udp.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <linux/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/inetdevice.h>
  92. #include <linux/in.h>
  93. #include <linux/errno.h>
  94. #include <linux/timer.h>
  95. #include <linux/mm.h>
  96. #include <linux/inet.h>
  97. #include <linux/netdevice.h>
  98. #include <linux/slab.h>
  99. #include <net/tcp_states.h>
  100. #include <linux/skbuff.h>
  101. #include <linux/proc_fs.h>
  102. #include <linux/seq_file.h>
  103. #include <net/net_namespace.h>
  104. #include <net/icmp.h>
  105. #include <net/inet_hashtables.h>
  106. #include <net/route.h>
  107. #include <net/checksum.h>
  108. #include <net/xfrm.h>
  109. #include <trace/events/udp.h>
  110. #include <linux/static_key.h>
  111. #include <trace/events/skb.h>
  112. #include <net/busy_poll.h>
  113. #include "udp_impl.h"
  114. #include <net/sock_reuseport.h>
  115. #include <net/addrconf.h>
  116. struct udp_table udp_table __read_mostly;
  117. EXPORT_SYMBOL(udp_table);
  118. long sysctl_udp_mem[3] __read_mostly;
  119. EXPORT_SYMBOL(sysctl_udp_mem);
  120. atomic_long_t udp_memory_allocated;
  121. EXPORT_SYMBOL(udp_memory_allocated);
  122. #define MAX_UDP_PORTS 65536
  123. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  124. /* IPCB reference means this can not be used from early demux */
  125. static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
  126. {
  127. #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
  128. if (!net->ipv4.sysctl_udp_l3mdev_accept &&
  129. skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
  130. return true;
  131. #endif
  132. return false;
  133. }
  134. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  135. const struct udp_hslot *hslot,
  136. unsigned long *bitmap,
  137. struct sock *sk, unsigned int log)
  138. {
  139. struct sock *sk2;
  140. kuid_t uid = sock_i_uid(sk);
  141. sk_for_each(sk2, &hslot->head) {
  142. if (net_eq(sock_net(sk2), net) &&
  143. sk2 != sk &&
  144. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  145. (!sk2->sk_reuse || !sk->sk_reuse) &&
  146. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  147. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  148. inet_rcv_saddr_equal(sk, sk2, true)) {
  149. if (sk2->sk_reuseport && sk->sk_reuseport &&
  150. !rcu_access_pointer(sk->sk_reuseport_cb) &&
  151. uid_eq(uid, sock_i_uid(sk2))) {
  152. if (!bitmap)
  153. return 0;
  154. } else {
  155. if (!bitmap)
  156. return 1;
  157. __set_bit(udp_sk(sk2)->udp_port_hash >> log,
  158. bitmap);
  159. }
  160. }
  161. }
  162. return 0;
  163. }
  164. /*
  165. * Note: we still hold spinlock of primary hash chain, so no other writer
  166. * can insert/delete a socket with local_port == num
  167. */
  168. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  169. struct udp_hslot *hslot2,
  170. struct sock *sk)
  171. {
  172. struct sock *sk2;
  173. kuid_t uid = sock_i_uid(sk);
  174. int res = 0;
  175. spin_lock(&hslot2->lock);
  176. udp_portaddr_for_each_entry(sk2, &hslot2->head) {
  177. if (net_eq(sock_net(sk2), net) &&
  178. sk2 != sk &&
  179. (udp_sk(sk2)->udp_port_hash == num) &&
  180. (!sk2->sk_reuse || !sk->sk_reuse) &&
  181. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  182. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  183. inet_rcv_saddr_equal(sk, sk2, true)) {
  184. if (sk2->sk_reuseport && sk->sk_reuseport &&
  185. !rcu_access_pointer(sk->sk_reuseport_cb) &&
  186. uid_eq(uid, sock_i_uid(sk2))) {
  187. res = 0;
  188. } else {
  189. res = 1;
  190. }
  191. break;
  192. }
  193. }
  194. spin_unlock(&hslot2->lock);
  195. return res;
  196. }
  197. static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
  198. {
  199. struct net *net = sock_net(sk);
  200. kuid_t uid = sock_i_uid(sk);
  201. struct sock *sk2;
  202. sk_for_each(sk2, &hslot->head) {
  203. if (net_eq(sock_net(sk2), net) &&
  204. sk2 != sk &&
  205. sk2->sk_family == sk->sk_family &&
  206. ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
  207. (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
  208. (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  209. sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
  210. inet_rcv_saddr_equal(sk, sk2, false)) {
  211. return reuseport_add_sock(sk, sk2);
  212. }
  213. }
  214. return reuseport_alloc(sk);
  215. }
  216. /**
  217. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  218. *
  219. * @sk: socket struct in question
  220. * @snum: port number to look up
  221. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  222. * with NULL address
  223. */
  224. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  225. unsigned int hash2_nulladdr)
  226. {
  227. struct udp_hslot *hslot, *hslot2;
  228. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  229. int error = 1;
  230. struct net *net = sock_net(sk);
  231. if (!snum) {
  232. int low, high, remaining;
  233. unsigned int rand;
  234. unsigned short first, last;
  235. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  236. inet_get_local_port_range(net, &low, &high);
  237. remaining = (high - low) + 1;
  238. rand = prandom_u32();
  239. first = reciprocal_scale(rand, remaining) + low;
  240. /*
  241. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  242. */
  243. rand = (rand | 1) * (udptable->mask + 1);
  244. last = first + udptable->mask + 1;
  245. do {
  246. hslot = udp_hashslot(udptable, net, first);
  247. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  248. spin_lock_bh(&hslot->lock);
  249. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  250. udptable->log);
  251. snum = first;
  252. /*
  253. * Iterate on all possible values of snum for this hash.
  254. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  255. * give us randomization and full range coverage.
  256. */
  257. do {
  258. if (low <= snum && snum <= high &&
  259. !test_bit(snum >> udptable->log, bitmap) &&
  260. !inet_is_local_reserved_port(net, snum))
  261. goto found;
  262. snum += rand;
  263. } while (snum != first);
  264. spin_unlock_bh(&hslot->lock);
  265. cond_resched();
  266. } while (++first != last);
  267. goto fail;
  268. } else {
  269. hslot = udp_hashslot(udptable, net, snum);
  270. spin_lock_bh(&hslot->lock);
  271. if (hslot->count > 10) {
  272. int exist;
  273. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  274. slot2 &= udptable->mask;
  275. hash2_nulladdr &= udptable->mask;
  276. hslot2 = udp_hashslot2(udptable, slot2);
  277. if (hslot->count < hslot2->count)
  278. goto scan_primary_hash;
  279. exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
  280. if (!exist && (hash2_nulladdr != slot2)) {
  281. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  282. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  283. sk);
  284. }
  285. if (exist)
  286. goto fail_unlock;
  287. else
  288. goto found;
  289. }
  290. scan_primary_hash:
  291. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
  292. goto fail_unlock;
  293. }
  294. found:
  295. inet_sk(sk)->inet_num = snum;
  296. udp_sk(sk)->udp_port_hash = snum;
  297. udp_sk(sk)->udp_portaddr_hash ^= snum;
  298. if (sk_unhashed(sk)) {
  299. if (sk->sk_reuseport &&
  300. udp_reuseport_add_sock(sk, hslot)) {
  301. inet_sk(sk)->inet_num = 0;
  302. udp_sk(sk)->udp_port_hash = 0;
  303. udp_sk(sk)->udp_portaddr_hash ^= snum;
  304. goto fail_unlock;
  305. }
  306. sk_add_node_rcu(sk, &hslot->head);
  307. hslot->count++;
  308. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  309. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  310. spin_lock(&hslot2->lock);
  311. if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
  312. sk->sk_family == AF_INET6)
  313. hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
  314. &hslot2->head);
  315. else
  316. hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  317. &hslot2->head);
  318. hslot2->count++;
  319. spin_unlock(&hslot2->lock);
  320. }
  321. sock_set_flag(sk, SOCK_RCU_FREE);
  322. error = 0;
  323. fail_unlock:
  324. spin_unlock_bh(&hslot->lock);
  325. fail:
  326. return error;
  327. }
  328. EXPORT_SYMBOL(udp_lib_get_port);
  329. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  330. {
  331. unsigned int hash2_nulladdr =
  332. ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  333. unsigned int hash2_partial =
  334. ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  335. /* precompute partial secondary hash */
  336. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  337. return udp_lib_get_port(sk, snum, hash2_nulladdr);
  338. }
  339. static int compute_score(struct sock *sk, struct net *net,
  340. __be32 saddr, __be16 sport,
  341. __be32 daddr, unsigned short hnum,
  342. int dif, int sdif, bool exact_dif)
  343. {
  344. int score;
  345. struct inet_sock *inet;
  346. if (!net_eq(sock_net(sk), net) ||
  347. udp_sk(sk)->udp_port_hash != hnum ||
  348. ipv6_only_sock(sk))
  349. return -1;
  350. score = (sk->sk_family == PF_INET) ? 2 : 1;
  351. inet = inet_sk(sk);
  352. if (inet->inet_rcv_saddr) {
  353. if (inet->inet_rcv_saddr != daddr)
  354. return -1;
  355. score += 4;
  356. }
  357. if (inet->inet_daddr) {
  358. if (inet->inet_daddr != saddr)
  359. return -1;
  360. score += 4;
  361. }
  362. if (inet->inet_dport) {
  363. if (inet->inet_dport != sport)
  364. return -1;
  365. score += 4;
  366. }
  367. if (sk->sk_bound_dev_if || exact_dif) {
  368. bool dev_match = (sk->sk_bound_dev_if == dif ||
  369. sk->sk_bound_dev_if == sdif);
  370. if (exact_dif && !dev_match)
  371. return -1;
  372. if (sk->sk_bound_dev_if && dev_match)
  373. score += 4;
  374. }
  375. if (sk->sk_incoming_cpu == raw_smp_processor_id())
  376. score++;
  377. return score;
  378. }
  379. static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
  380. const __u16 lport, const __be32 faddr,
  381. const __be16 fport)
  382. {
  383. static u32 udp_ehash_secret __read_mostly;
  384. net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
  385. return __inet_ehashfn(laddr, lport, faddr, fport,
  386. udp_ehash_secret + net_hash_mix(net));
  387. }
  388. /* called with rcu_read_lock() */
  389. static struct sock *udp4_lib_lookup2(struct net *net,
  390. __be32 saddr, __be16 sport,
  391. __be32 daddr, unsigned int hnum,
  392. int dif, int sdif, bool exact_dif,
  393. struct udp_hslot *hslot2,
  394. struct sk_buff *skb)
  395. {
  396. struct sock *sk, *result;
  397. int score, badness;
  398. u32 hash = 0;
  399. result = NULL;
  400. badness = 0;
  401. udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
  402. score = compute_score(sk, net, saddr, sport,
  403. daddr, hnum, dif, sdif, exact_dif);
  404. if (score > badness) {
  405. if (sk->sk_reuseport) {
  406. hash = udp_ehashfn(net, daddr, hnum,
  407. saddr, sport);
  408. result = reuseport_select_sock(sk, hash, skb,
  409. sizeof(struct udphdr));
  410. if (result)
  411. return result;
  412. }
  413. badness = score;
  414. result = sk;
  415. }
  416. }
  417. return result;
  418. }
  419. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  420. * harder than this. -DaveM
  421. */
  422. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  423. __be16 sport, __be32 daddr, __be16 dport, int dif,
  424. int sdif, struct udp_table *udptable, struct sk_buff *skb)
  425. {
  426. struct sock *sk, *result;
  427. unsigned short hnum = ntohs(dport);
  428. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  429. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  430. bool exact_dif = udp_lib_exact_dif_match(net, skb);
  431. int score, badness;
  432. u32 hash = 0;
  433. if (hslot->count > 10) {
  434. hash2 = ipv4_portaddr_hash(net, daddr, hnum);
  435. slot2 = hash2 & udptable->mask;
  436. hslot2 = &udptable->hash2[slot2];
  437. if (hslot->count < hslot2->count)
  438. goto begin;
  439. result = udp4_lib_lookup2(net, saddr, sport,
  440. daddr, hnum, dif, sdif,
  441. exact_dif, hslot2, skb);
  442. if (!result) {
  443. unsigned int old_slot2 = slot2;
  444. hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  445. slot2 = hash2 & udptable->mask;
  446. /* avoid searching the same slot again. */
  447. if (unlikely(slot2 == old_slot2))
  448. return result;
  449. hslot2 = &udptable->hash2[slot2];
  450. if (hslot->count < hslot2->count)
  451. goto begin;
  452. result = udp4_lib_lookup2(net, saddr, sport,
  453. daddr, hnum, dif, sdif,
  454. exact_dif, hslot2, skb);
  455. }
  456. return result;
  457. }
  458. begin:
  459. result = NULL;
  460. badness = 0;
  461. sk_for_each_rcu(sk, &hslot->head) {
  462. score = compute_score(sk, net, saddr, sport,
  463. daddr, hnum, dif, sdif, exact_dif);
  464. if (score > badness) {
  465. if (sk->sk_reuseport) {
  466. hash = udp_ehashfn(net, daddr, hnum,
  467. saddr, sport);
  468. result = reuseport_select_sock(sk, hash, skb,
  469. sizeof(struct udphdr));
  470. if (result)
  471. return result;
  472. }
  473. result = sk;
  474. badness = score;
  475. }
  476. }
  477. return result;
  478. }
  479. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  480. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  481. __be16 sport, __be16 dport,
  482. struct udp_table *udptable)
  483. {
  484. const struct iphdr *iph = ip_hdr(skb);
  485. return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
  486. iph->daddr, dport, inet_iif(skb),
  487. inet_sdif(skb), udptable, skb);
  488. }
  489. struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
  490. __be16 sport, __be16 dport)
  491. {
  492. return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
  493. }
  494. EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
  495. /* Must be called under rcu_read_lock().
