p, CTR) & mask) == set)
  204. break;
  205. udelay(10);
  206. }
  207. return k > 0 ? 0 : -ETIMEDOUT;
  208. }
  209. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  210. {
  211. struct sh_msiof_spi_priv *p = data;
  212. /* just disable the interrupt and wake up */
  213. sh_msiof_write(p, IER, 0);
  214. complete(&p->done);
  215. return IRQ_HANDLED;
  216. }
  217. static struct {
  218. unsigned short div;
  219. unsigned short scr;
  220. } const sh_msiof_spi_clk_table[] = {
  221. { 1, SCR_BRPS( 1) | SCR_BRDV_DIV_1 },
  222. { 2, SCR_BRPS( 1) | SCR_BRDV_DIV_2 },
  223. { 4, SCR_BRPS( 1) | SCR_BRDV_DIV_4 },
  224. { 8, SCR_BRPS( 1) | SCR_BRDV_DIV_8 },
  225. { 16, SCR_BRPS( 1) | SCR_BRDV_DIV_16 },
  226. { 32, SCR_BRPS( 1) | SCR_BRDV_DIV_32 },
  227. { 64, SCR_BRPS(32) | SCR_BRDV_DIV_2 },
  228. { 128, SCR_BRPS(32) | SCR_BRDV_DIV_4 },
  229. { 256, SCR_BRPS(32) | SCR_BRDV_DIV_8 },
  230. { 512, SCR_BRPS(32) | SCR_BRDV_DIV_16 },
  231. { 1024, SCR_BRPS(32) | SCR_BRDV_DIV_32 },
  232. };
  233. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  234. unsigned long parent_rate, u32 spi_hz)
  235. {
  236. unsigned long div = 1024;
  237. size_t k;
  238. if (!WARN_ON(!spi_hz || !parent_rate))
  239. div = DIV_ROUND_UP(parent_rate, spi_hz);
  240. /* TODO: make more fine grained */
  241. for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
  242. if (sh_msiof_spi_clk_table[k].div >= div)
  243. break;
  244. }
  245. k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
  246. sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
  247. if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  248. sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
  249. }
  250. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  251. {
  252. /*
  253. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  254. * b'000 : 0
  255. * b'001 : 100
  256. * b'010 : 200
  257. * b'011 (SYNCDL only) : 300
  258. * b'101 : 50
  259. * b'110 : 150
  260. */
  261. if (dtdl_or_syncdl % 100)
  262. return dtdl_or_syncdl / 100 + 5;
  263. else
  264. return dtdl_or_syncdl / 100;
  265. }
  266. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  267. {
  268. u32 val;
  269. if (!p->info)
  270. return 0;
  271. /* check if DTDL and SYNCDL is allowed value */
  272. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  273. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  274. return 0;
  275. }
  276. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  277. if ((p->info->dtdl + p->info->syncdl) % 100) {
  278. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  279. return 0;
  280. }
  281. val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
  282. val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
  283. return val;
  284. }
  285. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
  286. u32 cpol, u32 cpha,
  287. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  288. {
  289. u32 tmp;
  290. int edge;
  291. /*
  292. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  293. * 0 0 10 10 1 1
  294. * 0 1 10 10 0 0
  295. * 1 0 11 11 0 0
  296. * 1 1 11 11 1 1
  297. */
  298. tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
  299. tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
  300. tmp |= lsb_first << MDR1_BITLSB_SHIFT;
  301. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  302. sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
  303. if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
  304. /* These bits are reserved if RX needs TX */
  305. tmp &= ~0x0000ffff;
  306. }
  307. sh_msiof_write(p, RMDR1, tmp);
  308. tmp = 0;
  309. tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
  310. tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
  311. edge = cpol ^ !cpha;
  312. tmp |= edge << CTR_TEDG_SHIFT;
