page_alloc.c 214 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kasan.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/memremap.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <trace/events/oom.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/sched/mm.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <linux/ftrace.h>
  67. #include <linux/lockdep.h>
  68. #include <linux/nmi.h>
  69. #include <asm/sections.h>
  70. #include <asm/tlbflush.h>
  71. #include <asm/div64.h>
  72. #include "internal.h"
  73. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  74. static DEFINE_MUTEX(pcp_batch_high_lock);
  75. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  76. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  77. DEFINE_PER_CPU(int, numa_node);
  78. EXPORT_PER_CPU_SYMBOL(numa_node);
  79. #endif
  80. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  81. /*
  82. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  83. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  84. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  85. * defined in <linux/topology.h>.
  86. */
  87. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  88. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  89. int _node_numa_mem_[MAX_NUMNODES];
  90. #endif
  91. /* work_structs for global per-cpu drains */
  92. DEFINE_MUTEX(pcpu_drain_mutex);
  93. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  94. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  95. volatile unsigned long latent_entropy __latent_entropy;
  96. EXPORT_SYMBOL(latent_entropy);
  97. #endif
  98. /*
  99. * Array of node states.
  100. */
  101. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  102. [N_POSSIBLE] = NODE_MASK_ALL,
  103. [N_ONLINE] = { { [0] = 1UL } },
  104. #ifndef CONFIG_NUMA
  105. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  106. #ifdef CONFIG_HIGHMEM
  107. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  108. #endif
  109. [N_MEMORY] = { { [0] = 1UL } },
  110. [N_CPU] = { { [0] = 1UL } },
  111. #endif /* NUMA */
  112. };
  113. EXPORT_SYMBOL(node_states);
  114. /* Protect totalram_pages and zone->managed_pages */
  115. static DEFINE_SPINLOCK(managed_page_count_lock);
  116. unsigned long totalram_pages __read_mostly;
  117. unsigned long totalreserve_pages __read_mostly;
  118. unsigned long totalcma_pages __read_mostly;
  119. int percpu_pagelist_fraction;
  120. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  121. /*
  122. * A cached value of the page's pageblock's migratetype, used when the page is
  123. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  124. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  125. * Also the migratetype set in the page does not necessarily match the pcplist
  126. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  127. * other index - this ensures that it will be put on the correct CMA freelist.
  128. */
  129. static inline int get_pcppage_migratetype(struct page *page)
  130. {
  131. return page->index;
  132. }
  133. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  134. {
  135. page->index = migratetype;
  136. }
  137. #ifdef CONFIG_PM_SLEEP
  138. /*
  139. * The following functions are used by the suspend/hibernate code to temporarily
  140. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  141. * while devices are suspended. To avoid races with the suspend/hibernate code,
  142. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  143. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  144. * guaranteed not to run in parallel with that modification).
  145. */
  146. static gfp_t saved_gfp_mask;
  147. void pm_restore_gfp_mask(void)
  148. {
  149. WARN_ON(!mutex_is_locked(&pm_mutex));
  150. if (saved_gfp_mask) {
  151. gfp_allowed_mask = saved_gfp_mask;
  152. saved_gfp_mask = 0;
  153. }
  154. }
  155. void pm_restrict_gfp_mask(void)
  156. {
  157. WARN_ON(!mutex_is_locked(&pm_mutex));
  158. WARN_ON(saved_gfp_mask);
  159. saved_gfp_mask = gfp_allowed_mask;
  160. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  161. }
  162. bool pm_suspended_storage(void)
  163. {
  164. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  165. return false;
  166. return true;
  167. }
  168. #endif /* CONFIG_PM_SLEEP */
  169. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  170. unsigned int pageblock_order __read_mostly;
  171. #endif
  172. static void __free_pages_ok(struct page *page, unsigned int order);
  173. /*
  174. * results with 256, 32 in the lowmem_reserve sysctl:
  175. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  176. * 1G machine -> (16M dma, 784M normal, 224M high)
  177. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  178. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  179. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  180. *
  181. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  182. * don't need any ZONE_NORMAL reservation
  183. */
  184. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  185. #ifdef CONFIG_ZONE_DMA
  186. 256,
  187. #endif
  188. #ifdef CONFIG_ZONE_DMA32
  189. 256,
  190. #endif
  191. #ifdef CONFIG_HIGHMEM
  192. 32,
  193. #endif
  194. 32,
  195. };
  196. EXPORT_SYMBOL(totalram_pages);
  197. static char * const zone_names[MAX_NR_ZONES] = {
  198. #ifdef CONFIG_ZONE_DMA
  199. "DMA",
  200. #endif
  201. #ifdef CONFIG_ZONE_DMA32
  202. "DMA32",
  203. #endif
  204. "Normal",
  205. #ifdef CONFIG_HIGHMEM
  206. "HighMem",
  207. #endif
  208. "Movable",
  209. #ifdef CONFIG_ZONE_DEVICE
  210. "Device",
  211. #endif
  212. };
  213. char * const migratetype_names[MIGRATE_TYPES] = {
  214. "Unmovable",
  215. "Movable",
  216. "Reclaimable",
  217. "HighAtomic",
  218. #ifdef CONFIG_CMA
  219. "CMA",
  220. #endif
  221. #ifdef CONFIG_MEMORY_ISOLATION
  222. "Isolate",
  223. #endif
  224. };
  225. compound_page_dtor * const compound_page_dtors[] = {
  226. NULL,
  227. free_compound_page,
  228. #ifdef CONFIG_HUGETLB_PAGE
  229. free_huge_page,
  230. #endif
  231. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  232. free_transhuge_page,
  233. #endif
  234. };
  235. int min_free_kbytes = 1024;
  236. int user_min_free_kbytes = -1;
  237. int watermark_scale_factor = 10;
  238. static unsigned long __meminitdata nr_kernel_pages;
  239. static unsigned long __meminitdata nr_all_pages;
  240. static unsigned long __meminitdata dma_reserve;
  241. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  242. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  243. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  244. static unsigned long __initdata required_kernelcore;
  245. static unsigned long __initdata required_movablecore;
  246. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  247. static bool mirrored_kernelcore;
  248. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  249. int movable_zone;
  250. EXPORT_SYMBOL(movable_zone);
  251. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  252. #if MAX_NUMNODES > 1
  253. int nr_node_ids __read_mostly = MAX_NUMNODES;
  254. int nr_online_nodes __read_mostly = 1;
  255. EXPORT_SYMBOL(nr_node_ids);
  256. EXPORT_SYMBOL(nr_online_nodes);
  257. #endif
  258. int page_group_by_mobility_disabled __read_mostly;
  259. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  260. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  261. {
  262. unsigned long max_initialise;
  263. unsigned long reserved_lowmem;
  264. /*
  265. * Initialise at least 2G of a node but also take into account that
  266. * two large system hashes that can take up 1GB for 0.25TB/node.
  267. */
  268. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  269. (pgdat->node_spanned_pages >> 8));
  270. /*
  271. * Compensate the all the memblock reservations (e.g. crash kernel)
  272. * from the initial estimation to make sure we will initialize enough
  273. * memory to boot.
  274. */
  275. reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
  276. pgdat->node_start_pfn + max_initialise);
  277. max_initialise += reserved_lowmem;
  278. pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
  279. pgdat->first_deferred_pfn = ULONG_MAX;
  280. }
  281. /* Returns true if the struct page for the pfn is uninitialised */
  282. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  283. {
  284. int nid = early_pfn_to_nid(pfn);
  285. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  286. return true;
  287. return false;
  288. }
  289. /*
  290. * Returns false when the remaining initialisation should be deferred until
  291. * later in the boot cycle when it can be parallelised.
  292. */
  293. static inline bool update_defer_init(pg_data_t *pgdat,
  294. unsigned long pfn, unsigned long zone_end,
  295. unsigned long *nr_initialised)
  296. {
  297. /* Always populate low zones for address-contrained allocations */
  298. if (zone_end < pgdat_end_pfn(pgdat))
  299. return true;
  300. (*nr_initialised)++;
  301. if ((*nr_initialised > pgdat->static_init_size) &&
  302. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  303. pgdat->first_deferred_pfn = pfn;
  304. return false;
  305. }
  306. return true;
  307. }
  308. #else
  309. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  310. {
  311. }
  312. static inline bool early_page_uninitialised(unsigned long pfn)
  313. {
  314. return false;
  315. }
  316. static inline bool update_defer_init(pg_data_t *pgdat,
  317. unsigned long pfn, unsigned long zone_end,
  318. unsigned long *nr_initialised)
  319. {
  320. return true;
  321. }
  322. #endif
  323. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  324. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  325. unsigned long pfn)
  326. {
  327. #ifdef CONFIG_SPARSEMEM
  328. return __pfn_to_section(pfn)->pageblock_flags;
  329. #else
  330. return page_zone(page)->pageblock_flags;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  334. {
  335. #ifdef CONFIG_SPARSEMEM
  336. pfn &= (PAGES_PER_SECTION-1);
  337. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  338. #else
  339. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  340. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  341. #endif /* CONFIG_SPARSEMEM */
  342. }
  343. /**
  344. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  345. * @page: The page within the block of interest
  346. * @pfn: The target page frame number
  347. * @end_bitidx: The last bit of interest to retrieve
  348. * @mask: mask of bits that the caller is interested in
  349. *
  350. * Return: pageblock_bits flags
  351. */
  352. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  353. unsigned long pfn,
  354. unsigned long end_bitidx,
  355. unsigned long mask)
  356. {
  357. unsigned long *bitmap;
  358. unsigned long bitidx, word_bitidx;
  359. unsigned long word;
  360. bitmap = get_pageblock_bitmap(page, pfn);
  361. bitidx = pfn_to_bitidx(page, pfn);
  362. word_bitidx = bitidx / BITS_PER_LONG;
  363. bitidx &= (BITS_PER_LONG-1);
  364. word = bitmap[word_bitidx];
  365. bitidx += end_bitidx;
  366. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  367. }
  368. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  369. unsigned long end_bitidx,
  370. unsigned long mask)
  371. {
  372. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  373. }
  374. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  375. {
  376. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  377. }
  378. /**
  379. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  380. * @page: The page within the block of interest
  381. * @flags: The flags to set
  382. * @pfn: The target page frame number
  383. * @end_bitidx: The last bit of interest
  384. * @mask: mask of bits that the caller is interested in
  385. */
  386. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  387. unsigned long pfn,
  388. unsigned long end_bitidx,
  389. unsigned long mask)
  390. {
  391. unsigned long *bitmap;
  392. unsigned long bitidx, word_bitidx;
  393. unsigned long old_word, word;
  394. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  395. bitmap = get_pageblock_bitmap(page, pfn);
  396. bitidx = pfn_to_bitidx(page, pfn);
  397. word_bitidx = bitidx / BITS_PER_LONG;
  398. bitidx &= (BITS_PER_LONG-1);
  399. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  400. bitidx += end_bitidx;
  401. mask <<= (BITS_PER_LONG - bitidx - 1);
  402. flags <<= (BITS_PER_LONG - bitidx - 1);
  403. word = READ_ONCE(bitmap[word_bitidx]);
  404. for (;;) {
  405. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  406. if (word == old_word)
  407. break;
  408. word = old_word;
  409. }
  410. }
  411. void set_pageblock_migratetype(struct page *page, int migratetype)
  412. {
  413. if (unlikely(page_group_by_mobility_disabled &&
  414. migratetype < MIGRATE_PCPTYPES))
  415. migratetype = MIGRATE_UNMOVABLE;
  416. set_pageblock_flags_group(page, (unsigned long)migratetype,
  417. PB_migrate, PB_migrate_end);
  418. }
  419. #ifdef CONFIG_DEBUG_VM
  420. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  421. {
  422. int ret = 0;
  423. unsigned seq;
  424. unsigned long pfn = page_to_pfn(page);
  425. unsigned long sp, start_pfn;
  426. do {
  427. seq = zone_span_seqbegin(zone);
  428. start_pfn = zone->zone_start_pfn;
  429. sp = zone->spanned_pages;
  430. if (!zone_spans_pfn(zone, pfn))
  431. ret = 1;
  432. } while (zone_span_seqretry(zone, seq));
  433. if (ret)
  434. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  435. pfn, zone_to_nid(zone), zone->name,
  436. start_pfn, start_pfn + sp);
  437. return ret;
  438. }
  439. static int page_is_consistent(struct zone *zone, struct page *page)
  440. {
  441. if (!pfn_valid_within(page_to_pfn(page)))
  442. return 0;
  443. if (zone != page_zone(page))
  444. return 0;
  445. return 1;
  446. }
  447. /*
  448. * Temporary debugging check for pages not lying within a given zone.
  449. */
  450. static int __maybe_unused bad_range(struct zone *zone, struct page *page)
  451. {
  452. if (page_outside_zone_boundaries(zone, page))
  453. return 1;
  454. if (!page_is_consistent(zone, page))
  455. return 1;
  456. return 0;
  457. }
  458. #else
  459. static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
  460. {
  461. return 0;
  462. }
  463. #endif
  464. static void bad_page(struct page *page, const char *reason,
  465. unsigned long bad_flags)
  466. {
  467. static unsigned long resume;
  468. static unsigned long nr_shown;
  469. static unsigned long nr_unshown;
  470. /*
  471. * Allow a burst of 60 reports, then keep quiet for that minute;
  472. * or allow a steady drip of one report per second.
  473. */
  474. if (nr_shown == 60) {
  475. if (time_before(jiffies, resume)) {
  476. nr_unshown++;
  477. goto out;
  478. }
  479. if (nr_unshown) {
  480. pr_alert(
  481. "BUG: Bad page state: %lu messages suppressed\n",
  482. nr_unshown);
  483. nr_unshown = 0;
  484. }
  485. nr_shown = 0;
  486. }
  487. if (nr_shown++ == 0)
  488. resume = jiffies + 60 * HZ;
  489. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  490. current->comm, page_to_pfn(page));
  491. __dump_page(page, reason);
  492. bad_flags &= page->flags;
  493. if (bad_flags)
  494. pr_alert("bad because of flags: %#lx(%pGp)\n",
  495. bad_flags, &bad_flags);
  496. dump_page_owner(page);
  497. print_modules();
  498. dump_stack();
  499. out:
  500. /* Leave bad fields for debug, except PageBuddy could make trouble */
  501. page_mapcount_reset(page); /* remove PageBuddy */
  502. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  503. }
  504. /*
  505. * Higher-order pages are called "compound pages". They are structured thusly:
  506. *
  507. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  508. *
  509. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  510. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  511. *
  512. * The first tail page's ->compound_dtor holds the offset in array of compound
  513. * page destructors. See compound_page_dtors.
  514. *
  515. * The first tail page's ->compound_order holds the order of allocation.
  516. * This usage means that zero-order pages may not be compound.
  517. */
  518. void free_compound_page(struct page *page)
  519. {
  520. __free_pages_ok(page, compound_order(page));
  521. }
  522. void prep_compound_page(struct page *page, unsigned int order)
  523. {
  524. int i;
  525. int nr_pages = 1 << order;
  526. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  527. set_compound_order(page, order);
  528. __SetPageHead(page);
  529. for (i = 1; i < nr_pages; i++) {
  530. struct page *p = page + i;
  531. set_page_count(p, 0);
  532. p->mapping = TAIL_MAPPING;
  533. set_compound_head(p, page);
  534. }
  535. atomic_set(compound_mapcount_ptr(page), -1);
  536. }
  537. #ifdef CONFIG_DEBUG_PAGEALLOC
  538. unsigned int _debug_guardpage_minorder;
  539. bool _debug_pagealloc_enabled __read_mostly
  540. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  541. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  542. bool _debug_guardpage_enabled __read_mostly;
  543. static int __init early_debug_pagealloc(char *buf)
  544. {
  545. if (!buf)
  546. return -EINVAL;
  547. return kstrtobool(buf, &_debug_pagealloc_enabled);
  548. }
  549. early_param("debug_pagealloc", early_debug_pagealloc);
  550. static bool need_debug_guardpage(void)
  551. {
  552. /* If we don't use debug_pagealloc, we don't need guard page */
  553. if (!debug_pagealloc_enabled())
  554. return false;
  555. if (!debug_guardpage_minorder())
  556. return false;
  557. return true;
  558. }
  559. static void init_debug_guardpage(void)
  560. {
  561. if (!debug_pagealloc_enabled())
  562. return;
  563. if (!debug_guardpage_minorder())
  564. return;
  565. _debug_guardpage_enabled = true;
  566. }
  567. struct page_ext_operations debug_guardpage_ops = {
  568. .need = need_debug_guardpage,
  569. .init = init_debug_guardpage,
  570. };
  571. static int __init debug_guardpage_minorder_setup(char *buf)
  572. {
  573. unsigned long res;
  574. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  575. pr_err("Bad debug_guardpage_minorder value\n");
  576. return 0;
  577. }
  578. _debug_guardpage_minorder = res;
  579. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  580. return 0;
  581. }
  582. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  583. static inline bool set_page_guard(struct zone *zone, struct page *page,
  584. unsigned int order, int migratetype)
  585. {
  586. struct page_ext *page_ext;
  587. if (!debug_guardpage_enabled())
  588. return false;
  589. if (order >= debug_guardpage_minorder())
  590. return false;
  591. page_ext = lookup_page_ext(page);
  592. if (unlikely(!page_ext))
  593. return false;
  594. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  595. INIT_LIST_HEAD(&page->lru);
  596. set_page_private(page, order);
  597. /* Guard pages are not available for any usage */
  598. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  599. return true;
  600. }
  601. static inline void clear_page_guard(struct zone *zone, struct page *page,
  602. unsigned int order, int migratetype)
  603. {
  604. struct page_ext *page_ext;
  605. if (!debug_guardpage_enabled())
  606. return;
  607. page_ext = lookup_page_ext(page);
  608. if (unlikely(!page_ext))
  609. return;
  610. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  611. set_page_private(page, 0);
  612. if (!is_migrate_isolate(migratetype))
  613. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  614. }
  615. #else
  616. struct page_ext_operations debug_guardpage_ops;
  617. static inline bool set_page_guard(struct zone *zone, struct page *page,
  618. unsigned int order, int migratetype) { return false; }
  619. static inline void clear_page_guard(struct zone *zone, struct page *page,
  620. unsigned int order, int migratetype) {}
  621. #endif
  622. static inline void set_page_order(struct page *page, unsigned int order)
  623. {
  624. set_page_private(page, order);
  625. __SetPageBuddy(page);
  626. }
  627. static inline void rmv_page_order(struct page *page)
  628. {
  629. __ClearPageBuddy(page);
  630. set_page_private(page, 0);
  631. }
  632. /*
  633. * This function checks whether a page is free && is the buddy
  634. * we can do coalesce a page and its buddy if
  635. * (a) the buddy is not in a hole (check before calling!) &&
  636. * (b) the buddy is in the buddy system &&
  637. * (c) a page and its buddy have the same order &&
  638. * (d) a page and its buddy are in the same zone.
  639. *
  640. * For recording whether a page is in the buddy system, we set ->_mapcount
  641. * PAGE_BUDDY_MAPCOUNT_VALUE.
  642. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  643. * serialized by zone->lock.
  644. *
  645. * For recording page's order, we use page_private(page).
  646. */
  647. static inline int page_is_buddy(struct page *page, struct page *buddy,
  648. unsigned int order)
  649. {
  650. if (page_is_guard(buddy) && page_order(buddy) == order) {
  651. if (page_zone_id(page) != page_zone_id(buddy))
  652. return 0;
  653. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  654. return 1;
  655. }
  656. if (PageBuddy(buddy) && page_order(buddy) == order) {
  657. /*
  658. * zone check is done late to avoid uselessly
  659. * calculating zone/node ids for pages that could
  660. * never merge.
  661. */
  662. if (page_zone_id(page) != page_zone_id(buddy))
  663. return 0;
  664. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  665. return 1;
  666. }
  667. return 0;
  668. }
  669. /*
  670. * Freeing function for a buddy system allocator.
  671. *
  672. * The concept of a buddy system is to maintain direct-mapped table
  673. * (containing bit values) for memory blocks of various "orders".
  674. * The bottom level table contains the map for the smallest allocatable
  675. * units of memory (here, pages), and each level above it describes
  676. * pairs of units from the levels below, hence, "buddies".
  677. * At a high level, all that happens here is marking the table entry
  678. * at the bottom level available, and propagating the changes upward
  679. * as necessary, plus some accounting needed to play nicely with other
  680. * parts of the VM system.
  681. * At each level, we keep a list of pages, which are heads of continuous
  682. * free pages of length of (1 << order) and marked with _mapcount
  683. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  684. * field.
  685. * So when we are allocating or freeing one, we can derive the state of the
  686. * other. That is, if we allocate a small block, and both were
  687. * free, the remainder of the region must be split into blocks.
  688. * If a block is freed, and its buddy is also free, then this
  689. * triggers coalescing into a block of larger size.
  690. *
  691. * -- nyc
  692. */
  693. static inline void __free_one_page(struct page *page,
  694. unsigned long pfn,
  695. struct zone *zone, unsigned int order,
  696. int migratetype)
  697. {
  698. unsigned long combined_pfn;
  699. unsigned long uninitialized_var(buddy_pfn);
  700. struct page *buddy;
  701. unsigned int max_order;
  702. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  703. VM_BUG_ON(!zone_is_initialized(zone));
  704. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  705. VM_BUG_ON(migratetype == -1);
  706. if (likely(!is_migrate_isolate(migratetype)))
  707. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  708. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  709. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  710. continue_merging:
  711. while (order < max_order - 1) {
  712. buddy_pfn = __find_buddy_pfn(pfn, order);
  713. buddy = page + (buddy_pfn - pfn);
  714. if (!pfn_valid_within(buddy_pfn))
  715. goto done_merging;
  716. if (!page_is_buddy(page, buddy, order))
  717. goto done_merging;
  718. /*
  719. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  720. * merge with it and move up one order.
  721. */
  722. if (page_is_guard(buddy)) {
  723. clear_page_guard(zone, buddy, order, migratetype);
  724. } else {
  725. list_del(&buddy->lru);
  726. zone->free_area[order].nr_free--;
  727. rmv_page_order(buddy);
  728. }
  729. combined_pfn = buddy_pfn & pfn;
  730. page = page + (combined_pfn - pfn);
  731. pfn = combined_pfn;
  732. order++;
  733. }
  734. if (max_order < MAX_ORDER) {
  735. /* If we are here, it means order is >= pageblock_order.
  736. * We want to prevent merge between freepages on isolate
  737. * pageblock and normal pageblock. Without this, pageblock
  738. * isolation could cause incorrect freepage or CMA accounting.
  739. *
  740. * We don't want to hit this code for the more frequent
  741. * low-order merging.
  742. */
  743. if (unlikely(has_isolate_pageblock(zone))) {
  744. int buddy_mt;
  745. buddy_pfn = __find_buddy_pfn(pfn, order);
  746. buddy = page + (buddy_pfn - pfn);
  747. buddy_mt = get_pageblock_migratetype(buddy);
  748. if (migratetype != buddy_mt
  749. && (is_migrate_isolate(migratetype) ||
  750. is_migrate_isolate(buddy_mt)))
  751. goto done_merging;
  752. }
  753. max_order++;
  754. goto continue_merging;
  755. }
  756. done_merging:
  757. set_page_order(page, order);
  758. /*
  759. * If this is not the largest possible page, check if the buddy
  760. * of the next-highest order is free. If it is, it's possible
  761. * that pages are being freed that will coalesce soon. In case,
  762. * that is happening, add the free page to the tail of the list
  763. * so it's less likely to be used soon and more likely to be merged
  764. * as a higher order page
  765. */
  766. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  767. struct page *higher_page, *higher_buddy;
  768. combined_pfn = buddy_pfn & pfn;
  769. higher_page = page + (combined_pfn - pfn);
  770. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  771. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  772. if (pfn_valid_within(buddy_pfn) &&
  773. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  774. list_add_tail(&page->lru,
  775. &zone->free_area[order].free_list[migratetype]);
  776. goto out;
  777. }
  778. }
  779. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  780. out:
  781. zone->free_area[order].nr_free++;
  782. }
  783. /*
  784. * A bad page could be due to a number of fields. Instead of multiple branches,
  785. * try and check multiple fields with one check. The caller must do a detailed
  786. * check if necessary.
  787. */
  788. static inline bool page_expected_state(struct page *page,
  789. unsigned long check_flags)
  790. {
  791. if (unlikely(atomic_read(&page->_mapcount) != -1))
  792. return false;
  793. if (unlikely((unsigned long)page->mapping |
  794. page_ref_count(page) |
  795. #ifdef CONFIG_MEMCG
  796. (unsigned long)page->mem_cgroup |
  797. #endif
  798. (page->flags & check_flags)))
  799. return false;
  800. return true;
  801. }
  802. static void free_pages_check_bad(struct page *page)
  803. {
  804. const char *bad_reason;
  805. unsigned long bad_flags;
  806. bad_reason = NULL;
  807. bad_flags = 0;
  808. if (unlikely(atomic_read(&page->_mapcount) != -1))
  809. bad_reason = "nonzero mapcount";
  810. if (unlikely(page->mapping != NULL))
  811. bad_reason = "non-NULL mapping";
  812. if (unlikely(page_ref_count(page) != 0))
  813. bad_reason = "nonzero _refcount";
  814. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  815. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  816. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  817. }
  818. #ifdef CONFIG_MEMCG
  819. if (unlikely(page->mem_cgroup))
  820. bad_reason = "page still charged to cgroup";
  821. #endif
  822. bad_page(page, bad_reason, bad_flags);
  823. }
  824. static inline int free_pages_check(struct page *page)
  825. {
  826. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  827. return 0;
  828. /* Something has gone sideways, find it */
  829. free_pages_check_bad(page);
  830. return 1;
  831. }
  832. static int free_tail_pages_check(struct page *head_page, struct page *page)
  833. {
  834. int ret = 1;
  835. /*
  836. * We rely page->lru.next never has bit 0 set, unless the page
  837. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  838. */
  839. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  840. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  841. ret = 0;
  842. goto out;
  843. }
  844. switch (page - head_page) {
  845. case 1:
  846. /* the first tail page: ->mapping is compound_mapcount() */
  847. if (unlikely(compound_mapcount(page))) {
  848. bad_page(page, "nonzero compound_mapcount", 0);
  849. goto out;
  850. }
  851. break;
  852. case 2:
  853. /*
  854. * the second tail page: ->mapping is
  855. * page_deferred_list().next -- ignore value.
  856. */
  857. break;
  858. default:
  859. if (page->mapping != TAIL_MAPPING) {
  860. bad_page(page, "corrupted mapping in tail page", 0);
  861. goto out;
  862. }
  863. break;
  864. }
  865. if (unlikely(!PageTail(page))) {
  866. bad_page(page, "PageTail not set", 0);
  867. goto out;
  868. }
  869. if (unlikely(compound_head(page) != head_page)) {
  870. bad_page(page, "compound_head not consistent", 0);
  871. goto out;
  872. }
  873. ret = 0;
  874. out:
  875. page->mapping = NULL;
  876. clear_compound_head(page);
  877. return ret;
  878. }
  879. static __always_inline bool free_pages_prepare(struct page *page,
  880. unsigned int order, bool check_free)
  881. {
  882. int bad = 0;
  883. VM_BUG_ON_PAGE(PageTail(page), page);
  884. trace_mm_page_free(page, order);
  885. /*
  886. * Check tail pages before head page information is cleared to
  887. * avoid checking PageCompound for order-0 pages.
  888. */
  889. if (unlikely(order)) {
  890. bool compound = PageCompound(page);
  891. int i;
  892. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  893. if (compound)
  894. ClearPageDoubleMap(page);
  895. for (i = 1; i < (1 << order); i++) {
  896. if (compound)
  897. bad += free_tail_pages_check(page, page + i);
  898. if (unlikely(free_pages_check(page + i))) {
  899. bad++;
  900. continue;
  901. }
  902. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  903. }
  904. }
  905. if (PageMappingFlags(page))
  906. page->mapping = NULL;
  907. if (memcg_kmem_enabled() && PageKmemcg(page))
  908. memcg_kmem_uncharge(page, order);
  909. if (check_free)
  910. bad += free_pages_check(page);
  911. if (bad)
  912. return false;
  913. page_cpupid_reset_last(page);
  914. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  915. reset_page_owner(page, order);
  916. if (!PageHighMem(page)) {
  917. debug_check_no_locks_freed(page_address(page),
  918. PAGE_SIZE << order);
  919. debug_check_no_obj_freed(page_address(page),
  920. PAGE_SIZE << order);
  921. }
  922. arch_free_page(page, order);
  923. kernel_poison_pages(page, 1 << order, 0);
  924. kernel_map_pages(page, 1 << order, 0);
  925. kasan_free_pages(page, order);
  926. return true;
  927. }
  928. #ifdef CONFIG_DEBUG_VM
  929. static inline bool free_pcp_prepare(struct page *page)
  930. {
  931. return free_pages_prepare(page, 0, true);
  932. }
  933. static inline bool bulkfree_pcp_prepare(struct page *page)
  934. {
  935. return false;
  936. }
  937. #else
  938. static bool free_pcp_prepare(struct page *page)
  939. {
  940. return free_pages_prepare(page, 0, false);
  941. }
  942. static bool bulkfree_pcp_prepare(struct page *page)
  943. {
  944. return free_pages_check(page);
  945. }
  946. #endif /* CONFIG_DEBUG_VM */
  947. /*
  948. * Frees a number of pages from the PCP lists
  949. * Assumes all pages on list are in same zone, and of same order.
  950. * count is the number of pages to free.
