mm.h 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. #include <linux/overflow.h>
  26. struct mempolicy;
  27. struct anon_vma;
  28. struct anon_vma_chain;
  29. struct file_ra_state;
  30. struct user_struct;
  31. struct writeback_control;
  32. struct bdi_writeback;
  33. void init_mm_internals(void);
  34. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  35. extern unsigned long max_mapnr;
  36. static inline void set_max_mapnr(unsigned long limit)
  37. {
  38. max_mapnr = limit;
  39. }
  40. #else
  41. static inline void set_max_mapnr(unsigned long limit) { }
  42. #endif
  43. extern unsigned long totalram_pages;
  44. extern void * high_memory;
  45. extern int page_cluster;
  46. #ifdef CONFIG_SYSCTL
  47. extern int sysctl_legacy_va_layout;
  48. #else
  49. #define sysctl_legacy_va_layout 0
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  52. extern const int mmap_rnd_bits_min;
  53. extern const int mmap_rnd_bits_max;
  54. extern int mmap_rnd_bits __read_mostly;
  55. #endif
  56. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  57. extern const int mmap_rnd_compat_bits_min;
  58. extern const int mmap_rnd_compat_bits_max;
  59. extern int mmap_rnd_compat_bits __read_mostly;
  60. #endif
  61. #include <asm/page.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/processor.h>
  64. #ifndef __pa_symbol
  65. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  66. #endif
  67. #ifndef page_to_virt
  68. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  69. #endif
  70. #ifndef lm_alias
  71. #define lm_alias(x) __va(__pa_symbol(x))
  72. #endif
  73. /*
  74. * To prevent common memory management code establishing
  75. * a zero page mapping on a read fault.
  76. * This macro should be defined within <asm/pgtable.h>.
  77. * s390 does this to prevent multiplexing of hardware bits
  78. * related to the physical page in case of virtualization.
  79. */
  80. #ifndef mm_forbids_zeropage
  81. #define mm_forbids_zeropage(X) (0)
  82. #endif
  83. /*
  84. * On some architectures it is expensive to call memset() for small sizes.
  85. * Those architectures should provide their own implementation of "struct page"
  86. * zeroing by defining this macro in <asm/pgtable.h>.
  87. */
  88. #ifndef mm_zero_struct_page
  89. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  90. #endif
  91. /*
  92. * Default maximum number of active map areas, this limits the number of vmas
  93. * per mm struct. Users can overwrite this number by sysctl but there is a
  94. * problem.
  95. *
  96. * When a program's coredump is generated as ELF format, a section is created
  97. * per a vma. In ELF, the number of sections is represented in unsigned short.
  98. * This means the number of sections should be smaller than 65535 at coredump.
  99. * Because the kernel adds some informative sections to a image of program at
  100. * generating coredump, we need some margin. The number of extra sections is
  101. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  102. *
  103. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  104. * not a hard limit any more. Although some userspace tools can be surprised by
  105. * that.
  106. */
  107. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  108. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  109. extern int sysctl_max_map_count;
  110. extern unsigned long sysctl_user_reserve_kbytes;
  111. extern unsigned long sysctl_admin_reserve_kbytes;
  112. extern int sysctl_overcommit_memory;
  113. extern int sysctl_overcommit_ratio;
  114. extern unsigned long sysctl_overcommit_kbytes;
  115. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  116. size_t *, loff_t *);
  117. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  118. size_t *, loff_t *);
  119. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  120. /* to align the pointer to the (next) page boundary */
  121. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  122. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  123. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  124. /*
  125. * Linux kernel virtual memory manager primitives.
  126. * The idea being to have a "virtual" mm in the same way
  127. * we have a virtual fs - giving a cleaner interface to the
  128. * mm details, and allowing different kinds of memory mappings
  129. * (from shared memory to executable loading to arbitrary
  130. * mmap() functions).
  131. */
  132. extern struct kmem_cache *vm_area_cachep;
  133. #ifndef CONFIG_MMU
  134. extern struct rb_root nommu_region_tree;
  135. extern struct rw_semaphore nommu_region_sem;
  136. extern unsigned int kobjsize(const void *objp);
  137. #endif
  138. /*
  139. * vm_flags in vm_area_struct, see mm_types.h.
  140. * When changing, update also include/trace/events/mmflags.h
  141. */
  142. #define VM_NONE 0x00000000
  143. #define VM_READ 0x00000001 /* currently active flags */
  144. #define VM_WRITE 0x00000002
  145. #define VM_EXEC 0x00000004
  146. #define VM_SHARED 0x00000008
  147. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  148. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  149. #define VM_MAYWRITE 0x00000020
  150. #define VM_MAYEXEC 0x00000040
  151. #define VM_MAYSHARE 0x00000080
  152. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  153. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  154. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  155. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  156. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  157. #define VM_LOCKED 0x00002000
  158. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  159. /* Used by sys_madvise() */
  160. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  161. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  162. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  163. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  164. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  165. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  166. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  167. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  168. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  169. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  170. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  171. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  172. #ifdef CONFIG_MEM_SOFT_DIRTY
  173. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  174. #else
  175. # define VM_SOFTDIRTY 0
  176. #endif
  177. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  178. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  179. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  180. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  181. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  182. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  187. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  188. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  189. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  190. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  191. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  192. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  193. #ifdef CONFIG_ARCH_HAS_PKEYS
  194. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  195. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  196. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
  197. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  198. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  199. #ifdef CONFIG_PPC
  200. # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
  201. #else
  202. # define VM_PKEY_BIT4 0
  203. #endif
  204. #endif /* CONFIG_ARCH_HAS_PKEYS */
  205. #if defined(CONFIG_X86)
  206. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  207. #elif defined(CONFIG_PPC)
  208. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  209. #elif defined(CONFIG_PARISC)
  210. # define VM_GROWSUP VM_ARCH_1
  211. #elif defined(CONFIG_IA64)
  212. # define VM_GROWSUP VM_ARCH_1
  213. #elif defined(CONFIG_SPARC64)
  214. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  215. # define VM_ARCH_CLEAR VM_SPARC_ADI
  216. #elif !defined(CONFIG_MMU)
  217. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  218. #endif
  219. #if defined(CONFIG_X86_INTEL_MPX)
  220. /* MPX specific bounds table or bounds directory */
  221. # define VM_MPX VM_HIGH_ARCH_4
  222. #else
  223. # define VM_MPX VM_NONE
  224. #endif
  225. #ifndef VM_GROWSUP
  226. # define VM_GROWSUP VM_NONE
  227. #endif
  228. /* Bits set in the VMA until the stack is in its final location */
  229. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  230. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  231. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  232. #endif
  233. #ifdef CONFIG_STACK_GROWSUP
  234. #define VM_STACK VM_GROWSUP
  235. #else
  236. #define VM_STACK VM_GROWSDOWN
  237. #endif
  238. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  239. /*
  240. * Special vmas that are non-mergable, non-mlock()able.
  241. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  242. */
  243. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  244. /* This mask defines which mm->def_flags a process can inherit its parent */
  245. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  246. /* This mask is used to clear all the VMA flags used by mlock */
  247. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  248. /* Arch-specific flags to clear when updating VM flags on protection change */
  249. #ifndef VM_ARCH_CLEAR
  250. # define VM_ARCH_CLEAR VM_NONE
  251. #endif
  252. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  253. /*
  254. * mapping from the currently active vm_flags protection bits (the
  255. * low four bits) to a page protection mask..
  256. */
  257. extern pgprot_t protection_map[16];
  258. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  259. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  260. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  261. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  262. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  263. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  264. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  265. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  266. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  267. #define FAULT_FLAG_TRACE \
  268. { FAULT_FLAG_WRITE, "WRITE" }, \
  269. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  270. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  271. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  272. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  273. { FAULT_FLAG_TRIED, "TRIED" }, \
  274. { FAULT_FLAG_USER, "USER" }, \
  275. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  276. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  277. /*
  278. * vm_fault is filled by the the pagefault handler and passed to the vma's
  279. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  280. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  281. *
  282. * MM layer fills up gfp_mask for page allocations but fault handler might
  283. * alter it if its implementation requires a different allocation context.
  284. *
  285. * pgoff should be used in favour of virtual_address, if possible.
  286. */
  287. struct vm_fault {
  288. struct vm_area_struct *vma; /* Target VMA */
  289. unsigned int flags; /* FAULT_FLAG_xxx flags */
  290. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  291. pgoff_t pgoff; /* Logical page offset based on vma */
  292. unsigned long address; /* Faulting virtual address */
  293. pmd_t *pmd; /* Pointer to pmd entry matching
  294. * the 'address' */
  295. pud_t *pud; /* Pointer to pud entry matching
  296. * the 'address'
  297. */
  298. pte_t orig_pte; /* Value of PTE at the time of fault */
  299. struct page *cow_page; /* Page handler may use for COW fault */
  300. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  301. struct page *page; /* ->fault handlers should return a
  302. * page here, unless VM_FAULT_NOPAGE
  303. * is set (which is also implied by
  304. * VM_FAULT_ERROR).
  305. */
  306. /* These three entries are valid only while holding ptl lock */
  307. pte_t *pte; /* Pointer to pte entry matching
  308. * the 'address'. NULL if the page
  309. * table hasn't been allocated.
  310. */
  311. spinlock_t *ptl; /* Page table lock.
  312. * Protects pte page table if 'pte'
  313. * is not NULL, otherwise pmd.
  314. */
  315. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  316. * vm_ops->map_pages() calls
  317. * alloc_set_pte() from atomic context.
  318. * do_fault_around() pre-allocates
  319. * page table to avoid allocation from
  320. * atomic context.