  313. tmp |= edge << CTR_REDG_SHIFT;
  314. tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
  315. sh_msiof_write(p, CTR, tmp);
  316. }
  317. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  318. const void *tx_buf, void *rx_buf,
  319. u32 bits, u32 words)
  320. {
  321. u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
  322. if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
  323. sh_msiof_write(p, TMDR2, dr2);
  324. else
  325. sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
  326. if (rx_buf)
  327. sh_msiof_write(p, RMDR2, dr2);
  328. }
  329. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  330. {
  331. sh_msiof_write(p, STR, sh_msiof_read(p, STR));
  332. }
  333. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  334. const void *tx_buf, int words, int fs)
  335. {
  336. const u8 *buf_8 = tx_buf;
  337. int k;
  338. for (k = 0; k < words; k++)
  339. sh_msiof_write(p, TFDR, buf_8[k] << fs);
  340. }
  341. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  342. const void *tx_buf, int words, int fs)
  343. {
  344. const u16 *buf_16 = tx_buf;
  345. int k;
  346. for (k = 0; k < words; k++)
  347. sh_msiof_write(p, TFDR, buf_16[k] << fs);
  348. }
  349. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  350. const void *tx_buf, int words, int fs)
  351. {
  352. const u16 *buf_16 = tx_buf;
  353. int k;
  354. for (k = 0; k < words; k++)
  355. sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
  356. }
  357. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  358. const void *tx_buf, int words, int fs)
  359. {
  360. const u32 *buf_32 = tx_buf;
  361. int k;
  362. for (k = 0; k < words; k++)
  363. sh_msiof_write(p, TFDR, buf_32[k] << fs);
  364. }
  365. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  366. const void *tx_buf, int words, int fs)
  367. {
  368. const u32 *buf_32 = tx_buf;
  369. int k;
  370. for (k = 0; k < words; k++)
  371. sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
  372. }
  373. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  374. const void *tx_buf, int words, int fs)
  375. {
  376. const u32 *buf_32 = tx_buf;
  377. int k;
  378. for (k = 0; k < words; k++)
  379. sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
  380. }
  381. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  382. const void *tx_buf, int words, int fs)
  383. {
  384. const u32 *buf_32 = tx_buf;
  385. int k;
  386. for (k = 0; k < words; k++)
  387. sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  388. }
  389. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  390. void *rx_buf, int words, int fs)
  391. {
  392. u8 *buf_8 = rx_buf;
  393. int k;
  394. for (k = 0; k < words; k++)
  395. buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
  396. }
  397. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  398. void *rx_buf, int words, int fs)
  399. {
  400. u16 *buf_16 = rx_buf;
  401. int k;
  402. for (k = 0; k < words; k++)
  403. buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
  404. }
  405. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  406. void *rx_buf, int words, int fs)
  407. {
  408. u16 *buf_16 = rx_buf;
  409. int k;
  410. for (k = 0; k < words; k++)
  411. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
  412. }
  413. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  414. void *rx_buf, int words, int fs)
  415. {
  416. u32 *buf_32 = rx_buf;
  417. int k;
  418. for (k = 0; k < words; k++)
  419. buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
  420. }
  421. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  422. void *rx_buf, int words, int fs)
  423. {
  424. u32 *buf_32 = rx_buf;
  425. int k;
  426. for (k = 0; k < words; k++)
  427. put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