  951. *
  952. * If the zone was previously in an "all pages pinned" state then look to
  953. * see if this freeing clears that state.
  954. *
  955. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  956. * pinned" detection logic.
  957. */
  958. static void free_pcppages_bulk(struct zone *zone, int count,
  959. struct per_cpu_pages *pcp)
  960. {
  961. int migratetype = 0;
  962. int batch_free = 0;
  963. bool isolated_pageblocks;
  964. spin_lock(&zone->lock);
  965. isolated_pageblocks = has_isolate_pageblock(zone);
  966. while (count) {
  967. struct page *page;
  968. struct list_head *list;
  969. /*
  970. * Remove pages from lists in a round-robin fashion. A
  971. * batch_free count is maintained that is incremented when an
  972. * empty list is encountered. This is so more pages are freed
  973. * off fuller lists instead of spinning excessively around empty
  974. * lists
  975. */
  976. do {
  977. batch_free++;
  978. if (++migratetype == MIGRATE_PCPTYPES)
  979. migratetype = 0;
  980. list = &pcp->lists[migratetype];
  981. } while (list_empty(list));
  982. /* This is the only non-empty list. Free them all. */
  983. if (batch_free == MIGRATE_PCPTYPES)
  984. batch_free = count;
  985. do {
  986. int mt; /* migratetype of the to-be-freed page */
  987. page = list_last_entry(list, struct page, lru);
  988. /* must delete as __free_one_page list manipulates */
  989. list_del(&page->lru);
  990. mt = get_pcppage_migratetype(page);
  991. /* MIGRATE_ISOLATE page should not go to pcplists */
  992. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  993. /* Pageblock could have been isolated meanwhile */
  994. if (unlikely(isolated_pageblocks))
  995. mt = get_pageblock_migratetype(page);
  996. if (bulkfree_pcp_prepare(page))
  997. continue;
  998. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  999. trace_mm_page_pcpu_drain(page, 0, mt);
  1000. } while (--count && --batch_free && !list_empty(list));
  1001. }
  1002. spin_unlock(&zone->lock);
  1003. }
  1004. static void free_one_page(struct zone *zone,
  1005. struct page *page, unsigned long pfn,
  1006. unsigned int order,
  1007. int migratetype)
  1008. {
  1009. spin_lock(&zone->lock);
  1010. if (unlikely(has_isolate_pageblock(zone) ||
  1011. is_migrate_isolate(migratetype))) {
  1012. migratetype = get_pfnblock_migratetype(page, pfn);
  1013. }
  1014. __free_one_page(page, pfn, zone, order, migratetype);
  1015. spin_unlock(&zone->lock);
  1016. }
  1017. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1018. unsigned long zone, int nid)
  1019. {
  1020. mm_zero_struct_page(page);
  1021. set_page_links(page, zone, nid, pfn);
  1022. init_page_count(page);
  1023. page_mapcount_reset(page);
  1024. page_cpupid_reset_last(page);
  1025. INIT_LIST_HEAD(&page->lru);
  1026. #ifdef WANT_PAGE_VIRTUAL
  1027. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1028. if (!is_highmem_idx(zone))
  1029. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1030. #endif
  1031. }
  1032. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1033. int nid)
  1034. {
  1035. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1036. }
  1037. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1038. static void __meminit init_reserved_page(unsigned long pfn)
  1039. {
  1040. pg_data_t *pgdat;
  1041. int nid, zid;
  1042. if (!early_page_uninitialised(pfn))
  1043. return;
  1044. nid = early_pfn_to_nid(pfn);
  1045. pgdat = NODE_DATA(nid);
  1046. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1047. struct zone *zone = &pgdat->node_zones[zid];
  1048. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1049. break;
  1050. }
  1051. __init_single_pfn(pfn, zid, nid);
  1052. }
  1053. #else
  1054. static inline void init_reserved_page(unsigned long pfn)
  1055. {
  1056. }
  1057. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1058. /*
  1059. * Initialised pages do not have PageReserved set. This function is
  1060. * called for each range allocated by the bootmem allocator and
  1061. * marks the pages PageReserved. The remaining valid pages are later
  1062. * sent to the buddy page allocator.
  1063. */
  1064. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1065. {
  1066. unsigned long start_pfn = PFN_DOWN(start);
  1067. unsigned long end_pfn = PFN_UP(end);
  1068. for (; start_pfn < end_pfn; start_pfn++) {
  1069. if (pfn_valid(start_pfn)) {
  1070. struct page *page = pfn_to_page(start_pfn);
  1071. init_reserved_page(start_pfn);
  1072. /* Avoid false-positive PageTail() */
  1073. INIT_LIST_HEAD(&page->lru);
  1074. SetPageReserved(page);
  1075. }
  1076. }
  1077. }
  1078. static void __free_pages_ok(struct page *page, unsigned int order)
  1079. {
  1080. unsigned long flags;
  1081. int migratetype;
  1082. unsigned long pfn = page_to_pfn(page);
  1083. if (!free_pages_prepare(page, order, true))
  1084. return;
  1085. migratetype = get_pfnblock_migratetype(page, pfn);
  1086. local_irq_save(flags);
  1087. __count_vm_events(PGFREE, 1 << order);
  1088. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1089. local_irq_restore(flags);
  1090. }
  1091. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1092. {
  1093. unsigned int nr_pages = 1 << order;
  1094. struct page *p = page;
  1095. unsigned int loop;
  1096. prefetchw(p);
  1097. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1098. prefetchw(p + 1);
  1099. __ClearPageReserved(p);
  1100. set_page_count(p, 0);
  1101. }
  1102. __ClearPageReserved(p);
  1103. set_page_count(p, 0);
  1104. page_zone(page)->managed_pages += nr_pages;
  1105. set_page_refcounted(page);
  1106. __free_pages(page, order);
  1107. }
  1108. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1109. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1110. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1111. int __meminit early_pfn_to_nid(unsigned long pfn)
  1112. {
  1113. static DEFINE_SPINLOCK(early_pfn_lock);
  1114. int nid;
  1115. spin_lock(&early_pfn_lock);
  1116. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1117. if (nid < 0)
  1118. nid = first_online_node;
  1119. spin_unlock(&early_pfn_lock);
  1120. return nid;
  1121. }
  1122. #endif
  1123. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1124. static inline bool __meminit __maybe_unused
  1125. meminit_pfn_in_nid(unsigned long pfn, int node,
  1126. struct mminit_pfnnid_cache *state)
  1127. {
  1128. int nid;
  1129. nid = __early_pfn_to_nid(pfn, state);
  1130. if (nid >= 0 && nid != node)
  1131. return false;
  1132. return true;
  1133. }
  1134. /* Only safe to use early in boot when initialisation is single-threaded */
  1135. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1136. {
  1137. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1138. }
  1139. #else
  1140. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1141. {
  1142. return true;
  1143. }
  1144. static inline bool __meminit __maybe_unused
  1145. meminit_pfn_in_nid(unsigned long pfn, int node,
  1146. struct mminit_pfnnid_cache *state)
  1147. {
  1148. return true;
  1149. }
  1150. #endif
  1151. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1152. unsigned int order)
  1153. {
  1154. if (early_page_uninitialised(pfn))
  1155. return;
  1156. return __free_pages_boot_core(page, order);
  1157. }
  1158. /*
  1159. * Check that the whole (or subset of) a pageblock given by the interval of
  1160. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1161. * with the migration of free compaction scanner. The scanners then need to
  1162. * use only pfn_valid_within() check for arches that allow holes within
  1163. * pageblocks.
  1164. *
  1165. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1166. *
  1167. * It's possible on some configurations to have a setup like node0 node1 node0
  1168. * i.e. it's possible that all pages within a zones range of pages do not
  1169. * belong to a single zone. We assume that a border between node0 and node1
  1170. * can occur within a single pageblock, but not a node0 node1 node0
  1171. * interleaving within a single pageblock. It is therefore sufficient to check
  1172. * the first and last page of a pageblock and avoid checking each individual
  1173. * page in a pageblock.
  1174. */
  1175. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1176. unsigned long end_pfn, struct zone *zone)
  1177. {
  1178. struct page *start_page;
  1179. struct page *end_page;
  1180. /* end_pfn is one past the range we are checking */
  1181. end_pfn--;
  1182. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1183. return NULL;
  1184. start_page = pfn_to_online_page(start_pfn);
  1185. if (!start_page)
  1186. return NULL;
  1187. if (page_zone(start_page) != zone)
  1188. return NULL;
  1189. end_page = pfn_to_page(end_pfn);
  1190. /* This gives a shorter code than deriving page_zone(end_page) */
  1191. if (page_zone_id(start_page) != page_zone_id(end_page))
  1192. return NULL;
  1193. return start_page;
  1194. }
  1195. void set_zone_contiguous(struct zone *zone)
  1196. {
  1197. unsigned long block_start_pfn = zone->zone_start_pfn;
  1198. unsigned long block_end_pfn;
  1199. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1200. for (; block_start_pfn < zone_end_pfn(zone);
  1201. block_start_pfn = block_end_pfn,
  1202. block_end_pfn += pageblock_nr_pages) {
  1203. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1204. if (!__pageblock_pfn_to_page(block_start_pfn,
  1205. block_end_pfn, zone))
  1206. return;
  1207. }
  1208. /* We confirm that there is no hole */
  1209. zone->contiguous = true;
  1210. }
  1211. void clear_zone_contiguous(struct zone *zone)
  1212. {
  1213. zone->contiguous = false;
  1214. }
  1215. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1216. static void __init deferred_free_range(unsigned long pfn,
  1217. unsigned long nr_pages)
  1218. {
  1219. struct page *page;
  1220. unsigned long i;
  1221. if (!nr_pages)
  1222. return;
  1223. page = pfn_to_page(pfn);
  1224. /* Free a large naturally-aligned chunk if possible */
  1225. if (nr_pages == pageblock_nr_pages &&
  1226. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1227. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1228. __free_pages_boot_core(page, pageblock_order);
  1229. return;
  1230. }
  1231. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1232. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1233. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1234. __free_pages_boot_core(page, 0);
  1235. }
  1236. }
  1237. /* Completion tracking for deferred_init_memmap() threads */
  1238. static atomic_t pgdat_init_n_undone __initdata;
  1239. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1240. static inline void __init pgdat_init_report_one_done(void)
  1241. {
  1242. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1243. complete(&pgdat_init_all_done_comp);
  1244. }
  1245. /*
  1246. * Helper for deferred_init_range, free the given range, reset the counters, and
  1247. * return number of pages freed.
  1248. */
  1249. static inline unsigned long __init __def_free(unsigned long *nr_free,
  1250. unsigned long *free_base_pfn,
  1251. struct page **page)
  1252. {
  1253. unsigned long nr = *nr_free;
  1254. deferred_free_range(*free_base_pfn, nr);
  1255. *free_base_pfn = 0;
  1256. *nr_free = 0;
  1257. *page = NULL;
  1258. return nr;
  1259. }
  1260. static unsigned long __init deferred_init_range(int nid, int zid,
  1261. unsigned long start_pfn,
  1262. unsigned long end_pfn)
  1263. {
  1264. struct mminit_pfnnid_cache nid_init_state = { };
  1265. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1266. unsigned long free_base_pfn = 0;
  1267. unsigned long nr_pages = 0;
  1268. unsigned long nr_free = 0;
  1269. struct page *page = NULL;
  1270. unsigned long pfn;
  1271. /*
  1272. * First we check if pfn is valid on architectures where it is possible
  1273. * to have holes within pageblock_nr_pages. On systems where it is not
  1274. * possible, this function is optimized out.
  1275. *
  1276. * Then, we check if a current large page is valid by only checking the
  1277. * validity of the head pfn.
  1278. *
  1279. * meminit_pfn_in_nid is checked on systems where pfns can interleave
  1280. * within a node: a pfn is between start and end of a node, but does not
  1281. * belong to this memory node.
  1282. *
  1283. * Finally, we minimize pfn page lookups and scheduler checks by
  1284. * performing it only once every pageblock_nr_pages.
  1285. *
  1286. * We do it in two loops: first we initialize struct page, than free to
  1287. * buddy allocator, becuse while we are freeing pages we can access
  1288. * pages that are ahead (computing buddy page in __free_one_page()).
  1289. */
  1290. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1291. if (!pfn_valid_within(pfn))
  1292. continue;
  1293. if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
  1294. if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1295. if (page && (pfn & nr_pgmask))
  1296. page++;
  1297. else
  1298. page = pfn_to_page(pfn);
  1299. __init_single_page(page, pfn, zid, nid);
  1300. cond_resched();
  1301. }
  1302. }
  1303. }
  1304. page = NULL;
  1305. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1306. if (!pfn_valid_within(pfn)) {
  1307. nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
  1308. } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
  1309. nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
  1310. } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1311. nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
  1312. } else if (page && (pfn & nr_pgmask)) {
  1313. page++;
  1314. nr_free++;
  1315. } else {
  1316. nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
  1317. page = pfn_to_page(pfn);
  1318. free_base_pfn = pfn;
  1319. nr_free = 1;
  1320. cond_resched();
  1321. }
  1322. }
  1323. /* Free the last block of pages to allocator */
  1324. nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
  1325. return nr_pages;
  1326. }
  1327. /* Initialise remaining memory on a node */
  1328. static int __init deferred_init_memmap(void *data)
  1329. {
  1330. pg_data_t *pgdat = data;
  1331. int nid = pgdat->node_id;
  1332. unsigned long start = jiffies;
  1333. unsigned long nr_pages = 0;
  1334. unsigned long spfn, epfn;
  1335. phys_addr_t spa, epa;
  1336. int zid;
  1337. struct zone *zone;
  1338. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1339. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1340. u64 i;
  1341. if (first_init_pfn == ULONG_MAX) {
  1342. pgdat_init_report_one_done();
  1343. return 0;
  1344. }
  1345. /* Bind memory initialisation thread to a local node if possible */
  1346. if (!cpumask_empty(cpumask))
  1347. set_cpus_allowed_ptr(current, cpumask);
  1348. /* Sanity check boundaries */
  1349. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1350. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1351. pgdat->first_deferred_pfn = ULONG_MAX;
  1352. /* Only the highest zone is deferred so find it */
  1353. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1354. zone = pgdat->node_zones + zid;
  1355. if (first_init_pfn < zone_end_pfn(zone))
  1356. break;
  1357. }
  1358. first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
  1359. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1360. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1361. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1362. nr_pages += deferred_init_range(nid, zid, spfn, epfn);
  1363. }
  1364. /* Sanity check that the next zone really is unpopulated */
  1365. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1366. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1367. jiffies_to_msecs(jiffies - start));
  1368. pgdat_init_report_one_done();
  1369. return 0;
  1370. }
  1371. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1372. void __init page_alloc_init_late(void)
  1373. {
  1374. struct zone *zone;
  1375. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1376. int nid;
  1377. /* There will be num_node_state(N_MEMORY) threads */
  1378. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1379. for_each_node_state(nid, N_MEMORY) {
  1380. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1381. }
  1382. /* Block until all are initialised */
  1383. wait_for_completion(&pgdat_init_all_done_comp);
  1384. /* Reinit limits that are based on free pages after the kernel is up */
  1385. files_maxfiles_init();
  1386. #endif
  1387. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1388. /* Discard memblock private memory */
  1389. memblock_discard();
  1390. #endif
  1391. for_each_populated_zone(zone)
  1392. set_zone_contiguous(zone);
  1393. }
  1394. #ifdef CONFIG_CMA
  1395. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1396. void __init init_cma_reserved_pageblock(struct page *page)
  1397. {
  1398. unsigned i = pageblock_nr_pages;
  1399. struct page *p = page;
  1400. do {
  1401. __ClearPageReserved(p);
  1402. set_page_count(p, 0);
  1403. } while (++p, --i);
  1404. set_pageblock_migratetype(page, MIGRATE_CMA);
  1405. if (pageblock_order >= MAX_ORDER) {
  1406. i = pageblock_nr_pages;
  1407. p = page;
  1408. do {
  1409. set_page_refcounted(p);
  1410. __free_pages(p, MAX_ORDER - 1);
  1411. p += MAX_ORDER_NR_PAGES;
  1412. } while (i -= MAX_ORDER_NR_PAGES);
  1413. } else {
  1414. set_page_refcounted(page);
  1415. __free_pages(page, pageblock_order);
  1416. }
  1417. adjust_managed_page_count(page, pageblock_nr_pages);
  1418. }
  1419. #endif
  1420. /*
  1421. * The order of subdivision here is critical for the IO subsystem.
  1422. * Please do not alter this order without good reasons and regression
  1423. * testing. Specifically, as large blocks of memory are subdivided,
  1424. * the order in which smaller blocks are delivered depends on the order
  1425. * they're subdivided in this function. This is the primary factor
  1426. * influencing the order in which pages are delivered to the IO
  1427. * subsystem according to empirical testing, and this is also justified
  1428. * by considering the behavior of a buddy system containing a single
  1429. * large block of memory acted on by a series of small allocations.
  1430. * This behavior is a critical factor in sglist merging's success.
  1431. *
  1432. * -- nyc
  1433. */
  1434. static inline void expand(struct zone *zone, struct page *page,
  1435. int low, int high, struct free_area *area,
  1436. int migratetype)
  1437. {
  1438. unsigned long size = 1 << high;
  1439. while (high > low) {
  1440. area--;
  1441. high--;
  1442. size >>= 1;
  1443. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1444. /*
  1445. * Mark as guard pages (or page), that will allow to
  1446. * merge back to allocator when buddy will be freed.
  1447. * Corresponding page table entries will not be touched,
  1448. * pages will stay not present in virtual address space
  1449. */
  1450. if (set_page_guard(zone, &page[size], high, migratetype))
  1451. continue;
  1452. list_add(&page[size].lru, &area->free_list[migratetype]);
  1453. area->nr_free++;
  1454. set_page_order(&page[size], high);
  1455. }
  1456. }
  1457. static void check_new_page_bad(struct page *page)
  1458. {
  1459. const char *bad_reason = NULL;
  1460. unsigned long bad_flags = 0;
  1461. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1462. bad_reason = "nonzero mapcount";
  1463. if (unlikely(page->mapping != NULL))
  1464. bad_reason = "non-NULL mapping";
  1465. if (unlikely(page_ref_count(page) != 0))
  1466. bad_reason = "nonzero _count";
  1467. if (unlikely(page->flags & __PG_HWPOISON)) {
  1468. bad_reason = "HWPoisoned (hardware-corrupted)";
  1469. bad_flags = __PG_HWPOISON;
  1470. /* Don't complain about hwpoisoned pages */
  1471. page_mapcount_reset(page); /* remove PageBuddy */
  1472. return;
  1473. }
  1474. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1475. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1476. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1477. }
  1478. #ifdef CONFIG_MEMCG
  1479. if (unlikely(page->mem_cgroup))
  1480. bad_reason = "page still charged to cgroup";
  1481. #endif
  1482. bad_page(page, bad_reason, bad_flags);
  1483. }
  1484. /*
  1485. * This page is about to be returned from the page allocator
  1486. */
  1487. static inline int check_new_page(struct page *page)
  1488. {
  1489. if (likely(page_expected_state(page,
  1490. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1491. return 0;
  1492. check_new_page_bad(page);
  1493. return 1;
  1494. }
  1495. static inline bool free_pages_prezeroed(void)
  1496. {
  1497. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1498. page_poisoning_enabled();
  1499. }
  1500. #ifdef CONFIG_DEBUG_VM
  1501. static bool check_pcp_refill(struct page *page)
  1502. {
  1503. return false;
  1504. }
  1505. static bool check_new_pcp(struct page *page)
  1506. {
  1507. return check_new_page(page);
  1508. }
  1509. #else
  1510. static bool check_pcp_refill(struct page *page)
  1511. {
  1512. return check_new_page(page);
  1513. }
  1514. static bool check_new_pcp(struct page *page)
  1515. {
  1516. return false;
  1517. }
  1518. #endif /* CONFIG_DEBUG_VM */
  1519. static bool check_new_pages(struct page *page, unsigned int order)
  1520. {
  1521. int i;
  1522. for (i = 0; i < (1 << order); i++) {
  1523. struct page *p = page + i;
  1524. if (unlikely(check_new_page(p)))
  1525. return true;
  1526. }
  1527. return false;
  1528. }
  1529. inline void post_alloc_hook(struct page *page, unsigned int order,
  1530. gfp_t gfp_flags)
  1531. {
  1532. set_page_private(page, 0);
  1533. set_page_refcounted(page);
  1534. arch_alloc_page(page, order);
  1535. kernel_map_pages(page, 1 << order, 1);
  1536. kernel_poison_pages(page, 1 << order, 1);
  1537. kasan_alloc_pages(page, order);
  1538. set_page_owner(page, order, gfp_flags);
  1539. }
  1540. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1541. unsigned int alloc_flags)
  1542. {
  1543. int i;
  1544. post_alloc_hook(page, order, gfp_flags);
  1545. if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
  1546. for (i = 0; i < (1 << order); i++)
  1547. clear_highpage(page + i);
  1548. if (order && (gfp_flags & __GFP_COMP))
  1549. prep_compound_page(page, order);
  1550. /*
  1551. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1552. * allocate the page. The expectation is that the caller is taking
  1553. * steps that will free more memory. The caller should avoid the page
  1554. * being used for !PFMEMALLOC purposes.
  1555. */
  1556. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1557. set_page_pfmemalloc(page);
  1558. else
  1559. clear_page_pfmemalloc(page);
  1560. }
  1561. /*
  1562. * Go through the free lists for the given migratetype and remove
  1563. * the smallest available page from the freelists
  1564. */
  1565. static __always_inline
  1566. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1567. int migratetype)
  1568. {
  1569. unsigned int current_order;
  1570. struct free_area *area;
  1571. struct page *page;
  1572. /* Find a page of the appropriate size in the preferred list */
  1573. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1574. area = &(zone->free_area[current_order]);
  1575. page = list_first_entry_or_null(&area->free_list[migratetype],
  1576. struct page, lru);
  1577. if (!page)
  1578. continue;
  1579. list_del(&page->lru);
  1580. rmv_page_order(page);
  1581. area->nr_free--;
  1582. expand(zone, page, order, current_order, area, migratetype);
  1583. set_pcppage_migratetype(page, migratetype);
  1584. return page;
  1585. }
  1586. return NULL;
  1587. }
  1588. /*
  1589. * This array describes the order lists are fallen back to when
  1590. * the free lists for the desirable migrate type are depleted
  1591. */
  1592. static int fallbacks[MIGRATE_TYPES][4] = {
  1593. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1594. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1595. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1596. #ifdef CONFIG_CMA
  1597. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1598. #endif
  1599. #ifdef CONFIG_MEMORY_ISOLATION
  1600. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1601. #endif
  1602. };
  1603. #ifdef CONFIG_CMA
  1604. static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1605. unsigned int order)
  1606. {
  1607. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1608. }
  1609. #else
  1610. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1611. unsigned int order) { return NULL; }
  1612. #endif
  1613. /*
  1614. * Move the free pages in a range to the free lists of the requested type.
  1615. * Note that start_page and end_pages are not aligned on a pageblock
  1616. * boundary. If alignment is required, use move_freepages_block()
  1617. */
  1618. static int move_freepages(struct zone *zone,
  1619. struct page *start_page, struct page *end_page,
  1620. int migratetype, int *num_movable)
  1621. {
  1622. struct page *page;
  1623. unsigned int order;
  1624. int pages_moved = 0;
  1625. #ifndef CONFIG_HOLES_IN_ZONE
  1626. /*
  1627. * page_zone is not safe to call in this context when
  1628. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1629. * anyway as we check zone boundaries in move_freepages_block().
  1630. * Remove at a later date when no bug reports exist related to
  1631. * grouping pages by mobility
  1632. */
  1633. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1634. #endif
  1635. if (num_movable)
  1636. *num_movable = 0;
  1637. for (page = start_page; page <= end_page;) {
  1638. if (!pfn_valid_within(page_to_pfn(page))) {
  1639. page++;
  1640. continue;
  1641. }
  1642. /* Make sure we are not inadvertently changing nodes */
  1643. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1644. if (!PageBuddy(page)) {
  1645. /*
  1646. * We assume that pages that could be isolated for
  1647. * migration are movable. But we don't actually try
  1648. * isolating, as that would be expensive.
  1649. */
  1650. if (num_movable &&
  1651. (PageLRU(page) || __PageMovable(page)))
  1652. (*num_movable)++;
  1653. page++;
  1654. continue;
  1655. }
  1656. order = page_order(page);
  1657. list_move(&page->lru,
  1658. &zone->free_area[order].free_list[migratetype]);
  1659. page += 1 << order;
  1660. pages_moved += 1 << order;
  1661. }
  1662. return pages_moved;
  1663. }
  1664. int move_freepages_block(struct zone *zone, struct page *page,
  1665. int migratetype, int *num_movable)
  1666. {
  1667. unsigned long start_pfn, end_pfn;
  1668. struct page *start_page, *end_page;
  1669. start_pfn = page_to_pfn(page);
  1670. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1671. start_page = pfn_to_page(start_pfn);
  1672. end_page = start_page + pageblock_nr_pages - 1;
  1673. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1674. /* Do not cross zone boundaries */
  1675. if (!zone_spans_pfn(zone, start_pfn))
  1676. start_page = page;
  1677. if (!zone_spans_pfn(zone, end_pfn))
  1678. return 0;
  1679. return move_freepages(zone, start_page, end_page, migratetype,
  1680. num_movable);
  1681. }
  1682. static void change_pageblock_range(struct page *pageblock_page,
  1683. int start_order, int migratetype)
  1684. {
  1685. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1686. while (nr_pageblocks--) {
  1687. set_pageblock_migratetype(pageblock_page, migratetype);
  1688. pageblock_page += pageblock_nr_pages;
  1689. }
  1690. }
  1691. /*
  1692. * When we are falling back to another migratetype during allocation, try to
  1693. * steal extra free pages from the same pageblocks to satisfy further
  1694. * allocations, instead of polluting multiple pageblocks.
  1695. *
  1696. * If we are stealing a relatively large buddy page, it is likely there will
  1697. * be more free pages in the pageblock, so try to steal them all. For
  1698. * reclaimable and unmovable allocations, we steal regardless of page size,
  1699. * as fragmentation caused by those allocations polluting movable pageblocks
  1700. * is worse than movable allocations stealing from unmovable and reclaimable
  1701. * pageblocks.
  1702. */
  1703. static bool can_steal_fallback(unsigned int order, int start_mt)
  1704. {
  1705. /*
  1706. * Leaving this order check is intended, although there is
  1707. * relaxed order check in next check. The reason is that
  1708. * we can actually steal whole pageblock if this condition met,
  1709. * but, below check doesn't guarantee it and that is just heuristic
  1710. * so could be changed anytime.
  1711. */
  1712. if (order >= pageblock_order)
  1713. return true;
  1714. if (order >= pageblock_order / 2 ||
  1715. start_mt == MIGRATE_RECLAIMABLE ||
  1716. start_mt == MIGRATE_UNMOVABLE ||
  1717. page_group_by_mobility_disabled)
  1718. return true;
  1719. return false;
  1720. }
  1721. /*
  1722. * This function implements actual steal behaviour. If order is large enough,
  1723. * we can steal whole pageblock. If not, we first move freepages in this
  1724. * pageblock to our migratetype and determine how many already-allocated pages
  1725. * are there in the pageblock with a compatible migratetype. If at least half
  1726. * of pages are free or compatible, we can change migratetype of the pageblock
  1727. * itself, so pages freed in the future will be put on the correct free list.
  1728. */
  1729. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1730. int start_type, bool whole_block)
  1731. {
  1732. unsigned int current_order = page_order(page);
  1733. struct free_area *area;
  1734. int free_pages, movable_pages, alike_pages;
  1735. int old_block_type;
  1736. old_block_type = get_pageblock_migratetype(page);
  1737. /*
  1738. * This can happen due to races and we want to prevent broken
  1739. * highatomic accounting.
  1740. */
  1741. if (is_migrate_highatomic(old_block_type))
  1742. goto single_page;
  1743. /* Take ownership for orders >= pageblock_order */
  1744. if (current_order >= pageblock_order) {
  1745. change_pageblock_range(page, current_order, start_type);
  1746. goto single_page;
  1747. }
  1748. /* We are not allowed to try stealing from the whole block */
  1749. if (!whole_block)
  1750. goto single_page;
  1751. free_pages = move_freepages_block(zone, page, start_type,
  1752. &movable_pages);
  1753. /*
  1754. * Determine how many pages are compatible with our allocation.
  1755. * For movable allocation, it's the number of movable pages which
  1756. * we just obtained. For other types it's a bit more tricky.
  1757. */
  1758. if (start_type == MIGRATE_MOVABLE) {
  1759. alike_pages = movable_pages;
  1760. } else {
  1761. /*
  1762. * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
  1763. * to MOVABLE pageblock, consider all non-movable pages as
  1764. * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
  1765. * vice versa, be conservative since we can't distinguish the
  1766. * exact migratetype of non-movable pages.
  1767. */
  1768. if (old_block_type == MIGRATE_MOVABLE)
  1769. alike_pages = pageblock_nr_pages
  1770. - (free_pages + movable_pages);
  1771. else
  1772. alike_pages = 0;
  1773. }
  1774. /* moving whole block can fail due to zone boundary conditions */
  1775. if (!free_pages)
  1776. goto single_page;
  1777. /*
  1778. * If a sufficient number of pages in the block are either free or of
  1779. * comparable migratability as our allocation, claim the whole block.
