xfs_log_recover.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_inum.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_da_format.h"
  30. #include "xfs_inode.h"
  31. #include "xfs_trans.h"
  32. #include "xfs_log.h"
  33. #include "xfs_log_priv.h"
  34. #include "xfs_log_recover.h"
  35. #include "xfs_inode_item.h"
  36. #include "xfs_extfree_item.h"
  37. #include "xfs_trans_priv.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_quota.h"
  41. #include "xfs_cksum.h"
  42. #include "xfs_trace.h"
  43. #include "xfs_icache.h"
  44. #include "xfs_bmap_btree.h"
  45. #include "xfs_dinode.h"
  46. #include "xfs_error.h"
  47. #include "xfs_dir2.h"
  48. #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
  49. STATIC int
  50. xlog_find_zeroed(
  51. struct xlog *,
  52. xfs_daddr_t *);
  53. STATIC int
  54. xlog_clear_stale_blocks(
  55. struct xlog *,
  56. xfs_lsn_t);
  57. #if defined(DEBUG)
  58. STATIC void
  59. xlog_recover_check_summary(
  60. struct xlog *);
  61. #else
  62. #define xlog_recover_check_summary(log)
  63. #endif
  64. /*
  65. * This structure is used during recovery to record the buf log items which
  66. * have been canceled and should not be replayed.
  67. */
  68. struct xfs_buf_cancel {
  69. xfs_daddr_t bc_blkno;
  70. uint bc_len;
  71. int bc_refcount;
  72. struct list_head bc_list;
  73. };
  74. /*
  75. * Sector aligned buffer routines for buffer create/read/write/access
  76. */
  77. /*
  78. * Verify the given count of basic blocks is valid number of blocks
  79. * to specify for an operation involving the given XFS log buffer.
  80. * Returns nonzero if the count is valid, 0 otherwise.
  81. */
  82. static inline int
  83. xlog_buf_bbcount_valid(
  84. struct xlog *log,
  85. int bbcount)
  86. {
  87. return bbcount > 0 && bbcount <= log->l_logBBsize;
  88. }
  89. /*
  90. * Allocate a buffer to hold log data. The buffer needs to be able
  91. * to map to a range of nbblks basic blocks at any valid (basic
  92. * block) offset within the log.
  93. */
  94. STATIC xfs_buf_t *
  95. xlog_get_bp(
  96. struct xlog *log,
  97. int nbblks)
  98. {
  99. struct xfs_buf *bp;
  100. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  101. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  102. nbblks);
  103. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  104. return NULL;
  105. }
  106. /*
  107. * We do log I/O in units of log sectors (a power-of-2
  108. * multiple of the basic block size), so we round up the
  109. * requested size to accommodate the basic blocks required
  110. * for complete log sectors.
  111. *
  112. * In addition, the buffer may be used for a non-sector-
  113. * aligned block offset, in which case an I/O of the
  114. * requested size could extend beyond the end of the
  115. * buffer. If the requested size is only 1 basic block it
  116. * will never straddle a sector boundary, so this won't be
  117. * an issue. Nor will this be a problem if the log I/O is
  118. * done in basic blocks (sector size 1). But otherwise we
  119. * extend the buffer by one extra log sector to ensure
  120. * there's space to accommodate this possibility.
  121. */
  122. if (nbblks > 1 && log->l_sectBBsize > 1)
  123. nbblks += log->l_sectBBsize;
  124. nbblks = round_up(nbblks, log->l_sectBBsize);
  125. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  126. if (bp)
  127. xfs_buf_unlock(bp);
  128. return bp;
  129. }
  130. STATIC void
  131. xlog_put_bp(
  132. xfs_buf_t *bp)
  133. {
  134. xfs_buf_free(bp);
  135. }
  136. /*
  137. * Return the address of the start of the given block number's data
  138. * in a log buffer. The buffer covers a log sector-aligned region.
  139. */
  140. STATIC xfs_caddr_t
  141. xlog_align(
  142. struct xlog *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. struct xfs_buf *bp)
  146. {
  147. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  148. ASSERT(offset + nbblks <= bp->b_length);
  149. return bp->b_addr + BBTOB(offset);
  150. }
  151. /*
  152. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  153. */
  154. STATIC int
  155. xlog_bread_noalign(
  156. struct xlog *log,
  157. xfs_daddr_t blk_no,
  158. int nbblks,
  159. struct xfs_buf *bp)
  160. {
  161. int error;
  162. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  163. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  164. nbblks);
  165. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  166. return -EFSCORRUPTED;
  167. }
  168. blk_no = round_down(blk_no, log->l_sectBBsize);
  169. nbblks = round_up(nbblks, log->l_sectBBsize);
  170. ASSERT(nbblks > 0);
  171. ASSERT(nbblks <= bp->b_length);
  172. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  173. XFS_BUF_READ(bp);
  174. bp->b_io_length = nbblks;
  175. bp->b_error = 0;
  176. if (XFS_FORCED_SHUTDOWN(log->l_mp))
  177. return -EIO;
  178. xfs_buf_iorequest(bp);
  179. error = xfs_buf_iowait(bp);
  180. if (error)
  181. xfs_buf_ioerror_alert(bp, __func__);
  182. return error;
  183. }
  184. STATIC int
  185. xlog_bread(
  186. struct xlog *log,
  187. xfs_daddr_t blk_no,
  188. int nbblks,
  189. struct xfs_buf *bp,
  190. xfs_caddr_t *offset)
  191. {
  192. int error;
  193. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  194. if (error)
  195. return error;
  196. *offset = xlog_align(log, blk_no, nbblks, bp);
  197. return 0;
  198. }
  199. /*
  200. * Read at an offset into the buffer. Returns with the buffer in it's original
  201. * state regardless of the result of the read.
  202. */
  203. STATIC int
  204. xlog_bread_offset(
  205. struct xlog *log,
  206. xfs_daddr_t blk_no, /* block to read from */
  207. int nbblks, /* blocks to read */
  208. struct xfs_buf *bp,
  209. xfs_caddr_t offset)
  210. {
  211. xfs_caddr_t orig_offset = bp->b_addr;
  212. int orig_len = BBTOB(bp->b_length);
  213. int error, error2;
  214. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  215. if (error)
  216. return error;
  217. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  218. /* must reset buffer pointer even on error */
  219. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  220. if (error)
  221. return error;
  222. return error2;
  223. }
  224. /*
  225. * Write out the buffer at the given block for the given number of blocks.
  226. * The buffer is kept locked across the write and is returned locked.
  227. * This can only be used for synchronous log writes.
  228. */
  229. STATIC int
  230. xlog_bwrite(
  231. struct xlog *log,
  232. xfs_daddr_t blk_no,
  233. int nbblks,
  234. struct xfs_buf *bp)
  235. {
  236. int error;
  237. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  238. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  239. nbblks);
  240. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  241. return -EFSCORRUPTED;
  242. }
  243. blk_no = round_down(blk_no, log->l_sectBBsize);
  244. nbblks = round_up(nbblks, log->l_sectBBsize);
  245. ASSERT(nbblks > 0);
  246. ASSERT(nbblks <= bp->b_length);
  247. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  248. XFS_BUF_ZEROFLAGS(bp);
  249. xfs_buf_hold(bp);
  250. xfs_buf_lock(bp);
  251. bp->b_io_length = nbblks;
  252. bp->b_error = 0;
  253. error = xfs_bwrite(bp);
  254. if (error)
  255. xfs_buf_ioerror_alert(bp, __func__);
  256. xfs_buf_relse(bp);
  257. return error;
  258. }
  259. #ifdef DEBUG
  260. /*
  261. * dump debug superblock and log record information
  262. */
  263. STATIC void
  264. xlog_header_check_dump(
  265. xfs_mount_t *mp,
  266. xlog_rec_header_t *head)
  267. {
  268. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
  269. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  270. xfs_debug(mp, " log : uuid = %pU, fmt = %d",
  271. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  272. }
  273. #else
  274. #define xlog_header_check_dump(mp, head)
  275. #endif
  276. /*
  277. * check log record header for recovery
  278. */
  279. STATIC int
  280. xlog_header_check_recover(
  281. xfs_mount_t *mp,
  282. xlog_rec_header_t *head)
  283. {
  284. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  285. /*
  286. * IRIX doesn't write the h_fmt field and leaves it zeroed
  287. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  288. * a dirty log created in IRIX.
  289. */
  290. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  291. xfs_warn(mp,
  292. "dirty log written in incompatible format - can't recover");
  293. xlog_header_check_dump(mp, head);
  294. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  295. XFS_ERRLEVEL_HIGH, mp);
  296. return -EFSCORRUPTED;
  297. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  298. xfs_warn(mp,
  299. "dirty log entry has mismatched uuid - can't recover");
  300. xlog_header_check_dump(mp, head);
  301. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  302. XFS_ERRLEVEL_HIGH, mp);
  303. return -EFSCORRUPTED;
  304. }
  305. return 0;
  306. }
  307. /*
  308. * read the head block of the log and check the header
  309. */
  310. STATIC int
  311. xlog_header_check_mount(
  312. xfs_mount_t *mp,
  313. xlog_rec_header_t *head)
  314. {
  315. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  316. if (uuid_is_nil(&head->h_fs_uuid)) {
  317. /*
  318. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  319. * h_fs_uuid is nil, we assume this log was last mounted
  320. * by IRIX and continue.
  321. */
  322. xfs_warn(mp, "nil uuid in log - IRIX style log");
  323. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  324. xfs_warn(mp, "log has mismatched uuid - can't recover");
  325. xlog_header_check_dump(mp, head);
  326. XFS_ERROR_REPORT("xlog_header_check_mount",
  327. XFS_ERRLEVEL_HIGH, mp);
  328. return -EFSCORRUPTED;
  329. }
  330. return 0;
  331. }
  332. STATIC void
  333. xlog_recover_iodone(
  334. struct xfs_buf *bp)
  335. {
  336. if (bp->b_error) {
  337. /*
  338. * We're not going to bother about retrying
  339. * this during recovery. One strike!
  340. */
  341. xfs_buf_ioerror_alert(bp, __func__);
  342. xfs_force_shutdown(bp->b_target->bt_mount,
  343. SHUTDOWN_META_IO_ERROR);
  344. }
  345. bp->b_iodone = NULL;
  346. xfs_buf_ioend(bp, 0);
  347. }
  348. /*
  349. * This routine finds (to an approximation) the first block in the physical
  350. * log which contains the given cycle. It uses a binary search algorithm.
  351. * Note that the algorithm can not be perfect because the disk will not
  352. * necessarily be perfect.
  353. */
  354. STATIC int
  355. xlog_find_cycle_start(
  356. struct xlog *log,
  357. struct xfs_buf *bp,
  358. xfs_daddr_t first_blk,
  359. xfs_daddr_t *last_blk,
  360. uint cycle)
  361. {
  362. xfs_caddr_t offset;
  363. xfs_daddr_t mid_blk;
  364. xfs_daddr_t end_blk;
  365. uint mid_cycle;
  366. int error;
  367. end_blk = *last_blk;
  368. mid_blk = BLK_AVG(first_blk, end_blk);
  369. while (mid_blk != first_blk && mid_blk != end_blk) {
  370. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  371. if (error)
  372. return error;
  373. mid_cycle = xlog_get_cycle(offset);
  374. if (mid_cycle == cycle)
  375. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  376. else
  377. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  378. mid_blk = BLK_AVG(first_blk, end_blk);
  379. }
  380. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  381. (mid_blk == end_blk && mid_blk-1 == first_blk));
  382. *last_blk = end_blk;
  383. return 0;
  384. }
  385. /*
  386. * Check that a range of blocks does not contain stop_on_cycle_no.
  387. * Fill in *new_blk with the block offset where such a block is
  388. * found, or with -1 (an invalid block number) if there is no such
  389. * block in the range. The scan needs to occur from front to back
  390. * and the pointer into the region must be updated since a later
  391. * routine will need to perform another test.
  392. */
  393. STATIC int
  394. xlog_find_verify_cycle(
  395. struct xlog *log,
  396. xfs_daddr_t start_blk,
  397. int nbblks,
  398. uint stop_on_cycle_no,
  399. xfs_daddr_t *new_blk)
  400. {
  401. xfs_daddr_t i, j;
  402. uint cycle;
  403. xfs_buf_t *bp;
  404. xfs_daddr_t bufblks;
  405. xfs_caddr_t buf = NULL;
  406. int error = 0;
  407. /*
  408. * Greedily allocate a buffer big enough to handle the full
  409. * range of basic blocks we'll be examining. If that fails,
  410. * try a smaller size. We need to be able to read at least
  411. * a log sector, or we're out of luck.
  412. */
  413. bufblks = 1 << ffs(nbblks);
  414. while (bufblks > log->l_logBBsize)
  415. bufblks >>= 1;
  416. while (!(bp = xlog_get_bp(log, bufblks))) {
  417. bufblks >>= 1;
  418. if (bufblks < log->l_sectBBsize)
  419. return -ENOMEM;
  420. }
  421. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  422. int bcount;
  423. bcount = min(bufblks, (start_blk + nbblks - i));
  424. error = xlog_bread(log, i, bcount, bp, &buf);
  425. if (error)
  426. goto out;
  427. for (j = 0; j < bcount; j++) {
  428. cycle = xlog_get_cycle(buf);
  429. if (cycle == stop_on_cycle_no) {
  430. *new_blk = i+j;
  431. goto out;
  432. }
  433. buf += BBSIZE;
  434. }
  435. }
  436. *new_blk = -1;
  437. out:
  438. xlog_put_bp(bp);
  439. return error;
  440. }
  441. /*
  442. * Potentially backup over partial log record write.
  443. *
  444. * In the typical case, last_blk is the number of the block directly after
  445. * a good log record. Therefore, we subtract one to get the block number
  446. * of the last block in the given buffer. extra_bblks contains the number
  447. * of blocks we would have read on a previous read. This happens when the
  448. * last log record is split over the end of the physical log.
  449. *
  450. * extra_bblks is the number of blocks potentially verified on a previous
  451. * call to this routine.
  452. */
  453. STATIC int
  454. xlog_find_verify_log_record(
  455. struct xlog *log,
  456. xfs_daddr_t start_blk,
  457. xfs_daddr_t *last_blk,
  458. int extra_bblks)
  459. {
  460. xfs_daddr_t i;
  461. xfs_buf_t *bp;
  462. xfs_caddr_t offset = NULL;
  463. xlog_rec_header_t *head = NULL;
  464. int error = 0;
  465. int smallmem = 0;
  466. int num_blks = *last_blk - start_blk;
  467. int xhdrs;
  468. ASSERT(start_blk != 0 || *last_blk != start_blk);
  469. if (!(bp = xlog_get_bp(log, num_blks))) {
  470. if (!(bp = xlog_get_bp(log, 1)))
  471. return -ENOMEM;
  472. smallmem = 1;
  473. } else {
  474. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  475. if (error)
  476. goto out;
  477. offset += ((num_blks - 1) << BBSHIFT);
  478. }
  479. for (i = (*last_blk) - 1; i >= 0; i--) {
  480. if (i < start_blk) {
  481. /* valid log record not found */
  482. xfs_warn(log->l_mp,
  483. "Log inconsistent (didn't find previous header)");
  484. ASSERT(0);
  485. error = -EIO;
  486. goto out;
  487. }
  488. if (smallmem) {
  489. error = xlog_bread(log, i, 1, bp, &offset);
  490. if (error)
  491. goto out;
  492. }
  493. head = (xlog_rec_header_t *)offset;
  494. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  495. break;
  496. if (!smallmem)
  497. offset -= BBSIZE;
  498. }
  499. /*
  500. * We hit the beginning of the physical log & still no header. Return
  501. * to caller. If caller can handle a return of -1, then this routine
  502. * will be called again for the end of the physical log.
  503. */
  504. if (i == -1) {
  505. error = 1;
  506. goto out;
  507. }
  508. /*
  509. * We have the final block of the good log (the first block
  510. * of the log record _before_ the head. So we check the uuid.
  511. */
  512. if ((error = xlog_header_check_mount(log->l_mp, head)))
  513. goto out;
  514. /*
  515. * We may have found a log record header before we expected one.
  516. * last_blk will be the 1st block # with a given cycle #. We may end
  517. * up reading an entire log record. In this case, we don't want to
  518. * reset last_blk. Only when last_blk points in the middle of a log
  519. * record do we update last_blk.
  520. */
  521. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  522. uint h_size = be32_to_cpu(head->h_size);
  523. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  524. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  525. xhdrs++;
  526. } else {
  527. xhdrs = 1;
  528. }
  529. if (*last_blk - i + extra_bblks !=
  530. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  531. *last_blk = i;
  532. out:
  533. xlog_put_bp(bp);
  534. return error;
  535. }
  536. /*
  537. * Head is defined to be the point of the log where the next log write
  538. * could go. This means that incomplete LR writes at the end are
  539. * eliminated when calculating the head. We aren't guaranteed that previous
  540. * LR have complete transactions. We only know that a cycle number of
  541. * current cycle number -1 won't be present in the log if we start writing
  542. * from our current block number.
  543. *
  544. * last_blk contains the block number of the first block with a given
  545. * cycle number.
  546. *
  547. * Return: zero if normal, non-zero if error.
  548. */
  549. STATIC int
  550. xlog_find_head(
  551. struct xlog *log,
  552. xfs_daddr_t *return_head_blk)
  553. {
  554. xfs_buf_t *bp;
  555. xfs_caddr_t offset;
  556. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  557. int num_scan_bblks;
  558. uint first_half_cycle, last_half_cycle;
  559. uint stop_on_cycle;
  560. int error, log_bbnum = log->l_logBBsize;
  561. /* Is the end of the log device zeroed? */
  562. error = xlog_find_zeroed(log, &first_blk);
  563. if (error < 0) {
  564. xfs_warn(log->l_mp, "empty log check failed");
  565. return error;
  566. }
  567. if (error == 1) {
  568. *return_head_blk = first_blk;
  569. /* Is the whole lot zeroed? */
  570. if (!first_blk) {
  571. /* Linux XFS shouldn't generate totally zeroed logs -
  572. * mkfs etc write a dummy unmount record to a fresh
  573. * log so we can store the uuid in there
  574. */
  575. xfs_warn(log->l_mp, "totally zeroed log");
  576. }
  577. return 0;
  578. }
  579. first_blk = 0; /* get cycle # of 1st block */
  580. bp = xlog_get_bp(log, 1);
  581. if (!bp)
  582. return -ENOMEM;
  583. error = xlog_bread(log, 0, 1, bp, &offset);
  584. if (error)
  585. goto bp_err;
  586. first_half_cycle = xlog_get_cycle(offset);
  587. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  588. error = xlog_bread(log, last_blk, 1, bp, &offset);
  589. if (error)
  590. goto bp_err;
  591. last_half_cycle = xlog_get_cycle(offset);
  592. ASSERT(last_half_cycle != 0);
  593. /*
  594. * If the 1st half cycle number is equal to the last half cycle number,
  595. * then the entire log is stamped with the same cycle number. In this
  596. * case, head_blk can't be set to zero (which makes sense). The below
  597. * math doesn't work out properly with head_blk equal to zero. Instead,
  598. * we set it to log_bbnum which is an invalid block number, but this
  599. * value makes the math correct. If head_blk doesn't changed through
  600. * all the tests below, *head_blk is set to zero at the very end rather
  601. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  602. * in a circular file.