  428. }
  429. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  430. void *rx_buf, int words, int fs)
  431. {
  432. u32 *buf_32 = rx_buf;
  433. int k;
  434. for (k = 0; k < words; k++)
  435. buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
  436. }
  437. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  438. void *rx_buf, int words, int fs)
  439. {
  440. u32 *buf_32 = rx_buf;
  441. int k;
  442. for (k = 0; k < words; k++)
  443. put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
  444. }
  445. static int sh_msiof_spi_setup(struct spi_device *spi)
  446. {
  447. struct device_node *np = spi->master->dev.of_node;
  448. struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
  449. if (!np) {
  450. /*
  451. * Use spi->controller_data for CS (same strategy as spi_gpio),
  452. * if any. otherwise let HW control CS
  453. */
  454. spi->cs_gpio = (uintptr_t)spi->controller_data;
  455. }
  456. /* Configure pins before deasserting CS */
  457. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  458. !!(spi->mode & SPI_CPHA),
  459. !!(spi->mode & SPI_3WIRE),
  460. !!(spi->mode & SPI_LSB_FIRST),
  461. !!(spi->mode & SPI_CS_HIGH));
  462. if (spi->cs_gpio >= 0)
  463. gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  464. return 0;
  465. }
  466. static int sh_msiof_prepare_message(struct spi_master *master,
  467. struct spi_message *msg)
  468. {
  469. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  470. const struct spi_device *spi = msg->spi;
  471. /* Configure pins before asserting CS */
  472. sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
  473. !!(spi->mode & SPI_CPHA),
  474. !!(spi->mode & SPI_3WIRE),
  475. !!(spi->mode & SPI_LSB_FIRST),
  476. !!(spi->mode & SPI_CS_HIGH));
  477. return 0;
  478. }
  479. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  480. {
  481. int ret;
  482. /* setup clock and rx/tx signals */
  483. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
  484. if (rx_buf && !ret)
  485. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
  486. if (!ret)
  487. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
  488. /* start by setting frame bit */
  489. if (!ret)
  490. ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
  491. return ret;
  492. }
  493. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  494. {
  495. int ret;
  496. /* shut down frame, rx/tx and clock signals */
  497. ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
  498. if (!ret)
  499. ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
  500. if (rx_buf && !ret)
  501. ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
  502. if (!ret)
  503. ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
  504. return ret;
  505. }
  506. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  507. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  508. const void *, int, int),
  509. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  510. void *, int, int),
  511. const void *tx_buf, void *rx_buf,
  512. int words, int bits)
  513. {
  514. int fifo_shift;
  515. int ret;
  516. /* limit maximum word transfer to rx/tx fifo size */
  517. if (tx_buf)
  518. words = min_t(int, words, p->tx_fifo_size);
  519. if (rx_buf)
  520. words = min_t(int, words, p->rx_fifo_size);
  521. /* the fifo contents need shifting */
  522. fifo_shift = 32 - bits;
  523. /* default FIFO watermarks for PIO */
  524. sh_msiof_write(p, FCTR, 0);
  525. /* setup msiof transfer mode registers */
  526. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  527. sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
  528. /* write tx fifo */
  529. if (tx_buf)
  530. tx_fifo(p, tx_buf, words, fifo_shift);
  531. reinit_completion(&p->done);
  532. ret = sh_msiof_spi_start(p, rx_buf);
