task_mmu.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/elf.h>
  22. #include <asm/tlb.h>
  23. #include <asm/tlbflush.h>
  24. #include "internal.h"
  25. #define SEQ_PUT_DEC(str, val) \
  26. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  27. void task_mem(struct seq_file *m, struct mm_struct *mm)
  28. {
  29. unsigned long text, lib, swap, anon, file, shmem;
  30. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  31. anon = get_mm_counter(mm, MM_ANONPAGES);
  32. file = get_mm_counter(mm, MM_FILEPAGES);
  33. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  34. /*
  35. * Note: to minimize their overhead, mm maintains hiwater_vm and
  36. * hiwater_rss only when about to *lower* total_vm or rss. Any
  37. * collector of these hiwater stats must therefore get total_vm
  38. * and rss too, which will usually be the higher. Barriers? not
  39. * worth the effort, such snapshots can always be inconsistent.
  40. */
  41. hiwater_vm = total_vm = mm->total_vm;
  42. if (hiwater_vm < mm->hiwater_vm)
  43. hiwater_vm = mm->hiwater_vm;
  44. hiwater_rss = total_rss = anon + file + shmem;
  45. if (hiwater_rss < mm->hiwater_rss)
  46. hiwater_rss = mm->hiwater_rss;
  47. /* split executable areas between text and lib */
  48. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  49. text = min(text, mm->exec_vm << PAGE_SHIFT);
  50. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  51. swap = get_mm_counter(mm, MM_SWAPENTS);
  52. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  53. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  54. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  55. SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
  56. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  57. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  58. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  59. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  60. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  61. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  62. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  63. seq_put_decimal_ull_width(m,
  64. " kB\nVmExe:\t", text >> 10, 8);
  65. seq_put_decimal_ull_width(m,
  66. " kB\nVmLib:\t", lib >> 10, 8);
  67. seq_put_decimal_ull_width(m,
  68. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  69. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  70. seq_puts(m, " kB\n");
  71. hugetlb_report_usage(m, mm);
  72. }
  73. #undef SEQ_PUT_DEC
  74. unsigned long task_vsize(struct mm_struct *mm)
  75. {
  76. return PAGE_SIZE * mm->total_vm;
  77. }
  78. unsigned long task_statm(struct mm_struct *mm,
  79. unsigned long *shared, unsigned long *text,
  80. unsigned long *data, unsigned long *resident)
  81. {
  82. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  83. get_mm_counter(mm, MM_SHMEMPAGES);
  84. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  85. >> PAGE_SHIFT;
  86. *data = mm->data_vm + mm->stack_vm;
  87. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  88. return mm->total_vm;
  89. }
  90. #ifdef CONFIG_NUMA
  91. /*
  92. * Save get_task_policy() for show_numa_map().
  93. */
  94. static void hold_task_mempolicy(struct proc_maps_private *priv)
  95. {
  96. struct task_struct *task = priv->task;
  97. task_lock(task);
  98. priv->task_mempolicy = get_task_policy(task);
  99. mpol_get(priv->task_mempolicy);
  100. task_unlock(task);
  101. }
  102. static void release_task_mempolicy(struct proc_maps_private *priv)
  103. {
  104. mpol_put(priv->task_mempolicy);
  105. }
  106. #else
  107. static void hold_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. }
  110. static void release_task_mempolicy(struct proc_maps_private *priv)
  111. {
  112. }
  113. #endif
  114. static void vma_stop(struct proc_maps_private *priv)
  115. {
  116. struct mm_struct *mm = priv->mm;
  117. release_task_mempolicy(priv);
  118. up_read(&mm->mmap_sem);
  119. mmput(mm);
  120. }
  121. static struct vm_area_struct *
  122. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  123. {
  124. if (vma == priv->tail_vma)
  125. return NULL;
  126. return vma->vm_next ?: priv->tail_vma;
  127. }
  128. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  129. {
  130. if (m->count < m->size) /* vma is copied successfully */
  131. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  132. }
  133. static void *m_start(struct seq_file *m, loff_t *ppos)
  134. {
  135. struct proc_maps_private *priv = m->private;
  136. unsigned long last_addr = m->version;
  137. struct mm_struct *mm;
  138. struct vm_area_struct *vma;
  139. unsigned int pos = *ppos;
  140. /* See m_cache_vma(). Zero at the start or after lseek. */
  141. if (last_addr == -1UL)
  142. return NULL;
  143. priv->task = get_proc_task(priv->inode);
  144. if (!priv->task)
  145. return ERR_PTR(-ESRCH);
  146. mm = priv->mm;
  147. if (!mm || !mmget_not_zero(mm))
  148. return NULL;
  149. down_read(&mm->mmap_sem);
  150. hold_task_mempolicy(priv);
  151. priv->tail_vma = get_gate_vma(mm);
  152. if (last_addr) {
  153. vma = find_vma(mm, last_addr - 1);
  154. if (vma && vma->vm_start <= last_addr)
  155. vma = m_next_vma(priv, vma);
  156. if (vma)
  157. return vma;
  158. }
  159. m->version = 0;
  160. if (pos < mm->map_count) {
  161. for (vma = mm->mmap; pos; pos--) {
  162. m->version = vma->vm_start;
  163. vma = vma->vm_next;
  164. }
  165. return vma;
  166. }
  167. /* we do not bother to update m->version in this case */
  168. if (pos == mm->map_count && priv->tail_vma)
  169. return priv->tail_vma;
  170. vma_stop(priv);
  171. return NULL;
  172. }
  173. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  174. {
  175. struct proc_maps_private *priv = m->private;
  176. struct vm_area_struct *next;
  177. (*pos)++;
  178. next = m_next_vma(priv, v);
  179. if (!next)
  180. vma_stop(priv);
  181. return next;
  182. }
  183. static void m_stop(struct seq_file *m, void *v)
  184. {
  185. struct proc_maps_private *priv = m->private;
  186. if (!IS_ERR_OR_NULL(v))
  187. vma_stop(priv);
  188. if (priv->task) {
  189. put_task_struct(priv->task);
  190. priv->task = NULL;
  191. }
  192. }
  193. static int proc_maps_open(struct inode *inode, struct file *file,
  194. const struct seq_operations *ops, int psize)
  195. {
  196. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  197. if (!priv)
  198. return -ENOMEM;
  199. priv->inode = inode;
  200. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  201. if (IS_ERR(priv->mm)) {
  202. int err = PTR_ERR(priv->mm);
  203. seq_release_private(inode, file);
  204. return err;
  205. }
  206. return 0;
  207. }
  208. static int proc_map_release(struct inode *inode, struct file *file)
  209. {
  210. struct seq_file *seq = file->private_data;
  211. struct proc_maps_private *priv = seq->private;
  212. if (priv->mm)
  213. mmdrop(priv->mm);
  214. kfree(priv->rollup);
  215. return seq_release_private(inode, file);
  216. }
  217. static int do_maps_open(struct inode *inode, struct file *file,
  218. const struct seq_operations *ops)
  219. {
  220. return proc_maps_open(inode, file, ops,
  221. sizeof(struct proc_maps_private));
  222. }
  223. /*
  224. * Indicate if the VMA is a stack for the given task; for
  225. * /proc/PID/maps that is the stack of the main task.
