test_verifier.c 189 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290
  1. /*
  2. * Testsuite for eBPF verifier
  3. *
  4. * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of version 2 of the GNU General Public
  8. * License as published by the Free Software Foundation.
  9. */
  10. #include <endian.h>
  11. #include <asm/types.h>
  12. #include <linux/types.h>
  13. #include <stdint.h>
  14. #include <stdio.h>
  15. #include <stdlib.h>
  16. #include <unistd.h>
  17. #include <errno.h>
  18. #include <string.h>
  19. #include <stddef.h>
  20. #include <stdbool.h>
  21. #include <sched.h>
  22. #include <sys/capability.h>
  23. #include <sys/resource.h>
  24. #include <linux/unistd.h>
  25. #include <linux/filter.h>
  26. #include <linux/bpf_perf_event.h>
  27. #include <linux/bpf.h>
  28. #include <bpf/bpf.h>
  29. #ifdef HAVE_GENHDR
  30. # include "autoconf.h"
  31. #else
  32. # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
  33. # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
  34. # endif
  35. #endif
  36. #include "../../../include/linux/filter.h"
  37. #ifndef ARRAY_SIZE
  38. # define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  39. #endif
  40. #define MAX_INSNS 512
  41. #define MAX_FIXUPS 8
  42. #define MAX_NR_MAPS 4
  43. #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
  44. #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
  45. struct bpf_test {
  46. const char *descr;
  47. struct bpf_insn insns[MAX_INSNS];
  48. int fixup_map1[MAX_FIXUPS];
  49. int fixup_map2[MAX_FIXUPS];
  50. int fixup_prog[MAX_FIXUPS];
  51. int fixup_map_in_map[MAX_FIXUPS];
  52. const char *errstr;
  53. const char *errstr_unpriv;
  54. enum {
  55. UNDEF,
  56. ACCEPT,
  57. REJECT
  58. } result, result_unpriv;
  59. enum bpf_prog_type prog_type;
  60. uint8_t flags;
  61. };
  62. /* Note we want this to be 64 bit aligned so that the end of our array is
  63. * actually the end of the structure.
  64. */
  65. #define MAX_ENTRIES 11
  66. struct test_val {
  67. unsigned int index;
  68. int foo[MAX_ENTRIES];
  69. };
  70. static struct bpf_test tests[] = {
  71. {
  72. "add+sub+mul",
  73. .insns = {
  74. BPF_MOV64_IMM(BPF_REG_1, 1),
  75. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2),
  76. BPF_MOV64_IMM(BPF_REG_2, 3),
  77. BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2),
  78. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1),
  79. BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3),
  80. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  81. BPF_EXIT_INSN(),
  82. },
  83. .result = ACCEPT,
  84. },
  85. {
  86. "unreachable",
  87. .insns = {
  88. BPF_EXIT_INSN(),
  89. BPF_EXIT_INSN(),
  90. },
  91. .errstr = "unreachable",
  92. .result = REJECT,
  93. },
  94. {
  95. "unreachable2",
  96. .insns = {
  97. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  98. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  99. BPF_EXIT_INSN(),
  100. },
  101. .errstr = "unreachable",
  102. .result = REJECT,
  103. },
  104. {
  105. "out of range jump",
  106. .insns = {
  107. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  108. BPF_EXIT_INSN(),
  109. },
  110. .errstr = "jump out of range",
  111. .result = REJECT,
  112. },
  113. {
  114. "out of range jump2",
  115. .insns = {
  116. BPF_JMP_IMM(BPF_JA, 0, 0, -2),
  117. BPF_EXIT_INSN(),
  118. },
  119. .errstr = "jump out of range",
  120. .result = REJECT,
  121. },
  122. {
  123. "test1 ld_imm64",
  124. .insns = {
  125. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  126. BPF_LD_IMM64(BPF_REG_0, 0),
  127. BPF_LD_IMM64(BPF_REG_0, 0),
  128. BPF_LD_IMM64(BPF_REG_0, 1),
  129. BPF_LD_IMM64(BPF_REG_0, 1),
  130. BPF_MOV64_IMM(BPF_REG_0, 2),
  131. BPF_EXIT_INSN(),
  132. },
  133. .errstr = "invalid BPF_LD_IMM insn",
  134. .errstr_unpriv = "R1 pointer comparison",
  135. .result = REJECT,
  136. },
  137. {
  138. "test2 ld_imm64",
  139. .insns = {
  140. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  141. BPF_LD_IMM64(BPF_REG_0, 0),
  142. BPF_LD_IMM64(BPF_REG_0, 0),
  143. BPF_LD_IMM64(BPF_REG_0, 1),
  144. BPF_LD_IMM64(BPF_REG_0, 1),
  145. BPF_EXIT_INSN(),
  146. },
  147. .errstr = "invalid BPF_LD_IMM insn",
  148. .errstr_unpriv = "R1 pointer comparison",
  149. .result = REJECT,
  150. },
  151. {
  152. "test3 ld_imm64",
  153. .insns = {
  154. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  155. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  156. BPF_LD_IMM64(BPF_REG_0, 0),
  157. BPF_LD_IMM64(BPF_REG_0, 0),
  158. BPF_LD_IMM64(BPF_REG_0, 1),
  159. BPF_LD_IMM64(BPF_REG_0, 1),
  160. BPF_EXIT_INSN(),
  161. },
  162. .errstr = "invalid bpf_ld_imm64 insn",
  163. .result = REJECT,
  164. },
  165. {
  166. "test4 ld_imm64",
  167. .insns = {
  168. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  169. BPF_EXIT_INSN(),
  170. },
  171. .errstr = "invalid bpf_ld_imm64 insn",
  172. .result = REJECT,
  173. },
  174. {
  175. "test5 ld_imm64",
  176. .insns = {
  177. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  178. },
  179. .errstr = "invalid bpf_ld_imm64 insn",
  180. .result = REJECT,
  181. },
  182. {
  183. "test6 ld_imm64",
  184. .insns = {
  185. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
  186. BPF_RAW_INSN(0, 0, 0, 0, 0),
  187. BPF_EXIT_INSN(),
  188. },
  189. .result = ACCEPT,
  190. },
  191. {
  192. "test7 ld_imm64",
  193. .insns = {
  194. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  195. BPF_RAW_INSN(0, 0, 0, 0, 1),
  196. BPF_EXIT_INSN(),
  197. },
  198. .result = ACCEPT,
  199. },
  200. {
  201. "test8 ld_imm64",
  202. .insns = {
  203. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 1, 1),
  204. BPF_RAW_INSN(0, 0, 0, 0, 1),
  205. BPF_EXIT_INSN(),
  206. },
  207. .errstr = "uses reserved fields",
  208. .result = REJECT,
  209. },
  210. {
  211. "test9 ld_imm64",
  212. .insns = {
  213. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  214. BPF_RAW_INSN(0, 0, 0, 1, 1),
  215. BPF_EXIT_INSN(),
  216. },
  217. .errstr = "invalid bpf_ld_imm64 insn",
  218. .result = REJECT,
  219. },
  220. {
  221. "test10 ld_imm64",
  222. .insns = {
  223. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  224. BPF_RAW_INSN(0, BPF_REG_1, 0, 0, 1),
  225. BPF_EXIT_INSN(),
  226. },
  227. .errstr = "invalid bpf_ld_imm64 insn",
  228. .result = REJECT,
  229. },
  230. {
  231. "test11 ld_imm64",
  232. .insns = {
  233. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 1),
  234. BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
  235. BPF_EXIT_INSN(),
  236. },
  237. .errstr = "invalid bpf_ld_imm64 insn",
  238. .result = REJECT,
  239. },
  240. {
  241. "test12 ld_imm64",
  242. .insns = {
  243. BPF_MOV64_IMM(BPF_REG_1, 0),
  244. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
  245. BPF_RAW_INSN(0, 0, 0, 0, 1),
  246. BPF_EXIT_INSN(),
  247. },
  248. .errstr = "not pointing to valid bpf_map",
  249. .result = REJECT,
  250. },
  251. {
  252. "test13 ld_imm64",
  253. .insns = {
  254. BPF_MOV64_IMM(BPF_REG_1, 0),
  255. BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, BPF_REG_1, 0, 1),
  256. BPF_RAW_INSN(0, 0, BPF_REG_1, 0, 1),
  257. BPF_EXIT_INSN(),
  258. },
  259. .errstr = "invalid bpf_ld_imm64 insn",
  260. .result = REJECT,
  261. },
  262. {
  263. "no bpf_exit",
  264. .insns = {
  265. BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2),
  266. },
  267. .errstr = "jump out of range",
  268. .result = REJECT,
  269. },
  270. {
  271. "loop (back-edge)",
  272. .insns = {
  273. BPF_JMP_IMM(BPF_JA, 0, 0, -1),
  274. BPF_EXIT_INSN(),
  275. },
  276. .errstr = "back-edge",
  277. .result = REJECT,
  278. },
  279. {
  280. "loop2 (back-edge)",
  281. .insns = {
  282. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  283. BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
  284. BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
  285. BPF_JMP_IMM(BPF_JA, 0, 0, -4),
  286. BPF_EXIT_INSN(),
  287. },
  288. .errstr = "back-edge",
  289. .result = REJECT,
  290. },
  291. {
  292. "conditional loop",
  293. .insns = {
  294. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  295. BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
  296. BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
  297. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
  298. BPF_EXIT_INSN(),
  299. },
  300. .errstr = "back-edge",
  301. .result = REJECT,
  302. },
  303. {
  304. "read uninitialized register",
  305. .insns = {
  306. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  307. BPF_EXIT_INSN(),
  308. },
  309. .errstr = "R2 !read_ok",
  310. .result = REJECT,
  311. },
  312. {
  313. "read invalid register",
  314. .insns = {
  315. BPF_MOV64_REG(BPF_REG_0, -1),
  316. BPF_EXIT_INSN(),
  317. },
  318. .errstr = "R15 is invalid",
  319. .result = REJECT,
  320. },
  321. {
  322. "program doesn't init R0 before exit",
  323. .insns = {
  324. BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1),
  325. BPF_EXIT_INSN(),
  326. },
  327. .errstr = "R0 !read_ok",
  328. .result = REJECT,
  329. },
  330. {
  331. "program doesn't init R0 before exit in all branches",
  332. .insns = {
  333. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  334. BPF_MOV64_IMM(BPF_REG_0, 1),
  335. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
  336. BPF_EXIT_INSN(),
  337. },
  338. .errstr = "R0 !read_ok",
  339. .errstr_unpriv = "R1 pointer comparison",
  340. .result = REJECT,
  341. },
  342. {
  343. "stack out of bounds",
  344. .insns = {
  345. BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
  346. BPF_EXIT_INSN(),
  347. },
  348. .errstr = "invalid stack",
  349. .result = REJECT,
  350. },
  351. {
  352. "invalid call insn1",
  353. .insns = {
  354. BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0),
  355. BPF_EXIT_INSN(),
  356. },
  357. .errstr = "BPF_CALL uses reserved",
  358. .result = REJECT,
  359. },
  360. {
  361. "invalid call insn2",
  362. .insns = {
  363. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0),
  364. BPF_EXIT_INSN(),
  365. },
  366. .errstr = "BPF_CALL uses reserved",
  367. .result = REJECT,
  368. },
  369. {
  370. "invalid function call",
  371. .insns = {
  372. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567),
  373. BPF_EXIT_INSN(),
  374. },
  375. .errstr = "invalid func unknown#1234567",
  376. .result = REJECT,
  377. },
  378. {
  379. "uninitialized stack1",
  380. .insns = {
  381. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  382. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  383. BPF_LD_MAP_FD(BPF_REG_1, 0),
  384. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  385. BPF_FUNC_map_lookup_elem),
  386. BPF_EXIT_INSN(),
  387. },
  388. .fixup_map1 = { 2 },
  389. .errstr = "invalid indirect read from stack",
  390. .result = REJECT,
  391. },
  392. {
  393. "uninitialized stack2",
  394. .insns = {
  395. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  396. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8),
  397. BPF_EXIT_INSN(),
  398. },
  399. .errstr = "invalid read from stack",
  400. .result = REJECT,
  401. },
  402. {
  403. "invalid fp arithmetic",
  404. /* If this gets ever changed, make sure JITs can deal with it. */
  405. .insns = {
  406. BPF_MOV64_IMM(BPF_REG_0, 0),
  407. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  408. BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 8),
  409. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  410. BPF_EXIT_INSN(),
  411. },
  412. .errstr_unpriv = "R1 pointer arithmetic",
  413. .result_unpriv = REJECT,
  414. .errstr = "R1 invalid mem access",
  415. .result = REJECT,
  416. },
  417. {
  418. "non-invalid fp arithmetic",
  419. .insns = {
  420. BPF_MOV64_IMM(BPF_REG_0, 0),
  421. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  422. BPF_EXIT_INSN(),
  423. },
  424. .result = ACCEPT,
  425. },
  426. {
  427. "invalid argument register",
  428. .insns = {
  429. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  430. BPF_FUNC_get_cgroup_classid),
  431. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  432. BPF_FUNC_get_cgroup_classid),
  433. BPF_EXIT_INSN(),
  434. },
  435. .errstr = "R1 !read_ok",
  436. .result = REJECT,
  437. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  438. },
  439. {
  440. "non-invalid argument register",
  441. .insns = {
  442. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
  443. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  444. BPF_FUNC_get_cgroup_classid),
  445. BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6),
  446. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  447. BPF_FUNC_get_cgroup_classid),
  448. BPF_EXIT_INSN(),
  449. },
  450. .result = ACCEPT,
  451. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  452. },
  453. {
  454. "check valid spill/fill",
  455. .insns = {
  456. /* spill R1(ctx) into stack */
  457. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  458. /* fill it back into R2 */
  459. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
  460. /* should be able to access R0 = *(R2 + 8) */
  461. /* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */
  462. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  463. BPF_EXIT_INSN(),
  464. },
  465. .errstr_unpriv = "R0 leaks addr",
  466. .result = ACCEPT,
  467. .result_unpriv = REJECT,
  468. },
  469. {
  470. "check valid spill/fill, skb mark",
  471. .insns = {
  472. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
  473. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
  474. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  475. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  476. offsetof(struct __sk_buff, mark)),
  477. BPF_EXIT_INSN(),
  478. },
  479. .result = ACCEPT,
  480. .result_unpriv = ACCEPT,
  481. },
  482. {
  483. "check corrupted spill/fill",
  484. .insns = {
  485. /* spill R1(ctx) into stack */
  486. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  487. /* mess up with R1 pointer on stack */
  488. BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23),
  489. /* fill back into R0 should fail */
  490. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  491. BPF_EXIT_INSN(),
  492. },
  493. .errstr_unpriv = "attempt to corrupt spilled",
  494. .errstr = "corrupted spill",
  495. .result = REJECT,
  496. },
  497. {
  498. "invalid src register in STX",
  499. .insns = {
  500. BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1),
  501. BPF_EXIT_INSN(),
  502. },
  503. .errstr = "R15 is invalid",
  504. .result = REJECT,
  505. },
  506. {
  507. "invalid dst register in STX",
  508. .insns = {
  509. BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1),
  510. BPF_EXIT_INSN(),
  511. },
  512. .errstr = "R14 is invalid",
  513. .result = REJECT,
  514. },
  515. {
  516. "invalid dst register in ST",
  517. .insns = {
  518. BPF_ST_MEM(BPF_B, 14, -1, -1),
  519. BPF_EXIT_INSN(),
  520. },
  521. .errstr = "R14 is invalid",
  522. .result = REJECT,
  523. },
  524. {
  525. "invalid src register in LDX",
  526. .insns = {
  527. BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0),
  528. BPF_EXIT_INSN(),
  529. },
  530. .errstr = "R12 is invalid",
  531. .result = REJECT,
  532. },
  533. {
  534. "invalid dst register in LDX",
  535. .insns = {
  536. BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0),
  537. BPF_EXIT_INSN(),
  538. },
  539. .errstr = "R11 is invalid",
  540. .result = REJECT,
  541. },
  542. {
  543. "junk insn",
  544. .insns = {
  545. BPF_RAW_INSN(0, 0, 0, 0, 0),
  546. BPF_EXIT_INSN(),
  547. },
  548. .errstr = "invalid BPF_LD_IMM",
  549. .result = REJECT,
  550. },
  551. {
  552. "junk insn2",
  553. .insns = {
  554. BPF_RAW_INSN(1, 0, 0, 0, 0),
  555. BPF_EXIT_INSN(),
  556. },
  557. .errstr = "BPF_LDX uses reserved fields",
  558. .result = REJECT,
  559. },
  560. {
  561. "junk insn3",
  562. .insns = {
  563. BPF_RAW_INSN(-1, 0, 0, 0, 0),
  564. BPF_EXIT_INSN(),
  565. },
  566. .errstr = "invalid BPF_ALU opcode f0",
  567. .result = REJECT,
  568. },
  569. {
  570. "junk insn4",
  571. .insns = {
  572. BPF_RAW_INSN(-1, -1, -1, -1, -1),
  573. BPF_EXIT_INSN(),
  574. },
  575. .errstr = "invalid BPF_ALU opcode f0",
  576. .result = REJECT,
  577. },
  578. {
  579. "junk insn5",
  580. .insns = {
  581. BPF_RAW_INSN(0x7f, -1, -1, -1, -1),
  582. BPF_EXIT_INSN(),
  583. },
  584. .errstr = "BPF_ALU uses reserved fields",
  585. .result = REJECT,
  586. },
  587. {
  588. "misaligned read from stack",
  589. .insns = {
  590. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  591. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4),
  592. BPF_EXIT_INSN(),
  593. },
  594. .errstr = "misaligned access",
  595. .result = REJECT,
  596. },
  597. {
  598. "invalid map_fd for function call",
  599. .insns = {
  600. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  601. BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10),
  602. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  603. BPF_LD_MAP_FD(BPF_REG_1, 0),
  604. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  605. BPF_FUNC_map_delete_elem),
  606. BPF_EXIT_INSN(),
  607. },
  608. .errstr = "fd 0 is not pointing to valid bpf_map",
  609. .result = REJECT,
  610. },
  611. {
  612. "don't check return value before access",
  613. .insns = {
  614. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  615. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  616. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  617. BPF_LD_MAP_FD(BPF_REG_1, 0),
  618. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  619. BPF_FUNC_map_lookup_elem),
  620. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  621. BPF_EXIT_INSN(),
  622. },
  623. .fixup_map1 = { 3 },
  624. .errstr = "R0 invalid mem access 'map_value_or_null'",
  625. .result = REJECT,
  626. },
  627. {
  628. "access memory with incorrect alignment",
  629. .insns = {
  630. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  631. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  632. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  633. BPF_LD_MAP_FD(BPF_REG_1, 0),
  634. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  635. BPF_FUNC_map_lookup_elem),
  636. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  637. BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
  638. BPF_EXIT_INSN(),
  639. },
  640. .fixup_map1 = { 3 },
  641. .errstr = "misaligned access",
  642. .result = REJECT,
  643. },
  644. {
  645. "sometimes access memory with incorrect alignment",
  646. .insns = {
  647. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  648. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  649. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  650. BPF_LD_MAP_FD(BPF_REG_1, 0),
  651. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  652. BPF_FUNC_map_lookup_elem),
  653. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  654. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
  655. BPF_EXIT_INSN(),
  656. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
  657. BPF_EXIT_INSN(),
  658. },
  659. .fixup_map1 = { 3 },
  660. .errstr = "R0 invalid mem access",
  661. .errstr_unpriv = "R0 leaks addr",
  662. .result = REJECT,
  663. },
  664. {
  665. "jump test 1",
  666. .insns = {
  667. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  668. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8),
  669. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
  670. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  671. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1),
  672. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1),
  673. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1),
  674. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2),
  675. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1),
  676. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3),
  677. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1),
  678. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4),
  679. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
  680. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5),
  681. BPF_MOV64_IMM(BPF_REG_0, 0),
  682. BPF_EXIT_INSN(),
  683. },
  684. .errstr_unpriv = "R1 pointer comparison",
  685. .result_unpriv = REJECT,
  686. .result = ACCEPT,
  687. },
  688. {
  689. "jump test 2",
  690. .insns = {
  691. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  692. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
  693. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  694. BPF_JMP_IMM(BPF_JA, 0, 0, 14),
  695. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2),
  696. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
  697. BPF_JMP_IMM(BPF_JA, 0, 0, 11),
  698. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2),
  699. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
  700. BPF_JMP_IMM(BPF_JA, 0, 0, 8),
  701. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2),
  702. BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
  703. BPF_JMP_IMM(BPF_JA, 0, 0, 5),
  704. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2),
  705. BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
  706. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  707. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
  708. BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
  709. BPF_MOV64_IMM(BPF_REG_0, 0),
  710. BPF_EXIT_INSN(),
  711. },
  712. .errstr_unpriv = "R1 pointer comparison",
  713. .result_unpriv = REJECT,
  714. .result = ACCEPT,
  715. },
  716. {
  717. "jump test 3",
  718. .insns = {
  719. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  720. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  721. BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
  722. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  723. BPF_JMP_IMM(BPF_JA, 0, 0, 19),
  724. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3),
  725. BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
  726. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  727. BPF_JMP_IMM(BPF_JA, 0, 0, 15),
  728. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3),
  729. BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
  730. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32),
  731. BPF_JMP_IMM(BPF_JA, 0, 0, 11),
  732. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3),
  733. BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
  734. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40),
  735. BPF_JMP_IMM(BPF_JA, 0, 0, 7),
  736. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3),
  737. BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
  738. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),
  739. BPF_JMP_IMM(BPF_JA, 0, 0, 3),
  740. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0),
  741. BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
  742. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56),
  743. BPF_LD_MAP_FD(BPF_REG_1, 0),
  744. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  745. BPF_FUNC_map_delete_elem),
  746. BPF_EXIT_INSN(),
  747. },
  748. .fixup_map1 = { 24 },
  749. .errstr_unpriv = "R1 pointer comparison",
  750. .result_unpriv = REJECT,
  751. .result = ACCEPT,
  752. },
  753. {
  754. "jump test 4",
  755. .insns = {
  756. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  757. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  758. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  759. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  760. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  761. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  762. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  763. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  764. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  765. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  766. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  767. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  768. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  769. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  770. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  771. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  772. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  773. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  774. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  775. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  776. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  777. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  778. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  779. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  780. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  781. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  782. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  783. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  784. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  785. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  786. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  787. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  788. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
  789. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
  790. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
  791. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
  792. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  793. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  794. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  795. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  796. BPF_MOV64_IMM(BPF_REG_0, 0),
  797. BPF_EXIT_INSN(),
  798. },
  799. .errstr_unpriv = "R1 pointer comparison",
  800. .result_unpriv = REJECT,
  801. .result = ACCEPT,
  802. },
  803. {
  804. "jump test 5",
  805. .insns = {
  806. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  807. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  808. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  809. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  810. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  811. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  812. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  813. BPF_MOV64_IMM(BPF_REG_0, 0),
  814. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  815. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  816. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  817. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  818. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  819. BPF_MOV64_IMM(BPF_REG_0, 0),
  820. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  821. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  822. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  823. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  824. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  825. BPF_MOV64_IMM(BPF_REG_0, 0),
  826. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  827. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  828. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  829. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  830. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  831. BPF_MOV64_IMM(BPF_REG_0, 0),
  832. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  833. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
  834. BPF_JMP_IMM(BPF_JA, 0, 0, 2),
  835. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
  836. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  837. BPF_MOV64_IMM(BPF_REG_0, 0),
  838. BPF_EXIT_INSN(),
  839. },
  840. .errstr_unpriv = "R1 pointer comparison",
  841. .result_unpriv = REJECT,
  842. .result = ACCEPT,
  843. },
  844. {
  845. "access skb fields ok",
  846. .insns = {
  847. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  848. offsetof(struct __sk_buff, len)),
  849. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  850. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  851. offsetof(struct __sk_buff, mark)),
  852. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  853. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  854. offsetof(struct __sk_buff, pkt_type)),
  855. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  856. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  857. offsetof(struct __sk_buff, queue_mapping)),
  858. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  859. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  860. offsetof(struct __sk_buff, protocol)),
  861. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  862. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  863. offsetof(struct __sk_buff, vlan_present)),
  864. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  865. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  866. offsetof(struct __sk_buff, vlan_tci)),
  867. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  868. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  869. offsetof(struct __sk_buff, napi_id)),
  870. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
  871. BPF_EXIT_INSN(),
  872. },
  873. .result = ACCEPT,
  874. },
  875. {
  876. "access skb fields bad1",
  877. .insns = {
  878. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4),
  879. BPF_EXIT_INSN(),
  880. },
  881. .errstr = "invalid bpf_context access",
  882. .result = REJECT,
  883. },
  884. {
  885. "access skb fields bad2",
  886. .insns = {
  887. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9),
  888. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  889. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  890. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  891. BPF_LD_MAP_FD(BPF_REG_1, 0),
  892. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  893. BPF_FUNC_map_lookup_elem),
  894. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  895. BPF_EXIT_INSN(),
  896. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  897. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  898. offsetof(struct __sk_buff, pkt_type)),
  899. BPF_EXIT_INSN(),
  900. },
  901. .fixup_map1 = { 4 },
  902. .errstr = "different pointers",
  903. .errstr_unpriv = "R1 pointer comparison",
  904. .result = REJECT,
  905. },
  906. {
  907. "access skb fields bad3",
  908. .insns = {
  909. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
  910. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  911. offsetof(struct __sk_buff, pkt_type)),
  912. BPF_EXIT_INSN(),
  913. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  914. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  915. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  916. BPF_LD_MAP_FD(BPF_REG_1, 0),
