setup.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * Machine specific setup for xen
  3. *
  4. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  5. */
  6. #include <linux/module.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pm.h>
  10. #include <linux/memblock.h>
  11. #include <linux/cpuidle.h>
  12. #include <linux/cpufreq.h>
  13. #include <asm/elf.h>
  14. #include <asm/vdso.h>
  15. #include <asm/e820.h>
  16. #include <asm/setup.h>
  17. #include <asm/acpi.h>
  18. #include <asm/xen/hypervisor.h>
  19. #include <asm/xen/hypercall.h>
  20. #include <xen/xen.h>
  21. #include <xen/page.h>
  22. #include <xen/interface/callback.h>
  23. #include <xen/interface/memory.h>
  24. #include <xen/interface/physdev.h>
  25. #include <xen/features.h>
  26. #include "xen-ops.h"
  27. #include "vdso.h"
  28. /* These are code, but not functions. Defined in entry.S */
  29. extern const char xen_hypervisor_callback[];
  30. extern const char xen_failsafe_callback[];
  31. extern void xen_sysenter_target(void);
  32. extern void xen_syscall_target(void);
  33. extern void xen_syscall32_target(void);
  34. /* Amount of extra memory space we add to the e820 ranges */
  35. struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
  36. /* Number of pages released from the initial allocation. */
  37. unsigned long xen_released_pages;
  38. /*
  39. * The maximum amount of extra memory compared to the base size. The
  40. * main scaling factor is the size of struct page. At extreme ratios
  41. * of base:extra, all the base memory can be filled with page
  42. * structures for the extra memory, leaving no space for anything
  43. * else.
  44. *
  45. * 10x seems like a reasonable balance between scaling flexibility and
  46. * leaving a practically usable system.
  47. */
  48. #define EXTRA_MEM_RATIO (10)
  49. static void __init xen_add_extra_mem(u64 start, u64 size)
  50. {
  51. unsigned long pfn;
  52. int i;
  53. for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
  54. /* Add new region. */
  55. if (xen_extra_mem[i].size == 0) {
  56. xen_extra_mem[i].start = start;
  57. xen_extra_mem[i].size = size;
  58. break;
  59. }
  60. /* Append to existing region. */
  61. if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
  62. xen_extra_mem[i].size += size;
  63. break;
  64. }
  65. }
  66. if (i == XEN_EXTRA_MEM_MAX_REGIONS)
  67. printk(KERN_WARNING "Warning: not enough extra memory regions\n");
  68. memblock_reserve(start, size);
  69. xen_max_p2m_pfn = PFN_DOWN(start + size);
  70. for (pfn = PFN_DOWN(start); pfn <= xen_max_p2m_pfn; pfn++)
  71. __set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
  72. }
  73. static unsigned long __init xen_release_chunk(unsigned long start,
  74. unsigned long end)
  75. {
  76. struct xen_memory_reservation reservation = {
  77. .address_bits = 0,
  78. .extent_order = 0,
  79. .domid = DOMID_SELF
  80. };
  81. unsigned long len = 0;
  82. unsigned long pfn;
  83. int ret;
  84. for(pfn = start; pfn < end; pfn++) {
  85. unsigned long mfn = pfn_to_mfn(pfn);
  86. /* Make sure pfn exists to start with */
  87. if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
  88. continue;
  89. set_xen_guest_handle(reservation.extent_start, &mfn);
  90. reservation.nr_extents = 1;
  91. ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
  92. &reservation);
  93. WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
  94. if (ret == 1) {
  95. __set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
  96. len++;
  97. }
  98. }
  99. if (len)
  100. printk(KERN_INFO "Freeing %lx-%lx pfn range: %lu pages freed\n",
  101. start, end, len);
  102. return len;
  103. }