  533. if (ret) {
  534. dev_err(&p->pdev->dev, "failed to start hardware\n");
  535. goto stop_ier;
  536. }
  537. /* wait for tx fifo to be emptied / rx fifo to be filled */
  538. ret = wait_for_completion_timeout(&p->done, HZ);
  539. if (!ret) {
  540. dev_err(&p->pdev->dev, "PIO timeout\n");
  541. ret = -ETIMEDOUT;
  542. goto stop_reset;
  543. }
  544. /* read rx fifo */
  545. if (rx_buf)
  546. rx_fifo(p, rx_buf, words, fifo_shift);
  547. /* clear status bits */
  548. sh_msiof_reset_str(p);
  549. ret = sh_msiof_spi_stop(p, rx_buf);
  550. if (ret) {
  551. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  552. return ret;
  553. }
  554. return words;
  555. stop_reset:
  556. sh_msiof_reset_str(p);
  557. sh_msiof_spi_stop(p, rx_buf);
  558. stop_ier:
  559. sh_msiof_write(p, IER, 0);
  560. return ret;
  561. }
  562. static void sh_msiof_dma_complete(void *arg)
  563. {
  564. struct sh_msiof_spi_priv *p = arg;
  565. sh_msiof_write(p, IER, 0);
  566. complete(&p->done);
  567. }
  568. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  569. void *rx, unsigned int len)
  570. {
  571. u32 ier_bits = 0;
  572. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  573. dma_cookie_t cookie;
  574. int ret;
  575. /* First prepare and submit the DMA request(s), as this may fail */
  576. if (rx) {
  577. ier_bits |= IER_RDREQE | IER_RDMAE;
  578. desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
  579. p->rx_dma_addr, len, DMA_FROM_DEVICE,
  580. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  581. if (!desc_rx)
  582. return -EAGAIN;
  583. desc_rx->callback = sh_msiof_dma_complete;
  584. desc_rx->callback_param = p;
  585. cookie = dmaengine_submit(desc_rx);
  586. if (dma_submit_error(cookie))
  587. return cookie;
  588. }
  589. if (tx) {
  590. ier_bits |= IER_TDREQE | IER_TDMAE;
  591. dma_sync_single_for_device(p->master->dma_tx->device->dev,
  592. p->tx_dma_addr, len, DMA_TO_DEVICE);
  593. desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
  594. p->tx_dma_addr, len, DMA_TO_DEVICE,
  595. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  596. if (!desc_tx) {
  597. ret = -EAGAIN;
  598. goto no_dma_tx;
  599. }
  600. if (rx) {
  601. /* No callback */
  602. desc_tx->callback = NULL;
  603. } else {
  604. desc_tx->callback = sh_msiof_dma_complete;
  605. desc_tx->callback_param = p;
  606. }
  607. cookie = dmaengine_submit(desc_tx);
  608. if (dma_submit_error(cookie)) {
  609. ret = cookie;
  610. goto no_dma_tx;
  611. }
  612. }
  613. /* 1 stage FIFO watermarks for DMA */
  614. sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
  615. /* setup msiof transfer mode registers (32-bit words) */
  616. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  617. sh_msiof_write(p, IER, ier_bits);
  618. reinit_completion(&p->done);
  619. /* Now start DMA */
  620. if (rx)
  621. dma_async_issue_pending(p->master->dma_rx);
  622. if (tx)
  623. dma_async_issue_pending(p->master->dma_tx);
  624. ret = sh_msiof_spi_start(p, rx);
  625. if (ret) {
  626. dev_err(&p->pdev->dev, "failed to start hardware\n");
  627. goto stop_dma;
  628. }
  629. /* wait for tx fifo to be emptied / rx fifo to be filled */
  630. ret = wait_for_completion_timeout(&p->done, HZ);
  631. if (!ret) {
  632. dev_err(&p->pdev->dev, "DMA timeout\n");
  633. ret = -ETIMEDOUT;
  634. goto stop_reset;
  635. }
  636. /* clear status bits */
  637. sh_msiof_reset_str(p);
  638. ret = sh_msiof_spi_stop(p, rx);
  639. if (ret) {
  640. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  641. return ret;
  642. }
  643. if (rx)
  644. dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
  645. p->rx_dma_addr, len,
  646. DMA_FROM_DEVICE);
  647. return 0;
  648. stop_reset:
  649. sh_msiof_reset_str(p);