  226. */
  227. static int is_stack(struct vm_area_struct *vma)
  228. {
  229. /*
  230. * We make no effort to guess what a given thread considers to be
  231. * its "stack". It's not even well-defined for programs written
  232. * languages like Go.
  233. */
  234. return vma->vm_start <= vma->vm_mm->start_stack &&
  235. vma->vm_end >= vma->vm_mm->start_stack;
  236. }
  237. static void show_vma_header_prefix(struct seq_file *m,
  238. unsigned long start, unsigned long end,
  239. vm_flags_t flags, unsigned long long pgoff,
  240. dev_t dev, unsigned long ino)
  241. {
  242. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  243. seq_put_hex_ll(m, NULL, start, 8);
  244. seq_put_hex_ll(m, "-", end, 8);
  245. seq_putc(m, ' ');
  246. seq_putc(m, flags & VM_READ ? 'r' : '-');
  247. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  248. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  249. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  250. seq_put_hex_ll(m, " ", pgoff, 8);
  251. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  252. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  253. seq_put_decimal_ull(m, " ", ino);
  254. seq_putc(m, ' ');
  255. }
  256. static void
  257. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  258. {
  259. struct mm_struct *mm = vma->vm_mm;
  260. struct file *file = vma->vm_file;
  261. vm_flags_t flags = vma->vm_flags;
  262. unsigned long ino = 0;
  263. unsigned long long pgoff = 0;
  264. unsigned long start, end;
  265. dev_t dev = 0;
  266. const char *name = NULL;
  267. if (file) {
  268. struct inode *inode = file_inode(vma->vm_file);
  269. dev = inode->i_sb->s_dev;
  270. ino = inode->i_ino;
  271. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  272. }
  273. start = vma->vm_start;
  274. end = vma->vm_end;
  275. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  276. /*
  277. * Print the dentry name for named mappings, and a
  278. * special [heap] marker for the heap:
  279. */
  280. if (file) {
  281. seq_pad(m, ' ');
  282. seq_file_path(m, file, "\n");
  283. goto done;
  284. }
  285. if (vma->vm_ops && vma->vm_ops->name) {
  286. name = vma->vm_ops->name(vma);
  287. if (name)
  288. goto done;
  289. }
  290. name = arch_vma_name(vma);
  291. if (!name) {
  292. if (!mm) {
  293. name = "[vdso]";
  294. goto done;
  295. }
  296. if (vma->vm_start <= mm->brk &&
  297. vma->vm_end >= mm->start_brk) {
  298. name = "[heap]";
  299. goto done;
  300. }
  301. if (is_stack(vma))
  302. name = "[stack]";
  303. }
  304. done:
  305. if (name) {
  306. seq_pad(m, ' ');
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. show_map_vma(m, v, is_pid);
  314. m_cache_vma(m, v);
  315. return 0;
  316. }
  317. static int show_pid_map(struct seq_file *m, void *v)
  318. {
  319. return show_map(m, v, 1);
  320. }
  321. static int show_tid_map(struct seq_file *m, void *v)
  322. {
  323. return show_map(m, v, 0);
  324. }
  325. static const struct seq_operations proc_pid_maps_op = {
  326. .start = m_start,
  327. .next = m_next,
  328. .stop = m_stop,
  329. .show = show_pid_map
  330. };
  331. static const struct seq_operations proc_tid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_tid_map
  336. };
  337. static int pid_maps_open(struct inode *inode, struct file *file)
  338. {
  339. return do_maps_open(inode, file, &proc_pid_maps_op);
  340. }
  341. static int tid_maps_open(struct inode *inode, struct file *file)
  342. {
  343. return do_maps_open(inode, file, &proc_tid_maps_op);
  344. }
  345. const struct file_operations proc_pid_maps_operations = {
  346. .open = pid_maps_open,
  347. .read = seq_read,
  348. .llseek = seq_lseek,
  349. .release = proc_map_release,
  350. };
  351. const struct file_operations proc_tid_maps_operations = {
  352. .open = tid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = proc_map_release,
  356. };
  357. /*
  358. * Proportional Set Size(PSS): my share of RSS.
  359. *
  360. * PSS of a process is the count of pages it has in memory, where each
  361. * page is divided by the number of processes sharing it. So if a
  362. * process has 1000 pages all to itself, and 1000 shared with one other
  363. * process, its PSS will be 1500.
  364. *
  365. * To keep (accumulated) division errors low, we adopt a 64bit
  366. * fixed-point pss counter to minimize division errors. So (pss >>
  367. * PSS_SHIFT) would be the real byte count.
  368. *
  369. * A shift of 12 before division means (assuming 4K page size):
  370. * - 1M 3-user-pages add up to 8KB errors;
  371. * - supports mapcount up to 2^24, or 16M;
  372. * - supports PSS up to 2^52 bytes, or 4PB.
  373. */
  374. #define PSS_SHIFT 12
  375. #ifdef CONFIG_PROC_PAGE_MONITOR
  376. struct mem_size_stats {
  377. bool first;
  378. unsigned long resident;
  379. unsigned long shared_clean;
  380. unsigned long shared_dirty;
  381. unsigned long private_clean;
  382. unsigned long private_dirty;
  383. unsigned long referenced;
  384. unsigned long anonymous;
  385. unsigned long lazyfree;
  386. unsigned long anonymous_thp;
  387. unsigned long shmem_thp;
  388. unsigned long swap;
  389. unsigned long shared_hugetlb;
  390. unsigned long private_hugetlb;
  391. unsigned long first_vma_start;
  392. u64 pss;
  393. u64 pss_locked;
  394. u64 swap_pss;
  395. bool check_shmem_swap;
  396. };
  397. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  398. bool compound, bool young, bool dirty)
  399. {
  400. int i, nr = compound ? 1 << compound_order(page) : 1;
  401. unsigned long size = nr * PAGE_SIZE;
  402. if (PageAnon(page)) {
  403. mss->anonymous += size;
  404. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  405. mss->lazyfree += size;
  406. }
  407. mss->resident += size;
  408. /* Accumulate the size in pages that have been accessed. */
  409. if (young || page_is_young(page) || PageReferenced(page))
  410. mss->referenced += size;
  411. /*
  412. * page_count(page) == 1 guarantees the page is mapped exactly once.
  413. * If any subpage of the compound page mapped with PTE it would elevate
  414. * page_count().