  321. */
  322. };
  323. /* page entry size for vm->huge_fault() */
  324. enum page_entry_size {
  325. PE_SIZE_PTE = 0,
  326. PE_SIZE_PMD,
  327. PE_SIZE_PUD,
  328. };
  329. /*
  330. * These are the virtual MM functions - opening of an area, closing and
  331. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  332. * to the functions called when a no-page or a wp-page exception occurs.
  333. */
  334. struct vm_operations_struct {
  335. void (*open)(struct vm_area_struct * area);
  336. void (*close)(struct vm_area_struct * area);
  337. int (*split)(struct vm_area_struct * area, unsigned long addr);
  338. int (*mremap)(struct vm_area_struct * area);
  339. vm_fault_t (*fault)(struct vm_fault *vmf);
  340. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  341. enum page_entry_size pe_size);
  342. void (*map_pages)(struct vm_fault *vmf,
  343. pgoff_t start_pgoff, pgoff_t end_pgoff);
  344. unsigned long (*pagesize)(struct vm_area_struct * area);
  345. /* notification that a previously read-only page is about to become
  346. * writable, if an error is returned it will cause a SIGBUS */
  347. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  348. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  349. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  350. /* called by access_process_vm when get_user_pages() fails, typically
  351. * for use by special VMAs that can switch between memory and hardware
  352. */
  353. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  354. void *buf, int len, int write);
  355. /* Called by the /proc/PID/maps code to ask the vma whether it
  356. * has a special name. Returning non-NULL will also cause this
  357. * vma to be dumped unconditionally. */
  358. const char *(*name)(struct vm_area_struct *vma);
  359. #ifdef CONFIG_NUMA
  360. /*
  361. * set_policy() op must add a reference to any non-NULL @new mempolicy
  362. * to hold the policy upon return. Caller should pass NULL @new to
  363. * remove a policy and fall back to surrounding context--i.e. do not
  364. * install a MPOL_DEFAULT policy, nor the task or system default
  365. * mempolicy.
  366. */
  367. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  368. /*
  369. * get_policy() op must add reference [mpol_get()] to any policy at
  370. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  371. * in mm/mempolicy.c will do this automatically.
  372. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  373. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  374. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  375. * must return NULL--i.e., do not "fallback" to task or system default
  376. * policy.
  377. */
  378. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  379. unsigned long addr);
  380. #endif
  381. /*
  382. * Called by vm_normal_page() for special PTEs to find the
  383. * page for @addr. This is useful if the default behavior
  384. * (using pte_page()) would not find the correct page.
  385. */
  386. struct page *(*find_special_page)(struct vm_area_struct *vma,
  387. unsigned long addr);
  388. };
  389. struct mmu_gather;
  390. struct inode;
  391. #define page_private(page) ((page)->private)
  392. #define set_page_private(page, v) ((page)->private = (v))
  393. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  394. static inline int pmd_devmap(pmd_t pmd)
  395. {
  396. return 0;
  397. }
  398. static inline int pud_devmap(pud_t pud)
  399. {
  400. return 0;
  401. }
  402. static inline int pgd_devmap(pgd_t pgd)
  403. {
  404. return 0;
  405. }
  406. #endif
  407. /*
  408. * FIXME: take this include out, include page-flags.h in
  409. * files which need it (119 of them)
  410. */
  411. #include <linux/page-flags.h>
  412. #include <linux/huge_mm.h>
  413. /*
  414. * Methods to modify the page usage count.
  415. *
  416. * What counts for a page usage:
  417. * - cache mapping (page->mapping)
  418. * - private data (page->private)
  419. * - page mapped in a task's page tables, each mapping
  420. * is counted separately
  421. *
  422. * Also, many kernel routines increase the page count before a critical
  423. * routine so they can be sure the page doesn't go away from under them.
  424. */
  425. /*
  426. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  427. */
  428. static inline int put_page_testzero(struct page *page)
  429. {
  430. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  431. return page_ref_dec_and_test(page);
  432. }
  433. /*
  434. * Try to grab a ref unless the page has a refcount of zero, return false if
  435. * that is the case.
  436. * This can be called when MMU is off so it must not access
  437. * any of the virtual mappings.
  438. */
  439. static inline int get_page_unless_zero(struct page *page)
  440. {
  441. return page_ref_add_unless(page, 1, 0);
  442. }
  443. extern int page_is_ram(unsigned long pfn);
  444. enum {
  445. REGION_INTERSECTS,
  446. REGION_DISJOINT,
  447. REGION_MIXED,
  448. };
  449. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  450. unsigned long desc);
  451. /* Support for virtually mapped pages */
  452. struct page *vmalloc_to_page(const void *addr);
  453. unsigned long vmalloc_to_pfn(const void *addr);
  454. /*
  455. * Determine if an address is within the vmalloc range
  456. *
  457. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  458. * is no special casing required.
  459. */
  460. static inline bool is_vmalloc_addr(const void *x)
  461. {
  462. #ifdef CONFIG_MMU
  463. unsigned long addr = (unsigned long)x;
  464. return addr >= VMALLOC_START && addr < VMALLOC_END;
  465. #else
  466. return false;
  467. #endif
  468. }
  469. #ifdef CONFIG_MMU
  470. extern int is_vmalloc_or_module_addr(const void *x);
  471. #else
  472. static inline int is_vmalloc_or_module_addr(const void *x)
  473. {
  474. return 0;
  475. }
  476. #endif
  477. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  478. static inline void *kvmalloc(size_t size, gfp_t flags)
  479. {
  480. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  481. }
  482. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  483. {
  484. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  485. }
  486. static inline void *kvzalloc(size_t size, gfp_t flags)
  487. {
  488. return kvmalloc(size, flags | __GFP_ZERO);
  489. }
  490. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  491. {
  492. size_t bytes;
  493. if (unlikely(check_mul_overflow(n, size, &bytes)))
  494. return NULL;
  495. return kvmalloc(bytes, flags);
  496. }
  497. extern void kvfree(const void *addr);
  498. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  499. {
  500. return &page[1].compound_mapcount;
  501. }
  502. static inline int compound_mapcount(struct page *page)
  503. {
  504. VM_BUG_ON_PAGE(!PageCompound(page), page);
  505. page = compound_head(page);
  506. return atomic_read(compound_mapcount_ptr(page)) + 1;
  507. }
  508. /*
  509. * The atomic page->_mapcount, starts from -1: so that transitions
  510. * both from it and to it can be tracked, using atomic_inc_and_test
  511. * and atomic_add_negative(-1).
  512. */
  513. static inline void page_mapcount_reset(struct page *page)
  514. {
  515. atomic_set(&(page)->_mapcount, -1);
  516. }
  517. int __page_mapcount(struct page *page);
  518. static inline int page_mapcount(struct page *page)
  519. {
  520. VM_BUG_ON_PAGE(PageSlab(page), page);
  521. if (unlikely(PageCompound(page)))
  522. return __page_mapcount(page);
  523. return atomic_read(&page->_mapcount) + 1;
  524. }
  525. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  526. int total_mapcount(struct page *page);
  527. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  528. #else
  529. static inline int total_mapcount(struct page *page)
  530. {
  531. return page_mapcount(page);
  532. }
  533. static inline int page_trans_huge_mapcount(struct page *page,
  534. int *total_mapcount)
  535. {
  536. int mapcount = page_mapcount(page);
  537. if (total_mapcount)
  538. *total_mapcount = mapcount;
  539. return mapcount;
  540. }
  541. #endif
  542. static inline struct page *virt_to_head_page(const void *x)
  543. {
  544. struct page *page = virt_to_page(x);
  545. return compound_head(page);
  546. }
  547. void __put_page(struct page *page);
  548. void put_pages_list(struct list_head *pages);
  549. void split_page(struct page *page, unsigned int order);
  550. /*
  551. * Compound pages have a destructor function. Provide a
  552. * prototype for that function and accessor functions.
  553. * These are _only_ valid on the head of a compound page.
  554. */
  555. typedef void compound_page_dtor(struct page *);
  556. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  557. enum compound_dtor_id {
  558. NULL_COMPOUND_DTOR,
  559. COMPOUND_PAGE_DTOR,
  560. #ifdef CONFIG_HUGETLB_PAGE
  561. HUGETLB_PAGE_DTOR,
  562. #endif
  563. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  564. TRANSHUGE_PAGE_DTOR,
  565. #endif
  566. NR_COMPOUND_DTORS,
  567. };
  568. extern compound_page_dtor * const compound_page_dtors[];
  569. static inline void set_compound_page_dtor(struct page *page,
  570. enum compound_dtor_id compound_dtor)
  571. {
  572. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  573. page[1].compound_dtor = compound_dtor;
  574. }
  575. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  576. {
  577. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  578. return compound_page_dtors[page[1].compound_dtor];
  579. }
  580. static inline unsigned int compound_order(struct page *page)
  581. {
  582. if (!PageHead(page))
  583. return 0;
  584. return page[1].compound_order;
  585. }
  586. static inline void set_compound_order(struct page *page, unsigned int order)
  587. {
  588. page[1].compound_order = order;
  589. }
  590. void free_compound_page(struct page *page);
  591. #ifdef CONFIG_MMU
  592. /*
  593. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  594. * servicing faults for write access. In the normal case, do always want
  595. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  596. * that do not have writing enabled, when used by access_process_vm.
  597. */
  598. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  599. {
  600. if (likely(vma->vm_flags & VM_WRITE))
  601. pte = pte_mkwrite(pte);
  602. return pte;
  603. }
  604. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  605. struct page *page);
  606. int finish_fault(struct vm_fault *vmf);
  607. int finish_mkwrite_fault(struct vm_fault *vmf);
  608. #endif
  609. /*
  610. * Multiple processes may "see" the same page. E.g. for untouched
  611. * mappings of /dev/null, all processes see the same page full of
  612. * zeroes, and text pages of executables and shared libraries have
  613. * only one copy in memory, at most, normally.
