process.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/module.h>
  10. #include <linux/pm.h>
  11. #include <linux/clockchips.h>
  12. #include <linux/random.h>
  13. #include <linux/user-return-notifier.h>
  14. #include <linux/dmi.h>
  15. #include <linux/utsname.h>
  16. #include <linux/stackprotector.h>
  17. #include <linux/tick.h>
  18. #include <linux/cpuidle.h>
  19. #include <trace/events/power.h>
  20. #include <linux/hw_breakpoint.h>
  21. #include <asm/cpu.h>
  22. #include <asm/apic.h>
  23. #include <asm/syscalls.h>
  24. #include <asm/idle.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/i387.h>
  27. #include <asm/fpu-internal.h>
  28. #include <asm/debugreg.h>
  29. #include <asm/nmi.h>
  30. /*
  31. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  32. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  33. * so they are allowed to end up in the .data..cacheline_aligned
  34. * section. Since TSS's are completely CPU-local, we want them
  35. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  36. */
  37. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
  38. #ifdef CONFIG_X86_64
  39. static DEFINE_PER_CPU(unsigned char, is_idle);
  40. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  41. void idle_notifier_register(struct notifier_block *n)
  42. {
  43. atomic_notifier_chain_register(&idle_notifier, n);
  44. }
  45. EXPORT_SYMBOL_GPL(idle_notifier_register);
  46. void idle_notifier_unregister(struct notifier_block *n)
  47. {
  48. atomic_notifier_chain_unregister(&idle_notifier, n);
  49. }
  50. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  51. #endif
  52. struct kmem_cache *task_xstate_cachep;
  53. EXPORT_SYMBOL_GPL(task_xstate_cachep);
  54. /*
  55. * this gets called so that we can store lazy state into memory and copy the
  56. * current task into the new thread.
  57. */
  58. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  59. {
  60. int ret;
  61. *dst = *src;
  62. if (fpu_allocated(&src->thread.fpu)) {
  63. memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
  64. ret = fpu_alloc(&dst->thread.fpu);
  65. if (ret)
  66. return ret;
  67. fpu_copy(dst, src);
  68. }
  69. return 0;
  70. }
  71. void free_thread_xstate(struct task_struct *tsk)
  72. {
  73. fpu_free(&tsk->thread.fpu);
  74. }
  75. void arch_release_task_struct(struct task_struct *tsk)
  76. {
  77. free_thread_xstate(tsk);
  78. }
  79. void arch_task_cache_init(void)
  80. {
  81. task_xstate_cachep =
  82. kmem_cache_create("task_xstate", xstate_size,
  83. __alignof__(union thread_xstate),
  84. SLAB_PANIC | SLAB_NOTRACK, NULL);
  85. setup_xstate_comp();
  86. }
  87. /*
  88. * Free current thread data structures etc..
  89. */
  90. void exit_thread(void)
  91. {
  92. struct task_struct *me = current;
  93. struct thread_struct *t = &me->thread;
  94. unsigned long *bp = t->io_bitmap_ptr;
  95. if (bp) {
  96. struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
  97. t->io_bitmap_ptr = NULL;
  98. clear_thread_flag(TIF_IO_BITMAP);
  99. /*
  100. * Careful, clear this in the TSS too:
  101. */
  102. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  103. t->io_bitmap_max = 0;
  104. put_cpu();
  105. kfree(bp);
  106. }
  107. drop_fpu(me);
  108. }
  109. void flush_thread(void)
  110. {
  111. struct task_struct *tsk = current;
  112. flush_ptrace_hw_breakpoint(tsk);
  113. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  114. drop_init_fpu(tsk);
  115. /*
  116. * Free the FPU state for non xsave platforms. They get reallocated
  117. * lazily at the first use.