  603. */
  604. if (first_half_cycle == last_half_cycle) {
  605. /*
  606. * In this case we believe that the entire log should have
  607. * cycle number last_half_cycle. We need to scan backwards
  608. * from the end verifying that there are no holes still
  609. * containing last_half_cycle - 1. If we find such a hole,
  610. * then the start of that hole will be the new head. The
  611. * simple case looks like
  612. * x | x ... | x - 1 | x
  613. * Another case that fits this picture would be
  614. * x | x + 1 | x ... | x
  615. * In this case the head really is somewhere at the end of the
  616. * log, as one of the latest writes at the beginning was
  617. * incomplete.
  618. * One more case is
  619. * x | x + 1 | x ... | x - 1 | x
  620. * This is really the combination of the above two cases, and
  621. * the head has to end up at the start of the x-1 hole at the
  622. * end of the log.
  623. *
  624. * In the 256k log case, we will read from the beginning to the
  625. * end of the log and search for cycle numbers equal to x-1.
  626. * We don't worry about the x+1 blocks that we encounter,
  627. * because we know that they cannot be the head since the log
  628. * started with x.
  629. */
  630. head_blk = log_bbnum;
  631. stop_on_cycle = last_half_cycle - 1;
  632. } else {
  633. /*
  634. * In this case we want to find the first block with cycle
  635. * number matching last_half_cycle. We expect the log to be
  636. * some variation on
  637. * x + 1 ... | x ... | x
  638. * The first block with cycle number x (last_half_cycle) will
  639. * be where the new head belongs. First we do a binary search
  640. * for the first occurrence of last_half_cycle. The binary
  641. * search may not be totally accurate, so then we scan back
  642. * from there looking for occurrences of last_half_cycle before
  643. * us. If that backwards scan wraps around the beginning of
  644. * the log, then we look for occurrences of last_half_cycle - 1
  645. * at the end of the log. The cases we're looking for look
  646. * like
  647. * v binary search stopped here
  648. * x + 1 ... | x | x + 1 | x ... | x
  649. * ^ but we want to locate this spot
  650. * or
  651. * <---------> less than scan distance
  652. * x + 1 ... | x ... | x - 1 | x
  653. * ^ we want to locate this spot
  654. */
  655. stop_on_cycle = last_half_cycle;
  656. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  657. &head_blk, last_half_cycle)))
  658. goto bp_err;
  659. }
  660. /*
  661. * Now validate the answer. Scan back some number of maximum possible
  662. * blocks and make sure each one has the expected cycle number. The
  663. * maximum is determined by the total possible amount of buffering
  664. * in the in-core log. The following number can be made tighter if
  665. * we actually look at the block size of the filesystem.
  666. */
  667. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  668. if (head_blk >= num_scan_bblks) {
  669. /*
  670. * We are guaranteed that the entire check can be performed
  671. * in one buffer.
  672. */
  673. start_blk = head_blk - num_scan_bblks;
  674. if ((error = xlog_find_verify_cycle(log,
  675. start_blk, num_scan_bblks,
  676. stop_on_cycle, &new_blk)))
  677. goto bp_err;
  678. if (new_blk != -1)
  679. head_blk = new_blk;
  680. } else { /* need to read 2 parts of log */
  681. /*
  682. * We are going to scan backwards in the log in two parts.
  683. * First we scan the physical end of the log. In this part
  684. * of the log, we are looking for blocks with cycle number
  685. * last_half_cycle - 1.
  686. * If we find one, then we know that the log starts there, as
  687. * we've found a hole that didn't get written in going around
  688. * the end of the physical log. The simple case for this is
  689. * x + 1 ... | x ... | x - 1 | x
  690. * <---------> less than scan distance
  691. * If all of the blocks at the end of the log have cycle number
  692. * last_half_cycle, then we check the blocks at the start of
  693. * the log looking for occurrences of last_half_cycle. If we
  694. * find one, then our current estimate for the location of the
  695. * first occurrence of last_half_cycle is wrong and we move
  696. * back to the hole we've found. This case looks like
  697. * x + 1 ... | x | x + 1 | x ...
  698. * ^ binary search stopped here
  699. * Another case we need to handle that only occurs in 256k
  700. * logs is
  701. * x + 1 ... | x ... | x+1 | x ...
  702. * ^ binary search stops here
  703. * In a 256k log, the scan at the end of the log will see the
  704. * x + 1 blocks. We need to skip past those since that is
  705. * certainly not the head of the log. By searching for
  706. * last_half_cycle-1 we accomplish that.
  707. */
  708. ASSERT(head_blk <= INT_MAX &&
  709. (xfs_daddr_t) num_scan_bblks >= head_blk);
  710. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  711. if ((error = xlog_find_verify_cycle(log, start_blk,
  712. num_scan_bblks - (int)head_blk,
  713. (stop_on_cycle - 1), &new_blk)))
  714. goto bp_err;
  715. if (new_blk != -1) {
  716. head_blk = new_blk;
  717. goto validate_head;
  718. }
  719. /*
  720. * Scan beginning of log now. The last part of the physical
  721. * log is good. This scan needs to verify that it doesn't find
  722. * the last_half_cycle.
  723. */
  724. start_blk = 0;
  725. ASSERT(head_blk <= INT_MAX);
  726. if ((error = xlog_find_verify_cycle(log,
  727. start_blk, (int)head_blk,
  728. stop_on_cycle, &new_blk)))
  729. goto bp_err;
  730. if (new_blk != -1)
  731. head_blk = new_blk;
  732. }
  733. validate_head:
  734. /*
  735. * Now we need to make sure head_blk is not pointing to a block in
  736. * the middle of a log record.
  737. */
  738. num_scan_bblks = XLOG_REC_SHIFT(log);
  739. if (head_blk >= num_scan_bblks) {
  740. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  741. /* start ptr at last block ptr before head_blk */
  742. error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
  743. if (error == 1)
  744. error = -EIO;
  745. if (error)
  746. goto bp_err;
  747. } else {
  748. start_blk = 0;
  749. ASSERT(head_blk <= INT_MAX);
  750. error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
  751. if (error < 0)
  752. goto bp_err;
  753. if (error == 1) {
  754. /* We hit the beginning of the log during our search */
  755. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  756. new_blk = log_bbnum;
  757. ASSERT(start_blk <= INT_MAX &&
  758. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  759. ASSERT(head_blk <= INT_MAX);
  760. error = xlog_find_verify_log_record(log, start_blk,
  761. &new_blk, (int)head_blk);
  762. if (error == 1)
  763. error = -EIO;
  764. if (error)
  765. goto bp_err;
  766. if (new_blk != log_bbnum)
  767. head_blk = new_blk;
  768. } else if (error)
  769. goto bp_err;
  770. }
  771. xlog_put_bp(bp);
  772. if (head_blk == log_bbnum)
  773. *return_head_blk = 0;
  774. else
  775. *return_head_blk = head_blk;
  776. /*
  777. * When returning here, we have a good block number. Bad block
  778. * means that during a previous crash, we didn't have a clean break
  779. * from cycle number N to cycle number N-1. In this case, we need
  780. * to find the first block with cycle number N-1.
  781. */
  782. return 0;
  783. bp_err:
  784. xlog_put_bp(bp);
  785. if (error)
  786. xfs_warn(log->l_mp, "failed to find log head");
  787. return error;
  788. }
  789. /*
  790. * Find the sync block number or the tail of the log.
  791. *
  792. * This will be the block number of the last record to have its
  793. * associated buffers synced to disk. Every log record header has
  794. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  795. * to get a sync block number. The only concern is to figure out which
  796. * log record header to believe.
  797. *
  798. * The following algorithm uses the log record header with the largest
  799. * lsn. The entire log record does not need to be valid. We only care
  800. * that the header is valid.
  801. *
  802. * We could speed up search by using current head_blk buffer, but it is not
  803. * available.
  804. */
  805. STATIC int
  806. xlog_find_tail(
  807. struct xlog *log,
  808. xfs_daddr_t *head_blk,
  809. xfs_daddr_t *tail_blk)
  810. {
  811. xlog_rec_header_t *rhead;
  812. xlog_op_header_t *op_head;
  813. xfs_caddr_t offset = NULL;
  814. xfs_buf_t *bp;
  815. int error, i, found;
  816. xfs_daddr_t umount_data_blk;
  817. xfs_daddr_t after_umount_blk;
  818. xfs_lsn_t tail_lsn;
  819. int hblks;
  820. found = 0;
  821. /*
  822. * Find previous log record
  823. */
  824. if ((error = xlog_find_head(log, head_blk)))
  825. return error;
  826. bp = xlog_get_bp(log, 1);
  827. if (!bp)
  828. return -ENOMEM;
  829. if (*head_blk == 0) { /* special case */
  830. error = xlog_bread(log, 0, 1, bp, &offset);
  831. if (error)
  832. goto done;
  833. if (xlog_get_cycle(offset) == 0) {
  834. *tail_blk = 0;
  835. /* leave all other log inited values alone */
  836. goto done;
  837. }
  838. }
  839. /*
  840. * Search backwards looking for log record header block
  841. */
  842. ASSERT(*head_blk < INT_MAX);
  843. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  844. error = xlog_bread(log, i, 1, bp, &offset);
  845. if (error)
  846. goto done;
  847. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  848. found = 1;
  849. break;
  850. }
  851. }
  852. /*
  853. * If we haven't found the log record header block, start looking
  854. * again from the end of the physical log. XXXmiken: There should be
  855. * a check here to make sure we didn't search more than N blocks in
  856. * the previous code.
  857. */
  858. if (!found) {
  859. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  860. error = xlog_bread(log, i, 1, bp, &offset);
  861. if (error)
  862. goto done;
  863. if (*(__be32 *)offset ==
  864. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  865. found = 2;
  866. break;
  867. }
  868. }
  869. }
  870. if (!found) {
  871. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  872. xlog_put_bp(bp);
  873. ASSERT(0);
  874. return -EIO;
  875. }
  876. /* find blk_no of tail of log */
  877. rhead = (xlog_rec_header_t *)offset;
  878. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  879. /*
  880. * Reset log values according to the state of the log when we
  881. * crashed. In the case where head_blk == 0, we bump curr_cycle
  882. * one because the next write starts a new cycle rather than
  883. * continuing the cycle of the last good log record. At this
  884. * point we have guaranteed that all partial log records have been
  885. * accounted for. Therefore, we know that the last good log record
  886. * written was complete and ended exactly on the end boundary
  887. * of the physical log.
  888. */
  889. log->l_prev_block = i;
  890. log->l_curr_block = (int)*head_blk;
  891. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  892. if (found == 2)
  893. log->l_curr_cycle++;
  894. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  895. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  896. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  897. BBTOB(log->l_curr_block));
  898. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  899. BBTOB(log->l_curr_block));
  900. /*
  901. * Look for unmount record. If we find it, then we know there
  902. * was a clean unmount. Since 'i' could be the last block in
  903. * the physical log, we convert to a log block before comparing
  904. * to the head_blk.
  905. *
  906. * Save the current tail lsn to use to pass to
  907. * xlog_clear_stale_blocks() below. We won't want to clear the
  908. * unmount record if there is one, so we pass the lsn of the
  909. * unmount record rather than the block after it.
  910. */
  911. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  912. int h_size = be32_to_cpu(rhead->h_size);
  913. int h_version = be32_to_cpu(rhead->h_version);
  914. if ((h_version & XLOG_VERSION_2) &&
  915. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  916. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  917. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  918. hblks++;
  919. } else {
  920. hblks = 1;
  921. }
  922. } else {
  923. hblks = 1;
  924. }
  925. after_umount_blk = (i + hblks + (int)
  926. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  927. tail_lsn = atomic64_read(&log->l_tail_lsn);
  928. if (*head_blk == after_umount_blk &&
  929. be32_to_cpu(rhead->h_num_logops) == 1) {
  930. umount_data_blk = (i + hblks) % log->l_logBBsize;
  931. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  932. if (error)
  933. goto done;
  934. op_head = (xlog_op_header_t *)offset;
  935. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  936. /*
  937. * Set tail and last sync so that newly written
  938. * log records will point recovery to after the
  939. * current unmount record.
  940. */
  941. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  942. log->l_curr_cycle, after_umount_blk);
  943. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  944. log->l_curr_cycle, after_umount_blk);
  945. *tail_blk = after_umount_blk;
  946. /*
  947. * Note that the unmount was clean. If the unmount
  948. * was not clean, we need to know this to rebuild the
  949. * superblock counters from the perag headers if we
  950. * have a filesystem using non-persistent counters.
  951. */
  952. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  953. }
  954. }
  955. /*
  956. * Make sure that there are no blocks in front of the head
  957. * with the same cycle number as the head. This can happen
  958. * because we allow multiple outstanding log writes concurrently,
  959. * and the later writes might make it out before earlier ones.
  960. *
  961. * We use the lsn from before modifying it so that we'll never
  962. * overwrite the unmount record after a clean unmount.
  963. *
  964. * Do this only if we are going to recover the filesystem
  965. *
  966. * NOTE: This used to say "if (!readonly)"
  967. * However on Linux, we can & do recover a read-only filesystem.
  968. * We only skip recovery if NORECOVERY is specified on mount,
  969. * in which case we would not be here.
  970. *
  971. * But... if the -device- itself is readonly, just skip this.
  972. * We can't recover this device anyway, so it won't matter.
  973. */
  974. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  975. error = xlog_clear_stale_blocks(log, tail_lsn);
  976. done:
  977. xlog_put_bp(bp);
  978. if (error)
  979. xfs_warn(log->l_mp, "failed to locate log tail");
  980. return error;
  981. }
  982. /*
  983. * Is the log zeroed at all?
  984. *
  985. * The last binary search should be changed to perform an X block read
  986. * once X becomes small enough. You can then search linearly through
  987. * the X blocks. This will cut down on the number of reads we need to do.
  988. *
  989. * If the log is partially zeroed, this routine will pass back the blkno
  990. * of the first block with cycle number 0. It won't have a complete LR
  991. * preceding it.
  992. *
  993. * Return:
  994. * 0 => the log is completely written to
  995. * 1 => use *blk_no as the first block of the log
  996. * <0 => error has occurred
  997. */
  998. STATIC int
  999. xlog_find_zeroed(
  1000. struct xlog *log,
  1001. xfs_daddr_t *blk_no)
  1002. {
  1003. xfs_buf_t *bp;
  1004. xfs_caddr_t offset;
  1005. uint first_cycle, last_cycle;
  1006. xfs_daddr_t new_blk, last_blk, start_blk;
  1007. xfs_daddr_t num_scan_bblks;
  1008. int error, log_bbnum = log->l_logBBsize;
  1009. *blk_no = 0;
  1010. /* check totally zeroed log */
  1011. bp = xlog_get_bp(log, 1);
  1012. if (!bp)
  1013. return -ENOMEM;
  1014. error = xlog_bread(log, 0, 1, bp, &offset);
  1015. if (error)
  1016. goto bp_err;
  1017. first_cycle = xlog_get_cycle(offset);
  1018. if (first_cycle == 0) { /* completely zeroed log */
  1019. *blk_no = 0;
  1020. xlog_put_bp(bp);
  1021. return 1;
  1022. }
  1023. /* check partially zeroed log */
  1024. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1025. if (error)
  1026. goto bp_err;
  1027. last_cycle = xlog_get_cycle(offset);
  1028. if (last_cycle != 0) { /* log completely written to */
  1029. xlog_put_bp(bp);
  1030. return 0;
  1031. } else if (first_cycle != 1) {
  1032. /*
  1033. * If the cycle of the last block is zero, the cycle of
  1034. * the first block must be 1. If it's not, maybe we're
  1035. * not looking at a log... Bail out.
  1036. */
  1037. xfs_warn(log->l_mp,
  1038. "Log inconsistent or not a log (last==0, first!=1)");
  1039. error = -EINVAL;
  1040. goto bp_err;
  1041. }
  1042. /* we have a partially zeroed log */
  1043. last_blk = log_bbnum-1;
  1044. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1045. goto bp_err;
  1046. /*
  1047. * Validate the answer. Because there is no way to guarantee that
  1048. * the entire log is made up of log records which are the same size,
  1049. * we scan over the defined maximum blocks. At this point, the maximum
  1050. * is not chosen to mean anything special. XXXmiken
  1051. */
  1052. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1053. ASSERT(num_scan_bblks <= INT_MAX);
  1054. if (last_blk < num_scan_bblks)
  1055. num_scan_bblks = last_blk;
  1056. start_blk = last_blk - num_scan_bblks;
  1057. /*
  1058. * We search for any instances of cycle number 0 that occur before
  1059. * our current estimate of the head. What we're trying to detect is
  1060. * 1 ... | 0 | 1 | 0...
  1061. * ^ binary search ends here
  1062. */
  1063. if ((error = xlog_find_verify_cycle(log, start_blk,
  1064. (int)num_scan_bblks, 0, &new_blk)))
  1065. goto bp_err;
  1066. if (new_blk != -1)
  1067. last_blk = new_blk;
  1068. /*
  1069. * Potentially backup over partial log record write. We don't need
  1070. * to search the end of the log because we know it is zero.
  1071. */
  1072. error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
  1073. if (error == 1)
  1074. error = -EIO;
  1075. if (error)
  1076. goto bp_err;
  1077. *blk_no = last_blk;
  1078. bp_err:
  1079. xlog_put_bp(bp);
  1080. if (error)
  1081. return error;
  1082. return 1;
  1083. }
  1084. /*
  1085. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1086. * to initialize a buffer full of empty log record headers and write
  1087. * them into the log.
  1088. */
  1089. STATIC void
  1090. xlog_add_record(
  1091. struct xlog *log,
  1092. xfs_caddr_t buf,
  1093. int cycle,
  1094. int block,
  1095. int tail_cycle,
  1096. int tail_block)
  1097. {
  1098. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1099. memset(buf, 0, BBSIZE);
  1100. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1101. recp->h_cycle = cpu_to_be32(cycle);
  1102. recp->h_version = cpu_to_be32(
  1103. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1104. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1105. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1106. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1107. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1108. }
  1109. STATIC int
  1110. xlog_write_log_records(
  1111. struct xlog *log,
  1112. int cycle,
  1113. int start_block,
  1114. int blocks,
  1115. int tail_cycle,
  1116. int tail_block)
  1117. {
  1118. xfs_caddr_t offset;
  1119. xfs_buf_t *bp;
  1120. int balign, ealign;
  1121. int sectbb = log->l_sectBBsize;
  1122. int end_block = start_block + blocks;
  1123. int bufblks;
  1124. int error = 0;
  1125. int i, j = 0;
  1126. /*
  1127. * Greedily allocate a buffer big enough to handle the full
  1128. * range of basic blocks to be written. If that fails, try
  1129. * a smaller size. We need to be able to write at least a
  1130. * log sector, or we're out of luck.