  614. *
  615. * For the non-reserved pages, page_count(page) denotes a reference count.
  616. * page_count() == 0 means the page is free. page->lru is then used for
  617. * freelist management in the buddy allocator.
  618. * page_count() > 0 means the page has been allocated.
  619. *
  620. * Pages are allocated by the slab allocator in order to provide memory
  621. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  622. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  623. * unless a particular usage is carefully commented. (the responsibility of
  624. * freeing the kmalloc memory is the caller's, of course).
  625. *
  626. * A page may be used by anyone else who does a __get_free_page().
  627. * In this case, page_count still tracks the references, and should only
  628. * be used through the normal accessor functions. The top bits of page->flags
  629. * and page->virtual store page management information, but all other fields
  630. * are unused and could be used privately, carefully. The management of this
  631. * page is the responsibility of the one who allocated it, and those who have
  632. * subsequently been given references to it.
  633. *
  634. * The other pages (we may call them "pagecache pages") are completely
  635. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  636. * The following discussion applies only to them.
  637. *
  638. * A pagecache page contains an opaque `private' member, which belongs to the
  639. * page's address_space. Usually, this is the address of a circular list of
  640. * the page's disk buffers. PG_private must be set to tell the VM to call
  641. * into the filesystem to release these pages.
  642. *
  643. * A page may belong to an inode's memory mapping. In this case, page->mapping
  644. * is the pointer to the inode, and page->index is the file offset of the page,
  645. * in units of PAGE_SIZE.
  646. *
  647. * If pagecache pages are not associated with an inode, they are said to be
  648. * anonymous pages. These may become associated with the swapcache, and in that
  649. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  650. *
  651. * In either case (swapcache or inode backed), the pagecache itself holds one
  652. * reference to the page. Setting PG_private should also increment the
  653. * refcount. The each user mapping also has a reference to the page.
  654. *
  655. * The pagecache pages are stored in a per-mapping radix tree, which is
  656. * rooted at mapping->i_pages, and indexed by offset.
  657. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  658. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  659. *
  660. * All pagecache pages may be subject to I/O:
  661. * - inode pages may need to be read from disk,
  662. * - inode pages which have been modified and are MAP_SHARED may need
  663. * to be written back to the inode on disk,
  664. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  665. * modified may need to be swapped out to swap space and (later) to be read
  666. * back into memory.
  667. */
  668. /*
  669. * The zone field is never updated after free_area_init_core()
  670. * sets it, so none of the operations on it need to be atomic.
  671. */
  672. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  673. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  674. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  675. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  676. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  677. /*
  678. * Define the bit shifts to access each section. For non-existent
  679. * sections we define the shift as 0; that plus a 0 mask ensures
  680. * the compiler will optimise away reference to them.
  681. */
  682. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  683. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  684. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  685. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  686. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  687. #ifdef NODE_NOT_IN_PAGE_FLAGS
  688. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  689. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  690. SECTIONS_PGOFF : ZONES_PGOFF)
  691. #else
  692. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  693. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  694. NODES_PGOFF : ZONES_PGOFF)
  695. #endif
  696. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  697. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  698. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  699. #endif
  700. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  701. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  702. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  703. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  704. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  705. static inline enum zone_type page_zonenum(const struct page *page)
  706. {
  707. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  708. }
  709. #ifdef CONFIG_ZONE_DEVICE
  710. static inline bool is_zone_device_page(const struct page *page)
  711. {
  712. return page_zonenum(page) == ZONE_DEVICE;
  713. }
  714. #else
  715. static inline bool is_zone_device_page(const struct page *page)
  716. {
  717. return false;
  718. }
  719. #endif
  720. #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  721. void put_zone_device_private_or_public_page(struct page *page);
  722. DECLARE_STATIC_KEY_FALSE(device_private_key);
  723. #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
  724. static inline bool is_device_private_page(const struct page *page);
  725. static inline bool is_device_public_page(const struct page *page);
  726. #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  727. static inline void put_zone_device_private_or_public_page(struct page *page)
  728. {
  729. }
  730. #define IS_HMM_ENABLED 0
  731. static inline bool is_device_private_page(const struct page *page)
  732. {
  733. return false;
  734. }
  735. static inline bool is_device_public_page(const struct page *page)
  736. {
  737. return false;
  738. }
  739. #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  740. static inline void get_page(struct page *page)
  741. {
  742. page = compound_head(page);
  743. /*
  744. * Getting a normal page or the head of a compound page
  745. * requires to already have an elevated page->_refcount.
  746. */
  747. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  748. page_ref_inc(page);
  749. }
  750. static inline void put_page(struct page *page)
  751. {
  752. page = compound_head(page);
  753. /*
  754. * For private device pages we need to catch refcount transition from
  755. * 2 to 1, when refcount reach one it means the private device page is
  756. * free and we need to inform the device driver through callback. See
  757. * include/linux/memremap.h and HMM for details.
  758. */
  759. if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
  760. unlikely(is_device_public_page(page)))) {
  761. put_zone_device_private_or_public_page(page);
  762. return;
  763. }
  764. if (put_page_testzero(page))
  765. __put_page(page);
  766. }
  767. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  768. #define SECTION_IN_PAGE_FLAGS
  769. #endif
  770. /*
  771. * The identification function is mainly used by the buddy allocator for
  772. * determining if two pages could be buddies. We are not really identifying
  773. * the zone since we could be using the section number id if we do not have
  774. * node id available in page flags.
  775. * We only guarantee that it will return the same value for two combinable
  776. * pages in a zone.
  777. */
  778. static inline int page_zone_id(struct page *page)
  779. {
  780. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  781. }
  782. static inline int zone_to_nid(struct zone *zone)
  783. {
  784. #ifdef CONFIG_NUMA
  785. return zone->node;
  786. #else
  787. return 0;
  788. #endif
  789. }
  790. #ifdef NODE_NOT_IN_PAGE_FLAGS
  791. extern int page_to_nid(const struct page *page);
  792. #else
  793. static inline int page_to_nid(const struct page *page)
  794. {
  795. struct page *p = (struct page *)page;
  796. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  797. }
  798. #endif
  799. #ifdef CONFIG_NUMA_BALANCING
  800. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  801. {
  802. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  803. }
  804. static inline int cpupid_to_pid(int cpupid)
  805. {
  806. return cpupid & LAST__PID_MASK;
  807. }
  808. static inline int cpupid_to_cpu(int cpupid)
  809. {
  810. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  811. }
  812. static inline int cpupid_to_nid(int cpupid)
  813. {
  814. return cpu_to_node(cpupid_to_cpu(cpupid));
  815. }
  816. static inline bool cpupid_pid_unset(int cpupid)
  817. {
  818. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  819. }
  820. static inline bool cpupid_cpu_unset(int cpupid)
  821. {
  822. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  823. }
  824. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  825. {
  826. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  827. }
  828. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  829. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  830. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  831. {
  832. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  833. }
  834. static inline int page_cpupid_last(struct page *page)
  835. {
  836. return page->_last_cpupid;
  837. }
  838. static inline void page_cpupid_reset_last(struct page *page)
  839. {
  840. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  841. }
  842. #else
  843. static inline int page_cpupid_last(struct page *page)
  844. {
  845. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  846. }
  847. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  848. static inline void page_cpupid_reset_last(struct page *page)
  849. {
  850. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  851. }
  852. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  853. #else /* !CONFIG_NUMA_BALANCING */
  854. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  855. {