  917. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  918. BPF_FUNC_map_lookup_elem),
  919. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  920. BPF_EXIT_INSN(),
  921. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  922. BPF_JMP_IMM(BPF_JA, 0, 0, -12),
  923. },
  924. .fixup_map1 = { 6 },
  925. .errstr = "different pointers",
  926. .errstr_unpriv = "R1 pointer comparison",
  927. .result = REJECT,
  928. },
  929. {
  930. "access skb fields bad4",
  931. .insns = {
  932. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3),
  933. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  934. offsetof(struct __sk_buff, len)),
  935. BPF_MOV64_IMM(BPF_REG_0, 0),
  936. BPF_EXIT_INSN(),
  937. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  938. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  939. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  940. BPF_LD_MAP_FD(BPF_REG_1, 0),
  941. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  942. BPF_FUNC_map_lookup_elem),
  943. BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
  944. BPF_EXIT_INSN(),
  945. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  946. BPF_JMP_IMM(BPF_JA, 0, 0, -13),
  947. },
  948. .fixup_map1 = { 7 },
  949. .errstr = "different pointers",
  950. .errstr_unpriv = "R1 pointer comparison",
  951. .result = REJECT,
  952. },
  953. {
  954. "check skb->mark is not writeable by sockets",
  955. .insns = {
  956. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  957. offsetof(struct __sk_buff, mark)),
  958. BPF_EXIT_INSN(),
  959. },
  960. .errstr = "invalid bpf_context access",
  961. .errstr_unpriv = "R1 leaks addr",
  962. .result = REJECT,
  963. },
  964. {
  965. "check skb->tc_index is not writeable by sockets",
  966. .insns = {
  967. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  968. offsetof(struct __sk_buff, tc_index)),
  969. BPF_EXIT_INSN(),
  970. },
  971. .errstr = "invalid bpf_context access",
  972. .errstr_unpriv = "R1 leaks addr",
  973. .result = REJECT,
  974. },
  975. {
  976. "check cb access: byte",
  977. .insns = {
  978. BPF_MOV64_IMM(BPF_REG_0, 0),
  979. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  980. offsetof(struct __sk_buff, cb[0])),
  981. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  982. offsetof(struct __sk_buff, cb[0]) + 1),
  983. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  984. offsetof(struct __sk_buff, cb[0]) + 2),
  985. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  986. offsetof(struct __sk_buff, cb[0]) + 3),
  987. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  988. offsetof(struct __sk_buff, cb[1])),
  989. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  990. offsetof(struct __sk_buff, cb[1]) + 1),
  991. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  992. offsetof(struct __sk_buff, cb[1]) + 2),
  993. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  994. offsetof(struct __sk_buff, cb[1]) + 3),
  995. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  996. offsetof(struct __sk_buff, cb[2])),
  997. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  998. offsetof(struct __sk_buff, cb[2]) + 1),
  999. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1000. offsetof(struct __sk_buff, cb[2]) + 2),
  1001. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1002. offsetof(struct __sk_buff, cb[2]) + 3),
  1003. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1004. offsetof(struct __sk_buff, cb[3])),
  1005. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1006. offsetof(struct __sk_buff, cb[3]) + 1),
  1007. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1008. offsetof(struct __sk_buff, cb[3]) + 2),
  1009. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1010. offsetof(struct __sk_buff, cb[3]) + 3),
  1011. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1012. offsetof(struct __sk_buff, cb[4])),
  1013. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1014. offsetof(struct __sk_buff, cb[4]) + 1),
  1015. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1016. offsetof(struct __sk_buff, cb[4]) + 2),
  1017. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1018. offsetof(struct __sk_buff, cb[4]) + 3),
  1019. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1020. offsetof(struct __sk_buff, cb[0])),
  1021. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1022. offsetof(struct __sk_buff, cb[0]) + 1),
  1023. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1024. offsetof(struct __sk_buff, cb[0]) + 2),
  1025. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1026. offsetof(struct __sk_buff, cb[0]) + 3),
  1027. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1028. offsetof(struct __sk_buff, cb[1])),
  1029. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1030. offsetof(struct __sk_buff, cb[1]) + 1),
  1031. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1032. offsetof(struct __sk_buff, cb[1]) + 2),
  1033. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1034. offsetof(struct __sk_buff, cb[1]) + 3),
  1035. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1036. offsetof(struct __sk_buff, cb[2])),
  1037. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1038. offsetof(struct __sk_buff, cb[2]) + 1),
  1039. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1040. offsetof(struct __sk_buff, cb[2]) + 2),
  1041. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1042. offsetof(struct __sk_buff, cb[2]) + 3),
  1043. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1044. offsetof(struct __sk_buff, cb[3])),
  1045. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1046. offsetof(struct __sk_buff, cb[3]) + 1),
  1047. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1048. offsetof(struct __sk_buff, cb[3]) + 2),
  1049. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1050. offsetof(struct __sk_buff, cb[3]) + 3),
  1051. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1052. offsetof(struct __sk_buff, cb[4])),
  1053. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1054. offsetof(struct __sk_buff, cb[4]) + 1),
  1055. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1056. offsetof(struct __sk_buff, cb[4]) + 2),
  1057. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1058. offsetof(struct __sk_buff, cb[4]) + 3),
  1059. BPF_EXIT_INSN(),
  1060. },
  1061. .result = ACCEPT,
  1062. },
  1063. {
  1064. "__sk_buff->hash, offset 0, byte store not permitted",
  1065. .insns = {
  1066. BPF_MOV64_IMM(BPF_REG_0, 0),
  1067. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1068. offsetof(struct __sk_buff, hash)),
  1069. BPF_EXIT_INSN(),
  1070. },
  1071. .errstr = "invalid bpf_context access",
  1072. .result = REJECT,
  1073. },
  1074. {
  1075. "__sk_buff->tc_index, offset 3, byte store not permitted",
  1076. .insns = {
  1077. BPF_MOV64_IMM(BPF_REG_0, 0),
  1078. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1079. offsetof(struct __sk_buff, tc_index) + 3),
  1080. BPF_EXIT_INSN(),
  1081. },
  1082. .errstr = "invalid bpf_context access",
  1083. .result = REJECT,
  1084. },
  1085. {
  1086. "check skb->hash byte load permitted",
  1087. .insns = {
  1088. BPF_MOV64_IMM(BPF_REG_0, 0),
  1089. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1090. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1091. offsetof(struct __sk_buff, hash)),
  1092. #else
  1093. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1094. offsetof(struct __sk_buff, hash) + 3),
  1095. #endif
  1096. BPF_EXIT_INSN(),
  1097. },
  1098. .result = ACCEPT,
  1099. },
  1100. {
  1101. "check skb->hash byte load not permitted 1",
  1102. .insns = {
  1103. BPF_MOV64_IMM(BPF_REG_0, 0),
  1104. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1105. offsetof(struct __sk_buff, hash) + 1),
  1106. BPF_EXIT_INSN(),
  1107. },
  1108. .errstr = "invalid bpf_context access",
  1109. .result = REJECT,
  1110. },
  1111. {
  1112. "check skb->hash byte load not permitted 2",
  1113. .insns = {
  1114. BPF_MOV64_IMM(BPF_REG_0, 0),
  1115. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1116. offsetof(struct __sk_buff, hash) + 2),
  1117. BPF_EXIT_INSN(),
  1118. },
  1119. .errstr = "invalid bpf_context access",
  1120. .result = REJECT,
  1121. },
  1122. {
  1123. "check skb->hash byte load not permitted 3",
  1124. .insns = {
  1125. BPF_MOV64_IMM(BPF_REG_0, 0),
  1126. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1127. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1128. offsetof(struct __sk_buff, hash) + 3),
  1129. #else
  1130. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  1131. offsetof(struct __sk_buff, hash)),
  1132. #endif
  1133. BPF_EXIT_INSN(),
  1134. },
  1135. .errstr = "invalid bpf_context access",
  1136. .result = REJECT,
  1137. },
  1138. {
  1139. "check cb access: byte, wrong type",
  1140. .insns = {
  1141. BPF_MOV64_IMM(BPF_REG_0, 0),
  1142. BPF_STX_MEM(BPF_B, BPF_REG_1, BPF_REG_0,
  1143. offsetof(struct __sk_buff, cb[0])),
  1144. BPF_EXIT_INSN(),
  1145. },
  1146. .errstr = "invalid bpf_context access",
  1147. .result = REJECT,
  1148. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1149. },
  1150. {
  1151. "check cb access: half",
  1152. .insns = {
  1153. BPF_MOV64_IMM(BPF_REG_0, 0),
  1154. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1155. offsetof(struct __sk_buff, cb[0])),
  1156. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1157. offsetof(struct __sk_buff, cb[0]) + 2),
  1158. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1159. offsetof(struct __sk_buff, cb[1])),
  1160. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1161. offsetof(struct __sk_buff, cb[1]) + 2),
  1162. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1163. offsetof(struct __sk_buff, cb[2])),
  1164. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1165. offsetof(struct __sk_buff, cb[2]) + 2),
  1166. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1167. offsetof(struct __sk_buff, cb[3])),
  1168. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1169. offsetof(struct __sk_buff, cb[3]) + 2),
  1170. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1171. offsetof(struct __sk_buff, cb[4])),
  1172. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1173. offsetof(struct __sk_buff, cb[4]) + 2),
  1174. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1175. offsetof(struct __sk_buff, cb[0])),
  1176. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1177. offsetof(struct __sk_buff, cb[0]) + 2),
  1178. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1179. offsetof(struct __sk_buff, cb[1])),
  1180. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1181. offsetof(struct __sk_buff, cb[1]) + 2),
  1182. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1183. offsetof(struct __sk_buff, cb[2])),
  1184. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1185. offsetof(struct __sk_buff, cb[2]) + 2),
  1186. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1187. offsetof(struct __sk_buff, cb[3])),
  1188. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1189. offsetof(struct __sk_buff, cb[3]) + 2),
  1190. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1191. offsetof(struct __sk_buff, cb[4])),
  1192. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1193. offsetof(struct __sk_buff, cb[4]) + 2),
  1194. BPF_EXIT_INSN(),
  1195. },
  1196. .result = ACCEPT,
  1197. },
  1198. {
  1199. "check cb access: half, unaligned",
  1200. .insns = {
  1201. BPF_MOV64_IMM(BPF_REG_0, 0),
  1202. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1203. offsetof(struct __sk_buff, cb[0]) + 1),
  1204. BPF_EXIT_INSN(),
  1205. },
  1206. .errstr = "misaligned access",
  1207. .result = REJECT,
  1208. },
  1209. {
  1210. "check __sk_buff->hash, offset 0, half store not permitted",
  1211. .insns = {
  1212. BPF_MOV64_IMM(BPF_REG_0, 0),
  1213. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1214. offsetof(struct __sk_buff, hash)),
  1215. BPF_EXIT_INSN(),
  1216. },
  1217. .errstr = "invalid bpf_context access",
  1218. .result = REJECT,
  1219. },
  1220. {
  1221. "check __sk_buff->tc_index, offset 2, half store not permitted",
  1222. .insns = {
  1223. BPF_MOV64_IMM(BPF_REG_0, 0),
  1224. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1225. offsetof(struct __sk_buff, tc_index) + 2),
  1226. BPF_EXIT_INSN(),
  1227. },
  1228. .errstr = "invalid bpf_context access",
  1229. .result = REJECT,
  1230. },
  1231. {
  1232. "check skb->hash half load permitted",
  1233. .insns = {
  1234. BPF_MOV64_IMM(BPF_REG_0, 0),
  1235. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1236. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1237. offsetof(struct __sk_buff, hash)),
  1238. #else
  1239. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1240. offsetof(struct __sk_buff, hash) + 2),
  1241. #endif
  1242. BPF_EXIT_INSN(),
  1243. },
  1244. .result = ACCEPT,
  1245. },
  1246. {
  1247. "check skb->hash half load not permitted",
  1248. .insns = {
  1249. BPF_MOV64_IMM(BPF_REG_0, 0),
  1250. #if __BYTE_ORDER == __LITTLE_ENDIAN
  1251. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1252. offsetof(struct __sk_buff, hash) + 2),
  1253. #else
  1254. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  1255. offsetof(struct __sk_buff, hash)),
  1256. #endif
  1257. BPF_EXIT_INSN(),
  1258. },
  1259. .errstr = "invalid bpf_context access",
  1260. .result = REJECT,
  1261. },
  1262. {
  1263. "check cb access: half, wrong type",
  1264. .insns = {
  1265. BPF_MOV64_IMM(BPF_REG_0, 0),
  1266. BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_0,
  1267. offsetof(struct __sk_buff, cb[0])),
  1268. BPF_EXIT_INSN(),
  1269. },
  1270. .errstr = "invalid bpf_context access",
  1271. .result = REJECT,
  1272. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1273. },
  1274. {
  1275. "check cb access: word",
  1276. .insns = {
  1277. BPF_MOV64_IMM(BPF_REG_0, 0),
  1278. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1279. offsetof(struct __sk_buff, cb[0])),
  1280. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1281. offsetof(struct __sk_buff, cb[1])),
  1282. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1283. offsetof(struct __sk_buff, cb[2])),
  1284. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1285. offsetof(struct __sk_buff, cb[3])),
  1286. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1287. offsetof(struct __sk_buff, cb[4])),
  1288. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1289. offsetof(struct __sk_buff, cb[0])),
  1290. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1291. offsetof(struct __sk_buff, cb[1])),
  1292. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1293. offsetof(struct __sk_buff, cb[2])),
  1294. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1295. offsetof(struct __sk_buff, cb[3])),
  1296. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1297. offsetof(struct __sk_buff, cb[4])),
  1298. BPF_EXIT_INSN(),
  1299. },
  1300. .result = ACCEPT,
  1301. },
  1302. {
  1303. "check cb access: word, unaligned 1",
  1304. .insns = {
  1305. BPF_MOV64_IMM(BPF_REG_0, 0),
  1306. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1307. offsetof(struct __sk_buff, cb[0]) + 2),
  1308. BPF_EXIT_INSN(),
  1309. },
  1310. .errstr = "misaligned access",
  1311. .result = REJECT,
  1312. },
  1313. {
  1314. "check cb access: word, unaligned 2",
  1315. .insns = {
  1316. BPF_MOV64_IMM(BPF_REG_0, 0),
  1317. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1318. offsetof(struct __sk_buff, cb[4]) + 1),
  1319. BPF_EXIT_INSN(),
  1320. },
  1321. .errstr = "misaligned access",
  1322. .result = REJECT,
  1323. },
  1324. {
  1325. "check cb access: word, unaligned 3",
  1326. .insns = {
  1327. BPF_MOV64_IMM(BPF_REG_0, 0),
  1328. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1329. offsetof(struct __sk_buff, cb[4]) + 2),
  1330. BPF_EXIT_INSN(),
  1331. },
  1332. .errstr = "misaligned access",
  1333. .result = REJECT,
  1334. },
  1335. {
  1336. "check cb access: word, unaligned 4",
  1337. .insns = {
  1338. BPF_MOV64_IMM(BPF_REG_0, 0),
  1339. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1340. offsetof(struct __sk_buff, cb[4]) + 3),
  1341. BPF_EXIT_INSN(),
  1342. },
  1343. .errstr = "misaligned access",
  1344. .result = REJECT,
  1345. },
  1346. {
  1347. "check cb access: double",
  1348. .insns = {
  1349. BPF_MOV64_IMM(BPF_REG_0, 0),
  1350. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1351. offsetof(struct __sk_buff, cb[0])),
  1352. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1353. offsetof(struct __sk_buff, cb[2])),
  1354. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1355. offsetof(struct __sk_buff, cb[0])),
  1356. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1357. offsetof(struct __sk_buff, cb[2])),
  1358. BPF_EXIT_INSN(),
  1359. },
  1360. .result = ACCEPT,
  1361. },
  1362. {
  1363. "check cb access: double, unaligned 1",
  1364. .insns = {
  1365. BPF_MOV64_IMM(BPF_REG_0, 0),
  1366. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1367. offsetof(struct __sk_buff, cb[1])),
  1368. BPF_EXIT_INSN(),
  1369. },
  1370. .errstr = "misaligned access",
  1371. .result = REJECT,
  1372. },
  1373. {
  1374. "check cb access: double, unaligned 2",
  1375. .insns = {
  1376. BPF_MOV64_IMM(BPF_REG_0, 0),
  1377. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1378. offsetof(struct __sk_buff, cb[3])),
  1379. BPF_EXIT_INSN(),
  1380. },
  1381. .errstr = "misaligned access",
  1382. .result = REJECT,
  1383. },
  1384. {
  1385. "check cb access: double, oob 1",
  1386. .insns = {
  1387. BPF_MOV64_IMM(BPF_REG_0, 0),
  1388. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1389. offsetof(struct __sk_buff, cb[4])),
  1390. BPF_EXIT_INSN(),
  1391. },
  1392. .errstr = "invalid bpf_context access",
  1393. .result = REJECT,
  1394. },
  1395. {
  1396. "check cb access: double, oob 2",
  1397. .insns = {
  1398. BPF_MOV64_IMM(BPF_REG_0, 0),
  1399. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1400. offsetof(struct __sk_buff, cb[4])),
  1401. BPF_EXIT_INSN(),
  1402. },
  1403. .errstr = "invalid bpf_context access",
  1404. .result = REJECT,
  1405. },
  1406. {
  1407. "check __sk_buff->ifindex dw store not permitted",
  1408. .insns = {
  1409. BPF_MOV64_IMM(BPF_REG_0, 0),
  1410. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1411. offsetof(struct __sk_buff, ifindex)),
  1412. BPF_EXIT_INSN(),
  1413. },
  1414. .errstr = "invalid bpf_context access",
  1415. .result = REJECT,
  1416. },
  1417. {
  1418. "check __sk_buff->ifindex dw load not permitted",
  1419. .insns = {
  1420. BPF_MOV64_IMM(BPF_REG_0, 0),
  1421. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  1422. offsetof(struct __sk_buff, ifindex)),
  1423. BPF_EXIT_INSN(),
  1424. },
  1425. .errstr = "invalid bpf_context access",
  1426. .result = REJECT,
  1427. },
  1428. {
  1429. "check cb access: double, wrong type",
  1430. .insns = {
  1431. BPF_MOV64_IMM(BPF_REG_0, 0),
  1432. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  1433. offsetof(struct __sk_buff, cb[0])),
  1434. BPF_EXIT_INSN(),
  1435. },
  1436. .errstr = "invalid bpf_context access",
  1437. .result = REJECT,
  1438. .prog_type = BPF_PROG_TYPE_CGROUP_SOCK,
  1439. },
  1440. {
  1441. "check out of range skb->cb access",
  1442. .insns = {
  1443. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1444. offsetof(struct __sk_buff, cb[0]) + 256),
  1445. BPF_EXIT_INSN(),
  1446. },
  1447. .errstr = "invalid bpf_context access",
  1448. .errstr_unpriv = "",
  1449. .result = REJECT,
  1450. .prog_type = BPF_PROG_TYPE_SCHED_ACT,
  1451. },
  1452. {
  1453. "write skb fields from socket prog",
  1454. .insns = {
  1455. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1456. offsetof(struct __sk_buff, cb[4])),
  1457. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  1458. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1459. offsetof(struct __sk_buff, mark)),
  1460. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1461. offsetof(struct __sk_buff, tc_index)),
  1462. BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
  1463. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1464. offsetof(struct __sk_buff, cb[0])),
  1465. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  1466. offsetof(struct __sk_buff, cb[2])),
  1467. BPF_EXIT_INSN(),
  1468. },
  1469. .result = ACCEPT,
  1470. .errstr_unpriv = "R1 leaks addr",
  1471. .result_unpriv = REJECT,
  1472. },
  1473. {
  1474. "write skb fields from tc_cls_act prog",
  1475. .insns = {
  1476. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1477. offsetof(struct __sk_buff, cb[0])),
  1478. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1479. offsetof(struct __sk_buff, mark)),
  1480. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  1481. offsetof(struct __sk_buff, tc_index)),
  1482. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1483. offsetof(struct __sk_buff, tc_index)),
  1484. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
  1485. offsetof(struct __sk_buff, cb[3])),
  1486. BPF_EXIT_INSN(),
  1487. },
  1488. .errstr_unpriv = "",
  1489. .result_unpriv = REJECT,
  1490. .result = ACCEPT,
  1491. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1492. },
  1493. {
  1494. "PTR_TO_STACK store/load",
  1495. .insns = {
  1496. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1497. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
  1498. BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
  1499. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
  1500. BPF_EXIT_INSN(),
  1501. },
  1502. .result = ACCEPT,
  1503. },
  1504. {
  1505. "PTR_TO_STACK store/load - bad alignment on off",
  1506. .insns = {
  1507. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1508. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1509. BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
  1510. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
  1511. BPF_EXIT_INSN(),
  1512. },
  1513. .result = REJECT,
  1514. .errstr = "misaligned access off -6 size 8",
  1515. },
  1516. {
  1517. "PTR_TO_STACK store/load - bad alignment on reg",
  1518. .insns = {
  1519. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1520. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
  1521. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1522. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1523. BPF_EXIT_INSN(),
  1524. },
  1525. .result = REJECT,
  1526. .errstr = "misaligned access off -2 size 8",
  1527. },
  1528. {
  1529. "PTR_TO_STACK store/load - out of bounds low",
  1530. .insns = {
  1531. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1532. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000),
  1533. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1534. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1535. BPF_EXIT_INSN(),
  1536. },
  1537. .result = REJECT,
  1538. .errstr = "invalid stack off=-79992 size=8",
  1539. },
  1540. {
  1541. "PTR_TO_STACK store/load - out of bounds high",
  1542. .insns = {
  1543. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1544. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1545. BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
  1546. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
  1547. BPF_EXIT_INSN(),
  1548. },
  1549. .result = REJECT,
  1550. .errstr = "invalid stack off=0 size=8",
  1551. },
  1552. {
  1553. "unpriv: return pointer",
  1554. .insns = {
  1555. BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
  1556. BPF_EXIT_INSN(),
  1557. },
  1558. .result = ACCEPT,
  1559. .result_unpriv = REJECT,
  1560. .errstr_unpriv = "R0 leaks addr",
  1561. },
  1562. {
  1563. "unpriv: add const to pointer",
  1564. .insns = {
  1565. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  1566. BPF_MOV64_IMM(BPF_REG_0, 0),
  1567. BPF_EXIT_INSN(),
  1568. },
  1569. .result = ACCEPT,
  1570. .result_unpriv = REJECT,
  1571. .errstr_unpriv = "R1 pointer arithmetic",
  1572. },
  1573. {
  1574. "unpriv: add pointer to pointer",
  1575. .insns = {
  1576. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
  1577. BPF_MOV64_IMM(BPF_REG_0, 0),
  1578. BPF_EXIT_INSN(),
  1579. },
  1580. .result = ACCEPT,
  1581. .result_unpriv = REJECT,
  1582. .errstr_unpriv = "R1 pointer arithmetic",
  1583. },
  1584. {
  1585. "unpriv: neg pointer",
  1586. .insns = {
  1587. BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0),
  1588. BPF_MOV64_IMM(BPF_REG_0, 0),
  1589. BPF_EXIT_INSN(),
  1590. },
  1591. .result = ACCEPT,
  1592. .result_unpriv = REJECT,
  1593. .errstr_unpriv = "R1 pointer arithmetic",
  1594. },
  1595. {
  1596. "unpriv: cmp pointer with const",
  1597. .insns = {
  1598. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
  1599. BPF_MOV64_IMM(BPF_REG_0, 0),
  1600. BPF_EXIT_INSN(),
  1601. },
  1602. .result = ACCEPT,
  1603. .result_unpriv = REJECT,
  1604. .errstr_unpriv = "R1 pointer comparison",
  1605. },
  1606. {
  1607. "unpriv: cmp pointer with pointer",
  1608. .insns = {
  1609. BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
  1610. BPF_MOV64_IMM(BPF_REG_0, 0),
  1611. BPF_EXIT_INSN(),
  1612. },
  1613. .result = ACCEPT,
  1614. .result_unpriv = REJECT,
  1615. .errstr_unpriv = "R10 pointer comparison",
  1616. },
  1617. {
  1618. "unpriv: check that printk is disallowed",
  1619. .insns = {
  1620. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  1621. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  1622. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  1623. BPF_MOV64_IMM(BPF_REG_2, 8),
  1624. BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
  1625. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1626. BPF_FUNC_trace_printk),
  1627. BPF_MOV64_IMM(BPF_REG_0, 0),
  1628. BPF_EXIT_INSN(),
  1629. },
  1630. .errstr_unpriv = "unknown func bpf_trace_printk#6",
  1631. .result_unpriv = REJECT,
  1632. .result = ACCEPT,
  1633. },
  1634. {
  1635. "unpriv: pass pointer to helper function",
  1636. .insns = {
  1637. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  1638. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1639. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1640. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1641. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  1642. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  1643. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1644. BPF_FUNC_map_update_elem),
  1645. BPF_MOV64_IMM(BPF_REG_0, 0),
  1646. BPF_EXIT_INSN(),
  1647. },
  1648. .fixup_map1 = { 3 },
  1649. .errstr_unpriv = "R4 leaks addr",
  1650. .result_unpriv = REJECT,
  1651. .result = ACCEPT,
  1652. },
  1653. {
  1654. "unpriv: indirectly pass pointer on stack to helper function",
  1655. .insns = {
  1656. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1657. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1658. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1659. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1660. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1661. BPF_FUNC_map_lookup_elem),
  1662. BPF_MOV64_IMM(BPF_REG_0, 0),
  1663. BPF_EXIT_INSN(),
  1664. },
  1665. .fixup_map1 = { 3 },
  1666. .errstr = "invalid indirect read from stack off -8+0 size 8",
  1667. .result = REJECT,
  1668. },
  1669. {
  1670. "unpriv: mangle pointer on stack 1",
  1671. .insns = {
  1672. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1673. BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0),
  1674. BPF_MOV64_IMM(BPF_REG_0, 0),
  1675. BPF_EXIT_INSN(),
  1676. },
  1677. .errstr_unpriv = "attempt to corrupt spilled",
  1678. .result_unpriv = REJECT,
  1679. .result = ACCEPT,
  1680. },
  1681. {
  1682. "unpriv: mangle pointer on stack 2",
  1683. .insns = {
  1684. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1685. BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0),
  1686. BPF_MOV64_IMM(BPF_REG_0, 0),
  1687. BPF_EXIT_INSN(),
  1688. },
  1689. .errstr_unpriv = "attempt to corrupt spilled",
  1690. .result_unpriv = REJECT,
  1691. .result = ACCEPT,
  1692. },
  1693. {
  1694. "unpriv: read pointer from stack in small chunks",
  1695. .insns = {
  1696. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
  1697. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
  1698. BPF_MOV64_IMM(BPF_REG_0, 0),
  1699. BPF_EXIT_INSN(),
  1700. },
  1701. .errstr = "invalid size",
  1702. .result = REJECT,
  1703. },
  1704. {
  1705. "unpriv: write pointer into ctx",
  1706. .insns = {
  1707. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
  1708. BPF_MOV64_IMM(BPF_REG_0, 0),
  1709. BPF_EXIT_INSN(),
  1710. },
  1711. .errstr_unpriv = "R1 leaks addr",
  1712. .result_unpriv = REJECT,
  1713. .errstr = "invalid bpf_context access",
  1714. .result = REJECT,
  1715. },
  1716. {
  1717. "unpriv: spill/fill of ctx",
  1718. .insns = {
  1719. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1720. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1721. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1722. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1723. BPF_MOV64_IMM(BPF_REG_0, 0),
  1724. BPF_EXIT_INSN(),
  1725. },
  1726. .result = ACCEPT,
  1727. },
  1728. {
  1729. "unpriv: spill/fill of ctx 2",
  1730. .insns = {
  1731. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1732. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1733. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1734. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1735. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1736. BPF_FUNC_get_hash_recalc),
  1737. BPF_EXIT_INSN(),
  1738. },
  1739. .result = ACCEPT,
  1740. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1741. },
  1742. {
  1743. "unpriv: spill/fill of ctx 3",
  1744. .insns = {
  1745. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1746. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1747. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1748. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
  1749. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1750. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1751. BPF_FUNC_get_hash_recalc),
  1752. BPF_EXIT_INSN(),
  1753. },
  1754. .result = REJECT,
  1755. .errstr = "R1 type=fp expected=ctx",
  1756. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1757. },
  1758. {
  1759. "unpriv: spill/fill of ctx 4",
  1760. .insns = {
  1761. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1762. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1763. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1764. BPF_MOV64_IMM(BPF_REG_0, 1),
  1765. BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10,
  1766. BPF_REG_0, -8, 0),
  1767. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1768. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1769. BPF_FUNC_get_hash_recalc),