  1131. */
  1132. bufblks = 1 << ffs(blocks);
  1133. while (bufblks > log->l_logBBsize)
  1134. bufblks >>= 1;
  1135. while (!(bp = xlog_get_bp(log, bufblks))) {
  1136. bufblks >>= 1;
  1137. if (bufblks < sectbb)
  1138. return -ENOMEM;
  1139. }
  1140. /* We may need to do a read at the start to fill in part of
  1141. * the buffer in the starting sector not covered by the first
  1142. * write below.
  1143. */
  1144. balign = round_down(start_block, sectbb);
  1145. if (balign != start_block) {
  1146. error = xlog_bread_noalign(log, start_block, 1, bp);
  1147. if (error)
  1148. goto out_put_bp;
  1149. j = start_block - balign;
  1150. }
  1151. for (i = start_block; i < end_block; i += bufblks) {
  1152. int bcount, endcount;
  1153. bcount = min(bufblks, end_block - start_block);
  1154. endcount = bcount - j;
  1155. /* We may need to do a read at the end to fill in part of
  1156. * the buffer in the final sector not covered by the write.
  1157. * If this is the same sector as the above read, skip it.
  1158. */
  1159. ealign = round_down(end_block, sectbb);
  1160. if (j == 0 && (start_block + endcount > ealign)) {
  1161. offset = bp->b_addr + BBTOB(ealign - start_block);
  1162. error = xlog_bread_offset(log, ealign, sectbb,
  1163. bp, offset);
  1164. if (error)
  1165. break;
  1166. }
  1167. offset = xlog_align(log, start_block, endcount, bp);
  1168. for (; j < endcount; j++) {
  1169. xlog_add_record(log, offset, cycle, i+j,
  1170. tail_cycle, tail_block);
  1171. offset += BBSIZE;
  1172. }
  1173. error = xlog_bwrite(log, start_block, endcount, bp);
  1174. if (error)
  1175. break;
  1176. start_block += endcount;
  1177. j = 0;
  1178. }
  1179. out_put_bp:
  1180. xlog_put_bp(bp);
  1181. return error;
  1182. }
  1183. /*
  1184. * This routine is called to blow away any incomplete log writes out
  1185. * in front of the log head. We do this so that we won't become confused
  1186. * if we come up, write only a little bit more, and then crash again.
  1187. * If we leave the partial log records out there, this situation could
  1188. * cause us to think those partial writes are valid blocks since they
  1189. * have the current cycle number. We get rid of them by overwriting them
  1190. * with empty log records with the old cycle number rather than the
  1191. * current one.
  1192. *
  1193. * The tail lsn is passed in rather than taken from
  1194. * the log so that we will not write over the unmount record after a
  1195. * clean unmount in a 512 block log. Doing so would leave the log without
  1196. * any valid log records in it until a new one was written. If we crashed
  1197. * during that time we would not be able to recover.
  1198. */
  1199. STATIC int
  1200. xlog_clear_stale_blocks(
  1201. struct xlog *log,
  1202. xfs_lsn_t tail_lsn)
  1203. {
  1204. int tail_cycle, head_cycle;
  1205. int tail_block, head_block;
  1206. int tail_distance, max_distance;
  1207. int distance;
  1208. int error;
  1209. tail_cycle = CYCLE_LSN(tail_lsn);
  1210. tail_block = BLOCK_LSN(tail_lsn);
  1211. head_cycle = log->l_curr_cycle;
  1212. head_block = log->l_curr_block;
  1213. /*
  1214. * Figure out the distance between the new head of the log
  1215. * and the tail. We want to write over any blocks beyond the
  1216. * head that we may have written just before the crash, but
  1217. * we don't want to overwrite the tail of the log.
  1218. */
  1219. if (head_cycle == tail_cycle) {
  1220. /*
  1221. * The tail is behind the head in the physical log,
  1222. * so the distance from the head to the tail is the
  1223. * distance from the head to the end of the log plus
  1224. * the distance from the beginning of the log to the
  1225. * tail.
  1226. */
  1227. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1228. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1229. XFS_ERRLEVEL_LOW, log->l_mp);
  1230. return -EFSCORRUPTED;
  1231. }
  1232. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1233. } else {
  1234. /*
  1235. * The head is behind the tail in the physical log,
  1236. * so the distance from the head to the tail is just
  1237. * the tail block minus the head block.
  1238. */
  1239. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1240. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1241. XFS_ERRLEVEL_LOW, log->l_mp);
  1242. return -EFSCORRUPTED;
  1243. }
  1244. tail_distance = tail_block - head_block;
  1245. }
  1246. /*
  1247. * If the head is right up against the tail, we can't clear
  1248. * anything.
  1249. */
  1250. if (tail_distance <= 0) {
  1251. ASSERT(tail_distance == 0);
  1252. return 0;
  1253. }
  1254. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1255. /*
  1256. * Take the smaller of the maximum amount of outstanding I/O
  1257. * we could have and the distance to the tail to clear out.
  1258. * We take the smaller so that we don't overwrite the tail and
  1259. * we don't waste all day writing from the head to the tail
  1260. * for no reason.
  1261. */
  1262. max_distance = MIN(max_distance, tail_distance);
  1263. if ((head_block + max_distance) <= log->l_logBBsize) {
  1264. /*
  1265. * We can stomp all the blocks we need to without
  1266. * wrapping around the end of the log. Just do it
  1267. * in a single write. Use the cycle number of the
  1268. * current cycle minus one so that the log will look like:
  1269. * n ... | n - 1 ...
  1270. */
  1271. error = xlog_write_log_records(log, (head_cycle - 1),
  1272. head_block, max_distance, tail_cycle,
  1273. tail_block);
  1274. if (error)
  1275. return error;
  1276. } else {
  1277. /*
  1278. * We need to wrap around the end of the physical log in
  1279. * order to clear all the blocks. Do it in two separate
  1280. * I/Os. The first write should be from the head to the
  1281. * end of the physical log, and it should use the current
  1282. * cycle number minus one just like above.
  1283. */
  1284. distance = log->l_logBBsize - head_block;
  1285. error = xlog_write_log_records(log, (head_cycle - 1),
  1286. head_block, distance, tail_cycle,
  1287. tail_block);
  1288. if (error)
  1289. return error;
  1290. /*
  1291. * Now write the blocks at the start of the physical log.
  1292. * This writes the remainder of the blocks we want to clear.
  1293. * It uses the current cycle number since we're now on the
  1294. * same cycle as the head so that we get:
  1295. * n ... n ... | n - 1 ...
  1296. * ^^^^^ blocks we're writing
  1297. */
  1298. distance = max_distance - (log->l_logBBsize - head_block);
  1299. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1300. tail_cycle, tail_block);
  1301. if (error)
  1302. return error;
  1303. }
  1304. return 0;
  1305. }
  1306. /******************************************************************************
  1307. *
  1308. * Log recover routines
  1309. *
  1310. ******************************************************************************
  1311. */
  1312. /*
  1313. * Sort the log items in the transaction.
  1314. *
  1315. * The ordering constraints are defined by the inode allocation and unlink
  1316. * behaviour. The rules are:
  1317. *
  1318. * 1. Every item is only logged once in a given transaction. Hence it
  1319. * represents the last logged state of the item. Hence ordering is
  1320. * dependent on the order in which operations need to be performed so
  1321. * required initial conditions are always met.
  1322. *
  1323. * 2. Cancelled buffers are recorded in pass 1 in a separate table and
  1324. * there's nothing to replay from them so we can simply cull them
  1325. * from the transaction. However, we can't do that until after we've
  1326. * replayed all the other items because they may be dependent on the
  1327. * cancelled buffer and replaying the cancelled buffer can remove it
  1328. * form the cancelled buffer table. Hence they have tobe done last.
  1329. *
  1330. * 3. Inode allocation buffers must be replayed before inode items that
  1331. * read the buffer and replay changes into it. For filesystems using the
  1332. * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
  1333. * treated the same as inode allocation buffers as they create and
  1334. * initialise the buffers directly.
  1335. *
  1336. * 4. Inode unlink buffers must be replayed after inode items are replayed.
  1337. * This ensures that inodes are completely flushed to the inode buffer
  1338. * in a "free" state before we remove the unlinked inode list pointer.
  1339. *
  1340. * Hence the ordering needs to be inode allocation buffers first, inode items
  1341. * second, inode unlink buffers third and cancelled buffers last.
  1342. *
  1343. * But there's a problem with that - we can't tell an inode allocation buffer
  1344. * apart from a regular buffer, so we can't separate them. We can, however,
  1345. * tell an inode unlink buffer from the others, and so we can separate them out
  1346. * from all the other buffers and move them to last.
  1347. *
  1348. * Hence, 4 lists, in order from head to tail:
  1349. * - buffer_list for all buffers except cancelled/inode unlink buffers
  1350. * - item_list for all non-buffer items
  1351. * - inode_buffer_list for inode unlink buffers
  1352. * - cancel_list for the cancelled buffers
  1353. *
  1354. * Note that we add objects to the tail of the lists so that first-to-last
  1355. * ordering is preserved within the lists. Adding objects to the head of the
  1356. * list means when we traverse from the head we walk them in last-to-first
  1357. * order. For cancelled buffers and inode unlink buffers this doesn't matter,
  1358. * but for all other items there may be specific ordering that we need to
  1359. * preserve.
  1360. */
  1361. STATIC int
  1362. xlog_recover_reorder_trans(
  1363. struct xlog *log,
  1364. struct xlog_recover *trans,
  1365. int pass)
  1366. {
  1367. xlog_recover_item_t *item, *n;
  1368. int error = 0;
  1369. LIST_HEAD(sort_list);
  1370. LIST_HEAD(cancel_list);
  1371. LIST_HEAD(buffer_list);
  1372. LIST_HEAD(inode_buffer_list);
  1373. LIST_HEAD(inode_list);
  1374. list_splice_init(&trans->r_itemq, &sort_list);
  1375. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1376. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1377. switch (ITEM_TYPE(item)) {
  1378. case XFS_LI_ICREATE:
  1379. list_move_tail(&item->ri_list, &buffer_list);
  1380. break;
  1381. case XFS_LI_BUF:
  1382. if (buf_f->blf_flags & XFS_BLF_CANCEL) {
  1383. trace_xfs_log_recover_item_reorder_head(log,
  1384. trans, item, pass);
  1385. list_move(&item->ri_list, &cancel_list);
  1386. break;
  1387. }
  1388. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1389. list_move(&item->ri_list, &inode_buffer_list);
  1390. break;
  1391. }
  1392. list_move_tail(&item->ri_list, &buffer_list);
  1393. break;
  1394. case XFS_LI_INODE:
  1395. case XFS_LI_DQUOT:
  1396. case XFS_LI_QUOTAOFF:
  1397. case XFS_LI_EFD:
  1398. case XFS_LI_EFI:
  1399. trace_xfs_log_recover_item_reorder_tail(log,
  1400. trans, item, pass);
  1401. list_move_tail(&item->ri_list, &inode_list);
  1402. break;
  1403. default:
  1404. xfs_warn(log->l_mp,
  1405. "%s: unrecognized type of log operation",
  1406. __func__);
  1407. ASSERT(0);
  1408. /*
  1409. * return the remaining items back to the transaction
  1410. * item list so they can be freed in caller.
  1411. */
  1412. if (!list_empty(&sort_list))
  1413. list_splice_init(&sort_list, &trans->r_itemq);
  1414. error = -EIO;
  1415. goto out;
  1416. }
  1417. }
  1418. out:
  1419. ASSERT(list_empty(&sort_list));
  1420. if (!list_empty(&buffer_list))
  1421. list_splice(&buffer_list, &trans->r_itemq);
  1422. if (!list_empty(&inode_list))
  1423. list_splice_tail(&inode_list, &trans->r_itemq);
  1424. if (!list_empty(&inode_buffer_list))
  1425. list_splice_tail(&inode_buffer_list, &trans->r_itemq);
  1426. if (!list_empty(&cancel_list))
  1427. list_splice_tail(&cancel_list, &trans->r_itemq);
  1428. return error;
  1429. }
  1430. /*
  1431. * Build up the table of buf cancel records so that we don't replay
  1432. * cancelled data in the second pass. For buffer records that are
  1433. * not cancel records, there is nothing to do here so we just return.
  1434. *
  1435. * If we get a cancel record which is already in the table, this indicates
  1436. * that the buffer was cancelled multiple times. In order to ensure
  1437. * that during pass 2 we keep the record in the table until we reach its
  1438. * last occurrence in the log, we keep a reference count in the cancel
  1439. * record in the table to tell us how many times we expect to see this
  1440. * record during the second pass.
  1441. */
  1442. STATIC int
  1443. xlog_recover_buffer_pass1(
  1444. struct xlog *log,
  1445. struct xlog_recover_item *item)
  1446. {
  1447. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1448. struct list_head *bucket;
  1449. struct xfs_buf_cancel *bcp;
  1450. /*
  1451. * If this isn't a cancel buffer item, then just return.
  1452. */
  1453. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1454. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1455. return 0;
  1456. }
  1457. /*
  1458. * Insert an xfs_buf_cancel record into the hash table of them.
  1459. * If there is already an identical record, bump its reference count.
  1460. */
  1461. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1462. list_for_each_entry(bcp, bucket, bc_list) {
  1463. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1464. bcp->bc_len == buf_f->blf_len) {
  1465. bcp->bc_refcount++;
  1466. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1467. return 0;
  1468. }
  1469. }
  1470. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1471. bcp->bc_blkno = buf_f->blf_blkno;
  1472. bcp->bc_len = buf_f->blf_len;
  1473. bcp->bc_refcount = 1;
  1474. list_add_tail(&bcp->bc_list, bucket);
  1475. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1476. return 0;
  1477. }
  1478. /*
  1479. * Check to see whether the buffer being recovered has a corresponding
  1480. * entry in the buffer cancel record table. If it is, return the cancel
  1481. * buffer structure to the caller.
  1482. */
  1483. STATIC struct xfs_buf_cancel *
  1484. xlog_peek_buffer_cancelled(
  1485. struct xlog *log,
  1486. xfs_daddr_t blkno,
  1487. uint len,
  1488. ushort flags)
  1489. {
  1490. struct list_head *bucket;
  1491. struct xfs_buf_cancel *bcp;
  1492. if (!log->l_buf_cancel_table) {
  1493. /* empty table means no cancelled buffers in the log */
  1494. ASSERT(!(flags & XFS_BLF_CANCEL));
  1495. return NULL;
  1496. }
  1497. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1498. list_for_each_entry(bcp, bucket, bc_list) {
  1499. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1500. return bcp;
  1501. }
  1502. /*
  1503. * We didn't find a corresponding entry in the table, so return 0 so
  1504. * that the buffer is NOT cancelled.
  1505. */
  1506. ASSERT(!(flags & XFS_BLF_CANCEL));
  1507. return NULL;
  1508. }
  1509. /*
  1510. * If the buffer is being cancelled then return 1 so that it will be cancelled,
  1511. * otherwise return 0. If the buffer is actually a buffer cancel item
  1512. * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
  1513. * table and remove it from the table if this is the last reference.
  1514. *
  1515. * We remove the cancel record from the table when we encounter its last
  1516. * occurrence in the log so that if the same buffer is re-used again after its
  1517. * last cancellation we actually replay the changes made at that point.
  1518. */
  1519. STATIC int
  1520. xlog_check_buffer_cancelled(
  1521. struct xlog *log,
  1522. xfs_daddr_t blkno,
  1523. uint len,
  1524. ushort flags)
  1525. {
  1526. struct xfs_buf_cancel *bcp;
  1527. bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
  1528. if (!bcp)
  1529. return 0;
  1530. /*
  1531. * We've go a match, so return 1 so that the recovery of this buffer
  1532. * is cancelled. If this buffer is actually a buffer cancel log
  1533. * item, then decrement the refcount on the one in the table and
  1534. * remove it if this is the last reference.
  1535. */
  1536. if (flags & XFS_BLF_CANCEL) {
  1537. if (--bcp->bc_refcount == 0) {
  1538. list_del(&bcp->bc_list);
  1539. kmem_free(bcp);
  1540. }
  1541. }
  1542. return 1;
  1543. }
  1544. /*
  1545. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1546. * data which should be recovered is that which corresponds to the
  1547. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1548. * data for the inodes is always logged through the inodes themselves rather
  1549. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1550. *
  1551. * The only time when buffers full of inodes are fully recovered is when the
  1552. * buffer is full of newly allocated inodes. In this case the buffer will
  1553. * not be marked as an inode buffer and so will be sent to
  1554. * xlog_recover_do_reg_buffer() below during recovery.
  1555. */
  1556. STATIC int
  1557. xlog_recover_do_inode_buffer(
  1558. struct xfs_mount *mp,
  1559. xlog_recover_item_t *item,
  1560. struct xfs_buf *bp,
  1561. xfs_buf_log_format_t *buf_f)
  1562. {
  1563. int i;
  1564. int item_index = 0;
  1565. int bit = 0;
  1566. int nbits = 0;
  1567. int reg_buf_offset = 0;
  1568. int reg_buf_bytes = 0;
  1569. int next_unlinked_offset;
  1570. int inodes_per_buf;
  1571. xfs_agino_t *logged_nextp;
  1572. xfs_agino_t *buffer_nextp;
  1573. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1574. /*
  1575. * Post recovery validation only works properly on CRC enabled
  1576. * filesystems.
  1577. */
  1578. if (xfs_sb_version_hascrc(&mp->m_sb))
  1579. bp->b_ops = &xfs_inode_buf_ops;
  1580. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1581. for (i = 0; i < inodes_per_buf; i++) {
  1582. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1583. offsetof(xfs_dinode_t, di_next_unlinked);
  1584. while (next_unlinked_offset >=
  1585. (reg_buf_offset + reg_buf_bytes)) {
  1586. /*
  1587. * The next di_next_unlinked field is beyond
  1588. * the current logged region. Find the next
  1589. * logged region that contains or is beyond
  1590. * the current di_next_unlinked field.
  1591. */
  1592. bit += nbits;
  1593. bit = xfs_next_bit(buf_f->blf_data_map,
  1594. buf_f->blf_map_size, bit);
  1595. /*
  1596. * If there are no more logged regions in the
  1597. * buffer, then we're done.
  1598. */
  1599. if (bit == -1)
  1600. return 0;
  1601. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1602. buf_f->blf_map_size, bit);
  1603. ASSERT(nbits > 0);
  1604. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1605. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1606. item_index++;
  1607. }
  1608. /*
  1609. * If the current logged region starts after the current
  1610. * di_next_unlinked field, then move on to the next
  1611. * di_next_unlinked field.
  1612. */
  1613. if (next_unlinked_offset < reg_buf_offset)
  1614. continue;
  1615. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1616. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1617. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1618. BBTOB(bp->b_io_length));
  1619. /*
  1620. * The current logged region contains a copy of the
  1621. * current di_next_unlinked field. Extract its value
  1622. * and copy it to the buffer copy.