  496. * Does increment socket refcount.
  497. */
  498. #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
  499. IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
  500. IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
  501. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  502. __be32 daddr, __be16 dport, int dif)
  503. {
  504. struct sock *sk;
  505. sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
  506. dif, 0, &udp_table, NULL);
  507. if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
  508. sk = NULL;
  509. return sk;
  510. }
  511. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  512. #endif
  513. static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
  514. __be16 loc_port, __be32 loc_addr,
  515. __be16 rmt_port, __be32 rmt_addr,
  516. int dif, int sdif, unsigned short hnum)
  517. {
  518. struct inet_sock *inet = inet_sk(sk);
  519. if (!net_eq(sock_net(sk), net) ||
  520. udp_sk(sk)->udp_port_hash != hnum ||
  521. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  522. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  523. (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
  524. ipv6_only_sock(sk) ||
  525. (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
  526. sk->sk_bound_dev_if != sdif))
  527. return false;
  528. if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
  529. return false;
  530. return true;
  531. }
  532. /*
  533. * This routine is called by the ICMP module when it gets some
  534. * sort of error condition. If err < 0 then the socket should
  535. * be closed and the error returned to the user. If err > 0
  536. * it's just the icmp type << 8 | icmp code.
  537. * Header points to the ip header of the error packet. We move
  538. * on past this. Then (as it used to claim before adjustment)
  539. * header points to the first 8 bytes of the udp header. We need
  540. * to find the appropriate port.
  541. */
  542. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  543. {
  544. struct inet_sock *inet;
  545. const struct iphdr *iph = (const struct iphdr *)skb->data;
  546. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  547. const int type = icmp_hdr(skb)->type;
  548. const int code = icmp_hdr(skb)->code;
  549. struct sock *sk;
  550. int harderr;
  551. int err;
  552. struct net *net = dev_net(skb->dev);
  553. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  554. iph->saddr, uh->source, skb->dev->ifindex, 0,
  555. udptable, NULL);
  556. if (!sk) {
  557. __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
  558. return; /* No socket for error */
  559. }
  560. err = 0;
  561. harderr = 0;
  562. inet = inet_sk(sk);
  563. switch (type) {
  564. default:
  565. case ICMP_TIME_EXCEEDED:
  566. err = EHOSTUNREACH;
  567. break;
  568. case ICMP_SOURCE_QUENCH:
  569. goto out;
  570. case ICMP_PARAMETERPROB:
  571. err = EPROTO;
  572. harderr = 1;
  573. break;
  574. case ICMP_DEST_UNREACH:
  575. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  576. ipv4_sk_update_pmtu(skb, sk, info);
  577. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  578. err = EMSGSIZE;
  579. harderr = 1;
  580. break;
  581. }
  582. goto out;
  583. }
  584. err = EHOSTUNREACH;
  585. if (code <= NR_ICMP_UNREACH) {
  586. harderr = icmp_err_convert[code].fatal;
  587. err = icmp_err_convert[code].errno;
  588. }
  589. break;
  590. case ICMP_REDIRECT:
  591. ipv4_sk_redirect(skb, sk);
  592. goto out;
  593. }
  594. /*
  595. * RFC1122: OK. Passes ICMP errors back to application, as per
  596. * 4.1.3.3.
  597. */
  598. if (!inet->recverr) {
  599. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  600. goto out;
  601. } else
  602. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  603. sk->sk_err = err;
  604. sk->sk_error_report(sk);
  605. out:
  606. return;
  607. }
  608. void udp_err(struct sk_buff *skb, u32 info)
  609. {
  610. __udp4_lib_err(skb, info, &udp_table);
  611. }
  612. /*
  613. * Throw away all pending data and cancel the corking. Socket is locked.
  614. */
  615. void udp_flush_pending_frames(struct sock *sk)
  616. {
  617. struct udp_sock *up = udp_sk(sk);
  618. if (up->pending) {
  619. up->len = 0;
  620. up->pending = 0;
  621. ip_flush_pending_frames(sk);
  622. }
  623. }
  624. EXPORT_SYMBOL(udp_flush_pending_frames);
  625. /**
  626. * udp4_hwcsum - handle outgoing HW checksumming
  627. * @skb: sk_buff containing the filled-in UDP header
  628. * (checksum field must be zeroed out)
  629. * @src: source IP address
  630. * @dst: destination IP address
  631. */
  632. void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  633. {
  634. struct udphdr *uh = udp_hdr(skb);
  635. int offset = skb_transport_offset(skb);
  636. int len = skb->len - offset;
  637. int hlen = len;
  638. __wsum csum = 0;
  639. if (!skb_has_frag_list(skb)) {
  640. /*
  641. * Only one fragment on the socket.
  642. */
  643. skb->csum_start = skb_transport_header(skb) - skb->head;
  644. skb->csum_offset = offsetof(struct udphdr, check);
  645. uh->check = ~csum_tcpudp_magic(src, dst, len,
  646. IPPROTO_UDP, 0);
  647. } else {
  648. struct sk_buff *frags;
  649. /*
  650. * HW-checksum won't work as there are two or more
  651. * fragments on the socket so that all csums of sk_buffs
  652. * should be together
  653. */
  654. skb_walk_frags(skb, frags) {
  655. csum = csum_add(csum, frags->csum);
  656. hlen -= frags->len;
  657. }
  658. csum = skb_checksum(skb, offset, hlen, csum);
  659. skb->ip_summed = CHECKSUM_NONE;
  660. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  661. if (uh->check == 0)
  662. uh->check = CSUM_MANGLED_0;
  663. }
  664. }
  665. EXPORT_SYMBOL_GPL(udp4_hwcsum);
  666. /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
  667. * for the simple case like when setting the checksum for a UDP tunnel.
  668. */
  669. void udp_set_csum(bool nocheck, struct sk_buff *skb,
  670. __be32 saddr, __be32 daddr, int len)
  671. {
  672. struct udphdr *uh = udp_hdr(skb);
  673. if (nocheck) {
  674. uh->check = 0;
  675. } else if (skb_is_gso(skb)) {
  676. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  677. } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
  678. uh->check = 0;
  679. uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
  680. if (uh->check == 0)
  681. uh->check = CSUM_MANGLED_0;
  682. } else {
  683. skb->ip_summed = CHECKSUM_PARTIAL;
  684. skb->csum_start = skb_transport_header(skb) - skb->head;
  685. skb->csum_offset = offsetof(struct udphdr, check);
  686. uh->check = ~udp_v4_check(len, saddr, daddr, 0);
  687. }
  688. }
  689. EXPORT_SYMBOL(udp_set_csum);
  690. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  691. {
  692. struct sock *sk = skb->sk;
  693. struct inet_sock *inet = inet_sk(sk);
  694. struct udphdr *uh;
  695. int err = 0;
  696. int is_udplite = IS_UDPLITE(sk);
  697. int offset = skb_transport_offset(skb);
  698. int len = skb->len - offset;
  699. __wsum csum = 0;
  700. /*
  701. * Create a UDP header
  702. */
  703. uh = udp_hdr(skb);
  704. uh->source = inet->inet_sport;
  705. uh->dest = fl4->fl4_dport;
  706. uh->len = htons(len);
  707. uh->check = 0;
  708. if (is_udplite) /* UDP-Lite */
  709. csum = udplite_csum(skb);
  710. else if (sk->sk_no_check_tx) { /* UDP csum off */
  711. skb->ip_summed = CHECKSUM_NONE;
  712. goto send;
  713. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  714. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  715. goto send;
  716. } else
  717. csum = udp_csum(skb);
  718. /* add protocol-dependent pseudo-header */
  719. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  720. sk->sk_protocol, csum);
  721. if (uh->check == 0)
  722. uh->check = CSUM_MANGLED_0;
  723. send:
  724. err = ip_send_skb(sock_net(sk), skb);
  725. if (err) {
  726. if (err == -ENOBUFS && !inet->recverr) {
  727. UDP_INC_STATS(sock_net(sk),
  728. UDP_MIB_SNDBUFERRORS, is_udplite);
  729. err = 0;
  730. }
  731. } else
  732. UDP_INC_STATS(sock_net(sk),
  733. UDP_MIB_OUTDATAGRAMS, is_udplite);
  734. return err;
  735. }
  736. /*
  737. * Push out all pending data as one UDP datagram. Socket is locked.