  1770. BPF_EXIT_INSN(),
  1771. },
  1772. .result = REJECT,
  1773. .errstr = "R1 type=inv expected=ctx",
  1774. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1775. },
  1776. {
  1777. "unpriv: spill/fill of different pointers stx",
  1778. .insns = {
  1779. BPF_MOV64_IMM(BPF_REG_3, 42),
  1780. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1781. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1782. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  1783. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1784. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
  1785. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
  1786. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
  1787. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1788. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1789. BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3,
  1790. offsetof(struct __sk_buff, mark)),
  1791. BPF_MOV64_IMM(BPF_REG_0, 0),
  1792. BPF_EXIT_INSN(),
  1793. },
  1794. .result = REJECT,
  1795. .errstr = "same insn cannot be used with different pointers",
  1796. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1797. },
  1798. {
  1799. "unpriv: spill/fill of different pointers ldx",
  1800. .insns = {
  1801. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1802. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1803. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
  1804. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1805. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
  1806. -(__s32)offsetof(struct bpf_perf_event_data,
  1807. sample_period) - 8),
  1808. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
  1809. BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
  1810. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  1811. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
  1812. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1,
  1813. offsetof(struct bpf_perf_event_data,
  1814. sample_period)),
  1815. BPF_MOV64_IMM(BPF_REG_0, 0),
  1816. BPF_EXIT_INSN(),
  1817. },
  1818. .result = REJECT,
  1819. .errstr = "same insn cannot be used with different pointers",
  1820. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  1821. },
  1822. {
  1823. "unpriv: write pointer into map elem value",
  1824. .insns = {
  1825. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  1826. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1827. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1828. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1829. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1830. BPF_FUNC_map_lookup_elem),
  1831. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  1832. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
  1833. BPF_EXIT_INSN(),
  1834. },
  1835. .fixup_map1 = { 3 },
  1836. .errstr_unpriv = "R0 leaks addr",
  1837. .result_unpriv = REJECT,
  1838. .result = ACCEPT,
  1839. },
  1840. {
  1841. "unpriv: partial copy of pointer",
  1842. .insns = {
  1843. BPF_MOV32_REG(BPF_REG_1, BPF_REG_10),
  1844. BPF_MOV64_IMM(BPF_REG_0, 0),
  1845. BPF_EXIT_INSN(),
  1846. },
  1847. .errstr_unpriv = "R10 partial copy",
  1848. .result_unpriv = REJECT,
  1849. .result = ACCEPT,
  1850. },
  1851. {
  1852. "unpriv: pass pointer to tail_call",
  1853. .insns = {
  1854. BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
  1855. BPF_LD_MAP_FD(BPF_REG_2, 0),
  1856. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1857. BPF_FUNC_tail_call),
  1858. BPF_MOV64_IMM(BPF_REG_0, 0),
  1859. BPF_EXIT_INSN(),
  1860. },
  1861. .fixup_prog = { 1 },
  1862. .errstr_unpriv = "R3 leaks addr into helper",
  1863. .result_unpriv = REJECT,
  1864. .result = ACCEPT,
  1865. },
  1866. {
  1867. "unpriv: cmp map pointer with zero",
  1868. .insns = {
  1869. BPF_MOV64_IMM(BPF_REG_1, 0),
  1870. BPF_LD_MAP_FD(BPF_REG_1, 0),
  1871. BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
  1872. BPF_MOV64_IMM(BPF_REG_0, 0),
  1873. BPF_EXIT_INSN(),
  1874. },
  1875. .fixup_map1 = { 1 },
  1876. .errstr_unpriv = "R1 pointer comparison",
  1877. .result_unpriv = REJECT,
  1878. .result = ACCEPT,
  1879. },
  1880. {
  1881. "unpriv: write into frame pointer",
  1882. .insns = {
  1883. BPF_MOV64_REG(BPF_REG_10, BPF_REG_1),
  1884. BPF_MOV64_IMM(BPF_REG_0, 0),
  1885. BPF_EXIT_INSN(),
  1886. },
  1887. .errstr = "frame pointer is read only",
  1888. .result = REJECT,
  1889. },
  1890. {
  1891. "unpriv: spill/fill frame pointer",
  1892. .insns = {
  1893. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1894. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1895. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
  1896. BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0),
  1897. BPF_MOV64_IMM(BPF_REG_0, 0),
  1898. BPF_EXIT_INSN(),
  1899. },
  1900. .errstr = "frame pointer is read only",
  1901. .result = REJECT,
  1902. },
  1903. {
  1904. "unpriv: cmp of frame pointer",
  1905. .insns = {
  1906. BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0),
  1907. BPF_MOV64_IMM(BPF_REG_0, 0),
  1908. BPF_EXIT_INSN(),
  1909. },
  1910. .errstr_unpriv = "R10 pointer comparison",
  1911. .result_unpriv = REJECT,
  1912. .result = ACCEPT,
  1913. },
  1914. {
  1915. "unpriv: adding of fp",
  1916. .insns = {
  1917. BPF_MOV64_IMM(BPF_REG_0, 0),
  1918. BPF_MOV64_IMM(BPF_REG_1, 0),
  1919. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
  1920. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, -8),
  1921. BPF_EXIT_INSN(),
  1922. },
  1923. .errstr_unpriv = "pointer arithmetic prohibited",
  1924. .result_unpriv = REJECT,
  1925. .errstr = "R1 invalid mem access",
  1926. .result = REJECT,
  1927. },
  1928. {
  1929. "unpriv: cmp of stack pointer",
  1930. .insns = {
  1931. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  1932. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  1933. BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0),
  1934. BPF_MOV64_IMM(BPF_REG_0, 0),
  1935. BPF_EXIT_INSN(),
  1936. },
  1937. .errstr_unpriv = "R2 pointer comparison",
  1938. .result_unpriv = REJECT,
  1939. .result = ACCEPT,
  1940. },
  1941. {
  1942. "stack pointer arithmetic",
  1943. .insns = {
  1944. BPF_MOV64_IMM(BPF_REG_1, 4),
  1945. BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  1946. BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
  1947. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
  1948. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
  1949. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  1950. BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
  1951. BPF_ST_MEM(0, BPF_REG_2, 4, 0),
  1952. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  1953. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
  1954. BPF_ST_MEM(0, BPF_REG_2, 4, 0),
  1955. BPF_MOV64_IMM(BPF_REG_0, 0),
  1956. BPF_EXIT_INSN(),
  1957. },
  1958. .result = ACCEPT,
  1959. },
  1960. {
  1961. "raw_stack: no skb_load_bytes",
  1962. .insns = {
  1963. BPF_MOV64_IMM(BPF_REG_2, 4),
  1964. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1965. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1966. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  1967. BPF_MOV64_IMM(BPF_REG_4, 8),
  1968. /* Call to skb_load_bytes() omitted. */
  1969. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  1970. BPF_EXIT_INSN(),
  1971. },
  1972. .result = REJECT,
  1973. .errstr = "invalid read from stack off -8+0 size 8",
  1974. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1975. },
  1976. {
  1977. "raw_stack: skb_load_bytes, negative len",
  1978. .insns = {
  1979. BPF_MOV64_IMM(BPF_REG_2, 4),
  1980. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1981. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1982. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  1983. BPF_MOV64_IMM(BPF_REG_4, -8),
  1984. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  1985. BPF_FUNC_skb_load_bytes),
  1986. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  1987. BPF_EXIT_INSN(),
  1988. },
  1989. .result = REJECT,
  1990. .errstr = "invalid stack type R3",
  1991. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  1992. },
  1993. {
  1994. "raw_stack: skb_load_bytes, negative len 2",
  1995. .insns = {
  1996. BPF_MOV64_IMM(BPF_REG_2, 4),
  1997. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  1998. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  1999. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2000. BPF_MOV64_IMM(BPF_REG_4, ~0),
  2001. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2002. BPF_FUNC_skb_load_bytes),
  2003. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2004. BPF_EXIT_INSN(),
  2005. },
  2006. .result = REJECT,
  2007. .errstr = "invalid stack type R3",
  2008. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2009. },
  2010. {
  2011. "raw_stack: skb_load_bytes, zero len",
  2012. .insns = {
  2013. BPF_MOV64_IMM(BPF_REG_2, 4),
  2014. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2015. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2016. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2017. BPF_MOV64_IMM(BPF_REG_4, 0),
  2018. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2019. BPF_FUNC_skb_load_bytes),
  2020. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2021. BPF_EXIT_INSN(),
  2022. },
  2023. .result = REJECT,
  2024. .errstr = "invalid stack type R3",
  2025. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2026. },
  2027. {
  2028. "raw_stack: skb_load_bytes, no init",
  2029. .insns = {
  2030. BPF_MOV64_IMM(BPF_REG_2, 4),
  2031. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2032. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2033. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2034. BPF_MOV64_IMM(BPF_REG_4, 8),
  2035. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2036. BPF_FUNC_skb_load_bytes),
  2037. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2038. BPF_EXIT_INSN(),
  2039. },
  2040. .result = ACCEPT,
  2041. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2042. },
  2043. {
  2044. "raw_stack: skb_load_bytes, init",
  2045. .insns = {
  2046. BPF_MOV64_IMM(BPF_REG_2, 4),
  2047. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2048. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2049. BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe),
  2050. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2051. BPF_MOV64_IMM(BPF_REG_4, 8),
  2052. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2053. BPF_FUNC_skb_load_bytes),
  2054. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2055. BPF_EXIT_INSN(),
  2056. },
  2057. .result = ACCEPT,
  2058. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2059. },
  2060. {
  2061. "raw_stack: skb_load_bytes, spilled regs around bounds",
  2062. .insns = {
  2063. BPF_MOV64_IMM(BPF_REG_2, 4),
  2064. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2065. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2066. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2067. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2068. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2069. BPF_MOV64_IMM(BPF_REG_4, 8),
  2070. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2071. BPF_FUNC_skb_load_bytes),
  2072. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2073. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2074. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2075. offsetof(struct __sk_buff, mark)),
  2076. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2077. offsetof(struct __sk_buff, priority)),
  2078. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2079. BPF_EXIT_INSN(),
  2080. },
  2081. .result = ACCEPT,
  2082. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2083. },
  2084. {
  2085. "raw_stack: skb_load_bytes, spilled regs corruption",
  2086. .insns = {
  2087. BPF_MOV64_IMM(BPF_REG_2, 4),
  2088. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2089. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
  2090. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2091. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2092. BPF_MOV64_IMM(BPF_REG_4, 8),
  2093. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2094. BPF_FUNC_skb_load_bytes),
  2095. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2096. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2097. offsetof(struct __sk_buff, mark)),
  2098. BPF_EXIT_INSN(),
  2099. },
  2100. .result = REJECT,
  2101. .errstr = "R0 invalid mem access 'inv'",
  2102. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2103. },
  2104. {
  2105. "raw_stack: skb_load_bytes, spilled regs corruption 2",
  2106. .insns = {
  2107. BPF_MOV64_IMM(BPF_REG_2, 4),
  2108. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2109. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2110. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2111. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2112. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2113. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2114. BPF_MOV64_IMM(BPF_REG_4, 8),
  2115. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2116. BPF_FUNC_skb_load_bytes),
  2117. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2118. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2119. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
  2120. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2121. offsetof(struct __sk_buff, mark)),
  2122. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2123. offsetof(struct __sk_buff, priority)),
  2124. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2125. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3,
  2126. offsetof(struct __sk_buff, pkt_type)),
  2127. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  2128. BPF_EXIT_INSN(),
  2129. },
  2130. .result = REJECT,
  2131. .errstr = "R3 invalid mem access 'inv'",
  2132. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2133. },
  2134. {
  2135. "raw_stack: skb_load_bytes, spilled regs + data",
  2136. .insns = {
  2137. BPF_MOV64_IMM(BPF_REG_2, 4),
  2138. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2139. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
  2140. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
  2141. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
  2142. BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 8),
  2143. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2144. BPF_MOV64_IMM(BPF_REG_4, 8),
  2145. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2146. BPF_FUNC_skb_load_bytes),
  2147. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
  2148. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6, 8),
  2149. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, 0),
  2150. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  2151. offsetof(struct __sk_buff, mark)),
  2152. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
  2153. offsetof(struct __sk_buff, priority)),
  2154. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2155. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  2156. BPF_EXIT_INSN(),
  2157. },
  2158. .result = ACCEPT,
  2159. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2160. },
  2161. {
  2162. "raw_stack: skb_load_bytes, invalid access 1",
  2163. .insns = {
  2164. BPF_MOV64_IMM(BPF_REG_2, 4),
  2165. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2166. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513),
  2167. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2168. BPF_MOV64_IMM(BPF_REG_4, 8),
  2169. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2170. BPF_FUNC_skb_load_bytes),
  2171. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2172. BPF_EXIT_INSN(),
  2173. },
  2174. .result = REJECT,
  2175. .errstr = "invalid stack type R3 off=-513 access_size=8",
  2176. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2177. },
  2178. {
  2179. "raw_stack: skb_load_bytes, invalid access 2",
  2180. .insns = {
  2181. BPF_MOV64_IMM(BPF_REG_2, 4),
  2182. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2183. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
  2184. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2185. BPF_MOV64_IMM(BPF_REG_4, 8),
  2186. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2187. BPF_FUNC_skb_load_bytes),
  2188. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2189. BPF_EXIT_INSN(),
  2190. },
  2191. .result = REJECT,
  2192. .errstr = "invalid stack type R3 off=-1 access_size=8",
  2193. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2194. },
  2195. {
  2196. "raw_stack: skb_load_bytes, invalid access 3",
  2197. .insns = {
  2198. BPF_MOV64_IMM(BPF_REG_2, 4),
  2199. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2200. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff),
  2201. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2202. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  2203. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2204. BPF_FUNC_skb_load_bytes),
  2205. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2206. BPF_EXIT_INSN(),
  2207. },
  2208. .result = REJECT,
  2209. .errstr = "invalid stack type R3 off=-1 access_size=-1",
  2210. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2211. },
  2212. {
  2213. "raw_stack: skb_load_bytes, invalid access 4",
  2214. .insns = {
  2215. BPF_MOV64_IMM(BPF_REG_2, 4),
  2216. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2217. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
  2218. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2219. BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
  2220. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2221. BPF_FUNC_skb_load_bytes),
  2222. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2223. BPF_EXIT_INSN(),
  2224. },
  2225. .result = REJECT,
  2226. .errstr = "invalid stack type R3 off=-1 access_size=2147483647",
  2227. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2228. },
  2229. {
  2230. "raw_stack: skb_load_bytes, invalid access 5",
  2231. .insns = {
  2232. BPF_MOV64_IMM(BPF_REG_2, 4),
  2233. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2234. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2235. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2236. BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
  2237. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2238. BPF_FUNC_skb_load_bytes),
  2239. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2240. BPF_EXIT_INSN(),
  2241. },
  2242. .result = REJECT,
  2243. .errstr = "invalid stack type R3 off=-512 access_size=2147483647",
  2244. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2245. },
  2246. {
  2247. "raw_stack: skb_load_bytes, invalid access 6",
  2248. .insns = {
  2249. BPF_MOV64_IMM(BPF_REG_2, 4),
  2250. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2251. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2252. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2253. BPF_MOV64_IMM(BPF_REG_4, 0),
  2254. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2255. BPF_FUNC_skb_load_bytes),
  2256. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2257. BPF_EXIT_INSN(),
  2258. },
  2259. .result = REJECT,
  2260. .errstr = "invalid stack type R3 off=-512 access_size=0",
  2261. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2262. },
  2263. {
  2264. "raw_stack: skb_load_bytes, large access",
  2265. .insns = {
  2266. BPF_MOV64_IMM(BPF_REG_2, 4),
  2267. BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
  2268. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
  2269. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  2270. BPF_MOV64_IMM(BPF_REG_4, 512),
  2271. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2272. BPF_FUNC_skb_load_bytes),
  2273. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  2274. BPF_EXIT_INSN(),
  2275. },
  2276. .result = ACCEPT,
  2277. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2278. },
  2279. {
  2280. "direct packet access: test1",
  2281. .insns = {
  2282. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2283. offsetof(struct __sk_buff, data)),
  2284. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2285. offsetof(struct __sk_buff, data_end)),
  2286. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2287. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2288. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2289. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2290. BPF_MOV64_IMM(BPF_REG_0, 0),
  2291. BPF_EXIT_INSN(),
  2292. },
  2293. .result = ACCEPT,
  2294. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2295. },
  2296. {
  2297. "direct packet access: test2",
  2298. .insns = {
  2299. BPF_MOV64_IMM(BPF_REG_0, 1),
  2300. BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
  2301. offsetof(struct __sk_buff, data_end)),
  2302. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2303. offsetof(struct __sk_buff, data)),
  2304. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2305. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
  2306. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15),
  2307. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7),
  2308. BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12),
  2309. BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14),
  2310. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2311. offsetof(struct __sk_buff, data)),
  2312. BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4),
  2313. BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),
  2314. BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 48),
  2315. BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 48),
  2316. BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2),
  2317. BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
  2318. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
  2319. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
  2320. offsetof(struct __sk_buff, data_end)),
  2321. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
  2322. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4),
  2323. BPF_MOV64_IMM(BPF_REG_0, 0),
  2324. BPF_EXIT_INSN(),
  2325. },
  2326. .result = ACCEPT,
  2327. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2328. },
  2329. {
  2330. "direct packet access: test3",
  2331. .insns = {
  2332. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2333. offsetof(struct __sk_buff, data)),
  2334. BPF_MOV64_IMM(BPF_REG_0, 0),
  2335. BPF_EXIT_INSN(),
  2336. },
  2337. .errstr = "invalid bpf_context access off=76",
  2338. .result = REJECT,
  2339. .prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
  2340. },
  2341. {
  2342. "direct packet access: test4 (write)",
  2343. .insns = {
  2344. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2345. offsetof(struct __sk_buff, data)),
  2346. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2347. offsetof(struct __sk_buff, data_end)),
  2348. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2349. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2350. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2351. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2352. BPF_MOV64_IMM(BPF_REG_0, 0),
  2353. BPF_EXIT_INSN(),
  2354. },
  2355. .result = ACCEPT,
  2356. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2357. },
  2358. {
  2359. "direct packet access: test5 (pkt_end >= reg, good access)",
  2360. .insns = {
  2361. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2362. offsetof(struct __sk_buff, data)),
  2363. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2364. offsetof(struct __sk_buff, data_end)),
  2365. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2366. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2367. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
  2368. BPF_MOV64_IMM(BPF_REG_0, 1),
  2369. BPF_EXIT_INSN(),
  2370. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2371. BPF_MOV64_IMM(BPF_REG_0, 0),
  2372. BPF_EXIT_INSN(),
  2373. },
  2374. .result = ACCEPT,
  2375. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2376. },
  2377. {
  2378. "direct packet access: test6 (pkt_end >= reg, bad access)",
  2379. .insns = {
  2380. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2381. offsetof(struct __sk_buff, data)),
  2382. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2383. offsetof(struct __sk_buff, data_end)),
  2384. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2385. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2386. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
  2387. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2388. BPF_MOV64_IMM(BPF_REG_0, 1),
  2389. BPF_EXIT_INSN(),
  2390. BPF_MOV64_IMM(BPF_REG_0, 0),
  2391. BPF_EXIT_INSN(),
  2392. },
  2393. .errstr = "invalid access to packet",
  2394. .result = REJECT,
  2395. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2396. },
  2397. {
  2398. "direct packet access: test7 (pkt_end >= reg, both accesses)",
  2399. .insns = {
  2400. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2401. offsetof(struct __sk_buff, data)),
  2402. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2403. offsetof(struct __sk_buff, data_end)),
  2404. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2405. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2406. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
  2407. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2408. BPF_MOV64_IMM(BPF_REG_0, 1),
  2409. BPF_EXIT_INSN(),
  2410. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2411. BPF_MOV64_IMM(BPF_REG_0, 0),
  2412. BPF_EXIT_INSN(),
  2413. },
  2414. .errstr = "invalid access to packet",
  2415. .result = REJECT,
  2416. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2417. },
  2418. {
  2419. "direct packet access: test8 (double test, variant 1)",
  2420. .insns = {
  2421. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2422. offsetof(struct __sk_buff, data)),
  2423. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2424. offsetof(struct __sk_buff, data_end)),
  2425. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2426. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2427. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4),
  2428. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2429. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2430. BPF_MOV64_IMM(BPF_REG_0, 1),
  2431. BPF_EXIT_INSN(),
  2432. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2433. BPF_MOV64_IMM(BPF_REG_0, 0),
  2434. BPF_EXIT_INSN(),
  2435. },
  2436. .result = ACCEPT,
  2437. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2438. },
  2439. {
  2440. "direct packet access: test9 (double test, variant 2)",
  2441. .insns = {
  2442. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2443. offsetof(struct __sk_buff, data)),
  2444. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2445. offsetof(struct __sk_buff, data_end)),
  2446. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2447. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2448. BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
  2449. BPF_MOV64_IMM(BPF_REG_0, 1),
  2450. BPF_EXIT_INSN(),
  2451. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2452. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2453. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  2454. BPF_MOV64_IMM(BPF_REG_0, 0),
  2455. BPF_EXIT_INSN(),
  2456. },
  2457. .result = ACCEPT,
  2458. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2459. },
  2460. {
  2461. "direct packet access: test10 (write invalid)",
  2462. .insns = {
  2463. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2464. offsetof(struct __sk_buff, data)),
  2465. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2466. offsetof(struct __sk_buff, data_end)),
  2467. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2468. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2469. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
  2470. BPF_MOV64_IMM(BPF_REG_0, 0),
  2471. BPF_EXIT_INSN(),
  2472. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2473. BPF_MOV64_IMM(BPF_REG_0, 0),
  2474. BPF_EXIT_INSN(),
  2475. },
  2476. .errstr = "invalid access to packet",
  2477. .result = REJECT,
  2478. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2479. },
  2480. {
  2481. "direct packet access: test11 (shift, good access)",
  2482. .insns = {
  2483. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2484. offsetof(struct __sk_buff, data)),
  2485. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2486. offsetof(struct __sk_buff, data_end)),
  2487. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2488. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2489. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2490. BPF_MOV64_IMM(BPF_REG_3, 144),
  2491. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2492. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2493. BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 3),
  2494. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2495. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2496. BPF_MOV64_IMM(BPF_REG_0, 1),
  2497. BPF_EXIT_INSN(),
  2498. BPF_MOV64_IMM(BPF_REG_0, 0),
  2499. BPF_EXIT_INSN(),
  2500. },
  2501. .result = ACCEPT,
  2502. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2503. },
  2504. {
  2505. "direct packet access: test12 (and, good access)",
  2506. .insns = {
  2507. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2508. offsetof(struct __sk_buff, data)),
  2509. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2510. offsetof(struct __sk_buff, data_end)),
  2511. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2512. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2513. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2514. BPF_MOV64_IMM(BPF_REG_3, 144),
  2515. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2516. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2517. BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
  2518. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2519. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2520. BPF_MOV64_IMM(BPF_REG_0, 1),
  2521. BPF_EXIT_INSN(),
  2522. BPF_MOV64_IMM(BPF_REG_0, 0),
  2523. BPF_EXIT_INSN(),
  2524. },
  2525. .result = ACCEPT,
  2526. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2527. },
  2528. {
  2529. "direct packet access: test13 (branches, good access)",
  2530. .insns = {
  2531. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2532. offsetof(struct __sk_buff, data)),
  2533. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2534. offsetof(struct __sk_buff, data_end)),