  1623. */
  1624. logged_nextp = item->ri_buf[item_index].i_addr +
  1625. next_unlinked_offset - reg_buf_offset;
  1626. if (unlikely(*logged_nextp == 0)) {
  1627. xfs_alert(mp,
  1628. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1629. "Trying to replay bad (0) inode di_next_unlinked field.",
  1630. item, bp);
  1631. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1632. XFS_ERRLEVEL_LOW, mp);
  1633. return -EFSCORRUPTED;
  1634. }
  1635. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1636. next_unlinked_offset);
  1637. *buffer_nextp = *logged_nextp;
  1638. /*
  1639. * If necessary, recalculate the CRC in the on-disk inode. We
  1640. * have to leave the inode in a consistent state for whoever
  1641. * reads it next....
  1642. */
  1643. xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
  1644. xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
  1645. }
  1646. return 0;
  1647. }
  1648. /*
  1649. * V5 filesystems know the age of the buffer on disk being recovered. We can
  1650. * have newer objects on disk than we are replaying, and so for these cases we
  1651. * don't want to replay the current change as that will make the buffer contents
  1652. * temporarily invalid on disk.
  1653. *
  1654. * The magic number might not match the buffer type we are going to recover
  1655. * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
  1656. * extract the LSN of the existing object in the buffer based on it's current
  1657. * magic number. If we don't recognise the magic number in the buffer, then
  1658. * return a LSN of -1 so that the caller knows it was an unrecognised block and
  1659. * so can recover the buffer.
  1660. *
  1661. * Note: we cannot rely solely on magic number matches to determine that the
  1662. * buffer has a valid LSN - we also need to verify that it belongs to this
  1663. * filesystem, so we need to extract the object's LSN and compare it to that
  1664. * which we read from the superblock. If the UUIDs don't match, then we've got a
  1665. * stale metadata block from an old filesystem instance that we need to recover
  1666. * over the top of.
  1667. */
  1668. static xfs_lsn_t
  1669. xlog_recover_get_buf_lsn(
  1670. struct xfs_mount *mp,
  1671. struct xfs_buf *bp)
  1672. {
  1673. __uint32_t magic32;
  1674. __uint16_t magic16;
  1675. __uint16_t magicda;
  1676. void *blk = bp->b_addr;
  1677. uuid_t *uuid;
  1678. xfs_lsn_t lsn = -1;
  1679. /* v4 filesystems always recover immediately */
  1680. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1681. goto recover_immediately;
  1682. magic32 = be32_to_cpu(*(__be32 *)blk);
  1683. switch (magic32) {
  1684. case XFS_ABTB_CRC_MAGIC:
  1685. case XFS_ABTC_CRC_MAGIC:
  1686. case XFS_ABTB_MAGIC:
  1687. case XFS_ABTC_MAGIC:
  1688. case XFS_IBT_CRC_MAGIC:
  1689. case XFS_IBT_MAGIC: {
  1690. struct xfs_btree_block *btb = blk;
  1691. lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
  1692. uuid = &btb->bb_u.s.bb_uuid;
  1693. break;
  1694. }
  1695. case XFS_BMAP_CRC_MAGIC:
  1696. case XFS_BMAP_MAGIC: {
  1697. struct xfs_btree_block *btb = blk;
  1698. lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
  1699. uuid = &btb->bb_u.l.bb_uuid;
  1700. break;
  1701. }
  1702. case XFS_AGF_MAGIC:
  1703. lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
  1704. uuid = &((struct xfs_agf *)blk)->agf_uuid;
  1705. break;
  1706. case XFS_AGFL_MAGIC:
  1707. lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
  1708. uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
  1709. break;
  1710. case XFS_AGI_MAGIC:
  1711. lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
  1712. uuid = &((struct xfs_agi *)blk)->agi_uuid;
  1713. break;
  1714. case XFS_SYMLINK_MAGIC:
  1715. lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
  1716. uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
  1717. break;
  1718. case XFS_DIR3_BLOCK_MAGIC:
  1719. case XFS_DIR3_DATA_MAGIC:
  1720. case XFS_DIR3_FREE_MAGIC:
  1721. lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
  1722. uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
  1723. break;
  1724. case XFS_ATTR3_RMT_MAGIC:
  1725. lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
  1726. uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
  1727. break;
  1728. case XFS_SB_MAGIC:
  1729. lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
  1730. uuid = &((struct xfs_dsb *)blk)->sb_uuid;
  1731. break;
  1732. default:
  1733. break;
  1734. }
  1735. if (lsn != (xfs_lsn_t)-1) {
  1736. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1737. goto recover_immediately;
  1738. return lsn;
  1739. }
  1740. magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
  1741. switch (magicda) {
  1742. case XFS_DIR3_LEAF1_MAGIC:
  1743. case XFS_DIR3_LEAFN_MAGIC:
  1744. case XFS_DA3_NODE_MAGIC:
  1745. lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
  1746. uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
  1747. break;
  1748. default:
  1749. break;
  1750. }
  1751. if (lsn != (xfs_lsn_t)-1) {
  1752. if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
  1753. goto recover_immediately;
  1754. return lsn;
  1755. }
  1756. /*
  1757. * We do individual object checks on dquot and inode buffers as they
  1758. * have their own individual LSN records. Also, we could have a stale
  1759. * buffer here, so we have to at least recognise these buffer types.
  1760. *
  1761. * A notd complexity here is inode unlinked list processing - it logs
  1762. * the inode directly in the buffer, but we don't know which inodes have
  1763. * been modified, and there is no global buffer LSN. Hence we need to
  1764. * recover all inode buffer types immediately. This problem will be
  1765. * fixed by logical logging of the unlinked list modifications.
  1766. */
  1767. magic16 = be16_to_cpu(*(__be16 *)blk);
  1768. switch (magic16) {
  1769. case XFS_DQUOT_MAGIC:
  1770. case XFS_DINODE_MAGIC:
  1771. goto recover_immediately;
  1772. default:
  1773. break;
  1774. }
  1775. /* unknown buffer contents, recover immediately */
  1776. recover_immediately:
  1777. return (xfs_lsn_t)-1;
  1778. }
  1779. /*
  1780. * Validate the recovered buffer is of the correct type and attach the
  1781. * appropriate buffer operations to them for writeback. Magic numbers are in a
  1782. * few places:
  1783. * the first 16 bits of the buffer (inode buffer, dquot buffer),
  1784. * the first 32 bits of the buffer (most blocks),
  1785. * inside a struct xfs_da_blkinfo at the start of the buffer.
  1786. */
  1787. static void
  1788. xlog_recover_validate_buf_type(
  1789. struct xfs_mount *mp,
  1790. struct xfs_buf *bp,
  1791. xfs_buf_log_format_t *buf_f)
  1792. {
  1793. struct xfs_da_blkinfo *info = bp->b_addr;
  1794. __uint32_t magic32;
  1795. __uint16_t magic16;
  1796. __uint16_t magicda;
  1797. /*
  1798. * We can only do post recovery validation on items on CRC enabled
  1799. * fielsystems as we need to know when the buffer was written to be able
  1800. * to determine if we should have replayed the item. If we replay old
  1801. * metadata over a newer buffer, then it will enter a temporarily
  1802. * inconsistent state resulting in verification failures. Hence for now
  1803. * just avoid the verification stage for non-crc filesystems
  1804. */
  1805. if (!xfs_sb_version_hascrc(&mp->m_sb))
  1806. return;
  1807. magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
  1808. magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
  1809. magicda = be16_to_cpu(info->magic);
  1810. switch (xfs_blft_from_flags(buf_f)) {
  1811. case XFS_BLFT_BTREE_BUF:
  1812. switch (magic32) {
  1813. case XFS_ABTB_CRC_MAGIC:
  1814. case XFS_ABTC_CRC_MAGIC:
  1815. case XFS_ABTB_MAGIC:
  1816. case XFS_ABTC_MAGIC:
  1817. bp->b_ops = &xfs_allocbt_buf_ops;
  1818. break;
  1819. case XFS_IBT_CRC_MAGIC:
  1820. case XFS_FIBT_CRC_MAGIC:
  1821. case XFS_IBT_MAGIC:
  1822. case XFS_FIBT_MAGIC:
  1823. bp->b_ops = &xfs_inobt_buf_ops;
  1824. break;
  1825. case XFS_BMAP_CRC_MAGIC:
  1826. case XFS_BMAP_MAGIC:
  1827. bp->b_ops = &xfs_bmbt_buf_ops;
  1828. break;
  1829. default:
  1830. xfs_warn(mp, "Bad btree block magic!");
  1831. ASSERT(0);
  1832. break;
  1833. }
  1834. break;
  1835. case XFS_BLFT_AGF_BUF:
  1836. if (magic32 != XFS_AGF_MAGIC) {
  1837. xfs_warn(mp, "Bad AGF block magic!");
  1838. ASSERT(0);
  1839. break;
  1840. }
  1841. bp->b_ops = &xfs_agf_buf_ops;
  1842. break;
  1843. case XFS_BLFT_AGFL_BUF:
  1844. if (magic32 != XFS_AGFL_MAGIC) {
  1845. xfs_warn(mp, "Bad AGFL block magic!");
  1846. ASSERT(0);
  1847. break;
  1848. }
  1849. bp->b_ops = &xfs_agfl_buf_ops;
  1850. break;
  1851. case XFS_BLFT_AGI_BUF:
  1852. if (magic32 != XFS_AGI_MAGIC) {
  1853. xfs_warn(mp, "Bad AGI block magic!");
  1854. ASSERT(0);
  1855. break;
  1856. }
  1857. bp->b_ops = &xfs_agi_buf_ops;
  1858. break;
  1859. case XFS_BLFT_UDQUOT_BUF:
  1860. case XFS_BLFT_PDQUOT_BUF:
  1861. case XFS_BLFT_GDQUOT_BUF:
  1862. #ifdef CONFIG_XFS_QUOTA
  1863. if (magic16 != XFS_DQUOT_MAGIC) {
  1864. xfs_warn(mp, "Bad DQUOT block magic!");
  1865. ASSERT(0);
  1866. break;
  1867. }
  1868. bp->b_ops = &xfs_dquot_buf_ops;
  1869. #else
  1870. xfs_alert(mp,
  1871. "Trying to recover dquots without QUOTA support built in!");
  1872. ASSERT(0);
  1873. #endif
  1874. break;
  1875. case XFS_BLFT_DINO_BUF:
  1876. if (magic16 != XFS_DINODE_MAGIC) {
  1877. xfs_warn(mp, "Bad INODE block magic!");
  1878. ASSERT(0);
  1879. break;
  1880. }
  1881. bp->b_ops = &xfs_inode_buf_ops;
  1882. break;
  1883. case XFS_BLFT_SYMLINK_BUF:
  1884. if (magic32 != XFS_SYMLINK_MAGIC) {
  1885. xfs_warn(mp, "Bad symlink block magic!");
  1886. ASSERT(0);
  1887. break;
  1888. }
  1889. bp->b_ops = &xfs_symlink_buf_ops;
  1890. break;
  1891. case XFS_BLFT_DIR_BLOCK_BUF:
  1892. if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
  1893. magic32 != XFS_DIR3_BLOCK_MAGIC) {
  1894. xfs_warn(mp, "Bad dir block magic!");
  1895. ASSERT(0);
  1896. break;
  1897. }
  1898. bp->b_ops = &xfs_dir3_block_buf_ops;
  1899. break;
  1900. case XFS_BLFT_DIR_DATA_BUF:
  1901. if (magic32 != XFS_DIR2_DATA_MAGIC &&
  1902. magic32 != XFS_DIR3_DATA_MAGIC) {
  1903. xfs_warn(mp, "Bad dir data magic!");
  1904. ASSERT(0);
  1905. break;
  1906. }
  1907. bp->b_ops = &xfs_dir3_data_buf_ops;
  1908. break;
  1909. case XFS_BLFT_DIR_FREE_BUF:
  1910. if (magic32 != XFS_DIR2_FREE_MAGIC &&
  1911. magic32 != XFS_DIR3_FREE_MAGIC) {
  1912. xfs_warn(mp, "Bad dir3 free magic!");
  1913. ASSERT(0);
  1914. break;
  1915. }
  1916. bp->b_ops = &xfs_dir3_free_buf_ops;
  1917. break;
  1918. case XFS_BLFT_DIR_LEAF1_BUF:
  1919. if (magicda != XFS_DIR2_LEAF1_MAGIC &&
  1920. magicda != XFS_DIR3_LEAF1_MAGIC) {
  1921. xfs_warn(mp, "Bad dir leaf1 magic!");
  1922. ASSERT(0);
  1923. break;
  1924. }
  1925. bp->b_ops = &xfs_dir3_leaf1_buf_ops;
  1926. break;
  1927. case XFS_BLFT_DIR_LEAFN_BUF:
  1928. if (magicda != XFS_DIR2_LEAFN_MAGIC &&
  1929. magicda != XFS_DIR3_LEAFN_MAGIC) {
  1930. xfs_warn(mp, "Bad dir leafn magic!");
  1931. ASSERT(0);
  1932. break;
  1933. }
  1934. bp->b_ops = &xfs_dir3_leafn_buf_ops;
  1935. break;
  1936. case XFS_BLFT_DA_NODE_BUF:
  1937. if (magicda != XFS_DA_NODE_MAGIC &&
  1938. magicda != XFS_DA3_NODE_MAGIC) {
  1939. xfs_warn(mp, "Bad da node magic!");
  1940. ASSERT(0);
  1941. break;
  1942. }
  1943. bp->b_ops = &xfs_da3_node_buf_ops;
  1944. break;
  1945. case XFS_BLFT_ATTR_LEAF_BUF:
  1946. if (magicda != XFS_ATTR_LEAF_MAGIC &&
  1947. magicda != XFS_ATTR3_LEAF_MAGIC) {
  1948. xfs_warn(mp, "Bad attr leaf magic!");
  1949. ASSERT(0);
  1950. break;
  1951. }
  1952. bp->b_ops = &xfs_attr3_leaf_buf_ops;
  1953. break;
  1954. case XFS_BLFT_ATTR_RMT_BUF:
  1955. if (magic32 != XFS_ATTR3_RMT_MAGIC) {
  1956. xfs_warn(mp, "Bad attr remote magic!");
  1957. ASSERT(0);
  1958. break;
  1959. }
  1960. bp->b_ops = &xfs_attr3_rmt_buf_ops;
  1961. break;
  1962. case XFS_BLFT_SB_BUF:
  1963. if (magic32 != XFS_SB_MAGIC) {
  1964. xfs_warn(mp, "Bad SB block magic!");
  1965. ASSERT(0);
  1966. break;
  1967. }
  1968. bp->b_ops = &xfs_sb_buf_ops;
  1969. break;
  1970. default:
  1971. xfs_warn(mp, "Unknown buffer type %d!",
  1972. xfs_blft_from_flags(buf_f));
  1973. break;
  1974. }
  1975. }
  1976. /*
  1977. * Perform a 'normal' buffer recovery. Each logged region of the
  1978. * buffer should be copied over the corresponding region in the
  1979. * given buffer. The bitmap in the buf log format structure indicates
  1980. * where to place the logged data.
  1981. */
  1982. STATIC void
  1983. xlog_recover_do_reg_buffer(
  1984. struct xfs_mount *mp,
  1985. xlog_recover_item_t *item,
  1986. struct xfs_buf *bp,
  1987. xfs_buf_log_format_t *buf_f)
  1988. {
  1989. int i;
  1990. int bit;
  1991. int nbits;
  1992. int error;
  1993. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1994. bit = 0;
  1995. i = 1; /* 0 is the buf format structure */
  1996. while (1) {
  1997. bit = xfs_next_bit(buf_f->blf_data_map,
  1998. buf_f->blf_map_size, bit);
  1999. if (bit == -1)
  2000. break;
  2001. nbits = xfs_contig_bits(buf_f->blf_data_map,
  2002. buf_f->blf_map_size, bit);
  2003. ASSERT(nbits > 0);
  2004. ASSERT(item->ri_buf[i].i_addr != NULL);
  2005. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  2006. ASSERT(BBTOB(bp->b_io_length) >=
  2007. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  2008. /*
  2009. * The dirty regions logged in the buffer, even though
  2010. * contiguous, may span multiple chunks. This is because the
  2011. * dirty region may span a physical page boundary in a buffer
  2012. * and hence be split into two separate vectors for writing into
  2013. * the log. Hence we need to trim nbits back to the length of
  2014. * the current region being copied out of the log.
  2015. */
  2016. if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
  2017. nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
  2018. /*
  2019. * Do a sanity check if this is a dquot buffer. Just checking
  2020. * the first dquot in the buffer should do. XXXThis is
  2021. * probably a good thing to do for other buf types also.
  2022. */
  2023. error = 0;
  2024. if (buf_f->blf_flags &
  2025. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2026. if (item->ri_buf[i].i_addr == NULL) {
  2027. xfs_alert(mp,
  2028. "XFS: NULL dquot in %s.", __func__);
  2029. goto next;
  2030. }
  2031. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  2032. xfs_alert(mp,
  2033. "XFS: dquot too small (%d) in %s.",
  2034. item->ri_buf[i].i_len, __func__);
  2035. goto next;
  2036. }
  2037. error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
  2038. -1, 0, XFS_QMOPT_DOWARN,
  2039. "dquot_buf_recover");
  2040. if (error)
  2041. goto next;
  2042. }
  2043. memcpy(xfs_buf_offset(bp,
  2044. (uint)bit << XFS_BLF_SHIFT), /* dest */
  2045. item->ri_buf[i].i_addr, /* source */
  2046. nbits<<XFS_BLF_SHIFT); /* length */
  2047. next:
  2048. i++;
  2049. bit += nbits;
  2050. }
  2051. /* Shouldn't be any more regions */
  2052. ASSERT(i == item->ri_total);
  2053. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2054. }
  2055. /*
  2056. * Perform a dquot buffer recovery.
  2057. * Simple algorithm: if we have found a QUOTAOFF log item of the same type
  2058. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  2059. * Else, treat it as a regular buffer and do recovery.
  2060. *
  2061. * Return false if the buffer was tossed and true if we recovered the buffer to
  2062. * indicate to the caller if the buffer needs writing.
  2063. */
  2064. STATIC bool
  2065. xlog_recover_do_dquot_buffer(
  2066. struct xfs_mount *mp,
  2067. struct xlog *log,
  2068. struct xlog_recover_item *item,
  2069. struct xfs_buf *bp,
  2070. struct xfs_buf_log_format *buf_f)
  2071. {
  2072. uint type;
  2073. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  2074. /*
  2075. * Filesystems are required to send in quota flags at mount time.