  1780. */
  1781. if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
  1782. page_group_by_mobility_disabled)
  1783. set_pageblock_migratetype(page, start_type);
  1784. return;
  1785. single_page:
  1786. area = &zone->free_area[current_order];
  1787. list_move(&page->lru, &area->free_list[start_type]);
  1788. }
  1789. /*
  1790. * Check whether there is a suitable fallback freepage with requested order.
  1791. * If only_stealable is true, this function returns fallback_mt only if
  1792. * we can steal other freepages all together. This would help to reduce
  1793. * fragmentation due to mixed migratetype pages in one pageblock.
  1794. */
  1795. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1796. int migratetype, bool only_stealable, bool *can_steal)
  1797. {
  1798. int i;
  1799. int fallback_mt;
  1800. if (area->nr_free == 0)
  1801. return -1;
  1802. *can_steal = false;
  1803. for (i = 0;; i++) {
  1804. fallback_mt = fallbacks[migratetype][i];
  1805. if (fallback_mt == MIGRATE_TYPES)
  1806. break;
  1807. if (list_empty(&area->free_list[fallback_mt]))
  1808. continue;
  1809. if (can_steal_fallback(order, migratetype))
  1810. *can_steal = true;
  1811. if (!only_stealable)
  1812. return fallback_mt;
  1813. if (*can_steal)
  1814. return fallback_mt;
  1815. }
  1816. return -1;
  1817. }
  1818. /*
  1819. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1820. * there are no empty page blocks that contain a page with a suitable order
  1821. */
  1822. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1823. unsigned int alloc_order)
  1824. {
  1825. int mt;
  1826. unsigned long max_managed, flags;
  1827. /*
  1828. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1829. * Check is race-prone but harmless.
  1830. */
  1831. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1832. if (zone->nr_reserved_highatomic >= max_managed)
  1833. return;
  1834. spin_lock_irqsave(&zone->lock, flags);
  1835. /* Recheck the nr_reserved_highatomic limit under the lock */
  1836. if (zone->nr_reserved_highatomic >= max_managed)
  1837. goto out_unlock;
  1838. /* Yoink! */
  1839. mt = get_pageblock_migratetype(page);
  1840. if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
  1841. && !is_migrate_cma(mt)) {
  1842. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1843. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1844. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
  1845. }
  1846. out_unlock:
  1847. spin_unlock_irqrestore(&zone->lock, flags);
  1848. }
  1849. /*
  1850. * Used when an allocation is about to fail under memory pressure. This
  1851. * potentially hurts the reliability of high-order allocations when under
  1852. * intense memory pressure but failed atomic allocations should be easier
  1853. * to recover from than an OOM.
  1854. *
  1855. * If @force is true, try to unreserve a pageblock even though highatomic
  1856. * pageblock is exhausted.
  1857. */
  1858. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1859. bool force)
  1860. {
  1861. struct zonelist *zonelist = ac->zonelist;
  1862. unsigned long flags;
  1863. struct zoneref *z;
  1864. struct zone *zone;
  1865. struct page *page;
  1866. int order;
  1867. bool ret;
  1868. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1869. ac->nodemask) {
  1870. /*
  1871. * Preserve at least one pageblock unless memory pressure
  1872. * is really high.
  1873. */
  1874. if (!force && zone->nr_reserved_highatomic <=
  1875. pageblock_nr_pages)
  1876. continue;
  1877. spin_lock_irqsave(&zone->lock, flags);
  1878. for (order = 0; order < MAX_ORDER; order++) {
  1879. struct free_area *area = &(zone->free_area[order]);
  1880. page = list_first_entry_or_null(
  1881. &area->free_list[MIGRATE_HIGHATOMIC],
  1882. struct page, lru);
  1883. if (!page)
  1884. continue;
  1885. /*
  1886. * In page freeing path, migratetype change is racy so
  1887. * we can counter several free pages in a pageblock
  1888. * in this loop althoug we changed the pageblock type
  1889. * from highatomic to ac->migratetype. So we should
  1890. * adjust the count once.
  1891. */
  1892. if (is_migrate_highatomic_page(page)) {
  1893. /*
  1894. * It should never happen but changes to
  1895. * locking could inadvertently allow a per-cpu
  1896. * drain to add pages to MIGRATE_HIGHATOMIC
  1897. * while unreserving so be safe and watch for
  1898. * underflows.
  1899. */
  1900. zone->nr_reserved_highatomic -= min(
  1901. pageblock_nr_pages,
  1902. zone->nr_reserved_highatomic);
  1903. }
  1904. /*
  1905. * Convert to ac->migratetype and avoid the normal
  1906. * pageblock stealing heuristics. Minimally, the caller
  1907. * is doing the work and needs the pages. More
  1908. * importantly, if the block was always converted to
  1909. * MIGRATE_UNMOVABLE or another type then the number
  1910. * of pageblocks that cannot be completely freed
  1911. * may increase.
  1912. */
  1913. set_pageblock_migratetype(page, ac->migratetype);
  1914. ret = move_freepages_block(zone, page, ac->migratetype,
  1915. NULL);
  1916. if (ret) {
  1917. spin_unlock_irqrestore(&zone->lock, flags);
  1918. return ret;
  1919. }
  1920. }
  1921. spin_unlock_irqrestore(&zone->lock, flags);
  1922. }
  1923. return false;
  1924. }
  1925. /*
  1926. * Try finding a free buddy page on the fallback list and put it on the free
  1927. * list of requested migratetype, possibly along with other pages from the same
  1928. * block, depending on fragmentation avoidance heuristics. Returns true if
  1929. * fallback was found so that __rmqueue_smallest() can grab it.
  1930. *
  1931. * The use of signed ints for order and current_order is a deliberate
  1932. * deviation from the rest of this file, to make the for loop
  1933. * condition simpler.
  1934. */
  1935. static __always_inline bool
  1936. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  1937. {
  1938. struct free_area *area;
  1939. int current_order;
  1940. struct page *page;
  1941. int fallback_mt;
  1942. bool can_steal;
  1943. /*
  1944. * Find the largest available free page in the other list. This roughly
  1945. * approximates finding the pageblock with the most free pages, which
  1946. * would be too costly to do exactly.
  1947. */
  1948. for (current_order = MAX_ORDER - 1; current_order >= order;
  1949. --current_order) {
  1950. area = &(zone->free_area[current_order]);
  1951. fallback_mt = find_suitable_fallback(area, current_order,
  1952. start_migratetype, false, &can_steal);
  1953. if (fallback_mt == -1)
  1954. continue;
  1955. /*
  1956. * We cannot steal all free pages from the pageblock and the
  1957. * requested migratetype is movable. In that case it's better to
  1958. * steal and split the smallest available page instead of the
  1959. * largest available page, because even if the next movable
  1960. * allocation falls back into a different pageblock than this
  1961. * one, it won't cause permanent fragmentation.
  1962. */
  1963. if (!can_steal && start_migratetype == MIGRATE_MOVABLE
  1964. && current_order > order)
  1965. goto find_smallest;
  1966. goto do_steal;
  1967. }
  1968. return false;
  1969. find_smallest:
  1970. for (current_order = order; current_order < MAX_ORDER;
  1971. current_order++) {
  1972. area = &(zone->free_area[current_order]);
  1973. fallback_mt = find_suitable_fallback(area, current_order,
  1974. start_migratetype, false, &can_steal);
  1975. if (fallback_mt != -1)
  1976. break;
  1977. }
  1978. /*
  1979. * This should not happen - we already found a suitable fallback
  1980. * when looking for the largest page.
  1981. */
  1982. VM_BUG_ON(current_order == MAX_ORDER);
  1983. do_steal:
  1984. page = list_first_entry(&area->free_list[fallback_mt],
  1985. struct page, lru);
  1986. steal_suitable_fallback(zone, page, start_migratetype, can_steal);
  1987. trace_mm_page_alloc_extfrag(page, order, current_order,
  1988. start_migratetype, fallback_mt);
  1989. return true;
  1990. }
  1991. /*
  1992. * Do the hard work of removing an element from the buddy allocator.
  1993. * Call me with the zone->lock already held.
  1994. */
  1995. static __always_inline struct page *
  1996. __rmqueue(struct zone *zone, unsigned int order, int migratetype)
  1997. {
  1998. struct page *page;
  1999. retry:
  2000. page = __rmqueue_smallest(zone, order, migratetype);
  2001. if (unlikely(!page)) {
  2002. if (migratetype == MIGRATE_MOVABLE)
  2003. page = __rmqueue_cma_fallback(zone, order);
  2004. if (!page && __rmqueue_fallback(zone, order, migratetype))
  2005. goto retry;
  2006. }
  2007. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2008. return page;
  2009. }
  2010. /*
  2011. * Obtain a specified number of elements from the buddy allocator, all under
  2012. * a single hold of the lock, for efficiency. Add them to the supplied list.
  2013. * Returns the number of new pages which were placed at *list.
  2014. */
  2015. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  2016. unsigned long count, struct list_head *list,
  2017. int migratetype, bool cold)
  2018. {
  2019. int i, alloced = 0;
  2020. spin_lock(&zone->lock);
  2021. for (i = 0; i < count; ++i) {
  2022. struct page *page = __rmqueue(zone, order, migratetype);
  2023. if (unlikely(page == NULL))
  2024. break;
  2025. if (unlikely(check_pcp_refill(page)))
  2026. continue;
  2027. /*
  2028. * Split buddy pages returned by expand() are received here
  2029. * in physical page order. The page is added to the callers and
  2030. * list and the list head then moves forward. From the callers
  2031. * perspective, the linked list is ordered by page number in
  2032. * some conditions. This is useful for IO devices that can
  2033. * merge IO requests if the physical pages are ordered
  2034. * properly.
  2035. */
  2036. if (likely(!cold))
  2037. list_add(&page->lru, list);
  2038. else
  2039. list_add_tail(&page->lru, list);
  2040. list = &page->lru;
  2041. alloced++;
  2042. if (is_migrate_cma(get_pcppage_migratetype(page)))
  2043. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  2044. -(1 << order));
  2045. }
  2046. /*
  2047. * i pages were removed from the buddy list even if some leak due
  2048. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  2049. * on i. Do not confuse with 'alloced' which is the number of
  2050. * pages added to the pcp list.
  2051. */
  2052. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  2053. spin_unlock(&zone->lock);
  2054. return alloced;
  2055. }
  2056. #ifdef CONFIG_NUMA
  2057. /*
  2058. * Called from the vmstat counter updater to drain pagesets of this
  2059. * currently executing processor on remote nodes after they have
  2060. * expired.
  2061. *
  2062. * Note that this function must be called with the thread pinned to
  2063. * a single processor.
  2064. */
  2065. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  2066. {
  2067. unsigned long flags;
  2068. int to_drain, batch;
  2069. local_irq_save(flags);
  2070. batch = READ_ONCE(pcp->batch);
  2071. to_drain = min(pcp->count, batch);
  2072. if (to_drain > 0) {
  2073. free_pcppages_bulk(zone, to_drain, pcp);
  2074. pcp->count -= to_drain;
  2075. }
  2076. local_irq_restore(flags);
  2077. }
  2078. #endif
  2079. /*
  2080. * Drain pcplists of the indicated processor and zone.
  2081. *
  2082. * The processor must either be the current processor and the
  2083. * thread pinned to the current processor or a processor that
  2084. * is not online.
  2085. */
  2086. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  2087. {
  2088. unsigned long flags;
  2089. struct per_cpu_pageset *pset;
  2090. struct per_cpu_pages *pcp;
  2091. local_irq_save(flags);
  2092. pset = per_cpu_ptr(zone->pageset, cpu);
  2093. pcp = &pset->pcp;
  2094. if (pcp->count) {
  2095. free_pcppages_bulk(zone, pcp->count, pcp);
  2096. pcp->count = 0;
  2097. }
  2098. local_irq_restore(flags);
  2099. }
  2100. /*
  2101. * Drain pcplists of all zones on the indicated processor.
  2102. *
  2103. * The processor must either be the current processor and the
  2104. * thread pinned to the current processor or a processor that
  2105. * is not online.
  2106. */
  2107. static void drain_pages(unsigned int cpu)
  2108. {
  2109. struct zone *zone;
  2110. for_each_populated_zone(zone) {
  2111. drain_pages_zone(cpu, zone);
  2112. }
  2113. }
  2114. /*
  2115. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2116. *
  2117. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2118. * the single zone's pages.
  2119. */
  2120. void drain_local_pages(struct zone *zone)
  2121. {
  2122. int cpu = smp_processor_id();
  2123. if (zone)
  2124. drain_pages_zone(cpu, zone);
  2125. else
  2126. drain_pages(cpu);
  2127. }
  2128. static void drain_local_pages_wq(struct work_struct *work)
  2129. {
  2130. /*
  2131. * drain_all_pages doesn't use proper cpu hotplug protection so
  2132. * we can race with cpu offline when the WQ can move this from
  2133. * a cpu pinned worker to an unbound one. We can operate on a different
  2134. * cpu which is allright but we also have to make sure to not move to
  2135. * a different one.
  2136. */
  2137. preempt_disable();
  2138. drain_local_pages(NULL);
  2139. preempt_enable();
  2140. }
  2141. /*
  2142. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2143. *
  2144. * When zone parameter is non-NULL, spill just the single zone's pages.
  2145. *
  2146. * Note that this can be extremely slow as the draining happens in a workqueue.
  2147. */
  2148. void drain_all_pages(struct zone *zone)
  2149. {
  2150. int cpu;
  2151. /*
  2152. * Allocate in the BSS so we wont require allocation in
  2153. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2154. */
  2155. static cpumask_t cpus_with_pcps;
  2156. /*
  2157. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2158. * initialized.
  2159. */
  2160. if (WARN_ON_ONCE(!mm_percpu_wq))
  2161. return;
  2162. /* Workqueues cannot recurse */
  2163. if (current->flags & PF_WQ_WORKER)
  2164. return;
  2165. /*
  2166. * Do not drain if one is already in progress unless it's specific to
  2167. * a zone. Such callers are primarily CMA and memory hotplug and need
  2168. * the drain to be complete when the call returns.
  2169. */
  2170. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2171. if (!zone)
  2172. return;
  2173. mutex_lock(&pcpu_drain_mutex);
  2174. }
  2175. /*
  2176. * We don't care about racing with CPU hotplug event
  2177. * as offline notification will cause the notified
  2178. * cpu to drain that CPU pcps and on_each_cpu_mask
  2179. * disables preemption as part of its processing
  2180. */
  2181. for_each_online_cpu(cpu) {
  2182. struct per_cpu_pageset *pcp;
  2183. struct zone *z;
  2184. bool has_pcps = false;
  2185. if (zone) {
  2186. pcp = per_cpu_ptr(zone->pageset, cpu);
  2187. if (pcp->pcp.count)
  2188. has_pcps = true;
  2189. } else {
  2190. for_each_populated_zone(z) {
  2191. pcp = per_cpu_ptr(z->pageset, cpu);
  2192. if (pcp->pcp.count) {
  2193. has_pcps = true;
  2194. break;
  2195. }
  2196. }
  2197. }
  2198. if (has_pcps)
  2199. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2200. else
  2201. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2202. }
  2203. for_each_cpu(cpu, &cpus_with_pcps) {
  2204. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2205. INIT_WORK(work, drain_local_pages_wq);
  2206. queue_work_on(cpu, mm_percpu_wq, work);
  2207. }
  2208. for_each_cpu(cpu, &cpus_with_pcps)
  2209. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2210. mutex_unlock(&pcpu_drain_mutex);
  2211. }
  2212. #ifdef CONFIG_HIBERNATION
  2213. /*
  2214. * Touch the watchdog for every WD_PAGE_COUNT pages.
  2215. */
  2216. #define WD_PAGE_COUNT (128*1024)
  2217. void mark_free_pages(struct zone *zone)
  2218. {
  2219. unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
  2220. unsigned long flags;
  2221. unsigned int order, t;
  2222. struct page *page;
  2223. if (zone_is_empty(zone))
  2224. return;
  2225. spin_lock_irqsave(&zone->lock, flags);
  2226. max_zone_pfn = zone_end_pfn(zone);
  2227. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2228. if (pfn_valid(pfn)) {
  2229. page = pfn_to_page(pfn);
  2230. if (!--page_count) {
  2231. touch_nmi_watchdog();
  2232. page_count = WD_PAGE_COUNT;
  2233. }
  2234. if (page_zone(page) != zone)
  2235. continue;
  2236. if (!swsusp_page_is_forbidden(page))
  2237. swsusp_unset_page_free(page);
  2238. }
  2239. for_each_migratetype_order(order, t) {
  2240. list_for_each_entry(page,
  2241. &zone->free_area[order].free_list[t], lru) {
  2242. unsigned long i;
  2243. pfn = page_to_pfn(page);
  2244. for (i = 0; i < (1UL << order); i++) {
  2245. if (!--page_count) {
  2246. touch_nmi_watchdog();
  2247. page_count = WD_PAGE_COUNT;
  2248. }
  2249. swsusp_set_page_free(pfn_to_page(pfn + i));
  2250. }
  2251. }
  2252. }
  2253. spin_unlock_irqrestore(&zone->lock, flags);
  2254. }
  2255. #endif /* CONFIG_PM */
  2256. static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
  2257. {
  2258. int migratetype;
  2259. if (!free_pcp_prepare(page))
  2260. return false;
  2261. migratetype = get_pfnblock_migratetype(page, pfn);
  2262. set_pcppage_migratetype(page, migratetype);
  2263. return true;
  2264. }
  2265. static void free_unref_page_commit(struct page *page, unsigned long pfn)
  2266. {
  2267. struct zone *zone = page_zone(page);
  2268. struct per_cpu_pages *pcp;
  2269. int migratetype;
  2270. migratetype = get_pcppage_migratetype(page);
  2271. __count_vm_event(PGFREE);
  2272. /*
  2273. * We only track unmovable, reclaimable and movable on pcp lists.
  2274. * Free ISOLATE pages back to the allocator because they are being
  2275. * offlined but treat HIGHATOMIC as movable pages so we can get those
  2276. * areas back if necessary. Otherwise, we may have to free
  2277. * excessively into the page allocator
  2278. */
  2279. if (migratetype >= MIGRATE_PCPTYPES) {
  2280. if (unlikely(is_migrate_isolate(migratetype))) {
  2281. free_one_page(zone, page, pfn, 0, migratetype);
  2282. return;
  2283. }
  2284. migratetype = MIGRATE_MOVABLE;
  2285. }
  2286. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2287. list_add(&page->lru, &pcp->lists[migratetype]);
  2288. pcp->count++;
  2289. if (pcp->count >= pcp->high) {
  2290. unsigned long batch = READ_ONCE(pcp->batch);
  2291. free_pcppages_bulk(zone, batch, pcp);
  2292. pcp->count -= batch;
  2293. }
  2294. }
  2295. /*
  2296. * Free a 0-order page
  2297. */
  2298. void free_unref_page(struct page *page)
  2299. {
  2300. unsigned long flags;
  2301. unsigned long pfn = page_to_pfn(page);
  2302. if (!free_unref_page_prepare(page, pfn))
  2303. return;
  2304. local_irq_save(flags);
  2305. free_unref_page_commit(page, pfn);
  2306. local_irq_restore(flags);
  2307. }
  2308. /*
  2309. * Free a list of 0-order pages
  2310. */
  2311. void free_unref_page_list(struct list_head *list)
  2312. {
  2313. struct page *page, *next;
  2314. unsigned long flags, pfn;
  2315. /* Prepare pages for freeing */
  2316. list_for_each_entry_safe(page, next, list, lru) {
  2317. pfn = page_to_pfn(page);
  2318. if (!free_unref_page_prepare(page, pfn))
  2319. list_del(&page->lru);
  2320. set_page_private(page, pfn);
  2321. }
  2322. local_irq_save(flags);
  2323. list_for_each_entry_safe(page, next, list, lru) {
  2324. unsigned long pfn = page_private(page);
  2325. set_page_private(page, 0);
  2326. trace_mm_page_free_batched(page);
  2327. free_unref_page_commit(page, pfn);
  2328. }
  2329. local_irq_restore(flags);
  2330. }
  2331. /*
  2332. * split_page takes a non-compound higher-order page, and splits it into
  2333. * n (1<<order) sub-pages: page[0..n]
  2334. * Each sub-page must be freed individually.
  2335. *
  2336. * Note: this is probably too low level an operation for use in drivers.
  2337. * Please consult with lkml before using this in your driver.
  2338. */
  2339. void split_page(struct page *page, unsigned int order)
  2340. {
  2341. int i;
  2342. VM_BUG_ON_PAGE(PageCompound(page), page);
  2343. VM_BUG_ON_PAGE(!page_count(page), page);
  2344. for (i = 1; i < (1 << order); i++)
  2345. set_page_refcounted(page + i);
  2346. split_page_owner(page, order);
  2347. }
  2348. EXPORT_SYMBOL_GPL(split_page);
  2349. int __isolate_free_page(struct page *page, unsigned int order)
  2350. {
  2351. unsigned long watermark;
  2352. struct zone *zone;
  2353. int mt;
  2354. BUG_ON(!PageBuddy(page));
  2355. zone = page_zone(page);
  2356. mt = get_pageblock_migratetype(page);
  2357. if (!is_migrate_isolate(mt)) {
  2358. /*
  2359. * Obey watermarks as if the page was being allocated. We can
  2360. * emulate a high-order watermark check with a raised order-0
  2361. * watermark, because we already know our high-order page
  2362. * exists.
  2363. */
  2364. watermark = min_wmark_pages(zone) + (1UL << order);
  2365. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2366. return 0;
  2367. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2368. }
  2369. /* Remove page from free list */
  2370. list_del(&page->lru);
  2371. zone->free_area[order].nr_free--;
  2372. rmv_page_order(page);
  2373. /*
  2374. * Set the pageblock if the isolated page is at least half of a
  2375. * pageblock
  2376. */
  2377. if (order >= pageblock_order - 1) {
  2378. struct page *endpage = page + (1 << order) - 1;
  2379. for (; page < endpage; page += pageblock_nr_pages) {
  2380. int mt = get_pageblock_migratetype(page);
  2381. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2382. && !is_migrate_highatomic(mt))
  2383. set_pageblock_migratetype(page,
  2384. MIGRATE_MOVABLE);
  2385. }
  2386. }
  2387. return 1UL << order;
  2388. }
  2389. /*
  2390. * Update NUMA hit/miss statistics
  2391. *
  2392. * Must be called with interrupts disabled.
  2393. */
  2394. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2395. {
  2396. #ifdef CONFIG_NUMA
  2397. enum numa_stat_item local_stat = NUMA_LOCAL;
  2398. if (z->node != numa_node_id())
  2399. local_stat = NUMA_OTHER;
  2400. if (z->node == preferred_zone->node)
  2401. __inc_numa_state(z, NUMA_HIT);
  2402. else {
  2403. __inc_numa_state(z, NUMA_MISS);
  2404. __inc_numa_state(preferred_zone, NUMA_FOREIGN);
  2405. }
  2406. __inc_numa_state(z, local_stat);
  2407. #endif
  2408. }
  2409. /* Remove page from the per-cpu list, caller must protect the list */
  2410. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2411. bool cold, struct per_cpu_pages *pcp,
  2412. struct list_head *list)
  2413. {
  2414. struct page *page;
  2415. do {
  2416. if (list_empty(list)) {
  2417. pcp->count += rmqueue_bulk(zone, 0,
  2418. pcp->batch, list,
  2419. migratetype, cold);
  2420. if (unlikely(list_empty(list)))
  2421. return NULL;
  2422. }
  2423. if (cold)
  2424. page = list_last_entry(list, struct page, lru);
  2425. else
  2426. page = list_first_entry(list, struct page, lru);
  2427. list_del(&page->lru);
  2428. pcp->count--;
  2429. } while (check_new_pcp(page));
  2430. return page;
  2431. }
  2432. /* Lock and remove page from the per-cpu list */
  2433. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2434. struct zone *zone, unsigned int order,
  2435. gfp_t gfp_flags, int migratetype)
  2436. {
  2437. struct per_cpu_pages *pcp;
  2438. struct list_head *list;
  2439. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2440. struct page *page;
  2441. unsigned long flags;
  2442. local_irq_save(flags);
  2443. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2444. list = &pcp->lists[migratetype];
  2445. page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
  2446. if (page) {
  2447. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2448. zone_statistics(preferred_zone, zone);
  2449. }
  2450. local_irq_restore(flags);
  2451. return page;
  2452. }
  2453. /*
  2454. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2455. */
  2456. static inline
  2457. struct page *rmqueue(struct zone *preferred_zone,
  2458. struct zone *zone, unsigned int order,
  2459. gfp_t gfp_flags, unsigned int alloc_flags,
  2460. int migratetype)
  2461. {
  2462. unsigned long flags;
  2463. struct page *page;
  2464. if (likely(order == 0)) {
  2465. page = rmqueue_pcplist(preferred_zone, zone, order,
  2466. gfp_flags, migratetype);
  2467. goto out;
  2468. }
  2469. /*
  2470. * We most definitely don't want callers attempting to
  2471. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2472. */
  2473. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2474. spin_lock_irqsave(&zone->lock, flags);
  2475. do {
  2476. page = NULL;
  2477. if (alloc_flags & ALLOC_HARDER) {
  2478. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2479. if (page)
  2480. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2481. }
  2482. if (!page)
  2483. page = __rmqueue(zone, order, migratetype);
  2484. } while (page && check_new_pages(page, order));
  2485. spin_unlock(&zone->lock);
  2486. if (!page)
  2487. goto failed;
  2488. __mod_zone_freepage_state(zone, -(1 << order),
  2489. get_pcppage_migratetype(page));
  2490. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2491. zone_statistics(preferred_zone, zone);
  2492. local_irq_restore(flags);
  2493. out:
  2494. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2495. return page;
  2496. failed:
  2497. local_irq_restore(flags);
  2498. return NULL;
  2499. }
  2500. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2501. static struct {
  2502. struct fault_attr attr;
  2503. bool ignore_gfp_highmem;
  2504. bool ignore_gfp_reclaim;
  2505. u32 min_order;
  2506. } fail_page_alloc = {
  2507. .attr = FAULT_ATTR_INITIALIZER,
  2508. .ignore_gfp_reclaim = true,
  2509. .ignore_gfp_highmem = true,
  2510. .min_order = 1,
  2511. };
  2512. static int __init setup_fail_page_alloc(char *str)
  2513. {
  2514. return setup_fault_attr(&fail_page_alloc.attr, str);
  2515. }
  2516. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2517. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2518. {
  2519. if (order < fail_page_alloc.min_order)
  2520. return false;
  2521. if (gfp_mask & __GFP_NOFAIL)
  2522. return false;
  2523. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2524. return false;
  2525. if (fail_page_alloc.ignore_gfp_reclaim &&
  2526. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2527. return false;
  2528. return should_fail(&fail_page_alloc.attr, 1 << order);
  2529. }
  2530. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2531. static int __init fail_page_alloc_debugfs(void)
  2532. {
  2533. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2534. struct dentry *dir;
  2535. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2536. &fail_page_alloc.attr);
  2537. if (IS_ERR(dir))
  2538. return PTR_ERR(dir);
  2539. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2540. &fail_page_alloc.ignore_gfp_reclaim))
  2541. goto fail;
  2542. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2543. &fail_page_alloc.ignore_gfp_highmem))
  2544. goto fail;
  2545. if (!debugfs_create_u32("min-order", mode, dir,
  2546. &fail_page_alloc.min_order))
  2547. goto fail;
  2548. return 0;
  2549. fail:
  2550. debugfs_remove_recursive(dir);
  2551. return -ENOMEM;
  2552. }
  2553. late_initcall(fail_page_alloc_debugfs);
  2554. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2555. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2556. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2557. {
  2558. return false;
  2559. }
  2560. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2561. /*
  2562. * Return true if free base pages are above 'mark'. For high-order checks it
  2563. * will return true of the order-0 watermark is reached and there is at least
  2564. * one free page of a suitable size. Checking now avoids taking the zone lock
  2565. * to check in the allocation paths if no pages are free.
  2566. */
  2567. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2568. int classzone_idx, unsigned int alloc_flags,
  2569. long free_pages)
  2570. {
  2571. long min = mark;
  2572. int o;
  2573. const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
  2574. /* free_pages may go negative - that's OK */
  2575. free_pages -= (1 << order) - 1;
  2576. if (alloc_flags & ALLOC_HIGH)
  2577. min -= min / 2;
  2578. /*
  2579. * If the caller does not have rights to ALLOC_HARDER then subtract
  2580. * the high-atomic reserves. This will over-estimate the size of the
  2581. * atomic reserve but it avoids a search.
  2582. */
  2583. if (likely(!alloc_harder)) {
  2584. free_pages -= z->nr_reserved_highatomic;
  2585. } else {
  2586. /*
  2587. * OOM victims can try even harder than normal ALLOC_HARDER
  2588. * users on the grounds that it's definitely going to be in
  2589. * the exit path shortly and free memory. Any allocation it
  2590. * makes during the free path will be small and short-lived.
  2591. */
  2592. if (alloc_flags & ALLOC_OOM)
  2593. min -= min / 2;
  2594. else
  2595. min -= min / 4;
  2596. }
  2597. #ifdef CONFIG_CMA
  2598. /* If allocation can't use CMA areas don't use free CMA pages */
  2599. if (!(alloc_flags & ALLOC_CMA))
  2600. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2601. #endif
  2602. /*
  2603. * Check watermarks for an order-0 allocation request. If these
  2604. * are not met, then a high-order request also cannot go ahead
  2605. * even if a suitable page happened to be free.