  856. return page_to_nid(page); /* XXX */
  857. }
  858. static inline int page_cpupid_last(struct page *page)
  859. {
  860. return page_to_nid(page); /* XXX */
  861. }
  862. static inline int cpupid_to_nid(int cpupid)
  863. {
  864. return -1;
  865. }
  866. static inline int cpupid_to_pid(int cpupid)
  867. {
  868. return -1;
  869. }
  870. static inline int cpupid_to_cpu(int cpupid)
  871. {
  872. return -1;
  873. }
  874. static inline int cpu_pid_to_cpupid(int nid, int pid)
  875. {
  876. return -1;
  877. }
  878. static inline bool cpupid_pid_unset(int cpupid)
  879. {
  880. return 1;
  881. }
  882. static inline void page_cpupid_reset_last(struct page *page)
  883. {
  884. }
  885. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  886. {
  887. return false;
  888. }
  889. #endif /* CONFIG_NUMA_BALANCING */
  890. static inline struct zone *page_zone(const struct page *page)
  891. {
  892. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  893. }
  894. static inline pg_data_t *page_pgdat(const struct page *page)
  895. {
  896. return NODE_DATA(page_to_nid(page));
  897. }
  898. #ifdef SECTION_IN_PAGE_FLAGS
  899. static inline void set_page_section(struct page *page, unsigned long section)
  900. {
  901. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  902. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  903. }
  904. static inline unsigned long page_to_section(const struct page *page)
  905. {
  906. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  907. }
  908. #endif
  909. static inline void set_page_zone(struct page *page, enum zone_type zone)
  910. {
  911. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  912. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  913. }
  914. static inline void set_page_node(struct page *page, unsigned long node)
  915. {
  916. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  917. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  918. }
  919. static inline void set_page_links(struct page *page, enum zone_type zone,
  920. unsigned long node, unsigned long pfn)
  921. {
  922. set_page_zone(page, zone);
  923. set_page_node(page, node);
  924. #ifdef SECTION_IN_PAGE_FLAGS
  925. set_page_section(page, pfn_to_section_nr(pfn));
  926. #endif
  927. }
  928. #ifdef CONFIG_MEMCG
  929. static inline struct mem_cgroup *page_memcg(struct page *page)
  930. {
  931. return page->mem_cgroup;
  932. }
  933. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  934. {
  935. WARN_ON_ONCE(!rcu_read_lock_held());
  936. return READ_ONCE(page->mem_cgroup);
  937. }
  938. #else
  939. static inline struct mem_cgroup *page_memcg(struct page *page)
  940. {
  941. return NULL;
  942. }
  943. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  944. {
  945. WARN_ON_ONCE(!rcu_read_lock_held());
  946. return NULL;
  947. }
  948. #endif
  949. /*
  950. * Some inline functions in vmstat.h depend on page_zone()
  951. */
  952. #include <linux/vmstat.h>
  953. static __always_inline void *lowmem_page_address(const struct page *page)
  954. {
  955. return page_to_virt(page);
  956. }
  957. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  958. #define HASHED_PAGE_VIRTUAL
  959. #endif
  960. #if defined(WANT_PAGE_VIRTUAL)
  961. static inline void *page_address(const struct page *page)
  962. {
  963. return page->virtual;
  964. }
  965. static inline void set_page_address(struct page *page, void *address)
  966. {
  967. page->virtual = address;
  968. }
  969. #define page_address_init() do { } while(0)
  970. #endif
  971. #if defined(HASHED_PAGE_VIRTUAL)
  972. void *page_address(const struct page *page);
  973. void set_page_address(struct page *page, void *virtual);
  974. void page_address_init(void);
  975. #endif
  976. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  977. #define page_address(page) lowmem_page_address(page)
  978. #define set_page_address(page, address) do { } while(0)
  979. #define page_address_init() do { } while(0)
  980. #endif
  981. extern void *page_rmapping(struct page *page);
  982. extern struct anon_vma *page_anon_vma(struct page *page);
  983. extern struct address_space *page_mapping(struct page *page);
  984. extern struct address_space *__page_file_mapping(struct page *);
  985. static inline
  986. struct address_space *page_file_mapping(struct page *page)
  987. {
  988. if (unlikely(PageSwapCache(page)))
  989. return __page_file_mapping(page);
  990. return page->mapping;
  991. }
  992. extern pgoff_t __page_file_index(struct page *page);
  993. /*
  994. * Return the pagecache index of the passed page. Regular pagecache pages
  995. * use ->index whereas swapcache pages use swp_offset(->private)
  996. */
  997. static inline pgoff_t page_index(struct page *page)
  998. {
  999. if (unlikely(PageSwapCache(page)))
  1000. return __page_file_index(page);
  1001. return page->index;
  1002. }
  1003. bool page_mapped(struct page *page);
  1004. struct address_space *page_mapping(struct page *page);
  1005. struct address_space *page_mapping_file(struct page *page);
  1006. /*
  1007. * Return true only if the page has been allocated with
  1008. * ALLOC_NO_WATERMARKS and the low watermark was not
  1009. * met implying that the system is under some pressure.
  1010. */
  1011. static inline bool page_is_pfmemalloc(struct page *page)
  1012. {
  1013. /*
  1014. * Page index cannot be this large so this must be
  1015. * a pfmemalloc page.
  1016. */
  1017. return page->index == -1UL;
  1018. }
  1019. /*
  1020. * Only to be called by the page allocator on a freshly allocated
  1021. * page.
  1022. */
  1023. static inline void set_page_pfmemalloc(struct page *page)
  1024. {
  1025. page->index = -1UL;
  1026. }
  1027. static inline void clear_page_pfmemalloc(struct page *page)
  1028. {
  1029. page->index = 0;
  1030. }
  1031. /*
  1032. * Different kinds of faults, as returned by handle_mm_fault().
  1033. * Used to decide whether a process gets delivered SIGBUS or
  1034. * just gets major/minor fault counters bumped up.
  1035. */
  1036. #define VM_FAULT_OOM 0x0001
  1037. #define VM_FAULT_SIGBUS 0x0002
  1038. #define VM_FAULT_MAJOR 0x0004
  1039. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1040. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1041. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1042. #define VM_FAULT_SIGSEGV 0x0040
  1043. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1044. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1045. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1046. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1047. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1048. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1049. * and needs fsync() to complete (for
  1050. * synchronous page faults in DAX) */
  1051. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1052. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1053. VM_FAULT_FALLBACK)
  1054. #define VM_FAULT_RESULT_TRACE \
  1055. { VM_FAULT_OOM, "OOM" }, \
  1056. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1057. { VM_FAULT_MAJOR, "MAJOR" }, \
  1058. { VM_FAULT_WRITE, "WRITE" }, \
  1059. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1060. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1061. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1062. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1063. { VM_FAULT_LOCKED, "LOCKED" }, \
  1064. { VM_FAULT_RETRY, "RETRY" }, \
  1065. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1066. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1067. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1068. /* Encode hstate index for a hwpoisoned large page */
  1069. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1070. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1071. /*
  1072. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1073. */
  1074. extern void pagefault_out_of_memory(void);
  1075. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1076. /*
  1077. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1078. * various contexts.
  1079. */
  1080. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1081. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1082. extern bool can_do_mlock(void);
  1083. extern int user_shm_lock(size_t, struct user_struct *);
  1084. extern void user_shm_unlock(size_t, struct user_struct *);
  1085. /*
  1086. * Parameter block passed down to zap_pte_range in exceptional cases.
  1087. */
  1088. struct zap_details {
  1089. struct address_space *check_mapping; /* Check page->mapping if set */
  1090. pgoff_t first_index; /* Lowest page->index to unmap */
  1091. pgoff_t last_index; /* Highest page->index to unmap */
  1092. };
  1093. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1094. pte_t pte, bool with_public_device);
  1095. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1096. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1097. pmd_t pmd);
  1098. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1099. unsigned long size);
  1100. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1101. unsigned long size);
  1102. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1103. unsigned long start, unsigned long end);
  1104. /**
  1105. * mm_walk - callbacks for walk_page_range
  1106. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1107. * this handler should only handle pud_trans_huge() puds.
  1108. * the pmd_entry or pte_entry callbacks will be used for
  1109. * regular PUDs.
  1110. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1111. * this handler is required to be able to handle
  1112. * pmd_trans_huge() pmds. They may simply choose to
  1113. * split_huge_page() instead of handling it explicitly.
  1114. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1115. * @pte_hole: if set, called for each hole at all levels
  1116. * @hugetlb_entry: if set, called for each hugetlb entry
  1117. * @test_walk: caller specific callback function to determine whether
  1118. * we walk over the current vma or not. Returning 0
  1119. * value means "do page table walk over the current vma,"
  1120. * and a negative one means "abort current page table walk
  1121. * right now." 1 means "skip the current vma."