  104. static unsigned long __init xen_populate_physmap(unsigned long start,
  105. unsigned long end)
  106. {
  107. struct xen_memory_reservation reservation = {
  108. .address_bits = 0,
  109. .extent_order = 0,
  110. .domid = DOMID_SELF
  111. };
  112. unsigned long len = 0;
  113. int ret;
  114. for (pfn = start; pfn < end; pfn++) {
  115. unsigned long frame;
  116. /* Make sure pfn does not exists to start with */
  117. if (pfn_to_mfn(pfn) != INVALID_P2M_ENTRY)
  118. continue;
  119. frame = pfn;
  120. set_xen_guest_handle(reservation.extent_start, &frame);
  121. reservation.nr_extents = 1;
  122. ret = HYPERVISOR_memory_op(XENMEM_populate_physmap, &reservation);
  123. WARN(ret != 1, "Failed to populate pfn %lx err=%d\n", pfn, ret);
  124. if (ret == 1) {
  125. if (!early_set_phys_to_machine(pfn, frame)) {
  126. set_xen_guest_handle(reservation.extent_start, &frame);
  127. reservation.nr_extents = 1;
  128. ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
  129. &reservation);
  130. break;
  131. }
  132. len++;
  133. } else
  134. break;
  135. }
  136. if (len)
  137. printk(KERN_INFO "Populated %lx-%lx pfn range: %lu pages added\n",
  138. start, end, len);
  139. return len;
  140. }
  141. static unsigned long __init xen_populate_chunk(
  142. const struct e820entry *list, size_t map_size,
  143. unsigned long max_pfn, unsigned long *last_pfn,
  144. unsigned long credits_left)
  145. {
  146. const struct e820entry *entry;
  147. unsigned int i;
  148. unsigned long done = 0;
  149. unsigned long dest_pfn;
  150. for (i = 0, entry = list; i < map_size; i++, entry++) {
  151. unsigned long credits = credits_left;
  152. unsigned long s_pfn;
  153. unsigned long e_pfn;
  154. unsigned long pfns;
  155. long capacity;
  156. if (credits <= 0)
  157. break;
  158. if (entry->type != E820_RAM)
  159. continue;
  160. e_pfn = PFN_UP(entry->addr + entry->size);
  161. /* We only care about E820 after the xen_start_info->nr_pages */
  162. if (e_pfn <= max_pfn)
  163. continue;
  164. s_pfn = PFN_DOWN(entry->addr);
  165. /* If the E820 falls within the nr_pages, we want to start
  166. * at the nr_pages PFN.
  167. * If that would mean going past the E820 entry, skip it
  168. */
  169. if (s_pfn <= max_pfn) {
  170. capacity = e_pfn - max_pfn;
  171. dest_pfn = max_pfn;
  172. } else {
  173. /* last_pfn MUST be within E820_RAM regions */
  174. if (*last_pfn && e_pfn >= *last_pfn)
  175. s_pfn = *last_pfn;
  176. capacity = e_pfn - s_pfn;
  177. dest_pfn = s_pfn;
  178. }
  179. /* If we had filled this E820_RAM entry, go to the next one. */
  180. if (capacity <= 0)
  181. continue;
  182. if (credits > capacity)
  183. credits = capacity;
  184. pfns = xen_populate_physmap(dest_pfn, dest_pfn + credits);
  185. done += pfns;
  186. credits_left -= pfns;
  187. *last_pfn = (dest_pfn + pfns);
  188. }
  189. return done;
  190. }
  191. static unsigned long __init xen_set_identity_and_release(
  192. const struct e820entry *list, size_t map_size, unsigned long nr_pages)
  193. {
  194. phys_addr_t start = 0;
  195. unsigned long released = 0;
  196. unsigned long identity = 0;
  197. const struct e820entry *entry;
  198. int i;
  199. /*
  200. * Combine non-RAM regions and gaps until a RAM region (or the
  201. * end of the map) is reached, then set the 1:1 map and
  202. * release the pages (if available) in those non-RAM regions.
  203. *
  204. * The combined non-RAM regions are rounded to a whole number
  205. * of pages so any partial pages are accessible via the 1:1
  206. * mapping. This is needed for some BIOSes that put (for
  207. * example) the DMI tables in a reserved region that begins on
  208. * a non-page boundary.