  415. */
  416. if (page_count(page) == 1) {
  417. if (dirty || PageDirty(page))
  418. mss->private_dirty += size;
  419. else
  420. mss->private_clean += size;
  421. mss->pss += (u64)size << PSS_SHIFT;
  422. return;
  423. }
  424. for (i = 0; i < nr; i++, page++) {
  425. int mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (dirty || PageDirty(page))
  428. mss->shared_dirty += PAGE_SIZE;
  429. else
  430. mss->shared_clean += PAGE_SIZE;
  431. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (dirty || PageDirty(page))
  434. mss->private_dirty += PAGE_SIZE;
  435. else
  436. mss->private_clean += PAGE_SIZE;
  437. mss->pss += PAGE_SIZE << PSS_SHIFT;
  438. }
  439. }
  440. }
  441. #ifdef CONFIG_SHMEM
  442. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  443. struct mm_walk *walk)
  444. {
  445. struct mem_size_stats *mss = walk->private;
  446. mss->swap += shmem_partial_swap_usage(
  447. walk->vma->vm_file->f_mapping, addr, end);
  448. return 0;
  449. }
  450. #endif
  451. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  452. struct mm_walk *walk)
  453. {
  454. struct mem_size_stats *mss = walk->private;
  455. struct vm_area_struct *vma = walk->vma;
  456. struct page *page = NULL;
  457. if (pte_present(*pte)) {
  458. page = vm_normal_page(vma, addr, *pte);
  459. } else if (is_swap_pte(*pte)) {
  460. swp_entry_t swpent = pte_to_swp_entry(*pte);
  461. if (!non_swap_entry(swpent)) {
  462. int mapcount;
  463. mss->swap += PAGE_SIZE;
  464. mapcount = swp_swapcount(swpent);
  465. if (mapcount >= 2) {
  466. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  467. do_div(pss_delta, mapcount);
  468. mss->swap_pss += pss_delta;
  469. } else {
  470. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  471. }
  472. } else if (is_migration_entry(swpent))
  473. page = migration_entry_to_page(swpent);
  474. else if (is_device_private_entry(swpent))
  475. page = device_private_entry_to_page(swpent);
  476. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  477. && pte_none(*pte))) {
  478. page = find_get_entry(vma->vm_file->f_mapping,
  479. linear_page_index(vma, addr));
  480. if (!page)
  481. return;
  482. if (radix_tree_exceptional_entry(page))
  483. mss->swap += PAGE_SIZE;
  484. else
  485. put_page(page);
  486. return;
  487. }
  488. if (!page)
  489. return;
  490. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  491. }
  492. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  493. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  494. struct mm_walk *walk)
  495. {
  496. struct mem_size_stats *mss = walk->private;
  497. struct vm_area_struct *vma = walk->vma;
  498. struct page *page;
  499. /* FOLL_DUMP will return -EFAULT on huge zero page */
  500. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  501. if (IS_ERR_OR_NULL(page))
  502. return;
  503. if (PageAnon(page))
  504. mss->anonymous_thp += HPAGE_PMD_SIZE;
  505. else if (PageSwapBacked(page))
  506. mss->shmem_thp += HPAGE_PMD_SIZE;
  507. else if (is_zone_device_page(page))
  508. /* pass */;
  509. else
  510. VM_BUG_ON_PAGE(1, page);
  511. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  512. }
  513. #else
  514. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  515. struct mm_walk *walk)
  516. {
  517. }
  518. #endif
  519. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  520. struct mm_walk *walk)
  521. {
  522. struct vm_area_struct *vma = walk->vma;
  523. pte_t *pte;
  524. spinlock_t *ptl;
  525. ptl = pmd_trans_huge_lock(pmd, vma);
  526. if (ptl) {
  527. if (pmd_present(*pmd))
  528. smaps_pmd_entry(pmd, addr, walk);
  529. spin_unlock(ptl);
  530. goto out;
  531. }
  532. if (pmd_trans_unstable(pmd))
  533. goto out;
  534. /*
  535. * The mmap_sem held all the way back in m_start() is what
  536. * keeps khugepaged out of here and from collapsing things
  537. * in here.
  538. */
  539. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  540. for (; addr != end; pte++, addr += PAGE_SIZE)
  541. smaps_pte_entry(pte, addr, walk);
  542. pte_unmap_unlock(pte - 1, ptl);
  543. out:
  544. cond_resched();
  545. return 0;
  546. }
  547. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  548. {
  549. /*
  550. * Don't forget to update Documentation/ on changes.
  551. */
  552. static const char mnemonics[BITS_PER_LONG][2] = {
  553. /*
  554. * In case if we meet a flag we don't know about.
  555. */
  556. [0 ... (BITS_PER_LONG-1)] = "??",
  557. [ilog2(VM_READ)] = "rd",
  558. [ilog2(VM_WRITE)] = "wr",
  559. [ilog2(VM_EXEC)] = "ex",
  560. [ilog2(VM_SHARED)] = "sh",
  561. [ilog2(VM_MAYREAD)] = "mr",
  562. [ilog2(VM_MAYWRITE)] = "mw",
  563. [ilog2(VM_MAYEXEC)] = "me",
  564. [ilog2(VM_MAYSHARE)] = "ms",
  565. [ilog2(VM_GROWSDOWN)] = "gd",
  566. [ilog2(VM_PFNMAP)] = "pf",
  567. [ilog2(VM_DENYWRITE)] = "dw",
  568. #ifdef CONFIG_X86_INTEL_MPX
  569. [ilog2(VM_MPX)] = "mp",
  570. #endif
  571. [ilog2(VM_LOCKED)] = "lo",
  572. [ilog2(VM_IO)] = "io",
  573. [ilog2(VM_SEQ_READ)] = "sr",
  574. [ilog2(VM_RAND_READ)] = "rr",
  575. [ilog2(VM_DONTCOPY)] = "dc",
  576. [ilog2(VM_DONTEXPAND)] = "de",
  577. [ilog2(VM_ACCOUNT)] = "ac",
  578. [ilog2(VM_NORESERVE)] = "nr",
  579. [ilog2(VM_HUGETLB)] = "ht",
  580. [ilog2(VM_SYNC)] = "sf",
  581. [ilog2(VM_ARCH_1)] = "ar",
  582. [ilog2(VM_WIPEONFORK)] = "wf",
  583. [ilog2(VM_DONTDUMP)] = "dd",
  584. #ifdef CONFIG_MEM_SOFT_DIRTY
  585. [ilog2(VM_SOFTDIRTY)] = "sd",
  586. #endif
  587. [ilog2(VM_MIXEDMAP)] = "mm",
  588. [ilog2(VM_HUGEPAGE)] = "hg",
  589. [ilog2(VM_NOHUGEPAGE)] = "nh",
  590. [ilog2(VM_MERGEABLE)] = "mg",
  591. [ilog2(VM_UFFD_MISSING)]= "um",
  592. [ilog2(VM_UFFD_WP)] = "uw",
  593. #ifdef CONFIG_ARCH_HAS_PKEYS
  594. /* These come out via ProtectionKey: */
  595. [ilog2(VM_PKEY_BIT0)] = "",
  596. [ilog2(VM_PKEY_BIT1)] = "",
  597. [ilog2(VM_PKEY_BIT2)] = "",
  598. [ilog2(VM_PKEY_BIT3)] = "",
  599. #if VM_PKEY_BIT4
  600. [ilog2(VM_PKEY_BIT4)] = "",
  601. #endif
  602. #endif /* CONFIG_ARCH_HAS_PKEYS */
  603. };
  604. size_t i;
  605. seq_puts(m, "VmFlags: ");
  606. for (i = 0; i < BITS_PER_LONG; i++) {
  607. if (!mnemonics[i][0])
  608. continue;
  609. if (vma->vm_flags & (1UL << i)) {
  610. seq_putc(m, mnemonics[i][0]);
  611. seq_putc(m, mnemonics[i][1]);
  612. seq_putc(m, ' ');
  613. }
  614. }
  615. seq_putc(m, '\n');
  616. }
  617. #ifdef CONFIG_HUGETLB_PAGE
  618. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  619. unsigned long addr, unsigned long end,
  620. struct mm_walk *walk)
  621. {
  622. struct mem_size_stats *mss = walk->private;
  623. struct vm_area_struct *vma = walk->vma;
  624. struct page *page = NULL;
  625. if (pte_present(*pte)) {
  626. page = vm_normal_page(vma, addr, *pte);
  627. } else if (is_swap_pte(*pte)) {
  628. swp_entry_t swpent = pte_to_swp_entry(*pte);
  629. if (is_migration_entry(swpent))
  630. page = migration_entry_to_page(swpent);