  1122. * @mm: mm_struct representing the target process of page table walk
  1123. * @vma: vma currently walked (NULL if walking outside vmas)
  1124. * @private: private data for callbacks' usage
  1125. *
  1126. * (see the comment on walk_page_range() for more details)
  1127. */
  1128. struct mm_walk {
  1129. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1130. unsigned long next, struct mm_walk *walk);
  1131. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1132. unsigned long next, struct mm_walk *walk);
  1133. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1134. unsigned long next, struct mm_walk *walk);
  1135. int (*pte_hole)(unsigned long addr, unsigned long next,
  1136. struct mm_walk *walk);
  1137. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1138. unsigned long addr, unsigned long next,
  1139. struct mm_walk *walk);
  1140. int (*test_walk)(unsigned long addr, unsigned long next,
  1141. struct mm_walk *walk);
  1142. struct mm_struct *mm;
  1143. struct vm_area_struct *vma;
  1144. void *private;
  1145. };
  1146. int walk_page_range(unsigned long addr, unsigned long end,
  1147. struct mm_walk *walk);
  1148. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1149. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1150. unsigned long end, unsigned long floor, unsigned long ceiling);
  1151. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1152. struct vm_area_struct *vma);
  1153. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1154. unsigned long *start, unsigned long *end,
  1155. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1156. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1157. unsigned long *pfn);
  1158. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1159. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1160. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1161. void *buf, int len, int write);
  1162. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1163. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1164. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1165. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1166. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1167. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1168. int invalidate_inode_page(struct page *page);
  1169. #ifdef CONFIG_MMU
  1170. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1171. unsigned int flags);
  1172. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1173. unsigned long address, unsigned int fault_flags,
  1174. bool *unlocked);
  1175. void unmap_mapping_pages(struct address_space *mapping,
  1176. pgoff_t start, pgoff_t nr, bool even_cows);
  1177. void unmap_mapping_range(struct address_space *mapping,
  1178. loff_t const holebegin, loff_t const holelen, int even_cows);
  1179. #else
  1180. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1181. unsigned long address, unsigned int flags)
  1182. {
  1183. /* should never happen if there's no MMU */
  1184. BUG();
  1185. return VM_FAULT_SIGBUS;
  1186. }
  1187. static inline int fixup_user_fault(struct task_struct *tsk,
  1188. struct mm_struct *mm, unsigned long address,
  1189. unsigned int fault_flags, bool *unlocked)
  1190. {
  1191. /* should never happen if there's no MMU */
  1192. BUG();
  1193. return -EFAULT;
  1194. }
  1195. static inline void unmap_mapping_pages(struct address_space *mapping,
  1196. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1197. static inline void unmap_mapping_range(struct address_space *mapping,
  1198. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1199. #endif
  1200. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1201. loff_t const holebegin, loff_t const holelen)
  1202. {
  1203. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1204. }
  1205. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1206. void *buf, int len, unsigned int gup_flags);
  1207. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1208. void *buf, int len, unsigned int gup_flags);
  1209. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1210. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1211. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1212. unsigned long start, unsigned long nr_pages,
  1213. unsigned int gup_flags, struct page **pages,
  1214. struct vm_area_struct **vmas, int *locked);
  1215. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1216. unsigned int gup_flags, struct page **pages,
  1217. struct vm_area_struct **vmas);
  1218. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1219. unsigned int gup_flags, struct page **pages, int *locked);
  1220. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1221. struct page **pages, unsigned int gup_flags);
  1222. #ifdef CONFIG_FS_DAX
  1223. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1224. unsigned int gup_flags, struct page **pages,
  1225. struct vm_area_struct **vmas);
  1226. #else
  1227. static inline long get_user_pages_longterm(unsigned long start,
  1228. unsigned long nr_pages, unsigned int gup_flags,
  1229. struct page **pages, struct vm_area_struct **vmas)
  1230. {
  1231. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1232. }
  1233. #endif /* CONFIG_FS_DAX */
  1234. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1235. struct page **pages);
  1236. /* Container for pinned pfns / pages */
  1237. struct frame_vector {
  1238. unsigned int nr_allocated; /* Number of frames we have space for */
  1239. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1240. bool got_ref; /* Did we pin pages by getting page ref? */
  1241. bool is_pfns; /* Does array contain pages or pfns? */
  1242. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1243. * pfns_vector_pages() or pfns_vector_pfns()
  1244. * for access */
  1245. };
  1246. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1247. void frame_vector_destroy(struct frame_vector *vec);
  1248. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1249. unsigned int gup_flags, struct frame_vector *vec);
  1250. void put_vaddr_frames(struct frame_vector *vec);
  1251. int frame_vector_to_pages(struct frame_vector *vec);
  1252. void frame_vector_to_pfns(struct frame_vector *vec);
  1253. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1254. {
  1255. return vec->nr_frames;
  1256. }
  1257. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1258. {
  1259. if (vec->is_pfns) {
  1260. int err = frame_vector_to_pages(vec);
  1261. if (err)
  1262. return ERR_PTR(err);
  1263. }
  1264. return (struct page **)(vec->ptrs);
  1265. }
  1266. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1267. {
  1268. if (!vec->is_pfns)
  1269. frame_vector_to_pfns(vec);
  1270. return (unsigned long *)(vec->ptrs);
  1271. }
  1272. struct kvec;
  1273. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1274. struct page **pages);
  1275. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1276. struct page *get_dump_page(unsigned long addr);
  1277. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1278. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1279. unsigned int length);
  1280. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1281. int __set_page_dirty_nobuffers(struct page *page);
  1282. int __set_page_dirty_no_writeback(struct page *page);
  1283. int redirty_page_for_writepage(struct writeback_control *wbc,
  1284. struct page *page);
  1285. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1286. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1287. struct bdi_writeback *wb);
  1288. int set_page_dirty(struct page *page);
  1289. int set_page_dirty_lock(struct page *page);
  1290. void __cancel_dirty_page(struct page *page);
  1291. static inline void cancel_dirty_page(struct page *page)
  1292. {
  1293. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1294. if (PageDirty(page))
  1295. __cancel_dirty_page(page);
  1296. }
  1297. int clear_page_dirty_for_io(struct page *page);
  1298. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1299. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1300. {
  1301. return !vma->vm_ops;
  1302. }
  1303. #ifdef CONFIG_SHMEM
  1304. /*
  1305. * The vma_is_shmem is not inline because it is used only by slow
  1306. * paths in userfault.
  1307. */
  1308. bool vma_is_shmem(struct vm_area_struct *vma);
  1309. #else
  1310. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1311. #endif
  1312. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1313. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1314. unsigned long old_addr, struct vm_area_struct *new_vma,
  1315. unsigned long new_addr, unsigned long len,
  1316. bool need_rmap_locks);
  1317. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1318. unsigned long end, pgprot_t newprot,
  1319. int dirty_accountable, int prot_numa);
  1320. extern int mprotect_fixup(struct vm_area_struct *vma,
  1321. struct vm_area_struct **pprev, unsigned long start,
  1322. unsigned long end, unsigned long newflags);
  1323. /*
  1324. * doesn't attempt to fault and will return short.
  1325. */
  1326. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1327. struct page **pages);
  1328. /*
  1329. * per-process(per-mm_struct) statistics.
  1330. */
  1331. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1332. {
  1333. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1334. #ifdef SPLIT_RSS_COUNTING
  1335. /*
  1336. * counter is updated in asynchronous manner and may go to minus.
  1337. * But it's never be expected number for users.
  1338. */
  1339. if (val < 0)
  1340. val = 0;
  1341. #endif
  1342. return (unsigned long)val;
  1343. }
  1344. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1345. {
  1346. atomic_long_add(value, &mm->rss_stat.count[member]);
  1347. }
  1348. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1349. {
  1350. atomic_long_inc(&mm->rss_stat.count[member]);
  1351. }
  1352. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1353. {
  1354. atomic_long_dec(&mm->rss_stat.count[member]);
  1355. }
  1356. /* Optimized variant when page is already known not to be PageAnon */
  1357. static inline int mm_counter_file(struct page *page)
  1358. {
  1359. if (PageSwapBacked(page))
  1360. return MM_SHMEMPAGES;
  1361. return MM_FILEPAGES;
  1362. }
  1363. static inline int mm_counter(struct page *page)
  1364. {
  1365. if (PageAnon(page))
  1366. return MM_ANONPAGES;
  1367. return mm_counter_file(page);
  1368. }
  1369. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1370. {
  1371. return get_mm_counter(mm, MM_FILEPAGES) +
  1372. get_mm_counter(mm, MM_ANONPAGES) +
  1373. get_mm_counter(mm, MM_SHMEMPAGES);
  1374. }
  1375. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1376. {
  1377. return max(mm->hiwater_rss, get_mm_rss(mm));
  1378. }
  1379. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1380. {
  1381. return max(mm->hiwater_vm, mm->total_vm);
  1382. }
  1383. static inline void update_hiwater_rss(struct mm_struct *mm)
  1384. {
  1385. unsigned long _rss = get_mm_rss(mm);
  1386. if ((mm)->hiwater_rss < _rss)
  1387. (mm)->hiwater_rss = _rss;
  1388. }
  1389. static inline void update_hiwater_vm(struct mm_struct *mm)
  1390. {
  1391. if (mm->hiwater_vm < mm->total_vm)
  1392. mm->hiwater_vm = mm->total_vm;
  1393. }
  1394. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1395. {
  1396. mm->hiwater_rss = get_mm_rss(mm);
  1397. }
  1398. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1399. struct mm_struct *mm)
  1400. {
  1401. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1402. if (*maxrss < hiwater_rss)
  1403. *maxrss = hiwater_rss;
  1404. }
  1405. #if defined(SPLIT_RSS_COUNTING)
  1406. void sync_mm_rss(struct mm_struct *mm);
  1407. #else
  1408. static inline void sync_mm_rss(struct mm_struct *mm)
  1409. {
  1410. }
  1411. #endif
  1412. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1413. static inline int pte_devmap(pte_t pte)
  1414. {
  1415. return 0;
  1416. }
  1417. #endif
  1418. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1419. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1420. spinlock_t **ptl);
  1421. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1422. spinlock_t **ptl)
  1423. {
  1424. pte_t *ptep;
  1425. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1426. return ptep;
  1427. }
  1428. #ifdef __PAGETABLE_P4D_FOLDED
  1429. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1430. unsigned long address)
  1431. {
  1432. return 0;
  1433. }
  1434. #else
  1435. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1436. #endif
  1437. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1438. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1439. unsigned long address)
  1440. {
  1441. return 0;
  1442. }
  1443. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1444. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1445. #else
  1446. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1447. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1448. {
  1449. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1450. }
  1451. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1452. {
  1453. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1454. }
  1455. #endif
  1456. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1457. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1458. unsigned long address)
  1459. {
  1460. return 0;
  1461. }
  1462. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1463. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1464. #else
  1465. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1466. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1467. {
  1468. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1469. }
  1470. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1471. {
  1472. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1473. }
  1474. #endif
  1475. #ifdef CONFIG_MMU
  1476. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1477. {
  1478. atomic_long_set(&mm->pgtables_bytes, 0);
  1479. }
  1480. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1481. {
  1482. return atomic_long_read(&mm->pgtables_bytes);
  1483. }
  1484. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1485. {
  1486. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1487. }
  1488. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1489. {
  1490. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1491. }
  1492. #else
  1493. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1494. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1495. {
  1496. return 0;
  1497. }
  1498. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1499. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1500. #endif
  1501. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1502. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1503. /*
  1504. * The following ifdef needed to get the 4level-fixup.h header to work.
  1505. * Remove it when 4level-fixup.h has been removed.