  2535. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2536. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2537. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 13),
  2538. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2539. offsetof(struct __sk_buff, mark)),
  2540. BPF_MOV64_IMM(BPF_REG_4, 1),
  2541. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_4, 2),
  2542. BPF_MOV64_IMM(BPF_REG_3, 14),
  2543. BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  2544. BPF_MOV64_IMM(BPF_REG_3, 24),
  2545. BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
  2546. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 23),
  2547. BPF_ALU64_IMM(BPF_AND, BPF_REG_5, 15),
  2548. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2549. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2550. BPF_MOV64_IMM(BPF_REG_0, 1),
  2551. BPF_EXIT_INSN(),
  2552. BPF_MOV64_IMM(BPF_REG_0, 0),
  2553. BPF_EXIT_INSN(),
  2554. },
  2555. .result = ACCEPT,
  2556. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2557. },
  2558. {
  2559. "direct packet access: test14 (pkt_ptr += 0, CONST_IMM, good access)",
  2560. .insns = {
  2561. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2562. offsetof(struct __sk_buff, data)),
  2563. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2564. offsetof(struct __sk_buff, data_end)),
  2565. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2566. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 22),
  2567. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 7),
  2568. BPF_MOV64_IMM(BPF_REG_5, 12),
  2569. BPF_ALU64_IMM(BPF_RSH, BPF_REG_5, 4),
  2570. BPF_MOV64_REG(BPF_REG_6, BPF_REG_2),
  2571. BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5),
  2572. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_6, 0),
  2573. BPF_MOV64_IMM(BPF_REG_0, 1),
  2574. BPF_EXIT_INSN(),
  2575. BPF_MOV64_IMM(BPF_REG_0, 0),
  2576. BPF_EXIT_INSN(),
  2577. },
  2578. .result = ACCEPT,
  2579. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2580. },
  2581. {
  2582. "direct packet access: test15 (spill with xadd)",
  2583. .insns = {
  2584. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2585. offsetof(struct __sk_buff, data)),
  2586. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2587. offsetof(struct __sk_buff, data_end)),
  2588. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2589. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2590. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 8),
  2591. BPF_MOV64_IMM(BPF_REG_5, 4096),
  2592. BPF_MOV64_REG(BPF_REG_4, BPF_REG_10),
  2593. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -8),
  2594. BPF_STX_MEM(BPF_DW, BPF_REG_4, BPF_REG_2, 0),
  2595. BPF_STX_XADD(BPF_DW, BPF_REG_4, BPF_REG_5, 0),
  2596. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_4, 0),
  2597. BPF_STX_MEM(BPF_W, BPF_REG_2, BPF_REG_5, 0),
  2598. BPF_MOV64_IMM(BPF_REG_0, 0),
  2599. BPF_EXIT_INSN(),
  2600. },
  2601. .errstr = "R2 invalid mem access 'inv'",
  2602. .result = REJECT,
  2603. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2604. },
  2605. {
  2606. "direct packet access: test16 (arith on data_end)",
  2607. .insns = {
  2608. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2609. offsetof(struct __sk_buff, data)),
  2610. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2611. offsetof(struct __sk_buff, data_end)),
  2612. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2613. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2614. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 16),
  2615. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2616. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2617. BPF_MOV64_IMM(BPF_REG_0, 0),
  2618. BPF_EXIT_INSN(),
  2619. },
  2620. .errstr = "invalid access to packet",
  2621. .result = REJECT,
  2622. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2623. },
  2624. {
  2625. "direct packet access: test17 (pruning, alignment)",
  2626. .insns = {
  2627. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2628. offsetof(struct __sk_buff, data)),
  2629. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2630. offsetof(struct __sk_buff, data_end)),
  2631. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  2632. offsetof(struct __sk_buff, mark)),
  2633. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2634. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 14),
  2635. BPF_JMP_IMM(BPF_JGT, BPF_REG_7, 1, 4),
  2636. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2637. BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_0, -4),
  2638. BPF_MOV64_IMM(BPF_REG_0, 0),
  2639. BPF_EXIT_INSN(),
  2640. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 1),
  2641. BPF_JMP_A(-6),
  2642. },
  2643. .errstr = "misaligned packet access off 2+15+-4 size 4",
  2644. .result = REJECT,
  2645. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2646. .flags = F_LOAD_WITH_STRICT_ALIGNMENT,
  2647. },
  2648. {
  2649. "direct packet access: test18 (imm += pkt_ptr, 1)",
  2650. .insns = {
  2651. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2652. offsetof(struct __sk_buff, data)),
  2653. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2654. offsetof(struct __sk_buff, data_end)),
  2655. BPF_MOV64_IMM(BPF_REG_0, 8),
  2656. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2657. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2658. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  2659. BPF_MOV64_IMM(BPF_REG_0, 0),
  2660. BPF_EXIT_INSN(),
  2661. },
  2662. .result = ACCEPT,
  2663. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2664. },
  2665. {
  2666. "direct packet access: test19 (imm += pkt_ptr, 2)",
  2667. .insns = {
  2668. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2669. offsetof(struct __sk_buff, data)),
  2670. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2671. offsetof(struct __sk_buff, data_end)),
  2672. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2673. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2674. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 3),
  2675. BPF_MOV64_IMM(BPF_REG_4, 4),
  2676. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2677. BPF_STX_MEM(BPF_B, BPF_REG_4, BPF_REG_4, 0),
  2678. BPF_MOV64_IMM(BPF_REG_0, 0),
  2679. BPF_EXIT_INSN(),
  2680. },
  2681. .result = ACCEPT,
  2682. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2683. },
  2684. {
  2685. "direct packet access: test20 (x += pkt_ptr, 1)",
  2686. .insns = {
  2687. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2688. offsetof(struct __sk_buff, data)),
  2689. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2690. offsetof(struct __sk_buff, data_end)),
  2691. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  2692. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  2693. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  2694. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff),
  2695. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  2696. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2697. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2698. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xffff - 1),
  2699. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  2700. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
  2701. BPF_MOV64_IMM(BPF_REG_0, 0),
  2702. BPF_EXIT_INSN(),
  2703. },
  2704. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2705. .result = ACCEPT,
  2706. },
  2707. {
  2708. "direct packet access: test21 (x += pkt_ptr, 2)",
  2709. .insns = {
  2710. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2711. offsetof(struct __sk_buff, data)),
  2712. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2713. offsetof(struct __sk_buff, data_end)),
  2714. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2715. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2716. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 9),
  2717. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  2718. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
  2719. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
  2720. BPF_ALU64_IMM(BPF_AND, BPF_REG_4, 0xffff),
  2721. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2722. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2723. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 0xffff - 1),
  2724. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 1),
  2725. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_4, 0),
  2726. BPF_MOV64_IMM(BPF_REG_0, 0),
  2727. BPF_EXIT_INSN(),
  2728. },
  2729. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2730. .result = ACCEPT,
  2731. },
  2732. {
  2733. "direct packet access: test22 (x += pkt_ptr, 3)",
  2734. .insns = {
  2735. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2736. offsetof(struct __sk_buff, data)),
  2737. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2738. offsetof(struct __sk_buff, data_end)),
  2739. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  2740. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  2741. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -8),
  2742. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_3, -16),
  2743. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_10, -16),
  2744. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 11),
  2745. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
  2746. BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
  2747. BPF_STX_XADD(BPF_DW, BPF_REG_10, BPF_REG_4, -8),
  2748. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -8),
  2749. BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 48),
  2750. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_2),
  2751. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  2752. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
  2753. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
  2754. BPF_MOV64_IMM(BPF_REG_2, 1),
  2755. BPF_STX_MEM(BPF_H, BPF_REG_4, BPF_REG_2, 0),
  2756. BPF_MOV64_IMM(BPF_REG_0, 0),
  2757. BPF_EXIT_INSN(),
  2758. },
  2759. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2760. .result = ACCEPT,
  2761. },
  2762. {
  2763. "direct packet access: test23 (x += pkt_ptr, 4)",
  2764. .insns = {
  2765. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2766. offsetof(struct __sk_buff, data)),
  2767. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2768. offsetof(struct __sk_buff, data_end)),
  2769. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  2770. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  2771. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  2772. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xffff),
  2773. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  2774. BPF_MOV64_IMM(BPF_REG_0, 31),
  2775. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
  2776. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2777. BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
  2778. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1),
  2779. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2780. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
  2781. BPF_MOV64_IMM(BPF_REG_0, 0),
  2782. BPF_EXIT_INSN(),
  2783. },
  2784. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2785. .result = REJECT,
  2786. .errstr = "cannot add integer value with 47 upper zero bits to ptr_to_packet",
  2787. },
  2788. {
  2789. "direct packet access: test24 (x += pkt_ptr, 5)",
  2790. .insns = {
  2791. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2792. offsetof(struct __sk_buff, data)),
  2793. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2794. offsetof(struct __sk_buff, data_end)),
  2795. BPF_MOV64_IMM(BPF_REG_0, 0xffffffff),
  2796. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  2797. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
  2798. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 0xff),
  2799. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  2800. BPF_MOV64_IMM(BPF_REG_0, 64),
  2801. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_4),
  2802. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
  2803. BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
  2804. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 0xffff - 1),
  2805. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  2806. BPF_STX_MEM(BPF_DW, BPF_REG_5, BPF_REG_0, 0),
  2807. BPF_MOV64_IMM(BPF_REG_0, 0),
  2808. BPF_EXIT_INSN(),
  2809. },
  2810. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2811. .result = ACCEPT,
  2812. },
  2813. {
  2814. "helper access to packet: test1, valid packet_ptr range",
  2815. .insns = {
  2816. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2817. offsetof(struct xdp_md, data)),
  2818. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2819. offsetof(struct xdp_md, data_end)),
  2820. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  2821. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  2822. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
  2823. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2824. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  2825. BPF_MOV64_IMM(BPF_REG_4, 0),
  2826. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2827. BPF_FUNC_map_update_elem),
  2828. BPF_MOV64_IMM(BPF_REG_0, 0),
  2829. BPF_EXIT_INSN(),
  2830. },
  2831. .fixup_map1 = { 5 },
  2832. .result_unpriv = ACCEPT,
  2833. .result = ACCEPT,
  2834. .prog_type = BPF_PROG_TYPE_XDP,
  2835. },
  2836. {
  2837. "helper access to packet: test2, unchecked packet_ptr",
  2838. .insns = {
  2839. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2840. offsetof(struct xdp_md, data)),
  2841. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2842. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2843. BPF_FUNC_map_lookup_elem),
  2844. BPF_MOV64_IMM(BPF_REG_0, 0),
  2845. BPF_EXIT_INSN(),
  2846. },
  2847. .fixup_map1 = { 1 },
  2848. .result = REJECT,
  2849. .errstr = "invalid access to packet",
  2850. .prog_type = BPF_PROG_TYPE_XDP,
  2851. },
  2852. {
  2853. "helper access to packet: test3, variable add",
  2854. .insns = {
  2855. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2856. offsetof(struct xdp_md, data)),
  2857. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2858. offsetof(struct xdp_md, data_end)),
  2859. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2860. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  2861. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
  2862. BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
  2863. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2864. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
  2865. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2866. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
  2867. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
  2868. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2869. BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
  2870. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2871. BPF_FUNC_map_lookup_elem),
  2872. BPF_MOV64_IMM(BPF_REG_0, 0),
  2873. BPF_EXIT_INSN(),
  2874. },
  2875. .fixup_map1 = { 11 },
  2876. .result = ACCEPT,
  2877. .prog_type = BPF_PROG_TYPE_XDP,
  2878. },
  2879. {
  2880. "helper access to packet: test4, packet_ptr with bad range",
  2881. .insns = {
  2882. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2883. offsetof(struct xdp_md, data)),
  2884. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2885. offsetof(struct xdp_md, data_end)),
  2886. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2887. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
  2888. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
  2889. BPF_MOV64_IMM(BPF_REG_0, 0),
  2890. BPF_EXIT_INSN(),
  2891. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2892. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2893. BPF_FUNC_map_lookup_elem),
  2894. BPF_MOV64_IMM(BPF_REG_0, 0),
  2895. BPF_EXIT_INSN(),
  2896. },
  2897. .fixup_map1 = { 7 },
  2898. .result = REJECT,
  2899. .errstr = "invalid access to packet",
  2900. .prog_type = BPF_PROG_TYPE_XDP,
  2901. },
  2902. {
  2903. "helper access to packet: test5, packet_ptr with too short range",
  2904. .insns = {
  2905. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2906. offsetof(struct xdp_md, data)),
  2907. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2908. offsetof(struct xdp_md, data_end)),
  2909. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  2910. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2911. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
  2912. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
  2913. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2914. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2915. BPF_FUNC_map_lookup_elem),
  2916. BPF_MOV64_IMM(BPF_REG_0, 0),
  2917. BPF_EXIT_INSN(),
  2918. },
  2919. .fixup_map1 = { 6 },
  2920. .result = REJECT,
  2921. .errstr = "invalid access to packet",
  2922. .prog_type = BPF_PROG_TYPE_XDP,
  2923. },
  2924. {
  2925. "helper access to packet: test6, cls valid packet_ptr range",
  2926. .insns = {
  2927. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2928. offsetof(struct __sk_buff, data)),
  2929. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2930. offsetof(struct __sk_buff, data_end)),
  2931. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  2932. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  2933. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
  2934. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2935. BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
  2936. BPF_MOV64_IMM(BPF_REG_4, 0),
  2937. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2938. BPF_FUNC_map_update_elem),
  2939. BPF_MOV64_IMM(BPF_REG_0, 0),
  2940. BPF_EXIT_INSN(),
  2941. },
  2942. .fixup_map1 = { 5 },
  2943. .result = ACCEPT,
  2944. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2945. },
  2946. {
  2947. "helper access to packet: test7, cls unchecked packet_ptr",
  2948. .insns = {
  2949. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2950. offsetof(struct __sk_buff, data)),
  2951. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2952. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2953. BPF_FUNC_map_lookup_elem),
  2954. BPF_MOV64_IMM(BPF_REG_0, 0),
  2955. BPF_EXIT_INSN(),
  2956. },
  2957. .fixup_map1 = { 1 },
  2958. .result = REJECT,
  2959. .errstr = "invalid access to packet",
  2960. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2961. },
  2962. {
  2963. "helper access to packet: test8, cls variable add",
  2964. .insns = {
  2965. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2966. offsetof(struct __sk_buff, data)),
  2967. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2968. offsetof(struct __sk_buff, data_end)),
  2969. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2970. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
  2971. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
  2972. BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
  2973. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2974. BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
  2975. BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
  2976. BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
  2977. BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
  2978. BPF_LD_MAP_FD(BPF_REG_1, 0),
  2979. BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
  2980. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  2981. BPF_FUNC_map_lookup_elem),
  2982. BPF_MOV64_IMM(BPF_REG_0, 0),
  2983. BPF_EXIT_INSN(),
  2984. },
  2985. .fixup_map1 = { 11 },
  2986. .result = ACCEPT,
  2987. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  2988. },
  2989. {
  2990. "helper access to packet: test9, cls packet_ptr with bad range",
  2991. .insns = {
  2992. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  2993. offsetof(struct __sk_buff, data)),
  2994. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  2995. offsetof(struct __sk_buff, data_end)),
  2996. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  2997. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
  2998. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
  2999. BPF_MOV64_IMM(BPF_REG_0, 0),
  3000. BPF_EXIT_INSN(),
  3001. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3002. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3003. BPF_FUNC_map_lookup_elem),
  3004. BPF_MOV64_IMM(BPF_REG_0, 0),
  3005. BPF_EXIT_INSN(),
  3006. },
  3007. .fixup_map1 = { 7 },
  3008. .result = REJECT,
  3009. .errstr = "invalid access to packet",
  3010. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3011. },
  3012. {
  3013. "helper access to packet: test10, cls packet_ptr with too short range",
  3014. .insns = {
  3015. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3016. offsetof(struct __sk_buff, data)),
  3017. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3018. offsetof(struct __sk_buff, data_end)),
  3019. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  3020. BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
  3021. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
  3022. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
  3023. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3024. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3025. BPF_FUNC_map_lookup_elem),
  3026. BPF_MOV64_IMM(BPF_REG_0, 0),
  3027. BPF_EXIT_INSN(),
  3028. },
  3029. .fixup_map1 = { 6 },
  3030. .result = REJECT,
  3031. .errstr = "invalid access to packet",
  3032. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3033. },
  3034. {
  3035. "helper access to packet: test11, cls unsuitable helper 1",
  3036. .insns = {
  3037. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3038. offsetof(struct __sk_buff, data)),
  3039. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3040. offsetof(struct __sk_buff, data_end)),
  3041. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3042. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  3043. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7),
  3044. BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4),
  3045. BPF_MOV64_IMM(BPF_REG_2, 0),
  3046. BPF_MOV64_IMM(BPF_REG_4, 42),
  3047. BPF_MOV64_IMM(BPF_REG_5, 0),
  3048. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3049. BPF_FUNC_skb_store_bytes),
  3050. BPF_MOV64_IMM(BPF_REG_0, 0),
  3051. BPF_EXIT_INSN(),
  3052. },
  3053. .result = REJECT,
  3054. .errstr = "helper access to the packet",
  3055. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3056. },
  3057. {
  3058. "helper access to packet: test12, cls unsuitable helper 2",
  3059. .insns = {
  3060. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3061. offsetof(struct __sk_buff, data)),
  3062. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3063. offsetof(struct __sk_buff, data_end)),
  3064. BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
  3065. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
  3066. BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3),
  3067. BPF_MOV64_IMM(BPF_REG_2, 0),
  3068. BPF_MOV64_IMM(BPF_REG_4, 4),
  3069. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3070. BPF_FUNC_skb_load_bytes),
  3071. BPF_MOV64_IMM(BPF_REG_0, 0),
  3072. BPF_EXIT_INSN(),
  3073. },
  3074. .result = REJECT,
  3075. .errstr = "helper access to the packet",
  3076. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3077. },
  3078. {
  3079. "helper access to packet: test13, cls helper ok",
  3080. .insns = {
  3081. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3082. offsetof(struct __sk_buff, data)),
  3083. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3084. offsetof(struct __sk_buff, data_end)),
  3085. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3086. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3087. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3088. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3089. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3090. BPF_MOV64_IMM(BPF_REG_2, 4),
  3091. BPF_MOV64_IMM(BPF_REG_3, 0),
  3092. BPF_MOV64_IMM(BPF_REG_4, 0),
  3093. BPF_MOV64_IMM(BPF_REG_5, 0),
  3094. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3095. BPF_FUNC_csum_diff),
  3096. BPF_MOV64_IMM(BPF_REG_0, 0),
  3097. BPF_EXIT_INSN(),
  3098. },
  3099. .result = ACCEPT,
  3100. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3101. },
  3102. {
  3103. "helper access to packet: test14, cls helper fail sub",
  3104. .insns = {
  3105. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3106. offsetof(struct __sk_buff, data)),
  3107. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3108. offsetof(struct __sk_buff, data_end)),
  3109. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3110. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3111. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3112. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3113. BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4),
  3114. BPF_MOV64_IMM(BPF_REG_2, 4),
  3115. BPF_MOV64_IMM(BPF_REG_3, 0),
  3116. BPF_MOV64_IMM(BPF_REG_4, 0),
  3117. BPF_MOV64_IMM(BPF_REG_5, 0),
  3118. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3119. BPF_FUNC_csum_diff),
  3120. BPF_MOV64_IMM(BPF_REG_0, 0),
  3121. BPF_EXIT_INSN(),
  3122. },
  3123. .result = REJECT,
  3124. .errstr = "type=inv expected=fp",
  3125. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3126. },
  3127. {
  3128. "helper access to packet: test15, cls helper fail range 1",
  3129. .insns = {
  3130. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3131. offsetof(struct __sk_buff, data)),
  3132. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3133. offsetof(struct __sk_buff, data_end)),
  3134. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3135. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3136. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3137. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3138. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3139. BPF_MOV64_IMM(BPF_REG_2, 8),
  3140. BPF_MOV64_IMM(BPF_REG_3, 0),
  3141. BPF_MOV64_IMM(BPF_REG_4, 0),
  3142. BPF_MOV64_IMM(BPF_REG_5, 0),
  3143. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3144. BPF_FUNC_csum_diff),
  3145. BPF_MOV64_IMM(BPF_REG_0, 0),
  3146. BPF_EXIT_INSN(),
  3147. },
  3148. .result = REJECT,
  3149. .errstr = "invalid access to packet",
  3150. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3151. },
  3152. {
  3153. "helper access to packet: test16, cls helper fail range 2",
  3154. .insns = {
  3155. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3156. offsetof(struct __sk_buff, data)),
  3157. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3158. offsetof(struct __sk_buff, data_end)),
  3159. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3160. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3161. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3162. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3163. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3164. BPF_MOV64_IMM(BPF_REG_2, -9),
  3165. BPF_MOV64_IMM(BPF_REG_3, 0),
  3166. BPF_MOV64_IMM(BPF_REG_4, 0),
  3167. BPF_MOV64_IMM(BPF_REG_5, 0),
  3168. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3169. BPF_FUNC_csum_diff),
  3170. BPF_MOV64_IMM(BPF_REG_0, 0),
  3171. BPF_EXIT_INSN(),
  3172. },
  3173. .result = REJECT,
  3174. .errstr = "invalid access to packet",
  3175. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3176. },
  3177. {
  3178. "helper access to packet: test17, cls helper fail range 3",
  3179. .insns = {
  3180. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3181. offsetof(struct __sk_buff, data)),
  3182. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3183. offsetof(struct __sk_buff, data_end)),
  3184. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3185. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3186. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3187. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3188. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3189. BPF_MOV64_IMM(BPF_REG_2, ~0),
  3190. BPF_MOV64_IMM(BPF_REG_3, 0),
  3191. BPF_MOV64_IMM(BPF_REG_4, 0),
  3192. BPF_MOV64_IMM(BPF_REG_5, 0),
  3193. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3194. BPF_FUNC_csum_diff),
  3195. BPF_MOV64_IMM(BPF_REG_0, 0),
  3196. BPF_EXIT_INSN(),
  3197. },
  3198. .result = REJECT,
  3199. .errstr = "invalid access to packet",
  3200. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3201. },
  3202. {
  3203. "helper access to packet: test18, cls helper fail range zero",
  3204. .insns = {
  3205. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3206. offsetof(struct __sk_buff, data)),
  3207. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3208. offsetof(struct __sk_buff, data_end)),
  3209. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3210. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3211. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3212. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3213. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3214. BPF_MOV64_IMM(BPF_REG_2, 0),
  3215. BPF_MOV64_IMM(BPF_REG_3, 0),
  3216. BPF_MOV64_IMM(BPF_REG_4, 0),
  3217. BPF_MOV64_IMM(BPF_REG_5, 0),
  3218. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3219. BPF_FUNC_csum_diff),
  3220. BPF_MOV64_IMM(BPF_REG_0, 0),
  3221. BPF_EXIT_INSN(),
  3222. },
  3223. .result = REJECT,
  3224. .errstr = "invalid access to packet",
  3225. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3226. },
  3227. {
  3228. "helper access to packet: test19, pkt end as input",
  3229. .insns = {
  3230. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3231. offsetof(struct __sk_buff, data)),
  3232. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3233. offsetof(struct __sk_buff, data_end)),
  3234. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3235. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3236. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3237. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3238. BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
  3239. BPF_MOV64_IMM(BPF_REG_2, 4),
  3240. BPF_MOV64_IMM(BPF_REG_3, 0),
  3241. BPF_MOV64_IMM(BPF_REG_4, 0),
  3242. BPF_MOV64_IMM(BPF_REG_5, 0),
  3243. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3244. BPF_FUNC_csum_diff),
  3245. BPF_MOV64_IMM(BPF_REG_0, 0),
  3246. BPF_EXIT_INSN(),
  3247. },
  3248. .result = REJECT,
  3249. .errstr = "R1 type=pkt_end expected=fp",
  3250. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3251. },
  3252. {
  3253. "helper access to packet: test20, wrong reg",
  3254. .insns = {
  3255. BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
  3256. offsetof(struct __sk_buff, data)),