  118. */
  119. if (!use_eager_fpu())
  120. free_thread_xstate(tsk);
  121. }
  122. static void hard_disable_TSC(void)
  123. {
  124. write_cr4(read_cr4() | X86_CR4_TSD);
  125. }
  126. void disable_TSC(void)
  127. {
  128. preempt_disable();
  129. if (!test_and_set_thread_flag(TIF_NOTSC))
  130. /*
  131. * Must flip the CPU state synchronously with
  132. * TIF_NOTSC in the current running context.
  133. */
  134. hard_disable_TSC();
  135. preempt_enable();
  136. }
  137. static void hard_enable_TSC(void)
  138. {
  139. write_cr4(read_cr4() & ~X86_CR4_TSD);
  140. }
  141. static void enable_TSC(void)
  142. {
  143. preempt_disable();
  144. if (test_and_clear_thread_flag(TIF_NOTSC))
  145. /*
  146. * Must flip the CPU state synchronously with
  147. * TIF_NOTSC in the current running context.
  148. */
  149. hard_enable_TSC();
  150. preempt_enable();
  151. }
  152. int get_tsc_mode(unsigned long adr)
  153. {
  154. unsigned int val;
  155. if (test_thread_flag(TIF_NOTSC))
  156. val = PR_TSC_SIGSEGV;
  157. else
  158. val = PR_TSC_ENABLE;
  159. return put_user(val, (unsigned int __user *)adr);
  160. }
  161. int set_tsc_mode(unsigned int val)
  162. {
  163. if (val == PR_TSC_SIGSEGV)
  164. disable_TSC();
  165. else if (val == PR_TSC_ENABLE)
  166. enable_TSC();
  167. else
  168. return -EINVAL;
  169. return 0;
  170. }
  171. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  172. struct tss_struct *tss)
  173. {
  174. struct thread_struct *prev, *next;
  175. prev = &prev_p->thread;
  176. next = &next_p->thread;
  177. if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
  178. test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
  179. unsigned long debugctl = get_debugctlmsr();
  180. debugctl &= ~DEBUGCTLMSR_BTF;
  181. if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
  182. debugctl |= DEBUGCTLMSR_BTF;
  183. update_debugctlmsr(debugctl);
  184. }
  185. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  186. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  187. /* prev and next are different */
  188. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  189. hard_disable_TSC();
  190. else
  191. hard_enable_TSC();
  192. }
  193. if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  194. /*
  195. * Copy the relevant range of the IO bitmap.
  196. * Normally this is 128 bytes or less:
  197. */
  198. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  199. max(prev->io_bitmap_max, next->io_bitmap_max));
  200. } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
  201. /*
  202. * Clear any possible leftover bits:
  203. */
  204. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  205. }
  206. propagate_user_return_notify(prev_p, next_p);
  207. }
  208. /*
  209. * Idle related variables and functions
  210. */
  211. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  212. EXPORT_SYMBOL(boot_option_idle_override);
  213. static void (*x86_idle)(void);
  214. #ifndef CONFIG_SMP
  215. static inline void play_dead(void)
  216. {
  217. BUG();
  218. }
  219. #endif
  220. #ifdef CONFIG_X86_64
  221. void enter_idle(void)
  222. {
  223. this_cpu_write(is_idle, 1);
  224. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  225. }
  226. static void __exit_idle(void)
  227. {
  228. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  229. return;
  230. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  231. }
  232. /* Called from interrupts to signify idle end */
  233. void exit_idle(void)
  234. {
  235. /* idle loop has pid 0 */
  236. if (current->pid)
  237. return;
  238. __exit_idle();
  239. }
  240. #endif
  241. void arch_cpu_idle_enter(void)
  242. {
  243. local_touch_nmi();
  244. enter_idle();
  245. }
  246. void arch_cpu_idle_exit(void)
  247. {
  248. __exit_idle();
  249. }
  250. void arch_cpu_idle_dead(void)
  251. {
  252. play_dead();
  253. }
  254. /*
  255. * Called from the generic idle code.
  256. */
  257. void arch_cpu_idle(void)
  258. {
  259. x86_idle();
  260. }
  261. /*
  262. * We use this if we don't have any better idle routine..