  631. else if (is_device_private_entry(swpent))
  632. page = device_private_entry_to_page(swpent);
  633. }
  634. if (page) {
  635. int mapcount = page_mapcount(page);
  636. if (mapcount >= 2)
  637. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  638. else
  639. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  640. }
  641. return 0;
  642. }
  643. #endif /* HUGETLB_PAGE */
  644. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  645. {
  646. }
  647. #define SEQ_PUT_DEC(str, val) \
  648. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  649. static int show_smap(struct seq_file *m, void *v, int is_pid)
  650. {
  651. struct proc_maps_private *priv = m->private;
  652. struct vm_area_struct *vma = v;
  653. struct mem_size_stats mss_stack;
  654. struct mem_size_stats *mss;
  655. struct mm_walk smaps_walk = {
  656. .pmd_entry = smaps_pte_range,
  657. #ifdef CONFIG_HUGETLB_PAGE
  658. .hugetlb_entry = smaps_hugetlb_range,
  659. #endif
  660. .mm = vma->vm_mm,
  661. };
  662. int ret = 0;
  663. bool rollup_mode;
  664. bool last_vma;
  665. if (priv->rollup) {
  666. rollup_mode = true;
  667. mss = priv->rollup;
  668. if (mss->first) {
  669. mss->first_vma_start = vma->vm_start;
  670. mss->first = false;
  671. }
  672. last_vma = !m_next_vma(priv, vma);
  673. } else {
  674. rollup_mode = false;
  675. memset(&mss_stack, 0, sizeof(mss_stack));
  676. mss = &mss_stack;
  677. }
  678. smaps_walk.private = mss;
  679. #ifdef CONFIG_SHMEM
  680. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  681. /*
  682. * For shared or readonly shmem mappings we know that all
  683. * swapped out pages belong to the shmem object, and we can
  684. * obtain the swap value much more efficiently. For private
  685. * writable mappings, we might have COW pages that are
  686. * not affected by the parent swapped out pages of the shmem
  687. * object, so we have to distinguish them during the page walk.
  688. * Unless we know that the shmem object (or the part mapped by
  689. * our VMA) has no swapped out pages at all.
  690. */
  691. unsigned long shmem_swapped = shmem_swap_usage(vma);
  692. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  693. !(vma->vm_flags & VM_WRITE)) {
  694. mss->swap = shmem_swapped;
  695. } else {
  696. mss->check_shmem_swap = true;
  697. smaps_walk.pte_hole = smaps_pte_hole;
  698. }
  699. }
  700. #endif
  701. /* mmap_sem is held in m_start */
  702. walk_page_vma(vma, &smaps_walk);
  703. if (vma->vm_flags & VM_LOCKED)
  704. mss->pss_locked += mss->pss;
  705. if (!rollup_mode) {
  706. show_map_vma(m, vma, is_pid);
  707. } else if (last_vma) {
  708. show_vma_header_prefix(
  709. m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
  710. seq_pad(m, ' ');
  711. seq_puts(m, "[rollup]\n");
  712. } else {
  713. ret = SEQ_SKIP;
  714. }
  715. if (!rollup_mode) {
  716. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  717. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  718. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  719. seq_puts(m, " kB\n");
  720. }
  721. if (!rollup_mode || last_vma) {
  722. SEQ_PUT_DEC("Rss: ", mss->resident);
  723. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  724. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  725. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  726. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  727. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  728. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  729. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  730. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  731. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  732. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  733. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  734. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  735. mss->private_hugetlb >> 10, 7);
  736. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  737. SEQ_PUT_DEC(" kB\nSwapPss: ",
  738. mss->swap_pss >> PSS_SHIFT);
  739. SEQ_PUT_DEC(" kB\nLocked: ", mss->pss >> PSS_SHIFT);
  740. seq_puts(m, " kB\n");
  741. }
  742. if (!rollup_mode) {
  743. arch_show_smap(m, vma);
  744. show_smap_vma_flags(m, vma);
  745. }
  746. m_cache_vma(m, vma);
  747. return ret;
  748. }
  749. #undef SEQ_PUT_DEC
  750. static int show_pid_smap(struct seq_file *m, void *v)
  751. {
  752. return show_smap(m, v, 1);
  753. }
  754. static int show_tid_smap(struct seq_file *m, void *v)
  755. {
  756. return show_smap(m, v, 0);
  757. }
  758. static const struct seq_operations proc_pid_smaps_op = {
  759. .start = m_start,
  760. .next = m_next,
  761. .stop = m_stop,
  762. .show = show_pid_smap
  763. };
  764. static const struct seq_operations proc_tid_smaps_op = {
  765. .start = m_start,
  766. .next = m_next,
  767. .stop = m_stop,
  768. .show = show_tid_smap
  769. };
  770. static int pid_smaps_open(struct inode *inode, struct file *file)
  771. {
  772. return do_maps_open(inode, file, &proc_pid_smaps_op);
  773. }
  774. static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
  775. {
  776. struct seq_file *seq;
  777. struct proc_maps_private *priv;
  778. int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
  779. if (ret < 0)
  780. return ret;
  781. seq = file->private_data;
  782. priv = seq->private;
  783. priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
  784. if (!priv->rollup) {
  785. proc_map_release(inode, file);
  786. return -ENOMEM;
  787. }
  788. priv->rollup->first = true;
  789. return 0;
  790. }
  791. static int tid_smaps_open(struct inode *inode, struct file *file)
  792. {
  793. return do_maps_open(inode, file, &proc_tid_smaps_op);
  794. }
  795. const struct file_operations proc_pid_smaps_operations = {
  796. .open = pid_smaps_open,
  797. .read = seq_read,
  798. .llseek = seq_lseek,
  799. .release = proc_map_release,
  800. };
  801. const struct file_operations proc_pid_smaps_rollup_operations = {
  802. .open = pid_smaps_rollup_open,
  803. .read = seq_read,
  804. .llseek = seq_lseek,
  805. .release = proc_map_release,
  806. };
  807. const struct file_operations proc_tid_smaps_operations = {
  808. .open = tid_smaps_open,
  809. .read = seq_read,
  810. .llseek = seq_lseek,
  811. .release = proc_map_release,
  812. };
  813. enum clear_refs_types {
  814. CLEAR_REFS_ALL = 1,
  815. CLEAR_REFS_ANON,
  816. CLEAR_REFS_MAPPED,
  817. CLEAR_REFS_SOFT_DIRTY,
  818. CLEAR_REFS_MM_HIWATER_RSS,
  819. CLEAR_REFS_LAST,
  820. };
  821. struct clear_refs_private {
  822. enum clear_refs_types type;
  823. };
  824. #ifdef CONFIG_MEM_SOFT_DIRTY
  825. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  826. unsigned long addr, pte_t *pte)
  827. {
  828. /*
  829. * The soft-dirty tracker uses #PF-s to catch writes
  830. * to pages, so write-protect the pte as well. See the
  831. * Documentation/vm/soft-dirty.txt for full description
  832. * of how soft-dirty works.