  3257. BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
  3258. offsetof(struct __sk_buff, data_end)),
  3259. BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
  3260. BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
  3261. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
  3262. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
  3263. BPF_MOV64_IMM(BPF_REG_2, 4),
  3264. BPF_MOV64_IMM(BPF_REG_3, 0),
  3265. BPF_MOV64_IMM(BPF_REG_4, 0),
  3266. BPF_MOV64_IMM(BPF_REG_5, 0),
  3267. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3268. BPF_FUNC_csum_diff),
  3269. BPF_MOV64_IMM(BPF_REG_0, 0),
  3270. BPF_EXIT_INSN(),
  3271. },
  3272. .result = REJECT,
  3273. .errstr = "invalid access to packet",
  3274. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  3275. },
  3276. {
  3277. "valid map access into an array with a constant",
  3278. .insns = {
  3279. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3280. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3281. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3282. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3283. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3284. BPF_FUNC_map_lookup_elem),
  3285. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3286. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3287. offsetof(struct test_val, foo)),
  3288. BPF_EXIT_INSN(),
  3289. },
  3290. .fixup_map2 = { 3 },
  3291. .errstr_unpriv = "R0 leaks addr",
  3292. .result_unpriv = REJECT,
  3293. .result = ACCEPT,
  3294. },
  3295. {
  3296. "valid map access into an array with a register",
  3297. .insns = {
  3298. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3299. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3300. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3301. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3302. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3303. BPF_FUNC_map_lookup_elem),
  3304. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3305. BPF_MOV64_IMM(BPF_REG_1, 4),
  3306. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3307. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3308. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3309. offsetof(struct test_val, foo)),
  3310. BPF_EXIT_INSN(),
  3311. },
  3312. .fixup_map2 = { 3 },
  3313. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3314. .result_unpriv = REJECT,
  3315. .result = ACCEPT,
  3316. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3317. },
  3318. {
  3319. "valid map access into an array with a variable",
  3320. .insns = {
  3321. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3322. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3323. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3324. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3325. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3326. BPF_FUNC_map_lookup_elem),
  3327. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  3328. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3329. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
  3330. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3331. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3332. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3333. offsetof(struct test_val, foo)),
  3334. BPF_EXIT_INSN(),
  3335. },
  3336. .fixup_map2 = { 3 },
  3337. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3338. .result_unpriv = REJECT,
  3339. .result = ACCEPT,
  3340. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3341. },
  3342. {
  3343. "valid map access into an array with a signed variable",
  3344. .insns = {
  3345. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3346. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3347. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3348. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3349. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3350. BPF_FUNC_map_lookup_elem),
  3351. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  3352. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3353. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
  3354. BPF_MOV32_IMM(BPF_REG_1, 0),
  3355. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
  3356. BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
  3357. BPF_MOV32_IMM(BPF_REG_1, 0),
  3358. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3359. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3360. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3361. offsetof(struct test_val, foo)),
  3362. BPF_EXIT_INSN(),
  3363. },
  3364. .fixup_map2 = { 3 },
  3365. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3366. .result_unpriv = REJECT,
  3367. .result = ACCEPT,
  3368. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3369. },
  3370. {
  3371. "invalid map access into an array with a constant",
  3372. .insns = {
  3373. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3374. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3375. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3376. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3377. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3378. BPF_FUNC_map_lookup_elem),
  3379. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3380. BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
  3381. offsetof(struct test_val, foo)),
  3382. BPF_EXIT_INSN(),
  3383. },
  3384. .fixup_map2 = { 3 },
  3385. .errstr = "invalid access to map value, value_size=48 off=48 size=8",
  3386. .result = REJECT,
  3387. },
  3388. {
  3389. "invalid map access into an array with a register",
  3390. .insns = {
  3391. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3392. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3393. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3394. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3395. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3396. BPF_FUNC_map_lookup_elem),
  3397. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3398. BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
  3399. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3400. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3401. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3402. offsetof(struct test_val, foo)),
  3403. BPF_EXIT_INSN(),
  3404. },
  3405. .fixup_map2 = { 3 },
  3406. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3407. .errstr = "R0 min value is outside of the array range",
  3408. .result_unpriv = REJECT,
  3409. .result = REJECT,
  3410. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3411. },
  3412. {
  3413. "invalid map access into an array with a variable",
  3414. .insns = {
  3415. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3416. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3417. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3418. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3419. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3420. BPF_FUNC_map_lookup_elem),
  3421. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3422. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3423. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3424. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3425. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3426. offsetof(struct test_val, foo)),
  3427. BPF_EXIT_INSN(),
  3428. },
  3429. .fixup_map2 = { 3 },
  3430. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3431. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  3432. .result_unpriv = REJECT,
  3433. .result = REJECT,
  3434. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3435. },
  3436. {
  3437. "invalid map access into an array with no floor check",
  3438. .insns = {
  3439. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3440. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3441. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3442. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3443. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3444. BPF_FUNC_map_lookup_elem),
  3445. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  3446. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3447. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
  3448. BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
  3449. BPF_MOV32_IMM(BPF_REG_1, 0),
  3450. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3451. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3452. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3453. offsetof(struct test_val, foo)),
  3454. BPF_EXIT_INSN(),
  3455. },
  3456. .fixup_map2 = { 3 },
  3457. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3458. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  3459. .result_unpriv = REJECT,
  3460. .result = REJECT,
  3461. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3462. },
  3463. {
  3464. "invalid map access into an array with a invalid max check",
  3465. .insns = {
  3466. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3467. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3468. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3469. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3470. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3471. BPF_FUNC_map_lookup_elem),
  3472. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  3473. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3474. BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
  3475. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
  3476. BPF_MOV32_IMM(BPF_REG_1, 0),
  3477. BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
  3478. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3479. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  3480. offsetof(struct test_val, foo)),
  3481. BPF_EXIT_INSN(),
  3482. },
  3483. .fixup_map2 = { 3 },
  3484. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3485. .errstr = "invalid access to map value, value_size=48 off=44 size=8",
  3486. .result_unpriv = REJECT,
  3487. .result = REJECT,
  3488. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3489. },
  3490. {
  3491. "invalid map access into an array with a invalid max check",
  3492. .insns = {
  3493. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3494. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3495. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3496. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3497. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3498. BPF_FUNC_map_lookup_elem),
  3499. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  3500. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  3501. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3502. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3503. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3504. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3505. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3506. BPF_FUNC_map_lookup_elem),
  3507. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  3508. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  3509. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
  3510. offsetof(struct test_val, foo)),
  3511. BPF_EXIT_INSN(),
  3512. },
  3513. .fixup_map2 = { 3, 11 },
  3514. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3515. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  3516. .result_unpriv = REJECT,
  3517. .result = REJECT,
  3518. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3519. },
  3520. {
  3521. "multiple registers share map_lookup_elem result",
  3522. .insns = {
  3523. BPF_MOV64_IMM(BPF_REG_1, 10),
  3524. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3525. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3526. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3527. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3528. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3529. BPF_FUNC_map_lookup_elem),
  3530. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3531. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3532. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3533. BPF_EXIT_INSN(),
  3534. },
  3535. .fixup_map1 = { 4 },
  3536. .result = ACCEPT,
  3537. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3538. },
  3539. {
  3540. "alu ops on ptr_to_map_value_or_null, 1",
  3541. .insns = {
  3542. BPF_MOV64_IMM(BPF_REG_1, 10),
  3543. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3544. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3545. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3546. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3547. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3548. BPF_FUNC_map_lookup_elem),
  3549. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3550. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, -2),
  3551. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2),
  3552. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3553. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3554. BPF_EXIT_INSN(),
  3555. },
  3556. .fixup_map1 = { 4 },
  3557. .errstr = "R4 invalid mem access",
  3558. .result = REJECT,
  3559. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3560. },
  3561. {
  3562. "alu ops on ptr_to_map_value_or_null, 2",
  3563. .insns = {
  3564. BPF_MOV64_IMM(BPF_REG_1, 10),
  3565. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3566. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3567. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3568. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3569. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3570. BPF_FUNC_map_lookup_elem),
  3571. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3572. BPF_ALU64_IMM(BPF_AND, BPF_REG_4, -1),
  3573. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3574. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3575. BPF_EXIT_INSN(),
  3576. },
  3577. .fixup_map1 = { 4 },
  3578. .errstr = "R4 invalid mem access",
  3579. .result = REJECT,
  3580. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3581. },
  3582. {
  3583. "alu ops on ptr_to_map_value_or_null, 3",
  3584. .insns = {
  3585. BPF_MOV64_IMM(BPF_REG_1, 10),
  3586. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3587. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3588. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3589. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3590. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3591. BPF_FUNC_map_lookup_elem),
  3592. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3593. BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 1),
  3594. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3595. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3596. BPF_EXIT_INSN(),
  3597. },
  3598. .fixup_map1 = { 4 },
  3599. .errstr = "R4 invalid mem access",
  3600. .result = REJECT,
  3601. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3602. },
  3603. {
  3604. "invalid memory access with multiple map_lookup_elem calls",
  3605. .insns = {
  3606. BPF_MOV64_IMM(BPF_REG_1, 10),
  3607. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3608. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3609. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3610. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3611. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  3612. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  3613. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3614. BPF_FUNC_map_lookup_elem),
  3615. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3616. BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
  3617. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  3618. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3619. BPF_FUNC_map_lookup_elem),
  3620. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3621. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3622. BPF_EXIT_INSN(),
  3623. },
  3624. .fixup_map1 = { 4 },
  3625. .result = REJECT,
  3626. .errstr = "R4 !read_ok",
  3627. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3628. },
  3629. {
  3630. "valid indirect map_lookup_elem access with 2nd lookup in branch",
  3631. .insns = {
  3632. BPF_MOV64_IMM(BPF_REG_1, 10),
  3633. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3634. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3635. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3636. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3637. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  3638. BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
  3639. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3640. BPF_FUNC_map_lookup_elem),
  3641. BPF_MOV64_IMM(BPF_REG_2, 10),
  3642. BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3),
  3643. BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
  3644. BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
  3645. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3646. BPF_FUNC_map_lookup_elem),
  3647. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3648. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3649. BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
  3650. BPF_EXIT_INSN(),
  3651. },
  3652. .fixup_map1 = { 4 },
  3653. .result = ACCEPT,
  3654. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3655. },
  3656. {
  3657. "multiple registers share map_lookup_elem bad reg type",
  3658. .insns = {
  3659. BPF_MOV64_IMM(BPF_REG_1, 10),
  3660. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
  3661. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3662. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3663. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3664. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3665. BPF_FUNC_map_lookup_elem),
  3666. BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
  3667. BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
  3668. BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
  3669. BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
  3670. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3671. BPF_MOV64_IMM(BPF_REG_1, 1),
  3672. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  3673. BPF_MOV64_IMM(BPF_REG_1, 2),
  3674. BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0, 1),
  3675. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 0),
  3676. BPF_MOV64_IMM(BPF_REG_1, 3),
  3677. BPF_EXIT_INSN(),
  3678. },
  3679. .fixup_map1 = { 4 },
  3680. .result = REJECT,
  3681. .errstr = "R3 invalid mem access 'inv'",
  3682. .prog_type = BPF_PROG_TYPE_SCHED_CLS
  3683. },
  3684. {
  3685. "invalid map access from else condition",
  3686. .insns = {
  3687. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3688. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3689. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3690. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3691. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
  3692. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  3693. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  3694. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1),
  3695. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
  3696. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  3697. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  3698. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
  3699. BPF_EXIT_INSN(),
  3700. },
  3701. .fixup_map2 = { 3 },
  3702. .errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map",
  3703. .result = REJECT,
  3704. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  3705. .result_unpriv = REJECT,
  3706. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  3707. },
  3708. {
  3709. "constant register |= constant should keep constant type",
  3710. .insns = {
  3711. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  3712. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  3713. BPF_MOV64_IMM(BPF_REG_2, 34),
  3714. BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13),
  3715. BPF_MOV64_IMM(BPF_REG_3, 0),
  3716. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  3717. BPF_EXIT_INSN(),
  3718. },
  3719. .result = ACCEPT,
  3720. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  3721. },
  3722. {
  3723. "constant register |= constant should not bypass stack boundary checks",
  3724. .insns = {
  3725. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  3726. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  3727. BPF_MOV64_IMM(BPF_REG_2, 34),
  3728. BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24),
  3729. BPF_MOV64_IMM(BPF_REG_3, 0),
  3730. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  3731. BPF_EXIT_INSN(),
  3732. },
  3733. .errstr = "invalid stack type R1 off=-48 access_size=58",
  3734. .result = REJECT,
  3735. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  3736. },
  3737. {
  3738. "constant register |= constant register should keep constant type",
  3739. .insns = {
  3740. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  3741. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  3742. BPF_MOV64_IMM(BPF_REG_2, 34),
  3743. BPF_MOV64_IMM(BPF_REG_4, 13),
  3744. BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
  3745. BPF_MOV64_IMM(BPF_REG_3, 0),
  3746. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  3747. BPF_EXIT_INSN(),
  3748. },
  3749. .result = ACCEPT,
  3750. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  3751. },
  3752. {
  3753. "constant register |= constant register should not bypass stack boundary checks",
  3754. .insns = {
  3755. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  3756. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
  3757. BPF_MOV64_IMM(BPF_REG_2, 34),
  3758. BPF_MOV64_IMM(BPF_REG_4, 24),
  3759. BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
  3760. BPF_MOV64_IMM(BPF_REG_3, 0),
  3761. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  3762. BPF_EXIT_INSN(),
  3763. },
  3764. .errstr = "invalid stack type R1 off=-48 access_size=58",
  3765. .result = REJECT,
  3766. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  3767. },
  3768. {
  3769. "invalid direct packet write for LWT_IN",
  3770. .insns = {
  3771. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3772. offsetof(struct __sk_buff, data)),
  3773. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3774. offsetof(struct __sk_buff, data_end)),
  3775. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3776. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3777. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3778. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  3779. BPF_MOV64_IMM(BPF_REG_0, 0),
  3780. BPF_EXIT_INSN(),
  3781. },
  3782. .errstr = "cannot write into packet",
  3783. .result = REJECT,
  3784. .prog_type = BPF_PROG_TYPE_LWT_IN,
  3785. },
  3786. {
  3787. "invalid direct packet write for LWT_OUT",
  3788. .insns = {
  3789. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3790. offsetof(struct __sk_buff, data)),
  3791. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3792. offsetof(struct __sk_buff, data_end)),
  3793. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3794. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3795. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3796. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  3797. BPF_MOV64_IMM(BPF_REG_0, 0),
  3798. BPF_EXIT_INSN(),
  3799. },
  3800. .errstr = "cannot write into packet",
  3801. .result = REJECT,
  3802. .prog_type = BPF_PROG_TYPE_LWT_OUT,
  3803. },
  3804. {
  3805. "direct packet write for LWT_XMIT",
  3806. .insns = {
  3807. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3808. offsetof(struct __sk_buff, data)),
  3809. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3810. offsetof(struct __sk_buff, data_end)),
  3811. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3812. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3813. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3814. BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
  3815. BPF_MOV64_IMM(BPF_REG_0, 0),
  3816. BPF_EXIT_INSN(),
  3817. },
  3818. .result = ACCEPT,
  3819. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  3820. },
  3821. {
  3822. "direct packet read for LWT_IN",
  3823. .insns = {
  3824. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3825. offsetof(struct __sk_buff, data)),
  3826. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3827. offsetof(struct __sk_buff, data_end)),
  3828. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3829. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3830. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3831. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3832. BPF_MOV64_IMM(BPF_REG_0, 0),
  3833. BPF_EXIT_INSN(),
  3834. },
  3835. .result = ACCEPT,
  3836. .prog_type = BPF_PROG_TYPE_LWT_IN,
  3837. },
  3838. {
  3839. "direct packet read for LWT_OUT",
  3840. .insns = {
  3841. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3842. offsetof(struct __sk_buff, data)),
  3843. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3844. offsetof(struct __sk_buff, data_end)),
  3845. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3846. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3847. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3848. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3849. BPF_MOV64_IMM(BPF_REG_0, 0),
  3850. BPF_EXIT_INSN(),
  3851. },
  3852. .result = ACCEPT,
  3853. .prog_type = BPF_PROG_TYPE_LWT_OUT,
  3854. },
  3855. {
  3856. "direct packet read for LWT_XMIT",
  3857. .insns = {
  3858. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3859. offsetof(struct __sk_buff, data)),
  3860. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3861. offsetof(struct __sk_buff, data_end)),
  3862. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3863. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3864. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
  3865. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
  3866. BPF_MOV64_IMM(BPF_REG_0, 0),
  3867. BPF_EXIT_INSN(),
  3868. },
  3869. .result = ACCEPT,
  3870. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  3871. },
  3872. {
  3873. "overlapping checks for direct packet access",
  3874. .insns = {
  3875. BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
  3876. offsetof(struct __sk_buff, data)),
  3877. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
  3878. offsetof(struct __sk_buff, data_end)),
  3879. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  3880. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
  3881. BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 4),
  3882. BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
  3883. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 6),
  3884. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 1),
  3885. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_2, 6),
  3886. BPF_MOV64_IMM(BPF_REG_0, 0),
  3887. BPF_EXIT_INSN(),
  3888. },
  3889. .result = ACCEPT,
  3890. .prog_type = BPF_PROG_TYPE_LWT_XMIT,
  3891. },
  3892. {
  3893. "invalid access of tc_classid for LWT_IN",
  3894. .insns = {
  3895. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  3896. offsetof(struct __sk_buff, tc_classid)),
  3897. BPF_EXIT_INSN(),
  3898. },
  3899. .result = REJECT,
  3900. .errstr = "invalid bpf_context access",
  3901. },
  3902. {
  3903. "invalid access of tc_classid for LWT_OUT",
  3904. .insns = {
  3905. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  3906. offsetof(struct __sk_buff, tc_classid)),
  3907. BPF_EXIT_INSN(),
  3908. },
  3909. .result = REJECT,
  3910. .errstr = "invalid bpf_context access",
  3911. },
  3912. {
  3913. "invalid access of tc_classid for LWT_XMIT",
  3914. .insns = {
  3915. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  3916. offsetof(struct __sk_buff, tc_classid)),
  3917. BPF_EXIT_INSN(),
  3918. },
  3919. .result = REJECT,
  3920. .errstr = "invalid bpf_context access",
  3921. },
  3922. {
  3923. "leak pointer into ctx 1",
  3924. .insns = {
  3925. BPF_MOV64_IMM(BPF_REG_0, 0),
  3926. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  3927. offsetof(struct __sk_buff, cb[0])),
  3928. BPF_LD_MAP_FD(BPF_REG_2, 0),
  3929. BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_2,
  3930. offsetof(struct __sk_buff, cb[0])),
  3931. BPF_EXIT_INSN(),
  3932. },
  3933. .fixup_map1 = { 2 },
  3934. .errstr_unpriv = "R2 leaks addr into mem",
  3935. .result_unpriv = REJECT,
  3936. .result = ACCEPT,
  3937. },
  3938. {
  3939. "leak pointer into ctx 2",
  3940. .insns = {
  3941. BPF_MOV64_IMM(BPF_REG_0, 0),
  3942. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0,
  3943. offsetof(struct __sk_buff, cb[0])),
  3944. BPF_STX_XADD(BPF_DW, BPF_REG_1, BPF_REG_10,
  3945. offsetof(struct __sk_buff, cb[0])),
  3946. BPF_EXIT_INSN(),
  3947. },
  3948. .errstr_unpriv = "R10 leaks addr into mem",
  3949. .result_unpriv = REJECT,
  3950. .result = ACCEPT,
  3951. },
  3952. {
  3953. "leak pointer into ctx 3",
  3954. .insns = {
  3955. BPF_MOV64_IMM(BPF_REG_0, 0),
  3956. BPF_LD_MAP_FD(BPF_REG_2, 0),
  3957. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2,
  3958. offsetof(struct __sk_buff, cb[0])),
  3959. BPF_EXIT_INSN(),
  3960. },
  3961. .fixup_map1 = { 1 },
  3962. .errstr_unpriv = "R2 leaks addr into ctx",
  3963. .result_unpriv = REJECT,
  3964. .result = ACCEPT,
  3965. },
  3966. {
  3967. "leak pointer into map val",
  3968. .insns = {
  3969. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  3970. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  3971. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3972. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3973. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3974. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  3975. BPF_FUNC_map_lookup_elem),
  3976. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
  3977. BPF_MOV64_IMM(BPF_REG_3, 0),
  3978. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_3, 0),
  3979. BPF_STX_XADD(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
  3980. BPF_MOV64_IMM(BPF_REG_0, 0),
  3981. BPF_EXIT_INSN(),
  3982. },
  3983. .fixup_map1 = { 4 },
  3984. .errstr_unpriv = "R6 leaks addr into mem",
  3985. .result_unpriv = REJECT,
  3986. .result = ACCEPT,
  3987. },
  3988. {
  3989. "helper access to map: full range",
  3990. .insns = {
  3991. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  3992. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  3993. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  3994. BPF_LD_MAP_FD(BPF_REG_1, 0),