  738. */
  739. int udp_push_pending_frames(struct sock *sk)
  740. {
  741. struct udp_sock *up = udp_sk(sk);
  742. struct inet_sock *inet = inet_sk(sk);
  743. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  744. struct sk_buff *skb;
  745. int err = 0;
  746. skb = ip_finish_skb(sk, fl4);
  747. if (!skb)
  748. goto out;
  749. err = udp_send_skb(skb, fl4);
  750. out:
  751. up->len = 0;
  752. up->pending = 0;
  753. return err;
  754. }
  755. EXPORT_SYMBOL(udp_push_pending_frames);
  756. int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  757. {
  758. struct inet_sock *inet = inet_sk(sk);
  759. struct udp_sock *up = udp_sk(sk);
  760. struct flowi4 fl4_stack;
  761. struct flowi4 *fl4;
  762. int ulen = len;
  763. struct ipcm_cookie ipc;
  764. struct rtable *rt = NULL;
  765. int free = 0;
  766. int connected = 0;
  767. __be32 daddr, faddr, saddr;
  768. __be16 dport;
  769. u8 tos;
  770. int err, is_udplite = IS_UDPLITE(sk);
  771. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  772. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  773. struct sk_buff *skb;
  774. struct ip_options_data opt_copy;
  775. if (len > 0xFFFF)
  776. return -EMSGSIZE;
  777. /*
  778. * Check the flags.
  779. */
  780. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  781. return -EOPNOTSUPP;
  782. ipc.opt = NULL;
  783. ipc.tx_flags = 0;
  784. ipc.ttl = 0;
  785. ipc.tos = -1;
  786. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  787. fl4 = &inet->cork.fl.u.ip4;
  788. if (up->pending) {
  789. /*
  790. * There are pending frames.
  791. * The socket lock must be held while it's corked.
  792. */
  793. lock_sock(sk);
  794. if (likely(up->pending)) {
  795. if (unlikely(up->pending != AF_INET)) {
  796. release_sock(sk);
  797. return -EINVAL;
  798. }
  799. goto do_append_data;
  800. }
  801. release_sock(sk);
  802. }
  803. ulen += sizeof(struct udphdr);
  804. /*
  805. * Get and verify the address.
  806. */
  807. if (msg->msg_name) {
  808. DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
  809. if (msg->msg_namelen < sizeof(*usin))
  810. return -EINVAL;
  811. if (usin->sin_family != AF_INET) {
  812. if (usin->sin_family != AF_UNSPEC)
  813. return -EAFNOSUPPORT;
  814. }
  815. daddr = usin->sin_addr.s_addr;
  816. dport = usin->sin_port;
  817. if (dport == 0)
  818. return -EINVAL;
  819. } else {
  820. if (sk->sk_state != TCP_ESTABLISHED)
  821. return -EDESTADDRREQ;
  822. daddr = inet->inet_daddr;
  823. dport = inet->inet_dport;
  824. /* Open fast path for connected socket.
  825. Route will not be used, if at least one option is set.
  826. */
  827. connected = 1;
  828. }
  829. ipc.sockc.tsflags = sk->sk_tsflags;
  830. ipc.addr = inet->inet_saddr;
  831. ipc.oif = sk->sk_bound_dev_if;
  832. if (msg->msg_controllen) {
  833. err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
  834. if (unlikely(err)) {
  835. kfree(ipc.opt);
  836. return err;
  837. }
  838. if (ipc.opt)
  839. free = 1;
  840. connected = 0;
  841. }
  842. if (!ipc.opt) {
  843. struct ip_options_rcu *inet_opt;
  844. rcu_read_lock();
  845. inet_opt = rcu_dereference(inet->inet_opt);
  846. if (inet_opt) {
  847. memcpy(&opt_copy, inet_opt,
  848. sizeof(*inet_opt) + inet_opt->opt.optlen);
  849. ipc.opt = &opt_copy.opt;
  850. }
  851. rcu_read_unlock();
  852. }
  853. saddr = ipc.addr;
  854. ipc.addr = faddr = daddr;
  855. sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
  856. if (ipc.opt && ipc.opt->opt.srr) {
  857. if (!daddr)
  858. return -EINVAL;
  859. faddr = ipc.opt->opt.faddr;
  860. connected = 0;
  861. }
  862. tos = get_rttos(&ipc, inet);
  863. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  864. (msg->msg_flags & MSG_DONTROUTE) ||
  865. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  866. tos |= RTO_ONLINK;
  867. connected = 0;
  868. }
  869. if (ipv4_is_multicast(daddr)) {
  870. if (!ipc.oif)
  871. ipc.oif = inet->mc_index;
  872. if (!saddr)
  873. saddr = inet->mc_addr;
  874. connected = 0;
  875. } else if (!ipc.oif) {
  876. ipc.oif = inet->uc_index;
  877. } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
  878. /* oif is set, packet is to local broadcast and
  879. * and uc_index is set. oif is most likely set
  880. * by sk_bound_dev_if. If uc_index != oif check if the
  881. * oif is an L3 master and uc_index is an L3 slave.
  882. * If so, we want to allow the send using the uc_index.
  883. */
  884. if (ipc.oif != inet->uc_index &&
  885. ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
  886. inet->uc_index)) {
  887. ipc.oif = inet->uc_index;
  888. }
  889. }
  890. if (connected)
  891. rt = (struct rtable *)sk_dst_check(sk, 0);
  892. if (!rt) {
  893. struct net *net = sock_net(sk);
  894. __u8 flow_flags = inet_sk_flowi_flags(sk);
  895. fl4 = &fl4_stack;
  896. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  897. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  898. flow_flags,
  899. faddr, saddr, dport, inet->inet_sport,
  900. sk->sk_uid);
  901. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  902. rt = ip_route_output_flow(net, fl4, sk);
  903. if (IS_ERR(rt)) {
  904. err = PTR_ERR(rt);
  905. rt = NULL;
  906. if (err == -ENETUNREACH)
  907. IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
  908. goto out;
  909. }
  910. err = -EACCES;
  911. if ((rt->rt_flags & RTCF_BROADCAST) &&
  912. !sock_flag(sk, SOCK_BROADCAST))
  913. goto out;
  914. if (connected)
  915. sk_dst_set(sk, dst_clone(&rt->dst));
  916. }
  917. if (msg->msg_flags&MSG_CONFIRM)
  918. goto do_confirm;
  919. back_from_confirm:
  920. saddr = fl4->saddr;
  921. if (!ipc.addr)
  922. daddr = ipc.addr = fl4->daddr;
  923. /* Lockless fast path for the non-corking case. */
  924. if (!corkreq) {
  925. skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
  926. sizeof(struct udphdr), &ipc, &rt,
  927. msg->msg_flags);
  928. err = PTR_ERR(skb);
  929. if (!IS_ERR_OR_NULL(skb))
  930. err = udp_send_skb(skb, fl4);
  931. goto out;
  932. }
  933. lock_sock(sk);
  934. if (unlikely(up->pending)) {
  935. /* The socket is already corked while preparing it. */
  936. /* ... which is an evident application bug. --ANK */
  937. release_sock(sk);
  938. net_dbg_ratelimited("socket already corked\n");
  939. err = -EINVAL;
  940. goto out;
  941. }
  942. /*
  943. * Now cork the socket to pend data.
  944. */
  945. fl4 = &inet->cork.fl.u.ip4;
  946. fl4->daddr = daddr;
  947. fl4->saddr = saddr;
  948. fl4->fl4_dport = dport;
  949. fl4->fl4_sport = inet->inet_sport;
  950. up->pending = AF_INET;
  951. do_append_data:
  952. up->len += ulen;
  953. err = ip_append_data(sk, fl4, getfrag, msg, ulen,
  954. sizeof(struct udphdr), &ipc, &rt,
  955. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  956. if (err)
  957. udp_flush_pending_frames(sk);
  958. else if (!corkreq)
  959. err = udp_push_pending_frames(sk);
  960. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  961. up->pending = 0;
  962. release_sock(sk);
  963. out:
  964. ip_rt_put(rt);
  965. if (free)
  966. kfree(ipc.opt);
  967. if (!err)
  968. return len;
  969. /*
  970. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  971. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  972. * we don't have a good statistic (IpOutDiscards but it can be too many
  973. * things). We could add another new stat but at least for now that
  974. * seems like overkill.
  975. */
  976. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  977. UDP_INC_STATS(sock_net(sk),
  978. UDP_MIB_SNDBUFERRORS, is_udplite);
  979. }
  980. return err;
  981. do_confirm:
  982. if (msg->msg_flags & MSG_PROBE)
  983. dst_confirm_neigh(&rt->dst, &fl4->daddr);
  984. if (!(msg->msg_flags&MSG_PROBE) || len)
  985. goto back_from_confirm;
  986. err = 0;
  987. goto out;
  988. }
  989. EXPORT_SYMBOL(udp_sendmsg);
  990. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  991. size_t size, int flags)
  992. {
  993. struct inet_sock *inet = inet_sk(sk);
  994. struct udp_sock *up = udp_sk(sk);
  995. int ret;
  996. if (flags & MSG_SENDPAGE_NOTLAST)
  997. flags |= MSG_MORE;
  998. if (!up->pending) {
  999. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  1000. /* Call udp_sendmsg to specify destination address which
  1001. * sendpage interface can't pass.
  1002. * This will succeed only when the socket is connected.