  833. */
  834. pte_t ptent = *pte;
  835. if (pte_present(ptent)) {
  836. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  837. ptent = pte_wrprotect(ptent);
  838. ptent = pte_clear_soft_dirty(ptent);
  839. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  840. } else if (is_swap_pte(ptent)) {
  841. ptent = pte_swp_clear_soft_dirty(ptent);
  842. set_pte_at(vma->vm_mm, addr, pte, ptent);
  843. }
  844. }
  845. #else
  846. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  847. unsigned long addr, pte_t *pte)
  848. {
  849. }
  850. #endif
  851. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  852. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  853. unsigned long addr, pmd_t *pmdp)
  854. {
  855. pmd_t old, pmd = *pmdp;
  856. if (pmd_present(pmd)) {
  857. /* See comment in change_huge_pmd() */
  858. old = pmdp_invalidate(vma, addr, pmdp);
  859. if (pmd_dirty(old))
  860. pmd = pmd_mkdirty(pmd);
  861. if (pmd_young(old))
  862. pmd = pmd_mkyoung(pmd);
  863. pmd = pmd_wrprotect(pmd);
  864. pmd = pmd_clear_soft_dirty(pmd);
  865. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  866. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  867. pmd = pmd_swp_clear_soft_dirty(pmd);
  868. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  869. }
  870. }
  871. #else
  872. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  873. unsigned long addr, pmd_t *pmdp)
  874. {
  875. }
  876. #endif
  877. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  878. unsigned long end, struct mm_walk *walk)
  879. {
  880. struct clear_refs_private *cp = walk->private;
  881. struct vm_area_struct *vma = walk->vma;
  882. pte_t *pte, ptent;
  883. spinlock_t *ptl;
  884. struct page *page;
  885. ptl = pmd_trans_huge_lock(pmd, vma);
  886. if (ptl) {
  887. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  888. clear_soft_dirty_pmd(vma, addr, pmd);
  889. goto out;
  890. }
  891. if (!pmd_present(*pmd))
  892. goto out;
  893. page = pmd_page(*pmd);
  894. /* Clear accessed and referenced bits. */
  895. pmdp_test_and_clear_young(vma, addr, pmd);
  896. test_and_clear_page_young(page);
  897. ClearPageReferenced(page);
  898. out:
  899. spin_unlock(ptl);
  900. return 0;
  901. }
  902. if (pmd_trans_unstable(pmd))
  903. return 0;
  904. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  905. for (; addr != end; pte++, addr += PAGE_SIZE) {
  906. ptent = *pte;
  907. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  908. clear_soft_dirty(vma, addr, pte);
  909. continue;
  910. }
  911. if (!pte_present(ptent))
  912. continue;
  913. page = vm_normal_page(vma, addr, ptent);
  914. if (!page)
  915. continue;
  916. /* Clear accessed and referenced bits. */
  917. ptep_test_and_clear_young(vma, addr, pte);
  918. test_and_clear_page_young(page);
  919. ClearPageReferenced(page);
  920. }
  921. pte_unmap_unlock(pte - 1, ptl);
  922. cond_resched();
  923. return 0;
  924. }
  925. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  926. struct mm_walk *walk)
  927. {
  928. struct clear_refs_private *cp = walk->private;
  929. struct vm_area_struct *vma = walk->vma;
  930. if (vma->vm_flags & VM_PFNMAP)
  931. return 1;
  932. /*
  933. * Writing 1 to /proc/pid/clear_refs affects all pages.
  934. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  935. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  936. * Writing 4 to /proc/pid/clear_refs affects all pages.
  937. */
  938. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  939. return 1;
  940. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  941. return 1;
  942. return 0;
  943. }
  944. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  945. size_t count, loff_t *ppos)
  946. {
  947. struct task_struct *task;
  948. char buffer[PROC_NUMBUF];
  949. struct mm_struct *mm;
  950. struct vm_area_struct *vma;
  951. enum clear_refs_types type;
  952. struct mmu_gather tlb;
  953. int itype;
  954. int rv;
  955. memset(buffer, 0, sizeof(buffer));
  956. if (count > sizeof(buffer) - 1)
  957. count = sizeof(buffer) - 1;
  958. if (copy_from_user(buffer, buf, count))
  959. return -EFAULT;
  960. rv = kstrtoint(strstrip(buffer), 10, &itype);
  961. if (rv < 0)
  962. return rv;
  963. type = (enum clear_refs_types)itype;
  964. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  965. return -EINVAL;
  966. task = get_proc_task(file_inode(file));
  967. if (!task)
  968. return -ESRCH;
  969. mm = get_task_mm(task);
  970. if (mm) {
  971. struct clear_refs_private cp = {
  972. .type = type,
  973. };
  974. struct mm_walk clear_refs_walk = {
  975. .pmd_entry = clear_refs_pte_range,
  976. .test_walk = clear_refs_test_walk,
  977. .mm = mm,
  978. .private = &cp,
  979. };
  980. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  981. if (down_write_killable(&mm->mmap_sem)) {
  982. count = -EINTR;
  983. goto out_mm;
  984. }
  985. /*
  986. * Writing 5 to /proc/pid/clear_refs resets the peak
  987. * resident set size to this mm's current rss value.