  3995. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  3996. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  3997. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  3998. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  3999. BPF_MOV64_IMM(BPF_REG_3, 0),
  4000. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4001. BPF_EXIT_INSN(),
  4002. },
  4003. .fixup_map2 = { 3 },
  4004. .result = ACCEPT,
  4005. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4006. },
  4007. {
  4008. "helper access to map: partial range",
  4009. .insns = {
  4010. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4011. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4012. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4013. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4014. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4015. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4016. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4017. BPF_MOV64_IMM(BPF_REG_2, 8),
  4018. BPF_MOV64_IMM(BPF_REG_3, 0),
  4019. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4020. BPF_EXIT_INSN(),
  4021. },
  4022. .fixup_map2 = { 3 },
  4023. .result = ACCEPT,
  4024. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4025. },
  4026. {
  4027. "helper access to map: empty range",
  4028. .insns = {
  4029. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4030. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4031. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4032. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4033. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4034. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4035. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4036. BPF_MOV64_IMM(BPF_REG_2, 0),
  4037. BPF_MOV64_IMM(BPF_REG_3, 0),
  4038. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4039. BPF_EXIT_INSN(),
  4040. },
  4041. .fixup_map2 = { 3 },
  4042. .errstr = "invalid access to map value, value_size=48 off=0 size=0",
  4043. .result = REJECT,
  4044. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4045. },
  4046. {
  4047. "helper access to map: out-of-bound range",
  4048. .insns = {
  4049. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4050. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4051. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4052. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4053. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4054. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4055. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4056. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val) + 8),
  4057. BPF_MOV64_IMM(BPF_REG_3, 0),
  4058. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4059. BPF_EXIT_INSN(),
  4060. },
  4061. .fixup_map2 = { 3 },
  4062. .errstr = "invalid access to map value, value_size=48 off=0 size=56",
  4063. .result = REJECT,
  4064. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4065. },
  4066. {
  4067. "helper access to map: negative range",
  4068. .insns = {
  4069. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4070. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4071. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4072. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4073. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4074. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  4075. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4076. BPF_MOV64_IMM(BPF_REG_2, -8),
  4077. BPF_MOV64_IMM(BPF_REG_3, 0),
  4078. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4079. BPF_EXIT_INSN(),
  4080. },
  4081. .fixup_map2 = { 3 },
  4082. .errstr = "invalid access to map value, value_size=48 off=0 size=-8",
  4083. .result = REJECT,
  4084. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4085. },
  4086. {
  4087. "helper access to adjusted map (via const imm): full range",
  4088. .insns = {
  4089. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4090. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4091. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4092. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4093. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4094. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4095. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4096. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4097. offsetof(struct test_val, foo)),
  4098. BPF_MOV64_IMM(BPF_REG_2,
  4099. sizeof(struct test_val) -
  4100. offsetof(struct test_val, foo)),
  4101. BPF_MOV64_IMM(BPF_REG_3, 0),
  4102. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4103. BPF_EXIT_INSN(),
  4104. },
  4105. .fixup_map2 = { 3 },
  4106. .result = ACCEPT,
  4107. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4108. },
  4109. {
  4110. "helper access to adjusted map (via const imm): partial range",
  4111. .insns = {
  4112. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4113. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4114. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4115. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4116. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4117. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4118. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4119. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4120. offsetof(struct test_val, foo)),
  4121. BPF_MOV64_IMM(BPF_REG_2, 8),
  4122. BPF_MOV64_IMM(BPF_REG_3, 0),
  4123. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4124. BPF_EXIT_INSN(),
  4125. },
  4126. .fixup_map2 = { 3 },
  4127. .result = ACCEPT,
  4128. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4129. },
  4130. {
  4131. "helper access to adjusted map (via const imm): empty range",
  4132. .insns = {
  4133. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4134. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4135. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4136. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4137. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4138. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4139. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4140. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4141. offsetof(struct test_val, foo)),
  4142. BPF_MOV64_IMM(BPF_REG_2, 0),
  4143. BPF_MOV64_IMM(BPF_REG_3, 0),
  4144. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4145. BPF_EXIT_INSN(),
  4146. },
  4147. .fixup_map2 = { 3 },
  4148. .errstr = "R1 min value is outside of the array range",
  4149. .result = REJECT,
  4150. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4151. },
  4152. {
  4153. "helper access to adjusted map (via const imm): out-of-bound range",
  4154. .insns = {
  4155. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4156. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4157. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4158. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4159. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4160. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4161. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4162. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4163. offsetof(struct test_val, foo)),
  4164. BPF_MOV64_IMM(BPF_REG_2,
  4165. sizeof(struct test_val) -
  4166. offsetof(struct test_val, foo) + 8),
  4167. BPF_MOV64_IMM(BPF_REG_3, 0),
  4168. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4169. BPF_EXIT_INSN(),
  4170. },
  4171. .fixup_map2 = { 3 },
  4172. .errstr = "invalid access to map value, value_size=48 off=4 size=52",
  4173. .result = REJECT,
  4174. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4175. },
  4176. {
  4177. "helper access to adjusted map (via const imm): negative range (> adjustment)",
  4178. .insns = {
  4179. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4180. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4181. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4182. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4183. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4184. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4185. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4186. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4187. offsetof(struct test_val, foo)),
  4188. BPF_MOV64_IMM(BPF_REG_2, -8),
  4189. BPF_MOV64_IMM(BPF_REG_3, 0),
  4190. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4191. BPF_EXIT_INSN(),
  4192. },
  4193. .fixup_map2 = { 3 },
  4194. .errstr = "invalid access to map value, value_size=48 off=4 size=-8",
  4195. .result = REJECT,
  4196. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4197. },
  4198. {
  4199. "helper access to adjusted map (via const imm): negative range (< adjustment)",
  4200. .insns = {
  4201. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4202. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4203. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4204. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4205. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4206. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  4207. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4208. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1,
  4209. offsetof(struct test_val, foo)),
  4210. BPF_MOV64_IMM(BPF_REG_2, -1),
  4211. BPF_MOV64_IMM(BPF_REG_3, 0),
  4212. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4213. BPF_EXIT_INSN(),
  4214. },
  4215. .fixup_map2 = { 3 },
  4216. .errstr = "R1 min value is outside of the array range",
  4217. .result = REJECT,
  4218. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4219. },
  4220. {
  4221. "helper access to adjusted map (via const reg): full range",
  4222. .insns = {
  4223. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4224. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4225. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4226. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4227. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4228. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4229. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4230. BPF_MOV64_IMM(BPF_REG_3,
  4231. offsetof(struct test_val, foo)),
  4232. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4233. BPF_MOV64_IMM(BPF_REG_2,
  4234. sizeof(struct test_val) -
  4235. offsetof(struct test_val, foo)),
  4236. BPF_MOV64_IMM(BPF_REG_3, 0),
  4237. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4238. BPF_EXIT_INSN(),
  4239. },
  4240. .fixup_map2 = { 3 },
  4241. .result = ACCEPT,
  4242. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4243. },
  4244. {
  4245. "helper access to adjusted map (via const reg): partial range",
  4246. .insns = {
  4247. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4248. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4249. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4250. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4251. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4252. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4253. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4254. BPF_MOV64_IMM(BPF_REG_3,
  4255. offsetof(struct test_val, foo)),
  4256. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4257. BPF_MOV64_IMM(BPF_REG_2, 8),
  4258. BPF_MOV64_IMM(BPF_REG_3, 0),
  4259. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4260. BPF_EXIT_INSN(),
  4261. },
  4262. .fixup_map2 = { 3 },
  4263. .result = ACCEPT,
  4264. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4265. },
  4266. {
  4267. "helper access to adjusted map (via const reg): empty range",
  4268. .insns = {
  4269. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4270. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4271. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4272. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4273. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4274. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4275. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4276. BPF_MOV64_IMM(BPF_REG_3, 0),
  4277. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4278. BPF_MOV64_IMM(BPF_REG_2, 0),
  4279. BPF_MOV64_IMM(BPF_REG_3, 0),
  4280. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4281. BPF_EXIT_INSN(),
  4282. },
  4283. .fixup_map2 = { 3 },
  4284. .errstr = "R1 min value is outside of the array range",
  4285. .result = REJECT,
  4286. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4287. },
  4288. {
  4289. "helper access to adjusted map (via const reg): out-of-bound range",
  4290. .insns = {
  4291. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4292. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4293. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4294. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4295. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4296. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4297. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4298. BPF_MOV64_IMM(BPF_REG_3,
  4299. offsetof(struct test_val, foo)),
  4300. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4301. BPF_MOV64_IMM(BPF_REG_2,
  4302. sizeof(struct test_val) -
  4303. offsetof(struct test_val, foo) + 8),
  4304. BPF_MOV64_IMM(BPF_REG_3, 0),
  4305. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4306. BPF_EXIT_INSN(),
  4307. },
  4308. .fixup_map2 = { 3 },
  4309. .errstr = "invalid access to map value, value_size=48 off=4 size=52",
  4310. .result = REJECT,
  4311. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4312. },
  4313. {
  4314. "helper access to adjusted map (via const reg): negative range (> adjustment)",
  4315. .insns = {
  4316. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4317. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4318. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4319. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4320. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4321. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4322. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4323. BPF_MOV64_IMM(BPF_REG_3,
  4324. offsetof(struct test_val, foo)),
  4325. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4326. BPF_MOV64_IMM(BPF_REG_2, -8),
  4327. BPF_MOV64_IMM(BPF_REG_3, 0),
  4328. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4329. BPF_EXIT_INSN(),
  4330. },
  4331. .fixup_map2 = { 3 },
  4332. .errstr = "invalid access to map value, value_size=48 off=4 size=-8",
  4333. .result = REJECT,
  4334. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4335. },
  4336. {
  4337. "helper access to adjusted map (via const reg): negative range (< adjustment)",
  4338. .insns = {
  4339. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4340. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4341. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4342. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4343. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4344. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4345. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4346. BPF_MOV64_IMM(BPF_REG_3,
  4347. offsetof(struct test_val, foo)),
  4348. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4349. BPF_MOV64_IMM(BPF_REG_2, -1),
  4350. BPF_MOV64_IMM(BPF_REG_3, 0),
  4351. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4352. BPF_EXIT_INSN(),
  4353. },
  4354. .fixup_map2 = { 3 },
  4355. .errstr = "R1 min value is outside of the array range",
  4356. .result = REJECT,
  4357. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4358. },
  4359. {
  4360. "helper access to adjusted map (via variable): full range",
  4361. .insns = {
  4362. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4363. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4364. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4365. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4366. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4367. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4368. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4369. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4370. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4371. offsetof(struct test_val, foo), 4),
  4372. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4373. BPF_MOV64_IMM(BPF_REG_2,
  4374. sizeof(struct test_val) -
  4375. offsetof(struct test_val, foo)),
  4376. BPF_MOV64_IMM(BPF_REG_3, 0),
  4377. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4378. BPF_EXIT_INSN(),
  4379. },
  4380. .fixup_map2 = { 3 },
  4381. .result = ACCEPT,
  4382. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4383. },
  4384. {
  4385. "helper access to adjusted map (via variable): partial range",
  4386. .insns = {
  4387. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4388. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4389. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4390. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4391. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4392. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4393. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4394. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4395. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4396. offsetof(struct test_val, foo), 4),
  4397. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4398. BPF_MOV64_IMM(BPF_REG_2, 8),
  4399. BPF_MOV64_IMM(BPF_REG_3, 0),
  4400. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4401. BPF_EXIT_INSN(),
  4402. },
  4403. .fixup_map2 = { 3 },
  4404. .result = ACCEPT,
  4405. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4406. },
  4407. {
  4408. "helper access to adjusted map (via variable): empty range",
  4409. .insns = {
  4410. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4411. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4412. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4413. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4414. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4415. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4416. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4417. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4418. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4419. offsetof(struct test_val, foo), 4),
  4420. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4421. BPF_MOV64_IMM(BPF_REG_2, 0),
  4422. BPF_MOV64_IMM(BPF_REG_3, 0),
  4423. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4424. BPF_EXIT_INSN(),
  4425. },
  4426. .fixup_map2 = { 3 },
  4427. .errstr = "R1 min value is outside of the array range",
  4428. .result = REJECT,
  4429. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4430. },
  4431. {
  4432. "helper access to adjusted map (via variable): no max check",
  4433. .insns = {
  4434. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4435. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4436. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4437. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4438. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4439. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4440. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4441. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4442. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4443. BPF_MOV64_IMM(BPF_REG_2, 0),
  4444. BPF_MOV64_IMM(BPF_REG_3, 0),
  4445. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4446. BPF_EXIT_INSN(),
  4447. },
  4448. .fixup_map2 = { 3 },
  4449. .errstr = "R1 min value is negative, either use unsigned index or do a if (index >=0) check",
  4450. .result = REJECT,
  4451. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4452. },
  4453. {
  4454. "helper access to adjusted map (via variable): wrong max check",
  4455. .insns = {
  4456. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4457. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4458. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4459. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4460. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4461. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4462. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4463. BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_0, 0),
  4464. BPF_JMP_IMM(BPF_JGT, BPF_REG_3,
  4465. offsetof(struct test_val, foo), 4),
  4466. BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_3),
  4467. BPF_MOV64_IMM(BPF_REG_2,
  4468. sizeof(struct test_val) -
  4469. offsetof(struct test_val, foo) + 1),
  4470. BPF_MOV64_IMM(BPF_REG_3, 0),
  4471. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4472. BPF_EXIT_INSN(),
  4473. },
  4474. .fixup_map2 = { 3 },
  4475. .errstr = "invalid access to map value, value_size=48 off=4 size=45",
  4476. .result = REJECT,
  4477. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4478. },
  4479. {
  4480. "map element value is preserved across register spilling",
  4481. .insns = {
  4482. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4483. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4484. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4485. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4486. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4487. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  4488. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  4489. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4490. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
  4491. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  4492. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  4493. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  4494. BPF_EXIT_INSN(),
  4495. },
  4496. .fixup_map2 = { 3 },
  4497. .errstr_unpriv = "R0 leaks addr",
  4498. .result = ACCEPT,
  4499. .result_unpriv = REJECT,
  4500. },
  4501. {
  4502. "map element value or null is marked on register spilling",
  4503. .insns = {
  4504. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4505. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4506. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4507. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4508. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4509. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4510. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -152),
  4511. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  4512. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  4513. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  4514. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  4515. BPF_EXIT_INSN(),
  4516. },
  4517. .fixup_map2 = { 3 },
  4518. .errstr_unpriv = "R0 leaks addr",
  4519. .result = ACCEPT,
  4520. .result_unpriv = REJECT,
  4521. },
  4522. {
  4523. "map element value store of cleared call register",
  4524. .insns = {
  4525. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4526. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4527. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4528. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4529. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4530. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
  4531. BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 0),
  4532. BPF_EXIT_INSN(),
  4533. },
  4534. .fixup_map2 = { 3 },
  4535. .errstr_unpriv = "R1 !read_ok",
  4536. .errstr = "R1 !read_ok",
  4537. .result = REJECT,
  4538. .result_unpriv = REJECT,
  4539. },
  4540. {
  4541. "map element value with unaligned store",
  4542. .insns = {
  4543. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4544. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4545. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4546. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4547. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4548. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 17),
  4549. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
  4550. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  4551. BPF_ST_MEM(BPF_DW, BPF_REG_0, 2, 43),
  4552. BPF_ST_MEM(BPF_DW, BPF_REG_0, -2, 44),
  4553. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  4554. BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 32),
  4555. BPF_ST_MEM(BPF_DW, BPF_REG_8, 2, 33),
  4556. BPF_ST_MEM(BPF_DW, BPF_REG_8, -2, 34),
  4557. BPF_ALU64_IMM(BPF_ADD, BPF_REG_8, 5),
  4558. BPF_ST_MEM(BPF_DW, BPF_REG_8, 0, 22),
  4559. BPF_ST_MEM(BPF_DW, BPF_REG_8, 4, 23),
  4560. BPF_ST_MEM(BPF_DW, BPF_REG_8, -7, 24),
  4561. BPF_MOV64_REG(BPF_REG_7, BPF_REG_8),
  4562. BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 3),
  4563. BPF_ST_MEM(BPF_DW, BPF_REG_7, 0, 22),
  4564. BPF_ST_MEM(BPF_DW, BPF_REG_7, 4, 23),
  4565. BPF_ST_MEM(BPF_DW, BPF_REG_7, -4, 24),
  4566. BPF_EXIT_INSN(),
  4567. },
  4568. .fixup_map2 = { 3 },
  4569. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4570. .result = ACCEPT,
  4571. .result_unpriv = REJECT,
  4572. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  4573. },
  4574. {
  4575. "map element value with unaligned load",
  4576. .insns = {
  4577. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4578. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4579. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4580. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4581. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4582. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  4583. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  4584. BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 9),
  4585. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 3),
  4586. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  4587. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 2),
  4588. BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
  4589. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 0),
  4590. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_8, 2),
  4591. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 5),
  4592. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 0),
  4593. BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_0, 4),
  4594. BPF_EXIT_INSN(),
  4595. },
  4596. .fixup_map2 = { 3 },
  4597. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4598. .result = ACCEPT,
  4599. .result_unpriv = REJECT,
  4600. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  4601. },
  4602. {
  4603. "map element value illegal alu op, 1",
  4604. .insns = {
  4605. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4606. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4607. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4608. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4609. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4610. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  4611. BPF_ALU64_IMM(BPF_AND, BPF_REG_0, 8),
  4612. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  4613. BPF_EXIT_INSN(),
  4614. },
  4615. .fixup_map2 = { 3 },
  4616. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4617. .errstr = "invalid mem access 'inv'",
  4618. .result = REJECT,
  4619. .result_unpriv = REJECT,
  4620. },
  4621. {
  4622. "map element value illegal alu op, 2",
  4623. .insns = {
  4624. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4625. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4626. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4627. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4628. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4629. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  4630. BPF_ALU32_IMM(BPF_ADD, BPF_REG_0, 0),
  4631. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  4632. BPF_EXIT_INSN(),
  4633. },
  4634. .fixup_map2 = { 3 },
  4635. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4636. .errstr = "invalid mem access 'inv'",
  4637. .result = REJECT,
  4638. .result_unpriv = REJECT,
  4639. },
  4640. {
  4641. "map element value illegal alu op, 3",
  4642. .insns = {
  4643. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4644. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4645. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4646. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4647. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4648. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  4649. BPF_ALU64_IMM(BPF_DIV, BPF_REG_0, 42),
  4650. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  4651. BPF_EXIT_INSN(),
  4652. },
  4653. .fixup_map2 = { 3 },
  4654. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4655. .errstr = "invalid mem access 'inv'",
  4656. .result = REJECT,
  4657. .result_unpriv = REJECT,
  4658. },
  4659. {
  4660. "map element value illegal alu op, 4",
  4661. .insns = {
  4662. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4663. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4664. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4665. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4666. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4667. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
  4668. BPF_ENDIAN(BPF_FROM_BE, BPF_REG_0, 64),
  4669. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  4670. BPF_EXIT_INSN(),
  4671. },
  4672. .fixup_map2 = { 3 },
  4673. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4674. .errstr = "invalid mem access 'inv'",
  4675. .result = REJECT,
  4676. .result_unpriv = REJECT,
  4677. },
  4678. {
  4679. "map element value illegal alu op, 5",
  4680. .insns = {
  4681. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4682. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4683. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4684. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4685. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4686. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4687. BPF_MOV64_IMM(BPF_REG_3, 4096),
  4688. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4689. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4690. BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0),
  4691. BPF_STX_XADD(BPF_DW, BPF_REG_2, BPF_REG_3, 0),
  4692. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0),
  4693. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 22),
  4694. BPF_EXIT_INSN(),
  4695. },
  4696. .fixup_map2 = { 3 },
  4697. .errstr_unpriv = "R0 invalid mem access 'inv'",
  4698. .errstr = "R0 invalid mem access 'inv'",
  4699. .result = REJECT,
  4700. .result_unpriv = REJECT,
  4701. },
  4702. {
  4703. "map element value is preserved across register spilling",
  4704. .insns = {
  4705. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4706. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4707. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4708. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4709. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4710. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  4711. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0,