  1506. */
  1507. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1508. #ifndef __ARCH_HAS_5LEVEL_HACK
  1509. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1510. unsigned long address)
  1511. {
  1512. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1513. NULL : p4d_offset(pgd, address);
  1514. }
  1515. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1516. unsigned long address)
  1517. {
  1518. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1519. NULL : pud_offset(p4d, address);
  1520. }
  1521. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1522. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1523. {
  1524. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1525. NULL: pmd_offset(pud, address);
  1526. }
  1527. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1528. #if USE_SPLIT_PTE_PTLOCKS
  1529. #if ALLOC_SPLIT_PTLOCKS
  1530. void __init ptlock_cache_init(void);
  1531. extern bool ptlock_alloc(struct page *page);
  1532. extern void ptlock_free(struct page *page);
  1533. static inline spinlock_t *ptlock_ptr(struct page *page)
  1534. {
  1535. return page->ptl;
  1536. }
  1537. #else /* ALLOC_SPLIT_PTLOCKS */
  1538. static inline void ptlock_cache_init(void)
  1539. {
  1540. }
  1541. static inline bool ptlock_alloc(struct page *page)
  1542. {
  1543. return true;
  1544. }
  1545. static inline void ptlock_free(struct page *page)
  1546. {
  1547. }
  1548. static inline spinlock_t *ptlock_ptr(struct page *page)
  1549. {
  1550. return &page->ptl;
  1551. }
  1552. #endif /* ALLOC_SPLIT_PTLOCKS */
  1553. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1554. {
  1555. return ptlock_ptr(pmd_page(*pmd));
  1556. }
  1557. static inline bool ptlock_init(struct page *page)
  1558. {
  1559. /*
  1560. * prep_new_page() initialize page->private (and therefore page->ptl)
  1561. * with 0. Make sure nobody took it in use in between.
  1562. *
  1563. * It can happen if arch try to use slab for page table allocation:
  1564. * slab code uses page->slab_cache, which share storage with page->ptl.
  1565. */
  1566. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1567. if (!ptlock_alloc(page))
  1568. return false;
  1569. spin_lock_init(ptlock_ptr(page));
  1570. return true;
  1571. }
  1572. /* Reset page->mapping so free_pages_check won't complain. */
  1573. static inline void pte_lock_deinit(struct page *page)
  1574. {
  1575. page->mapping = NULL;
  1576. ptlock_free(page);
  1577. }
  1578. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1579. /*
  1580. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1581. */
  1582. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1583. {
  1584. return &mm->page_table_lock;
  1585. }
  1586. static inline void ptlock_cache_init(void) {}
  1587. static inline bool ptlock_init(struct page *page) { return true; }
  1588. static inline void pte_lock_deinit(struct page *page) {}
  1589. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1590. static inline void pgtable_init(void)
  1591. {
  1592. ptlock_cache_init();
  1593. pgtable_cache_init();
  1594. }
  1595. static inline bool pgtable_page_ctor(struct page *page)
  1596. {
  1597. if (!ptlock_init(page))
  1598. return false;
  1599. inc_zone_page_state(page, NR_PAGETABLE);
  1600. return true;
  1601. }
  1602. static inline void pgtable_page_dtor(struct page *page)
  1603. {
  1604. pte_lock_deinit(page);
  1605. dec_zone_page_state(page, NR_PAGETABLE);
  1606. }
  1607. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1608. ({ \
  1609. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1610. pte_t *__pte = pte_offset_map(pmd, address); \
  1611. *(ptlp) = __ptl; \
  1612. spin_lock(__ptl); \
  1613. __pte; \
  1614. })
  1615. #define pte_unmap_unlock(pte, ptl) do { \
  1616. spin_unlock(ptl); \
  1617. pte_unmap(pte); \
  1618. } while (0)
  1619. #define pte_alloc(mm, pmd, address) \
  1620. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1621. #define pte_alloc_map(mm, pmd, address) \
  1622. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1623. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1624. (pte_alloc(mm, pmd, address) ? \
  1625. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1626. #define pte_alloc_kernel(pmd, address) \
  1627. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1628. NULL: pte_offset_kernel(pmd, address))
  1629. #if USE_SPLIT_PMD_PTLOCKS
  1630. static struct page *pmd_to_page(pmd_t *pmd)
  1631. {
  1632. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1633. return virt_to_page((void *)((unsigned long) pmd & mask));
  1634. }
  1635. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1636. {
  1637. return ptlock_ptr(pmd_to_page(pmd));
  1638. }
  1639. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1640. {
  1641. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1642. page->pmd_huge_pte = NULL;
  1643. #endif
  1644. return ptlock_init(page);
  1645. }
  1646. static inline void pgtable_pmd_page_dtor(struct page *page)
  1647. {
  1648. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1649. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1650. #endif
  1651. ptlock_free(page);
  1652. }
  1653. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1654. #else
  1655. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1656. {
  1657. return &mm->page_table_lock;
  1658. }
  1659. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1660. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1661. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1662. #endif
  1663. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1664. {
  1665. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1666. spin_lock(ptl);
  1667. return ptl;
  1668. }
  1669. /*
  1670. * No scalability reason to split PUD locks yet, but follow the same pattern
  1671. * as the PMD locks to make it easier if we decide to. The VM should not be
  1672. * considered ready to switch to split PUD locks yet; there may be places
  1673. * which need to be converted from page_table_lock.
  1674. */
  1675. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1676. {
  1677. return &mm->page_table_lock;
  1678. }
  1679. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1680. {
  1681. spinlock_t *ptl = pud_lockptr(mm, pud);
  1682. spin_lock(ptl);
  1683. return ptl;
  1684. }
  1685. extern void __init pagecache_init(void);
  1686. extern void free_area_init(unsigned long * zones_size);
  1687. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1688. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1689. extern void free_initmem(void);
  1690. /*
  1691. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1692. * into the buddy system. The freed pages will be poisoned with pattern
  1693. * "poison" if it's within range [0, UCHAR_MAX].
  1694. * Return pages freed into the buddy system.
  1695. */
  1696. extern unsigned long free_reserved_area(void *start, void *end,
  1697. int poison, char *s);
  1698. #ifdef CONFIG_HIGHMEM
  1699. /*
  1700. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1701. * and totalram_pages.
  1702. */
  1703. extern void free_highmem_page(struct page *page);
  1704. #endif
  1705. extern void adjust_managed_page_count(struct page *page, long count);
  1706. extern void mem_init_print_info(const char *str);
  1707. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1708. /* Free the reserved page into the buddy system, so it gets managed. */
  1709. static inline void __free_reserved_page(struct page *page)
  1710. {
  1711. ClearPageReserved(page);
  1712. init_page_count(page);
  1713. __free_page(page);
  1714. }
  1715. static inline void free_reserved_page(struct page *page)
  1716. {
  1717. __free_reserved_page(page);
  1718. adjust_managed_page_count(page, 1);
  1719. }
  1720. static inline void mark_page_reserved(struct page *page)
  1721. {
  1722. SetPageReserved(page);
  1723. adjust_managed_page_count(page, -1);
  1724. }
  1725. /*
  1726. * Default method to free all the __init memory into the buddy system.
  1727. * The freed pages will be poisoned with pattern "poison" if it's within
  1728. * range [0, UCHAR_MAX].
  1729. * Return pages freed into the buddy system.
  1730. */
  1731. static inline unsigned long free_initmem_default(int poison)
  1732. {
  1733. extern char __init_begin[], __init_end[];
  1734. return free_reserved_area(&__init_begin, &__init_end,
  1735. poison, "unused kernel");
  1736. }
  1737. static inline unsigned long get_num_physpages(void)
  1738. {
  1739. int nid;
  1740. unsigned long phys_pages = 0;
  1741. for_each_online_node(nid)
  1742. phys_pages += node_present_pages(nid);
  1743. return phys_pages;
  1744. }
  1745. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1746. /*
  1747. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1748. * zones, allocate the backing mem_map and account for memory holes in a more
  1749. * architecture independent manner. This is a substitute for creating the
  1750. * zone_sizes[] and zholes_size[] arrays and passing them to
  1751. * free_area_init_node()
  1752. *
  1753. * An architecture is expected to register range of page frames backed by
  1754. * physical memory with memblock_add[_node]() before calling
  1755. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1756. * usage, an architecture is expected to do something like
  1757. *
  1758. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1759. * max_highmem_pfn};
  1760. * for_each_valid_physical_page_range()
  1761. * memblock_add_node(base, size, nid)
  1762. * free_area_init_nodes(max_zone_pfns);
  1763. *
  1764. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1765. * registered physical page range. Similarly
  1766. * sparse_memory_present_with_active_regions() calls memory_present() for
  1767. * each range when SPARSEMEM is enabled.