  1003. */
  1004. ret = udp_sendmsg(sk, &msg, 0);
  1005. if (ret < 0)
  1006. return ret;
  1007. }
  1008. lock_sock(sk);
  1009. if (unlikely(!up->pending)) {
  1010. release_sock(sk);
  1011. net_dbg_ratelimited("cork failed\n");
  1012. return -EINVAL;
  1013. }
  1014. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  1015. page, offset, size, flags);
  1016. if (ret == -EOPNOTSUPP) {
  1017. release_sock(sk);
  1018. return sock_no_sendpage(sk->sk_socket, page, offset,
  1019. size, flags);
  1020. }
  1021. if (ret < 0) {
  1022. udp_flush_pending_frames(sk);
  1023. goto out;
  1024. }
  1025. up->len += size;
  1026. if (!(up->corkflag || (flags&MSG_MORE)))
  1027. ret = udp_push_pending_frames(sk);
  1028. if (!ret)
  1029. ret = size;
  1030. out:
  1031. release_sock(sk);
  1032. return ret;
  1033. }
  1034. #define UDP_SKB_IS_STATELESS 0x80000000
  1035. static void udp_set_dev_scratch(struct sk_buff *skb)
  1036. {
  1037. struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
  1038. BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
  1039. scratch->_tsize_state = skb->truesize;
  1040. #if BITS_PER_LONG == 64
  1041. scratch->len = skb->len;
  1042. scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
  1043. scratch->is_linear = !skb_is_nonlinear(skb);
  1044. #endif
  1045. /* all head states execept sp (dst, sk, nf) are always cleared by
  1046. * udp_rcv() and we need to preserve secpath, if present, to eventually
  1047. * process IP_CMSG_PASSSEC at recvmsg() time
  1048. */
  1049. if (likely(!skb_sec_path(skb)))
  1050. scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
  1051. }
  1052. static int udp_skb_truesize(struct sk_buff *skb)
  1053. {
  1054. return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
  1055. }
  1056. static bool udp_skb_has_head_state(struct sk_buff *skb)
  1057. {
  1058. return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
  1059. }
  1060. /* fully reclaim rmem/fwd memory allocated for skb */
  1061. static void udp_rmem_release(struct sock *sk, int size, int partial,
  1062. bool rx_queue_lock_held)
  1063. {
  1064. struct udp_sock *up = udp_sk(sk);
  1065. struct sk_buff_head *sk_queue;
  1066. int amt;
  1067. if (likely(partial)) {
  1068. up->forward_deficit += size;
  1069. size = up->forward_deficit;
  1070. if (size < (sk->sk_rcvbuf >> 2))
  1071. return;
  1072. } else {
  1073. size += up->forward_deficit;
  1074. }
  1075. up->forward_deficit = 0;
  1076. /* acquire the sk_receive_queue for fwd allocated memory scheduling,
  1077. * if the called don't held it already
  1078. */
  1079. sk_queue = &sk->sk_receive_queue;
  1080. if (!rx_queue_lock_held)
  1081. spin_lock(&sk_queue->lock);
  1082. sk->sk_forward_alloc += size;
  1083. amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
  1084. sk->sk_forward_alloc -= amt;
  1085. if (amt)
  1086. __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
  1087. atomic_sub(size, &sk->sk_rmem_alloc);
  1088. /* this can save us from acquiring the rx queue lock on next receive */
  1089. skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
  1090. if (!rx_queue_lock_held)
  1091. spin_unlock(&sk_queue->lock);
  1092. }
  1093. /* Note: called with reader_queue.lock held.
  1094. * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
  1095. * This avoids a cache line miss while receive_queue lock is held.
  1096. * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
  1097. */
  1098. void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
  1099. {
  1100. prefetch(&skb->data);
  1101. udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
  1102. }
  1103. EXPORT_SYMBOL(udp_skb_destructor);
  1104. /* as above, but the caller held the rx queue lock, too */
  1105. static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
  1106. {
  1107. prefetch(&skb->data);
  1108. udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
  1109. }
  1110. /* Idea of busylocks is to let producers grab an extra spinlock
  1111. * to relieve pressure on the receive_queue spinlock shared by consumer.
  1112. * Under flood, this means that only one producer can be in line
  1113. * trying to acquire the receive_queue spinlock.
  1114. * These busylock can be allocated on a per cpu manner, instead of a
  1115. * per socket one (that would consume a cache line per socket)
  1116. */
  1117. static int udp_busylocks_log __read_mostly;
  1118. static spinlock_t *udp_busylocks __read_mostly;
  1119. static spinlock_t *busylock_acquire(void *ptr)
  1120. {
  1121. spinlock_t *busy;
  1122. busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
  1123. spin_lock(busy);
  1124. return busy;
  1125. }
  1126. static void busylock_release(spinlock_t *busy)
  1127. {
  1128. if (busy)
  1129. spin_unlock(busy);
  1130. }
  1131. int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
  1132. {
  1133. struct sk_buff_head *list = &sk->sk_receive_queue;
  1134. int rmem, delta, amt, err = -ENOMEM;
  1135. spinlock_t *busy = NULL;
  1136. int size;
  1137. /* try to avoid the costly atomic add/sub pair when the receive
  1138. * queue is full; always allow at least a packet
  1139. */
  1140. rmem = atomic_read(&sk->sk_rmem_alloc);
  1141. if (rmem > sk->sk_rcvbuf)
  1142. goto drop;
  1143. /* Under mem pressure, it might be helpful to help udp_recvmsg()
  1144. * having linear skbs :
  1145. * - Reduce memory overhead and thus increase receive queue capacity
  1146. * - Less cache line misses at copyout() time
  1147. * - Less work at consume_skb() (less alien page frag freeing)
  1148. */
  1149. if (rmem > (sk->sk_rcvbuf >> 1)) {
  1150. skb_condense(skb);
  1151. busy = busylock_acquire(sk);
  1152. }
  1153. size = skb->truesize;
  1154. udp_set_dev_scratch(skb);
  1155. /* we drop only if the receive buf is full and the receive
  1156. * queue contains some other skb
  1157. */
  1158. rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
  1159. if (rmem > (size + sk->sk_rcvbuf))
  1160. goto uncharge_drop;
  1161. spin_lock(&list->lock);
  1162. if (size >= sk->sk_forward_alloc) {
  1163. amt = sk_mem_pages(size);
  1164. delta = amt << SK_MEM_QUANTUM_SHIFT;
  1165. if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
  1166. err = -ENOBUFS;
  1167. spin_unlock(&list->lock);
  1168. goto uncharge_drop;
  1169. }
  1170. sk->sk_forward_alloc += delta;
  1171. }
  1172. sk->sk_forward_alloc -= size;
  1173. /* no need to setup a destructor, we will explicitly release the
  1174. * forward allocated memory on dequeue
  1175. */
  1176. sock_skb_set_dropcount(sk, skb);
  1177. __skb_queue_tail(list, skb);
  1178. spin_unlock(&list->lock);
  1179. if (!sock_flag(sk, SOCK_DEAD))
  1180. sk->sk_data_ready(sk);
  1181. busylock_release(busy);
  1182. return 0;
  1183. uncharge_drop:
  1184. atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
  1185. drop:
  1186. atomic_inc(&sk->sk_drops);
  1187. busylock_release(busy);
  1188. return err;
  1189. }
  1190. EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
  1191. void udp_destruct_sock(struct sock *sk)
  1192. {
  1193. /* reclaim completely the forward allocated memory */
  1194. struct udp_sock *up = udp_sk(sk);
  1195. unsigned int total = 0;
  1196. struct sk_buff *skb;
  1197. skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
  1198. while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
  1199. total += skb->truesize;
  1200. kfree_skb(skb);
  1201. }
  1202. udp_rmem_release(sk, total, 0, true);
  1203. inet_sock_destruct(sk);
  1204. }
  1205. EXPORT_SYMBOL_GPL(udp_destruct_sock);
  1206. int udp_init_sock(struct sock *sk)
  1207. {
  1208. skb_queue_head_init(&udp_sk(sk)->reader_queue);
  1209. sk->sk_destruct = udp_destruct_sock;
  1210. return 0;
  1211. }
  1212. EXPORT_SYMBOL_GPL(udp_init_sock);
  1213. void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
  1214. {
  1215. if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
  1216. bool slow = lock_sock_fast(sk);
  1217. sk_peek_offset_bwd(sk, len);
  1218. unlock_sock_fast(sk, slow);
  1219. }
  1220. if (!skb_unref(skb))
  1221. return;
  1222. /* In the more common cases we cleared the head states previously,
  1223. * see __udp_queue_rcv_skb().
  1224. */
  1225. if (unlikely(udp_skb_has_head_state(skb)))
  1226. skb_release_head_state(skb);
  1227. __consume_stateless_skb(skb);
  1228. }
  1229. EXPORT_SYMBOL_GPL(skb_consume_udp);
  1230. static struct sk_buff *__first_packet_length(struct sock *sk,
  1231. struct sk_buff_head *rcvq,
  1232. int *total)
  1233. {
  1234. struct sk_buff *skb;
  1235. while ((skb = skb_peek(rcvq)) != NULL) {
  1236. if (udp_lib_checksum_complete(skb)) {
  1237. __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
  1238. IS_UDPLITE(sk));
  1239. __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
  1240. IS_UDPLITE(sk));
  1241. atomic_inc(&sk->sk_drops);
  1242. __skb_unlink(skb, rcvq);
  1243. *total += skb->truesize;
  1244. kfree_skb(skb);
  1245. } else {
  1246. /* the csum related bits could be changed, refresh
  1247. * the scratch area
  1248. */
  1249. udp_set_dev_scratch(skb);
  1250. break;
  1251. }
  1252. }
  1253. return skb;
  1254. }
  1255. /**
  1256. * first_packet_length - return length of first packet in receive queue
  1257. * @sk: socket
  1258. *
  1259. * Drops all bad checksum frames, until a valid one is found.
  1260. * Returns the length of found skb, or -1 if none is found.
  1261. */
  1262. static int first_packet_length(struct sock *sk)
  1263. {
  1264. struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
  1265. struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
  1266. struct sk_buff *skb;
  1267. int total = 0;
  1268. int res;
  1269. spin_lock_bh(&rcvq->lock);
  1270. skb = __first_packet_length(sk, rcvq, &total);
  1271. if (!skb && !skb_queue_empty(sk_queue)) {
  1272. spin_lock(&sk_queue->lock);
  1273. skb_queue_splice_tail_init(sk_queue, rcvq);
  1274. spin_unlock(&sk_queue->lock);
  1275. skb = __first_packet_length(sk, rcvq, &total);
  1276. }
  1277. res = skb ? skb->len : -1;
  1278. if (total)
  1279. udp_rmem_release(sk, total, 1, false);
  1280. spin_unlock_bh(&rcvq->lock);
  1281. return res;
  1282. }
  1283. /*
  1284. * IOCTL requests applicable to the UDP protocol
  1285. */
  1286. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1287. {
  1288. switch (cmd) {
  1289. case SIOCOUTQ:
  1290. {
  1291. int amount = sk_wmem_alloc_get(sk);
  1292. return put_user(amount, (int __user *)arg);
  1293. }
  1294. case SIOCINQ:
  1295. {
  1296. int amount = max_t(int, 0, first_packet_length(sk));
  1297. return put_user(amount, (int __user *)arg);
  1298. }
  1299. default:
  1300. return -ENOIOCTLCMD;
  1301. }
  1302. return 0;
  1303. }
  1304. EXPORT_SYMBOL(udp_ioctl);
  1305. struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
  1306. int noblock, int *peeked, int *off, int *err)
  1307. {
  1308. struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
  1309. struct sk_buff_head *queue;
  1310. struct sk_buff *last;
  1311. long timeo;
  1312. int error;
  1313. queue = &udp_sk(sk)->reader_queue;
  1314. flags |= noblock ? MSG_DONTWAIT : 0;
  1315. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1316. do {
  1317. struct sk_buff *skb;
  1318. error = sock_error(sk);
  1319. if (error)
  1320. break;
  1321. error = -EAGAIN;
  1322. *peeked = 0;
  1323. do {
  1324. spin_lock_bh(&queue->lock);
  1325. skb = __skb_try_recv_from_queue(sk, queue, flags,
  1326. udp_skb_destructor,
  1327. peeked, off, err,
  1328. &last);
  1329. if (skb) {
  1330. spin_unlock_bh(&queue->lock);
  1331. return skb;
  1332. }
  1333. if (skb_queue_empty(sk_queue)) {
  1334. spin_unlock_bh(&queue->lock);
  1335. goto busy_check;
  1336. }
  1337. /* refill the reader queue and walk it again
  1338. * keep both queues locked to avoid re-acquiring
  1339. * the sk_receive_queue lock if fwd memory scheduling
  1340. * is needed.