  2076. */
  2077. if (!mp->m_qflags)
  2078. return false;
  2079. type = 0;
  2080. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  2081. type |= XFS_DQ_USER;
  2082. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  2083. type |= XFS_DQ_PROJ;
  2084. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  2085. type |= XFS_DQ_GROUP;
  2086. /*
  2087. * This type of quotas was turned off, so ignore this buffer
  2088. */
  2089. if (log->l_quotaoffs_flag & type)
  2090. return false;
  2091. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2092. return true;
  2093. }
  2094. /*
  2095. * This routine replays a modification made to a buffer at runtime.
  2096. * There are actually two types of buffer, regular and inode, which
  2097. * are handled differently. Inode buffers are handled differently
  2098. * in that we only recover a specific set of data from them, namely
  2099. * the inode di_next_unlinked fields. This is because all other inode
  2100. * data is actually logged via inode records and any data we replay
  2101. * here which overlaps that may be stale.
  2102. *
  2103. * When meta-data buffers are freed at run time we log a buffer item
  2104. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  2105. * of the buffer in the log should not be replayed at recovery time.
  2106. * This is so that if the blocks covered by the buffer are reused for
  2107. * file data before we crash we don't end up replaying old, freed
  2108. * meta-data into a user's file.
  2109. *
  2110. * To handle the cancellation of buffer log items, we make two passes
  2111. * over the log during recovery. During the first we build a table of
  2112. * those buffers which have been cancelled, and during the second we
  2113. * only replay those buffers which do not have corresponding cancel
  2114. * records in the table. See xlog_recover_buffer_pass[1,2] above
  2115. * for more details on the implementation of the table of cancel records.
  2116. */
  2117. STATIC int
  2118. xlog_recover_buffer_pass2(
  2119. struct xlog *log,
  2120. struct list_head *buffer_list,
  2121. struct xlog_recover_item *item,
  2122. xfs_lsn_t current_lsn)
  2123. {
  2124. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  2125. xfs_mount_t *mp = log->l_mp;
  2126. xfs_buf_t *bp;
  2127. int error;
  2128. uint buf_flags;
  2129. xfs_lsn_t lsn;
  2130. /*
  2131. * In this pass we only want to recover all the buffers which have
  2132. * not been cancelled and are not cancellation buffers themselves.
  2133. */
  2134. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  2135. buf_f->blf_len, buf_f->blf_flags)) {
  2136. trace_xfs_log_recover_buf_cancel(log, buf_f);
  2137. return 0;
  2138. }
  2139. trace_xfs_log_recover_buf_recover(log, buf_f);
  2140. buf_flags = 0;
  2141. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  2142. buf_flags |= XBF_UNMAPPED;
  2143. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  2144. buf_flags, NULL);
  2145. if (!bp)
  2146. return -ENOMEM;
  2147. error = bp->b_error;
  2148. if (error) {
  2149. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  2150. goto out_release;
  2151. }
  2152. /*
  2153. * Recover the buffer only if we get an LSN from it and it's less than
  2154. * the lsn of the transaction we are replaying.
  2155. *
  2156. * Note that we have to be extremely careful of readahead here.
  2157. * Readahead does not attach verfiers to the buffers so if we don't
  2158. * actually do any replay after readahead because of the LSN we found
  2159. * in the buffer if more recent than that current transaction then we
  2160. * need to attach the verifier directly. Failure to do so can lead to
  2161. * future recovery actions (e.g. EFI and unlinked list recovery) can
  2162. * operate on the buffers and they won't get the verifier attached. This
  2163. * can lead to blocks on disk having the correct content but a stale
  2164. * CRC.
  2165. *
  2166. * It is safe to assume these clean buffers are currently up to date.
  2167. * If the buffer is dirtied by a later transaction being replayed, then
  2168. * the verifier will be reset to match whatever recover turns that
  2169. * buffer into.
  2170. */
  2171. lsn = xlog_recover_get_buf_lsn(mp, bp);
  2172. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2173. xlog_recover_validate_buf_type(mp, bp, buf_f);
  2174. goto out_release;
  2175. }
  2176. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  2177. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2178. if (error)
  2179. goto out_release;
  2180. } else if (buf_f->blf_flags &
  2181. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  2182. bool dirty;
  2183. dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2184. if (!dirty)
  2185. goto out_release;
  2186. } else {
  2187. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2188. }
  2189. /*
  2190. * Perform delayed write on the buffer. Asynchronous writes will be
  2191. * slower when taking into account all the buffers to be flushed.
  2192. *
  2193. * Also make sure that only inode buffers with good sizes stay in
  2194. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2195. * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
  2196. * buffers in the log can be a different size if the log was generated
  2197. * by an older kernel using unclustered inode buffers or a newer kernel
  2198. * running with a different inode cluster size. Regardless, if the
  2199. * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
  2200. * for *our* value of mp->m_inode_cluster_size, then we need to keep
  2201. * the buffer out of the buffer cache so that the buffer won't
  2202. * overlap with future reads of those inodes.
  2203. */
  2204. if (XFS_DINODE_MAGIC ==
  2205. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2206. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  2207. (__uint32_t)log->l_mp->m_inode_cluster_size))) {
  2208. xfs_buf_stale(bp);
  2209. error = xfs_bwrite(bp);
  2210. } else {
  2211. ASSERT(bp->b_target->bt_mount == mp);
  2212. bp->b_iodone = xlog_recover_iodone;
  2213. xfs_buf_delwri_queue(bp, buffer_list);
  2214. }
  2215. out_release:
  2216. xfs_buf_relse(bp);
  2217. return error;
  2218. }
  2219. /*
  2220. * Inode fork owner changes
  2221. *
  2222. * If we have been told that we have to reparent the inode fork, it's because an
  2223. * extent swap operation on a CRC enabled filesystem has been done and we are
  2224. * replaying it. We need to walk the BMBT of the appropriate fork and change the
  2225. * owners of it.
  2226. *
  2227. * The complexity here is that we don't have an inode context to work with, so
  2228. * after we've replayed the inode we need to instantiate one. This is where the
  2229. * fun begins.
  2230. *
  2231. * We are in the middle of log recovery, so we can't run transactions. That
  2232. * means we cannot use cache coherent inode instantiation via xfs_iget(), as
  2233. * that will result in the corresponding iput() running the inode through
  2234. * xfs_inactive(). If we've just replayed an inode core that changes the link
  2235. * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
  2236. * transactions (bad!).
  2237. *
  2238. * So, to avoid this, we instantiate an inode directly from the inode core we've
  2239. * just recovered. We have the buffer still locked, and all we really need to
  2240. * instantiate is the inode core and the forks being modified. We can do this
  2241. * manually, then run the inode btree owner change, and then tear down the
  2242. * xfs_inode without having to run any transactions at all.
  2243. *
  2244. * Also, because we don't have a transaction context available here but need to
  2245. * gather all the buffers we modify for writeback so we pass the buffer_list
  2246. * instead for the operation to use.
  2247. */
  2248. STATIC int
  2249. xfs_recover_inode_owner_change(
  2250. struct xfs_mount *mp,
  2251. struct xfs_dinode *dip,
  2252. struct xfs_inode_log_format *in_f,
  2253. struct list_head *buffer_list)
  2254. {
  2255. struct xfs_inode *ip;
  2256. int error;
  2257. ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
  2258. ip = xfs_inode_alloc(mp, in_f->ilf_ino);
  2259. if (!ip)
  2260. return -ENOMEM;
  2261. /* instantiate the inode */
  2262. xfs_dinode_from_disk(&ip->i_d, dip);
  2263. ASSERT(ip->i_d.di_version >= 3);
  2264. error = xfs_iformat_fork(ip, dip);
  2265. if (error)
  2266. goto out_free_ip;
  2267. if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
  2268. ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
  2269. error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
  2270. ip->i_ino, buffer_list);
  2271. if (error)
  2272. goto out_free_ip;
  2273. }
  2274. if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
  2275. ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
  2276. error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
  2277. ip->i_ino, buffer_list);
  2278. if (error)
  2279. goto out_free_ip;
  2280. }
  2281. out_free_ip:
  2282. xfs_inode_free(ip);
  2283. return error;
  2284. }
  2285. STATIC int
  2286. xlog_recover_inode_pass2(
  2287. struct xlog *log,
  2288. struct list_head *buffer_list,
  2289. struct xlog_recover_item *item,
  2290. xfs_lsn_t current_lsn)
  2291. {
  2292. xfs_inode_log_format_t *in_f;
  2293. xfs_mount_t *mp = log->l_mp;
  2294. xfs_buf_t *bp;
  2295. xfs_dinode_t *dip;
  2296. int len;
  2297. xfs_caddr_t src;
  2298. xfs_caddr_t dest;
  2299. int error;
  2300. int attr_index;
  2301. uint fields;
  2302. xfs_icdinode_t *dicp;
  2303. uint isize;
  2304. int need_free = 0;
  2305. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2306. in_f = item->ri_buf[0].i_addr;
  2307. } else {
  2308. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2309. need_free = 1;
  2310. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2311. if (error)
  2312. goto error;
  2313. }
  2314. /*
  2315. * Inode buffers can be freed, look out for it,
  2316. * and do not replay the inode.
  2317. */
  2318. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2319. in_f->ilf_len, 0)) {
  2320. error = 0;
  2321. trace_xfs_log_recover_inode_cancel(log, in_f);
  2322. goto error;
  2323. }
  2324. trace_xfs_log_recover_inode_recover(log, in_f);
  2325. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2326. &xfs_inode_buf_ops);
  2327. if (!bp) {
  2328. error = -ENOMEM;
  2329. goto error;
  2330. }
  2331. error = bp->b_error;
  2332. if (error) {
  2333. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2334. goto out_release;
  2335. }
  2336. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2337. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2338. /*
  2339. * Make sure the place we're flushing out to really looks
  2340. * like an inode!
  2341. */
  2342. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2343. xfs_alert(mp,
  2344. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2345. __func__, dip, bp, in_f->ilf_ino);
  2346. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2347. XFS_ERRLEVEL_LOW, mp);
  2348. error = -EFSCORRUPTED;
  2349. goto out_release;
  2350. }
  2351. dicp = item->ri_buf[1].i_addr;
  2352. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2353. xfs_alert(mp,
  2354. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2355. __func__, item, in_f->ilf_ino);
  2356. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2357. XFS_ERRLEVEL_LOW, mp);
  2358. error = -EFSCORRUPTED;
  2359. goto out_release;
  2360. }
  2361. /*
  2362. * If the inode has an LSN in it, recover the inode only if it's less
  2363. * than the lsn of the transaction we are replaying. Note: we still
  2364. * need to replay an owner change even though the inode is more recent
  2365. * than the transaction as there is no guarantee that all the btree
  2366. * blocks are more recent than this transaction, too.
  2367. */
  2368. if (dip->di_version >= 3) {
  2369. xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
  2370. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2371. trace_xfs_log_recover_inode_skip(log, in_f);
  2372. error = 0;
  2373. goto out_owner_change;
  2374. }
  2375. }
  2376. /*
  2377. * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
  2378. * are transactional and if ordering is necessary we can determine that
  2379. * more accurately by the LSN field in the V3 inode core. Don't trust
  2380. * the inode versions we might be changing them here - use the
  2381. * superblock flag to determine whether we need to look at di_flushiter
  2382. * to skip replay when the on disk inode is newer than the log one
  2383. */
  2384. if (!xfs_sb_version_hascrc(&mp->m_sb) &&
  2385. dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2386. /*
  2387. * Deal with the wrap case, DI_MAX_FLUSH is less
  2388. * than smaller numbers
  2389. */
  2390. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2391. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2392. /* do nothing */
  2393. } else {
  2394. trace_xfs_log_recover_inode_skip(log, in_f);
  2395. error = 0;
  2396. goto out_release;
  2397. }
  2398. }
  2399. /* Take the opportunity to reset the flush iteration count */
  2400. dicp->di_flushiter = 0;
  2401. if (unlikely(S_ISREG(dicp->di_mode))) {
  2402. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2403. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2404. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2405. XFS_ERRLEVEL_LOW, mp, dicp);
  2406. xfs_alert(mp,
  2407. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2408. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2409. __func__, item, dip, bp, in_f->ilf_ino);
  2410. error = -EFSCORRUPTED;
  2411. goto out_release;
  2412. }
  2413. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2414. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2415. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2416. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2417. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2418. XFS_ERRLEVEL_LOW, mp, dicp);
  2419. xfs_alert(mp,
  2420. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2421. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2422. __func__, item, dip, bp, in_f->ilf_ino);
  2423. error = -EFSCORRUPTED;
  2424. goto out_release;
  2425. }
  2426. }
  2427. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2428. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2429. XFS_ERRLEVEL_LOW, mp, dicp);
  2430. xfs_alert(mp,
  2431. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2432. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2433. __func__, item, dip, bp, in_f->ilf_ino,
  2434. dicp->di_nextents + dicp->di_anextents,
  2435. dicp->di_nblocks);
  2436. error = -EFSCORRUPTED;
  2437. goto out_release;
  2438. }
  2439. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2440. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2441. XFS_ERRLEVEL_LOW, mp, dicp);
  2442. xfs_alert(mp,
  2443. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2444. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2445. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2446. error = -EFSCORRUPTED;
  2447. goto out_release;
  2448. }
  2449. isize = xfs_icdinode_size(dicp->di_version);
  2450. if (unlikely(item->ri_buf[1].i_len > isize)) {
  2451. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2452. XFS_ERRLEVEL_LOW, mp, dicp);
  2453. xfs_alert(mp,
  2454. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2455. __func__, item->ri_buf[1].i_len, item);
  2456. error = -EFSCORRUPTED;
  2457. goto out_release;
  2458. }
  2459. /* The core is in in-core format */
  2460. xfs_dinode_to_disk(dip, dicp);
  2461. /* the rest is in on-disk format */
  2462. if (item->ri_buf[1].i_len > isize) {
  2463. memcpy((char *)dip + isize,
  2464. item->ri_buf[1].i_addr + isize,
  2465. item->ri_buf[1].i_len - isize);
  2466. }
  2467. fields = in_f->ilf_fields;
  2468. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2469. case XFS_ILOG_DEV:
  2470. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2471. break;
  2472. case XFS_ILOG_UUID:
  2473. memcpy(XFS_DFORK_DPTR(dip),
  2474. &in_f->ilf_u.ilfu_uuid,
  2475. sizeof(uuid_t));
  2476. break;
  2477. }
  2478. if (in_f->ilf_size == 2)
  2479. goto out_owner_change;
  2480. len = item->ri_buf[2].i_len;
  2481. src = item->ri_buf[2].i_addr;
  2482. ASSERT(in_f->ilf_size <= 4);
  2483. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2484. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2485. (len == in_f->ilf_dsize));
  2486. switch (fields & XFS_ILOG_DFORK) {
  2487. case XFS_ILOG_DDATA:
  2488. case XFS_ILOG_DEXT:
  2489. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2490. break;
  2491. case XFS_ILOG_DBROOT:
  2492. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2493. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2494. XFS_DFORK_DSIZE(dip, mp));
  2495. break;
  2496. default:
  2497. /*
  2498. * There are no data fork flags set.
  2499. */
  2500. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2501. break;
  2502. }
  2503. /*
  2504. * If we logged any attribute data, recover it. There may or
  2505. * may not have been any other non-core data logged in this
  2506. * transaction.
  2507. */
  2508. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2509. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2510. attr_index = 3;
  2511. } else {
  2512. attr_index = 2;
  2513. }
  2514. len = item->ri_buf[attr_index].i_len;
  2515. src = item->ri_buf[attr_index].i_addr;
  2516. ASSERT(len == in_f->ilf_asize);
  2517. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2518. case XFS_ILOG_ADATA:
  2519. case XFS_ILOG_AEXT:
  2520. dest = XFS_DFORK_APTR(dip);
  2521. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2522. memcpy(dest, src, len);
  2523. break;
  2524. case XFS_ILOG_ABROOT:
  2525. dest = XFS_DFORK_APTR(dip);
  2526. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2527. len, (xfs_bmdr_block_t*)dest,
  2528. XFS_DFORK_ASIZE(dip, mp));
  2529. break;
  2530. default:
  2531. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2532. ASSERT(0);
  2533. error = -EIO;
  2534. goto out_release;
  2535. }
  2536. }
  2537. out_owner_change:
  2538. if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
  2539. error = xfs_recover_inode_owner_change(mp, dip, in_f,
  2540. buffer_list);
  2541. /* re-generate the checksum. */
  2542. xfs_dinode_calc_crc(log->l_mp, dip);
  2543. ASSERT(bp->b_target->bt_mount == mp);
  2544. bp->b_iodone = xlog_recover_iodone;
  2545. xfs_buf_delwri_queue(bp, buffer_list);
  2546. out_release:
  2547. xfs_buf_relse(bp);
  2548. error:
  2549. if (need_free)
  2550. kmem_free(in_f);
  2551. return error;
  2552. }
  2553. /*
  2554. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2555. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2556. * of that type.
  2557. */
  2558. STATIC int
  2559. xlog_recover_quotaoff_pass1(
  2560. struct xlog *log,
  2561. struct xlog_recover_item *item)
  2562. {
  2563. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2564. ASSERT(qoff_f);
  2565. /*
  2566. * The logitem format's flag tells us if this was user quotaoff,
  2567. * group/project quotaoff or both.
  2568. */
  2569. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2570. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2571. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2572. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2573. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2574. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2575. return 0;
  2576. }
  2577. /*
  2578. * Recover a dquot record
  2579. */
  2580. STATIC int
  2581. xlog_recover_dquot_pass2(
  2582. struct xlog *log,
  2583. struct list_head *buffer_list,
  2584. struct xlog_recover_item *item,
  2585. xfs_lsn_t current_lsn)
  2586. {
  2587. xfs_mount_t *mp = log->l_mp;
  2588. xfs_buf_t *bp;
  2589. struct xfs_disk_dquot *ddq, *recddq;
  2590. int error;
  2591. xfs_dq_logformat_t *dq_f;
  2592. uint type;
  2593. /*
  2594. * Filesystems are required to send in quota flags at mount time.
  2595. */
  2596. if (mp->m_qflags == 0)
  2597. return 0;
  2598. recddq = item->ri_buf[1].i_addr;
  2599. if (recddq == NULL) {
  2600. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2601. return -EIO;
  2602. }
  2603. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2604. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2605. item->ri_buf[1].i_len, __func__);
  2606. return -EIO;
  2607. }
  2608. /*
  2609. * This type of quotas was turned off, so ignore this record.
  2610. */
  2611. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2612. ASSERT(type);
  2613. if (log->l_quotaoffs_flag & type)
  2614. return 0;
  2615. /*
  2616. * At this point we know that quota was _not_ turned off.
  2617. * Since the mount flags are not indicating to us otherwise, this
  2618. * must mean that quota is on, and the dquot needs to be replayed.
  2619. * Remember that we may not have fully recovered the superblock yet,
  2620. * so we can't do the usual trick of looking at the SB quota bits.
  2621. *
  2622. * The other possibility, of course, is that the quota subsystem was
  2623. * removed since the last mount - ENOSYS.