  988. */
  989. reset_mm_hiwater_rss(mm);
  990. up_write(&mm->mmap_sem);
  991. goto out_mm;
  992. }
  993. down_read(&mm->mmap_sem);
  994. tlb_gather_mmu(&tlb, mm, 0, -1);
  995. if (type == CLEAR_REFS_SOFT_DIRTY) {
  996. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  997. if (!(vma->vm_flags & VM_SOFTDIRTY))
  998. continue;
  999. up_read(&mm->mmap_sem);
  1000. if (down_write_killable(&mm->mmap_sem)) {
  1001. count = -EINTR;
  1002. goto out_mm;
  1003. }
  1004. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1005. vma->vm_flags &= ~VM_SOFTDIRTY;
  1006. vma_set_page_prot(vma);
  1007. }
  1008. downgrade_write(&mm->mmap_sem);
  1009. break;
  1010. }
  1011. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1012. }
  1013. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1014. if (type == CLEAR_REFS_SOFT_DIRTY)
  1015. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1016. tlb_finish_mmu(&tlb, 0, -1);
  1017. up_read(&mm->mmap_sem);
  1018. out_mm:
  1019. mmput(mm);
  1020. }
  1021. put_task_struct(task);
  1022. return count;
  1023. }
  1024. const struct file_operations proc_clear_refs_operations = {
  1025. .write = clear_refs_write,
  1026. .llseek = noop_llseek,
  1027. };
  1028. typedef struct {
  1029. u64 pme;
  1030. } pagemap_entry_t;
  1031. struct pagemapread {
  1032. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1033. pagemap_entry_t *buffer;
  1034. bool show_pfn;
  1035. };
  1036. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1037. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1038. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1039. #define PM_PFRAME_BITS 55
  1040. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1041. #define PM_SOFT_DIRTY BIT_ULL(55)
  1042. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1043. #define PM_FILE BIT_ULL(61)
  1044. #define PM_SWAP BIT_ULL(62)
  1045. #define PM_PRESENT BIT_ULL(63)
  1046. #define PM_END_OF_BUFFER 1
  1047. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1048. {
  1049. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1050. }
  1051. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1052. struct pagemapread *pm)
  1053. {
  1054. pm->buffer[pm->pos++] = *pme;
  1055. if (pm->pos >= pm->len)
  1056. return PM_END_OF_BUFFER;
  1057. return 0;
  1058. }
  1059. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1060. struct mm_walk *walk)
  1061. {
  1062. struct pagemapread *pm = walk->private;
  1063. unsigned long addr = start;
  1064. int err = 0;
  1065. while (addr < end) {
  1066. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1067. pagemap_entry_t pme = make_pme(0, 0);
  1068. /* End of address space hole, which we mark as non-present. */
  1069. unsigned long hole_end;
  1070. if (vma)
  1071. hole_end = min(end, vma->vm_start);
  1072. else
  1073. hole_end = end;
  1074. for (; addr < hole_end; addr += PAGE_SIZE) {
  1075. err = add_to_pagemap(addr, &pme, pm);
  1076. if (err)
  1077. goto out;
  1078. }
  1079. if (!vma)
  1080. break;
  1081. /* Addresses in the VMA. */
  1082. if (vma->vm_flags & VM_SOFTDIRTY)
  1083. pme = make_pme(0, PM_SOFT_DIRTY);
  1084. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1085. err = add_to_pagemap(addr, &pme, pm);
  1086. if (err)
  1087. goto out;
  1088. }
  1089. }
  1090. out:
  1091. return err;
  1092. }
  1093. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1094. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1095. {
  1096. u64 frame = 0, flags = 0;
  1097. struct page *page = NULL;
  1098. if (pte_present(pte)) {
  1099. if (pm->show_pfn)
  1100. frame = pte_pfn(pte);
  1101. flags |= PM_PRESENT;
  1102. page = _vm_normal_page(vma, addr, pte, true);
  1103. if (pte_soft_dirty(pte))
  1104. flags |= PM_SOFT_DIRTY;
  1105. } else if (is_swap_pte(pte)) {
  1106. swp_entry_t entry;
  1107. if (pte_swp_soft_dirty(pte))
  1108. flags |= PM_SOFT_DIRTY;
  1109. entry = pte_to_swp_entry(pte);
  1110. frame = swp_type(entry) |
  1111. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1112. flags |= PM_SWAP;
  1113. if (is_migration_entry(entry))
  1114. page = migration_entry_to_page(entry);
  1115. if (is_device_private_entry(entry))
  1116. page = device_private_entry_to_page(entry);
  1117. }
  1118. if (page && !PageAnon(page))
  1119. flags |= PM_FILE;
  1120. if (page && page_mapcount(page) == 1)
  1121. flags |= PM_MMAP_EXCLUSIVE;
  1122. if (vma->vm_flags & VM_SOFTDIRTY)
  1123. flags |= PM_SOFT_DIRTY;
  1124. return make_pme(frame, flags);
  1125. }
  1126. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1127. struct mm_walk *walk)
  1128. {
  1129. struct vm_area_struct *vma = walk->vma;
  1130. struct pagemapread *pm = walk->private;
  1131. spinlock_t *ptl;
  1132. pte_t *pte, *orig_pte;
  1133. int err = 0;
  1134. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1135. ptl = pmd_trans_huge_lock(pmdp, vma);
  1136. if (ptl) {
  1137. u64 flags = 0, frame = 0;
  1138. pmd_t pmd = *pmdp;
  1139. struct page *page = NULL;
  1140. if (vma->vm_flags & VM_SOFTDIRTY)
  1141. flags |= PM_SOFT_DIRTY;
  1142. if (pmd_present(pmd)) {
  1143. page = pmd_page(pmd);
  1144. flags |= PM_PRESENT;
  1145. if (pmd_soft_dirty(pmd))
  1146. flags |= PM_SOFT_DIRTY;
  1147. if (pm->show_pfn)
  1148. frame = pmd_pfn(pmd) +
  1149. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1150. }
  1151. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1152. else if (is_swap_pmd(pmd)) {
  1153. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1154. unsigned long offset = swp_offset(entry);
  1155. offset += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  1156. frame = swp_type(entry) |
  1157. (offset << MAX_SWAPFILES_SHIFT);
  1158. flags |= PM_SWAP;
  1159. if (pmd_swp_soft_dirty(pmd))
  1160. flags |= PM_SOFT_DIRTY;
  1161. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1162. page = migration_entry_to_page(entry);
  1163. }
  1164. #endif
  1165. if (page && page_mapcount(page) == 1)
  1166. flags |= PM_MMAP_EXCLUSIVE;
  1167. for (; addr != end; addr += PAGE_SIZE) {
  1168. pagemap_entry_t pme = make_pme(frame, flags);
  1169. err = add_to_pagemap(addr, &pme, pm);
  1170. if (err)
  1171. break;
  1172. if (pm->show_pfn && (flags & PM_PRESENT))
  1173. frame++;
  1174. else if (flags & PM_SWAP)
  1175. frame += (1 << MAX_SWAPFILES_SHIFT);
  1176. }
  1177. spin_unlock(ptl);
  1178. return err;
  1179. }
  1180. if (pmd_trans_unstable(pmdp))
  1181. return 0;
  1182. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1183. /*
  1184. * We can assume that @vma always points to a valid one and @end never
  1185. * goes beyond vma->vm_end.