  1341. */
  1342. spin_lock(&sk_queue->lock);
  1343. skb_queue_splice_tail_init(sk_queue, queue);
  1344. skb = __skb_try_recv_from_queue(sk, queue, flags,
  1345. udp_skb_dtor_locked,
  1346. peeked, off, err,
  1347. &last);
  1348. spin_unlock(&sk_queue->lock);
  1349. spin_unlock_bh(&queue->lock);
  1350. if (skb)
  1351. return skb;
  1352. busy_check:
  1353. if (!sk_can_busy_loop(sk))
  1354. break;
  1355. sk_busy_loop(sk, flags & MSG_DONTWAIT);
  1356. } while (!skb_queue_empty(sk_queue));
  1357. /* sk_queue is empty, reader_queue may contain peeked packets */
  1358. } while (timeo &&
  1359. !__skb_wait_for_more_packets(sk, &error, &timeo,
  1360. (struct sk_buff *)sk_queue));
  1361. *err = error;
  1362. return NULL;
  1363. }
  1364. EXPORT_SYMBOL_GPL(__skb_recv_udp);
  1365. /*
  1366. * This should be easy, if there is something there we
  1367. * return it, otherwise we block.
  1368. */
  1369. int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
  1370. int flags, int *addr_len)
  1371. {
  1372. struct inet_sock *inet = inet_sk(sk);
  1373. DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
  1374. struct sk_buff *skb;
  1375. unsigned int ulen, copied;
  1376. int peeked, peeking, off;
  1377. int err;
  1378. int is_udplite = IS_UDPLITE(sk);
  1379. bool checksum_valid = false;
  1380. if (flags & MSG_ERRQUEUE)
  1381. return ip_recv_error(sk, msg, len, addr_len);
  1382. try_again:
  1383. peeking = flags & MSG_PEEK;
  1384. off = sk_peek_offset(sk, flags);
  1385. skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
  1386. if (!skb)
  1387. return err;
  1388. ulen = udp_skb_len(skb);
  1389. copied = len;
  1390. if (copied > ulen - off)
  1391. copied = ulen - off;
  1392. else if (copied < ulen)
  1393. msg->msg_flags |= MSG_TRUNC;
  1394. /*
  1395. * If checksum is needed at all, try to do it while copying the
  1396. * data. If the data is truncated, or if we only want a partial
  1397. * coverage checksum (UDP-Lite), do it before the copy.
  1398. */
  1399. if (copied < ulen || peeking ||
  1400. (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
  1401. checksum_valid = udp_skb_csum_unnecessary(skb) ||
  1402. !__udp_lib_checksum_complete(skb);
  1403. if (!checksum_valid)
  1404. goto csum_copy_err;
  1405. }
  1406. if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
  1407. if (udp_skb_is_linear(skb))
  1408. err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
  1409. else
  1410. err = skb_copy_datagram_msg(skb, off, msg, copied);
  1411. } else {
  1412. err = skb_copy_and_csum_datagram_msg(skb, off, msg);
  1413. if (err == -EINVAL)
  1414. goto csum_copy_err;
  1415. }
  1416. if (unlikely(err)) {
  1417. if (!peeked) {
  1418. atomic_inc(&sk->sk_drops);
  1419. UDP_INC_STATS(sock_net(sk),
  1420. UDP_MIB_INERRORS, is_udplite);
  1421. }
  1422. kfree_skb(skb);
  1423. return err;
  1424. }
  1425. if (!peeked)
  1426. UDP_INC_STATS(sock_net(sk),
  1427. UDP_MIB_INDATAGRAMS, is_udplite);
  1428. sock_recv_ts_and_drops(msg, sk, skb);
  1429. /* Copy the address. */
  1430. if (sin) {
  1431. sin->sin_family = AF_INET;
  1432. sin->sin_port = udp_hdr(skb)->source;
  1433. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1434. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1435. *addr_len = sizeof(*sin);
  1436. }
  1437. if (inet->cmsg_flags)
  1438. ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
  1439. err = copied;
  1440. if (flags & MSG_TRUNC)
  1441. err = ulen;
  1442. skb_consume_udp(sk, skb, peeking ? -err : err);
  1443. return err;
  1444. csum_copy_err:
  1445. if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
  1446. udp_skb_destructor)) {
  1447. UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1448. UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1449. }
  1450. kfree_skb(skb);
  1451. /* starting over for a new packet, but check if we need to yield */
  1452. cond_resched();
  1453. msg->msg_flags &= ~MSG_TRUNC;
  1454. goto try_again;
  1455. }
  1456. int __udp_disconnect(struct sock *sk, int flags)
  1457. {
  1458. struct inet_sock *inet = inet_sk(sk);
  1459. /*
  1460. * 1003.1g - break association.
  1461. */
  1462. sk->sk_state = TCP_CLOSE;
  1463. inet->inet_daddr = 0;
  1464. inet->inet_dport = 0;
  1465. sock_rps_reset_rxhash(sk);
  1466. sk->sk_bound_dev_if = 0;
  1467. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1468. inet_reset_saddr(sk);
  1469. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1470. sk->sk_prot->unhash(sk);
  1471. inet->inet_sport = 0;
  1472. }
  1473. sk_dst_reset(sk);
  1474. return 0;
  1475. }
  1476. EXPORT_SYMBOL(__udp_disconnect);
  1477. int udp_disconnect(struct sock *sk, int flags)
  1478. {
  1479. lock_sock(sk);
  1480. __udp_disconnect(sk, flags);
  1481. release_sock(sk);
  1482. return 0;
  1483. }
  1484. EXPORT_SYMBOL(udp_disconnect);
  1485. void udp_lib_unhash(struct sock *sk)
  1486. {
  1487. if (sk_hashed(sk)) {
  1488. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1489. struct udp_hslot *hslot, *hslot2;
  1490. hslot = udp_hashslot(udptable, sock_net(sk),
  1491. udp_sk(sk)->udp_port_hash);
  1492. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1493. spin_lock_bh(&hslot->lock);
  1494. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1495. reuseport_detach_sock(sk);
  1496. if (sk_del_node_init_rcu(sk)) {
  1497. hslot->count--;
  1498. inet_sk(sk)->inet_num = 0;
  1499. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1500. spin_lock(&hslot2->lock);
  1501. hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1502. hslot2->count--;
  1503. spin_unlock(&hslot2->lock);
  1504. }
  1505. spin_unlock_bh(&hslot->lock);
  1506. }
  1507. }
  1508. EXPORT_SYMBOL(udp_lib_unhash);
  1509. /*
  1510. * inet_rcv_saddr was changed, we must rehash secondary hash
  1511. */
  1512. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1513. {
  1514. if (sk_hashed(sk)) {
  1515. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1516. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1517. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1518. nhslot2 = udp_hashslot2(udptable, newhash);
  1519. udp_sk(sk)->udp_portaddr_hash = newhash;
  1520. if (hslot2 != nhslot2 ||
  1521. rcu_access_pointer(sk->sk_reuseport_cb)) {
  1522. hslot = udp_hashslot(udptable, sock_net(sk),
  1523. udp_sk(sk)->udp_port_hash);
  1524. /* we must lock primary chain too */
  1525. spin_lock_bh(&hslot->lock);
  1526. if (rcu_access_pointer(sk->sk_reuseport_cb))
  1527. reuseport_detach_sock(sk);
  1528. if (hslot2 != nhslot2) {
  1529. spin_lock(&hslot2->lock);
  1530. hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1531. hslot2->count--;
  1532. spin_unlock(&hslot2->lock);
  1533. spin_lock(&nhslot2->lock);
  1534. hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1535. &nhslot2->head);
  1536. nhslot2->count++;
  1537. spin_unlock(&nhslot2->lock);
  1538. }
  1539. spin_unlock_bh(&hslot->lock);
  1540. }
  1541. }
  1542. }
  1543. EXPORT_SYMBOL(udp_lib_rehash);
  1544. static void udp_v4_rehash(struct sock *sk)
  1545. {
  1546. u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
  1547. inet_sk(sk)->inet_rcv_saddr,
  1548. inet_sk(sk)->inet_num);
  1549. udp_lib_rehash(sk, new_hash);
  1550. }
  1551. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1552. {
  1553. int rc;
  1554. if (inet_sk(sk)->inet_daddr) {
  1555. sock_rps_save_rxhash(sk, skb);
  1556. sk_mark_napi_id(sk, skb);
  1557. sk_incoming_cpu_update(sk);
  1558. } else {
  1559. sk_mark_napi_id_once(sk, skb);
  1560. }
  1561. rc = __udp_enqueue_schedule_skb(sk, skb);
  1562. if (rc < 0) {
  1563. int is_udplite = IS_UDPLITE(sk);
  1564. /* Note that an ENOMEM error is charged twice */
  1565. if (rc == -ENOMEM)
  1566. UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1567. is_udplite);
  1568. UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1569. kfree_skb(skb);
  1570. trace_udp_fail_queue_rcv_skb(rc, sk);
  1571. return -1;
  1572. }
  1573. return 0;
  1574. }
  1575. static struct static_key udp_encap_needed __read_mostly;
  1576. void udp_encap_enable(void)
  1577. {
  1578. static_key_enable(&udp_encap_needed);
  1579. }
  1580. EXPORT_SYMBOL(udp_encap_enable);
  1581. /* returns:
  1582. * -1: error
  1583. * 0: success
  1584. * >0: "udp encap" protocol resubmission
  1585. *
  1586. * Note that in the success and error cases, the skb is assumed to
  1587. * have either been requeued or freed.
  1588. */
  1589. static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1590. {
  1591. struct udp_sock *up = udp_sk(sk);
  1592. int is_udplite = IS_UDPLITE(sk);
  1593. /*
  1594. * Charge it to the socket, dropping if the queue is full.
  1595. */
  1596. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1597. goto drop;
  1598. nf_reset(skb);
  1599. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1600. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1601. /*
  1602. * This is an encapsulation socket so pass the skb to
  1603. * the socket's udp_encap_rcv() hook. Otherwise, just
  1604. * fall through and pass this up the UDP socket.
  1605. * up->encap_rcv() returns the following value:
  1606. * =0 if skb was successfully passed to the encap
  1607. * handler or was discarded by it.
  1608. * >0 if skb should be passed on to UDP.