  1768. *
  1769. * See mm/page_alloc.c for more information on each function exposed by
  1770. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1771. */
  1772. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1773. unsigned long node_map_pfn_alignment(void);
  1774. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1775. unsigned long end_pfn);
  1776. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1777. unsigned long end_pfn);
  1778. extern void get_pfn_range_for_nid(unsigned int nid,
  1779. unsigned long *start_pfn, unsigned long *end_pfn);
  1780. extern unsigned long find_min_pfn_with_active_regions(void);
  1781. extern void free_bootmem_with_active_regions(int nid,
  1782. unsigned long max_low_pfn);
  1783. extern void sparse_memory_present_with_active_regions(int nid);
  1784. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1785. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1786. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1787. static inline int __early_pfn_to_nid(unsigned long pfn,
  1788. struct mminit_pfnnid_cache *state)
  1789. {
  1790. return 0;
  1791. }
  1792. #else
  1793. /* please see mm/page_alloc.c */
  1794. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1795. /* there is a per-arch backend function. */
  1796. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1797. struct mminit_pfnnid_cache *state);
  1798. #endif
  1799. #ifdef CONFIG_HAVE_MEMBLOCK
  1800. void zero_resv_unavail(void);
  1801. #else
  1802. static inline void zero_resv_unavail(void) {}
  1803. #endif
  1804. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1805. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1806. enum memmap_context, struct vmem_altmap *);
  1807. extern void setup_per_zone_wmarks(void);
  1808. extern int __meminit init_per_zone_wmark_min(void);
  1809. extern void mem_init(void);
  1810. extern void __init mmap_init(void);
  1811. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1812. extern long si_mem_available(void);
  1813. extern void si_meminfo(struct sysinfo * val);
  1814. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1815. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1816. extern unsigned long arch_reserved_kernel_pages(void);
  1817. #endif
  1818. extern __printf(3, 4)
  1819. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1820. extern void setup_per_cpu_pageset(void);
  1821. extern void zone_pcp_update(struct zone *zone);
  1822. extern void zone_pcp_reset(struct zone *zone);
  1823. /* page_alloc.c */
  1824. extern int min_free_kbytes;
  1825. extern int watermark_scale_factor;
  1826. /* nommu.c */
  1827. extern atomic_long_t mmap_pages_allocated;
  1828. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1829. /* interval_tree.c */
  1830. void vma_interval_tree_insert(struct vm_area_struct *node,
  1831. struct rb_root_cached *root);
  1832. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1833. struct vm_area_struct *prev,
  1834. struct rb_root_cached *root);
  1835. void vma_interval_tree_remove(struct vm_area_struct *node,
  1836. struct rb_root_cached *root);
  1837. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1838. unsigned long start, unsigned long last);
  1839. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1840. unsigned long start, unsigned long last);
  1841. #define vma_interval_tree_foreach(vma, root, start, last) \
  1842. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1843. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1844. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1845. struct rb_root_cached *root);
  1846. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1847. struct rb_root_cached *root);
  1848. struct anon_vma_chain *
  1849. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1850. unsigned long start, unsigned long last);
  1851. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1852. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1853. #ifdef CONFIG_DEBUG_VM_RB
  1854. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1855. #endif
  1856. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1857. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1858. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1859. /* mmap.c */
  1860. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1861. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1862. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1863. struct vm_area_struct *expand);
  1864. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1865. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1866. {
  1867. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1868. }
  1869. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1870. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1871. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1872. struct mempolicy *, struct vm_userfaultfd_ctx);
  1873. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1874. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1875. unsigned long addr, int new_below);
  1876. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1877. unsigned long addr, int new_below);
  1878. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1879. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1880. struct rb_node **, struct rb_node *);
  1881. extern void unlink_file_vma(struct vm_area_struct *);
  1882. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1883. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1884. bool *need_rmap_locks);
  1885. extern void exit_mmap(struct mm_struct *);
  1886. static inline int check_data_rlimit(unsigned long rlim,
  1887. unsigned long new,
  1888. unsigned long start,
  1889. unsigned long end_data,
  1890. unsigned long start_data)
  1891. {
  1892. if (rlim < RLIM_INFINITY) {
  1893. if (((new - start) + (end_data - start_data)) > rlim)
  1894. return -ENOSPC;
  1895. }
  1896. return 0;
  1897. }
  1898. extern int mm_take_all_locks(struct mm_struct *mm);
  1899. extern void mm_drop_all_locks(struct mm_struct *mm);
  1900. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1901. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1902. extern struct file *get_task_exe_file(struct task_struct *task);
  1903. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1904. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1905. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1906. const struct vm_special_mapping *sm);
  1907. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1908. unsigned long addr, unsigned long len,
  1909. unsigned long flags,
  1910. const struct vm_special_mapping *spec);
  1911. /* This is an obsolete alternative to _install_special_mapping. */
  1912. extern int install_special_mapping(struct mm_struct *mm,
  1913. unsigned long addr, unsigned long len,
  1914. unsigned long flags, struct page **pages);
  1915. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1916. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1917. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1918. struct list_head *uf);
  1919. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1920. unsigned long len, unsigned long prot, unsigned long flags,
  1921. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1922. struct list_head *uf);
  1923. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1924. struct list_head *uf);
  1925. static inline unsigned long
  1926. do_mmap_pgoff(struct file *file, unsigned long addr,
  1927. unsigned long len, unsigned long prot, unsigned long flags,
  1928. unsigned long pgoff, unsigned long *populate,
  1929. struct list_head *uf)
  1930. {
  1931. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1932. }
  1933. #ifdef CONFIG_MMU
  1934. extern int __mm_populate(unsigned long addr, unsigned long len,
  1935. int ignore_errors);
  1936. static inline void mm_populate(unsigned long addr, unsigned long len)
  1937. {
  1938. /* Ignore errors */
  1939. (void) __mm_populate(addr, len, 1);
  1940. }
  1941. #else
  1942. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1943. #endif
  1944. /* These take the mm semaphore themselves */
  1945. extern int __must_check vm_brk(unsigned long, unsigned long);
  1946. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1947. extern int vm_munmap(unsigned long, size_t);
  1948. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1949. unsigned long, unsigned long,
  1950. unsigned long, unsigned long);
  1951. struct vm_unmapped_area_info {
  1952. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1953. unsigned long flags;
  1954. unsigned long length;
  1955. unsigned long low_limit;
  1956. unsigned long high_limit;
  1957. unsigned long align_mask;
  1958. unsigned long align_offset;
  1959. };
  1960. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1961. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1962. /*
  1963. * Search for an unmapped address range.
  1964. *
  1965. * We are looking for a range that:
  1966. * - does not intersect with any VMA;
  1967. * - is contained within the [low_limit, high_limit) interval;
  1968. * - is at least the desired size.
  1969. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1970. */
  1971. static inline unsigned long
  1972. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1973. {
  1974. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1975. return unmapped_area_topdown(info);
  1976. else
  1977. return unmapped_area(info);
  1978. }
  1979. /* truncate.c */
  1980. extern void truncate_inode_pages(struct address_space *, loff_t);
  1981. extern void truncate_inode_pages_range(struct address_space *,
  1982. loff_t lstart, loff_t lend);
  1983. extern void truncate_inode_pages_final(struct address_space *);
  1984. /* generic vm_area_ops exported for stackable file systems */
  1985. extern vm_fault_t filemap_fault(struct vm_fault *vmf);
  1986. extern void filemap_map_pages(struct vm_fault *vmf,
  1987. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1988. extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
  1989. /* mm/page-writeback.c */
  1990. int __must_check write_one_page(struct page *page);
  1991. void task_dirty_inc(struct task_struct *tsk);
  1992. /* readahead.c */
  1993. #define VM_MAX_READAHEAD 128 /* kbytes */
  1994. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1995. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1996. pgoff_t offset, unsigned long nr_to_read);
  1997. void page_cache_sync_readahead(struct address_space *mapping,
  1998. struct file_ra_state *ra,
  1999. struct file *filp,
  2000. pgoff_t offset,
  2001. unsigned long size);
  2002. void page_cache_async_readahead(struct address_space *mapping,
  2003. struct file_ra_state *ra,
  2004. struct file *filp,
  2005. struct page *pg,
  2006. pgoff_t offset,
  2007. unsigned long size);
  2008. extern unsigned long stack_guard_gap;
  2009. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2010. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2011. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2012. extern int expand_downwards(struct vm_area_struct *vma,
  2013. unsigned long address);
  2014. #if VM_GROWSUP
  2015. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2016. #else
  2017. #define expand_upwards(vma, address) (0)
  2018. #endif
  2019. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2020. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2021. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2022. struct vm_area_struct **pprev);
  2023. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2024. NULL if none. Assume start_addr < end_addr. */
  2025. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2026. {
  2027. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2028. if (vma && end_addr <= vma->vm_start)
  2029. vma = NULL;
  2030. return vma;
  2031. }
  2032. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2033. {
  2034. unsigned long vm_start = vma->vm_start;
  2035. if (vma->vm_flags & VM_GROWSDOWN) {
  2036. vm_start -= stack_guard_gap;
  2037. if (vm_start > vma->vm_start)
  2038. vm_start = 0;
  2039. }
  2040. return vm_start;
  2041. }
  2042. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2043. {
  2044. unsigned long vm_end = vma->vm_end;
  2045. if (vma->vm_flags & VM_GROWSUP) {
  2046. vm_end += stack_guard_gap;
  2047. if (vm_end < vma->vm_end)
  2048. vm_end = -PAGE_SIZE;