  2606. */
  2607. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2608. return false;
  2609. /* If this is an order-0 request then the watermark is fine */
  2610. if (!order)
  2611. return true;
  2612. /* For a high-order request, check at least one suitable page is free */
  2613. for (o = order; o < MAX_ORDER; o++) {
  2614. struct free_area *area = &z->free_area[o];
  2615. int mt;
  2616. if (!area->nr_free)
  2617. continue;
  2618. if (alloc_harder)
  2619. return true;
  2620. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2621. if (!list_empty(&area->free_list[mt]))
  2622. return true;
  2623. }
  2624. #ifdef CONFIG_CMA
  2625. if ((alloc_flags & ALLOC_CMA) &&
  2626. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2627. return true;
  2628. }
  2629. #endif
  2630. }
  2631. return false;
  2632. }
  2633. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2634. int classzone_idx, unsigned int alloc_flags)
  2635. {
  2636. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2637. zone_page_state(z, NR_FREE_PAGES));
  2638. }
  2639. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2640. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2641. {
  2642. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2643. long cma_pages = 0;
  2644. #ifdef CONFIG_CMA
  2645. /* If allocation can't use CMA areas don't use free CMA pages */
  2646. if (!(alloc_flags & ALLOC_CMA))
  2647. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2648. #endif
  2649. /*
  2650. * Fast check for order-0 only. If this fails then the reserves
  2651. * need to be calculated. There is a corner case where the check
  2652. * passes but only the high-order atomic reserve are free. If
  2653. * the caller is !atomic then it'll uselessly search the free
  2654. * list. That corner case is then slower but it is harmless.
  2655. */
  2656. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2657. return true;
  2658. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2659. free_pages);
  2660. }
  2661. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2662. unsigned long mark, int classzone_idx)
  2663. {
  2664. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2665. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2666. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2667. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2668. free_pages);
  2669. }
  2670. #ifdef CONFIG_NUMA
  2671. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2672. {
  2673. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2674. RECLAIM_DISTANCE;
  2675. }
  2676. #else /* CONFIG_NUMA */
  2677. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2678. {
  2679. return true;
  2680. }
  2681. #endif /* CONFIG_NUMA */
  2682. /*
  2683. * get_page_from_freelist goes through the zonelist trying to allocate
  2684. * a page.
  2685. */
  2686. static struct page *
  2687. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2688. const struct alloc_context *ac)
  2689. {
  2690. struct zoneref *z = ac->preferred_zoneref;
  2691. struct zone *zone;
  2692. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2693. /*
  2694. * Scan zonelist, looking for a zone with enough free.
  2695. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2696. */
  2697. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2698. ac->nodemask) {
  2699. struct page *page;
  2700. unsigned long mark;
  2701. if (cpusets_enabled() &&
  2702. (alloc_flags & ALLOC_CPUSET) &&
  2703. !__cpuset_zone_allowed(zone, gfp_mask))
  2704. continue;
  2705. /*
  2706. * When allocating a page cache page for writing, we
  2707. * want to get it from a node that is within its dirty
  2708. * limit, such that no single node holds more than its
  2709. * proportional share of globally allowed dirty pages.
  2710. * The dirty limits take into account the node's
  2711. * lowmem reserves and high watermark so that kswapd
  2712. * should be able to balance it without having to
  2713. * write pages from its LRU list.
  2714. *
  2715. * XXX: For now, allow allocations to potentially
  2716. * exceed the per-node dirty limit in the slowpath
  2717. * (spread_dirty_pages unset) before going into reclaim,
  2718. * which is important when on a NUMA setup the allowed
  2719. * nodes are together not big enough to reach the
  2720. * global limit. The proper fix for these situations
  2721. * will require awareness of nodes in the
  2722. * dirty-throttling and the flusher threads.
  2723. */
  2724. if (ac->spread_dirty_pages) {
  2725. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2726. continue;
  2727. if (!node_dirty_ok(zone->zone_pgdat)) {
  2728. last_pgdat_dirty_limit = zone->zone_pgdat;
  2729. continue;
  2730. }
  2731. }
  2732. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2733. if (!zone_watermark_fast(zone, order, mark,
  2734. ac_classzone_idx(ac), alloc_flags)) {
  2735. int ret;
  2736. /* Checked here to keep the fast path fast */
  2737. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2738. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2739. goto try_this_zone;
  2740. if (node_reclaim_mode == 0 ||
  2741. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2742. continue;
  2743. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2744. switch (ret) {
  2745. case NODE_RECLAIM_NOSCAN:
  2746. /* did not scan */
  2747. continue;
  2748. case NODE_RECLAIM_FULL:
  2749. /* scanned but unreclaimable */
  2750. continue;
  2751. default:
  2752. /* did we reclaim enough */
  2753. if (zone_watermark_ok(zone, order, mark,
  2754. ac_classzone_idx(ac), alloc_flags))
  2755. goto try_this_zone;
  2756. continue;
  2757. }
  2758. }
  2759. try_this_zone:
  2760. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2761. gfp_mask, alloc_flags, ac->migratetype);
  2762. if (page) {
  2763. prep_new_page(page, order, gfp_mask, alloc_flags);
  2764. /*
  2765. * If this is a high-order atomic allocation then check
  2766. * if the pageblock should be reserved for the future
  2767. */
  2768. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2769. reserve_highatomic_pageblock(page, zone, order);
  2770. return page;
  2771. }
  2772. }
  2773. return NULL;
  2774. }
  2775. /*
  2776. * Large machines with many possible nodes should not always dump per-node
  2777. * meminfo in irq context.
  2778. */
  2779. static inline bool should_suppress_show_mem(void)
  2780. {
  2781. bool ret = false;
  2782. #if NODES_SHIFT > 8
  2783. ret = in_interrupt();
  2784. #endif
  2785. return ret;
  2786. }
  2787. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2788. {
  2789. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2790. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2791. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2792. return;
  2793. /*
  2794. * This documents exceptions given to allocations in certain
  2795. * contexts that are allowed to allocate outside current's set
  2796. * of allowed nodes.
  2797. */
  2798. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2799. if (tsk_is_oom_victim(current) ||
  2800. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2801. filter &= ~SHOW_MEM_FILTER_NODES;
  2802. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2803. filter &= ~SHOW_MEM_FILTER_NODES;
  2804. show_mem(filter, nodemask);
  2805. }
  2806. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2807. {
  2808. struct va_format vaf;
  2809. va_list args;
  2810. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2811. DEFAULT_RATELIMIT_BURST);
  2812. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  2813. return;
  2814. pr_warn("%s: ", current->comm);
  2815. va_start(args, fmt);
  2816. vaf.fmt = fmt;
  2817. vaf.va = &args;
  2818. pr_cont("%pV", &vaf);
  2819. va_end(args);
  2820. pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
  2821. if (nodemask)
  2822. pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
  2823. else
  2824. pr_cont("(null)\n");
  2825. cpuset_print_current_mems_allowed();
  2826. dump_stack();
  2827. warn_alloc_show_mem(gfp_mask, nodemask);
  2828. }
  2829. static inline struct page *
  2830. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2831. unsigned int alloc_flags,
  2832. const struct alloc_context *ac)
  2833. {
  2834. struct page *page;
  2835. page = get_page_from_freelist(gfp_mask, order,
  2836. alloc_flags|ALLOC_CPUSET, ac);
  2837. /*
  2838. * fallback to ignore cpuset restriction if our nodes
  2839. * are depleted
  2840. */
  2841. if (!page)
  2842. page = get_page_from_freelist(gfp_mask, order,
  2843. alloc_flags, ac);
  2844. return page;
  2845. }
  2846. static inline struct page *
  2847. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2848. const struct alloc_context *ac, unsigned long *did_some_progress)
  2849. {
  2850. struct oom_control oc = {
  2851. .zonelist = ac->zonelist,
  2852. .nodemask = ac->nodemask,
  2853. .memcg = NULL,
  2854. .gfp_mask = gfp_mask,
  2855. .order = order,
  2856. };
  2857. struct page *page;
  2858. *did_some_progress = 0;
  2859. /*
  2860. * Acquire the oom lock. If that fails, somebody else is
  2861. * making progress for us.
  2862. */
  2863. if (!mutex_trylock(&oom_lock)) {
  2864. *did_some_progress = 1;
  2865. schedule_timeout_uninterruptible(1);
  2866. return NULL;
  2867. }
  2868. /*
  2869. * Go through the zonelist yet one more time, keep very high watermark
  2870. * here, this is only to catch a parallel oom killing, we must fail if
  2871. * we're still under heavy pressure. But make sure that this reclaim
  2872. * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
  2873. * allocation which will never fail due to oom_lock already held.
  2874. */
  2875. page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
  2876. ~__GFP_DIRECT_RECLAIM, order,
  2877. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2878. if (page)
  2879. goto out;
  2880. /* Coredumps can quickly deplete all memory reserves */
  2881. if (current->flags & PF_DUMPCORE)
  2882. goto out;
  2883. /* The OOM killer will not help higher order allocs */
  2884. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2885. goto out;
  2886. /*
  2887. * We have already exhausted all our reclaim opportunities without any
  2888. * success so it is time to admit defeat. We will skip the OOM killer
  2889. * because it is very likely that the caller has a more reasonable
  2890. * fallback than shooting a random task.
  2891. */
  2892. if (gfp_mask & __GFP_RETRY_MAYFAIL)
  2893. goto out;
  2894. /* The OOM killer does not needlessly kill tasks for lowmem */
  2895. if (ac->high_zoneidx < ZONE_NORMAL)
  2896. goto out;
  2897. if (pm_suspended_storage())
  2898. goto out;
  2899. /*
  2900. * XXX: GFP_NOFS allocations should rather fail than rely on
  2901. * other request to make a forward progress.
  2902. * We are in an unfortunate situation where out_of_memory cannot
  2903. * do much for this context but let's try it to at least get
  2904. * access to memory reserved if the current task is killed (see
  2905. * out_of_memory). Once filesystems are ready to handle allocation
  2906. * failures more gracefully we should just bail out here.
  2907. */
  2908. /* The OOM killer may not free memory on a specific node */
  2909. if (gfp_mask & __GFP_THISNODE)
  2910. goto out;
  2911. /* Exhausted what can be done so it's blamo time */
  2912. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2913. *did_some_progress = 1;
  2914. /*
  2915. * Help non-failing allocations by giving them access to memory
  2916. * reserves
  2917. */
  2918. if (gfp_mask & __GFP_NOFAIL)
  2919. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  2920. ALLOC_NO_WATERMARKS, ac);
  2921. }
  2922. out:
  2923. mutex_unlock(&oom_lock);
  2924. return page;
  2925. }
  2926. /*
  2927. * Maximum number of compaction retries wit a progress before OOM
  2928. * killer is consider as the only way to move forward.
  2929. */
  2930. #define MAX_COMPACT_RETRIES 16
  2931. #ifdef CONFIG_COMPACTION
  2932. /* Try memory compaction for high-order allocations before reclaim */
  2933. static struct page *
  2934. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2935. unsigned int alloc_flags, const struct alloc_context *ac,
  2936. enum compact_priority prio, enum compact_result *compact_result)
  2937. {
  2938. struct page *page;
  2939. unsigned int noreclaim_flag;
  2940. if (!order)
  2941. return NULL;
  2942. noreclaim_flag = memalloc_noreclaim_save();
  2943. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2944. prio);
  2945. memalloc_noreclaim_restore(noreclaim_flag);
  2946. if (*compact_result <= COMPACT_INACTIVE)
  2947. return NULL;
  2948. /*
  2949. * At least in one zone compaction wasn't deferred or skipped, so let's
  2950. * count a compaction stall
  2951. */
  2952. count_vm_event(COMPACTSTALL);
  2953. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2954. if (page) {
  2955. struct zone *zone = page_zone(page);
  2956. zone->compact_blockskip_flush = false;
  2957. compaction_defer_reset(zone, order, true);
  2958. count_vm_event(COMPACTSUCCESS);
  2959. return page;
  2960. }
  2961. /*
  2962. * It's bad if compaction run occurs and fails. The most likely reason
  2963. * is that pages exist, but not enough to satisfy watermarks.
  2964. */
  2965. count_vm_event(COMPACTFAIL);
  2966. cond_resched();
  2967. return NULL;
  2968. }
  2969. static inline bool
  2970. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2971. enum compact_result compact_result,
  2972. enum compact_priority *compact_priority,
  2973. int *compaction_retries)
  2974. {
  2975. int max_retries = MAX_COMPACT_RETRIES;
  2976. int min_priority;
  2977. bool ret = false;
  2978. int retries = *compaction_retries;
  2979. enum compact_priority priority = *compact_priority;
  2980. if (!order)
  2981. return false;
  2982. if (compaction_made_progress(compact_result))
  2983. (*compaction_retries)++;
  2984. /*
  2985. * compaction considers all the zone as desperately out of memory
  2986. * so it doesn't really make much sense to retry except when the
  2987. * failure could be caused by insufficient priority
  2988. */
  2989. if (compaction_failed(compact_result))
  2990. goto check_priority;
  2991. /*
  2992. * make sure the compaction wasn't deferred or didn't bail out early
  2993. * due to locks contention before we declare that we should give up.
  2994. * But do not retry if the given zonelist is not suitable for
  2995. * compaction.
  2996. */
  2997. if (compaction_withdrawn(compact_result)) {
  2998. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  2999. goto out;
  3000. }
  3001. /*
  3002. * !costly requests are much more important than __GFP_RETRY_MAYFAIL
  3003. * costly ones because they are de facto nofail and invoke OOM
  3004. * killer to move on while costly can fail and users are ready
  3005. * to cope with that. 1/4 retries is rather arbitrary but we
  3006. * would need much more detailed feedback from compaction to
  3007. * make a better decision.
  3008. */
  3009. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3010. max_retries /= 4;
  3011. if (*compaction_retries <= max_retries) {
  3012. ret = true;
  3013. goto out;
  3014. }
  3015. /*
  3016. * Make sure there are attempts at the highest priority if we exhausted
  3017. * all retries or failed at the lower priorities.
  3018. */
  3019. check_priority:
  3020. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  3021. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  3022. if (*compact_priority > min_priority) {
  3023. (*compact_priority)--;
  3024. *compaction_retries = 0;
  3025. ret = true;
  3026. }
  3027. out:
  3028. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  3029. return ret;
  3030. }
  3031. #else
  3032. static inline struct page *
  3033. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3034. unsigned int alloc_flags, const struct alloc_context *ac,
  3035. enum compact_priority prio, enum compact_result *compact_result)
  3036. {
  3037. *compact_result = COMPACT_SKIPPED;
  3038. return NULL;
  3039. }
  3040. static inline bool
  3041. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  3042. enum compact_result compact_result,
  3043. enum compact_priority *compact_priority,
  3044. int *compaction_retries)
  3045. {
  3046. struct zone *zone;
  3047. struct zoneref *z;
  3048. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  3049. return false;
  3050. /*
  3051. * There are setups with compaction disabled which would prefer to loop
  3052. * inside the allocator rather than hit the oom killer prematurely.
  3053. * Let's give them a good hope and keep retrying while the order-0
  3054. * watermarks are OK.
  3055. */
  3056. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3057. ac->nodemask) {
  3058. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  3059. ac_classzone_idx(ac), alloc_flags))
  3060. return true;
  3061. }
  3062. return false;
  3063. }
  3064. #endif /* CONFIG_COMPACTION */
  3065. #ifdef CONFIG_LOCKDEP
  3066. struct lockdep_map __fs_reclaim_map =
  3067. STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
  3068. static bool __need_fs_reclaim(gfp_t gfp_mask)
  3069. {
  3070. gfp_mask = current_gfp_context(gfp_mask);
  3071. /* no reclaim without waiting on it */
  3072. if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
  3073. return false;
  3074. /* this guy won't enter reclaim */
  3075. if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
  3076. return false;
  3077. /* We're only interested __GFP_FS allocations for now */
  3078. if (!(gfp_mask & __GFP_FS))
  3079. return false;
  3080. if (gfp_mask & __GFP_NOLOCKDEP)
  3081. return false;
  3082. return true;
  3083. }
  3084. void fs_reclaim_acquire(gfp_t gfp_mask)
  3085. {
  3086. if (__need_fs_reclaim(gfp_mask))
  3087. lock_map_acquire(&__fs_reclaim_map);
  3088. }
  3089. EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
  3090. void fs_reclaim_release(gfp_t gfp_mask)
  3091. {
  3092. if (__need_fs_reclaim(gfp_mask))
  3093. lock_map_release(&__fs_reclaim_map);
  3094. }
  3095. EXPORT_SYMBOL_GPL(fs_reclaim_release);
  3096. #endif
  3097. /* Perform direct synchronous page reclaim */
  3098. static int
  3099. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  3100. const struct alloc_context *ac)
  3101. {
  3102. struct reclaim_state reclaim_state;
  3103. int progress;
  3104. unsigned int noreclaim_flag;
  3105. cond_resched();
  3106. /* We now go into synchronous reclaim */
  3107. cpuset_memory_pressure_bump();
  3108. noreclaim_flag = memalloc_noreclaim_save();
  3109. fs_reclaim_acquire(gfp_mask);
  3110. reclaim_state.reclaimed_slab = 0;
  3111. current->reclaim_state = &reclaim_state;
  3112. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  3113. ac->nodemask);
  3114. current->reclaim_state = NULL;
  3115. fs_reclaim_release(gfp_mask);
  3116. memalloc_noreclaim_restore(noreclaim_flag);
  3117. cond_resched();
  3118. return progress;
  3119. }
  3120. /* The really slow allocator path where we enter direct reclaim */
  3121. static inline struct page *
  3122. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  3123. unsigned int alloc_flags, const struct alloc_context *ac,
  3124. unsigned long *did_some_progress)
  3125. {
  3126. struct page *page = NULL;
  3127. bool drained = false;
  3128. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  3129. if (unlikely(!(*did_some_progress)))
  3130. return NULL;
  3131. retry:
  3132. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3133. /*
  3134. * If an allocation failed after direct reclaim, it could be because
  3135. * pages are pinned on the per-cpu lists or in high alloc reserves.
  3136. * Shrink them them and try again
  3137. */
  3138. if (!page && !drained) {
  3139. unreserve_highatomic_pageblock(ac, false);
  3140. drain_all_pages(NULL);
  3141. drained = true;
  3142. goto retry;
  3143. }
  3144. return page;
  3145. }
  3146. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  3147. {
  3148. struct zoneref *z;
  3149. struct zone *zone;
  3150. pg_data_t *last_pgdat = NULL;
  3151. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  3152. ac->high_zoneidx, ac->nodemask) {
  3153. if (last_pgdat != zone->zone_pgdat)
  3154. wakeup_kswapd(zone, order, ac->high_zoneidx);
  3155. last_pgdat = zone->zone_pgdat;
  3156. }
  3157. }
  3158. static inline unsigned int
  3159. gfp_to_alloc_flags(gfp_t gfp_mask)
  3160. {
  3161. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  3162. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  3163. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  3164. /*
  3165. * The caller may dip into page reserves a bit more if the caller
  3166. * cannot run direct reclaim, or if the caller has realtime scheduling
  3167. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  3168. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  3169. */
  3170. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  3171. if (gfp_mask & __GFP_ATOMIC) {
  3172. /*
  3173. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  3174. * if it can't schedule.
  3175. */
  3176. if (!(gfp_mask & __GFP_NOMEMALLOC))
  3177. alloc_flags |= ALLOC_HARDER;
  3178. /*
  3179. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  3180. * comment for __cpuset_node_allowed().
  3181. */
  3182. alloc_flags &= ~ALLOC_CPUSET;
  3183. } else if (unlikely(rt_task(current)) && !in_interrupt())
  3184. alloc_flags |= ALLOC_HARDER;
  3185. #ifdef CONFIG_CMA
  3186. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3187. alloc_flags |= ALLOC_CMA;
  3188. #endif
  3189. return alloc_flags;
  3190. }
  3191. static bool oom_reserves_allowed(struct task_struct *tsk)
  3192. {
  3193. if (!tsk_is_oom_victim(tsk))
  3194. return false;
  3195. /*
  3196. * !MMU doesn't have oom reaper so give access to memory reserves
  3197. * only to the thread with TIF_MEMDIE set
  3198. */
  3199. if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
  3200. return false;
  3201. return true;
  3202. }
  3203. /*
  3204. * Distinguish requests which really need access to full memory
  3205. * reserves from oom victims which can live with a portion of it
  3206. */
  3207. static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
  3208. {
  3209. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3210. return 0;
  3211. if (gfp_mask & __GFP_MEMALLOC)
  3212. return ALLOC_NO_WATERMARKS;
  3213. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3214. return ALLOC_NO_WATERMARKS;
  3215. if (!in_interrupt()) {
  3216. if (current->flags & PF_MEMALLOC)
  3217. return ALLOC_NO_WATERMARKS;
  3218. else if (oom_reserves_allowed(current))
  3219. return ALLOC_OOM;
  3220. }
  3221. return 0;
  3222. }
  3223. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3224. {
  3225. return !!__gfp_pfmemalloc_flags(gfp_mask);
  3226. }
  3227. /*
  3228. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3229. * for the given allocation request.
  3230. *
  3231. * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
  3232. * without success, or when we couldn't even meet the watermark if we
  3233. * reclaimed all remaining pages on the LRU lists.
  3234. *
  3235. * Returns true if a retry is viable or false to enter the oom path.
  3236. */
  3237. static inline bool
  3238. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3239. struct alloc_context *ac, int alloc_flags,
  3240. bool did_some_progress, int *no_progress_loops)
  3241. {
  3242. struct zone *zone;
  3243. struct zoneref *z;
  3244. /*
  3245. * Costly allocations might have made a progress but this doesn't mean
  3246. * their order will become available due to high fragmentation so
  3247. * always increment the no progress counter for them
  3248. */
  3249. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3250. *no_progress_loops = 0;
  3251. else
  3252. (*no_progress_loops)++;
  3253. /*
  3254. * Make sure we converge to OOM if we cannot make any progress
  3255. * several times in the row.
  3256. */
  3257. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3258. /* Before OOM, exhaust highatomic_reserve */
  3259. return unreserve_highatomic_pageblock(ac, true);
  3260. }
  3261. /*
  3262. * Keep reclaiming pages while there is a chance this will lead
  3263. * somewhere. If none of the target zones can satisfy our allocation
  3264. * request even if all reclaimable pages are considered then we are
  3265. * screwed and have to go OOM.
  3266. */
  3267. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3268. ac->nodemask) {
  3269. unsigned long available;
  3270. unsigned long reclaimable;
  3271. unsigned long min_wmark = min_wmark_pages(zone);
  3272. bool wmark;
  3273. available = reclaimable = zone_reclaimable_pages(zone);
  3274. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3275. /*
  3276. * Would the allocation succeed if we reclaimed all
  3277. * reclaimable pages?
  3278. */
  3279. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3280. ac_classzone_idx(ac), alloc_flags, available);
  3281. trace_reclaim_retry_zone(z, order, reclaimable,
  3282. available, min_wmark, *no_progress_loops, wmark);
  3283. if (wmark) {
  3284. /*
  3285. * If we didn't make any progress and have a lot of
  3286. * dirty + writeback pages then we should wait for
  3287. * an IO to complete to slow down the reclaim and
  3288. * prevent from pre mature OOM
  3289. */
  3290. if (!did_some_progress) {
  3291. unsigned long write_pending;
  3292. write_pending = zone_page_state_snapshot(zone,
  3293. NR_ZONE_WRITE_PENDING);
  3294. if (2 * write_pending > reclaimable) {
  3295. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3296. return true;
  3297. }
  3298. }
  3299. /*
  3300. * Memory allocation/reclaim might be called from a WQ
  3301. * context and the current implementation of the WQ
  3302. * concurrency control doesn't recognize that
  3303. * a particular WQ is congested if the worker thread is
  3304. * looping without ever sleeping. Therefore we have to
  3305. * do a short sleep here rather than calling
  3306. * cond_resched().
  3307. */
  3308. if (current->flags & PF_WQ_WORKER)
  3309. schedule_timeout_uninterruptible(1);
  3310. else
  3311. cond_resched();
  3312. return true;
  3313. }
  3314. }
  3315. return false;
  3316. }
  3317. static inline bool
  3318. check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
  3319. {
  3320. /*
  3321. * It's possible that cpuset's mems_allowed and the nodemask from
  3322. * mempolicy don't intersect. This should be normally dealt with by
  3323. * policy_nodemask(), but it's possible to race with cpuset update in
  3324. * such a way the check therein was true, and then it became false
  3325. * before we got our cpuset_mems_cookie here.
  3326. * This assumes that for all allocations, ac->nodemask can come only
  3327. * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
  3328. * when it does not intersect with the cpuset restrictions) or the
  3329. * caller can deal with a violated nodemask.
  3330. */
  3331. if (cpusets_enabled() && ac->nodemask &&
  3332. !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
  3333. ac->nodemask = NULL;
  3334. return true;
  3335. }
  3336. /*
  3337. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3338. * possible to race with parallel threads in such a way that our
  3339. * allocation can fail while the mask is being updated. If we are about
  3340. * to fail, check if the cpuset changed during allocation and if so,
  3341. * retry.
  3342. */
  3343. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3344. return true;
  3345. return false;
  3346. }
  3347. static inline struct page *
  3348. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3349. struct alloc_context *ac)
  3350. {
  3351. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3352. const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
  3353. struct page *page = NULL;
  3354. unsigned int alloc_flags;
  3355. unsigned long did_some_progress;
  3356. enum compact_priority compact_priority;
  3357. enum compact_result compact_result;
  3358. int compaction_retries;
  3359. int no_progress_loops;
  3360. unsigned long alloc_start = jiffies;
  3361. unsigned int stall_timeout = 10 * HZ;
  3362. unsigned int cpuset_mems_cookie;
  3363. int reserve_flags;
  3364. /*
  3365. * In the slowpath, we sanity check order to avoid ever trying to
  3366. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3367. * be using allocators in order of preference for an area that is
  3368. * too large.
  3369. */
  3370. if (order >= MAX_ORDER) {
  3371. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3372. return NULL;
  3373. }
  3374. /*
  3375. * We also sanity check to catch abuse of atomic reserves being used by
  3376. * callers that are not in atomic context.
  3377. */
  3378. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3379. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3380. gfp_mask &= ~__GFP_ATOMIC;
  3381. retry_cpuset:
  3382. compaction_retries = 0;
  3383. no_progress_loops = 0;
  3384. compact_priority = DEF_COMPACT_PRIORITY;
  3385. cpuset_mems_cookie = read_mems_allowed_begin();
  3386. /*
  3387. * The fast path uses conservative alloc_flags to succeed only until
  3388. * kswapd needs to be woken up, and to avoid the cost of setting up
  3389. * alloc_flags precisely. So we do that now.
  3390. */
  3391. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3392. /*
  3393. * We need to recalculate the starting point for the zonelist iterator
  3394. * because we might have used different nodemask in the fast path, or
  3395. * there was a cpuset modification and we are retrying - otherwise we
  3396. * could end up iterating over non-eligible zones endlessly.
  3397. */
  3398. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3399. ac->high_zoneidx, ac->nodemask);
  3400. if (!ac->preferred_zoneref->zone)
  3401. goto nopage;
  3402. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3403. wake_all_kswapds(order, ac);
  3404. /*
  3405. * The adjusted alloc_flags might result in immediate success, so try
  3406. * that first
  3407. */
  3408. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3409. if (page)
  3410. goto got_pg;
  3411. /*
  3412. * For costly allocations, try direct compaction first, as it's likely
  3413. * that we have enough base pages and don't need to reclaim. For non-
  3414. * movable high-order allocations, do that as well, as compaction will
  3415. * try prevent permanent fragmentation by migrating from blocks of the
  3416. * same migratetype.
  3417. * Don't try this for allocations that are allowed to ignore
  3418. * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3419. */
  3420. if (can_direct_reclaim &&
  3421. (costly_order ||
  3422. (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
  3423. && !gfp_pfmemalloc_allowed(gfp_mask)) {
  3424. page = __alloc_pages_direct_compact(gfp_mask, order,
  3425. alloc_flags, ac,
  3426. INIT_COMPACT_PRIORITY,
  3427. &compact_result);
  3428. if (page)
  3429. goto got_pg;
  3430. /*
  3431. * Checks for costly allocations with __GFP_NORETRY, which
  3432. * includes THP page fault allocations
  3433. */
  3434. if (costly_order && (gfp_mask & __GFP_NORETRY)) {
  3435. /*
  3436. * If compaction is deferred for high-order allocations,
  3437. * it is because sync compaction recently failed. If
  3438. * this is the case and the caller requested a THP
  3439. * allocation, we do not want to heavily disrupt the
  3440. * system, so we fail the allocation instead of entering
  3441. * direct reclaim.
  3442. */
  3443. if (compact_result == COMPACT_DEFERRED)
  3444. goto nopage;
  3445. /*
  3446. * Looks like reclaim/compaction is worth trying, but
  3447. * sync compaction could be very expensive, so keep
  3448. * using async compaction.
  3449. */
  3450. compact_priority = INIT_COMPACT_PRIORITY;
  3451. }
  3452. }
  3453. retry:
  3454. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3455. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3456. wake_all_kswapds(order, ac);
  3457. reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
  3458. if (reserve_flags)
  3459. alloc_flags = reserve_flags;
  3460. /*
  3461. * Reset the zonelist iterators if memory policies can be ignored.
  3462. * These allocations are high priority and system rather than user
  3463. * orientated.