  4712. offsetof(struct test_val, foo)),
  4713. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 42),
  4714. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4715. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -184),
  4716. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0),
  4717. BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_1, 0),
  4718. BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 42),
  4719. BPF_EXIT_INSN(),
  4720. },
  4721. .fixup_map2 = { 3 },
  4722. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  4723. .result = ACCEPT,
  4724. .result_unpriv = REJECT,
  4725. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  4726. },
  4727. {
  4728. "helper access to variable memory: stack, bitwise AND + JMP, correct bounds",
  4729. .insns = {
  4730. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4731. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4732. BPF_MOV64_IMM(BPF_REG_0, 0),
  4733. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  4734. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  4735. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  4736. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  4737. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  4738. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  4739. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  4740. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  4741. BPF_MOV64_IMM(BPF_REG_2, 16),
  4742. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4743. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4744. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  4745. BPF_MOV64_IMM(BPF_REG_4, 0),
  4746. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  4747. BPF_MOV64_IMM(BPF_REG_3, 0),
  4748. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4749. BPF_MOV64_IMM(BPF_REG_0, 0),
  4750. BPF_EXIT_INSN(),
  4751. },
  4752. .result = ACCEPT,
  4753. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4754. },
  4755. {
  4756. "helper access to variable memory: stack, bitwise AND, zero included",
  4757. .insns = {
  4758. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4759. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4760. BPF_MOV64_IMM(BPF_REG_2, 16),
  4761. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4762. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4763. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  4764. BPF_MOV64_IMM(BPF_REG_3, 0),
  4765. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4766. BPF_EXIT_INSN(),
  4767. },
  4768. .errstr = "invalid stack type R1 off=-64 access_size=0",
  4769. .result = REJECT,
  4770. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4771. },
  4772. {
  4773. "helper access to variable memory: stack, bitwise AND + JMP, wrong max",
  4774. .insns = {
  4775. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4776. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4777. BPF_MOV64_IMM(BPF_REG_2, 16),
  4778. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4779. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4780. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 65),
  4781. BPF_MOV64_IMM(BPF_REG_4, 0),
  4782. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  4783. BPF_MOV64_IMM(BPF_REG_3, 0),
  4784. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4785. BPF_MOV64_IMM(BPF_REG_0, 0),
  4786. BPF_EXIT_INSN(),
  4787. },
  4788. .errstr = "invalid stack type R1 off=-64 access_size=65",
  4789. .result = REJECT,
  4790. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4791. },
  4792. {
  4793. "helper access to variable memory: stack, JMP, correct bounds",
  4794. .insns = {
  4795. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4796. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4797. BPF_MOV64_IMM(BPF_REG_0, 0),
  4798. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  4799. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  4800. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  4801. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  4802. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  4803. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  4804. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  4805. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  4806. BPF_MOV64_IMM(BPF_REG_2, 16),
  4807. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4808. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4809. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 4),
  4810. BPF_MOV64_IMM(BPF_REG_4, 0),
  4811. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  4812. BPF_MOV64_IMM(BPF_REG_3, 0),
  4813. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4814. BPF_MOV64_IMM(BPF_REG_0, 0),
  4815. BPF_EXIT_INSN(),
  4816. },
  4817. .result = ACCEPT,
  4818. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4819. },
  4820. {
  4821. "helper access to variable memory: stack, JMP (signed), correct bounds",
  4822. .insns = {
  4823. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4824. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4825. BPF_MOV64_IMM(BPF_REG_0, 0),
  4826. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  4827. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  4828. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  4829. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  4830. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  4831. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  4832. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  4833. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  4834. BPF_MOV64_IMM(BPF_REG_2, 16),
  4835. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4836. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4837. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 4),
  4838. BPF_MOV64_IMM(BPF_REG_4, 0),
  4839. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  4840. BPF_MOV64_IMM(BPF_REG_3, 0),
  4841. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4842. BPF_MOV64_IMM(BPF_REG_0, 0),
  4843. BPF_EXIT_INSN(),
  4844. },
  4845. .result = ACCEPT,
  4846. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4847. },
  4848. {
  4849. "helper access to variable memory: stack, JMP, bounds + offset",
  4850. .insns = {
  4851. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4852. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4853. BPF_MOV64_IMM(BPF_REG_2, 16),
  4854. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4855. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4856. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 5),
  4857. BPF_MOV64_IMM(BPF_REG_4, 0),
  4858. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 3),
  4859. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  4860. BPF_MOV64_IMM(BPF_REG_3, 0),
  4861. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4862. BPF_MOV64_IMM(BPF_REG_0, 0),
  4863. BPF_EXIT_INSN(),
  4864. },
  4865. .errstr = "invalid stack type R1 off=-64 access_size=65",
  4866. .result = REJECT,
  4867. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4868. },
  4869. {
  4870. "helper access to variable memory: stack, JMP, wrong max",
  4871. .insns = {
  4872. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4873. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4874. BPF_MOV64_IMM(BPF_REG_2, 16),
  4875. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4876. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4877. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 65, 4),
  4878. BPF_MOV64_IMM(BPF_REG_4, 0),
  4879. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  4880. BPF_MOV64_IMM(BPF_REG_3, 0),
  4881. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4882. BPF_MOV64_IMM(BPF_REG_0, 0),
  4883. BPF_EXIT_INSN(),
  4884. },
  4885. .errstr = "invalid stack type R1 off=-64 access_size=65",
  4886. .result = REJECT,
  4887. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4888. },
  4889. {
  4890. "helper access to variable memory: stack, JMP, no max check",
  4891. .insns = {
  4892. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4893. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4894. BPF_MOV64_IMM(BPF_REG_2, 16),
  4895. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4896. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4897. BPF_MOV64_IMM(BPF_REG_4, 0),
  4898. BPF_JMP_REG(BPF_JGE, BPF_REG_4, BPF_REG_2, 2),
  4899. BPF_MOV64_IMM(BPF_REG_3, 0),
  4900. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4901. BPF_MOV64_IMM(BPF_REG_0, 0),
  4902. BPF_EXIT_INSN(),
  4903. },
  4904. .errstr = "R2 unbounded memory access",
  4905. .result = REJECT,
  4906. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4907. },
  4908. {
  4909. "helper access to variable memory: stack, JMP, no min check",
  4910. .insns = {
  4911. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4912. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4913. BPF_MOV64_IMM(BPF_REG_2, 16),
  4914. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4915. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4916. BPF_JMP_IMM(BPF_JGT, BPF_REG_2, 64, 3),
  4917. BPF_MOV64_IMM(BPF_REG_3, 0),
  4918. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4919. BPF_MOV64_IMM(BPF_REG_0, 0),
  4920. BPF_EXIT_INSN(),
  4921. },
  4922. .errstr = "invalid stack type R1 off=-64 access_size=0",
  4923. .result = REJECT,
  4924. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4925. },
  4926. {
  4927. "helper access to variable memory: stack, JMP (signed), no min check",
  4928. .insns = {
  4929. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  4930. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  4931. BPF_MOV64_IMM(BPF_REG_2, 16),
  4932. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, -128),
  4933. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -128),
  4934. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2, 64, 3),
  4935. BPF_MOV64_IMM(BPF_REG_3, 0),
  4936. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4937. BPF_MOV64_IMM(BPF_REG_0, 0),
  4938. BPF_EXIT_INSN(),
  4939. },
  4940. .errstr = "R2 min value is negative",
  4941. .result = REJECT,
  4942. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4943. },
  4944. {
  4945. "helper access to variable memory: map, JMP, correct bounds",
  4946. .insns = {
  4947. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4948. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4949. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4950. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4951. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4952. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  4953. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4954. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  4955. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  4956. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  4957. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  4958. sizeof(struct test_val), 4),
  4959. BPF_MOV64_IMM(BPF_REG_4, 0),
  4960. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  4961. BPF_MOV64_IMM(BPF_REG_3, 0),
  4962. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4963. BPF_MOV64_IMM(BPF_REG_0, 0),
  4964. BPF_EXIT_INSN(),
  4965. },
  4966. .fixup_map2 = { 3 },
  4967. .result = ACCEPT,
  4968. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4969. },
  4970. {
  4971. "helper access to variable memory: map, JMP, wrong max",
  4972. .insns = {
  4973. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  4974. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  4975. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  4976. BPF_LD_MAP_FD(BPF_REG_1, 0),
  4977. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  4978. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  4979. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  4980. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  4981. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  4982. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  4983. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  4984. sizeof(struct test_val) + 1, 4),
  4985. BPF_MOV64_IMM(BPF_REG_4, 0),
  4986. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  4987. BPF_MOV64_IMM(BPF_REG_3, 0),
  4988. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  4989. BPF_MOV64_IMM(BPF_REG_0, 0),
  4990. BPF_EXIT_INSN(),
  4991. },
  4992. .fixup_map2 = { 3 },
  4993. .errstr = "invalid access to map value, value_size=48 off=0 size=49",
  4994. .result = REJECT,
  4995. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  4996. },
  4997. {
  4998. "helper access to variable memory: map adjusted, JMP, correct bounds",
  4999. .insns = {
  5000. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5001. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5002. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5003. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5004. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5005. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  5006. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5007. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
  5008. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5009. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5010. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5011. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5012. sizeof(struct test_val) - 20, 4),
  5013. BPF_MOV64_IMM(BPF_REG_4, 0),
  5014. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5015. BPF_MOV64_IMM(BPF_REG_3, 0),
  5016. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5017. BPF_MOV64_IMM(BPF_REG_0, 0),
  5018. BPF_EXIT_INSN(),
  5019. },
  5020. .fixup_map2 = { 3 },
  5021. .result = ACCEPT,
  5022. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5023. },
  5024. {
  5025. "helper access to variable memory: map adjusted, JMP, wrong max",
  5026. .insns = {
  5027. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5028. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5029. BPF_ST_MEM(BPF_DW, BPF_REG_2, 0, 0),
  5030. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5031. BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
  5032. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 11),
  5033. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5034. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 20),
  5035. BPF_MOV64_IMM(BPF_REG_2, sizeof(struct test_val)),
  5036. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5037. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5038. BPF_JMP_IMM(BPF_JSGT, BPF_REG_2,
  5039. sizeof(struct test_val) - 19, 4),
  5040. BPF_MOV64_IMM(BPF_REG_4, 0),
  5041. BPF_JMP_REG(BPF_JSGE, BPF_REG_4, BPF_REG_2, 2),
  5042. BPF_MOV64_IMM(BPF_REG_3, 0),
  5043. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5044. BPF_MOV64_IMM(BPF_REG_0, 0),
  5045. BPF_EXIT_INSN(),
  5046. },
  5047. .fixup_map2 = { 3 },
  5048. .errstr = "R1 min value is outside of the array range",
  5049. .result = REJECT,
  5050. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5051. },
  5052. {
  5053. "helper access to variable memory: size > 0 not allowed on NULL",
  5054. .insns = {
  5055. BPF_MOV64_IMM(BPF_REG_1, 0),
  5056. BPF_MOV64_IMM(BPF_REG_2, 0),
  5057. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5058. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5059. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 64),
  5060. BPF_MOV64_IMM(BPF_REG_3, 0),
  5061. BPF_MOV64_IMM(BPF_REG_4, 0),
  5062. BPF_MOV64_IMM(BPF_REG_5, 0),
  5063. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5064. BPF_EXIT_INSN(),
  5065. },
  5066. .errstr = "R1 type=imm expected=fp",
  5067. .result = REJECT,
  5068. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5069. },
  5070. {
  5071. "helper access to variable memory: size = 0 not allowed on != NULL",
  5072. .insns = {
  5073. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5074. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
  5075. BPF_MOV64_IMM(BPF_REG_2, 0),
  5076. BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_2, 0),
  5077. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 8),
  5078. BPF_MOV64_IMM(BPF_REG_3, 0),
  5079. BPF_MOV64_IMM(BPF_REG_4, 0),
  5080. BPF_MOV64_IMM(BPF_REG_5, 0),
  5081. BPF_EMIT_CALL(BPF_FUNC_csum_diff),
  5082. BPF_EXIT_INSN(),
  5083. },
  5084. .errstr = "invalid stack type R1 off=-8 access_size=0",
  5085. .result = REJECT,
  5086. .prog_type = BPF_PROG_TYPE_SCHED_CLS,
  5087. },
  5088. {
  5089. "helper access to variable memory: 8 bytes leak",
  5090. .insns = {
  5091. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5092. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5093. BPF_MOV64_IMM(BPF_REG_0, 0),
  5094. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5095. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5096. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5097. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5098. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5099. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5100. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5101. BPF_MOV64_IMM(BPF_REG_2, 0),
  5102. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -128),
  5103. BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -128),
  5104. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 63),
  5105. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
  5106. BPF_MOV64_IMM(BPF_REG_3, 0),
  5107. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5108. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5109. BPF_EXIT_INSN(),
  5110. },
  5111. .errstr = "invalid indirect read from stack off -64+32 size 64",
  5112. .result = REJECT,
  5113. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5114. },
  5115. {
  5116. "helper access to variable memory: 8 bytes no leak (init memory)",
  5117. .insns = {
  5118. BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
  5119. BPF_MOV64_IMM(BPF_REG_0, 0),
  5120. BPF_MOV64_IMM(BPF_REG_0, 0),
  5121. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -64),
  5122. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -56),
  5123. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -48),
  5124. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -40),
  5125. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -32),
  5126. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -24),
  5127. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -16),
  5128. BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_0, -8),
  5129. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -64),
  5130. BPF_MOV64_IMM(BPF_REG_2, 0),
  5131. BPF_ALU64_IMM(BPF_AND, BPF_REG_2, 32),
  5132. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 32),
  5133. BPF_MOV64_IMM(BPF_REG_3, 0),
  5134. BPF_EMIT_CALL(BPF_FUNC_probe_read),
  5135. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5136. BPF_EXIT_INSN(),
  5137. },
  5138. .result = ACCEPT,
  5139. .prog_type = BPF_PROG_TYPE_TRACEPOINT,
  5140. },
  5141. {
  5142. "invalid and of negative number",
  5143. .insns = {
  5144. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5145. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5146. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5147. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5148. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5149. BPF_FUNC_map_lookup_elem),
  5150. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5151. BPF_MOV64_IMM(BPF_REG_1, 6),
  5152. BPF_ALU64_IMM(BPF_AND, BPF_REG_1, -4),
  5153. BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
  5154. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5155. BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
  5156. offsetof(struct test_val, foo)),
  5157. BPF_EXIT_INSN(),
  5158. },
  5159. .fixup_map2 = { 3 },
  5160. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5161. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  5162. .result = REJECT,
  5163. .result_unpriv = REJECT,
  5164. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5165. },
  5166. {
  5167. "invalid range check",
  5168. .insns = {
  5169. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5170. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5171. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5172. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5173. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5174. BPF_FUNC_map_lookup_elem),
  5175. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 12),
  5176. BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
  5177. BPF_MOV64_IMM(BPF_REG_9, 1),
  5178. BPF_ALU32_IMM(BPF_MOD, BPF_REG_1, 2),
  5179. BPF_ALU32_IMM(BPF_ADD, BPF_REG_1, 1),
  5180. BPF_ALU32_REG(BPF_AND, BPF_REG_9, BPF_REG_1),
  5181. BPF_ALU32_IMM(BPF_ADD, BPF_REG_9, 1),
  5182. BPF_ALU32_IMM(BPF_RSH, BPF_REG_9, 1),
  5183. BPF_MOV32_IMM(BPF_REG_3, 1),
  5184. BPF_ALU32_REG(BPF_SUB, BPF_REG_3, BPF_REG_9),
  5185. BPF_ALU32_IMM(BPF_MUL, BPF_REG_3, 0x10000000),
  5186. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
  5187. BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_3, 0),
  5188. BPF_MOV64_REG(BPF_REG_0, 0),
  5189. BPF_EXIT_INSN(),
  5190. },
  5191. .fixup_map2 = { 3 },
  5192. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5193. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  5194. .result = REJECT,
  5195. .result_unpriv = REJECT,
  5196. .flags = F_NEEDS_EFFICIENT_UNALIGNED_ACCESS,
  5197. },
  5198. {
  5199. "map in map access",
  5200. .insns = {
  5201. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5202. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5203. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5204. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5205. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5206. BPF_FUNC_map_lookup_elem),
  5207. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
  5208. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5209. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5210. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5211. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5212. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5213. BPF_FUNC_map_lookup_elem),
  5214. BPF_MOV64_REG(BPF_REG_0, 0),
  5215. BPF_EXIT_INSN(),
  5216. },
  5217. .fixup_map_in_map = { 3 },
  5218. .result = ACCEPT,
  5219. },
  5220. {
  5221. "invalid inner map pointer",
  5222. .insns = {
  5223. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5224. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5225. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5226. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5227. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5228. BPF_FUNC_map_lookup_elem),
  5229. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5230. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5231. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5232. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5233. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5234. BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
  5235. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5236. BPF_FUNC_map_lookup_elem),
  5237. BPF_MOV64_REG(BPF_REG_0, 0),
  5238. BPF_EXIT_INSN(),
  5239. },
  5240. .fixup_map_in_map = { 3 },
  5241. .errstr = "R1 type=inv expected=map_ptr",
  5242. .errstr_unpriv = "R1 pointer arithmetic prohibited",
  5243. .result = REJECT,
  5244. },
  5245. {
  5246. "forgot null checking on the inner map pointer",
  5247. .insns = {
  5248. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5249. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5250. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5251. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5252. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5253. BPF_FUNC_map_lookup_elem),
  5254. BPF_ST_MEM(0, BPF_REG_10, -4, 0),
  5255. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5256. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4),
  5257. BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
  5258. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5259. BPF_FUNC_map_lookup_elem),
  5260. BPF_MOV64_REG(BPF_REG_0, 0),
  5261. BPF_EXIT_INSN(),
  5262. },
  5263. .fixup_map_in_map = { 3 },
  5264. .errstr = "R1 type=map_value_or_null expected=map_ptr",
  5265. .result = REJECT,
  5266. },
  5267. {
  5268. "ld_abs: check calling conv, r1",
  5269. .insns = {
  5270. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5271. BPF_MOV64_IMM(BPF_REG_1, 0),
  5272. BPF_LD_ABS(BPF_W, -0x200000),
  5273. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  5274. BPF_EXIT_INSN(),
  5275. },
  5276. .errstr = "R1 !read_ok",
  5277. .result = REJECT,
  5278. },
  5279. {
  5280. "ld_abs: check calling conv, r2",
  5281. .insns = {
  5282. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5283. BPF_MOV64_IMM(BPF_REG_2, 0),
  5284. BPF_LD_ABS(BPF_W, -0x200000),
  5285. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  5286. BPF_EXIT_INSN(),
  5287. },
  5288. .errstr = "R2 !read_ok",
  5289. .result = REJECT,
  5290. },
  5291. {
  5292. "ld_abs: check calling conv, r3",
  5293. .insns = {
  5294. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5295. BPF_MOV64_IMM(BPF_REG_3, 0),
  5296. BPF_LD_ABS(BPF_W, -0x200000),
  5297. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  5298. BPF_EXIT_INSN(),
  5299. },
  5300. .errstr = "R3 !read_ok",
  5301. .result = REJECT,
  5302. },
  5303. {
  5304. "ld_abs: check calling conv, r4",
  5305. .insns = {
  5306. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5307. BPF_MOV64_IMM(BPF_REG_4, 0),
  5308. BPF_LD_ABS(BPF_W, -0x200000),
  5309. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  5310. BPF_EXIT_INSN(),
  5311. },
  5312. .errstr = "R4 !read_ok",
  5313. .result = REJECT,
  5314. },
  5315. {
  5316. "ld_abs: check calling conv, r5",
  5317. .insns = {
  5318. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5319. BPF_MOV64_IMM(BPF_REG_5, 0),
  5320. BPF_LD_ABS(BPF_W, -0x200000),
  5321. BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
  5322. BPF_EXIT_INSN(),
  5323. },
  5324. .errstr = "R5 !read_ok",
  5325. .result = REJECT,
  5326. },
  5327. {
  5328. "ld_abs: check calling conv, r7",
  5329. .insns = {
  5330. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5331. BPF_MOV64_IMM(BPF_REG_7, 0),
  5332. BPF_LD_ABS(BPF_W, -0x200000),
  5333. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  5334. BPF_EXIT_INSN(),
  5335. },
  5336. .result = ACCEPT,
  5337. },
  5338. {
  5339. "ld_ind: check calling conv, r1",
  5340. .insns = {
  5341. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5342. BPF_MOV64_IMM(BPF_REG_1, 1),
  5343. BPF_LD_IND(BPF_W, BPF_REG_1, -0x200000),
  5344. BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  5345. BPF_EXIT_INSN(),
  5346. },
  5347. .errstr = "R1 !read_ok",
  5348. .result = REJECT,
  5349. },
  5350. {
  5351. "ld_ind: check calling conv, r2",
  5352. .insns = {
  5353. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5354. BPF_MOV64_IMM(BPF_REG_2, 1),
  5355. BPF_LD_IND(BPF_W, BPF_REG_2, -0x200000),
  5356. BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
  5357. BPF_EXIT_INSN(),
  5358. },
  5359. .errstr = "R2 !read_ok",
  5360. .result = REJECT,
  5361. },
  5362. {
  5363. "ld_ind: check calling conv, r3",
  5364. .insns = {
  5365. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5366. BPF_MOV64_IMM(BPF_REG_3, 1),
  5367. BPF_LD_IND(BPF_W, BPF_REG_3, -0x200000),
  5368. BPF_MOV64_REG(BPF_REG_0, BPF_REG_3),
  5369. BPF_EXIT_INSN(),
  5370. },
  5371. .errstr = "R3 !read_ok",
  5372. .result = REJECT,
  5373. },
  5374. {
  5375. "ld_ind: check calling conv, r4",
  5376. .insns = {
  5377. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5378. BPF_MOV64_IMM(BPF_REG_4, 1),
  5379. BPF_LD_IND(BPF_W, BPF_REG_4, -0x200000),
  5380. BPF_MOV64_REG(BPF_REG_0, BPF_REG_4),
  5381. BPF_EXIT_INSN(),
  5382. },
  5383. .errstr = "R4 !read_ok",
  5384. .result = REJECT,
  5385. },
  5386. {
  5387. "ld_ind: check calling conv, r5",
  5388. .insns = {
  5389. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5390. BPF_MOV64_IMM(BPF_REG_5, 1),
  5391. BPF_LD_IND(BPF_W, BPF_REG_5, -0x200000),
  5392. BPF_MOV64_REG(BPF_REG_0, BPF_REG_5),
  5393. BPF_EXIT_INSN(),
  5394. },
  5395. .errstr = "R5 !read_ok",
  5396. .result = REJECT,
  5397. },
  5398. {
  5399. "ld_ind: check calling conv, r7",
  5400. .insns = {
  5401. BPF_MOV64_REG(BPF_REG_6, BPF_REG_1),
  5402. BPF_MOV64_IMM(BPF_REG_7, 1),
  5403. BPF_LD_IND(BPF_W, BPF_REG_7, -0x200000),
  5404. BPF_MOV64_REG(BPF_REG_0, BPF_REG_7),
  5405. BPF_EXIT_INSN(),
  5406. },
  5407. .result = ACCEPT,
  5408. },
  5409. {
  5410. "check bpf_perf_event_data->sample_period byte load permitted",
  5411. .insns = {
  5412. BPF_MOV64_IMM(BPF_REG_0, 0),
  5413. #if __BYTE_ORDER == __LITTLE_ENDIAN
  5414. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  5415. offsetof(struct bpf_perf_event_data, sample_period)),
  5416. #else
  5417. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_1,
  5418. offsetof(struct bpf_perf_event_data, sample_period) + 7),
  5419. #endif
  5420. BPF_EXIT_INSN(),
  5421. },
  5422. .result = ACCEPT,
  5423. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  5424. },
  5425. {
  5426. "check bpf_perf_event_data->sample_period half load permitted",
  5427. .insns = {
  5428. BPF_MOV64_IMM(BPF_REG_0, 0),
  5429. #if __BYTE_ORDER == __LITTLE_ENDIAN
  5430. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5431. offsetof(struct bpf_perf_event_data, sample_period)),
  5432. #else
  5433. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5434. offsetof(struct bpf_perf_event_data, sample_period) + 6),
  5435. #endif
  5436. BPF_EXIT_INSN(),
  5437. },
  5438. .result = ACCEPT,
  5439. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  5440. },
  5441. {
  5442. "check bpf_perf_event_data->sample_period word load permitted",
  5443. .insns = {
  5444. BPF_MOV64_IMM(BPF_REG_0, 0),
  5445. #if __BYTE_ORDER == __LITTLE_ENDIAN
  5446. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  5447. offsetof(struct bpf_perf_event_data, sample_period)),
  5448. #else
  5449. BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
  5450. offsetof(struct bpf_perf_event_data, sample_period) + 4),
  5451. #endif
  5452. BPF_EXIT_INSN(),
  5453. },
  5454. .result = ACCEPT,
  5455. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  5456. },
  5457. {
  5458. "check bpf_perf_event_data->sample_period dword load permitted",
  5459. .insns = {
  5460. BPF_MOV64_IMM(BPF_REG_0, 0),