  2624. */
  2625. dq_f = item->ri_buf[0].i_addr;
  2626. ASSERT(dq_f);
  2627. error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2628. "xlog_recover_dquot_pass2 (log copy)");
  2629. if (error)
  2630. return -EIO;
  2631. ASSERT(dq_f->qlf_len == 1);
  2632. /*
  2633. * At this point we are assuming that the dquots have been allocated
  2634. * and hence the buffer has valid dquots stamped in it. It should,
  2635. * therefore, pass verifier validation. If the dquot is bad, then the
  2636. * we'll return an error here, so we don't need to specifically check
  2637. * the dquot in the buffer after the verifier has run.
  2638. */
  2639. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2640. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2641. &xfs_dquot_buf_ops);
  2642. if (error)
  2643. return error;
  2644. ASSERT(bp);
  2645. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2646. /*
  2647. * If the dquot has an LSN in it, recover the dquot only if it's less
  2648. * than the lsn of the transaction we are replaying.
  2649. */
  2650. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2651. struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
  2652. xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
  2653. if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
  2654. goto out_release;
  2655. }
  2656. }
  2657. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2658. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  2659. xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
  2660. XFS_DQUOT_CRC_OFF);
  2661. }
  2662. ASSERT(dq_f->qlf_size == 2);
  2663. ASSERT(bp->b_target->bt_mount == mp);
  2664. bp->b_iodone = xlog_recover_iodone;
  2665. xfs_buf_delwri_queue(bp, buffer_list);
  2666. out_release:
  2667. xfs_buf_relse(bp);
  2668. return 0;
  2669. }
  2670. /*
  2671. * This routine is called to create an in-core extent free intent
  2672. * item from the efi format structure which was logged on disk.
  2673. * It allocates an in-core efi, copies the extents from the format
  2674. * structure into it, and adds the efi to the AIL with the given
  2675. * LSN.
  2676. */
  2677. STATIC int
  2678. xlog_recover_efi_pass2(
  2679. struct xlog *log,
  2680. struct xlog_recover_item *item,
  2681. xfs_lsn_t lsn)
  2682. {
  2683. int error;
  2684. xfs_mount_t *mp = log->l_mp;
  2685. xfs_efi_log_item_t *efip;
  2686. xfs_efi_log_format_t *efi_formatp;
  2687. efi_formatp = item->ri_buf[0].i_addr;
  2688. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2689. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2690. &(efip->efi_format)))) {
  2691. xfs_efi_item_free(efip);
  2692. return error;
  2693. }
  2694. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2695. spin_lock(&log->l_ailp->xa_lock);
  2696. /*
  2697. * xfs_trans_ail_update() drops the AIL lock.
  2698. */
  2699. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2700. return 0;
  2701. }
  2702. /*
  2703. * This routine is called when an efd format structure is found in
  2704. * a committed transaction in the log. It's purpose is to cancel
  2705. * the corresponding efi if it was still in the log. To do this
  2706. * it searches the AIL for the efi with an id equal to that in the
  2707. * efd format structure. If we find it, we remove the efi from the
  2708. * AIL and free it.
  2709. */
  2710. STATIC int
  2711. xlog_recover_efd_pass2(
  2712. struct xlog *log,
  2713. struct xlog_recover_item *item)
  2714. {
  2715. xfs_efd_log_format_t *efd_formatp;
  2716. xfs_efi_log_item_t *efip = NULL;
  2717. xfs_log_item_t *lip;
  2718. __uint64_t efi_id;
  2719. struct xfs_ail_cursor cur;
  2720. struct xfs_ail *ailp = log->l_ailp;
  2721. efd_formatp = item->ri_buf[0].i_addr;
  2722. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2723. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2724. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2725. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2726. efi_id = efd_formatp->efd_efi_id;
  2727. /*
  2728. * Search for the efi with the id in the efd format structure
  2729. * in the AIL.
  2730. */
  2731. spin_lock(&ailp->xa_lock);
  2732. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2733. while (lip != NULL) {
  2734. if (lip->li_type == XFS_LI_EFI) {
  2735. efip = (xfs_efi_log_item_t *)lip;
  2736. if (efip->efi_format.efi_id == efi_id) {
  2737. /*
  2738. * xfs_trans_ail_delete() drops the
  2739. * AIL lock.
  2740. */
  2741. xfs_trans_ail_delete(ailp, lip,
  2742. SHUTDOWN_CORRUPT_INCORE);
  2743. xfs_efi_item_free(efip);
  2744. spin_lock(&ailp->xa_lock);
  2745. break;
  2746. }
  2747. }
  2748. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2749. }
  2750. xfs_trans_ail_cursor_done(&cur);
  2751. spin_unlock(&ailp->xa_lock);
  2752. return 0;
  2753. }
  2754. /*
  2755. * This routine is called when an inode create format structure is found in a
  2756. * committed transaction in the log. It's purpose is to initialise the inodes
  2757. * being allocated on disk. This requires us to get inode cluster buffers that
  2758. * match the range to be intialised, stamped with inode templates and written
  2759. * by delayed write so that subsequent modifications will hit the cached buffer
  2760. * and only need writing out at the end of recovery.
  2761. */
  2762. STATIC int
  2763. xlog_recover_do_icreate_pass2(
  2764. struct xlog *log,
  2765. struct list_head *buffer_list,
  2766. xlog_recover_item_t *item)
  2767. {
  2768. struct xfs_mount *mp = log->l_mp;
  2769. struct xfs_icreate_log *icl;
  2770. xfs_agnumber_t agno;
  2771. xfs_agblock_t agbno;
  2772. unsigned int count;
  2773. unsigned int isize;
  2774. xfs_agblock_t length;
  2775. icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
  2776. if (icl->icl_type != XFS_LI_ICREATE) {
  2777. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
  2778. return -EINVAL;
  2779. }
  2780. if (icl->icl_size != 1) {
  2781. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
  2782. return -EINVAL;
  2783. }
  2784. agno = be32_to_cpu(icl->icl_ag);
  2785. if (agno >= mp->m_sb.sb_agcount) {
  2786. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
  2787. return -EINVAL;
  2788. }
  2789. agbno = be32_to_cpu(icl->icl_agbno);
  2790. if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
  2791. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
  2792. return -EINVAL;
  2793. }
  2794. isize = be32_to_cpu(icl->icl_isize);
  2795. if (isize != mp->m_sb.sb_inodesize) {
  2796. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
  2797. return -EINVAL;
  2798. }
  2799. count = be32_to_cpu(icl->icl_count);
  2800. if (!count) {
  2801. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
  2802. return -EINVAL;
  2803. }
  2804. length = be32_to_cpu(icl->icl_length);
  2805. if (!length || length >= mp->m_sb.sb_agblocks) {
  2806. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
  2807. return -EINVAL;
  2808. }
  2809. /* existing allocation is fixed value */
  2810. ASSERT(count == mp->m_ialloc_inos);
  2811. ASSERT(length == mp->m_ialloc_blks);
  2812. if (count != mp->m_ialloc_inos ||
  2813. length != mp->m_ialloc_blks) {
  2814. xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
  2815. return -EINVAL;
  2816. }
  2817. /*
  2818. * Inode buffers can be freed. Do not replay the inode initialisation as
  2819. * we could be overwriting something written after this inode buffer was
  2820. * cancelled.
  2821. *
  2822. * XXX: we need to iterate all buffers and only init those that are not
  2823. * cancelled. I think that a more fine grained factoring of
  2824. * xfs_ialloc_inode_init may be appropriate here to enable this to be
  2825. * done easily.
  2826. */
  2827. if (xlog_check_buffer_cancelled(log,
  2828. XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
  2829. return 0;
  2830. xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
  2831. be32_to_cpu(icl->icl_gen));
  2832. return 0;
  2833. }
  2834. STATIC void
  2835. xlog_recover_buffer_ra_pass2(
  2836. struct xlog *log,
  2837. struct xlog_recover_item *item)
  2838. {
  2839. struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
  2840. struct xfs_mount *mp = log->l_mp;
  2841. if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
  2842. buf_f->blf_len, buf_f->blf_flags)) {
  2843. return;
  2844. }
  2845. xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
  2846. buf_f->blf_len, NULL);
  2847. }
  2848. STATIC void
  2849. xlog_recover_inode_ra_pass2(
  2850. struct xlog *log,
  2851. struct xlog_recover_item *item)
  2852. {
  2853. struct xfs_inode_log_format ilf_buf;
  2854. struct xfs_inode_log_format *ilfp;
  2855. struct xfs_mount *mp = log->l_mp;
  2856. int error;
  2857. if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
  2858. ilfp = item->ri_buf[0].i_addr;
  2859. } else {
  2860. ilfp = &ilf_buf;
  2861. memset(ilfp, 0, sizeof(*ilfp));
  2862. error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
  2863. if (error)
  2864. return;
  2865. }
  2866. if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
  2867. return;
  2868. xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
  2869. ilfp->ilf_len, &xfs_inode_buf_ra_ops);
  2870. }
  2871. STATIC void
  2872. xlog_recover_dquot_ra_pass2(
  2873. struct xlog *log,
  2874. struct xlog_recover_item *item)
  2875. {
  2876. struct xfs_mount *mp = log->l_mp;
  2877. struct xfs_disk_dquot *recddq;
  2878. struct xfs_dq_logformat *dq_f;
  2879. uint type;
  2880. if (mp->m_qflags == 0)
  2881. return;
  2882. recddq = item->ri_buf[1].i_addr;
  2883. if (recddq == NULL)
  2884. return;
  2885. if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
  2886. return;
  2887. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2888. ASSERT(type);
  2889. if (log->l_quotaoffs_flag & type)
  2890. return;
  2891. dq_f = item->ri_buf[0].i_addr;
  2892. ASSERT(dq_f);
  2893. ASSERT(dq_f->qlf_len == 1);
  2894. xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
  2895. XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
  2896. }
  2897. STATIC void
  2898. xlog_recover_ra_pass2(
  2899. struct xlog *log,
  2900. struct xlog_recover_item *item)
  2901. {
  2902. switch (ITEM_TYPE(item)) {
  2903. case XFS_LI_BUF:
  2904. xlog_recover_buffer_ra_pass2(log, item);
  2905. break;
  2906. case XFS_LI_INODE:
  2907. xlog_recover_inode_ra_pass2(log, item);
  2908. break;
  2909. case XFS_LI_DQUOT:
  2910. xlog_recover_dquot_ra_pass2(log, item);
  2911. break;
  2912. case XFS_LI_EFI:
  2913. case XFS_LI_EFD:
  2914. case XFS_LI_QUOTAOFF:
  2915. default:
  2916. break;
  2917. }
  2918. }
  2919. STATIC int
  2920. xlog_recover_commit_pass1(
  2921. struct xlog *log,
  2922. struct xlog_recover *trans,
  2923. struct xlog_recover_item *item)
  2924. {
  2925. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2926. switch (ITEM_TYPE(item)) {
  2927. case XFS_LI_BUF:
  2928. return xlog_recover_buffer_pass1(log, item);
  2929. case XFS_LI_QUOTAOFF:
  2930. return xlog_recover_quotaoff_pass1(log, item);
  2931. case XFS_LI_INODE:
  2932. case XFS_LI_EFI:
  2933. case XFS_LI_EFD:
  2934. case XFS_LI_DQUOT:
  2935. case XFS_LI_ICREATE:
  2936. /* nothing to do in pass 1 */
  2937. return 0;
  2938. default:
  2939. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2940. __func__, ITEM_TYPE(item));
  2941. ASSERT(0);
  2942. return -EIO;
  2943. }
  2944. }
  2945. STATIC int
  2946. xlog_recover_commit_pass2(
  2947. struct xlog *log,
  2948. struct xlog_recover *trans,
  2949. struct list_head *buffer_list,
  2950. struct xlog_recover_item *item)
  2951. {
  2952. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2953. switch (ITEM_TYPE(item)) {
  2954. case XFS_LI_BUF:
  2955. return xlog_recover_buffer_pass2(log, buffer_list, item,
  2956. trans->r_lsn);
  2957. case XFS_LI_INODE:
  2958. return xlog_recover_inode_pass2(log, buffer_list, item,
  2959. trans->r_lsn);
  2960. case XFS_LI_EFI:
  2961. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2962. case XFS_LI_EFD:
  2963. return xlog_recover_efd_pass2(log, item);
  2964. case XFS_LI_DQUOT:
  2965. return xlog_recover_dquot_pass2(log, buffer_list, item,
  2966. trans->r_lsn);
  2967. case XFS_LI_ICREATE:
  2968. return xlog_recover_do_icreate_pass2(log, buffer_list, item);
  2969. case XFS_LI_QUOTAOFF:
  2970. /* nothing to do in pass2 */
  2971. return 0;
  2972. default:
  2973. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2974. __func__, ITEM_TYPE(item));
  2975. ASSERT(0);
  2976. return -EIO;
  2977. }
  2978. }
  2979. STATIC int
  2980. xlog_recover_items_pass2(
  2981. struct xlog *log,
  2982. struct xlog_recover *trans,
  2983. struct list_head *buffer_list,
  2984. struct list_head *item_list)
  2985. {
  2986. struct xlog_recover_item *item;
  2987. int error = 0;
  2988. list_for_each_entry(item, item_list, ri_list) {
  2989. error = xlog_recover_commit_pass2(log, trans,
  2990. buffer_list, item);
  2991. if (error)
  2992. return error;
  2993. }
  2994. return error;
  2995. }
  2996. /*
  2997. * Perform the transaction.
  2998. *
  2999. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  3000. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  3001. */
  3002. STATIC int
  3003. xlog_recover_commit_trans(
  3004. struct xlog *log,
  3005. struct xlog_recover *trans,
  3006. int pass)
  3007. {
  3008. int error = 0;
  3009. int error2;
  3010. int items_queued = 0;
  3011. struct xlog_recover_item *item;
  3012. struct xlog_recover_item *next;
  3013. LIST_HEAD (buffer_list);
  3014. LIST_HEAD (ra_list);
  3015. LIST_HEAD (done_list);
  3016. #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
  3017. hlist_del(&trans->r_list);
  3018. error = xlog_recover_reorder_trans(log, trans, pass);
  3019. if (error)
  3020. return error;
  3021. list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
  3022. switch (pass) {
  3023. case XLOG_RECOVER_PASS1:
  3024. error = xlog_recover_commit_pass1(log, trans, item);
  3025. break;
  3026. case XLOG_RECOVER_PASS2:
  3027. xlog_recover_ra_pass2(log, item);
  3028. list_move_tail(&item->ri_list, &ra_list);
  3029. items_queued++;
  3030. if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
  3031. error = xlog_recover_items_pass2(log, trans,
  3032. &buffer_list, &ra_list);
  3033. list_splice_tail_init(&ra_list, &done_list);
  3034. items_queued = 0;
  3035. }
  3036. break;
  3037. default:
  3038. ASSERT(0);
  3039. }
  3040. if (error)
  3041. goto out;
  3042. }
  3043. out:
  3044. if (!list_empty(&ra_list)) {
  3045. if (!error)
  3046. error = xlog_recover_items_pass2(log, trans,
  3047. &buffer_list, &ra_list);
  3048. list_splice_tail_init(&ra_list, &done_list);
  3049. }
  3050. if (!list_empty(&done_list))
  3051. list_splice_init(&done_list, &trans->r_itemq);
  3052. error2 = xfs_buf_delwri_submit(&buffer_list);
  3053. return error ? error : error2;
  3054. }
  3055. STATIC void
  3056. xlog_recover_add_item(
  3057. struct list_head *head)
  3058. {
  3059. xlog_recover_item_t *item;
  3060. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  3061. INIT_LIST_HEAD(&item->ri_list);
  3062. list_add_tail(&item->ri_list, head);
  3063. }
  3064. STATIC int
  3065. xlog_recover_add_to_cont_trans(
  3066. struct xlog *log,
  3067. struct xlog_recover *trans,
  3068. xfs_caddr_t dp,
  3069. int len)
  3070. {
  3071. xlog_recover_item_t *item;
  3072. xfs_caddr_t ptr, old_ptr;
  3073. int old_len;
  3074. if (list_empty(&trans->r_itemq)) {
  3075. /* finish copying rest of trans header */
  3076. xlog_recover_add_item(&trans->r_itemq);
  3077. ptr = (xfs_caddr_t) &trans->r_theader +
  3078. sizeof(xfs_trans_header_t) - len;
  3079. memcpy(ptr, dp, len);
  3080. return 0;
  3081. }
  3082. /* take the tail entry */
  3083. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  3084. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  3085. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  3086. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  3087. memcpy(&ptr[old_len], dp, len);
  3088. item->ri_buf[item->ri_cnt-1].i_len += len;
  3089. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  3090. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  3091. return 0;
  3092. }
  3093. /*
  3094. * The next region to add is the start of a new region. It could be
  3095. * a whole region or it could be the first part of a new region. Because
  3096. * of this, the assumption here is that the type and size fields of all
  3097. * format structures fit into the first 32 bits of the structure.
  3098. *
  3099. * This works because all regions must be 32 bit aligned. Therefore, we
  3100. * either have both fields or we have neither field. In the case we have
  3101. * neither field, the data part of the region is zero length. We only have
  3102. * a log_op_header and can throw away the header since a new one will appear
  3103. * later. If we have at least 4 bytes, then we can determine how many regions
  3104. * will appear in the current log item.
  3105. */
  3106. STATIC int
  3107. xlog_recover_add_to_trans(
  3108. struct xlog *log,
  3109. struct xlog_recover *trans,
  3110. xfs_caddr_t dp,
  3111. int len)
  3112. {
  3113. xfs_inode_log_format_t *in_f; /* any will do */
  3114. xlog_recover_item_t *item;
  3115. xfs_caddr_t ptr;
  3116. if (!len)
  3117. return 0;
  3118. if (list_empty(&trans->r_itemq)) {
  3119. /* we need to catch log corruptions here */
  3120. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  3121. xfs_warn(log->l_mp, "%s: bad header magic number",
  3122. __func__);
  3123. ASSERT(0);
  3124. return -EIO;
  3125. }
  3126. if (len == sizeof(xfs_trans_header_t))
  3127. xlog_recover_add_item(&trans->r_itemq);
  3128. memcpy(&trans->r_theader, dp, len);
  3129. return 0;
  3130. }
  3131. ptr = kmem_alloc(len, KM_SLEEP);
  3132. memcpy(ptr, dp, len);
  3133. in_f = (xfs_inode_log_format_t *)ptr;
  3134. /* take the tail entry */
  3135. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  3136. if (item->ri_total != 0 &&
  3137. item->ri_total == item->ri_cnt) {
  3138. /* tail item is in use, get a new one */
  3139. xlog_recover_add_item(&trans->r_itemq);
  3140. item = list_entry(trans->r_itemq.prev,
  3141. xlog_recover_item_t, ri_list);
  3142. }
  3143. if (item->ri_total == 0) { /* first region to be added */
  3144. if (in_f->ilf_size == 0 ||
  3145. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  3146. xfs_warn(log->l_mp,
  3147. "bad number of regions (%d) in inode log format",
  3148. in_f->ilf_size);
  3149. ASSERT(0);
  3150. kmem_free(ptr);
  3151. return -EIO;
  3152. }
  3153. item->ri_total = in_f->ilf_size;
  3154. item->ri_buf =
  3155. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  3156. KM_SLEEP);
  3157. }
  3158. ASSERT(item->ri_total > item->ri_cnt);
  3159. /* Description region is ri_buf[0] */
  3160. item->ri_buf[item->ri_cnt].i_addr = ptr;
  3161. item->ri_buf[item->ri_cnt].i_len = len;
  3162. item->ri_cnt++;
  3163. trace_xfs_log_recover_item_add(log, trans, item, 0);
  3164. return 0;
  3165. }
  3166. /*
  3167. * Free up any resources allocated by the transaction
  3168. *
  3169. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  3170. */
  3171. STATIC void
  3172. xlog_recover_free_trans(
  3173. struct xlog_recover *trans)
  3174. {
  3175. xlog_recover_item_t *item, *n;
  3176. int i;
  3177. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  3178. /* Free the regions in the item. */
  3179. list_del(&item->ri_list);
  3180. for (i = 0; i < item->ri_cnt; i++)
  3181. kmem_free(item->ri_buf[i].i_addr);
  3182. /* Free the item itself */
  3183. kmem_free(item->ri_buf);
  3184. kmem_free(item);
  3185. }
  3186. /* Free the transaction recover structure */
  3187. kmem_free(trans);
  3188. }
  3189. /*
  3190. * On error or completion, trans is freed.