  650. sh_msiof_spi_stop(p, rx);
  651. stop_dma:
  652. if (tx)
  653. dmaengine_terminate_all(p->master->dma_tx);
  654. no_dma_tx:
  655. if (rx)
  656. dmaengine_terminate_all(p->master->dma_rx);
  657. sh_msiof_write(p, IER, 0);
  658. return ret;
  659. }
  660. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  661. {
  662. /* src or dst can be unaligned, but not both */
  663. if ((unsigned long)src & 3) {
  664. while (words--) {
  665. *dst++ = swab32(get_unaligned(src));
  666. src++;
  667. }
  668. } else if ((unsigned long)dst & 3) {
  669. while (words--) {
  670. put_unaligned(swab32(*src++), dst);
  671. dst++;
  672. }
  673. } else {
  674. while (words--)
  675. *dst++ = swab32(*src++);
  676. }
  677. }
  678. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  679. {
  680. /* src or dst can be unaligned, but not both */
  681. if ((unsigned long)src & 3) {
  682. while (words--) {
  683. *dst++ = swahw32(get_unaligned(src));
  684. src++;
  685. }
  686. } else if ((unsigned long)dst & 3) {
  687. while (words--) {
  688. put_unaligned(swahw32(*src++), dst);
  689. dst++;
  690. }
  691. } else {
  692. while (words--)
  693. *dst++ = swahw32(*src++);
  694. }
  695. }
  696. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  697. {
  698. memcpy(dst, src, words * 4);
  699. }
  700. static int sh_msiof_transfer_one(struct spi_master *master,
  701. struct spi_device *spi,
  702. struct spi_transfer *t)
  703. {
  704. struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
  705. void (*copy32)(u32 *, const u32 *, unsigned int);
  706. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  707. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  708. const void *tx_buf = t->tx_buf;
  709. void *rx_buf = t->rx_buf;
  710. unsigned int len = t->len;
  711. unsigned int bits = t->bits_per_word;
  712. unsigned int bytes_per_word;
  713. unsigned int words;
  714. int n;
  715. bool swab;
  716. int ret;
  717. /* setup clocks (clock already enabled in chipselect()) */
  718. sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
  719. while (master->dma_tx && len > 15) {
  720. /*
  721. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  722. * words, with byte resp. word swapping.
  723. */
  724. unsigned int l = min(len, MAX_WDLEN * 4);
  725. if (bits <= 8) {
  726. if (l & 3)
  727. break;
  728. copy32 = copy_bswap32;
  729. } else if (bits <= 16) {
  730. if (l & 1)
  731. break;
  732. copy32 = copy_wswap32;
  733. } else {
  734. copy32 = copy_plain32;
  735. }
  736. if (tx_buf)
  737. copy32(p->tx_dma_page, tx_buf, l / 4);
  738. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  739. if (ret == -EAGAIN) {
  740. pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
  741. dev_driver_string(&p->pdev->dev),
  742. dev_name(&p->pdev->dev));
  743. break;
  744. }
  745. if (ret)
  746. return ret;
  747. if (rx_buf) {
  748. copy32(rx_buf, p->rx_dma_page, l / 4);
  749. rx_buf += l;
  750. }
  751. if (tx_buf)
  752. tx_buf += l;
  753. len -= l;
  754. if (!len)
  755. return 0;
  756. }
  757. if (bits <= 8 && len > 15 && !(len & 3)) {
  758. bits = 32;
  759. swab = true;
  760. } else {
  761. swab = false;
  762. }
  763. /* setup bytes per word and fifo read/write functions */
  764. if (bits <= 8) {
  765. bytes_per_word = 1;
  766. tx_fifo = sh_msiof_spi_write_fifo_8;
  767. rx_fifo = sh_msiof_spi_read_fifo_8;
  768. } else if (bits <= 16) {
  769. bytes_per_word = 2;
  770. if ((unsigned long)tx_buf & 0x01)
  771. tx_fifo = sh_msiof_spi_write_fifo_16u;
  772. else
  773. tx_fifo = sh_msiof_spi_write_fifo_16;
  774. if ((unsigned long)rx_buf & 0x01)
  775. rx_fifo = sh_msiof_spi_read_fifo_16u;
  776. else
  777. rx_fifo = sh_msiof_spi_read_fifo_16;
  778. } else if (swab) {
  779. bytes_per_word = 4;