  1609. * <0 if skb should be resubmitted as proto -N
  1610. */
  1611. /* if we're overly short, let UDP handle it */
  1612. encap_rcv = READ_ONCE(up->encap_rcv);
  1613. if (encap_rcv) {
  1614. int ret;
  1615. /* Verify checksum before giving to encap */
  1616. if (udp_lib_checksum_complete(skb))
  1617. goto csum_error;
  1618. ret = encap_rcv(sk, skb);
  1619. if (ret <= 0) {
  1620. __UDP_INC_STATS(sock_net(sk),
  1621. UDP_MIB_INDATAGRAMS,
  1622. is_udplite);
  1623. return -ret;
  1624. }
  1625. }
  1626. /* FALLTHROUGH -- it's a UDP Packet */
  1627. }
  1628. /*
  1629. * UDP-Lite specific tests, ignored on UDP sockets
  1630. */
  1631. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1632. /*
  1633. * MIB statistics other than incrementing the error count are
  1634. * disabled for the following two types of errors: these depend
  1635. * on the application settings, not on the functioning of the
  1636. * protocol stack as such.
  1637. *
  1638. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1639. * way ... to ... at least let the receiving application block
  1640. * delivery of packets with coverage values less than a value
  1641. * provided by the application."
  1642. */
  1643. if (up->pcrlen == 0) { /* full coverage was set */
  1644. net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
  1645. UDP_SKB_CB(skb)->cscov, skb->len);
  1646. goto drop;
  1647. }
  1648. /* The next case involves violating the min. coverage requested
  1649. * by the receiver. This is subtle: if receiver wants x and x is
  1650. * greater than the buffersize/MTU then receiver will complain
  1651. * that it wants x while sender emits packets of smaller size y.
  1652. * Therefore the above ...()->partial_cov statement is essential.
  1653. */
  1654. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1655. net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
  1656. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1657. goto drop;
  1658. }
  1659. }
  1660. prefetch(&sk->sk_rmem_alloc);
  1661. if (rcu_access_pointer(sk->sk_filter) &&
  1662. udp_lib_checksum_complete(skb))
  1663. goto csum_error;
  1664. if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
  1665. goto drop;
  1666. udp_csum_pull_header(skb);
  1667. ipv4_pktinfo_prepare(sk, skb);
  1668. return __udp_queue_rcv_skb(sk, skb);
  1669. csum_error:
  1670. __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
  1671. drop:
  1672. __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1673. atomic_inc(&sk->sk_drops);
  1674. kfree_skb(skb);
  1675. return -1;
  1676. }
  1677. /* For TCP sockets, sk_rx_dst is protected by socket lock
  1678. * For UDP, we use xchg() to guard against concurrent changes.
  1679. */
  1680. bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
  1681. {
  1682. struct dst_entry *old;
  1683. if (dst_hold_safe(dst)) {
  1684. old = xchg(&sk->sk_rx_dst, dst);
  1685. dst_release(old);
  1686. return old != dst;
  1687. }
  1688. return false;
  1689. }
  1690. EXPORT_SYMBOL(udp_sk_rx_dst_set);
  1691. /*
  1692. * Multicasts and broadcasts go to each listener.
  1693. *
  1694. * Note: called only from the BH handler context.
  1695. */
  1696. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1697. struct udphdr *uh,
  1698. __be32 saddr, __be32 daddr,
  1699. struct udp_table *udptable,
  1700. int proto)
  1701. {
  1702. struct sock *sk, *first = NULL;
  1703. unsigned short hnum = ntohs(uh->dest);
  1704. struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
  1705. unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
  1706. unsigned int offset = offsetof(typeof(*sk), sk_node);
  1707. int dif = skb->dev->ifindex;
  1708. int sdif = inet_sdif(skb);
  1709. struct hlist_node *node;
  1710. struct sk_buff *nskb;
  1711. if (use_hash2) {
  1712. hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
  1713. udptable->mask;
  1714. hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
  1715. start_lookup:
  1716. hslot = &udptable->hash2[hash2];
  1717. offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
  1718. }
  1719. sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
  1720. if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
  1721. uh->source, saddr, dif, sdif, hnum))
  1722. continue;
  1723. if (!first) {
  1724. first = sk;
  1725. continue;
  1726. }
  1727. nskb = skb_clone(skb, GFP_ATOMIC);
  1728. if (unlikely(!nskb)) {
  1729. atomic_inc(&sk->sk_drops);
  1730. __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
  1731. IS_UDPLITE(sk));
  1732. __UDP_INC_STATS(net, UDP_MIB_INERRORS,
  1733. IS_UDPLITE(sk));
  1734. continue;
  1735. }
  1736. if (udp_queue_rcv_skb(sk, nskb) > 0)
  1737. consume_skb(nskb);
  1738. }
  1739. /* Also lookup *:port if we are using hash2 and haven't done so yet. */
  1740. if (use_hash2 && hash2 != hash2_any) {
  1741. hash2 = hash2_any;
  1742. goto start_lookup;
  1743. }
  1744. if (first) {
  1745. if (udp_queue_rcv_skb(first, skb) > 0)
  1746. consume_skb(skb);
  1747. } else {
  1748. kfree_skb(skb);
  1749. __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
  1750. proto == IPPROTO_UDPLITE);
  1751. }
  1752. return 0;
  1753. }
  1754. /* Initialize UDP checksum. If exited with zero value (success),
  1755. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1756. * Otherwise, csum completion requires chacksumming packet body,
  1757. * including udp header and folding it to skb->csum.
  1758. */
  1759. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1760. int proto)
  1761. {
  1762. int err;
  1763. UDP_SKB_CB(skb)->partial_cov = 0;
  1764. UDP_SKB_CB(skb)->cscov = skb->len;
  1765. if (proto == IPPROTO_UDPLITE) {
  1766. err = udplite_checksum_init(skb, uh);
  1767. if (err)
  1768. return err;
  1769. if (UDP_SKB_CB(skb)->partial_cov) {
  1770. skb->csum = inet_compute_pseudo(skb, proto);
  1771. return 0;
  1772. }
  1773. }
  1774. /* Note, we are only interested in != 0 or == 0, thus the
  1775. * force to int.
  1776. */
  1777. return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
  1778. inet_compute_pseudo);
  1779. }
  1780. /*
  1781. * All we need to do is get the socket, and then do a checksum.
  1782. */
  1783. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1784. int proto)
  1785. {
  1786. struct sock *sk;
  1787. struct udphdr *uh;
  1788. unsigned short ulen;
  1789. struct rtable *rt = skb_rtable(skb);
  1790. __be32 saddr, daddr;
  1791. struct net *net = dev_net(skb->dev);
  1792. /*
  1793. * Validate the packet.
  1794. */
  1795. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1796. goto drop; /* No space for header. */
  1797. uh = udp_hdr(skb);
  1798. ulen = ntohs(uh->len);
  1799. saddr = ip_hdr(skb)->saddr;
  1800. daddr = ip_hdr(skb)->daddr;
  1801. if (ulen > skb->len)
  1802. goto short_packet;
  1803. if (proto == IPPROTO_UDP) {
  1804. /* UDP validates ulen. */
  1805. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1806. goto short_packet;
  1807. uh = udp_hdr(skb);
  1808. }
  1809. if (udp4_csum_init(skb, uh, proto))
  1810. goto csum_error;
  1811. sk = skb_steal_sock(skb);
  1812. if (sk) {
  1813. struct dst_entry *dst = skb_dst(skb);
  1814. int ret;
  1815. if (unlikely(sk->sk_rx_dst != dst))
  1816. udp_sk_rx_dst_set(sk, dst);
  1817. ret = udp_queue_rcv_skb(sk, skb);
  1818. sock_put(sk);
  1819. /* a return value > 0 means to resubmit the input, but
  1820. * it wants the return to be -protocol, or 0
  1821. */
  1822. if (ret > 0)
  1823. return -ret;
  1824. return 0;
  1825. }
  1826. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1827. return __udp4_lib_mcast_deliver(net, skb, uh,
  1828. saddr, daddr, udptable, proto);
  1829. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1830. if (sk) {
  1831. int ret;
  1832. if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
  1833. skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
  1834. inet_compute_pseudo);
  1835. ret = udp_queue_rcv_skb(sk, skb);
  1836. /* a return value > 0 means to resubmit the input, but
  1837. * it wants the return to be -protocol, or 0
  1838. */
  1839. if (ret > 0)
  1840. return -ret;
  1841. return 0;
  1842. }
  1843. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1844. goto drop;
  1845. nf_reset(skb);
  1846. /* No socket. Drop packet silently, if checksum is wrong */
  1847. if (udp_lib_checksum_complete(skb))
  1848. goto csum_error;
  1849. __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1850. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1851. /*
  1852. * Hmm. We got an UDP packet to a port to which we
  1853. * don't wanna listen. Ignore it.
  1854. */
  1855. kfree_skb(skb);
  1856. return 0;
  1857. short_packet:
  1858. net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1859. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1860. &saddr, ntohs(uh->source),
  1861. ulen, skb->len,
  1862. &daddr, ntohs(uh->dest));
  1863. goto drop;
  1864. csum_error:
  1865. /*
  1866. * RFC1122: OK. Discards the bad packet silently (as far as
  1867. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1868. */
  1869. net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1870. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1871. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1872. ulen);
  1873. __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
  1874. drop:
  1875. __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1876. kfree_skb(skb);
  1877. return 0;
  1878. }
  1879. /* We can only early demux multicast if there is a single matching socket.
  1880. * If more than one socket found returns NULL
  1881. */
  1882. static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
  1883. __be16 loc_port, __be32 loc_addr,
  1884. __be16 rmt_port, __be32 rmt_addr,
  1885. int dif, int sdif)
  1886. {
  1887. struct sock *sk, *result;
  1888. unsigned short hnum = ntohs(loc_port);
  1889. unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
  1890. struct udp_hslot *hslot = &udp_table.hash[slot];
  1891. /* Do not bother scanning a too big list */
  1892. if (hslot->count > 10)
  1893. return NULL;
  1894. result = NULL;
  1895. sk_for_each_rcu(sk, &hslot->head) {
  1896. if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
  1897. rmt_port, rmt_addr, dif, sdif, hnum)) {
  1898. if (result)
  1899. return NULL;
  1900. result = sk;
  1901. }
  1902. }
  1903. return result;
  1904. }
  1905. /* For unicast we should only early demux connected sockets or we can
  1906. * break forwarding setups. The chains here can be long so only check
  1907. * if the first socket is an exact match and if not move on.