  209. */
  210. for (i = 0, entry = list; i < map_size; i++, entry++) {
  211. phys_addr_t end = entry->addr + entry->size;
  212. if (entry->type == E820_RAM || i == map_size - 1) {
  213. unsigned long start_pfn = PFN_DOWN(start);
  214. unsigned long end_pfn = PFN_UP(end);
  215. if (entry->type == E820_RAM)
  216. end_pfn = PFN_UP(entry->addr);
  217. if (start_pfn < end_pfn) {
  218. if (start_pfn < nr_pages)
  219. released += xen_release_chunk(
  220. start_pfn, min(end_pfn, nr_pages));
  221. identity += set_phys_range_identity(
  222. start_pfn, end_pfn);
  223. }
  224. start = end;
  225. }
  226. }
  227. if (released)
  228. printk(KERN_INFO "Released %lu pages of unused memory\n", released);
  229. if (identity)
  230. printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity);
  231. return released;
  232. }
  233. static unsigned long __init xen_get_max_pages(void)
  234. {
  235. unsigned long max_pages = MAX_DOMAIN_PAGES;
  236. domid_t domid = DOMID_SELF;
  237. int ret;
  238. /*
  239. * For the initial domain we use the maximum reservation as
  240. * the maximum page.
  241. *
  242. * For guest domains the current maximum reservation reflects
  243. * the current maximum rather than the static maximum. In this
  244. * case the e820 map provided to us will cover the static
  245. * maximum region.
  246. */
  247. if (xen_initial_domain()) {
  248. ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
  249. if (ret > 0)
  250. max_pages = ret;
  251. }
  252. return min(max_pages, MAX_DOMAIN_PAGES);
  253. }
  254. static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
  255. {
  256. u64 end = start + size;
  257. /* Align RAM regions to page boundaries. */
  258. if (type == E820_RAM) {
  259. start = PAGE_ALIGN(start);
  260. end &= ~((u64)PAGE_SIZE - 1);
  261. }
  262. e820_add_region(start, end - start, type);
  263. }
  264. /**
  265. * machine_specific_memory_setup - Hook for machine specific memory setup.
  266. **/
  267. char * __init xen_memory_setup(void)
  268. {
  269. static struct e820entry map[E820MAX] __initdata;
  270. unsigned long max_pfn = xen_start_info->nr_pages;
  271. unsigned long long mem_end;
  272. int rc;
  273. struct xen_memory_map memmap;
  274. unsigned long max_pages;
  275. unsigned long last_pfn = 0;
  276. unsigned long extra_pages = 0;
  277. unsigned long populated;
  278. int i;
  279. int op;
  280. max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
  281. mem_end = PFN_PHYS(max_pfn);
  282. memmap.nr_entries = E820MAX;
  283. set_xen_guest_handle(memmap.buffer, map);
  284. op = xen_initial_domain() ?
  285. XENMEM_machine_memory_map :
  286. XENMEM_memory_map;
  287. rc = HYPERVISOR_memory_op(op, &memmap);
  288. if (rc == -ENOSYS) {
  289. BUG_ON(xen_initial_domain());
  290. memmap.nr_entries = 1;
  291. map[0].addr = 0ULL;
  292. map[0].size = mem_end;
  293. /* 8MB slack (to balance backend allocations). */
  294. map[0].size += 8ULL << 20;
  295. map[0].type = E820_RAM;
  296. rc = 0;
  297. }
  298. BUG_ON(rc);
  299. /* Make sure the Xen-supplied memory map is well-ordered. */
  300. sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
  301. max_pages = xen_get_max_pages();
  302. if (max_pages > max_pfn)
  303. extra_pages += max_pages - max_pfn;
  304. /*
  305. * Set P2M for all non-RAM pages and E820 gaps to be identity
  306. * type PFNs. Any RAM pages that would be made inaccesible by
  307. * this are first released.
  308. */
  309. xen_released_pages = xen_set_identity_and_release(
  310. map, memmap.nr_entries, max_pfn);
  311. /*
  312. * Populate back the non-RAM pages and E820 gaps that had been
  313. * released. */
  314. populated = xen_populate_chunk(map, memmap.nr_entries,
  315. max_pfn, &last_pfn, xen_released_pages);
  316. extra_pages += (xen_released_pages - populated);
  317. if (last_pfn > max_pfn) {
  318. max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
  319. mem_end = PFN_PHYS(max_pfn);
  320. }
  321. /*
  322. * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
  323. * factor the base size. On non-highmem systems, the base
  324. * size is the full initial memory allocation; on highmem it
  325. * is limited to the max size of lowmem, so that it doesn't
  326. * get completely filled.
  327. *
  328. * In principle there could be a problem in lowmem systems if
  329. * the initial memory is also very large with respect to
  330. * lowmem, but we won't try to deal with that here.