  3464. */
  3465. if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
  3466. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3467. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3468. ac->high_zoneidx, ac->nodemask);
  3469. }
  3470. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3471. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3472. if (page)
  3473. goto got_pg;
  3474. /* Caller is not willing to reclaim, we can't balance anything */
  3475. if (!can_direct_reclaim)
  3476. goto nopage;
  3477. /* Make sure we know about allocations which stall for too long */
  3478. if (time_after(jiffies, alloc_start + stall_timeout)) {
  3479. warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
  3480. "page allocation stalls for %ums, order:%u",
  3481. jiffies_to_msecs(jiffies-alloc_start), order);
  3482. stall_timeout += 10 * HZ;
  3483. }
  3484. /* Avoid recursion of direct reclaim */
  3485. if (current->flags & PF_MEMALLOC)
  3486. goto nopage;
  3487. /* Try direct reclaim and then allocating */
  3488. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3489. &did_some_progress);
  3490. if (page)
  3491. goto got_pg;
  3492. /* Try direct compaction and then allocating */
  3493. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3494. compact_priority, &compact_result);
  3495. if (page)
  3496. goto got_pg;
  3497. /* Do not loop if specifically requested */
  3498. if (gfp_mask & __GFP_NORETRY)
  3499. goto nopage;
  3500. /*
  3501. * Do not retry costly high order allocations unless they are
  3502. * __GFP_RETRY_MAYFAIL
  3503. */
  3504. if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
  3505. goto nopage;
  3506. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3507. did_some_progress > 0, &no_progress_loops))
  3508. goto retry;
  3509. /*
  3510. * It doesn't make any sense to retry for the compaction if the order-0
  3511. * reclaim is not able to make any progress because the current
  3512. * implementation of the compaction depends on the sufficient amount
  3513. * of free memory (see __compaction_suitable)
  3514. */
  3515. if (did_some_progress > 0 &&
  3516. should_compact_retry(ac, order, alloc_flags,
  3517. compact_result, &compact_priority,
  3518. &compaction_retries))
  3519. goto retry;
  3520. /* Deal with possible cpuset update races before we start OOM killing */
  3521. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3522. goto retry_cpuset;
  3523. /* Reclaim has failed us, start killing things */
  3524. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3525. if (page)
  3526. goto got_pg;
  3527. /* Avoid allocations with no watermarks from looping endlessly */
  3528. if (tsk_is_oom_victim(current) &&
  3529. (alloc_flags == ALLOC_OOM ||
  3530. (gfp_mask & __GFP_NOMEMALLOC)))
  3531. goto nopage;
  3532. /* Retry as long as the OOM killer is making progress */
  3533. if (did_some_progress) {
  3534. no_progress_loops = 0;
  3535. goto retry;
  3536. }
  3537. nopage:
  3538. /* Deal with possible cpuset update races before we fail */
  3539. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3540. goto retry_cpuset;
  3541. /*
  3542. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3543. * we always retry
  3544. */
  3545. if (gfp_mask & __GFP_NOFAIL) {
  3546. /*
  3547. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3548. * of any new users that actually require GFP_NOWAIT
  3549. */
  3550. if (WARN_ON_ONCE(!can_direct_reclaim))
  3551. goto fail;
  3552. /*
  3553. * PF_MEMALLOC request from this context is rather bizarre
  3554. * because we cannot reclaim anything and only can loop waiting
  3555. * for somebody to do a work for us
  3556. */
  3557. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3558. /*
  3559. * non failing costly orders are a hard requirement which we
  3560. * are not prepared for much so let's warn about these users
  3561. * so that we can identify them and convert them to something
  3562. * else.
  3563. */
  3564. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3565. /*
  3566. * Help non-failing allocations by giving them access to memory
  3567. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3568. * could deplete whole memory reserves which would just make
  3569. * the situation worse
  3570. */
  3571. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3572. if (page)
  3573. goto got_pg;
  3574. cond_resched();
  3575. goto retry;
  3576. }
  3577. fail:
  3578. warn_alloc(gfp_mask, ac->nodemask,
  3579. "page allocation failure: order:%u", order);
  3580. got_pg:
  3581. return page;
  3582. }
  3583. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3584. int preferred_nid, nodemask_t *nodemask,
  3585. struct alloc_context *ac, gfp_t *alloc_mask,
  3586. unsigned int *alloc_flags)
  3587. {
  3588. ac->high_zoneidx = gfp_zone(gfp_mask);
  3589. ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
  3590. ac->nodemask = nodemask;
  3591. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3592. if (cpusets_enabled()) {
  3593. *alloc_mask |= __GFP_HARDWALL;
  3594. if (!ac->nodemask)
  3595. ac->nodemask = &cpuset_current_mems_allowed;
  3596. else
  3597. *alloc_flags |= ALLOC_CPUSET;
  3598. }
  3599. fs_reclaim_acquire(gfp_mask);
  3600. fs_reclaim_release(gfp_mask);
  3601. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3602. if (should_fail_alloc_page(gfp_mask, order))
  3603. return false;
  3604. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3605. *alloc_flags |= ALLOC_CMA;
  3606. return true;
  3607. }
  3608. /* Determine whether to spread dirty pages and what the first usable zone */
  3609. static inline void finalise_ac(gfp_t gfp_mask,
  3610. unsigned int order, struct alloc_context *ac)
  3611. {
  3612. /* Dirty zone balancing only done in the fast path */
  3613. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3614. /*
  3615. * The preferred zone is used for statistics but crucially it is
  3616. * also used as the starting point for the zonelist iterator. It
  3617. * may get reset for allocations that ignore memory policies.
  3618. */
  3619. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3620. ac->high_zoneidx, ac->nodemask);
  3621. }
  3622. /*
  3623. * This is the 'heart' of the zoned buddy allocator.
  3624. */
  3625. struct page *
  3626. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
  3627. nodemask_t *nodemask)
  3628. {
  3629. struct page *page;
  3630. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3631. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  3632. struct alloc_context ac = { };
  3633. gfp_mask &= gfp_allowed_mask;
  3634. alloc_mask = gfp_mask;
  3635. if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
  3636. return NULL;
  3637. finalise_ac(gfp_mask, order, &ac);
  3638. /* First allocation attempt */
  3639. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3640. if (likely(page))
  3641. goto out;
  3642. /*
  3643. * Apply scoped allocation constraints. This is mainly about GFP_NOFS
  3644. * resp. GFP_NOIO which has to be inherited for all allocation requests
  3645. * from a particular context which has been marked by
  3646. * memalloc_no{fs,io}_{save,restore}.
  3647. */
  3648. alloc_mask = current_gfp_context(gfp_mask);
  3649. ac.spread_dirty_pages = false;
  3650. /*
  3651. * Restore the original nodemask if it was potentially replaced with
  3652. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3653. */
  3654. if (unlikely(ac.nodemask != nodemask))
  3655. ac.nodemask = nodemask;
  3656. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3657. out:
  3658. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3659. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3660. __free_pages(page, order);
  3661. page = NULL;
  3662. }
  3663. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3664. return page;
  3665. }
  3666. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3667. /*
  3668. * Common helper functions.
  3669. */
  3670. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3671. {
  3672. struct page *page;
  3673. /*
  3674. * __get_free_pages() returns a 32-bit address, which cannot represent
  3675. * a highmem page
  3676. */
  3677. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3678. page = alloc_pages(gfp_mask, order);
  3679. if (!page)
  3680. return 0;
  3681. return (unsigned long) page_address(page);
  3682. }
  3683. EXPORT_SYMBOL(__get_free_pages);
  3684. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3685. {
  3686. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3687. }
  3688. EXPORT_SYMBOL(get_zeroed_page);
  3689. void __free_pages(struct page *page, unsigned int order)
  3690. {
  3691. if (put_page_testzero(page)) {
  3692. if (order == 0)
  3693. free_unref_page(page);
  3694. else
  3695. __free_pages_ok(page, order);
  3696. }
  3697. }
  3698. EXPORT_SYMBOL(__free_pages);
  3699. void free_pages(unsigned long addr, unsigned int order)
  3700. {
  3701. if (addr != 0) {
  3702. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3703. __free_pages(virt_to_page((void *)addr), order);
  3704. }
  3705. }
  3706. EXPORT_SYMBOL(free_pages);
  3707. /*
  3708. * Page Fragment:
  3709. * An arbitrary-length arbitrary-offset area of memory which resides
  3710. * within a 0 or higher order page. Multiple fragments within that page
  3711. * are individually refcounted, in the page's reference counter.
  3712. *
  3713. * The page_frag functions below provide a simple allocation framework for
  3714. * page fragments. This is used by the network stack and network device
  3715. * drivers to provide a backing region of memory for use as either an
  3716. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3717. */
  3718. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3719. gfp_t gfp_mask)
  3720. {
  3721. struct page *page = NULL;
  3722. gfp_t gfp = gfp_mask;
  3723. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3724. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3725. __GFP_NOMEMALLOC;
  3726. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3727. PAGE_FRAG_CACHE_MAX_ORDER);
  3728. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3729. #endif
  3730. if (unlikely(!page))
  3731. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3732. nc->va = page ? page_address(page) : NULL;
  3733. return page;
  3734. }
  3735. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3736. {
  3737. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3738. if (page_ref_sub_and_test(page, count)) {
  3739. unsigned int order = compound_order(page);
  3740. if (order == 0)
  3741. free_unref_page(page);
  3742. else
  3743. __free_pages_ok(page, order);
  3744. }
  3745. }
  3746. EXPORT_SYMBOL(__page_frag_cache_drain);
  3747. void *page_frag_alloc(struct page_frag_cache *nc,
  3748. unsigned int fragsz, gfp_t gfp_mask)
  3749. {
  3750. unsigned int size = PAGE_SIZE;
  3751. struct page *page;
  3752. int offset;
  3753. if (unlikely(!nc->va)) {
  3754. refill:
  3755. page = __page_frag_cache_refill(nc, gfp_mask);
  3756. if (!page)
  3757. return NULL;
  3758. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3759. /* if size can vary use size else just use PAGE_SIZE */
  3760. size = nc->size;
  3761. #endif
  3762. /* Even if we own the page, we do not use atomic_set().
  3763. * This would break get_page_unless_zero() users.
  3764. */
  3765. page_ref_add(page, size - 1);
  3766. /* reset page count bias and offset to start of new frag */
  3767. nc->pfmemalloc = page_is_pfmemalloc(page);
  3768. nc->pagecnt_bias = size;
  3769. nc->offset = size;
  3770. }
  3771. offset = nc->offset - fragsz;
  3772. if (unlikely(offset < 0)) {
  3773. page = virt_to_page(nc->va);
  3774. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3775. goto refill;
  3776. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3777. /* if size can vary use size else just use PAGE_SIZE */
  3778. size = nc->size;
  3779. #endif
  3780. /* OK, page count is 0, we can safely set it */
  3781. set_page_count(page, size);
  3782. /* reset page count bias and offset to start of new frag */
  3783. nc->pagecnt_bias = size;
  3784. offset = size - fragsz;
  3785. }
  3786. nc->pagecnt_bias--;
  3787. nc->offset = offset;
  3788. return nc->va + offset;
  3789. }
  3790. EXPORT_SYMBOL(page_frag_alloc);
  3791. /*
  3792. * Frees a page fragment allocated out of either a compound or order 0 page.
  3793. */
  3794. void page_frag_free(void *addr)
  3795. {
  3796. struct page *page = virt_to_head_page(addr);
  3797. if (unlikely(put_page_testzero(page)))
  3798. __free_pages_ok(page, compound_order(page));
  3799. }
  3800. EXPORT_SYMBOL(page_frag_free);
  3801. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3802. size_t size)
  3803. {
  3804. if (addr) {
  3805. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3806. unsigned long used = addr + PAGE_ALIGN(size);
  3807. split_page(virt_to_page((void *)addr), order);
  3808. while (used < alloc_end) {
  3809. free_page(used);
  3810. used += PAGE_SIZE;
  3811. }
  3812. }
  3813. return (void *)addr;
  3814. }
  3815. /**
  3816. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3817. * @size: the number of bytes to allocate
  3818. * @gfp_mask: GFP flags for the allocation
  3819. *
  3820. * This function is similar to alloc_pages(), except that it allocates the
  3821. * minimum number of pages to satisfy the request. alloc_pages() can only
  3822. * allocate memory in power-of-two pages.
  3823. *
  3824. * This function is also limited by MAX_ORDER.
  3825. *
  3826. * Memory allocated by this function must be released by free_pages_exact().
  3827. */
  3828. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3829. {
  3830. unsigned int order = get_order(size);
  3831. unsigned long addr;
  3832. addr = __get_free_pages(gfp_mask, order);
  3833. return make_alloc_exact(addr, order, size);
  3834. }
  3835. EXPORT_SYMBOL(alloc_pages_exact);
  3836. /**
  3837. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3838. * pages on a node.
  3839. * @nid: the preferred node ID where memory should be allocated
  3840. * @size: the number of bytes to allocate
  3841. * @gfp_mask: GFP flags for the allocation
  3842. *
  3843. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3844. * back.
  3845. */
  3846. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3847. {
  3848. unsigned int order = get_order(size);
  3849. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3850. if (!p)
  3851. return NULL;
  3852. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3853. }
  3854. /**
  3855. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3856. * @virt: the value returned by alloc_pages_exact.
  3857. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3858. *
  3859. * Release the memory allocated by a previous call to alloc_pages_exact.
  3860. */
  3861. void free_pages_exact(void *virt, size_t size)
  3862. {
  3863. unsigned long addr = (unsigned long)virt;
  3864. unsigned long end = addr + PAGE_ALIGN(size);
  3865. while (addr < end) {
  3866. free_page(addr);
  3867. addr += PAGE_SIZE;
  3868. }
  3869. }
  3870. EXPORT_SYMBOL(free_pages_exact);
  3871. /**
  3872. * nr_free_zone_pages - count number of pages beyond high watermark
  3873. * @offset: The zone index of the highest zone
  3874. *
  3875. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3876. * high watermark within all zones at or below a given zone index. For each
  3877. * zone, the number of pages is calculated as:
  3878. *
  3879. * nr_free_zone_pages = managed_pages - high_pages
  3880. */
  3881. static unsigned long nr_free_zone_pages(int offset)
  3882. {
  3883. struct zoneref *z;
  3884. struct zone *zone;
  3885. /* Just pick one node, since fallback list is circular */
  3886. unsigned long sum = 0;
  3887. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3888. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3889. unsigned long size = zone->managed_pages;
  3890. unsigned long high = high_wmark_pages(zone);
  3891. if (size > high)
  3892. sum += size - high;
  3893. }
  3894. return sum;
  3895. }
  3896. /**
  3897. * nr_free_buffer_pages - count number of pages beyond high watermark
  3898. *
  3899. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3900. * watermark within ZONE_DMA and ZONE_NORMAL.
  3901. */
  3902. unsigned long nr_free_buffer_pages(void)
  3903. {
  3904. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3905. }
  3906. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3907. /**
  3908. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3909. *
  3910. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3911. * high watermark within all zones.
  3912. */
  3913. unsigned long nr_free_pagecache_pages(void)
  3914. {
  3915. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3916. }
  3917. static inline void show_node(struct zone *zone)
  3918. {
  3919. if (IS_ENABLED(CONFIG_NUMA))
  3920. printk("Node %d ", zone_to_nid(zone));
  3921. }
  3922. long si_mem_available(void)
  3923. {
  3924. long available;
  3925. unsigned long pagecache;
  3926. unsigned long wmark_low = 0;
  3927. unsigned long pages[NR_LRU_LISTS];
  3928. struct zone *zone;
  3929. int lru;
  3930. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3931. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3932. for_each_zone(zone)
  3933. wmark_low += zone->watermark[WMARK_LOW];
  3934. /*
  3935. * Estimate the amount of memory available for userspace allocations,
  3936. * without causing swapping.
  3937. */
  3938. available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3939. /*
  3940. * Not all the page cache can be freed, otherwise the system will
  3941. * start swapping. Assume at least half of the page cache, or the
  3942. * low watermark worth of cache, needs to stay.
  3943. */
  3944. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3945. pagecache -= min(pagecache / 2, wmark_low);
  3946. available += pagecache;
  3947. /*
  3948. * Part of the reclaimable slab consists of items that are in use,
  3949. * and cannot be freed. Cap this estimate at the low watermark.
  3950. */
  3951. available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
  3952. min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
  3953. wmark_low);
  3954. if (available < 0)
  3955. available = 0;
  3956. return available;
  3957. }
  3958. EXPORT_SYMBOL_GPL(si_mem_available);
  3959. void si_meminfo(struct sysinfo *val)
  3960. {
  3961. val->totalram = totalram_pages;
  3962. val->sharedram = global_node_page_state(NR_SHMEM);
  3963. val->freeram = global_zone_page_state(NR_FREE_PAGES);
  3964. val->bufferram = nr_blockdev_pages();
  3965. val->totalhigh = totalhigh_pages;
  3966. val->freehigh = nr_free_highpages();
  3967. val->mem_unit = PAGE_SIZE;
  3968. }
  3969. EXPORT_SYMBOL(si_meminfo);
  3970. #ifdef CONFIG_NUMA
  3971. void si_meminfo_node(struct sysinfo *val, int nid)
  3972. {
  3973. int zone_type; /* needs to be signed */
  3974. unsigned long managed_pages = 0;
  3975. unsigned long managed_highpages = 0;
  3976. unsigned long free_highpages = 0;
  3977. pg_data_t *pgdat = NODE_DATA(nid);
  3978. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3979. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3980. val->totalram = managed_pages;
  3981. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3982. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3983. #ifdef CONFIG_HIGHMEM
  3984. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3985. struct zone *zone = &pgdat->node_zones[zone_type];
  3986. if (is_highmem(zone)) {
  3987. managed_highpages += zone->managed_pages;
  3988. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3989. }
  3990. }
  3991. val->totalhigh = managed_highpages;
  3992. val->freehigh = free_highpages;
  3993. #else
  3994. val->totalhigh = managed_highpages;
  3995. val->freehigh = free_highpages;
  3996. #endif
  3997. val->mem_unit = PAGE_SIZE;
  3998. }
  3999. #endif
  4000. /*
  4001. * Determine whether the node should be displayed or not, depending on whether
  4002. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  4003. */
  4004. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  4005. {
  4006. if (!(flags & SHOW_MEM_FILTER_NODES))
  4007. return false;
  4008. /*
  4009. * no node mask - aka implicit memory numa policy. Do not bother with
  4010. * the synchronization - read_mems_allowed_begin - because we do not
  4011. * have to be precise here.
  4012. */
  4013. if (!nodemask)
  4014. nodemask = &cpuset_current_mems_allowed;
  4015. return !node_isset(nid, *nodemask);
  4016. }
  4017. #define K(x) ((x) << (PAGE_SHIFT-10))
  4018. static void show_migration_types(unsigned char type)
  4019. {
  4020. static const char types[MIGRATE_TYPES] = {
  4021. [MIGRATE_UNMOVABLE] = 'U',
  4022. [MIGRATE_MOVABLE] = 'M',
  4023. [MIGRATE_RECLAIMABLE] = 'E',
  4024. [MIGRATE_HIGHATOMIC] = 'H',
  4025. #ifdef CONFIG_CMA
  4026. [MIGRATE_CMA] = 'C',
  4027. #endif
  4028. #ifdef CONFIG_MEMORY_ISOLATION
  4029. [MIGRATE_ISOLATE] = 'I',
  4030. #endif
  4031. };
  4032. char tmp[MIGRATE_TYPES + 1];
  4033. char *p = tmp;
  4034. int i;
  4035. for (i = 0; i < MIGRATE_TYPES; i++) {
  4036. if (type & (1 << i))
  4037. *p++ = types[i];
  4038. }
  4039. *p = '\0';
  4040. printk(KERN_CONT "(%s) ", tmp);
  4041. }
  4042. /*
  4043. * Show free area list (used inside shift_scroll-lock stuff)
  4044. * We also calculate the percentage fragmentation. We do this by counting the
  4045. * memory on each free list with the exception of the first item on the list.
  4046. *
  4047. * Bits in @filter:
  4048. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  4049. * cpuset.
  4050. */
  4051. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  4052. {
  4053. unsigned long free_pcp = 0;
  4054. int cpu;
  4055. struct zone *zone;
  4056. pg_data_t *pgdat;
  4057. for_each_populated_zone(zone) {
  4058. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4059. continue;
  4060. for_each_online_cpu(cpu)
  4061. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4062. }
  4063. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  4064. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  4065. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  4066. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  4067. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  4068. " free:%lu free_pcp:%lu free_cma:%lu\n",
  4069. global_node_page_state(NR_ACTIVE_ANON),
  4070. global_node_page_state(NR_INACTIVE_ANON),
  4071. global_node_page_state(NR_ISOLATED_ANON),
  4072. global_node_page_state(NR_ACTIVE_FILE),
  4073. global_node_page_state(NR_INACTIVE_FILE),
  4074. global_node_page_state(NR_ISOLATED_FILE),
  4075. global_node_page_state(NR_UNEVICTABLE),
  4076. global_node_page_state(NR_FILE_DIRTY),
  4077. global_node_page_state(NR_WRITEBACK),
  4078. global_node_page_state(NR_UNSTABLE_NFS),
  4079. global_node_page_state(NR_SLAB_RECLAIMABLE),
  4080. global_node_page_state(NR_SLAB_UNRECLAIMABLE),
  4081. global_node_page_state(NR_FILE_MAPPED),
  4082. global_node_page_state(NR_SHMEM),
  4083. global_zone_page_state(NR_PAGETABLE),
  4084. global_zone_page_state(NR_BOUNCE),
  4085. global_zone_page_state(NR_FREE_PAGES),
  4086. free_pcp,
  4087. global_zone_page_state(NR_FREE_CMA_PAGES));
  4088. for_each_online_pgdat(pgdat) {
  4089. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  4090. continue;
  4091. printk("Node %d"
  4092. " active_anon:%lukB"
  4093. " inactive_anon:%lukB"
  4094. " active_file:%lukB"
  4095. " inactive_file:%lukB"
  4096. " unevictable:%lukB"
  4097. " isolated(anon):%lukB"
  4098. " isolated(file):%lukB"
  4099. " mapped:%lukB"
  4100. " dirty:%lukB"
  4101. " writeback:%lukB"
  4102. " shmem:%lukB"
  4103. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4104. " shmem_thp: %lukB"
  4105. " shmem_pmdmapped: %lukB"
  4106. " anon_thp: %lukB"
  4107. #endif
  4108. " writeback_tmp:%lukB"
  4109. " unstable:%lukB"
  4110. " all_unreclaimable? %s"
  4111. "\n",
  4112. pgdat->node_id,
  4113. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  4114. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  4115. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  4116. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  4117. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  4118. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  4119. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  4120. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  4121. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  4122. K(node_page_state(pgdat, NR_WRITEBACK)),
  4123. K(node_page_state(pgdat, NR_SHMEM)),
  4124. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4125. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  4126. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  4127. * HPAGE_PMD_NR),
  4128. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  4129. #endif
  4130. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  4131. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  4132. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  4133. "yes" : "no");
  4134. }
  4135. for_each_populated_zone(zone) {
  4136. int i;
  4137. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4138. continue;
  4139. free_pcp = 0;
  4140. for_each_online_cpu(cpu)
  4141. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4142. show_node(zone);
  4143. printk(KERN_CONT
  4144. "%s"
  4145. " free:%lukB"
  4146. " min:%lukB"
  4147. " low:%lukB"
  4148. " high:%lukB"
  4149. " active_anon:%lukB"
  4150. " inactive_anon:%lukB"
  4151. " active_file:%lukB"
  4152. " inactive_file:%lukB"
  4153. " unevictable:%lukB"
  4154. " writepending:%lukB"
  4155. " present:%lukB"
  4156. " managed:%lukB"
  4157. " mlocked:%lukB"
  4158. " kernel_stack:%lukB"
  4159. " pagetables:%lukB"
  4160. " bounce:%lukB"
  4161. " free_pcp:%lukB"
  4162. " local_pcp:%ukB"
  4163. " free_cma:%lukB"
  4164. "\n",
  4165. zone->name,
  4166. K(zone_page_state(zone, NR_FREE_PAGES)),
  4167. K(min_wmark_pages(zone)),
  4168. K(low_wmark_pages(zone)),
  4169. K(high_wmark_pages(zone)),
  4170. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  4171. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  4172. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  4173. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  4174. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  4175. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  4176. K(zone->present_pages),
  4177. K(zone->managed_pages),
  4178. K(zone_page_state(zone, NR_MLOCK)),
  4179. zone_page_state(zone, NR_KERNEL_STACK_KB),
  4180. K(zone_page_state(zone, NR_PAGETABLE)),
  4181. K(zone_page_state(zone, NR_BOUNCE)),
  4182. K(free_pcp),
  4183. K(this_cpu_read(zone->pageset->pcp.count)),
  4184. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  4185. printk("lowmem_reserve[]:");
  4186. for (i = 0; i < MAX_NR_ZONES; i++)
  4187. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  4188. printk(KERN_CONT "\n");
  4189. }
  4190. for_each_populated_zone(zone) {
  4191. unsigned int order;
  4192. unsigned long nr[MAX_ORDER], flags, total = 0;
  4193. unsigned char types[MAX_ORDER];
  4194. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4195. continue;
  4196. show_node(zone);
  4197. printk(KERN_CONT "%s: ", zone->name);
  4198. spin_lock_irqsave(&zone->lock, flags);
  4199. for (order = 0; order < MAX_ORDER; order++) {
  4200. struct free_area *area = &zone->free_area[order];
  4201. int type;
  4202. nr[order] = area->nr_free;
  4203. total += nr[order] << order;
  4204. types[order] = 0;
  4205. for (type = 0; type < MIGRATE_TYPES; type++) {
  4206. if (!list_empty(&area->free_list[type]))
  4207. types[order] |= 1 << type;
  4208. }
  4209. }
  4210. spin_unlock_irqrestore(&zone->lock, flags);
  4211. for (order = 0; order < MAX_ORDER; order++) {
  4212. printk(KERN_CONT "%lu*%lukB ",
  4213. nr[order], K(1UL) << order);
  4214. if (nr[order])
  4215. show_migration_types(types[order]);
  4216. }
  4217. printk(KERN_CONT "= %lukB\n", K(total));
  4218. }
  4219. hugetlb_show_meminfo();
  4220. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  4221. show_swap_cache_info();
  4222. }
  4223. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  4224. {
  4225. zoneref->zone = zone;
  4226. zoneref->zone_idx = zone_idx(zone);
  4227. }
  4228. /*
  4229. * Builds allocation fallback zone lists.
  4230. *
  4231. * Add all populated zones of a node to the zonelist.
  4232. */
  4233. static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
  4234. {
  4235. struct zone *zone;
  4236. enum zone_type zone_type = MAX_NR_ZONES;
  4237. int nr_zones = 0;
  4238. do {
  4239. zone_type--;
  4240. zone = pgdat->node_zones + zone_type;
  4241. if (managed_zone(zone)) {
  4242. zoneref_set_zone(zone, &zonerefs[nr_zones++]);
  4243. check_highest_zone(zone_type);
  4244. }
  4245. } while (zone_type);
  4246. return nr_zones;
  4247. }
  4248. #ifdef CONFIG_NUMA
  4249. static int __parse_numa_zonelist_order(char *s)
  4250. {
  4251. /*
  4252. * We used to support different zonlists modes but they turned
  4253. * out to be just not useful. Let's keep the warning in place
  4254. * if somebody still use the cmd line parameter so that we do
  4255. * not fail it silently
  4256. */
  4257. if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
  4258. pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
  4259. return -EINVAL;
  4260. }
  4261. return 0;
  4262. }
  4263. static __init int setup_numa_zonelist_order(char *s)
  4264. {
  4265. if (!s)
  4266. return 0;
  4267. return __parse_numa_zonelist_order(s);
  4268. }
  4269. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4270. char numa_zonelist_order[] = "Node";
  4271. /*
  4272. * sysctl handler for numa_zonelist_order
  4273. */
  4274. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4275. void __user *buffer, size_t *length,
  4276. loff_t *ppos)
  4277. {
  4278. char *str;
  4279. int ret;
  4280. if (!write)
  4281. return proc_dostring(table, write, buffer, length, ppos);
  4282. str = memdup_user_nul(buffer, 16);
  4283. if (IS_ERR(str))
  4284. return PTR_ERR(str);
  4285. ret = __parse_numa_zonelist_order(str);
  4286. kfree(str);
  4287. return ret;
  4288. }
  4289. #define MAX_NODE_LOAD (nr_online_nodes)
  4290. static int node_load[MAX_NUMNODES];
  4291. /**
  4292. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4293. * @node: node whose fallback list we're appending
  4294. * @used_node_mask: nodemask_t of already used nodes
  4295. *
  4296. * We use a number of factors to determine which is the next node that should
  4297. * appear on a given node's fallback list. The node should not have appeared
  4298. * already in @node's fallback list, and it should be the next closest node
  4299. * according to the distance array (which contains arbitrary distance values
  4300. * from each node to each node in the system), and should also prefer nodes
  4301. * with no CPUs, since presumably they'll have very little allocation pressure
  4302. * on them otherwise.
  4303. * It returns -1 if no node is found.