  780. if ((unsigned long)tx_buf & 0x03)
  781. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  782. else
  783. tx_fifo = sh_msiof_spi_write_fifo_s32;
  784. if ((unsigned long)rx_buf & 0x03)
  785. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  786. else
  787. rx_fifo = sh_msiof_spi_read_fifo_s32;
  788. } else {
  789. bytes_per_word = 4;
  790. if ((unsigned long)tx_buf & 0x03)
  791. tx_fifo = sh_msiof_spi_write_fifo_32u;
  792. else
  793. tx_fifo = sh_msiof_spi_write_fifo_32;
  794. if ((unsigned long)rx_buf & 0x03)
  795. rx_fifo = sh_msiof_spi_read_fifo_32u;
  796. else
  797. rx_fifo = sh_msiof_spi_read_fifo_32;
  798. }
  799. /* transfer in fifo sized chunks */
  800. words = len / bytes_per_word;
  801. while (words > 0) {
  802. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  803. words, bits);
  804. if (n < 0)
  805. return n;
  806. if (tx_buf)
  807. tx_buf += n * bytes_per_word;
  808. if (rx_buf)
  809. rx_buf += n * bytes_per_word;
  810. words -= n;
  811. }
  812. return 0;
  813. }
  814. static const struct sh_msiof_chipdata sh_data = {
  815. .tx_fifo_size = 64,
  816. .rx_fifo_size = 64,
  817. .master_flags = 0,
  818. };
  819. static const struct sh_msiof_chipdata r8a779x_data = {
  820. .tx_fifo_size = 64,
  821. .rx_fifo_size = 256,
  822. .master_flags = SPI_MASTER_MUST_TX,
  823. };
  824. static const struct of_device_id sh_msiof_match[] = {
  825. { .compatible = "renesas,sh-msiof", .data = &sh_data },
  826. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  827. { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
  828. { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
  829. { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
  830. { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
  831. { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
  832. {},
  833. };
  834. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  835. #ifdef CONFIG_OF
  836. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  837. {
  838. struct sh_msiof_spi_info *info;
  839. struct device_node *np = dev->of_node;
  840. u32 num_cs = 1;
  841. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  842. if (!info)
  843. return NULL;
  844. /* Parse the MSIOF properties */
  845. of_property_read_u32(np, "num-cs", &num_cs);
  846. of_property_read_u32(np, "renesas,tx-fifo-size",
  847. &info->tx_fifo_override);
  848. of_property_read_u32(np, "renesas,rx-fifo-size",
  849. &info->rx_fifo_override);
  850. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  851. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  852. info->num_chipselect = num_cs;
  853. return info;
  854. }
  855. #else
  856. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  857. {
  858. return NULL;
  859. }
  860. #endif
  861. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  862. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  863. {
  864. dma_cap_mask_t mask;
  865. struct dma_chan *chan;
  866. struct dma_slave_config cfg;
  867. int ret;
  868. dma_cap_zero(mask);
  869. dma_cap_set(DMA_SLAVE, mask);
  870. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  871. (void *)(unsigned long)id, dev,
  872. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  873. if (!chan) {
  874. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  875. return NULL;
  876. }
  877. memset(&cfg, 0, sizeof(cfg));
  878. cfg.slave_id = id;
  879. cfg.direction = dir;
  880. if (dir == DMA_MEM_TO_DEV) {
  881. cfg.dst_addr = port_addr;
  882. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  883. } else {
  884. cfg.src_addr = port_addr;
  885. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  886. }
  887. ret = dmaengine_slave_config(chan, &cfg);
  888. if (ret) {
  889. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  890. dma_release_channel(chan);