  331. */
  332. extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
  333. extra_pages);
  334. i = 0;
  335. while (i < memmap.nr_entries) {
  336. u64 addr = map[i].addr;
  337. u64 size = map[i].size;
  338. u32 type = map[i].type;
  339. if (type == E820_RAM) {
  340. if (addr < mem_end) {
  341. size = min(size, mem_end - addr);
  342. } else if (extra_pages) {
  343. size = min(size, (u64)extra_pages * PAGE_SIZE);
  344. extra_pages -= size / PAGE_SIZE;
  345. xen_add_extra_mem(addr, size);
  346. } else
  347. type = E820_UNUSABLE;
  348. }
  349. xen_align_and_add_e820_region(addr, size, type);
  350. map[i].addr += size;
  351. map[i].size -= size;
  352. if (map[i].size == 0)
  353. i++;
  354. }
  355. /*
  356. * In domU, the ISA region is normal, usable memory, but we
  357. * reserve ISA memory anyway because too many things poke
  358. * about in there.
  359. */
  360. e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
  361. E820_RESERVED);
  362. /*
  363. * Reserve Xen bits:
  364. * - mfn_list
  365. * - xen_start_info
  366. * See comment above "struct start_info" in <xen/interface/xen.h>
  367. */
  368. memblock_reserve(__pa(xen_start_info->mfn_list),
  369. xen_start_info->pt_base - xen_start_info->mfn_list);
  370. sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
  371. return "Xen";
  372. }
  373. /*
  374. * Set the bit indicating "nosegneg" library variants should be used.
  375. * We only need to bother in pure 32-bit mode; compat 32-bit processes
  376. * can have un-truncated segments, so wrapping around is allowed.
  377. */
  378. static void __init fiddle_vdso(void)
  379. {
  380. #ifdef CONFIG_X86_32
  381. u32 *mask;
  382. mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK);
  383. *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
  384. mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK);
  385. *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
  386. #endif
  387. }
  388. static int __cpuinit register_callback(unsigned type, const void *func)
  389. {
  390. struct callback_register callback = {
  391. .type = type,
  392. .address = XEN_CALLBACK(__KERNEL_CS, func),
  393. .flags = CALLBACKF_mask_events,
  394. };
  395. return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
  396. }
  397. void __cpuinit xen_enable_sysenter(void)
  398. {
  399. int ret;
  400. unsigned sysenter_feature;
  401. #ifdef CONFIG_X86_32
  402. sysenter_feature = X86_FEATURE_SEP;
  403. #else
  404. sysenter_feature = X86_FEATURE_SYSENTER32;
  405. #endif
  406. if (!boot_cpu_has(sysenter_feature))
  407. return;
  408. ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
  409. if(ret != 0)
  410. setup_clear_cpu_cap(sysenter_feature);
  411. }
  412. void __cpuinit xen_enable_syscall(void)
  413. {
  414. #ifdef CONFIG_X86_64
  415. int ret;
  416. ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
  417. if (ret != 0) {
  418. printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
  419. /* Pretty fatal; 64-bit userspace has no other
  420. mechanism for syscalls. */
  421. }
  422. if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
  423. ret = register_callback(CALLBACKTYPE_syscall32,
  424. xen_syscall32_target);
  425. if (ret != 0)
  426. setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
  427. }
  428. #endif /* CONFIG_X86_64 */
  429. }
  430. void __init xen_arch_setup(void)
  431. {
  432. xen_panic_handler_init();
  433. HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
  434. HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
  435. if (!xen_feature(XENFEAT_auto_translated_physmap))
  436. HYPERVISOR_vm_assist(VMASST_CMD_enable,
  437. VMASST_TYPE_pae_extended_cr3);
  438. if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
  439. register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
  440. BUG();
  441. xen_enable_sysenter();
  442. xen_enable_syscall();
  443. #ifdef CONFIG_ACPI
  444. if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
  445. printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
  446. disable_acpi();
  447. }
  448. #endif
  449. memcpy(boot_command_line, xen_start_info->cmd_line,
  450. MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
  451. COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
  452. /* Set up idle, making sure it calls safe_halt() pvop */
  453. #ifdef CONFIG_X86_32
  454. boot_cpu_data.hlt_works_ok = 1;
  455. #endif
  456. disable_cpuidle();
  457. disable_cpufreq();
  458. WARN_ON(set_pm_idle_to_default());
  459. fiddle_vdso();
  460. }