  3191. */
  3192. STATIC int
  3193. xlog_recovery_process_trans(
  3194. struct xlog *log,
  3195. struct xlog_recover *trans,
  3196. xfs_caddr_t dp,
  3197. unsigned int len,
  3198. unsigned int flags,
  3199. int pass)
  3200. {
  3201. int error = 0;
  3202. bool freeit = false;
  3203. /* mask off ophdr transaction container flags */
  3204. flags &= ~XLOG_END_TRANS;
  3205. if (flags & XLOG_WAS_CONT_TRANS)
  3206. flags &= ~XLOG_CONTINUE_TRANS;
  3207. /*
  3208. * Callees must not free the trans structure. We'll decide if we need to
  3209. * free it or not based on the operation being done and it's result.
  3210. */
  3211. switch (flags) {
  3212. /* expected flag values */
  3213. case 0:
  3214. case XLOG_CONTINUE_TRANS:
  3215. error = xlog_recover_add_to_trans(log, trans, dp, len);
  3216. break;
  3217. case XLOG_WAS_CONT_TRANS:
  3218. error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
  3219. break;
  3220. case XLOG_COMMIT_TRANS:
  3221. error = xlog_recover_commit_trans(log, trans, pass);
  3222. /* success or fail, we are now done with this transaction. */
  3223. freeit = true;
  3224. break;
  3225. /* unexpected flag values */
  3226. case XLOG_UNMOUNT_TRANS:
  3227. /* just skip trans */
  3228. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  3229. freeit = true;
  3230. break;
  3231. case XLOG_START_TRANS:
  3232. default:
  3233. xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
  3234. ASSERT(0);
  3235. error = -EIO;
  3236. break;
  3237. }
  3238. if (error || freeit)
  3239. xlog_recover_free_trans(trans);
  3240. return error;
  3241. }
  3242. /*
  3243. * Lookup the transaction recovery structure associated with the ID in the
  3244. * current ophdr. If the transaction doesn't exist and the start flag is set in
  3245. * the ophdr, then allocate a new transaction for future ID matches to find.
  3246. * Either way, return what we found during the lookup - an existing transaction
  3247. * or nothing.
  3248. */
  3249. STATIC struct xlog_recover *
  3250. xlog_recover_ophdr_to_trans(
  3251. struct hlist_head rhash[],
  3252. struct xlog_rec_header *rhead,
  3253. struct xlog_op_header *ohead)
  3254. {
  3255. struct xlog_recover *trans;
  3256. xlog_tid_t tid;
  3257. struct hlist_head *rhp;
  3258. tid = be32_to_cpu(ohead->oh_tid);
  3259. rhp = &rhash[XLOG_RHASH(tid)];
  3260. hlist_for_each_entry(trans, rhp, r_list) {
  3261. if (trans->r_log_tid == tid)
  3262. return trans;
  3263. }
  3264. /*
  3265. * skip over non-start transaction headers - we could be
  3266. * processing slack space before the next transaction starts
  3267. */
  3268. if (!(ohead->oh_flags & XLOG_START_TRANS))
  3269. return NULL;
  3270. ASSERT(be32_to_cpu(ohead->oh_len) == 0);
  3271. /*
  3272. * This is a new transaction so allocate a new recovery container to
  3273. * hold the recovery ops that will follow.
  3274. */
  3275. trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
  3276. trans->r_log_tid = tid;
  3277. trans->r_lsn = be64_to_cpu(rhead->h_lsn);
  3278. INIT_LIST_HEAD(&trans->r_itemq);
  3279. INIT_HLIST_NODE(&trans->r_list);
  3280. hlist_add_head(&trans->r_list, rhp);
  3281. /*
  3282. * Nothing more to do for this ophdr. Items to be added to this new
  3283. * transaction will be in subsequent ophdr containers.
  3284. */
  3285. return NULL;
  3286. }
  3287. STATIC int
  3288. xlog_recover_process_ophdr(
  3289. struct xlog *log,
  3290. struct hlist_head rhash[],
  3291. struct xlog_rec_header *rhead,
  3292. struct xlog_op_header *ohead,
  3293. xfs_caddr_t dp,
  3294. xfs_caddr_t end,
  3295. int pass)
  3296. {
  3297. struct xlog_recover *trans;
  3298. unsigned int len;
  3299. /* Do we understand who wrote this op? */
  3300. if (ohead->oh_clientid != XFS_TRANSACTION &&
  3301. ohead->oh_clientid != XFS_LOG) {
  3302. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  3303. __func__, ohead->oh_clientid);
  3304. ASSERT(0);
  3305. return -EIO;
  3306. }
  3307. /*
  3308. * Check the ophdr contains all the data it is supposed to contain.
  3309. */
  3310. len = be32_to_cpu(ohead->oh_len);
  3311. if (dp + len > end) {
  3312. xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
  3313. WARN_ON(1);
  3314. return -EIO;
  3315. }
  3316. trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
  3317. if (!trans) {
  3318. /* nothing to do, so skip over this ophdr */
  3319. return 0;
  3320. }
  3321. return xlog_recovery_process_trans(log, trans, dp, len,
  3322. ohead->oh_flags, pass);
  3323. }
  3324. /*
  3325. * There are two valid states of the r_state field. 0 indicates that the
  3326. * transaction structure is in a normal state. We have either seen the
  3327. * start of the transaction or the last operation we added was not a partial
  3328. * operation. If the last operation we added to the transaction was a
  3329. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  3330. *
  3331. * NOTE: skip LRs with 0 data length.
  3332. */
  3333. STATIC int
  3334. xlog_recover_process_data(
  3335. struct xlog *log,
  3336. struct hlist_head rhash[],
  3337. struct xlog_rec_header *rhead,
  3338. xfs_caddr_t dp,
  3339. int pass)
  3340. {
  3341. struct xlog_op_header *ohead;
  3342. xfs_caddr_t end;
  3343. int num_logops;
  3344. int error;
  3345. end = dp + be32_to_cpu(rhead->h_len);
  3346. num_logops = be32_to_cpu(rhead->h_num_logops);
  3347. /* check the log format matches our own - else we can't recover */
  3348. if (xlog_header_check_recover(log->l_mp, rhead))
  3349. return -EIO;
  3350. while ((dp < end) && num_logops) {
  3351. ohead = (struct xlog_op_header *)dp;
  3352. dp += sizeof(*ohead);
  3353. ASSERT(dp <= end);
  3354. /* errors will abort recovery */
  3355. error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
  3356. dp, end, pass);
  3357. if (error)
  3358. return error;
  3359. dp += be32_to_cpu(ohead->oh_len);
  3360. num_logops--;
  3361. }
  3362. return 0;
  3363. }
  3364. /*
  3365. * Process an extent free intent item that was recovered from
  3366. * the log. We need to free the extents that it describes.
  3367. */
  3368. STATIC int
  3369. xlog_recover_process_efi(
  3370. xfs_mount_t *mp,
  3371. xfs_efi_log_item_t *efip)
  3372. {
  3373. xfs_efd_log_item_t *efdp;
  3374. xfs_trans_t *tp;
  3375. int i;
  3376. int error = 0;
  3377. xfs_extent_t *extp;
  3378. xfs_fsblock_t startblock_fsb;
  3379. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  3380. /*
  3381. * First check the validity of the extents described by the
  3382. * EFI. If any are bad, then assume that all are bad and
  3383. * just toss the EFI.
  3384. */
  3385. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3386. extp = &(efip->efi_format.efi_extents[i]);
  3387. startblock_fsb = XFS_BB_TO_FSB(mp,
  3388. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  3389. if ((startblock_fsb == 0) ||
  3390. (extp->ext_len == 0) ||
  3391. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  3392. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  3393. /*
  3394. * This will pull the EFI from the AIL and
  3395. * free the memory associated with it.
  3396. */
  3397. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3398. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  3399. return -EIO;
  3400. }
  3401. }
  3402. tp = xfs_trans_alloc(mp, 0);
  3403. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
  3404. if (error)
  3405. goto abort_error;
  3406. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  3407. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  3408. extp = &(efip->efi_format.efi_extents[i]);
  3409. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  3410. if (error)
  3411. goto abort_error;
  3412. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  3413. extp->ext_len);
  3414. }
  3415. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  3416. error = xfs_trans_commit(tp, 0);
  3417. return error;
  3418. abort_error:
  3419. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3420. return error;
  3421. }
  3422. /*
  3423. * When this is called, all of the EFIs which did not have
  3424. * corresponding EFDs should be in the AIL. What we do now
  3425. * is free the extents associated with each one.
  3426. *
  3427. * Since we process the EFIs in normal transactions, they
  3428. * will be removed at some point after the commit. This prevents
  3429. * us from just walking down the list processing each one.
  3430. * We'll use a flag in the EFI to skip those that we've already
  3431. * processed and use the AIL iteration mechanism's generation
  3432. * count to try to speed this up at least a bit.
  3433. *
  3434. * When we start, we know that the EFIs are the only things in
  3435. * the AIL. As we process them, however, other items are added
  3436. * to the AIL. Since everything added to the AIL must come after
  3437. * everything already in the AIL, we stop processing as soon as
  3438. * we see something other than an EFI in the AIL.
  3439. */
  3440. STATIC int
  3441. xlog_recover_process_efis(
  3442. struct xlog *log)
  3443. {
  3444. xfs_log_item_t *lip;
  3445. xfs_efi_log_item_t *efip;
  3446. int error = 0;
  3447. struct xfs_ail_cursor cur;
  3448. struct xfs_ail *ailp;
  3449. ailp = log->l_ailp;
  3450. spin_lock(&ailp->xa_lock);
  3451. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  3452. while (lip != NULL) {
  3453. /*
  3454. * We're done when we see something other than an EFI.
  3455. * There should be no EFIs left in the AIL now.
  3456. */
  3457. if (lip->li_type != XFS_LI_EFI) {
  3458. #ifdef DEBUG
  3459. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  3460. ASSERT(lip->li_type != XFS_LI_EFI);
  3461. #endif
  3462. break;
  3463. }
  3464. /*
  3465. * Skip EFIs that we've already processed.
  3466. */
  3467. efip = (xfs_efi_log_item_t *)lip;
  3468. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  3469. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3470. continue;
  3471. }
  3472. spin_unlock(&ailp->xa_lock);
  3473. error = xlog_recover_process_efi(log->l_mp, efip);
  3474. spin_lock(&ailp->xa_lock);
  3475. if (error)
  3476. goto out;
  3477. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  3478. }
  3479. out:
  3480. xfs_trans_ail_cursor_done(&cur);
  3481. spin_unlock(&ailp->xa_lock);
  3482. return error;
  3483. }
  3484. /*
  3485. * This routine performs a transaction to null out a bad inode pointer
  3486. * in an agi unlinked inode hash bucket.
  3487. */
  3488. STATIC void
  3489. xlog_recover_clear_agi_bucket(
  3490. xfs_mount_t *mp,
  3491. xfs_agnumber_t agno,
  3492. int bucket)
  3493. {
  3494. xfs_trans_t *tp;
  3495. xfs_agi_t *agi;
  3496. xfs_buf_t *agibp;
  3497. int offset;
  3498. int error;
  3499. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  3500. error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
  3501. if (error)
  3502. goto out_abort;
  3503. error = xfs_read_agi(mp, tp, agno, &agibp);
  3504. if (error)
  3505. goto out_abort;
  3506. agi = XFS_BUF_TO_AGI(agibp);
  3507. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  3508. offset = offsetof(xfs_agi_t, agi_unlinked) +
  3509. (sizeof(xfs_agino_t) * bucket);
  3510. xfs_trans_log_buf(tp, agibp, offset,
  3511. (offset + sizeof(xfs_agino_t) - 1));
  3512. error = xfs_trans_commit(tp, 0);
  3513. if (error)
  3514. goto out_error;
  3515. return;
  3516. out_abort:
  3517. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  3518. out_error:
  3519. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  3520. return;
  3521. }
  3522. STATIC xfs_agino_t
  3523. xlog_recover_process_one_iunlink(
  3524. struct xfs_mount *mp,
  3525. xfs_agnumber_t agno,
  3526. xfs_agino_t agino,
  3527. int bucket)
  3528. {
  3529. struct xfs_buf *ibp;
  3530. struct xfs_dinode *dip;
  3531. struct xfs_inode *ip;
  3532. xfs_ino_t ino;
  3533. int error;
  3534. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  3535. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  3536. if (error)
  3537. goto fail;
  3538. /*
  3539. * Get the on disk inode to find the next inode in the bucket.
  3540. */
  3541. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  3542. if (error)
  3543. goto fail_iput;
  3544. ASSERT(ip->i_d.di_nlink == 0);
  3545. ASSERT(ip->i_d.di_mode != 0);
  3546. /* setup for the next pass */
  3547. agino = be32_to_cpu(dip->di_next_unlinked);
  3548. xfs_buf_relse(ibp);
  3549. /*
  3550. * Prevent any DMAPI event from being sent when the reference on
  3551. * the inode is dropped.
  3552. */
  3553. ip->i_d.di_dmevmask = 0;
  3554. IRELE(ip);
  3555. return agino;
  3556. fail_iput:
  3557. IRELE(ip);
  3558. fail:
  3559. /*
  3560. * We can't read in the inode this bucket points to, or this inode
  3561. * is messed up. Just ditch this bucket of inodes. We will lose
  3562. * some inodes and space, but at least we won't hang.
  3563. *
  3564. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  3565. * clear the inode pointer in the bucket.
  3566. */
  3567. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  3568. return NULLAGINO;
  3569. }
  3570. /*
  3571. * xlog_iunlink_recover
  3572. *
  3573. * This is called during recovery to process any inodes which
  3574. * we unlinked but not freed when the system crashed. These
  3575. * inodes will be on the lists in the AGI blocks. What we do
  3576. * here is scan all the AGIs and fully truncate and free any
  3577. * inodes found on the lists. Each inode is removed from the
  3578. * lists when it has been fully truncated and is freed. The
  3579. * freeing of the inode and its removal from the list must be
  3580. * atomic.
  3581. */
  3582. STATIC void
  3583. xlog_recover_process_iunlinks(
  3584. struct xlog *log)
  3585. {
  3586. xfs_mount_t *mp;
  3587. xfs_agnumber_t agno;
  3588. xfs_agi_t *agi;
  3589. xfs_buf_t *agibp;
  3590. xfs_agino_t agino;
  3591. int bucket;
  3592. int error;
  3593. uint mp_dmevmask;
  3594. mp = log->l_mp;
  3595. /*
  3596. * Prevent any DMAPI event from being sent while in this function.
  3597. */
  3598. mp_dmevmask = mp->m_dmevmask;
  3599. mp->m_dmevmask = 0;
  3600. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3601. /*
  3602. * Find the agi for this ag.
  3603. */
  3604. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3605. if (error) {
  3606. /*
  3607. * AGI is b0rked. Don't process it.
  3608. *
  3609. * We should probably mark the filesystem as corrupt
  3610. * after we've recovered all the ag's we can....
  3611. */
  3612. continue;
  3613. }
  3614. /*
  3615. * Unlock the buffer so that it can be acquired in the normal
  3616. * course of the transaction to truncate and free each inode.
  3617. * Because we are not racing with anyone else here for the AGI
  3618. * buffer, we don't even need to hold it locked to read the
  3619. * initial unlinked bucket entries out of the buffer. We keep
  3620. * buffer reference though, so that it stays pinned in memory
  3621. * while we need the buffer.
  3622. */
  3623. agi = XFS_BUF_TO_AGI(agibp);
  3624. xfs_buf_unlock(agibp);
  3625. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  3626. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  3627. while (agino != NULLAGINO) {
  3628. agino = xlog_recover_process_one_iunlink(mp,
  3629. agno, agino, bucket);
  3630. }
  3631. }
  3632. xfs_buf_rele(agibp);
  3633. }
  3634. mp->m_dmevmask = mp_dmevmask;
  3635. }
  3636. /*
  3637. * Upack the log buffer data and crc check it. If the check fails, issue a
  3638. * warning if and only if the CRC in the header is non-zero. This makes the
  3639. * check an advisory warning, and the zero CRC check will prevent failure
  3640. * warnings from being emitted when upgrading the kernel from one that does not
  3641. * add CRCs by default.
  3642. *
  3643. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  3644. * corruption failure
  3645. */
  3646. STATIC int
  3647. xlog_unpack_data_crc(
  3648. struct xlog_rec_header *rhead,
  3649. xfs_caddr_t dp,
  3650. struct xlog *log)
  3651. {
  3652. __le32 crc;
  3653. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  3654. if (crc != rhead->h_crc) {
  3655. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  3656. xfs_alert(log->l_mp,
  3657. "log record CRC mismatch: found 0x%x, expected 0x%x.",
  3658. le32_to_cpu(rhead->h_crc),
  3659. le32_to_cpu(crc));
  3660. xfs_hex_dump(dp, 32);
  3661. }
  3662. /*
  3663. * If we've detected a log record corruption, then we can't
  3664. * recover past this point. Abort recovery if we are enforcing
  3665. * CRC protection by punting an error back up the stack.