  4304. */
  4305. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4306. {
  4307. int n, val;
  4308. int min_val = INT_MAX;
  4309. int best_node = NUMA_NO_NODE;
  4310. const struct cpumask *tmp = cpumask_of_node(0);
  4311. /* Use the local node if we haven't already */
  4312. if (!node_isset(node, *used_node_mask)) {
  4313. node_set(node, *used_node_mask);
  4314. return node;
  4315. }
  4316. for_each_node_state(n, N_MEMORY) {
  4317. /* Don't want a node to appear more than once */
  4318. if (node_isset(n, *used_node_mask))
  4319. continue;
  4320. /* Use the distance array to find the distance */
  4321. val = node_distance(node, n);
  4322. /* Penalize nodes under us ("prefer the next node") */
  4323. val += (n < node);
  4324. /* Give preference to headless and unused nodes */
  4325. tmp = cpumask_of_node(n);
  4326. if (!cpumask_empty(tmp))
  4327. val += PENALTY_FOR_NODE_WITH_CPUS;
  4328. /* Slight preference for less loaded node */
  4329. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4330. val += node_load[n];
  4331. if (val < min_val) {
  4332. min_val = val;
  4333. best_node = n;
  4334. }
  4335. }
  4336. if (best_node >= 0)
  4337. node_set(best_node, *used_node_mask);
  4338. return best_node;
  4339. }
  4340. /*
  4341. * Build zonelists ordered by node and zones within node.
  4342. * This results in maximum locality--normal zone overflows into local
  4343. * DMA zone, if any--but risks exhausting DMA zone.
  4344. */
  4345. static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
  4346. unsigned nr_nodes)
  4347. {
  4348. struct zoneref *zonerefs;
  4349. int i;
  4350. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4351. for (i = 0; i < nr_nodes; i++) {
  4352. int nr_zones;
  4353. pg_data_t *node = NODE_DATA(node_order[i]);
  4354. nr_zones = build_zonerefs_node(node, zonerefs);
  4355. zonerefs += nr_zones;
  4356. }
  4357. zonerefs->zone = NULL;
  4358. zonerefs->zone_idx = 0;
  4359. }
  4360. /*
  4361. * Build gfp_thisnode zonelists
  4362. */
  4363. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4364. {
  4365. struct zoneref *zonerefs;
  4366. int nr_zones;
  4367. zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
  4368. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4369. zonerefs += nr_zones;
  4370. zonerefs->zone = NULL;
  4371. zonerefs->zone_idx = 0;
  4372. }
  4373. /*
  4374. * Build zonelists ordered by zone and nodes within zones.
  4375. * This results in conserving DMA zone[s] until all Normal memory is
  4376. * exhausted, but results in overflowing to remote node while memory
  4377. * may still exist in local DMA zone.
  4378. */
  4379. static void build_zonelists(pg_data_t *pgdat)
  4380. {
  4381. static int node_order[MAX_NUMNODES];
  4382. int node, load, nr_nodes = 0;
  4383. nodemask_t used_mask;
  4384. int local_node, prev_node;
  4385. /* NUMA-aware ordering of nodes */
  4386. local_node = pgdat->node_id;
  4387. load = nr_online_nodes;
  4388. prev_node = local_node;
  4389. nodes_clear(used_mask);
  4390. memset(node_order, 0, sizeof(node_order));
  4391. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4392. /*
  4393. * We don't want to pressure a particular node.
  4394. * So adding penalty to the first node in same
  4395. * distance group to make it round-robin.
  4396. */
  4397. if (node_distance(local_node, node) !=
  4398. node_distance(local_node, prev_node))
  4399. node_load[node] = load;
  4400. node_order[nr_nodes++] = node;
  4401. prev_node = node;
  4402. load--;
  4403. }
  4404. build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
  4405. build_thisnode_zonelists(pgdat);
  4406. }
  4407. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4408. /*
  4409. * Return node id of node used for "local" allocations.
  4410. * I.e., first node id of first zone in arg node's generic zonelist.
  4411. * Used for initializing percpu 'numa_mem', which is used primarily
  4412. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4413. */
  4414. int local_memory_node(int node)
  4415. {
  4416. struct zoneref *z;
  4417. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4418. gfp_zone(GFP_KERNEL),
  4419. NULL);
  4420. return z->zone->node;
  4421. }
  4422. #endif
  4423. static void setup_min_unmapped_ratio(void);
  4424. static void setup_min_slab_ratio(void);
  4425. #else /* CONFIG_NUMA */
  4426. static void build_zonelists(pg_data_t *pgdat)
  4427. {
  4428. int node, local_node;
  4429. struct zoneref *zonerefs;
  4430. int nr_zones;
  4431. local_node = pgdat->node_id;
  4432. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4433. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4434. zonerefs += nr_zones;
  4435. /*
  4436. * Now we build the zonelist so that it contains the zones
  4437. * of all the other nodes.
  4438. * We don't want to pressure a particular node, so when
  4439. * building the zones for node N, we make sure that the
  4440. * zones coming right after the local ones are those from
  4441. * node N+1 (modulo N)
  4442. */
  4443. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4444. if (!node_online(node))
  4445. continue;
  4446. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4447. zonerefs += nr_zones;
  4448. }
  4449. for (node = 0; node < local_node; node++) {
  4450. if (!node_online(node))
  4451. continue;
  4452. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4453. zonerefs += nr_zones;
  4454. }
  4455. zonerefs->zone = NULL;
  4456. zonerefs->zone_idx = 0;
  4457. }
  4458. #endif /* CONFIG_NUMA */
  4459. /*
  4460. * Boot pageset table. One per cpu which is going to be used for all
  4461. * zones and all nodes. The parameters will be set in such a way
  4462. * that an item put on a list will immediately be handed over to
  4463. * the buddy list. This is safe since pageset manipulation is done
  4464. * with interrupts disabled.
  4465. *
  4466. * The boot_pagesets must be kept even after bootup is complete for
  4467. * unused processors and/or zones. They do play a role for bootstrapping
  4468. * hotplugged processors.
  4469. *
  4470. * zoneinfo_show() and maybe other functions do
  4471. * not check if the processor is online before following the pageset pointer.
  4472. * Other parts of the kernel may not check if the zone is available.
  4473. */
  4474. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4475. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4476. static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
  4477. static void __build_all_zonelists(void *data)
  4478. {
  4479. int nid;
  4480. int __maybe_unused cpu;
  4481. pg_data_t *self = data;
  4482. static DEFINE_SPINLOCK(lock);
  4483. spin_lock(&lock);
  4484. #ifdef CONFIG_NUMA
  4485. memset(node_load, 0, sizeof(node_load));
  4486. #endif
  4487. /*
  4488. * This node is hotadded and no memory is yet present. So just
  4489. * building zonelists is fine - no need to touch other nodes.
  4490. */
  4491. if (self && !node_online(self->node_id)) {
  4492. build_zonelists(self);
  4493. } else {
  4494. for_each_online_node(nid) {
  4495. pg_data_t *pgdat = NODE_DATA(nid);
  4496. build_zonelists(pgdat);
  4497. }
  4498. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4499. /*
  4500. * We now know the "local memory node" for each node--
  4501. * i.e., the node of the first zone in the generic zonelist.
  4502. * Set up numa_mem percpu variable for on-line cpus. During
  4503. * boot, only the boot cpu should be on-line; we'll init the
  4504. * secondary cpus' numa_mem as they come on-line. During
  4505. * node/memory hotplug, we'll fixup all on-line cpus.
  4506. */
  4507. for_each_online_cpu(cpu)
  4508. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4509. #endif
  4510. }
  4511. spin_unlock(&lock);
  4512. }
  4513. static noinline void __init
  4514. build_all_zonelists_init(void)
  4515. {
  4516. int cpu;
  4517. __build_all_zonelists(NULL);
  4518. /*
  4519. * Initialize the boot_pagesets that are going to be used
  4520. * for bootstrapping processors. The real pagesets for
  4521. * each zone will be allocated later when the per cpu
  4522. * allocator is available.
  4523. *
  4524. * boot_pagesets are used also for bootstrapping offline
  4525. * cpus if the system is already booted because the pagesets
  4526. * are needed to initialize allocators on a specific cpu too.
  4527. * F.e. the percpu allocator needs the page allocator which
  4528. * needs the percpu allocator in order to allocate its pagesets
  4529. * (a chicken-egg dilemma).
  4530. */
  4531. for_each_possible_cpu(cpu)
  4532. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4533. mminit_verify_zonelist();
  4534. cpuset_init_current_mems_allowed();
  4535. }
  4536. /*
  4537. * unless system_state == SYSTEM_BOOTING.
  4538. *
  4539. * __ref due to call of __init annotated helper build_all_zonelists_init
  4540. * [protected by SYSTEM_BOOTING].
  4541. */
  4542. void __ref build_all_zonelists(pg_data_t *pgdat)
  4543. {
  4544. if (system_state == SYSTEM_BOOTING) {
  4545. build_all_zonelists_init();
  4546. } else {
  4547. __build_all_zonelists(pgdat);
  4548. /* cpuset refresh routine should be here */
  4549. }
  4550. vm_total_pages = nr_free_pagecache_pages();
  4551. /*
  4552. * Disable grouping by mobility if the number of pages in the
  4553. * system is too low to allow the mechanism to work. It would be
  4554. * more accurate, but expensive to check per-zone. This check is
  4555. * made on memory-hotadd so a system can start with mobility
  4556. * disabled and enable it later
  4557. */
  4558. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4559. page_group_by_mobility_disabled = 1;
  4560. else
  4561. page_group_by_mobility_disabled = 0;
  4562. pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
  4563. nr_online_nodes,
  4564. page_group_by_mobility_disabled ? "off" : "on",
  4565. vm_total_pages);
  4566. #ifdef CONFIG_NUMA
  4567. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4568. #endif
  4569. }
  4570. /*
  4571. * Initially all pages are reserved - free ones are freed
  4572. * up by free_all_bootmem() once the early boot process is
  4573. * done. Non-atomic initialization, single-pass.
  4574. */
  4575. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4576. unsigned long start_pfn, enum memmap_context context)
  4577. {
  4578. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4579. unsigned long end_pfn = start_pfn + size;
  4580. pg_data_t *pgdat = NODE_DATA(nid);
  4581. unsigned long pfn;
  4582. unsigned long nr_initialised = 0;
  4583. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4584. struct memblock_region *r = NULL, *tmp;
  4585. #endif
  4586. if (highest_memmap_pfn < end_pfn - 1)
  4587. highest_memmap_pfn = end_pfn - 1;
  4588. /*
  4589. * Honor reservation requested by the driver for this ZONE_DEVICE
  4590. * memory
  4591. */
  4592. if (altmap && start_pfn == altmap->base_pfn)
  4593. start_pfn += altmap->reserve;
  4594. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4595. /*
  4596. * There can be holes in boot-time mem_map[]s handed to this
  4597. * function. They do not exist on hotplugged memory.
  4598. */
  4599. if (context != MEMMAP_EARLY)
  4600. goto not_early;
  4601. if (!early_pfn_valid(pfn)) {
  4602. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4603. /*
  4604. * Skip to the pfn preceding the next valid one (or
  4605. * end_pfn), such that we hit a valid pfn (or end_pfn)
  4606. * on our next iteration of the loop.
  4607. */
  4608. pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
  4609. #endif
  4610. continue;
  4611. }
  4612. if (!early_pfn_in_nid(pfn, nid))
  4613. continue;
  4614. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4615. break;
  4616. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4617. /*
  4618. * Check given memblock attribute by firmware which can affect
  4619. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4620. * mirrored, it's an overlapped memmap init. skip it.
  4621. */
  4622. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4623. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4624. for_each_memblock(memory, tmp)
  4625. if (pfn < memblock_region_memory_end_pfn(tmp))
  4626. break;
  4627. r = tmp;
  4628. }
  4629. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4630. memblock_is_mirror(r)) {
  4631. /* already initialized as NORMAL */
  4632. pfn = memblock_region_memory_end_pfn(r);
  4633. continue;
  4634. }
  4635. }
  4636. #endif
  4637. not_early:
  4638. /*
  4639. * Mark the block movable so that blocks are reserved for
  4640. * movable at startup. This will force kernel allocations
  4641. * to reserve their blocks rather than leaking throughout
  4642. * the address space during boot when many long-lived
  4643. * kernel allocations are made.
  4644. *
  4645. * bitmap is created for zone's valid pfn range. but memmap
  4646. * can be created for invalid pages (for alignment)
  4647. * check here not to call set_pageblock_migratetype() against
  4648. * pfn out of zone.
  4649. */
  4650. if (!(pfn & (pageblock_nr_pages - 1))) {
  4651. struct page *page = pfn_to_page(pfn);
  4652. __init_single_page(page, pfn, zone, nid);
  4653. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4654. cond_resched();
  4655. } else {
  4656. __init_single_pfn(pfn, zone, nid);
  4657. }
  4658. }
  4659. }
  4660. static void __meminit zone_init_free_lists(struct zone *zone)
  4661. {
  4662. unsigned int order, t;
  4663. for_each_migratetype_order(order, t) {
  4664. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4665. zone->free_area[order].nr_free = 0;
  4666. }
  4667. }
  4668. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4669. #define memmap_init(size, nid, zone, start_pfn) \
  4670. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4671. #endif
  4672. static int zone_batchsize(struct zone *zone)
  4673. {
  4674. #ifdef CONFIG_MMU
  4675. int batch;
  4676. /*
  4677. * The per-cpu-pages pools are set to around 1000th of the
  4678. * size of the zone. But no more than 1/2 of a meg.
  4679. *
  4680. * OK, so we don't know how big the cache is. So guess.
  4681. */
  4682. batch = zone->managed_pages / 1024;
  4683. if (batch * PAGE_SIZE > 512 * 1024)
  4684. batch = (512 * 1024) / PAGE_SIZE;
  4685. batch /= 4; /* We effectively *= 4 below */
  4686. if (batch < 1)
  4687. batch = 1;
  4688. /*
  4689. * Clamp the batch to a 2^n - 1 value. Having a power
  4690. * of 2 value was found to be more likely to have
  4691. * suboptimal cache aliasing properties in some cases.
  4692. *
  4693. * For example if 2 tasks are alternately allocating
  4694. * batches of pages, one task can end up with a lot
  4695. * of pages of one half of the possible page colors
  4696. * and the other with pages of the other colors.
  4697. */
  4698. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4699. return batch;
  4700. #else
  4701. /* The deferral and batching of frees should be suppressed under NOMMU
  4702. * conditions.
  4703. *
  4704. * The problem is that NOMMU needs to be able to allocate large chunks
  4705. * of contiguous memory as there's no hardware page translation to
  4706. * assemble apparent contiguous memory from discontiguous pages.
  4707. *
  4708. * Queueing large contiguous runs of pages for batching, however,
  4709. * causes the pages to actually be freed in smaller chunks. As there
  4710. * can be a significant delay between the individual batches being
  4711. * recycled, this leads to the once large chunks of space being
  4712. * fragmented and becoming unavailable for high-order allocations.
  4713. */
  4714. return 0;
  4715. #endif
  4716. }
  4717. /*
  4718. * pcp->high and pcp->batch values are related and dependent on one another:
  4719. * ->batch must never be higher then ->high.
  4720. * The following function updates them in a safe manner without read side
  4721. * locking.
  4722. *
  4723. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4724. * those fields changing asynchronously (acording the the above rule).
  4725. *
  4726. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4727. * outside of boot time (or some other assurance that no concurrent updaters
  4728. * exist).
  4729. */
  4730. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4731. unsigned long batch)
  4732. {
  4733. /* start with a fail safe value for batch */
  4734. pcp->batch = 1;
  4735. smp_wmb();
  4736. /* Update high, then batch, in order */
  4737. pcp->high = high;
  4738. smp_wmb();
  4739. pcp->batch = batch;
  4740. }
  4741. /* a companion to pageset_set_high() */
  4742. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4743. {
  4744. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4745. }
  4746. static void pageset_init(struct per_cpu_pageset *p)
  4747. {
  4748. struct per_cpu_pages *pcp;
  4749. int migratetype;
  4750. memset(p, 0, sizeof(*p));
  4751. pcp = &p->pcp;
  4752. pcp->count = 0;
  4753. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4754. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4755. }
  4756. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4757. {
  4758. pageset_init(p);
  4759. pageset_set_batch(p, batch);
  4760. }
  4761. /*
  4762. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4763. * to the value high for the pageset p.
  4764. */
  4765. static void pageset_set_high(struct per_cpu_pageset *p,
  4766. unsigned long high)
  4767. {
  4768. unsigned long batch = max(1UL, high / 4);
  4769. if ((high / 4) > (PAGE_SHIFT * 8))
  4770. batch = PAGE_SHIFT * 8;
  4771. pageset_update(&p->pcp, high, batch);
  4772. }
  4773. static void pageset_set_high_and_batch(struct zone *zone,
  4774. struct per_cpu_pageset *pcp)
  4775. {
  4776. if (percpu_pagelist_fraction)
  4777. pageset_set_high(pcp,
  4778. (zone->managed_pages /
  4779. percpu_pagelist_fraction));
  4780. else
  4781. pageset_set_batch(pcp, zone_batchsize(zone));
  4782. }
  4783. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4784. {
  4785. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4786. pageset_init(pcp);
  4787. pageset_set_high_and_batch(zone, pcp);
  4788. }
  4789. void __meminit setup_zone_pageset(struct zone *zone)
  4790. {
  4791. int cpu;
  4792. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4793. for_each_possible_cpu(cpu)
  4794. zone_pageset_init(zone, cpu);
  4795. }
  4796. /*
  4797. * Allocate per cpu pagesets and initialize them.
  4798. * Before this call only boot pagesets were available.
  4799. */
  4800. void __init setup_per_cpu_pageset(void)
  4801. {
  4802. struct pglist_data *pgdat;
  4803. struct zone *zone;
  4804. for_each_populated_zone(zone)
  4805. setup_zone_pageset(zone);
  4806. for_each_online_pgdat(pgdat)
  4807. pgdat->per_cpu_nodestats =
  4808. alloc_percpu(struct per_cpu_nodestat);
  4809. }
  4810. static __meminit void zone_pcp_init(struct zone *zone)
  4811. {
  4812. /*
  4813. * per cpu subsystem is not up at this point. The following code
  4814. * relies on the ability of the linker to provide the
  4815. * offset of a (static) per cpu variable into the per cpu area.
  4816. */
  4817. zone->pageset = &boot_pageset;
  4818. if (populated_zone(zone))
  4819. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4820. zone->name, zone->present_pages,
  4821. zone_batchsize(zone));
  4822. }
  4823. void __meminit init_currently_empty_zone(struct zone *zone,
  4824. unsigned long zone_start_pfn,
  4825. unsigned long size)
  4826. {
  4827. struct pglist_data *pgdat = zone->zone_pgdat;
  4828. pgdat->nr_zones = zone_idx(zone) + 1;
  4829. zone->zone_start_pfn = zone_start_pfn;
  4830. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4831. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4832. pgdat->node_id,
  4833. (unsigned long)zone_idx(zone),
  4834. zone_start_pfn, (zone_start_pfn + size));
  4835. zone_init_free_lists(zone);
  4836. zone->initialized = 1;
  4837. }
  4838. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4839. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4840. /*
  4841. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4842. */
  4843. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4844. struct mminit_pfnnid_cache *state)
  4845. {
  4846. unsigned long start_pfn, end_pfn;
  4847. int nid;
  4848. if (state->last_start <= pfn && pfn < state->last_end)
  4849. return state->last_nid;
  4850. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4851. if (nid != -1) {
  4852. state->last_start = start_pfn;
  4853. state->last_end = end_pfn;
  4854. state->last_nid = nid;
  4855. }
  4856. return nid;
  4857. }
  4858. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4859. /**
  4860. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4861. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4862. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4863. *
  4864. * If an architecture guarantees that all ranges registered contain no holes
  4865. * and may be freed, this this function may be used instead of calling
  4866. * memblock_free_early_nid() manually.
  4867. */
  4868. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4869. {
  4870. unsigned long start_pfn, end_pfn;
  4871. int i, this_nid;
  4872. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4873. start_pfn = min(start_pfn, max_low_pfn);
  4874. end_pfn = min(end_pfn, max_low_pfn);
  4875. if (start_pfn < end_pfn)
  4876. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4877. (end_pfn - start_pfn) << PAGE_SHIFT,
  4878. this_nid);
  4879. }
  4880. }
  4881. /**
  4882. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4883. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4884. *
  4885. * If an architecture guarantees that all ranges registered contain no holes and may
  4886. * be freed, this function may be used instead of calling memory_present() manually.
  4887. */
  4888. void __init sparse_memory_present_with_active_regions(int nid)
  4889. {
  4890. unsigned long start_pfn, end_pfn;
  4891. int i, this_nid;
  4892. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4893. memory_present(this_nid, start_pfn, end_pfn);
  4894. }
  4895. /**
  4896. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4897. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4898. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4899. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4900. *
  4901. * It returns the start and end page frame of a node based on information
  4902. * provided by memblock_set_node(). If called for a node
  4903. * with no available memory, a warning is printed and the start and end
  4904. * PFNs will be 0.
  4905. */
  4906. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4907. unsigned long *start_pfn, unsigned long *end_pfn)
  4908. {
  4909. unsigned long this_start_pfn, this_end_pfn;
  4910. int i;
  4911. *start_pfn = -1UL;
  4912. *end_pfn = 0;
  4913. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4914. *start_pfn = min(*start_pfn, this_start_pfn);
  4915. *end_pfn = max(*end_pfn, this_end_pfn);
  4916. }
  4917. if (*start_pfn == -1UL)
  4918. *start_pfn = 0;
  4919. }
  4920. /*
  4921. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4922. * assumption is made that zones within a node are ordered in monotonic
  4923. * increasing memory addresses so that the "highest" populated zone is used
  4924. */
  4925. static void __init find_usable_zone_for_movable(void)
  4926. {
  4927. int zone_index;
  4928. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4929. if (zone_index == ZONE_MOVABLE)
  4930. continue;
  4931. if (arch_zone_highest_possible_pfn[zone_index] >
  4932. arch_zone_lowest_possible_pfn[zone_index])
  4933. break;
  4934. }
  4935. VM_BUG_ON(zone_index == -1);
  4936. movable_zone = zone_index;
  4937. }
  4938. /*
  4939. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4940. * because it is sized independent of architecture. Unlike the other zones,
  4941. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4942. * in each node depending on the size of each node and how evenly kernelcore
  4943. * is distributed. This helper function adjusts the zone ranges
  4944. * provided by the architecture for a given node by using the end of the
  4945. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4946. * zones within a node are in order of monotonic increases memory addresses
  4947. */
  4948. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4949. unsigned long zone_type,
  4950. unsigned long node_start_pfn,
  4951. unsigned long node_end_pfn,
  4952. unsigned long *zone_start_pfn,
  4953. unsigned long *zone_end_pfn)
  4954. {
  4955. /* Only adjust if ZONE_MOVABLE is on this node */
  4956. if (zone_movable_pfn[nid]) {
  4957. /* Size ZONE_MOVABLE */
  4958. if (zone_type == ZONE_MOVABLE) {
  4959. *zone_start_pfn = zone_movable_pfn[nid];
  4960. *zone_end_pfn = min(node_end_pfn,
  4961. arch_zone_highest_possible_pfn[movable_zone]);
  4962. /* Adjust for ZONE_MOVABLE starting within this range */
  4963. } else if (!mirrored_kernelcore &&
  4964. *zone_start_pfn < zone_movable_pfn[nid] &&
  4965. *zone_end_pfn > zone_movable_pfn[nid]) {
  4966. *zone_end_pfn = zone_movable_pfn[nid];
  4967. /* Check if this whole range is within ZONE_MOVABLE */
  4968. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4969. *zone_start_pfn = *zone_end_pfn;
  4970. }
  4971. }
  4972. /*
  4973. * Return the number of pages a zone spans in a node, including holes
  4974. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4975. */
  4976. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4977. unsigned long zone_type,
  4978. unsigned long node_start_pfn,
  4979. unsigned long node_end_pfn,
  4980. unsigned long *zone_start_pfn,
  4981. unsigned long *zone_end_pfn,
  4982. unsigned long *ignored)
  4983. {
  4984. /* When hotadd a new node from cpu_up(), the node should be empty */
  4985. if (!node_start_pfn && !node_end_pfn)
  4986. return 0;
  4987. /* Get the start and end of the zone */
  4988. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4989. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4990. adjust_zone_range_for_zone_movable(nid, zone_type,
  4991. node_start_pfn, node_end_pfn,
  4992. zone_start_pfn, zone_end_pfn);
  4993. /* Check that this node has pages within the zone's required range */
  4994. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4995. return 0;
  4996. /* Move the zone boundaries inside the node if necessary */
  4997. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4998. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4999. /* Return the spanned pages */
  5000. return *zone_end_pfn - *zone_start_pfn;
  5001. }
  5002. /*
  5003. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  5004. * then all holes in the requested range will be accounted for.
  5005. */
  5006. unsigned long __meminit __absent_pages_in_range(int nid,
  5007. unsigned long range_start_pfn,
  5008. unsigned long range_end_pfn)
  5009. {
  5010. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  5011. unsigned long start_pfn, end_pfn;
  5012. int i;
  5013. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5014. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  5015. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  5016. nr_absent -= end_pfn - start_pfn;
  5017. }
  5018. return nr_absent;
  5019. }
  5020. /**
  5021. * absent_pages_in_range - Return number of page frames in holes within a range
  5022. * @start_pfn: The start PFN to start searching for holes
  5023. * @end_pfn: The end PFN to stop searching for holes
  5024. *
  5025. * It returns the number of pages frames in memory holes within a range.
  5026. */
  5027. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  5028. unsigned long end_pfn)
  5029. {
  5030. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  5031. }
  5032. /* Return the number of page frames in holes in a zone on a node */
  5033. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  5034. unsigned long zone_type,
  5035. unsigned long node_start_pfn,
  5036. unsigned long node_end_pfn,
  5037. unsigned long *ignored)
  5038. {
  5039. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  5040. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  5041. unsigned long zone_start_pfn, zone_end_pfn;
  5042. unsigned long nr_absent;
  5043. /* When hotadd a new node from cpu_up(), the node should be empty */
  5044. if (!node_start_pfn && !node_end_pfn)
  5045. return 0;
  5046. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  5047. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  5048. adjust_zone_range_for_zone_movable(nid, zone_type,
  5049. node_start_pfn, node_end_pfn,
  5050. &zone_start_pfn, &zone_end_pfn);
  5051. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  5052. /*
  5053. * ZONE_MOVABLE handling.
  5054. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  5055. * and vice versa.
  5056. */
  5057. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  5058. unsigned long start_pfn, end_pfn;
  5059. struct memblock_region *r;
  5060. for_each_memblock(memory, r) {
  5061. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  5062. zone_start_pfn, zone_end_pfn);
  5063. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  5064. zone_start_pfn, zone_end_pfn);
  5065. if (zone_type == ZONE_MOVABLE &&
  5066. memblock_is_mirror(r))
  5067. nr_absent += end_pfn - start_pfn;
  5068. if (zone_type == ZONE_NORMAL &&
  5069. !memblock_is_mirror(r))
  5070. nr_absent += end_pfn - start_pfn;
  5071. }
  5072. }
  5073. return nr_absent;
  5074. }
  5075. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5076. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5077. unsigned long zone_type,
  5078. unsigned long node_start_pfn,
  5079. unsigned long node_end_pfn,
  5080. unsigned long *zone_start_pfn,
  5081. unsigned long *zone_end_pfn,
  5082. unsigned long *zones_size)
  5083. {
  5084. unsigned int zone;
  5085. *zone_start_pfn = node_start_pfn;
  5086. for (zone = 0; zone < zone_type; zone++)
  5087. *zone_start_pfn += zones_size[zone];
  5088. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  5089. return zones_size[zone_type];
  5090. }
  5091. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  5092. unsigned long zone_type,
  5093. unsigned long node_start_pfn,
  5094. unsigned long node_end_pfn,
  5095. unsigned long *zholes_size)
  5096. {
  5097. if (!zholes_size)
  5098. return 0;
  5099. return zholes_size[zone_type];
  5100. }
  5101. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5102. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5103. unsigned long node_start_pfn,
  5104. unsigned long node_end_pfn,
  5105. unsigned long *zones_size,
  5106. unsigned long *zholes_size)
  5107. {
  5108. unsigned long realtotalpages = 0, totalpages = 0;
  5109. enum zone_type i;
  5110. for (i = 0; i < MAX_NR_ZONES; i++) {
  5111. struct zone *zone = pgdat->node_zones + i;
  5112. unsigned long zone_start_pfn, zone_end_pfn;
  5113. unsigned long size, real_size;
  5114. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5115. node_start_pfn,
  5116. node_end_pfn,
  5117. &zone_start_pfn,
  5118. &zone_end_pfn,
  5119. zones_size);
  5120. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5121. node_start_pfn, node_end_pfn,
  5122. zholes_size);
  5123. if (size)
  5124. zone->zone_start_pfn = zone_start_pfn;
  5125. else
  5126. zone->zone_start_pfn = 0;
  5127. zone->spanned_pages = size;
  5128. zone->present_pages = real_size;
  5129. totalpages += size;
  5130. realtotalpages += real_size;
  5131. }
  5132. pgdat->node_spanned_pages = totalpages;
  5133. pgdat->node_present_pages = realtotalpages;
  5134. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5135. realtotalpages);
  5136. }
  5137. #ifndef CONFIG_SPARSEMEM
  5138. /*
  5139. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5140. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5141. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5142. * round what is now in bits to nearest long in bits, then return it in
  5143. * bytes.