  5461. BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1,
  5462. offsetof(struct bpf_perf_event_data, sample_period)),
  5463. BPF_EXIT_INSN(),
  5464. },
  5465. .result = ACCEPT,
  5466. .prog_type = BPF_PROG_TYPE_PERF_EVENT,
  5467. },
  5468. {
  5469. "check skb->data half load not permitted",
  5470. .insns = {
  5471. BPF_MOV64_IMM(BPF_REG_0, 0),
  5472. #if __BYTE_ORDER == __LITTLE_ENDIAN
  5473. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5474. offsetof(struct __sk_buff, data)),
  5475. #else
  5476. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5477. offsetof(struct __sk_buff, data) + 2),
  5478. #endif
  5479. BPF_EXIT_INSN(),
  5480. },
  5481. .result = REJECT,
  5482. .errstr = "invalid bpf_context access",
  5483. },
  5484. {
  5485. "check skb->tc_classid half load not permitted for lwt prog",
  5486. .insns = {
  5487. BPF_MOV64_IMM(BPF_REG_0, 0),
  5488. #if __BYTE_ORDER == __LITTLE_ENDIAN
  5489. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5490. offsetof(struct __sk_buff, tc_classid)),
  5491. #else
  5492. BPF_LDX_MEM(BPF_H, BPF_REG_0, BPF_REG_1,
  5493. offsetof(struct __sk_buff, tc_classid) + 2),
  5494. #endif
  5495. BPF_EXIT_INSN(),
  5496. },
  5497. .result = REJECT,
  5498. .errstr = "invalid bpf_context access",
  5499. .prog_type = BPF_PROG_TYPE_LWT_IN,
  5500. },
  5501. {
  5502. "bounds checks mixing signed and unsigned, positive bounds",
  5503. .insns = {
  5504. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5505. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5506. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5507. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5508. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5509. BPF_FUNC_map_lookup_elem),
  5510. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5511. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5512. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5513. BPF_MOV64_IMM(BPF_REG_2, 2),
  5514. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 3),
  5515. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 4, 2),
  5516. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5517. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5518. BPF_MOV64_IMM(BPF_REG_0, 0),
  5519. BPF_EXIT_INSN(),
  5520. },
  5521. .fixup_map1 = { 3 },
  5522. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5523. .errstr = "R0 min value is negative",
  5524. .result = REJECT,
  5525. .result_unpriv = REJECT,
  5526. },
  5527. {
  5528. "bounds checks mixing signed and unsigned",
  5529. .insns = {
  5530. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5531. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5532. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5533. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5534. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5535. BPF_FUNC_map_lookup_elem),
  5536. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5537. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5538. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5539. BPF_MOV64_IMM(BPF_REG_2, -1),
  5540. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
  5541. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5542. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5543. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5544. BPF_MOV64_IMM(BPF_REG_0, 0),
  5545. BPF_EXIT_INSN(),
  5546. },
  5547. .fixup_map1 = { 3 },
  5548. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5549. .errstr = "R0 min value is negative",
  5550. .result = REJECT,
  5551. .result_unpriv = REJECT,
  5552. },
  5553. {
  5554. "bounds checks mixing signed and unsigned, variant 2",
  5555. .insns = {
  5556. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5557. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5558. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5559. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5560. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5561. BPF_FUNC_map_lookup_elem),
  5562. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5563. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5564. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5565. BPF_MOV64_IMM(BPF_REG_2, -1),
  5566. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
  5567. BPF_MOV64_IMM(BPF_REG_8, 0),
  5568. BPF_ALU64_REG(BPF_ADD, BPF_REG_8, BPF_REG_1),
  5569. BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
  5570. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  5571. BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
  5572. BPF_MOV64_IMM(BPF_REG_0, 0),
  5573. BPF_EXIT_INSN(),
  5574. },
  5575. .fixup_map1 = { 3 },
  5576. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5577. .errstr = "R8 invalid mem access 'inv'",
  5578. .result = REJECT,
  5579. .result_unpriv = REJECT,
  5580. },
  5581. {
  5582. "bounds checks mixing signed and unsigned, variant 3",
  5583. .insns = {
  5584. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5585. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5586. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5587. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5588. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5589. BPF_FUNC_map_lookup_elem),
  5590. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  5591. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5592. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5593. BPF_MOV64_IMM(BPF_REG_2, -1),
  5594. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 4),
  5595. BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
  5596. BPF_JMP_IMM(BPF_JSGT, BPF_REG_8, 1, 2),
  5597. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
  5598. BPF_ST_MEM(BPF_B, BPF_REG_8, 0, 0),
  5599. BPF_MOV64_IMM(BPF_REG_0, 0),
  5600. BPF_EXIT_INSN(),
  5601. },
  5602. .fixup_map1 = { 3 },
  5603. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5604. .errstr = "R8 invalid mem access 'inv'",
  5605. .result = REJECT,
  5606. .result_unpriv = REJECT,
  5607. },
  5608. {
  5609. "bounds checks mixing signed and unsigned, variant 4",
  5610. .insns = {
  5611. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5612. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5613. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5614. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5615. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5616. BPF_FUNC_map_lookup_elem),
  5617. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5618. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5619. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5620. BPF_MOV64_IMM(BPF_REG_2, 1),
  5621. BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2),
  5622. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5623. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5624. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5625. BPF_MOV64_IMM(BPF_REG_0, 0),
  5626. BPF_EXIT_INSN(),
  5627. },
  5628. .fixup_map1 = { 3 },
  5629. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5630. .errstr = "R0 min value is negative",
  5631. .result = REJECT,
  5632. .result_unpriv = REJECT,
  5633. },
  5634. {
  5635. "bounds checks mixing signed and unsigned, variant 5",
  5636. .insns = {
  5637. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5638. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5639. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5640. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5641. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5642. BPF_FUNC_map_lookup_elem),
  5643. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5644. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5645. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5646. BPF_MOV64_IMM(BPF_REG_2, -1),
  5647. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 5),
  5648. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 4),
  5649. BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 4),
  5650. BPF_ALU64_REG(BPF_SUB, BPF_REG_0, BPF_REG_1),
  5651. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5652. BPF_MOV64_IMM(BPF_REG_0, 0),
  5653. BPF_EXIT_INSN(),
  5654. },
  5655. .fixup_map1 = { 3 },
  5656. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5657. .errstr = "R0 invalid mem access",
  5658. .result = REJECT,
  5659. .result_unpriv = REJECT,
  5660. },
  5661. {
  5662. "bounds checks mixing signed and unsigned, variant 6",
  5663. .insns = {
  5664. BPF_MOV64_IMM(BPF_REG_2, 0),
  5665. BPF_MOV64_REG(BPF_REG_3, BPF_REG_10),
  5666. BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, -512),
  5667. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5668. BPF_LDX_MEM(BPF_DW, BPF_REG_4, BPF_REG_10, -16),
  5669. BPF_MOV64_IMM(BPF_REG_6, -1),
  5670. BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_6, 5),
  5671. BPF_JMP_IMM(BPF_JSGT, BPF_REG_4, 1, 4),
  5672. BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 1),
  5673. BPF_MOV64_IMM(BPF_REG_5, 0),
  5674. BPF_ST_MEM(BPF_H, BPF_REG_10, -512, 0),
  5675. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5676. BPF_FUNC_skb_load_bytes),
  5677. BPF_MOV64_IMM(BPF_REG_0, 0),
  5678. BPF_EXIT_INSN(),
  5679. },
  5680. .errstr_unpriv = "R4 min value is negative, either use unsigned",
  5681. .errstr = "R4 min value is negative, either use unsigned",
  5682. .result = REJECT,
  5683. .result_unpriv = REJECT,
  5684. },
  5685. {
  5686. "bounds checks mixing signed and unsigned, variant 7",
  5687. .insns = {
  5688. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5689. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5690. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5691. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5692. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5693. BPF_FUNC_map_lookup_elem),
  5694. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5695. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5696. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5697. BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024),
  5698. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
  5699. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5700. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5701. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5702. BPF_MOV64_IMM(BPF_REG_0, 0),
  5703. BPF_EXIT_INSN(),
  5704. },
  5705. .fixup_map1 = { 3 },
  5706. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5707. .errstr = "R0 min value is negative",
  5708. .result = REJECT,
  5709. .result_unpriv = REJECT,
  5710. },
  5711. {
  5712. "bounds checks mixing signed and unsigned, variant 8",
  5713. .insns = {
  5714. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5715. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5716. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5717. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5718. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5719. BPF_FUNC_map_lookup_elem),
  5720. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
  5721. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5722. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5723. BPF_MOV64_IMM(BPF_REG_2, 1024 * 1024 * 1024 + 1),
  5724. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, 3),
  5725. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5726. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5727. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5728. BPF_MOV64_IMM(BPF_REG_0, 0),
  5729. BPF_EXIT_INSN(),
  5730. },
  5731. .fixup_map1 = { 3 },
  5732. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5733. .errstr = "R0 min value is negative",
  5734. .result = REJECT,
  5735. .result_unpriv = REJECT,
  5736. },
  5737. {
  5738. "bounds checks mixing signed and unsigned, variant 9",
  5739. .insns = {
  5740. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5741. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5742. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5743. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5744. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5745. BPF_FUNC_map_lookup_elem),
  5746. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5747. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5748. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5749. BPF_MOV64_IMM(BPF_REG_2, -1),
  5750. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  5751. BPF_MOV64_IMM(BPF_REG_0, 0),
  5752. BPF_EXIT_INSN(),
  5753. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5754. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5755. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5756. BPF_MOV64_IMM(BPF_REG_0, 0),
  5757. BPF_EXIT_INSN(),
  5758. },
  5759. .fixup_map1 = { 3 },
  5760. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5761. .errstr = "R0 min value is negative",
  5762. .result = REJECT,
  5763. .result_unpriv = REJECT,
  5764. },
  5765. {
  5766. "bounds checks mixing signed and unsigned, variant 10",
  5767. .insns = {
  5768. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5769. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5770. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5771. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5772. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5773. BPF_FUNC_map_lookup_elem),
  5774. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
  5775. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5776. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5777. BPF_LD_IMM64(BPF_REG_2, -9223372036854775808ULL),
  5778. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  5779. BPF_MOV64_IMM(BPF_REG_0, 0),
  5780. BPF_EXIT_INSN(),
  5781. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5782. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5783. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5784. BPF_MOV64_IMM(BPF_REG_0, 0),
  5785. BPF_EXIT_INSN(),
  5786. },
  5787. .fixup_map1 = { 3 },
  5788. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5789. .errstr = "R0 min value is negative",
  5790. .result = REJECT,
  5791. .result_unpriv = REJECT,
  5792. },
  5793. {
  5794. "bounds checks mixing signed and unsigned, variant 11",
  5795. .insns = {
  5796. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5797. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5798. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5799. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5800. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5801. BPF_FUNC_map_lookup_elem),
  5802. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5803. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5804. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5805. BPF_MOV64_IMM(BPF_REG_2, 0),
  5806. BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 2),
  5807. BPF_MOV64_IMM(BPF_REG_0, 0),
  5808. BPF_EXIT_INSN(),
  5809. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5810. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5811. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5812. BPF_MOV64_IMM(BPF_REG_0, 0),
  5813. BPF_EXIT_INSN(),
  5814. },
  5815. .fixup_map1 = { 3 },
  5816. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5817. .errstr = "R0 min value is negative",
  5818. .result = REJECT,
  5819. .result_unpriv = REJECT,
  5820. },
  5821. {
  5822. "bounds checks mixing signed and unsigned, variant 12",
  5823. .insns = {
  5824. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5825. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5826. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5827. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5828. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5829. BPF_FUNC_map_lookup_elem),
  5830. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5831. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5832. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5833. BPF_MOV64_IMM(BPF_REG_2, -1),
  5834. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  5835. /* Dead branch. */
  5836. BPF_MOV64_IMM(BPF_REG_0, 0),
  5837. BPF_EXIT_INSN(),
  5838. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5839. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5840. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5841. BPF_MOV64_IMM(BPF_REG_0, 0),
  5842. BPF_EXIT_INSN(),
  5843. },
  5844. .fixup_map1 = { 3 },
  5845. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5846. .errstr = "R0 min value is negative",
  5847. .result = REJECT,
  5848. .result_unpriv = REJECT,
  5849. },
  5850. {
  5851. "bounds checks mixing signed and unsigned, variant 13",
  5852. .insns = {
  5853. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5854. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5855. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5856. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5857. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5858. BPF_FUNC_map_lookup_elem),
  5859. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5860. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5861. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5862. BPF_MOV64_IMM(BPF_REG_2, -6),
  5863. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  5864. BPF_MOV64_IMM(BPF_REG_0, 0),
  5865. BPF_EXIT_INSN(),
  5866. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5867. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5868. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5869. BPF_MOV64_IMM(BPF_REG_0, 0),
  5870. BPF_EXIT_INSN(),
  5871. },
  5872. .fixup_map1 = { 3 },
  5873. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5874. .errstr = "R0 min value is negative",
  5875. .result = REJECT,
  5876. .result_unpriv = REJECT,
  5877. },
  5878. {
  5879. "bounds checks mixing signed and unsigned, variant 14",
  5880. .insns = {
  5881. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5882. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5883. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5884. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5885. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5886. BPF_FUNC_map_lookup_elem),
  5887. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
  5888. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5889. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5890. BPF_MOV64_IMM(BPF_REG_2, 2),
  5891. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  5892. BPF_MOV64_IMM(BPF_REG_7, 1),
  5893. BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 0, 2),
  5894. BPF_MOV64_IMM(BPF_REG_0, 0),
  5895. BPF_EXIT_INSN(),
  5896. BPF_ALU64_REG(BPF_ADD, BPF_REG_7, BPF_REG_1),
  5897. BPF_JMP_IMM(BPF_JSGT, BPF_REG_7, 4, 2),
  5898. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_7),
  5899. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5900. BPF_MOV64_IMM(BPF_REG_0, 0),
  5901. BPF_EXIT_INSN(),
  5902. },
  5903. .fixup_map1 = { 3 },
  5904. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5905. .errstr = "R0 min value is negative",
  5906. .result = REJECT,
  5907. .result_unpriv = REJECT,
  5908. },
  5909. {
  5910. "bounds checks mixing signed and unsigned, variant 15",
  5911. .insns = {
  5912. BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_1,
  5913. offsetof(struct __sk_buff, mark)),
  5914. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5915. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5916. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5917. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5918. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5919. BPF_FUNC_map_lookup_elem),
  5920. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 8),
  5921. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5922. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5923. BPF_MOV64_IMM(BPF_REG_2, -1),
  5924. BPF_MOV64_IMM(BPF_REG_8, 2),
  5925. BPF_JMP_IMM(BPF_JEQ, BPF_REG_9, 42, 6),
  5926. BPF_JMP_REG(BPF_JSGT, BPF_REG_8, BPF_REG_1, 3),
  5927. BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 1, 2),
  5928. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5929. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5930. BPF_MOV64_IMM(BPF_REG_0, 0),
  5931. BPF_EXIT_INSN(),
  5932. BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_2, -3),
  5933. BPF_JMP_IMM(BPF_JA, 0, 0, -7),
  5934. },
  5935. .fixup_map1 = { 4 },
  5936. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5937. .errstr = "R0 min value is negative",
  5938. .result = REJECT,
  5939. .result_unpriv = REJECT,
  5940. },
  5941. {
  5942. "bounds checks mixing signed and unsigned, variant 16",
  5943. .insns = {
  5944. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5945. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5946. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5947. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5948. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5949. BPF_FUNC_map_lookup_elem),
  5950. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
  5951. BPF_ST_MEM(BPF_DW, BPF_REG_10, -16, -8),
  5952. BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_10, -16),
  5953. BPF_MOV64_IMM(BPF_REG_2, -6),
  5954. BPF_JMP_REG(BPF_JGE, BPF_REG_2, BPF_REG_1, 2),
  5955. BPF_MOV64_IMM(BPF_REG_0, 0),
  5956. BPF_EXIT_INSN(),
  5957. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5958. BPF_JMP_IMM(BPF_JGT, BPF_REG_0, 1, 2),
  5959. BPF_MOV64_IMM(BPF_REG_0, 0),
  5960. BPF_EXIT_INSN(),
  5961. BPF_ST_MEM(BPF_B, BPF_REG_0, 0, 0),
  5962. BPF_MOV64_IMM(BPF_REG_0, 0),
  5963. BPF_EXIT_INSN(),
  5964. },
  5965. .fixup_map1 = { 3 },
  5966. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5967. .errstr = "R0 min value is negative",
  5968. .result = REJECT,
  5969. .result_unpriv = REJECT,
  5970. },
  5971. {
  5972. "subtraction bounds (map value)",
  5973. .insns = {
  5974. BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
  5975. BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
  5976. BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
  5977. BPF_LD_MAP_FD(BPF_REG_1, 0),
  5978. BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
  5979. BPF_FUNC_map_lookup_elem),
  5980. BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
  5981. BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_0, 0),
  5982. BPF_JMP_IMM(BPF_JGT, BPF_REG_1, 0xff, 7),
  5983. BPF_LDX_MEM(BPF_B, BPF_REG_3, BPF_REG_0, 1),
  5984. BPF_JMP_IMM(BPF_JGT, BPF_REG_3, 0xff, 5),
  5985. BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_3),
  5986. BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 56),
  5987. BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
  5988. BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_0, 0),
  5989. BPF_EXIT_INSN(),
  5990. BPF_MOV64_IMM(BPF_REG_0, 0),
  5991. BPF_EXIT_INSN(),
  5992. },
  5993. .fixup_map1 = { 3 },
  5994. .errstr_unpriv = "R0 pointer arithmetic prohibited",
  5995. .errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
  5996. .result = REJECT,
  5997. .result_unpriv = REJECT,
  5998. },
  5999. };
  6000. static int probe_filter_length(const struct bpf_insn *fp)
  6001. {
  6002. int len;
  6003. for (len = MAX_INSNS - 1; len > 0; --len)
  6004. if (fp[len].code != 0 || fp[len].imm != 0)
  6005. break;
  6006. return len + 1;
  6007. }
  6008. static int create_map(uint32_t size_value, uint32_t max_elem)
  6009. {
  6010. int fd;
  6011. fd = bpf_create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
  6012. size_value, max_elem, BPF_F_NO_PREALLOC);
  6013. if (fd < 0)
  6014. printf("Failed to create hash map '%s'!\n", strerror(errno));
  6015. return fd;
  6016. }
  6017. static int create_prog_array(void)
  6018. {
  6019. int fd;
  6020. fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
  6021. sizeof(int), 4, 0);
  6022. if (fd < 0)
  6023. printf("Failed to create prog array '%s'!\n", strerror(errno));
  6024. return fd;
  6025. }
  6026. static int create_map_in_map(void)
  6027. {
  6028. int inner_map_fd, outer_map_fd;
  6029. inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
  6030. sizeof(int), 1, 0);
  6031. if (inner_map_fd < 0) {
  6032. printf("Failed to create array '%s'!\n", strerror(errno));
  6033. return inner_map_fd;
  6034. }
  6035. outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS,
  6036. sizeof(int), inner_map_fd, 1, 0);
  6037. if (outer_map_fd < 0)
  6038. printf("Failed to create array of maps '%s'!\n",
  6039. strerror(errno));
  6040. close(inner_map_fd);
  6041. return outer_map_fd;
  6042. }
  6043. static char bpf_vlog[32768];
  6044. static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog,
  6045. int *map_fds)
  6046. {
  6047. int *fixup_map1 = test->fixup_map1;
  6048. int *fixup_map2 = test->fixup_map2;
  6049. int *fixup_prog = test->fixup_prog;
  6050. int *fixup_map_in_map = test->fixup_map_in_map;
  6051. /* Allocating HTs with 1 elem is fine here, since we only test
  6052. * for verifier and not do a runtime lookup, so the only thing
  6053. * that really matters is value size in this case.
  6054. */
  6055. if (*fixup_map1) {
  6056. map_fds[0] = create_map(sizeof(long long), 1);
  6057. do {
  6058. prog[*fixup_map1].imm = map_fds[0];
  6059. fixup_map1++;
  6060. } while (*fixup_map1);
  6061. }
  6062. if (*fixup_map2) {
  6063. map_fds[1] = create_map(sizeof(struct test_val), 1);
  6064. do {
  6065. prog[*fixup_map2].imm = map_fds[1];
  6066. fixup_map2++;
  6067. } while (*fixup_map2);
  6068. }
  6069. if (*fixup_prog) {
  6070. map_fds[2] = create_prog_array();
  6071. do {
  6072. prog[*fixup_prog].imm = map_fds[2];
  6073. fixup_prog++;
  6074. } while (*fixup_prog);
  6075. }
  6076. if (*fixup_map_in_map) {
  6077. map_fds[3] = create_map_in_map();
  6078. do {
  6079. prog[*fixup_map_in_map].imm = map_fds[3];
  6080. fixup_map_in_map++;
  6081. } while (*fixup_map_in_map);
  6082. }
  6083. }
  6084. static void do_test_single(struct bpf_test *test, bool unpriv,
  6085. int *passes, int *errors)
  6086. {
  6087. int fd_prog, expected_ret, reject_from_alignment;
  6088. struct bpf_insn *prog = test->insns;
  6089. int prog_len = probe_filter_length(prog);
  6090. int prog_type = test->prog_type;
  6091. int map_fds[MAX_NR_MAPS];
  6092. const char *expected_err;
  6093. int i;
  6094. for (i = 0; i < MAX_NR_MAPS; i++)
  6095. map_fds[i] = -1;
  6096. do_test_fixup(test, prog, map_fds);
  6097. fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
  6098. prog, prog_len, test->flags & F_LOAD_WITH_STRICT_ALIGNMENT,
  6099. "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 1);
  6100. expected_ret = unpriv && test->result_unpriv != UNDEF ?
  6101. test->result_unpriv : test->result;
  6102. expected_err = unpriv && test->errstr_unpriv ?
  6103. test->errstr_unpriv : test->errstr;
  6104. reject_from_alignment = fd_prog < 0 &&
  6105. (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) &&
  6106. strstr(bpf_vlog, "Unknown alignment.");
  6107. #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
  6108. if (reject_from_alignment) {
  6109. printf("FAIL\nFailed due to alignment despite having efficient unaligned access: '%s'!\n",
  6110. strerror(errno));
  6111. goto fail_log;
  6112. }
  6113. #endif
  6114. if (expected_ret == ACCEPT) {
  6115. if (fd_prog < 0 && !reject_from_alignment) {
  6116. printf("FAIL\nFailed to load prog '%s'!\n",
  6117. strerror(errno));
  6118. goto fail_log;
  6119. }
  6120. } else {
  6121. if (fd_prog >= 0) {
  6122. printf("FAIL\nUnexpected success to load!\n");
  6123. goto fail_log;
  6124. }
  6125. if (!strstr(bpf_vlog, expected_err) && !reject_from_alignment) {
  6126. printf("FAIL\nUnexpected error message!\n");
  6127. goto fail_log;
  6128. }
  6129. }
  6130. (*passes)++;
  6131. printf("OK%s\n", reject_from_alignment ?
  6132. " (NOTE: reject due to unknown alignment)" : "");
  6133. close_fds:
  6134. close(fd_prog);
  6135. for (i = 0; i < MAX_NR_MAPS; i++)
  6136. close(map_fds[i]);
  6137. sched_yield();
  6138. return;
  6139. fail_log:
  6140. (*errors)++;
  6141. printf("%s", bpf_vlog);
  6142. goto close_fds;
  6143. }
  6144. static bool is_admin(void)
  6145. {
  6146. cap_t caps;
  6147. cap_flag_value_t sysadmin = CAP_CLEAR;
  6148. const cap_value_t cap_val = CAP_SYS_ADMIN;
  6149. #ifdef CAP_IS_SUPPORTED
  6150. if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
  6151. perror("cap_get_flag");
  6152. return false;
  6153. }
  6154. #endif
  6155. caps = cap_get_proc();
  6156. if (!caps) {
  6157. perror("cap_get_proc");
  6158. return false;
  6159. }
  6160. if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
  6161. perror("cap_get_flag");
  6162. if (cap_free(caps))
  6163. perror("cap_free");
  6164. return (sysadmin == CAP_SET);
  6165. }
  6166. static int set_admin(bool admin)
  6167. {
  6168. cap_t caps;
  6169. const cap_value_t cap_val = CAP_SYS_ADMIN;
  6170. int ret = -1;
  6171. caps = cap_get_proc();
  6172. if (!caps) {
  6173. perror("cap_get_proc");
  6174. return -1;
  6175. }
  6176. if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
  6177. admin ? CAP_SET : CAP_CLEAR)) {
  6178. perror("cap_set_flag");
  6179. goto out;
  6180. }
  6181. if (cap_set_proc(caps)) {
  6182. perror("cap_set_proc");
  6183. goto out;
  6184. }
  6185. ret = 0;
  6186. out:
  6187. if (cap_free(caps))
  6188. perror("cap_free");
  6189. return ret;
  6190. }
  6191. static int do_test(bool unpriv, unsigned int from, unsigned int to)
  6192. {
  6193. int i, passes = 0, errors = 0;
  6194. for (i = from; i < to; i++) {
  6195. struct bpf_test *test = &tests[i];
  6196. /* Program types that are not supported by non-root we
  6197. * skip right away.
  6198. */
  6199. if (!test->prog_type) {
  6200. if (!unpriv)
  6201. set_admin(false);
  6202. printf("#%d/u %s ", i, test->descr);
  6203. do_test_single(test, true, &passes, &errors);
  6204. if (!unpriv)
  6205. set_admin(true);
  6206. }
  6207. if (!unpriv) {
  6208. printf("#%d/p %s ", i, test->descr);
  6209. do_test_single(test, false, &passes, &errors);
  6210. }
  6211. }
  6212. printf("Summary: %d PASSED, %d FAILED\n", passes, errors);
  6213. return errors ? EXIT_FAILURE : EXIT_SUCCESS;
  6214. }
  6215. int main(int argc, char **argv)
  6216. {
  6217. struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
  6218. struct rlimit rlim = { 1 << 20, 1 << 20 };
  6219. unsigned int from = 0, to = ARRAY_SIZE(tests);
  6220. bool unpriv = !is_admin();
  6221. if (argc == 3) {
  6222. unsigned int l = atoi(argv[argc - 2]);
  6223. unsigned int u = atoi(argv[argc - 1]);
  6224. if (l < to && u < to) {
  6225. from = l;
  6226. to = u + 1;
  6227. }
  6228. } else if (argc == 2) {
  6229. unsigned int t = atoi(argv[argc - 1]);
  6230. if (t < to) {
  6231. from = t;
  6232. to = t + 1;
  6233. }
  6234. }
  6235. setrlimit(RLIMIT_MEMLOCK, unpriv ? &rlim : &rinf);
  6236. return do_test(unpriv, from, to);
  6237. }