  1908. */
  1909. static struct sock *__udp4_lib_demux_lookup(struct net *net,
  1910. __be16 loc_port, __be32 loc_addr,
  1911. __be16 rmt_port, __be32 rmt_addr,
  1912. int dif, int sdif)
  1913. {
  1914. unsigned short hnum = ntohs(loc_port);
  1915. unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
  1916. unsigned int slot2 = hash2 & udp_table.mask;
  1917. struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
  1918. INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
  1919. const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
  1920. struct sock *sk;
  1921. udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
  1922. if (INET_MATCH(sk, net, acookie, rmt_addr,
  1923. loc_addr, ports, dif, sdif))
  1924. return sk;
  1925. /* Only check first socket in chain */
  1926. break;
  1927. }
  1928. return NULL;
  1929. }
  1930. int udp_v4_early_demux(struct sk_buff *skb)
  1931. {
  1932. struct net *net = dev_net(skb->dev);
  1933. struct in_device *in_dev = NULL;
  1934. const struct iphdr *iph;
  1935. const struct udphdr *uh;
  1936. struct sock *sk = NULL;
  1937. struct dst_entry *dst;
  1938. int dif = skb->dev->ifindex;
  1939. int sdif = inet_sdif(skb);
  1940. int ours;
  1941. /* validate the packet */
  1942. if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
  1943. return 0;
  1944. iph = ip_hdr(skb);
  1945. uh = udp_hdr(skb);
  1946. if (skb->pkt_type == PACKET_MULTICAST) {
  1947. in_dev = __in_dev_get_rcu(skb->dev);
  1948. if (!in_dev)
  1949. return 0;
  1950. ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
  1951. iph->protocol);
  1952. if (!ours)
  1953. return 0;
  1954. sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
  1955. uh->source, iph->saddr,
  1956. dif, sdif);
  1957. } else if (skb->pkt_type == PACKET_HOST) {
  1958. sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
  1959. uh->source, iph->saddr, dif, sdif);
  1960. }
  1961. if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
  1962. return 0;
  1963. skb->sk = sk;
  1964. skb->destructor = sock_efree;
  1965. dst = READ_ONCE(sk->sk_rx_dst);
  1966. if (dst)
  1967. dst = dst_check(dst, 0);
  1968. if (dst) {
  1969. u32 itag = 0;
  1970. /* set noref for now.
  1971. * any place which wants to hold dst has to call
  1972. * dst_hold_safe()
  1973. */
  1974. skb_dst_set_noref(skb, dst);
  1975. /* for unconnected multicast sockets we need to validate
  1976. * the source on each packet
  1977. */
  1978. if (!inet_sk(sk)->inet_daddr && in_dev)
  1979. return ip_mc_validate_source(skb, iph->daddr,
  1980. iph->saddr, iph->tos,
  1981. skb->dev, in_dev, &itag);
  1982. }
  1983. return 0;
  1984. }
  1985. int udp_rcv(struct sk_buff *skb)
  1986. {
  1987. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1988. }
  1989. void udp_destroy_sock(struct sock *sk)
  1990. {
  1991. struct udp_sock *up = udp_sk(sk);
  1992. bool slow = lock_sock_fast(sk);
  1993. udp_flush_pending_frames(sk);
  1994. unlock_sock_fast(sk, slow);
  1995. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1996. void (*encap_destroy)(struct sock *sk);
  1997. encap_destroy = READ_ONCE(up->encap_destroy);
  1998. if (encap_destroy)
  1999. encap_destroy(sk);
  2000. }
  2001. }
  2002. /*
  2003. * Socket option code for UDP
  2004. */
  2005. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  2006. char __user *optval, unsigned int optlen,
  2007. int (*push_pending_frames)(struct sock *))
  2008. {
  2009. struct udp_sock *up = udp_sk(sk);
  2010. int val, valbool;
  2011. int err = 0;
  2012. int is_udplite = IS_UDPLITE(sk);
  2013. if (optlen < sizeof(int))
  2014. return -EINVAL;
  2015. if (get_user(val, (int __user *)optval))
  2016. return -EFAULT;
  2017. valbool = val ? 1 : 0;
  2018. switch (optname) {
  2019. case UDP_CORK:
  2020. if (val != 0) {
  2021. up->corkflag = 1;
  2022. } else {
  2023. up->corkflag = 0;
  2024. lock_sock(sk);
  2025. push_pending_frames(sk);
  2026. release_sock(sk);
  2027. }
  2028. break;
  2029. case UDP_ENCAP:
  2030. switch (val) {
  2031. case 0:
  2032. case UDP_ENCAP_ESPINUDP:
  2033. case UDP_ENCAP_ESPINUDP_NON_IKE:
  2034. up->encap_rcv = xfrm4_udp_encap_rcv;
  2035. /* FALLTHROUGH */
  2036. case UDP_ENCAP_L2TPINUDP:
  2037. up->encap_type = val;
  2038. udp_encap_enable();
  2039. break;
  2040. default:
  2041. err = -ENOPROTOOPT;
  2042. break;
  2043. }
  2044. break;
  2045. case UDP_NO_CHECK6_TX:
  2046. up->no_check6_tx = valbool;
  2047. break;
  2048. case UDP_NO_CHECK6_RX:
  2049. up->no_check6_rx = valbool;
  2050. break;
  2051. /*
  2052. * UDP-Lite's partial checksum coverage (RFC 3828).
  2053. */
  2054. /* The sender sets actual checksum coverage length via this option.
  2055. * The case coverage > packet length is handled by send module. */
  2056. case UDPLITE_SEND_CSCOV:
  2057. if (!is_udplite) /* Disable the option on UDP sockets */
  2058. return -ENOPROTOOPT;
  2059. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  2060. val = 8;
  2061. else if (val > USHRT_MAX)
  2062. val = USHRT_MAX;
  2063. up->pcslen = val;
  2064. up->pcflag |= UDPLITE_SEND_CC;
  2065. break;
  2066. /* The receiver specifies a minimum checksum coverage value. To make
  2067. * sense, this should be set to at least 8 (as done below). If zero is
  2068. * used, this again means full checksum coverage. */
  2069. case UDPLITE_RECV_CSCOV:
  2070. if (!is_udplite) /* Disable the option on UDP sockets */
  2071. return -ENOPROTOOPT;
  2072. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  2073. val = 8;
  2074. else if (val > USHRT_MAX)
  2075. val = USHRT_MAX;
  2076. up->pcrlen = val;
  2077. up->pcflag |= UDPLITE_RECV_CC;
  2078. break;
  2079. default:
  2080. err = -ENOPROTOOPT;
  2081. break;
  2082. }
  2083. return err;
  2084. }
  2085. EXPORT_SYMBOL(udp_lib_setsockopt);
  2086. int udp_setsockopt(struct sock *sk, int level, int optname,
  2087. char __user *optval, unsigned int optlen)
  2088. {
  2089. if (level == SOL_UDP || level == SOL_UDPLITE)
  2090. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  2091. udp_push_pending_frames);
  2092. return ip_setsockopt(sk, level, optname, optval, optlen);
  2093. }
  2094. #ifdef CONFIG_COMPAT
  2095. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  2096. char __user *optval, unsigned int optlen)
  2097. {
  2098. if (level == SOL_UDP || level == SOL_UDPLITE)
  2099. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  2100. udp_push_pending_frames);
  2101. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  2102. }
  2103. #endif
  2104. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  2105. char __user *optval, int __user *optlen)
  2106. {
  2107. struct udp_sock *up = udp_sk(sk);
  2108. int val, len;
  2109. if (get_user(len, optlen))
  2110. return -EFAULT;
  2111. len = min_t(unsigned int, len, sizeof(int));
  2112. if (len < 0)
  2113. return -EINVAL;
  2114. switch (optname) {
  2115. case UDP_CORK:
  2116. val = up->corkflag;
  2117. break;
  2118. case UDP_ENCAP:
  2119. val = up->encap_type;
  2120. break;
  2121. case UDP_NO_CHECK6_TX:
  2122. val = up->no_check6_tx;
  2123. break;
  2124. case UDP_NO_CHECK6_RX:
  2125. val = up->no_check6_rx;
  2126. break;
  2127. /* The following two cannot be changed on UDP sockets, the return is
  2128. * always 0 (which corresponds to the full checksum coverage of UDP). */
  2129. case UDPLITE_SEND_CSCOV:
  2130. val = up->pcslen;
  2131. break;
  2132. case UDPLITE_RECV_CSCOV:
  2133. val = up->pcrlen;
  2134. break;
  2135. default:
  2136. return -ENOPROTOOPT;
  2137. }
  2138. if (put_user(len, optlen))
  2139. return -EFAULT;
  2140. if (copy_to_user(optval, &val, len))
  2141. return -EFAULT;
  2142. return 0;
  2143. }
  2144. EXPORT_SYMBOL(udp_lib_getsockopt);
  2145. int udp_getsockopt(struct sock *sk, int level, int optname,
  2146. char __user *optval, int __user *optlen)
  2147. {
  2148. if (level == SOL_UDP || level == SOL_UDPLITE)
  2149. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  2150. return ip_getsockopt(sk, level, optname, optval, optlen);
  2151. }
  2152. #ifdef CONFIG_COMPAT
  2153. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  2154. char __user *optval, int __user *optlen)
  2155. {
  2156. if (level == SOL_UDP || level == SOL_UDPLITE)
  2157. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  2158. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  2159. }
  2160. #endif
  2161. /**
  2162. * udp_poll - wait for a UDP event.
  2163. * @file - file struct
  2164. * @sock - socket
  2165. * @wait - poll table
  2166. *
  2167. * This is same as datagram poll, except for the special case of
  2168. * blocking sockets. If application is using a blocking fd
  2169. * and a packet with checksum error is in the queue;
  2170. * then it could get return from select indicating data available
  2171. * but then block when reading it. Add special case code
  2172. * to work around these arguably broken applications.