  5144. */
  5145. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5146. {
  5147. unsigned long usemapsize;
  5148. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5149. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5150. usemapsize = usemapsize >> pageblock_order;
  5151. usemapsize *= NR_PAGEBLOCK_BITS;
  5152. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5153. return usemapsize / 8;
  5154. }
  5155. static void __init setup_usemap(struct pglist_data *pgdat,
  5156. struct zone *zone,
  5157. unsigned long zone_start_pfn,
  5158. unsigned long zonesize)
  5159. {
  5160. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5161. zone->pageblock_flags = NULL;
  5162. if (usemapsize)
  5163. zone->pageblock_flags =
  5164. memblock_virt_alloc_node_nopanic(usemapsize,
  5165. pgdat->node_id);
  5166. }
  5167. #else
  5168. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5169. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5170. #endif /* CONFIG_SPARSEMEM */
  5171. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5172. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5173. void __paginginit set_pageblock_order(void)
  5174. {
  5175. unsigned int order;
  5176. /* Check that pageblock_nr_pages has not already been setup */
  5177. if (pageblock_order)
  5178. return;
  5179. if (HPAGE_SHIFT > PAGE_SHIFT)
  5180. order = HUGETLB_PAGE_ORDER;
  5181. else
  5182. order = MAX_ORDER - 1;
  5183. /*
  5184. * Assume the largest contiguous order of interest is a huge page.
  5185. * This value may be variable depending on boot parameters on IA64 and
  5186. * powerpc.
  5187. */
  5188. pageblock_order = order;
  5189. }
  5190. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5191. /*
  5192. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5193. * is unused as pageblock_order is set at compile-time. See
  5194. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5195. * the kernel config
  5196. */
  5197. void __paginginit set_pageblock_order(void)
  5198. {
  5199. }
  5200. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5201. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5202. unsigned long present_pages)
  5203. {
  5204. unsigned long pages = spanned_pages;
  5205. /*
  5206. * Provide a more accurate estimation if there are holes within
  5207. * the zone and SPARSEMEM is in use. If there are holes within the
  5208. * zone, each populated memory region may cost us one or two extra
  5209. * memmap pages due to alignment because memmap pages for each
  5210. * populated regions may not be naturally aligned on page boundary.
  5211. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5212. */
  5213. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5214. IS_ENABLED(CONFIG_SPARSEMEM))
  5215. pages = present_pages;
  5216. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5217. }
  5218. /*
  5219. * Set up the zone data structures:
  5220. * - mark all pages reserved
  5221. * - mark all memory queues empty
  5222. * - clear the memory bitmaps
  5223. *
  5224. * NOTE: pgdat should get zeroed by caller.
  5225. */
  5226. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5227. {
  5228. enum zone_type j;
  5229. int nid = pgdat->node_id;
  5230. pgdat_resize_init(pgdat);
  5231. #ifdef CONFIG_NUMA_BALANCING
  5232. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5233. pgdat->numabalancing_migrate_nr_pages = 0;
  5234. pgdat->numabalancing_migrate_next_window = jiffies;
  5235. #endif
  5236. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5237. spin_lock_init(&pgdat->split_queue_lock);
  5238. INIT_LIST_HEAD(&pgdat->split_queue);
  5239. pgdat->split_queue_len = 0;
  5240. #endif
  5241. init_waitqueue_head(&pgdat->kswapd_wait);
  5242. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5243. #ifdef CONFIG_COMPACTION
  5244. init_waitqueue_head(&pgdat->kcompactd_wait);
  5245. #endif
  5246. pgdat_page_ext_init(pgdat);
  5247. spin_lock_init(&pgdat->lru_lock);
  5248. lruvec_init(node_lruvec(pgdat));
  5249. pgdat->per_cpu_nodestats = &boot_nodestats;
  5250. for (j = 0; j < MAX_NR_ZONES; j++) {
  5251. struct zone *zone = pgdat->node_zones + j;
  5252. unsigned long size, realsize, freesize, memmap_pages;
  5253. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5254. size = zone->spanned_pages;
  5255. realsize = freesize = zone->present_pages;
  5256. /*
  5257. * Adjust freesize so that it accounts for how much memory
  5258. * is used by this zone for memmap. This affects the watermark
  5259. * and per-cpu initialisations
  5260. */
  5261. memmap_pages = calc_memmap_size(size, realsize);
  5262. if (!is_highmem_idx(j)) {
  5263. if (freesize >= memmap_pages) {
  5264. freesize -= memmap_pages;
  5265. if (memmap_pages)
  5266. printk(KERN_DEBUG
  5267. " %s zone: %lu pages used for memmap\n",
  5268. zone_names[j], memmap_pages);
  5269. } else
  5270. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5271. zone_names[j], memmap_pages, freesize);
  5272. }
  5273. /* Account for reserved pages */
  5274. if (j == 0 && freesize > dma_reserve) {
  5275. freesize -= dma_reserve;
  5276. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5277. zone_names[0], dma_reserve);
  5278. }
  5279. if (!is_highmem_idx(j))
  5280. nr_kernel_pages += freesize;
  5281. /* Charge for highmem memmap if there are enough kernel pages */
  5282. else if (nr_kernel_pages > memmap_pages * 2)
  5283. nr_kernel_pages -= memmap_pages;
  5284. nr_all_pages += freesize;
  5285. /*
  5286. * Set an approximate value for lowmem here, it will be adjusted
  5287. * when the bootmem allocator frees pages into the buddy system.
  5288. * And all highmem pages will be managed by the buddy system.
  5289. */
  5290. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5291. #ifdef CONFIG_NUMA
  5292. zone->node = nid;
  5293. #endif
  5294. zone->name = zone_names[j];
  5295. zone->zone_pgdat = pgdat;
  5296. spin_lock_init(&zone->lock);
  5297. zone_seqlock_init(zone);
  5298. zone_pcp_init(zone);
  5299. if (!size)
  5300. continue;
  5301. set_pageblock_order();
  5302. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5303. init_currently_empty_zone(zone, zone_start_pfn, size);
  5304. memmap_init(size, nid, j, zone_start_pfn);
  5305. }
  5306. }
  5307. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5308. {
  5309. unsigned long __maybe_unused start = 0;
  5310. unsigned long __maybe_unused offset = 0;
  5311. /* Skip empty nodes */
  5312. if (!pgdat->node_spanned_pages)
  5313. return;
  5314. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5315. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5316. offset = pgdat->node_start_pfn - start;
  5317. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5318. if (!pgdat->node_mem_map) {
  5319. unsigned long size, end;
  5320. struct page *map;
  5321. /*
  5322. * The zone's endpoints aren't required to be MAX_ORDER
  5323. * aligned but the node_mem_map endpoints must be in order
  5324. * for the buddy allocator to function correctly.
  5325. */
  5326. end = pgdat_end_pfn(pgdat);
  5327. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5328. size = (end - start) * sizeof(struct page);
  5329. map = alloc_remap(pgdat->node_id, size);
  5330. if (!map)
  5331. map = memblock_virt_alloc_node_nopanic(size,
  5332. pgdat->node_id);
  5333. pgdat->node_mem_map = map + offset;
  5334. }
  5335. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5336. /*
  5337. * With no DISCONTIG, the global mem_map is just set as node 0's
  5338. */
  5339. if (pgdat == NODE_DATA(0)) {
  5340. mem_map = NODE_DATA(0)->node_mem_map;
  5341. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5342. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5343. mem_map -= offset;
  5344. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5345. }
  5346. #endif
  5347. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5348. }
  5349. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5350. unsigned long node_start_pfn, unsigned long *zholes_size)
  5351. {
  5352. pg_data_t *pgdat = NODE_DATA(nid);
  5353. unsigned long start_pfn = 0;
  5354. unsigned long end_pfn = 0;
  5355. /* pg_data_t should be reset to zero when it's allocated */
  5356. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5357. pgdat->node_id = nid;
  5358. pgdat->node_start_pfn = node_start_pfn;
  5359. pgdat->per_cpu_nodestats = NULL;
  5360. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5361. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5362. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5363. (u64)start_pfn << PAGE_SHIFT,
  5364. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5365. #else
  5366. start_pfn = node_start_pfn;
  5367. #endif
  5368. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5369. zones_size, zholes_size);
  5370. alloc_node_mem_map(pgdat);
  5371. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5372. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5373. nid, (unsigned long)pgdat,
  5374. (unsigned long)pgdat->node_mem_map);
  5375. #endif
  5376. reset_deferred_meminit(pgdat);
  5377. free_area_init_core(pgdat);
  5378. }
  5379. #ifdef CONFIG_HAVE_MEMBLOCK
  5380. /*
  5381. * Only struct pages that are backed by physical memory are zeroed and
  5382. * initialized by going through __init_single_page(). But, there are some
  5383. * struct pages which are reserved in memblock allocator and their fields
  5384. * may be accessed (for example page_to_pfn() on some configuration accesses
  5385. * flags). We must explicitly zero those struct pages.
  5386. */
  5387. void __paginginit zero_resv_unavail(void)
  5388. {
  5389. phys_addr_t start, end;
  5390. unsigned long pfn;
  5391. u64 i, pgcnt;
  5392. /*
  5393. * Loop through ranges that are reserved, but do not have reported
  5394. * physical memory backing.
  5395. */
  5396. pgcnt = 0;
  5397. for_each_resv_unavail_range(i, &start, &end) {
  5398. for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
  5399. mm_zero_struct_page(pfn_to_page(pfn));
  5400. pgcnt++;
  5401. }
  5402. }
  5403. /*
  5404. * Struct pages that do not have backing memory. This could be because
  5405. * firmware is using some of this memory, or for some other reasons.
  5406. * Once memblock is changed so such behaviour is not allowed: i.e.
  5407. * list of "reserved" memory must be a subset of list of "memory", then
  5408. * this code can be removed.
  5409. */
  5410. if (pgcnt)
  5411. pr_info("Reserved but unavailable: %lld pages", pgcnt);
  5412. }
  5413. #endif /* CONFIG_HAVE_MEMBLOCK */
  5414. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5415. #if MAX_NUMNODES > 1
  5416. /*
  5417. * Figure out the number of possible node ids.
  5418. */
  5419. void __init setup_nr_node_ids(void)
  5420. {
  5421. unsigned int highest;
  5422. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5423. nr_node_ids = highest + 1;
  5424. }
  5425. #endif
  5426. /**
  5427. * node_map_pfn_alignment - determine the maximum internode alignment
  5428. *
  5429. * This function should be called after node map is populated and sorted.
  5430. * It calculates the maximum power of two alignment which can distinguish
  5431. * all the nodes.
  5432. *
  5433. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5434. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5435. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5436. * shifted, 1GiB is enough and this function will indicate so.
  5437. *
  5438. * This is used to test whether pfn -> nid mapping of the chosen memory
  5439. * model has fine enough granularity to avoid incorrect mapping for the
  5440. * populated node map.
  5441. *
  5442. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5443. * requirement (single node).
  5444. */
  5445. unsigned long __init node_map_pfn_alignment(void)
  5446. {
  5447. unsigned long accl_mask = 0, last_end = 0;
  5448. unsigned long start, end, mask;
  5449. int last_nid = -1;
  5450. int i, nid;
  5451. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5452. if (!start || last_nid < 0 || last_nid == nid) {
  5453. last_nid = nid;
  5454. last_end = end;
  5455. continue;
  5456. }
  5457. /*
  5458. * Start with a mask granular enough to pin-point to the
  5459. * start pfn and tick off bits one-by-one until it becomes
  5460. * too coarse to separate the current node from the last.
  5461. */
  5462. mask = ~((1 << __ffs(start)) - 1);
  5463. while (mask && last_end <= (start & (mask << 1)))
  5464. mask <<= 1;
  5465. /* accumulate all internode masks */
  5466. accl_mask |= mask;
  5467. }
  5468. /* convert mask to number of pages */
  5469. return ~accl_mask + 1;
  5470. }
  5471. /* Find the lowest pfn for a node */
  5472. static unsigned long __init find_min_pfn_for_node(int nid)
  5473. {
  5474. unsigned long min_pfn = ULONG_MAX;
  5475. unsigned long start_pfn;
  5476. int i;
  5477. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5478. min_pfn = min(min_pfn, start_pfn);
  5479. if (min_pfn == ULONG_MAX) {
  5480. pr_warn("Could not find start_pfn for node %d\n", nid);
  5481. return 0;
  5482. }
  5483. return min_pfn;
  5484. }
  5485. /**
  5486. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5487. *
  5488. * It returns the minimum PFN based on information provided via
  5489. * memblock_set_node().
  5490. */
  5491. unsigned long __init find_min_pfn_with_active_regions(void)
  5492. {
  5493. return find_min_pfn_for_node(MAX_NUMNODES);
  5494. }
  5495. /*
  5496. * early_calculate_totalpages()
  5497. * Sum pages in active regions for movable zone.
  5498. * Populate N_MEMORY for calculating usable_nodes.
  5499. */
  5500. static unsigned long __init early_calculate_totalpages(void)
  5501. {
  5502. unsigned long totalpages = 0;
  5503. unsigned long start_pfn, end_pfn;
  5504. int i, nid;
  5505. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5506. unsigned long pages = end_pfn - start_pfn;
  5507. totalpages += pages;
  5508. if (pages)
  5509. node_set_state(nid, N_MEMORY);
  5510. }
  5511. return totalpages;
  5512. }
  5513. /*
  5514. * Find the PFN the Movable zone begins in each node. Kernel memory
  5515. * is spread evenly between nodes as long as the nodes have enough
  5516. * memory. When they don't, some nodes will have more kernelcore than
  5517. * others
  5518. */
  5519. static void __init find_zone_movable_pfns_for_nodes(void)
  5520. {
  5521. int i, nid;
  5522. unsigned long usable_startpfn;
  5523. unsigned long kernelcore_node, kernelcore_remaining;
  5524. /* save the state before borrow the nodemask */
  5525. nodemask_t saved_node_state = node_states[N_MEMORY];
  5526. unsigned long totalpages = early_calculate_totalpages();
  5527. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5528. struct memblock_region *r;
  5529. /* Need to find movable_zone earlier when movable_node is specified. */
  5530. find_usable_zone_for_movable();
  5531. /*
  5532. * If movable_node is specified, ignore kernelcore and movablecore
  5533. * options.
  5534. */
  5535. if (movable_node_is_enabled()) {
  5536. for_each_memblock(memory, r) {
  5537. if (!memblock_is_hotpluggable(r))
  5538. continue;
  5539. nid = r->nid;
  5540. usable_startpfn = PFN_DOWN(r->base);
  5541. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5542. min(usable_startpfn, zone_movable_pfn[nid]) :
  5543. usable_startpfn;
  5544. }
  5545. goto out2;
  5546. }
  5547. /*
  5548. * If kernelcore=mirror is specified, ignore movablecore option
  5549. */
  5550. if (mirrored_kernelcore) {
  5551. bool mem_below_4gb_not_mirrored = false;
  5552. for_each_memblock(memory, r) {
  5553. if (memblock_is_mirror(r))
  5554. continue;
  5555. nid = r->nid;
  5556. usable_startpfn = memblock_region_memory_base_pfn(r);
  5557. if (usable_startpfn < 0x100000) {
  5558. mem_below_4gb_not_mirrored = true;
  5559. continue;
  5560. }
  5561. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5562. min(usable_startpfn, zone_movable_pfn[nid]) :
  5563. usable_startpfn;
  5564. }
  5565. if (mem_below_4gb_not_mirrored)
  5566. pr_warn("This configuration results in unmirrored kernel memory.");
  5567. goto out2;
  5568. }
  5569. /*
  5570. * If movablecore=nn[KMG] was specified, calculate what size of
  5571. * kernelcore that corresponds so that memory usable for
  5572. * any allocation type is evenly spread. If both kernelcore
  5573. * and movablecore are specified, then the value of kernelcore
  5574. * will be used for required_kernelcore if it's greater than
  5575. * what movablecore would have allowed.
  5576. */
  5577. if (required_movablecore) {
  5578. unsigned long corepages;
  5579. /*
  5580. * Round-up so that ZONE_MOVABLE is at least as large as what
  5581. * was requested by the user
  5582. */
  5583. required_movablecore =
  5584. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5585. required_movablecore = min(totalpages, required_movablecore);
  5586. corepages = totalpages - required_movablecore;
  5587. required_kernelcore = max(required_kernelcore, corepages);
  5588. }
  5589. /*
  5590. * If kernelcore was not specified or kernelcore size is larger
  5591. * than totalpages, there is no ZONE_MOVABLE.
  5592. */
  5593. if (!required_kernelcore || required_kernelcore >= totalpages)
  5594. goto out;
  5595. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5596. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5597. restart:
  5598. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5599. kernelcore_node = required_kernelcore / usable_nodes;
  5600. for_each_node_state(nid, N_MEMORY) {
  5601. unsigned long start_pfn, end_pfn;
  5602. /*
  5603. * Recalculate kernelcore_node if the division per node
  5604. * now exceeds what is necessary to satisfy the requested
  5605. * amount of memory for the kernel
  5606. */
  5607. if (required_kernelcore < kernelcore_node)
  5608. kernelcore_node = required_kernelcore / usable_nodes;
  5609. /*
  5610. * As the map is walked, we track how much memory is usable
  5611. * by the kernel using kernelcore_remaining. When it is
  5612. * 0, the rest of the node is usable by ZONE_MOVABLE
  5613. */
  5614. kernelcore_remaining = kernelcore_node;
  5615. /* Go through each range of PFNs within this node */
  5616. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5617. unsigned long size_pages;
  5618. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5619. if (start_pfn >= end_pfn)
  5620. continue;
  5621. /* Account for what is only usable for kernelcore */
  5622. if (start_pfn < usable_startpfn) {
  5623. unsigned long kernel_pages;
  5624. kernel_pages = min(end_pfn, usable_startpfn)
  5625. - start_pfn;
  5626. kernelcore_remaining -= min(kernel_pages,
  5627. kernelcore_remaining);
  5628. required_kernelcore -= min(kernel_pages,
  5629. required_kernelcore);
  5630. /* Continue if range is now fully accounted */
  5631. if (end_pfn <= usable_startpfn) {
  5632. /*
  5633. * Push zone_movable_pfn to the end so
  5634. * that if we have to rebalance
  5635. * kernelcore across nodes, we will
  5636. * not double account here
  5637. */
  5638. zone_movable_pfn[nid] = end_pfn;
  5639. continue;
  5640. }
  5641. start_pfn = usable_startpfn;
  5642. }
  5643. /*
  5644. * The usable PFN range for ZONE_MOVABLE is from
  5645. * start_pfn->end_pfn. Calculate size_pages as the
  5646. * number of pages used as kernelcore
  5647. */
  5648. size_pages = end_pfn - start_pfn;
  5649. if (size_pages > kernelcore_remaining)
  5650. size_pages = kernelcore_remaining;
  5651. zone_movable_pfn[nid] = start_pfn + size_pages;
  5652. /*
  5653. * Some kernelcore has been met, update counts and
  5654. * break if the kernelcore for this node has been
  5655. * satisfied
  5656. */
  5657. required_kernelcore -= min(required_kernelcore,
  5658. size_pages);
  5659. kernelcore_remaining -= size_pages;
  5660. if (!kernelcore_remaining)
  5661. break;
  5662. }
  5663. }
  5664. /*
  5665. * If there is still required_kernelcore, we do another pass with one
  5666. * less node in the count. This will push zone_movable_pfn[nid] further
  5667. * along on the nodes that still have memory until kernelcore is
  5668. * satisfied
  5669. */
  5670. usable_nodes--;
  5671. if (usable_nodes && required_kernelcore > usable_nodes)
  5672. goto restart;
  5673. out2:
  5674. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5675. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5676. zone_movable_pfn[nid] =
  5677. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5678. out:
  5679. /* restore the node_state */
  5680. node_states[N_MEMORY] = saved_node_state;
  5681. }
  5682. /* Any regular or high memory on that node ? */
  5683. static void check_for_memory(pg_data_t *pgdat, int nid)
  5684. {
  5685. enum zone_type zone_type;
  5686. if (N_MEMORY == N_NORMAL_MEMORY)
  5687. return;
  5688. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5689. struct zone *zone = &pgdat->node_zones[zone_type];
  5690. if (populated_zone(zone)) {
  5691. node_set_state(nid, N_HIGH_MEMORY);
  5692. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5693. zone_type <= ZONE_NORMAL)
  5694. node_set_state(nid, N_NORMAL_MEMORY);
  5695. break;
  5696. }
  5697. }
  5698. }
  5699. /**
  5700. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5701. * @max_zone_pfn: an array of max PFNs for each zone
  5702. *
  5703. * This will call free_area_init_node() for each active node in the system.
  5704. * Using the page ranges provided by memblock_set_node(), the size of each
  5705. * zone in each node and their holes is calculated. If the maximum PFN
  5706. * between two adjacent zones match, it is assumed that the zone is empty.
  5707. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5708. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5709. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5710. * at arch_max_dma_pfn.
  5711. */
  5712. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5713. {
  5714. unsigned long start_pfn, end_pfn;
  5715. int i, nid;
  5716. /* Record where the zone boundaries are */
  5717. memset(arch_zone_lowest_possible_pfn, 0,
  5718. sizeof(arch_zone_lowest_possible_pfn));
  5719. memset(arch_zone_highest_possible_pfn, 0,
  5720. sizeof(arch_zone_highest_possible_pfn));
  5721. start_pfn = find_min_pfn_with_active_regions();
  5722. for (i = 0; i < MAX_NR_ZONES; i++) {
  5723. if (i == ZONE_MOVABLE)
  5724. continue;
  5725. end_pfn = max(max_zone_pfn[i], start_pfn);
  5726. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5727. arch_zone_highest_possible_pfn[i] = end_pfn;
  5728. start_pfn = end_pfn;
  5729. }
  5730. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5731. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5732. find_zone_movable_pfns_for_nodes();
  5733. /* Print out the zone ranges */
  5734. pr_info("Zone ranges:\n");
  5735. for (i = 0; i < MAX_NR_ZONES; i++) {
  5736. if (i == ZONE_MOVABLE)
  5737. continue;
  5738. pr_info(" %-8s ", zone_names[i]);
  5739. if (arch_zone_lowest_possible_pfn[i] ==
  5740. arch_zone_highest_possible_pfn[i])
  5741. pr_cont("empty\n");
  5742. else
  5743. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5744. (u64)arch_zone_lowest_possible_pfn[i]
  5745. << PAGE_SHIFT,
  5746. ((u64)arch_zone_highest_possible_pfn[i]
  5747. << PAGE_SHIFT) - 1);
  5748. }
  5749. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5750. pr_info("Movable zone start for each node\n");
  5751. for (i = 0; i < MAX_NUMNODES; i++) {
  5752. if (zone_movable_pfn[i])
  5753. pr_info(" Node %d: %#018Lx\n", i,
  5754. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5755. }
  5756. /* Print out the early node map */
  5757. pr_info("Early memory node ranges\n");
  5758. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5759. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5760. (u64)start_pfn << PAGE_SHIFT,
  5761. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5762. /* Initialise every node */
  5763. mminit_verify_pageflags_layout();
  5764. setup_nr_node_ids();
  5765. for_each_online_node(nid) {
  5766. pg_data_t *pgdat = NODE_DATA(nid);
  5767. free_area_init_node(nid, NULL,
  5768. find_min_pfn_for_node(nid), NULL);
  5769. /* Any memory on that node */
  5770. if (pgdat->node_present_pages)
  5771. node_set_state(nid, N_MEMORY);
  5772. check_for_memory(pgdat, nid);
  5773. }
  5774. zero_resv_unavail();
  5775. }
  5776. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5777. {
  5778. unsigned long long coremem;
  5779. if (!p)
  5780. return -EINVAL;
  5781. coremem = memparse(p, &p);
  5782. *core = coremem >> PAGE_SHIFT;
  5783. /* Paranoid check that UL is enough for the coremem value */
  5784. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5785. return 0;
  5786. }
  5787. /*
  5788. * kernelcore=size sets the amount of memory for use for allocations that
  5789. * cannot be reclaimed or migrated.
  5790. */
  5791. static int __init cmdline_parse_kernelcore(char *p)
  5792. {
  5793. /* parse kernelcore=mirror */
  5794. if (parse_option_str(p, "mirror")) {
  5795. mirrored_kernelcore = true;
  5796. return 0;
  5797. }
  5798. return cmdline_parse_core(p, &required_kernelcore);
  5799. }
  5800. /*
  5801. * movablecore=size sets the amount of memory for use for allocations that
  5802. * can be reclaimed or migrated.
  5803. */
  5804. static int __init cmdline_parse_movablecore(char *p)
  5805. {
  5806. return cmdline_parse_core(p, &required_movablecore);
  5807. }
  5808. early_param("kernelcore", cmdline_parse_kernelcore);
  5809. early_param("movablecore", cmdline_parse_movablecore);
  5810. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5811. void adjust_managed_page_count(struct page *page, long count)
  5812. {
  5813. spin_lock(&managed_page_count_lock);
  5814. page_zone(page)->managed_pages += count;
  5815. totalram_pages += count;
  5816. #ifdef CONFIG_HIGHMEM
  5817. if (PageHighMem(page))
  5818. totalhigh_pages += count;
  5819. #endif
  5820. spin_unlock(&managed_page_count_lock);
  5821. }
  5822. EXPORT_SYMBOL(adjust_managed_page_count);
  5823. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5824. {
  5825. void *pos;
  5826. unsigned long pages = 0;
  5827. start = (void *)PAGE_ALIGN((unsigned long)start);
  5828. end = (void *)((unsigned long)end & PAGE_MASK);
  5829. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5830. if ((unsigned int)poison <= 0xFF)
  5831. memset(pos, poison, PAGE_SIZE);
  5832. free_reserved_page(virt_to_page(pos));
  5833. }
  5834. if (pages && s)
  5835. pr_info("Freeing %s memory: %ldK\n",
  5836. s, pages << (PAGE_SHIFT - 10));
  5837. return pages;
  5838. }
  5839. EXPORT_SYMBOL(free_reserved_area);
  5840. #ifdef CONFIG_HIGHMEM
  5841. void free_highmem_page(struct page *page)
  5842. {
  5843. __free_reserved_page(page);
  5844. totalram_pages++;
  5845. page_zone(page)->managed_pages++;
  5846. totalhigh_pages++;
  5847. }
  5848. #endif
  5849. void __init mem_init_print_info(const char *str)
  5850. {
  5851. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5852. unsigned long init_code_size, init_data_size;
  5853. physpages = get_num_physpages();
  5854. codesize = _etext - _stext;
  5855. datasize = _edata - _sdata;
  5856. rosize = __end_rodata - __start_rodata;
  5857. bss_size = __bss_stop - __bss_start;
  5858. init_data_size = __init_end - __init_begin;
  5859. init_code_size = _einittext - _sinittext;
  5860. /*
  5861. * Detect special cases and adjust section sizes accordingly:
  5862. * 1) .init.* may be embedded into .data sections
  5863. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5864. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5865. * 3) .rodata.* may be embedded into .text or .data sections.
  5866. */
  5867. #define adj_init_size(start, end, size, pos, adj) \
  5868. do { \
  5869. if (start <= pos && pos < end && size > adj) \
  5870. size -= adj; \
  5871. } while (0)
  5872. adj_init_size(__init_begin, __init_end, init_data_size,
  5873. _sinittext, init_code_size);
  5874. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5875. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5876. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5877. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5878. #undef adj_init_size
  5879. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5880. #ifdef CONFIG_HIGHMEM
  5881. ", %luK highmem"
  5882. #endif
  5883. "%s%s)\n",
  5884. nr_free_pages() << (PAGE_SHIFT - 10),
  5885. physpages << (PAGE_SHIFT - 10),
  5886. codesize >> 10, datasize >> 10, rosize >> 10,
  5887. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5888. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5889. totalcma_pages << (PAGE_SHIFT - 10),
  5890. #ifdef CONFIG_HIGHMEM
  5891. totalhigh_pages << (PAGE_SHIFT - 10),
  5892. #endif
  5893. str ? ", " : "", str ? str : "");
  5894. }
  5895. /**
  5896. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5897. * @new_dma_reserve: The number of pages to mark reserved
  5898. *
  5899. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5900. * In the DMA zone, a significant percentage may be consumed by kernel image
  5901. * and other unfreeable allocations which can skew the watermarks badly. This
  5902. * function may optionally be used to account for unfreeable pages in the
  5903. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5904. * smaller per-cpu batchsize.
  5905. */
  5906. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5907. {
  5908. dma_reserve = new_dma_reserve;
  5909. }
  5910. void __init free_area_init(unsigned long *zones_size)
  5911. {
  5912. free_area_init_node(0, zones_size,
  5913. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5914. zero_resv_unavail();
  5915. }
  5916. static int page_alloc_cpu_dead(unsigned int cpu)
  5917. {
  5918. lru_add_drain_cpu(cpu);
  5919. drain_pages(cpu);
  5920. /*
  5921. * Spill the event counters of the dead processor
  5922. * into the current processors event counters.
  5923. * This artificially elevates the count of the current
  5924. * processor.
  5925. */
  5926. vm_events_fold_cpu(cpu);
  5927. /*
  5928. * Zero the differential counters of the dead processor
  5929. * so that the vm statistics are consistent.
  5930. *
  5931. * This is only okay since the processor is dead and cannot
  5932. * race with what we are doing.
  5933. */
  5934. cpu_vm_stats_fold(cpu);
  5935. return 0;
  5936. }
  5937. void __init page_alloc_init(void)
  5938. {
  5939. int ret;
  5940. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  5941. "mm/page_alloc:dead", NULL,
  5942. page_alloc_cpu_dead);
  5943. WARN_ON(ret < 0);
  5944. }
  5945. /*
  5946. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5947. * or min_free_kbytes changes.