  891. return NULL;
  892. }
  893. return chan;
  894. }
  895. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  896. {
  897. struct platform_device *pdev = p->pdev;
  898. struct device *dev = &pdev->dev;
  899. const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
  900. unsigned int dma_tx_id, dma_rx_id;
  901. const struct resource *res;
  902. struct spi_master *master;
  903. struct device *tx_dev, *rx_dev;
  904. if (dev->of_node) {
  905. /* In the OF case we will get the slave IDs from the DT */
  906. dma_tx_id = 0;
  907. dma_rx_id = 0;
  908. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  909. dma_tx_id = info->dma_tx_id;
  910. dma_rx_id = info->dma_rx_id;
  911. } else {
  912. /* The driver assumes no error */
  913. return 0;
  914. }
  915. /* The DMA engine uses the second register set, if present */
  916. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  917. if (!res)
  918. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  919. master = p->master;
  920. master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  921. dma_tx_id,
  922. res->start + TFDR);
  923. if (!master->dma_tx)
  924. return -ENODEV;
  925. master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  926. dma_rx_id,
  927. res->start + RFDR);
  928. if (!master->dma_rx)
  929. goto free_tx_chan;
  930. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  931. if (!p->tx_dma_page)
  932. goto free_rx_chan;
  933. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  934. if (!p->rx_dma_page)
  935. goto free_tx_page;
  936. tx_dev = master->dma_tx->device->dev;
  937. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  938. DMA_TO_DEVICE);
  939. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  940. goto free_rx_page;
  941. rx_dev = master->dma_rx->device->dev;
  942. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  943. DMA_FROM_DEVICE);
  944. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  945. goto unmap_tx_page;
  946. dev_info(dev, "DMA available");
  947. return 0;
  948. unmap_tx_page:
  949. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  950. free_rx_page:
  951. free_page((unsigned long)p->rx_dma_page);
  952. free_tx_page:
  953. free_page((unsigned long)p->tx_dma_page);
  954. free_rx_chan:
  955. dma_release_channel(master->dma_rx);
  956. free_tx_chan:
  957. dma_release_channel(master->dma_tx);
  958. master->dma_tx = NULL;
  959. return -ENODEV;
  960. }
  961. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  962. {
  963. struct spi_master *master = p->master;
  964. struct device *dev;
  965. if (!master->dma_tx)
  966. return;
  967. dev = &p->pdev->dev;
  968. dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
  969. PAGE_SIZE, DMA_FROM_DEVICE);
  970. dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
  971. PAGE_SIZE, DMA_TO_DEVICE);
  972. free_page((unsigned long)p->rx_dma_page);
  973. free_page((unsigned long)p->tx_dma_page);
  974. dma_release_channel(master->dma_rx);
  975. dma_release_channel(master->dma_tx);
  976. }
  977. static int sh_msiof_spi_probe(struct platform_device *pdev)
  978. {
  979. struct resource *r;
  980. struct spi_master *master;
  981. const struct of_device_id *of_id;
  982. struct sh_msiof_spi_priv *p;
  983. int i;
  984. int ret;
  985. master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
  986. if (master == NULL) {
  987. dev_err(&pdev->dev, "failed to allocate spi master\n");
  988. return -ENOMEM;
  989. }
  990. p = spi_master_get_devdata(master);
  991. platform_set_drvdata(pdev, p);
  992. p->master = master;
  993. of_id = of_match_device(sh_msiof_match, &pdev->dev);
  994. if (of_id) {
  995. p->chipdata = of_id->data;
  996. p->info = sh_msiof_spi_parse_dt(&pdev->dev);
  997. } else {