  1186. */
  1187. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1188. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1189. pagemap_entry_t pme;
  1190. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1191. err = add_to_pagemap(addr, &pme, pm);
  1192. if (err)
  1193. break;
  1194. }
  1195. pte_unmap_unlock(orig_pte, ptl);
  1196. cond_resched();
  1197. return err;
  1198. }
  1199. #ifdef CONFIG_HUGETLB_PAGE
  1200. /* This function walks within one hugetlb entry in the single call */
  1201. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1202. unsigned long addr, unsigned long end,
  1203. struct mm_walk *walk)
  1204. {
  1205. struct pagemapread *pm = walk->private;
  1206. struct vm_area_struct *vma = walk->vma;
  1207. u64 flags = 0, frame = 0;
  1208. int err = 0;
  1209. pte_t pte;
  1210. if (vma->vm_flags & VM_SOFTDIRTY)
  1211. flags |= PM_SOFT_DIRTY;
  1212. pte = huge_ptep_get(ptep);
  1213. if (pte_present(pte)) {
  1214. struct page *page = pte_page(pte);
  1215. if (!PageAnon(page))
  1216. flags |= PM_FILE;
  1217. if (page_mapcount(page) == 1)
  1218. flags |= PM_MMAP_EXCLUSIVE;
  1219. flags |= PM_PRESENT;
  1220. if (pm->show_pfn)
  1221. frame = pte_pfn(pte) +
  1222. ((addr & ~hmask) >> PAGE_SHIFT);
  1223. }
  1224. for (; addr != end; addr += PAGE_SIZE) {
  1225. pagemap_entry_t pme = make_pme(frame, flags);
  1226. err = add_to_pagemap(addr, &pme, pm);
  1227. if (err)
  1228. return err;
  1229. if (pm->show_pfn && (flags & PM_PRESENT))
  1230. frame++;
  1231. }
  1232. cond_resched();
  1233. return err;
  1234. }
  1235. #endif /* HUGETLB_PAGE */
  1236. /*
  1237. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1238. *
  1239. * For each page in the address space, this file contains one 64-bit entry
  1240. * consisting of the following:
  1241. *
  1242. * Bits 0-54 page frame number (PFN) if present
  1243. * Bits 0-4 swap type if swapped
  1244. * Bits 5-54 swap offset if swapped
  1245. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1246. * Bit 56 page exclusively mapped
  1247. * Bits 57-60 zero
  1248. * Bit 61 page is file-page or shared-anon
  1249. * Bit 62 page swapped
  1250. * Bit 63 page present
  1251. *
  1252. * If the page is not present but in swap, then the PFN contains an
  1253. * encoding of the swap file number and the page's offset into the
  1254. * swap. Unmapped pages return a null PFN. This allows determining
  1255. * precisely which pages are mapped (or in swap) and comparing mapped
  1256. * pages between processes.
  1257. *
  1258. * Efficient users of this interface will use /proc/pid/maps to
  1259. * determine which areas of memory are actually mapped and llseek to
  1260. * skip over unmapped regions.
  1261. */
  1262. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1263. size_t count, loff_t *ppos)
  1264. {
  1265. struct mm_struct *mm = file->private_data;
  1266. struct pagemapread pm;
  1267. struct mm_walk pagemap_walk = {};
  1268. unsigned long src;
  1269. unsigned long svpfn;
  1270. unsigned long start_vaddr;
  1271. unsigned long end_vaddr;
  1272. int ret = 0, copied = 0;
  1273. if (!mm || !mmget_not_zero(mm))
  1274. goto out;
  1275. ret = -EINVAL;
  1276. /* file position must be aligned */
  1277. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1278. goto out_mm;
  1279. ret = 0;
  1280. if (!count)
  1281. goto out_mm;
  1282. /* do not disclose physical addresses: attack vector */
  1283. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1284. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1285. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
  1286. ret = -ENOMEM;
  1287. if (!pm.buffer)
  1288. goto out_mm;
  1289. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1290. pagemap_walk.pte_hole = pagemap_pte_hole;
  1291. #ifdef CONFIG_HUGETLB_PAGE
  1292. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1293. #endif
  1294. pagemap_walk.mm = mm;
  1295. pagemap_walk.private = &pm;
  1296. src = *ppos;
  1297. svpfn = src / PM_ENTRY_BYTES;
  1298. start_vaddr = svpfn << PAGE_SHIFT;
  1299. end_vaddr = mm->task_size;
  1300. /* watch out for wraparound */
  1301. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1302. start_vaddr = end_vaddr;
  1303. /*
  1304. * The odds are that this will stop walking way
  1305. * before end_vaddr, because the length of the
  1306. * user buffer is tracked in "pm", and the walk
  1307. * will stop when we hit the end of the buffer.
  1308. */
  1309. ret = 0;
  1310. while (count && (start_vaddr < end_vaddr)) {
  1311. int len;
  1312. unsigned long end;
  1313. pm.pos = 0;
  1314. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1315. /* overflow ? */
  1316. if (end < start_vaddr || end > end_vaddr)
  1317. end = end_vaddr;
  1318. down_read(&mm->mmap_sem);
  1319. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1320. up_read(&mm->mmap_sem);
  1321. start_vaddr = end;
  1322. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1323. if (copy_to_user(buf, pm.buffer, len)) {
  1324. ret = -EFAULT;
  1325. goto out_free;
  1326. }
  1327. copied += len;
  1328. buf += len;
  1329. count -= len;
  1330. }
  1331. *ppos += copied;
  1332. if (!ret || ret == PM_END_OF_BUFFER)
  1333. ret = copied;
  1334. out_free:
  1335. kfree(pm.buffer);
  1336. out_mm:
  1337. mmput(mm);
  1338. out:
  1339. return ret;
  1340. }
  1341. static int pagemap_open(struct inode *inode, struct file *file)
  1342. {
  1343. struct mm_struct *mm;
  1344. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1345. if (IS_ERR(mm))
  1346. return PTR_ERR(mm);
  1347. file->private_data = mm;
  1348. return 0;
  1349. }
  1350. static int pagemap_release(struct inode *inode, struct file *file)
  1351. {
  1352. struct mm_struct *mm = file->private_data;
  1353. if (mm)
  1354. mmdrop(mm);
  1355. return 0;
  1356. }
  1357. const struct file_operations proc_pagemap_operations = {
  1358. .llseek = mem_lseek, /* borrow this */
  1359. .read = pagemap_read,
  1360. .open = pagemap_open,
  1361. .release = pagemap_release,
  1362. };
  1363. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1364. #ifdef CONFIG_NUMA
  1365. struct numa_maps {
  1366. unsigned long pages;
  1367. unsigned long anon;
  1368. unsigned long active;
  1369. unsigned long writeback;
  1370. unsigned long mapcount_max;
  1371. unsigned long dirty;
  1372. unsigned long swapcache;
  1373. unsigned long node[MAX_NUMNODES];
  1374. };
  1375. struct numa_maps_private {
  1376. struct proc_maps_private proc_maps;
  1377. struct numa_maps md;
  1378. };
  1379. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1380. unsigned long nr_pages)
  1381. {
  1382. int count = page_mapcount(page);
  1383. md->pages += nr_pages;
  1384. if (pte_dirty || PageDirty(page))
  1385. md->dirty += nr_pages;
  1386. if (PageSwapCache(page))
  1387. md->swapcache += nr_pages;
  1388. if (PageActive(page) || PageUnevictable(page))
  1389. md->active += nr_pages;
  1390. if (PageWriteback(page))
  1391. md->writeback += nr_pages;