  2049. }
  2050. return vm_end;
  2051. }
  2052. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2053. {
  2054. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2055. }
  2056. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2057. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2058. unsigned long vm_start, unsigned long vm_end)
  2059. {
  2060. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2061. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2062. vma = NULL;
  2063. return vma;
  2064. }
  2065. #ifdef CONFIG_MMU
  2066. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2067. void vma_set_page_prot(struct vm_area_struct *vma);
  2068. #else
  2069. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2070. {
  2071. return __pgprot(0);
  2072. }
  2073. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2074. {
  2075. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2076. }
  2077. #endif
  2078. #ifdef CONFIG_NUMA_BALANCING
  2079. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2080. unsigned long start, unsigned long end);
  2081. #endif
  2082. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2083. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2084. unsigned long pfn, unsigned long size, pgprot_t);
  2085. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2086. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2087. unsigned long pfn);
  2088. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2089. unsigned long pfn, pgprot_t pgprot);
  2090. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2091. pfn_t pfn);
  2092. vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
  2093. unsigned long addr, pfn_t pfn);
  2094. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2095. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2096. unsigned long addr, struct page *page)
  2097. {
  2098. int err = vm_insert_page(vma, addr, page);
  2099. if (err == -ENOMEM)
  2100. return VM_FAULT_OOM;
  2101. if (err < 0 && err != -EBUSY)
  2102. return VM_FAULT_SIGBUS;
  2103. return VM_FAULT_NOPAGE;
  2104. }
  2105. static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
  2106. unsigned long addr, pfn_t pfn)
  2107. {
  2108. int err = vm_insert_mixed(vma, addr, pfn);
  2109. if (err == -ENOMEM)
  2110. return VM_FAULT_OOM;
  2111. if (err < 0 && err != -EBUSY)
  2112. return VM_FAULT_SIGBUS;
  2113. return VM_FAULT_NOPAGE;
  2114. }
  2115. static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
  2116. unsigned long addr, unsigned long pfn)
  2117. {
  2118. int err = vm_insert_pfn(vma, addr, pfn);
  2119. if (err == -ENOMEM)
  2120. return VM_FAULT_OOM;
  2121. if (err < 0 && err != -EBUSY)
  2122. return VM_FAULT_SIGBUS;
  2123. return VM_FAULT_NOPAGE;
  2124. }
  2125. static inline vm_fault_t vmf_error(int err)
  2126. {
  2127. if (err == -ENOMEM)
  2128. return VM_FAULT_OOM;
  2129. return VM_FAULT_SIGBUS;
  2130. }
  2131. struct page *follow_page_mask(struct vm_area_struct *vma,
  2132. unsigned long address, unsigned int foll_flags,
  2133. unsigned int *page_mask);
  2134. static inline struct page *follow_page(struct vm_area_struct *vma,
  2135. unsigned long address, unsigned int foll_flags)
  2136. {
  2137. unsigned int unused_page_mask;
  2138. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2139. }
  2140. #define FOLL_WRITE 0x01 /* check pte is writable */
  2141. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2142. #define FOLL_GET 0x04 /* do get_page on page */
  2143. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2144. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2145. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2146. * and return without waiting upon it */
  2147. #define FOLL_POPULATE 0x40 /* fault in page */
  2148. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2149. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2150. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2151. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2152. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2153. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2154. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2155. #define FOLL_COW 0x4000 /* internal GUP flag */
  2156. #define FOLL_ANON 0x8000 /* don't do file mappings */
  2157. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2158. {
  2159. if (vm_fault & VM_FAULT_OOM)
  2160. return -ENOMEM;
  2161. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2162. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2163. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2164. return -EFAULT;
  2165. return 0;
  2166. }
  2167. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2168. void *data);
  2169. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2170. unsigned long size, pte_fn_t fn, void *data);
  2171. #ifdef CONFIG_PAGE_POISONING
  2172. extern bool page_poisoning_enabled(void);
  2173. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2174. extern bool page_is_poisoned(struct page *page);
  2175. #else
  2176. static inline bool page_poisoning_enabled(void) { return false; }
  2177. static inline void kernel_poison_pages(struct page *page, int numpages,
  2178. int enable) { }
  2179. static inline bool page_is_poisoned(struct page *page) { return false; }
  2180. #endif
  2181. #ifdef CONFIG_DEBUG_PAGEALLOC
  2182. extern bool _debug_pagealloc_enabled;
  2183. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2184. static inline bool debug_pagealloc_enabled(void)
  2185. {
  2186. return _debug_pagealloc_enabled;
  2187. }
  2188. static inline void
  2189. kernel_map_pages(struct page *page, int numpages, int enable)
  2190. {
  2191. if (!debug_pagealloc_enabled())
  2192. return;
  2193. __kernel_map_pages(page, numpages, enable);
  2194. }
  2195. #ifdef CONFIG_HIBERNATION
  2196. extern bool kernel_page_present(struct page *page);
  2197. #endif /* CONFIG_HIBERNATION */
  2198. #else /* CONFIG_DEBUG_PAGEALLOC */
  2199. static inline void
  2200. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2201. #ifdef CONFIG_HIBERNATION
  2202. static inline bool kernel_page_present(struct page *page) { return true; }
  2203. #endif /* CONFIG_HIBERNATION */
  2204. static inline bool debug_pagealloc_enabled(void)
  2205. {
  2206. return false;
  2207. }
  2208. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2209. #ifdef __HAVE_ARCH_GATE_AREA
  2210. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2211. extern int in_gate_area_no_mm(unsigned long addr);
  2212. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2213. #else
  2214. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2215. {
  2216. return NULL;
  2217. }
  2218. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2219. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2220. {
  2221. return 0;
  2222. }
  2223. #endif /* __HAVE_ARCH_GATE_AREA */
  2224. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2225. #ifdef CONFIG_SYSCTL
  2226. extern int sysctl_drop_caches;
  2227. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2228. void __user *, size_t *, loff_t *);
  2229. #endif
  2230. void drop_slab(void);
  2231. void drop_slab_node(int nid);
  2232. #ifndef CONFIG_MMU
  2233. #define randomize_va_space 0
  2234. #else
  2235. extern int randomize_va_space;
  2236. #endif
  2237. const char * arch_vma_name(struct vm_area_struct *vma);
  2238. void print_vma_addr(char *prefix, unsigned long rip);
  2239. void sparse_mem_maps_populate_node(struct page **map_map,
  2240. unsigned long pnum_begin,
  2241. unsigned long pnum_end,
  2242. unsigned long map_count,
  2243. int nodeid);
  2244. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2245. struct vmem_altmap *altmap);
  2246. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2247. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2248. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2249. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2250. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2251. void *vmemmap_alloc_block(unsigned long size, int node);
  2252. struct vmem_altmap;
  2253. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2254. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2255. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2256. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2257. int node);
  2258. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2259. struct vmem_altmap *altmap);
  2260. void vmemmap_populate_print_last(void);
  2261. #ifdef CONFIG_MEMORY_HOTPLUG
  2262. void vmemmap_free(unsigned long start, unsigned long end,
  2263. struct vmem_altmap *altmap);
  2264. #endif
  2265. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2266. unsigned long nr_pages);
  2267. enum mf_flags {
  2268. MF_COUNT_INCREASED = 1 << 0,
  2269. MF_ACTION_REQUIRED = 1 << 1,
  2270. MF_MUST_KILL = 1 << 2,
  2271. MF_SOFT_OFFLINE = 1 << 3,
  2272. };
  2273. extern int memory_failure(unsigned long pfn, int flags);
  2274. extern void memory_failure_queue(unsigned long pfn, int flags);
  2275. extern int unpoison_memory(unsigned long pfn);
  2276. extern int get_hwpoison_page(struct page *page);
  2277. #define put_hwpoison_page(page) put_page(page)
  2278. extern int sysctl_memory_failure_early_kill;
  2279. extern int sysctl_memory_failure_recovery;
  2280. extern void shake_page(struct page *p, int access);
  2281. extern atomic_long_t num_poisoned_pages __read_mostly;
  2282. extern int soft_offline_page(struct page *page, int flags);
  2283. /*
  2284. * Error handlers for various types of pages.
  2285. */
  2286. enum mf_result {
  2287. MF_IGNORED, /* Error: cannot be handled */
  2288. MF_FAILED, /* Error: handling failed */
  2289. MF_DELAYED, /* Will be handled later */
  2290. MF_RECOVERED, /* Successfully recovered */
  2291. };
  2292. enum mf_action_page_type {
  2293. MF_MSG_KERNEL,
  2294. MF_MSG_KERNEL_HIGH_ORDER,
  2295. MF_MSG_SLAB,
  2296. MF_MSG_DIFFERENT_COMPOUND,
  2297. MF_MSG_POISONED_HUGE,
  2298. MF_MSG_HUGE,
  2299. MF_MSG_FREE_HUGE,
  2300. MF_MSG_NON_PMD_HUGE,
  2301. MF_MSG_UNMAP_FAILED,
  2302. MF_MSG_DIRTY_SWAPCACHE,
  2303. MF_MSG_CLEAN_SWAPCACHE,
  2304. MF_MSG_DIRTY_MLOCKED_LRU,
  2305. MF_MSG_CLEAN_MLOCKED_LRU,
  2306. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2307. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2308. MF_MSG_DIRTY_LRU,
  2309. MF_MSG_CLEAN_LRU,
  2310. MF_MSG_TRUNCATED_LRU,
  2311. MF_MSG_BUDDY,
  2312. MF_MSG_BUDDY_2ND,
  2313. MF_MSG_UNKNOWN,
  2314. };
  2315. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2316. extern void clear_huge_page(struct page *page,
  2317. unsigned long addr_hint,
  2318. unsigned int pages_per_huge_page);
  2319. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2320. unsigned long addr, struct vm_area_struct *vma,
  2321. unsigned int pages_per_huge_page);
  2322. extern long copy_huge_page_from_user(struct page *dst_page,
  2323. const void __user *usr_src,
  2324. unsigned int pages_per_huge_page,
  2325. bool allow_pagefault);
  2326. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2327. extern struct page_ext_operations debug_guardpage_ops;
  2328. #ifdef CONFIG_DEBUG_PAGEALLOC
  2329. extern unsigned int _debug_guardpage_minorder;
  2330. extern bool _debug_guardpage_enabled;
  2331. static inline unsigned int debug_guardpage_minorder(void)
  2332. {
  2333. return _debug_guardpage_minorder;
  2334. }
  2335. static inline bool debug_guardpage_enabled(void)
  2336. {
  2337. return _debug_guardpage_enabled;
  2338. }
  2339. static inline bool page_is_guard(struct page *page)
  2340. {
  2341. struct page_ext *page_ext;
  2342. if (!debug_guardpage_enabled())
  2343. return false;
  2344. page_ext = lookup_page_ext(page);
  2345. if (unlikely(!page_ext))
  2346. return false;
  2347. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2348. }
  2349. #else
  2350. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2351. static inline bool debug_guardpage_enabled(void) { return false; }
  2352. static inline bool page_is_guard(struct page *page) { return false; }
  2353. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2354. #if MAX_NUMNODES > 1
  2355. void __init setup_nr_node_ids(void);
  2356. #else
  2357. static inline void setup_nr_node_ids(void) {}
  2358. #endif
  2359. #endif /* __KERNEL__ */
  2360. #endif /* _LINUX_MM_H */