  5948. */
  5949. static void calculate_totalreserve_pages(void)
  5950. {
  5951. struct pglist_data *pgdat;
  5952. unsigned long reserve_pages = 0;
  5953. enum zone_type i, j;
  5954. for_each_online_pgdat(pgdat) {
  5955. pgdat->totalreserve_pages = 0;
  5956. for (i = 0; i < MAX_NR_ZONES; i++) {
  5957. struct zone *zone = pgdat->node_zones + i;
  5958. long max = 0;
  5959. /* Find valid and maximum lowmem_reserve in the zone */
  5960. for (j = i; j < MAX_NR_ZONES; j++) {
  5961. if (zone->lowmem_reserve[j] > max)
  5962. max = zone->lowmem_reserve[j];
  5963. }
  5964. /* we treat the high watermark as reserved pages. */
  5965. max += high_wmark_pages(zone);
  5966. if (max > zone->managed_pages)
  5967. max = zone->managed_pages;
  5968. pgdat->totalreserve_pages += max;
  5969. reserve_pages += max;
  5970. }
  5971. }
  5972. totalreserve_pages = reserve_pages;
  5973. }
  5974. /*
  5975. * setup_per_zone_lowmem_reserve - called whenever
  5976. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5977. * has a correct pages reserved value, so an adequate number of
  5978. * pages are left in the zone after a successful __alloc_pages().
  5979. */
  5980. static void setup_per_zone_lowmem_reserve(void)
  5981. {
  5982. struct pglist_data *pgdat;
  5983. enum zone_type j, idx;
  5984. for_each_online_pgdat(pgdat) {
  5985. for (j = 0; j < MAX_NR_ZONES; j++) {
  5986. struct zone *zone = pgdat->node_zones + j;
  5987. unsigned long managed_pages = zone->managed_pages;
  5988. zone->lowmem_reserve[j] = 0;
  5989. idx = j;
  5990. while (idx) {
  5991. struct zone *lower_zone;
  5992. idx--;
  5993. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5994. sysctl_lowmem_reserve_ratio[idx] = 1;
  5995. lower_zone = pgdat->node_zones + idx;
  5996. lower_zone->lowmem_reserve[j] = managed_pages /
  5997. sysctl_lowmem_reserve_ratio[idx];
  5998. managed_pages += lower_zone->managed_pages;
  5999. }
  6000. }
  6001. }
  6002. /* update totalreserve_pages */
  6003. calculate_totalreserve_pages();
  6004. }
  6005. static void __setup_per_zone_wmarks(void)
  6006. {
  6007. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  6008. unsigned long lowmem_pages = 0;
  6009. struct zone *zone;
  6010. unsigned long flags;
  6011. /* Calculate total number of !ZONE_HIGHMEM pages */
  6012. for_each_zone(zone) {
  6013. if (!is_highmem(zone))
  6014. lowmem_pages += zone->managed_pages;
  6015. }
  6016. for_each_zone(zone) {
  6017. u64 tmp;
  6018. spin_lock_irqsave(&zone->lock, flags);
  6019. tmp = (u64)pages_min * zone->managed_pages;
  6020. do_div(tmp, lowmem_pages);
  6021. if (is_highmem(zone)) {
  6022. /*
  6023. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  6024. * need highmem pages, so cap pages_min to a small
  6025. * value here.
  6026. *
  6027. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  6028. * deltas control asynch page reclaim, and so should
  6029. * not be capped for highmem.
  6030. */
  6031. unsigned long min_pages;
  6032. min_pages = zone->managed_pages / 1024;
  6033. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  6034. zone->watermark[WMARK_MIN] = min_pages;
  6035. } else {
  6036. /*
  6037. * If it's a lowmem zone, reserve a number of pages
  6038. * proportionate to the zone's size.
  6039. */
  6040. zone->watermark[WMARK_MIN] = tmp;
  6041. }
  6042. /*
  6043. * Set the kswapd watermarks distance according to the
  6044. * scale factor in proportion to available memory, but
  6045. * ensure a minimum size on small systems.
  6046. */
  6047. tmp = max_t(u64, tmp >> 2,
  6048. mult_frac(zone->managed_pages,
  6049. watermark_scale_factor, 10000));
  6050. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  6051. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  6052. spin_unlock_irqrestore(&zone->lock, flags);
  6053. }
  6054. /* update totalreserve_pages */
  6055. calculate_totalreserve_pages();
  6056. }
  6057. /**
  6058. * setup_per_zone_wmarks - called when min_free_kbytes changes
  6059. * or when memory is hot-{added|removed}
  6060. *
  6061. * Ensures that the watermark[min,low,high] values for each zone are set
  6062. * correctly with respect to min_free_kbytes.
  6063. */
  6064. void setup_per_zone_wmarks(void)
  6065. {
  6066. static DEFINE_SPINLOCK(lock);
  6067. spin_lock(&lock);
  6068. __setup_per_zone_wmarks();
  6069. spin_unlock(&lock);
  6070. }
  6071. /*
  6072. * Initialise min_free_kbytes.
  6073. *
  6074. * For small machines we want it small (128k min). For large machines
  6075. * we want it large (64MB max). But it is not linear, because network
  6076. * bandwidth does not increase linearly with machine size. We use
  6077. *
  6078. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  6079. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  6080. *
  6081. * which yields
  6082. *
  6083. * 16MB: 512k
  6084. * 32MB: 724k
  6085. * 64MB: 1024k
  6086. * 128MB: 1448k
  6087. * 256MB: 2048k
  6088. * 512MB: 2896k
  6089. * 1024MB: 4096k
  6090. * 2048MB: 5792k
  6091. * 4096MB: 8192k
  6092. * 8192MB: 11584k
  6093. * 16384MB: 16384k
  6094. */
  6095. int __meminit init_per_zone_wmark_min(void)
  6096. {
  6097. unsigned long lowmem_kbytes;
  6098. int new_min_free_kbytes;
  6099. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  6100. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  6101. if (new_min_free_kbytes > user_min_free_kbytes) {
  6102. min_free_kbytes = new_min_free_kbytes;
  6103. if (min_free_kbytes < 128)
  6104. min_free_kbytes = 128;
  6105. if (min_free_kbytes > 65536)
  6106. min_free_kbytes = 65536;
  6107. } else {
  6108. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  6109. new_min_free_kbytes, user_min_free_kbytes);
  6110. }
  6111. setup_per_zone_wmarks();
  6112. refresh_zone_stat_thresholds();
  6113. setup_per_zone_lowmem_reserve();
  6114. #ifdef CONFIG_NUMA
  6115. setup_min_unmapped_ratio();
  6116. setup_min_slab_ratio();
  6117. #endif
  6118. return 0;
  6119. }
  6120. core_initcall(init_per_zone_wmark_min)
  6121. /*
  6122. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  6123. * that we can call two helper functions whenever min_free_kbytes
  6124. * changes.
  6125. */
  6126. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  6127. void __user *buffer, size_t *length, loff_t *ppos)
  6128. {
  6129. int rc;
  6130. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6131. if (rc)
  6132. return rc;
  6133. if (write) {
  6134. user_min_free_kbytes = min_free_kbytes;
  6135. setup_per_zone_wmarks();
  6136. }
  6137. return 0;
  6138. }
  6139. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6140. void __user *buffer, size_t *length, loff_t *ppos)
  6141. {
  6142. int rc;
  6143. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6144. if (rc)
  6145. return rc;
  6146. if (write)
  6147. setup_per_zone_wmarks();
  6148. return 0;
  6149. }
  6150. #ifdef CONFIG_NUMA
  6151. static void setup_min_unmapped_ratio(void)
  6152. {
  6153. pg_data_t *pgdat;
  6154. struct zone *zone;
  6155. for_each_online_pgdat(pgdat)
  6156. pgdat->min_unmapped_pages = 0;
  6157. for_each_zone(zone)
  6158. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6159. sysctl_min_unmapped_ratio) / 100;
  6160. }
  6161. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6162. void __user *buffer, size_t *length, loff_t *ppos)
  6163. {
  6164. int rc;
  6165. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6166. if (rc)
  6167. return rc;
  6168. setup_min_unmapped_ratio();
  6169. return 0;
  6170. }
  6171. static void setup_min_slab_ratio(void)
  6172. {
  6173. pg_data_t *pgdat;
  6174. struct zone *zone;
  6175. for_each_online_pgdat(pgdat)
  6176. pgdat->min_slab_pages = 0;
  6177. for_each_zone(zone)
  6178. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6179. sysctl_min_slab_ratio) / 100;
  6180. }
  6181. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6182. void __user *buffer, size_t *length, loff_t *ppos)
  6183. {
  6184. int rc;
  6185. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6186. if (rc)
  6187. return rc;
  6188. setup_min_slab_ratio();
  6189. return 0;
  6190. }
  6191. #endif
  6192. /*
  6193. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6194. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6195. * whenever sysctl_lowmem_reserve_ratio changes.
  6196. *
  6197. * The reserve ratio obviously has absolutely no relation with the
  6198. * minimum watermarks. The lowmem reserve ratio can only make sense
  6199. * if in function of the boot time zone sizes.
  6200. */
  6201. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6202. void __user *buffer, size_t *length, loff_t *ppos)
  6203. {
  6204. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6205. setup_per_zone_lowmem_reserve();
  6206. return 0;
  6207. }
  6208. /*
  6209. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6210. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6211. * pagelist can have before it gets flushed back to buddy allocator.
  6212. */
  6213. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6214. void __user *buffer, size_t *length, loff_t *ppos)
  6215. {
  6216. struct zone *zone;
  6217. int old_percpu_pagelist_fraction;
  6218. int ret;
  6219. mutex_lock(&pcp_batch_high_lock);
  6220. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6221. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6222. if (!write || ret < 0)
  6223. goto out;
  6224. /* Sanity checking to avoid pcp imbalance */
  6225. if (percpu_pagelist_fraction &&
  6226. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6227. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6228. ret = -EINVAL;
  6229. goto out;
  6230. }
  6231. /* No change? */
  6232. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6233. goto out;
  6234. for_each_populated_zone(zone) {
  6235. unsigned int cpu;
  6236. for_each_possible_cpu(cpu)
  6237. pageset_set_high_and_batch(zone,
  6238. per_cpu_ptr(zone->pageset, cpu));
  6239. }
  6240. out:
  6241. mutex_unlock(&pcp_batch_high_lock);
  6242. return ret;
  6243. }
  6244. #ifdef CONFIG_NUMA
  6245. int hashdist = HASHDIST_DEFAULT;
  6246. static int __init set_hashdist(char *str)
  6247. {
  6248. if (!str)
  6249. return 0;
  6250. hashdist = simple_strtoul(str, &str, 0);
  6251. return 1;
  6252. }
  6253. __setup("hashdist=", set_hashdist);
  6254. #endif
  6255. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6256. /*
  6257. * Returns the number of pages that arch has reserved but
  6258. * is not known to alloc_large_system_hash().
  6259. */
  6260. static unsigned long __init arch_reserved_kernel_pages(void)
  6261. {
  6262. return 0;
  6263. }
  6264. #endif
  6265. /*
  6266. * Adaptive scale is meant to reduce sizes of hash tables on large memory
  6267. * machines. As memory size is increased the scale is also increased but at
  6268. * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
  6269. * quadruples the scale is increased by one, which means the size of hash table
  6270. * only doubles, instead of quadrupling as well.
  6271. * Because 32-bit systems cannot have large physical memory, where this scaling
  6272. * makes sense, it is disabled on such platforms.
  6273. */
  6274. #if __BITS_PER_LONG > 32
  6275. #define ADAPT_SCALE_BASE (64ul << 30)
  6276. #define ADAPT_SCALE_SHIFT 2
  6277. #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
  6278. #endif
  6279. /*
  6280. * allocate a large system hash table from bootmem
  6281. * - it is assumed that the hash table must contain an exact power-of-2
  6282. * quantity of entries
  6283. * - limit is the number of hash buckets, not the total allocation size
  6284. */
  6285. void *__init alloc_large_system_hash(const char *tablename,
  6286. unsigned long bucketsize,
  6287. unsigned long numentries,
  6288. int scale,
  6289. int flags,
  6290. unsigned int *_hash_shift,
  6291. unsigned int *_hash_mask,
  6292. unsigned long low_limit,
  6293. unsigned long high_limit)
  6294. {
  6295. unsigned long long max = high_limit;
  6296. unsigned long log2qty, size;
  6297. void *table = NULL;
  6298. gfp_t gfp_flags;
  6299. /* allow the kernel cmdline to have a say */
  6300. if (!numentries) {
  6301. /* round applicable memory size up to nearest megabyte */
  6302. numentries = nr_kernel_pages;
  6303. numentries -= arch_reserved_kernel_pages();
  6304. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6305. if (PAGE_SHIFT < 20)
  6306. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6307. #if __BITS_PER_LONG > 32
  6308. if (!high_limit) {
  6309. unsigned long adapt;
  6310. for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
  6311. adapt <<= ADAPT_SCALE_SHIFT)
  6312. scale++;
  6313. }
  6314. #endif
  6315. /* limit to 1 bucket per 2^scale bytes of low memory */
  6316. if (scale > PAGE_SHIFT)
  6317. numentries >>= (scale - PAGE_SHIFT);
  6318. else
  6319. numentries <<= (PAGE_SHIFT - scale);
  6320. /* Make sure we've got at least a 0-order allocation.. */
  6321. if (unlikely(flags & HASH_SMALL)) {
  6322. /* Makes no sense without HASH_EARLY */
  6323. WARN_ON(!(flags & HASH_EARLY));
  6324. if (!(numentries >> *_hash_shift)) {
  6325. numentries = 1UL << *_hash_shift;
  6326. BUG_ON(!numentries);
  6327. }
  6328. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6329. numentries = PAGE_SIZE / bucketsize;
  6330. }
  6331. numentries = roundup_pow_of_two(numentries);
  6332. /* limit allocation size to 1/16 total memory by default */
  6333. if (max == 0) {
  6334. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6335. do_div(max, bucketsize);
  6336. }
  6337. max = min(max, 0x80000000ULL);
  6338. if (numentries < low_limit)
  6339. numentries = low_limit;
  6340. if (numentries > max)
  6341. numentries = max;
  6342. log2qty = ilog2(numentries);
  6343. gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
  6344. do {
  6345. size = bucketsize << log2qty;
  6346. if (flags & HASH_EARLY) {
  6347. if (flags & HASH_ZERO)
  6348. table = memblock_virt_alloc_nopanic(size, 0);
  6349. else
  6350. table = memblock_virt_alloc_raw(size, 0);
  6351. } else if (hashdist) {
  6352. table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  6353. } else {
  6354. /*
  6355. * If bucketsize is not a power-of-two, we may free
  6356. * some pages at the end of hash table which
  6357. * alloc_pages_exact() automatically does
  6358. */
  6359. if (get_order(size) < MAX_ORDER) {
  6360. table = alloc_pages_exact(size, gfp_flags);
  6361. kmemleak_alloc(table, size, 1, gfp_flags);
  6362. }
  6363. }
  6364. } while (!table && size > PAGE_SIZE && --log2qty);
  6365. if (!table)
  6366. panic("Failed to allocate %s hash table\n", tablename);
  6367. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6368. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6369. if (_hash_shift)
  6370. *_hash_shift = log2qty;
  6371. if (_hash_mask)
  6372. *_hash_mask = (1 << log2qty) - 1;
  6373. return table;
  6374. }
  6375. /*
  6376. * This function checks whether pageblock includes unmovable pages or not.
  6377. * If @count is not zero, it is okay to include less @count unmovable pages
  6378. *
  6379. * PageLRU check without isolation or lru_lock could race so that
  6380. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6381. * check without lock_page also may miss some movable non-lru pages at
  6382. * race condition. So you can't expect this function should be exact.
  6383. */
  6384. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6385. int migratetype,
  6386. bool skip_hwpoisoned_pages)
  6387. {
  6388. unsigned long pfn, iter, found;
  6389. /*
  6390. * For avoiding noise data, lru_add_drain_all() should be called
  6391. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6392. */
  6393. if (zone_idx(zone) == ZONE_MOVABLE)
  6394. return false;
  6395. /*
  6396. * CMA allocations (alloc_contig_range) really need to mark isolate
  6397. * CMA pageblocks even when they are not movable in fact so consider
  6398. * them movable here.
  6399. */
  6400. if (is_migrate_cma(migratetype) &&
  6401. is_migrate_cma(get_pageblock_migratetype(page)))
  6402. return false;
  6403. pfn = page_to_pfn(page);
  6404. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6405. unsigned long check = pfn + iter;
  6406. if (!pfn_valid_within(check))
  6407. continue;
  6408. page = pfn_to_page(check);
  6409. if (PageReserved(page))
  6410. return true;
  6411. /*
  6412. * Hugepages are not in LRU lists, but they're movable.
  6413. * We need not scan over tail pages bacause we don't
  6414. * handle each tail page individually in migration.
  6415. */
  6416. if (PageHuge(page)) {
  6417. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6418. continue;
  6419. }
  6420. /*
  6421. * We can't use page_count without pin a page
  6422. * because another CPU can free compound page.
  6423. * This check already skips compound tails of THP
  6424. * because their page->_refcount is zero at all time.
  6425. */
  6426. if (!page_ref_count(page)) {
  6427. if (PageBuddy(page))
  6428. iter += (1 << page_order(page)) - 1;
  6429. continue;
  6430. }
  6431. /*
  6432. * The HWPoisoned page may be not in buddy system, and
  6433. * page_count() is not 0.
  6434. */
  6435. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6436. continue;
  6437. if (__PageMovable(page))
  6438. continue;
  6439. if (!PageLRU(page))
  6440. found++;
  6441. /*
  6442. * If there are RECLAIMABLE pages, we need to check
  6443. * it. But now, memory offline itself doesn't call
  6444. * shrink_node_slabs() and it still to be fixed.
  6445. */
  6446. /*
  6447. * If the page is not RAM, page_count()should be 0.
  6448. * we don't need more check. This is an _used_ not-movable page.
  6449. *
  6450. * The problematic thing here is PG_reserved pages. PG_reserved
  6451. * is set to both of a memory hole page and a _used_ kernel
  6452. * page at boot.
  6453. */
  6454. if (found > count)
  6455. return true;
  6456. }
  6457. return false;
  6458. }
  6459. bool is_pageblock_removable_nolock(struct page *page)
  6460. {
  6461. struct zone *zone;
  6462. unsigned long pfn;
  6463. /*
  6464. * We have to be careful here because we are iterating over memory
  6465. * sections which are not zone aware so we might end up outside of
  6466. * the zone but still within the section.
  6467. * We have to take care about the node as well. If the node is offline
  6468. * its NODE_DATA will be NULL - see page_zone.
  6469. */
  6470. if (!node_online(page_to_nid(page)))
  6471. return false;
  6472. zone = page_zone(page);
  6473. pfn = page_to_pfn(page);
  6474. if (!zone_spans_pfn(zone, pfn))
  6475. return false;
  6476. return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
  6477. }
  6478. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6479. static unsigned long pfn_max_align_down(unsigned long pfn)
  6480. {
  6481. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6482. pageblock_nr_pages) - 1);
  6483. }
  6484. static unsigned long pfn_max_align_up(unsigned long pfn)
  6485. {
  6486. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6487. pageblock_nr_pages));
  6488. }
  6489. /* [start, end) must belong to a single zone. */
  6490. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6491. unsigned long start, unsigned long end)
  6492. {
  6493. /* This function is based on compact_zone() from compaction.c. */
  6494. unsigned long nr_reclaimed;
  6495. unsigned long pfn = start;
  6496. unsigned int tries = 0;
  6497. int ret = 0;
  6498. migrate_prep();
  6499. while (pfn < end || !list_empty(&cc->migratepages)) {
  6500. if (fatal_signal_pending(current)) {
  6501. ret = -EINTR;
  6502. break;
  6503. }
  6504. if (list_empty(&cc->migratepages)) {
  6505. cc->nr_migratepages = 0;
  6506. pfn = isolate_migratepages_range(cc, pfn, end);
  6507. if (!pfn) {
  6508. ret = -EINTR;
  6509. break;
  6510. }
  6511. tries = 0;
  6512. } else if (++tries == 5) {
  6513. ret = ret < 0 ? ret : -EBUSY;
  6514. break;
  6515. }
  6516. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6517. &cc->migratepages);
  6518. cc->nr_migratepages -= nr_reclaimed;
  6519. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6520. NULL, 0, cc->mode, MR_CMA);
  6521. }
  6522. if (ret < 0) {
  6523. putback_movable_pages(&cc->migratepages);
  6524. return ret;
  6525. }
  6526. return 0;
  6527. }
  6528. /**
  6529. * alloc_contig_range() -- tries to allocate given range of pages
  6530. * @start: start PFN to allocate
  6531. * @end: one-past-the-last PFN to allocate
  6532. * @migratetype: migratetype of the underlaying pageblocks (either
  6533. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6534. * in range must have the same migratetype and it must
  6535. * be either of the two.
  6536. * @gfp_mask: GFP mask to use during compaction
  6537. *
  6538. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6539. * aligned, however it's the caller's responsibility to guarantee that
  6540. * we are the only thread that changes migrate type of pageblocks the
  6541. * pages fall in.
  6542. *
  6543. * The PFN range must belong to a single zone.
  6544. *
  6545. * Returns zero on success or negative error code. On success all
  6546. * pages which PFN is in [start, end) are allocated for the caller and
  6547. * need to be freed with free_contig_range().
  6548. */
  6549. int alloc_contig_range(unsigned long start, unsigned long end,
  6550. unsigned migratetype, gfp_t gfp_mask)
  6551. {
  6552. unsigned long outer_start, outer_end;
  6553. unsigned int order;
  6554. int ret = 0;
  6555. struct compact_control cc = {
  6556. .nr_migratepages = 0,
  6557. .order = -1,
  6558. .zone = page_zone(pfn_to_page(start)),
  6559. .mode = MIGRATE_SYNC,
  6560. .ignore_skip_hint = true,
  6561. .gfp_mask = current_gfp_context(gfp_mask),
  6562. };
  6563. INIT_LIST_HEAD(&cc.migratepages);
  6564. /*
  6565. * What we do here is we mark all pageblocks in range as
  6566. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6567. * have different sizes, and due to the way page allocator
  6568. * work, we align the range to biggest of the two pages so
  6569. * that page allocator won't try to merge buddies from
  6570. * different pageblocks and change MIGRATE_ISOLATE to some
  6571. * other migration type.
  6572. *
  6573. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6574. * migrate the pages from an unaligned range (ie. pages that
  6575. * we are interested in). This will put all the pages in
  6576. * range back to page allocator as MIGRATE_ISOLATE.
  6577. *
  6578. * When this is done, we take the pages in range from page
  6579. * allocator removing them from the buddy system. This way
  6580. * page allocator will never consider using them.
  6581. *
  6582. * This lets us mark the pageblocks back as
  6583. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6584. * aligned range but not in the unaligned, original range are
  6585. * put back to page allocator so that buddy can use them.
  6586. */
  6587. ret = start_isolate_page_range(pfn_max_align_down(start),
  6588. pfn_max_align_up(end), migratetype,
  6589. false);
  6590. if (ret)
  6591. return ret;
  6592. /*
  6593. * In case of -EBUSY, we'd like to know which page causes problem.
  6594. * So, just fall through. We will check it in test_pages_isolated().
  6595. */
  6596. ret = __alloc_contig_migrate_range(&cc, start, end);
  6597. if (ret && ret != -EBUSY)
  6598. goto done;
  6599. /*
  6600. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6601. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6602. * more, all pages in [start, end) are free in page allocator.
  6603. * What we are going to do is to allocate all pages from
  6604. * [start, end) (that is remove them from page allocator).
  6605. *
  6606. * The only problem is that pages at the beginning and at the
  6607. * end of interesting range may be not aligned with pages that
  6608. * page allocator holds, ie. they can be part of higher order
  6609. * pages. Because of this, we reserve the bigger range and
  6610. * once this is done free the pages we are not interested in.
  6611. *
  6612. * We don't have to hold zone->lock here because the pages are
  6613. * isolated thus they won't get removed from buddy.
  6614. */
  6615. lru_add_drain_all();
  6616. drain_all_pages(cc.zone);
  6617. order = 0;
  6618. outer_start = start;
  6619. while (!PageBuddy(pfn_to_page(outer_start))) {
  6620. if (++order >= MAX_ORDER) {
  6621. outer_start = start;
  6622. break;
  6623. }
  6624. outer_start &= ~0UL << order;
  6625. }
  6626. if (outer_start != start) {
  6627. order = page_order(pfn_to_page(outer_start));
  6628. /*
  6629. * outer_start page could be small order buddy page and
  6630. * it doesn't include start page. Adjust outer_start
  6631. * in this case to report failed page properly
  6632. * on tracepoint in test_pages_isolated()
  6633. */
  6634. if (outer_start + (1UL << order) <= start)
  6635. outer_start = start;
  6636. }
  6637. /* Make sure the range is really isolated. */
  6638. if (test_pages_isolated(outer_start, end, false)) {
  6639. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6640. __func__, outer_start, end);
  6641. ret = -EBUSY;
  6642. goto done;
  6643. }
  6644. /* Grab isolated pages from freelists. */
  6645. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6646. if (!outer_end) {
  6647. ret = -EBUSY;
  6648. goto done;
  6649. }
  6650. /* Free head and tail (if any) */
  6651. if (start != outer_start)
  6652. free_contig_range(outer_start, start - outer_start);
  6653. if (end != outer_end)
  6654. free_contig_range(end, outer_end - end);
  6655. done:
  6656. undo_isolate_page_range(pfn_max_align_down(start),
  6657. pfn_max_align_up(end), migratetype);
  6658. return ret;
  6659. }
  6660. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6661. {
  6662. unsigned int count = 0;
  6663. for (; nr_pages--; pfn++) {
  6664. struct page *page = pfn_to_page(pfn);
  6665. count += page_count(page) != 1;
  6666. __free_page(page);
  6667. }
  6668. WARN(count != 0, "%d pages are still in use!\n", count);
  6669. }
  6670. #endif
  6671. #ifdef CONFIG_MEMORY_HOTPLUG
  6672. /*
  6673. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6674. * page high values need to be recalulated.
  6675. */
  6676. void __meminit zone_pcp_update(struct zone *zone)
  6677. {
  6678. unsigned cpu;
  6679. mutex_lock(&pcp_batch_high_lock);
  6680. for_each_possible_cpu(cpu)
  6681. pageset_set_high_and_batch(zone,
  6682. per_cpu_ptr(zone->pageset, cpu));
  6683. mutex_unlock(&pcp_batch_high_lock);
  6684. }
  6685. #endif
  6686. void zone_pcp_reset(struct zone *zone)
  6687. {
  6688. unsigned long flags;
  6689. int cpu;
  6690. struct per_cpu_pageset *pset;
  6691. /* avoid races with drain_pages() */
  6692. local_irq_save(flags);
  6693. if (zone->pageset != &boot_pageset) {
  6694. for_each_online_cpu(cpu) {
  6695. pset = per_cpu_ptr(zone->pageset, cpu);
  6696. drain_zonestat(zone, pset);
  6697. }
  6698. free_percpu(zone->pageset);
  6699. zone->pageset = &boot_pageset;
  6700. }
  6701. local_irq_restore(flags);
  6702. }
  6703. #ifdef CONFIG_MEMORY_HOTREMOVE
  6704. /*
  6705. * All pages in the range must be in a single zone and isolated
  6706. * before calling this.
  6707. */
  6708. void
  6709. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6710. {
  6711. struct page *page;
  6712. struct zone *zone;
  6713. unsigned int order, i;
  6714. unsigned long pfn;
  6715. unsigned long flags;
  6716. /* find the first valid pfn */
  6717. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6718. if (pfn_valid(pfn))
  6719. break;
  6720. if (pfn == end_pfn)
  6721. return;
  6722. offline_mem_sections(pfn, end_pfn);
  6723. zone = page_zone(pfn_to_page(pfn));
  6724. spin_lock_irqsave(&zone->lock, flags);
  6725. pfn = start_pfn;
  6726. while (pfn < end_pfn) {
  6727. if (!pfn_valid(pfn)) {
  6728. pfn++;
  6729. continue;
  6730. }
  6731. page = pfn_to_page(pfn);
  6732. /*
  6733. * The HWPoisoned page may be not in buddy system, and
  6734. * page_count() is not 0.
  6735. */
  6736. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6737. pfn++;
  6738. SetPageReserved(page);
  6739. continue;
  6740. }
  6741. BUG_ON(page_count(page));
  6742. BUG_ON(!PageBuddy(page));
  6743. order = page_order(page);
  6744. #ifdef CONFIG_DEBUG_VM
  6745. pr_info("remove from free list %lx %d %lx\n",
  6746. pfn, 1 << order, end_pfn);
  6747. #endif
  6748. list_del(&page->lru);
  6749. rmv_page_order(page);
  6750. zone->free_area[order].nr_free--;
  6751. for (i = 0; i < (1 << order); i++)
  6752. SetPageReserved((page+i));
  6753. pfn += (1 << order);
  6754. }
  6755. spin_unlock_irqrestore(&zone->lock, flags);
  6756. }
  6757. #endif
  6758. bool is_free_buddy_page(struct page *page)
  6759. {
  6760. struct zone *zone = page_zone(page);
  6761. unsigned long pfn = page_to_pfn(page);
  6762. unsigned long flags;
  6763. unsigned int order;
  6764. spin_lock_irqsave(&zone->lock, flags);
  6765. for (order = 0; order < MAX_ORDER; order++) {
  6766. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6767. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6768. break;
  6769. }
  6770. spin_unlock_irqrestore(&zone->lock, flags);
  6771. return order < MAX_ORDER;
  6772. }