  1392. if (PageAnon(page))
  1393. md->anon += nr_pages;
  1394. if (count > md->mapcount_max)
  1395. md->mapcount_max = count;
  1396. md->node[page_to_nid(page)] += nr_pages;
  1397. }
  1398. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1399. unsigned long addr)
  1400. {
  1401. struct page *page;
  1402. int nid;
  1403. if (!pte_present(pte))
  1404. return NULL;
  1405. page = vm_normal_page(vma, addr, pte);
  1406. if (!page)
  1407. return NULL;
  1408. if (PageReserved(page))
  1409. return NULL;
  1410. nid = page_to_nid(page);
  1411. if (!node_isset(nid, node_states[N_MEMORY]))
  1412. return NULL;
  1413. return page;
  1414. }
  1415. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1416. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1417. struct vm_area_struct *vma,
  1418. unsigned long addr)
  1419. {
  1420. struct page *page;
  1421. int nid;
  1422. if (!pmd_present(pmd))
  1423. return NULL;
  1424. page = vm_normal_page_pmd(vma, addr, pmd);
  1425. if (!page)
  1426. return NULL;
  1427. if (PageReserved(page))
  1428. return NULL;
  1429. nid = page_to_nid(page);
  1430. if (!node_isset(nid, node_states[N_MEMORY]))
  1431. return NULL;
  1432. return page;
  1433. }
  1434. #endif
  1435. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1436. unsigned long end, struct mm_walk *walk)
  1437. {
  1438. struct numa_maps *md = walk->private;
  1439. struct vm_area_struct *vma = walk->vma;
  1440. spinlock_t *ptl;
  1441. pte_t *orig_pte;
  1442. pte_t *pte;
  1443. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1444. ptl = pmd_trans_huge_lock(pmd, vma);
  1445. if (ptl) {
  1446. struct page *page;
  1447. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1448. if (page)
  1449. gather_stats(page, md, pmd_dirty(*pmd),
  1450. HPAGE_PMD_SIZE/PAGE_SIZE);
  1451. spin_unlock(ptl);
  1452. return 0;
  1453. }
  1454. if (pmd_trans_unstable(pmd))
  1455. return 0;
  1456. #endif
  1457. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1458. do {
  1459. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1460. if (!page)
  1461. continue;
  1462. gather_stats(page, md, pte_dirty(*pte), 1);
  1463. } while (pte++, addr += PAGE_SIZE, addr != end);
  1464. pte_unmap_unlock(orig_pte, ptl);
  1465. cond_resched();
  1466. return 0;
  1467. }
  1468. #ifdef CONFIG_HUGETLB_PAGE
  1469. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1470. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1471. {
  1472. pte_t huge_pte = huge_ptep_get(pte);
  1473. struct numa_maps *md;
  1474. struct page *page;
  1475. if (!pte_present(huge_pte))
  1476. return 0;
  1477. page = pte_page(huge_pte);
  1478. if (!page)
  1479. return 0;
  1480. md = walk->private;
  1481. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1482. return 0;
  1483. }
  1484. #else
  1485. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1486. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1487. {
  1488. return 0;
  1489. }
  1490. #endif
  1491. /*
  1492. * Display pages allocated per node and memory policy via /proc.
  1493. */
  1494. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1495. {
  1496. struct numa_maps_private *numa_priv = m->private;
  1497. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1498. struct vm_area_struct *vma = v;
  1499. struct numa_maps *md = &numa_priv->md;
  1500. struct file *file = vma->vm_file;
  1501. struct mm_struct *mm = vma->vm_mm;
  1502. struct mm_walk walk = {
  1503. .hugetlb_entry = gather_hugetlb_stats,
  1504. .pmd_entry = gather_pte_stats,
  1505. .private = md,
  1506. .mm = mm,
  1507. };
  1508. struct mempolicy *pol;
  1509. char buffer[64];
  1510. int nid;
  1511. if (!mm)
  1512. return 0;
  1513. /* Ensure we start with an empty set of numa_maps statistics. */
  1514. memset(md, 0, sizeof(*md));
  1515. pol = __get_vma_policy(vma, vma->vm_start);
  1516. if (pol) {
  1517. mpol_to_str(buffer, sizeof(buffer), pol);
  1518. mpol_cond_put(pol);
  1519. } else {
  1520. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1521. }
  1522. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1523. if (file) {
  1524. seq_puts(m, " file=");
  1525. seq_file_path(m, file, "\n\t= ");
  1526. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1527. seq_puts(m, " heap");
  1528. } else if (is_stack(vma)) {
  1529. seq_puts(m, " stack");
  1530. }
  1531. if (is_vm_hugetlb_page(vma))
  1532. seq_puts(m, " huge");
  1533. /* mmap_sem is held by m_start */
  1534. walk_page_vma(vma, &walk);
  1535. if (!md->pages)
  1536. goto out;
  1537. if (md->anon)
  1538. seq_printf(m, " anon=%lu", md->anon);
  1539. if (md->dirty)
  1540. seq_printf(m, " dirty=%lu", md->dirty);
  1541. if (md->pages != md->anon && md->pages != md->dirty)
  1542. seq_printf(m, " mapped=%lu", md->pages);
  1543. if (md->mapcount_max > 1)
  1544. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1545. if (md->swapcache)
  1546. seq_printf(m, " swapcache=%lu", md->swapcache);
  1547. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1548. seq_printf(m, " active=%lu", md->active);
  1549. if (md->writeback)
  1550. seq_printf(m, " writeback=%lu", md->writeback);
  1551. for_each_node_state(nid, N_MEMORY)
  1552. if (md->node[nid])
  1553. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1554. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1555. out:
  1556. seq_putc(m, '\n');
  1557. m_cache_vma(m, vma);
  1558. return 0;
  1559. }
  1560. static int show_pid_numa_map(struct seq_file *m, void *v)
  1561. {
  1562. return show_numa_map(m, v, 1);
  1563. }
  1564. static int show_tid_numa_map(struct seq_file *m, void *v)
  1565. {
  1566. return show_numa_map(m, v, 0);
  1567. }
  1568. static const struct seq_operations proc_pid_numa_maps_op = {
  1569. .start = m_start,
  1570. .next = m_next,
  1571. .stop = m_stop,
  1572. .show = show_pid_numa_map,
  1573. };
  1574. static const struct seq_operations proc_tid_numa_maps_op = {
  1575. .start = m_start,
  1576. .next = m_next,
  1577. .stop = m_stop,
  1578. .show = show_tid_numa_map,
  1579. };
  1580. static int numa_maps_open(struct inode *inode, struct file *file,
  1581. const struct seq_operations *ops)
  1582. {
  1583. return proc_maps_open(inode, file, ops,
  1584. sizeof(struct numa_maps_private));
  1585. }
  1586. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1587. {
  1588. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1589. }
  1590. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1591. {
  1592. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1593. }
  1594. const struct file_operations proc_pid_numa_maps_operations = {
  1595. .open = pid_numa_maps_open,
  1596. .read = seq_read,
  1597. .llseek = seq_lseek,
  1598. .release = proc_map_release,
  1599. };
  1600. const struct file_operations proc_tid_numa_maps_operations = {
  1601. .open = tid_numa_maps_open,
  1602. .read = seq_read,
  1603. .llseek = seq_lseek,
  1604. .release = proc_map_release,
  1605. };
  1606. #endif /* CONFIG_NUMA */