  998. p->chipdata = (const void *)pdev->id_entry->driver_data;
  999. p->info = dev_get_platdata(&pdev->dev);
  1000. }
  1001. if (!p->info) {
  1002. dev_err(&pdev->dev, "failed to obtain device info\n");
  1003. ret = -ENXIO;
  1004. goto err1;
  1005. }
  1006. init_completion(&p->done);
  1007. p->clk = devm_clk_get(&pdev->dev, NULL);
  1008. if (IS_ERR(p->clk)) {
  1009. dev_err(&pdev->dev, "cannot get clock\n");
  1010. ret = PTR_ERR(p->clk);
  1011. goto err1;
  1012. }
  1013. i = platform_get_irq(pdev, 0);
  1014. if (i < 0) {
  1015. dev_err(&pdev->dev, "cannot get platform IRQ\n");
  1016. ret = -ENOENT;
  1017. goto err1;
  1018. }
  1019. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1020. p->mapbase = devm_ioremap_resource(&pdev->dev, r);
  1021. if (IS_ERR(p->mapbase)) {
  1022. ret = PTR_ERR(p->mapbase);
  1023. goto err1;
  1024. }
  1025. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1026. dev_name(&pdev->dev), p);
  1027. if (ret) {
  1028. dev_err(&pdev->dev, "unable to request irq\n");
  1029. goto err1;
  1030. }
  1031. p->pdev = pdev;
  1032. pm_runtime_enable(&pdev->dev);
  1033. /* Platform data may override FIFO sizes */
  1034. p->tx_fifo_size = p->chipdata->tx_fifo_size;
  1035. p->rx_fifo_size = p->chipdata->rx_fifo_size;
  1036. if (p->info->tx_fifo_override)
  1037. p->tx_fifo_size = p->info->tx_fifo_override;
  1038. if (p->info->rx_fifo_override)
  1039. p->rx_fifo_size = p->info->rx_fifo_override;
  1040. /* init master code */
  1041. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1042. master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1043. master->flags = p->chipdata->master_flags;
  1044. master->bus_num = pdev->id;
  1045. master->dev.of_node = pdev->dev.of_node;
  1046. master->num_chipselect = p->info->num_chipselect;
  1047. master->setup = sh_msiof_spi_setup;
  1048. master->prepare_message = sh_msiof_prepare_message;
  1049. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
  1050. master->auto_runtime_pm = true;
  1051. master->transfer_one = sh_msiof_transfer_one;
  1052. ret = sh_msiof_request_dma(p);
  1053. if (ret < 0)
  1054. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1055. ret = devm_spi_register_master(&pdev->dev, master);
  1056. if (ret < 0) {
  1057. dev_err(&pdev->dev, "spi_register_master error.\n");
  1058. goto err2;
  1059. }
  1060. return 0;
  1061. err2:
  1062. sh_msiof_release_dma(p);
  1063. pm_runtime_disable(&pdev->dev);
  1064. err1:
  1065. spi_master_put(master);
  1066. return ret;
  1067. }
  1068. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1069. {
  1070. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1071. sh_msiof_release_dma(p);
  1072. pm_runtime_disable(&pdev->dev);
  1073. return 0;
  1074. }
  1075. static struct platform_device_id spi_driver_ids[] = {
  1076. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1077. { "spi_r8a7790_msiof", (kernel_ulong_t)&r8a779x_data },
  1078. { "spi_r8a7791_msiof", (kernel_ulong_t)&r8a779x_data },
  1079. { "spi_r8a7792_msiof", (kernel_ulong_t)&r8a779x_data },
  1080. { "spi_r8a7793_msiof", (kernel_ulong_t)&r8a779x_data },
  1081. { "spi_r8a7794_msiof", (kernel_ulong_t)&r8a779x_data },
  1082. {},
  1083. };
  1084. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1085. static struct platform_driver sh_msiof_spi_drv = {
  1086. .probe = sh_msiof_spi_probe,
  1087. .remove = sh_msiof_spi_remove,
  1088. .id_table = spi_driver_ids,
  1089. .driver = {
  1090. .name = "spi_sh_msiof",
  1091. .of_match_table = of_match_ptr(sh_msiof_match),
  1092. },
  1093. };
  1094. module_platform_driver(sh_msiof_spi_drv);
  1095. MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
  1096. MODULE_AUTHOR("Magnus Damm");
  1097. MODULE_LICENSE("GPL v2");
  1098. MODULE_ALIAS("platform:spi_sh_msiof");