  2173. */
  2174. __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  2175. {
  2176. __poll_t mask = datagram_poll(file, sock, wait);
  2177. struct sock *sk = sock->sk;
  2178. if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
  2179. mask |= EPOLLIN | EPOLLRDNORM;
  2180. /* Check for false positives due to checksum errors */
  2181. if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  2182. !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
  2183. mask &= ~(EPOLLIN | EPOLLRDNORM);
  2184. return mask;
  2185. }
  2186. EXPORT_SYMBOL(udp_poll);
  2187. int udp_abort(struct sock *sk, int err)
  2188. {
  2189. lock_sock(sk);
  2190. sk->sk_err = err;
  2191. sk->sk_error_report(sk);
  2192. __udp_disconnect(sk, 0);
  2193. release_sock(sk);
  2194. return 0;
  2195. }
  2196. EXPORT_SYMBOL_GPL(udp_abort);
  2197. struct proto udp_prot = {
  2198. .name = "UDP",
  2199. .owner = THIS_MODULE,
  2200. .close = udp_lib_close,
  2201. .connect = ip4_datagram_connect,
  2202. .disconnect = udp_disconnect,
  2203. .ioctl = udp_ioctl,
  2204. .init = udp_init_sock,
  2205. .destroy = udp_destroy_sock,
  2206. .setsockopt = udp_setsockopt,
  2207. .getsockopt = udp_getsockopt,
  2208. .sendmsg = udp_sendmsg,
  2209. .recvmsg = udp_recvmsg,
  2210. .sendpage = udp_sendpage,
  2211. .release_cb = ip4_datagram_release_cb,
  2212. .hash = udp_lib_hash,
  2213. .unhash = udp_lib_unhash,
  2214. .rehash = udp_v4_rehash,
  2215. .get_port = udp_v4_get_port,
  2216. .memory_allocated = &udp_memory_allocated,
  2217. .sysctl_mem = sysctl_udp_mem,
  2218. .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
  2219. .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
  2220. .obj_size = sizeof(struct udp_sock),
  2221. .h.udp_table = &udp_table,
  2222. #ifdef CONFIG_COMPAT
  2223. .compat_setsockopt = compat_udp_setsockopt,
  2224. .compat_getsockopt = compat_udp_getsockopt,
  2225. #endif
  2226. .diag_destroy = udp_abort,
  2227. };
  2228. EXPORT_SYMBOL(udp_prot);
  2229. /* ------------------------------------------------------------------------ */
  2230. #ifdef CONFIG_PROC_FS
  2231. static struct sock *udp_get_first(struct seq_file *seq, int start)
  2232. {
  2233. struct sock *sk;
  2234. struct udp_iter_state *state = seq->private;
  2235. struct net *net = seq_file_net(seq);
  2236. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  2237. ++state->bucket) {
  2238. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  2239. if (hlist_empty(&hslot->head))
  2240. continue;
  2241. spin_lock_bh(&hslot->lock);
  2242. sk_for_each(sk, &hslot->head) {
  2243. if (!net_eq(sock_net(sk), net))
  2244. continue;
  2245. if (sk->sk_family == state->family)
  2246. goto found;
  2247. }
  2248. spin_unlock_bh(&hslot->lock);
  2249. }
  2250. sk = NULL;
  2251. found:
  2252. return sk;
  2253. }
  2254. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  2255. {
  2256. struct udp_iter_state *state = seq->private;
  2257. struct net *net = seq_file_net(seq);
  2258. do {
  2259. sk = sk_next(sk);
  2260. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  2261. if (!sk) {
  2262. if (state->bucket <= state->udp_table->mask)
  2263. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2264. return udp_get_first(seq, state->bucket + 1);
  2265. }
  2266. return sk;
  2267. }
  2268. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  2269. {
  2270. struct sock *sk = udp_get_first(seq, 0);
  2271. if (sk)
  2272. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  2273. --pos;
  2274. return pos ? NULL : sk;
  2275. }
  2276. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  2277. {
  2278. struct udp_iter_state *state = seq->private;
  2279. state->bucket = MAX_UDP_PORTS;
  2280. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  2281. }
  2282. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2283. {
  2284. struct sock *sk;
  2285. if (v == SEQ_START_TOKEN)
  2286. sk = udp_get_idx(seq, 0);
  2287. else
  2288. sk = udp_get_next(seq, v);
  2289. ++*pos;
  2290. return sk;
  2291. }
  2292. static void udp_seq_stop(struct seq_file *seq, void *v)
  2293. {
  2294. struct udp_iter_state *state = seq->private;
  2295. if (state->bucket <= state->udp_table->mask)
  2296. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  2297. }
  2298. int udp_seq_open(struct inode *inode, struct file *file)
  2299. {
  2300. struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
  2301. struct udp_iter_state *s;
  2302. int err;
  2303. err = seq_open_net(inode, file, &afinfo->seq_ops,
  2304. sizeof(struct udp_iter_state));
  2305. if (err < 0)
  2306. return err;
  2307. s = ((struct seq_file *)file->private_data)->private;
  2308. s->family = afinfo->family;
  2309. s->udp_table = afinfo->udp_table;
  2310. return err;
  2311. }
  2312. EXPORT_SYMBOL(udp_seq_open);
  2313. /* ------------------------------------------------------------------------ */
  2314. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  2315. {
  2316. struct proc_dir_entry *p;
  2317. int rc = 0;
  2318. afinfo->seq_ops.start = udp_seq_start;
  2319. afinfo->seq_ops.next = udp_seq_next;
  2320. afinfo->seq_ops.stop = udp_seq_stop;
  2321. p = proc_create_data(afinfo->name, 0444, net->proc_net,
  2322. afinfo->seq_fops, afinfo);
  2323. if (!p)
  2324. rc = -ENOMEM;
  2325. return rc;
  2326. }
  2327. EXPORT_SYMBOL(udp_proc_register);
  2328. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  2329. {
  2330. remove_proc_entry(afinfo->name, net->proc_net);
  2331. }
  2332. EXPORT_SYMBOL(udp_proc_unregister);
  2333. /* ------------------------------------------------------------------------ */
  2334. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  2335. int bucket)
  2336. {
  2337. struct inet_sock *inet = inet_sk(sp);
  2338. __be32 dest = inet->inet_daddr;
  2339. __be32 src = inet->inet_rcv_saddr;
  2340. __u16 destp = ntohs(inet->inet_dport);
  2341. __u16 srcp = ntohs(inet->inet_sport);
  2342. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  2343. " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
  2344. bucket, src, srcp, dest, destp, sp->sk_state,
  2345. sk_wmem_alloc_get(sp),
  2346. sk_rmem_alloc_get(sp),
  2347. 0, 0L, 0,
  2348. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  2349. 0, sock_i_ino(sp),
  2350. refcount_read(&sp->sk_refcnt), sp,
  2351. atomic_read(&sp->sk_drops));
  2352. }
  2353. int udp4_seq_show(struct seq_file *seq, void *v)
  2354. {
  2355. seq_setwidth(seq, 127);
  2356. if (v == SEQ_START_TOKEN)
  2357. seq_puts(seq, " sl local_address rem_address st tx_queue "
  2358. "rx_queue tr tm->when retrnsmt uid timeout "
  2359. "inode ref pointer drops");
  2360. else {
  2361. struct udp_iter_state *state = seq->private;
  2362. udp4_format_sock(v, seq, state->bucket);
  2363. }
  2364. seq_pad(seq, '\n');
  2365. return 0;
  2366. }
  2367. static const struct file_operations udp_afinfo_seq_fops = {
  2368. .open = udp_seq_open,
  2369. .read = seq_read,
  2370. .llseek = seq_lseek,
  2371. .release = seq_release_net
  2372. };
  2373. /* ------------------------------------------------------------------------ */
  2374. static struct udp_seq_afinfo udp4_seq_afinfo = {
  2375. .name = "udp",
  2376. .family = AF_INET,
  2377. .udp_table = &udp_table,
  2378. .seq_fops = &udp_afinfo_seq_fops,
  2379. .seq_ops = {
  2380. .show = udp4_seq_show,
  2381. },
  2382. };
  2383. static int __net_init udp4_proc_init_net(struct net *net)
  2384. {
  2385. return udp_proc_register(net, &udp4_seq_afinfo);
  2386. }
  2387. static void __net_exit udp4_proc_exit_net(struct net *net)
  2388. {
  2389. udp_proc_unregister(net, &udp4_seq_afinfo);
  2390. }
  2391. static struct pernet_operations udp4_net_ops = {
  2392. .init = udp4_proc_init_net,
  2393. .exit = udp4_proc_exit_net,
  2394. };
  2395. int __init udp4_proc_init(void)
  2396. {
  2397. return register_pernet_subsys(&udp4_net_ops);
  2398. }
  2399. void udp4_proc_exit(void)
  2400. {
  2401. unregister_pernet_subsys(&udp4_net_ops);
  2402. }
  2403. #endif /* CONFIG_PROC_FS */
  2404. static __initdata unsigned long uhash_entries;
  2405. static int __init set_uhash_entries(char *str)
  2406. {
  2407. ssize_t ret;
  2408. if (!str)
  2409. return 0;
  2410. ret = kstrtoul(str, 0, &uhash_entries);
  2411. if (ret)
  2412. return 0;
  2413. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  2414. uhash_entries = UDP_HTABLE_SIZE_MIN;
  2415. return 1;
  2416. }
  2417. __setup("uhash_entries=", set_uhash_entries);
  2418. void __init udp_table_init(struct udp_table *table, const char *name)
  2419. {
  2420. unsigned int i;
  2421. table->hash = alloc_large_system_hash(name,
  2422. 2 * sizeof(struct udp_hslot),
  2423. uhash_entries,
  2424. 21, /* one slot per 2 MB */
  2425. 0,
  2426. &table->log,
  2427. &table->mask,
  2428. UDP_HTABLE_SIZE_MIN,
  2429. 64 * 1024);
  2430. table->hash2 = table->hash + (table->mask + 1);
  2431. for (i = 0; i <= table->mask; i++) {
  2432. INIT_HLIST_HEAD(&table->hash[i].head);
  2433. table->hash[i].count = 0;
  2434. spin_lock_init(&table->hash[i].lock);
  2435. }
  2436. for (i = 0; i <= table->mask; i++) {
  2437. INIT_HLIST_HEAD(&table->hash2[i].head);
  2438. table->hash2[i].count = 0;
  2439. spin_lock_init(&table->hash2[i].lock);
  2440. }
  2441. }
  2442. u32 udp_flow_hashrnd(void)
  2443. {
  2444. static u32 hashrnd __read_mostly;
  2445. net_get_random_once(&hashrnd, sizeof(hashrnd));
  2446. return hashrnd;
  2447. }
  2448. EXPORT_SYMBOL(udp_flow_hashrnd);
  2449. static void __udp_sysctl_init(struct net *net)
  2450. {
  2451. net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  2452. net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  2453. #ifdef CONFIG_NET_L3_MASTER_DEV
  2454. net->ipv4.sysctl_udp_l3mdev_accept = 0;
  2455. #endif
  2456. }
  2457. static int __net_init udp_sysctl_init(struct net *net)
  2458. {
  2459. __udp_sysctl_init(net);
  2460. return 0;
  2461. }
  2462. static struct pernet_operations __net_initdata udp_sysctl_ops = {
  2463. .init = udp_sysctl_init,
  2464. };
  2465. void __init udp_init(void)
  2466. {
  2467. unsigned long limit;
  2468. unsigned int i;
  2469. udp_table_init(&udp_table, "UDP");
  2470. limit = nr_free_buffer_pages() / 8;
  2471. limit = max(limit, 128UL);
  2472. sysctl_udp_mem[0] = limit / 4 * 3;
  2473. sysctl_udp_mem[1] = limit;
  2474. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  2475. __udp_sysctl_init(&init_net);
  2476. /* 16 spinlocks per cpu */
  2477. udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
  2478. udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
  2479. GFP_KERNEL);
  2480. if (!udp_busylocks)
  2481. panic("UDP: failed to alloc udp_busylocks\n");
  2482. for (i = 0; i < (1U << udp_busylocks_log); i++)
  2483. spin_lock_init(udp_busylocks + i);
  2484. if (register_pernet_subsys(&udp_sysctl_ops))
  2485. panic("UDP: failed to init sysctl parameters.\n");
  2486. }