  3666. */
  3667. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  3668. return -EFSCORRUPTED;
  3669. }
  3670. return 0;
  3671. }
  3672. STATIC int
  3673. xlog_unpack_data(
  3674. struct xlog_rec_header *rhead,
  3675. xfs_caddr_t dp,
  3676. struct xlog *log)
  3677. {
  3678. int i, j, k;
  3679. int error;
  3680. error = xlog_unpack_data_crc(rhead, dp, log);
  3681. if (error)
  3682. return error;
  3683. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3684. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3685. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3686. dp += BBSIZE;
  3687. }
  3688. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3689. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  3690. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3691. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3692. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3693. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3694. dp += BBSIZE;
  3695. }
  3696. }
  3697. return 0;
  3698. }
  3699. STATIC int
  3700. xlog_valid_rec_header(
  3701. struct xlog *log,
  3702. struct xlog_rec_header *rhead,
  3703. xfs_daddr_t blkno)
  3704. {
  3705. int hlen;
  3706. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3707. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3708. XFS_ERRLEVEL_LOW, log->l_mp);
  3709. return -EFSCORRUPTED;
  3710. }
  3711. if (unlikely(
  3712. (!rhead->h_version ||
  3713. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3714. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3715. __func__, be32_to_cpu(rhead->h_version));
  3716. return -EIO;
  3717. }
  3718. /* LR body must have data or it wouldn't have been written */
  3719. hlen = be32_to_cpu(rhead->h_len);
  3720. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3721. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3722. XFS_ERRLEVEL_LOW, log->l_mp);
  3723. return -EFSCORRUPTED;
  3724. }
  3725. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3726. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3727. XFS_ERRLEVEL_LOW, log->l_mp);
  3728. return -EFSCORRUPTED;
  3729. }
  3730. return 0;
  3731. }
  3732. /*
  3733. * Read the log from tail to head and process the log records found.
  3734. * Handle the two cases where the tail and head are in the same cycle
  3735. * and where the active portion of the log wraps around the end of
  3736. * the physical log separately. The pass parameter is passed through
  3737. * to the routines called to process the data and is not looked at
  3738. * here.
  3739. */
  3740. STATIC int
  3741. xlog_do_recovery_pass(
  3742. struct xlog *log,
  3743. xfs_daddr_t head_blk,
  3744. xfs_daddr_t tail_blk,
  3745. int pass)
  3746. {
  3747. xlog_rec_header_t *rhead;
  3748. xfs_daddr_t blk_no;
  3749. xfs_caddr_t offset;
  3750. xfs_buf_t *hbp, *dbp;
  3751. int error = 0, h_size;
  3752. int bblks, split_bblks;
  3753. int hblks, split_hblks, wrapped_hblks;
  3754. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3755. ASSERT(head_blk != tail_blk);
  3756. /*
  3757. * Read the header of the tail block and get the iclog buffer size from
  3758. * h_size. Use this to tell how many sectors make up the log header.
  3759. */
  3760. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3761. /*
  3762. * When using variable length iclogs, read first sector of
  3763. * iclog header and extract the header size from it. Get a
  3764. * new hbp that is the correct size.
  3765. */
  3766. hbp = xlog_get_bp(log, 1);
  3767. if (!hbp)
  3768. return -ENOMEM;
  3769. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3770. if (error)
  3771. goto bread_err1;
  3772. rhead = (xlog_rec_header_t *)offset;
  3773. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3774. if (error)
  3775. goto bread_err1;
  3776. h_size = be32_to_cpu(rhead->h_size);
  3777. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3778. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3779. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3780. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3781. hblks++;
  3782. xlog_put_bp(hbp);
  3783. hbp = xlog_get_bp(log, hblks);
  3784. } else {
  3785. hblks = 1;
  3786. }
  3787. } else {
  3788. ASSERT(log->l_sectBBsize == 1);
  3789. hblks = 1;
  3790. hbp = xlog_get_bp(log, 1);
  3791. h_size = XLOG_BIG_RECORD_BSIZE;
  3792. }
  3793. if (!hbp)
  3794. return -ENOMEM;
  3795. dbp = xlog_get_bp(log, BTOBB(h_size));
  3796. if (!dbp) {
  3797. xlog_put_bp(hbp);
  3798. return -ENOMEM;
  3799. }
  3800. memset(rhash, 0, sizeof(rhash));
  3801. blk_no = tail_blk;
  3802. if (tail_blk > head_blk) {
  3803. /*
  3804. * Perform recovery around the end of the physical log.
  3805. * When the head is not on the same cycle number as the tail,
  3806. * we can't do a sequential recovery.
  3807. */
  3808. while (blk_no < log->l_logBBsize) {
  3809. /*
  3810. * Check for header wrapping around physical end-of-log
  3811. */
  3812. offset = hbp->b_addr;
  3813. split_hblks = 0;
  3814. wrapped_hblks = 0;
  3815. if (blk_no + hblks <= log->l_logBBsize) {
  3816. /* Read header in one read */
  3817. error = xlog_bread(log, blk_no, hblks, hbp,
  3818. &offset);
  3819. if (error)
  3820. goto bread_err2;
  3821. } else {
  3822. /* This LR is split across physical log end */
  3823. if (blk_no != log->l_logBBsize) {
  3824. /* some data before physical log end */
  3825. ASSERT(blk_no <= INT_MAX);
  3826. split_hblks = log->l_logBBsize - (int)blk_no;
  3827. ASSERT(split_hblks > 0);
  3828. error = xlog_bread(log, blk_no,
  3829. split_hblks, hbp,
  3830. &offset);
  3831. if (error)
  3832. goto bread_err2;
  3833. }
  3834. /*
  3835. * Note: this black magic still works with
  3836. * large sector sizes (non-512) only because:
  3837. * - we increased the buffer size originally
  3838. * by 1 sector giving us enough extra space
  3839. * for the second read;
  3840. * - the log start is guaranteed to be sector
  3841. * aligned;
  3842. * - we read the log end (LR header start)
  3843. * _first_, then the log start (LR header end)
  3844. * - order is important.
  3845. */
  3846. wrapped_hblks = hblks - split_hblks;
  3847. error = xlog_bread_offset(log, 0,
  3848. wrapped_hblks, hbp,
  3849. offset + BBTOB(split_hblks));
  3850. if (error)
  3851. goto bread_err2;
  3852. }
  3853. rhead = (xlog_rec_header_t *)offset;
  3854. error = xlog_valid_rec_header(log, rhead,
  3855. split_hblks ? blk_no : 0);
  3856. if (error)
  3857. goto bread_err2;
  3858. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3859. blk_no += hblks;
  3860. /* Read in data for log record */
  3861. if (blk_no + bblks <= log->l_logBBsize) {
  3862. error = xlog_bread(log, blk_no, bblks, dbp,
  3863. &offset);
  3864. if (error)
  3865. goto bread_err2;
  3866. } else {
  3867. /* This log record is split across the
  3868. * physical end of log */
  3869. offset = dbp->b_addr;
  3870. split_bblks = 0;
  3871. if (blk_no != log->l_logBBsize) {
  3872. /* some data is before the physical
  3873. * end of log */
  3874. ASSERT(!wrapped_hblks);
  3875. ASSERT(blk_no <= INT_MAX);
  3876. split_bblks =
  3877. log->l_logBBsize - (int)blk_no;
  3878. ASSERT(split_bblks > 0);
  3879. error = xlog_bread(log, blk_no,
  3880. split_bblks, dbp,
  3881. &offset);
  3882. if (error)
  3883. goto bread_err2;
  3884. }
  3885. /*
  3886. * Note: this black magic still works with
  3887. * large sector sizes (non-512) only because:
  3888. * - we increased the buffer size originally
  3889. * by 1 sector giving us enough extra space
  3890. * for the second read;
  3891. * - the log start is guaranteed to be sector
  3892. * aligned;
  3893. * - we read the log end (LR header start)
  3894. * _first_, then the log start (LR header end)
  3895. * - order is important.
  3896. */
  3897. error = xlog_bread_offset(log, 0,
  3898. bblks - split_bblks, dbp,
  3899. offset + BBTOB(split_bblks));
  3900. if (error)
  3901. goto bread_err2;
  3902. }
  3903. error = xlog_unpack_data(rhead, offset, log);
  3904. if (error)
  3905. goto bread_err2;
  3906. error = xlog_recover_process_data(log, rhash,
  3907. rhead, offset, pass);
  3908. if (error)
  3909. goto bread_err2;
  3910. blk_no += bblks;
  3911. }
  3912. ASSERT(blk_no >= log->l_logBBsize);
  3913. blk_no -= log->l_logBBsize;
  3914. }
  3915. /* read first part of physical log */
  3916. while (blk_no < head_blk) {
  3917. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3918. if (error)
  3919. goto bread_err2;
  3920. rhead = (xlog_rec_header_t *)offset;
  3921. error = xlog_valid_rec_header(log, rhead, blk_no);
  3922. if (error)
  3923. goto bread_err2;
  3924. /* blocks in data section */
  3925. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3926. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3927. &offset);
  3928. if (error)
  3929. goto bread_err2;
  3930. error = xlog_unpack_data(rhead, offset, log);
  3931. if (error)
  3932. goto bread_err2;
  3933. error = xlog_recover_process_data(log, rhash,
  3934. rhead, offset, pass);
  3935. if (error)
  3936. goto bread_err2;
  3937. blk_no += bblks + hblks;
  3938. }
  3939. bread_err2:
  3940. xlog_put_bp(dbp);
  3941. bread_err1:
  3942. xlog_put_bp(hbp);
  3943. return error;
  3944. }
  3945. /*
  3946. * Do the recovery of the log. We actually do this in two phases.
  3947. * The two passes are necessary in order to implement the function
  3948. * of cancelling a record written into the log. The first pass
  3949. * determines those things which have been cancelled, and the
  3950. * second pass replays log items normally except for those which
  3951. * have been cancelled. The handling of the replay and cancellations
  3952. * takes place in the log item type specific routines.
  3953. *
  3954. * The table of items which have cancel records in the log is allocated
  3955. * and freed at this level, since only here do we know when all of
  3956. * the log recovery has been completed.
  3957. */
  3958. STATIC int
  3959. xlog_do_log_recovery(
  3960. struct xlog *log,
  3961. xfs_daddr_t head_blk,
  3962. xfs_daddr_t tail_blk)
  3963. {
  3964. int error, i;
  3965. ASSERT(head_blk != tail_blk);
  3966. /*
  3967. * First do a pass to find all of the cancelled buf log items.
  3968. * Store them in the buf_cancel_table for use in the second pass.
  3969. */
  3970. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3971. sizeof(struct list_head),
  3972. KM_SLEEP);
  3973. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3974. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3975. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3976. XLOG_RECOVER_PASS1);
  3977. if (error != 0) {
  3978. kmem_free(log->l_buf_cancel_table);
  3979. log->l_buf_cancel_table = NULL;
  3980. return error;
  3981. }
  3982. /*
  3983. * Then do a second pass to actually recover the items in the log.
  3984. * When it is complete free the table of buf cancel items.
  3985. */
  3986. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3987. XLOG_RECOVER_PASS2);
  3988. #ifdef DEBUG
  3989. if (!error) {
  3990. int i;
  3991. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3992. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3993. }
  3994. #endif /* DEBUG */
  3995. kmem_free(log->l_buf_cancel_table);
  3996. log->l_buf_cancel_table = NULL;
  3997. return error;
  3998. }
  3999. /*
  4000. * Do the actual recovery
  4001. */
  4002. STATIC int
  4003. xlog_do_recover(
  4004. struct xlog *log,
  4005. xfs_daddr_t head_blk,
  4006. xfs_daddr_t tail_blk)
  4007. {
  4008. int error;
  4009. xfs_buf_t *bp;
  4010. xfs_sb_t *sbp;
  4011. /*
  4012. * First replay the images in the log.
  4013. */
  4014. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  4015. if (error)
  4016. return error;
  4017. /*
  4018. * If IO errors happened during recovery, bail out.
  4019. */
  4020. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  4021. return -EIO;
  4022. }
  4023. /*
  4024. * We now update the tail_lsn since much of the recovery has completed
  4025. * and there may be space available to use. If there were no extent
  4026. * or iunlinks, we can free up the entire log and set the tail_lsn to
  4027. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  4028. * lsn of the last known good LR on disk. If there are extent frees
  4029. * or iunlinks they will have some entries in the AIL; so we look at
  4030. * the AIL to determine how to set the tail_lsn.
  4031. */
  4032. xlog_assign_tail_lsn(log->l_mp);
  4033. /*
  4034. * Now that we've finished replaying all buffer and inode
  4035. * updates, re-read in the superblock and reverify it.
  4036. */
  4037. bp = xfs_getsb(log->l_mp, 0);
  4038. XFS_BUF_UNDONE(bp);
  4039. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  4040. XFS_BUF_READ(bp);
  4041. XFS_BUF_UNASYNC(bp);
  4042. bp->b_ops = &xfs_sb_buf_ops;
  4043. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  4044. xfs_buf_relse(bp);
  4045. return -EIO;
  4046. }
  4047. xfs_buf_iorequest(bp);
  4048. error = xfs_buf_iowait(bp);
  4049. if (error) {
  4050. xfs_buf_ioerror_alert(bp, __func__);
  4051. ASSERT(0);
  4052. xfs_buf_relse(bp);
  4053. return error;
  4054. }
  4055. /* Convert superblock from on-disk format */
  4056. sbp = &log->l_mp->m_sb;
  4057. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  4058. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  4059. ASSERT(xfs_sb_good_version(sbp));
  4060. xfs_buf_relse(bp);
  4061. /* We've re-read the superblock so re-initialize per-cpu counters */
  4062. xfs_icsb_reinit_counters(log->l_mp);
  4063. xlog_recover_check_summary(log);
  4064. /* Normal transactions can now occur */
  4065. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  4066. return 0;
  4067. }
  4068. /*
  4069. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  4070. *
  4071. * Return error or zero.
  4072. */
  4073. int
  4074. xlog_recover(
  4075. struct xlog *log)
  4076. {
  4077. xfs_daddr_t head_blk, tail_blk;
  4078. int error;
  4079. /* find the tail of the log */
  4080. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  4081. return error;
  4082. if (tail_blk != head_blk) {
  4083. /* There used to be a comment here:
  4084. *
  4085. * disallow recovery on read-only mounts. note -- mount
  4086. * checks for ENOSPC and turns it into an intelligent
  4087. * error message.
  4088. * ...but this is no longer true. Now, unless you specify
  4089. * NORECOVERY (in which case this function would never be
  4090. * called), we just go ahead and recover. We do this all
  4091. * under the vfs layer, so we can get away with it unless
  4092. * the device itself is read-only, in which case we fail.
  4093. */
  4094. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  4095. return error;
  4096. }
  4097. /*
  4098. * Version 5 superblock log feature mask validation. We know the
  4099. * log is dirty so check if there are any unknown log features
  4100. * in what we need to recover. If there are unknown features
  4101. * (e.g. unsupported transactions, then simply reject the
  4102. * attempt at recovery before touching anything.
  4103. */
  4104. if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
  4105. xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
  4106. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
  4107. xfs_warn(log->l_mp,
  4108. "Superblock has unknown incompatible log features (0x%x) enabled.\n"
  4109. "The log can not be fully and/or safely recovered by this kernel.\n"
  4110. "Please recover the log on a kernel that supports the unknown features.",
  4111. (log->l_mp->m_sb.sb_features_log_incompat &
  4112. XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
  4113. return -EINVAL;
  4114. }
  4115. /*
  4116. * Delay log recovery if the debug hook is set. This is debug
  4117. * instrumention to coordinate simulation of I/O failures with
  4118. * log recovery.
  4119. */
  4120. if (xfs_globals.log_recovery_delay) {
  4121. xfs_notice(log->l_mp,
  4122. "Delaying log recovery for %d seconds.",
  4123. xfs_globals.log_recovery_delay);
  4124. msleep(xfs_globals.log_recovery_delay * 1000);
  4125. }
  4126. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  4127. log->l_mp->m_logname ? log->l_mp->m_logname
  4128. : "internal");
  4129. error = xlog_do_recover(log, head_blk, tail_blk);
  4130. log->l_flags |= XLOG_RECOVERY_NEEDED;
  4131. }
  4132. return error;
  4133. }
  4134. /*
  4135. * In the first part of recovery we replay inodes and buffers and build
  4136. * up the list of extent free items which need to be processed. Here
  4137. * we process the extent free items and clean up the on disk unlinked
  4138. * inode lists. This is separated from the first part of recovery so
  4139. * that the root and real-time bitmap inodes can be read in from disk in
  4140. * between the two stages. This is necessary so that we can free space
  4141. * in the real-time portion of the file system.
  4142. */
  4143. int
  4144. xlog_recover_finish(
  4145. struct xlog *log)
  4146. {
  4147. /*
  4148. * Now we're ready to do the transactions needed for the
  4149. * rest of recovery. Start with completing all the extent
  4150. * free intent records and then process the unlinked inode
  4151. * lists. At this point, we essentially run in normal mode
  4152. * except that we're still performing recovery actions
  4153. * rather than accepting new requests.
  4154. */
  4155. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  4156. int error;
  4157. error = xlog_recover_process_efis(log);
  4158. if (error) {
  4159. xfs_alert(log->l_mp, "Failed to recover EFIs");
  4160. return error;
  4161. }
  4162. /*
  4163. * Sync the log to get all the EFIs out of the AIL.
  4164. * This isn't absolutely necessary, but it helps in
  4165. * case the unlink transactions would have problems
  4166. * pushing the EFIs out of the way.
  4167. */
  4168. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  4169. xlog_recover_process_iunlinks(log);
  4170. xlog_recover_check_summary(log);
  4171. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  4172. log->l_mp->m_logname ? log->l_mp->m_logname
  4173. : "internal");
  4174. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  4175. } else {
  4176. xfs_info(log->l_mp, "Ending clean mount");
  4177. }
  4178. return 0;
  4179. }
  4180. #if defined(DEBUG)
  4181. /*
  4182. * Read all of the agf and agi counters and check that they
  4183. * are consistent with the superblock counters.
  4184. */
  4185. void
  4186. xlog_recover_check_summary(
  4187. struct xlog *log)
  4188. {
  4189. xfs_mount_t *mp;
  4190. xfs_agf_t *agfp;
  4191. xfs_buf_t *agfbp;
  4192. xfs_buf_t *agibp;
  4193. xfs_agnumber_t agno;
  4194. __uint64_t freeblks;
  4195. __uint64_t itotal;
  4196. __uint64_t ifree;
  4197. int error;
  4198. mp = log->l_mp;
  4199. freeblks = 0LL;
  4200. itotal = 0LL;
  4201. ifree = 0LL;
  4202. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  4203. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  4204. if (error) {
  4205. xfs_alert(mp, "%s agf read failed agno %d error %d",
  4206. __func__, agno, error);
  4207. } else {
  4208. agfp = XFS_BUF_TO_AGF(agfbp);
  4209. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  4210. be32_to_cpu(agfp->agf_flcount);
  4211. xfs_buf_relse(agfbp);
  4212. }
  4213. error = xfs_read_agi(mp, NULL, agno, &agibp);
  4214. if (error) {
  4215. xfs_alert(mp, "%s agi read failed agno %d error %d",
  4216. __func__, agno, error);
  4217. } else {
  4218. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  4219. itotal += be32_to_cpu(agi->agi_count);
  4220. ifree += be32_to_cpu(agi->agi_freecount);
  4221. xfs_buf_relse(agibp);
  4222. }
  4223. }
  4224. }
  4225. #endif /* DEBUG */