  263. */
  264. void default_idle(void)
  265. {
  266. trace_cpu_idle_rcuidle(1, smp_processor_id());
  267. safe_halt();
  268. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  269. }
  270. #ifdef CONFIG_APM_MODULE
  271. EXPORT_SYMBOL(default_idle);
  272. #endif
  273. #ifdef CONFIG_XEN
  274. bool xen_set_default_idle(void)
  275. {
  276. bool ret = !!x86_idle;
  277. x86_idle = default_idle;
  278. return ret;
  279. }
  280. #endif
  281. void stop_this_cpu(void *dummy)
  282. {
  283. local_irq_disable();
  284. /*
  285. * Remove this CPU:
  286. */
  287. set_cpu_online(smp_processor_id(), false);
  288. disable_local_APIC();
  289. for (;;)
  290. halt();
  291. }
  292. bool amd_e400_c1e_detected;
  293. EXPORT_SYMBOL(amd_e400_c1e_detected);
  294. static cpumask_var_t amd_e400_c1e_mask;
  295. void amd_e400_remove_cpu(int cpu)
  296. {
  297. if (amd_e400_c1e_mask != NULL)
  298. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  299. }
  300. /*
  301. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  302. * pending message MSR. If we detect C1E, then we handle it the same
  303. * way as C3 power states (local apic timer and TSC stop)
  304. */
  305. static void amd_e400_idle(void)
  306. {
  307. if (!amd_e400_c1e_detected) {
  308. u32 lo, hi;
  309. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  310. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  311. amd_e400_c1e_detected = true;
  312. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  313. mark_tsc_unstable("TSC halt in AMD C1E");
  314. pr_info("System has AMD C1E enabled\n");
  315. }
  316. }
  317. if (amd_e400_c1e_detected) {
  318. int cpu = smp_processor_id();
  319. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  320. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  321. /*
  322. * Force broadcast so ACPI can not interfere.
  323. */
  324. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
  325. &cpu);
  326. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  327. }
  328. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
  329. default_idle();
  330. /*
  331. * The switch back from broadcast mode needs to be
  332. * called with interrupts disabled.
  333. */
  334. local_irq_disable();
  335. clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
  336. local_irq_enable();
  337. } else
  338. default_idle();
  339. }
  340. void select_idle_routine(const struct cpuinfo_x86 *c)
  341. {
  342. #ifdef CONFIG_SMP
  343. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  344. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  345. #endif
  346. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  347. return;
  348. if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
  349. /* E400: APIC timer interrupt does not wake up CPU from C1e */
  350. pr_info("using AMD E400 aware idle routine\n");
  351. x86_idle = amd_e400_idle;
  352. } else
  353. x86_idle = default_idle;
  354. }
  355. void __init init_amd_e400_c1e_mask(void)
  356. {
  357. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  358. if (x86_idle == amd_e400_idle)
  359. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  360. }
  361. static int __init idle_setup(char *str)
  362. {
  363. if (!str)
  364. return -EINVAL;
  365. if (!strcmp(str, "poll")) {
  366. pr_info("using polling idle threads\n");
  367. boot_option_idle_override = IDLE_POLL;
  368. cpu_idle_poll_ctrl(true);
  369. } else if (!strcmp(str, "halt")) {
  370. /*
  371. * When the boot option of idle=halt is added, halt is
  372. * forced to be used for CPU idle. In such case CPU C2/C3
  373. * won't be used again.
  374. * To continue to load the CPU idle driver, don't touch
  375. * the boot_option_idle_override.
  376. */
  377. x86_idle = default_idle;
  378. boot_option_idle_override = IDLE_HALT;
  379. } else if (!strcmp(str, "nomwait")) {
  380. /*
  381. * If the boot option of "idle=nomwait" is added,
  382. * it means that mwait will be disabled for CPU C2/C3
  383. * states. In such case it won't touch the variable
  384. * of boot_option_idle_override.
  385. */
  386. boot_option_idle_override = IDLE_NOMWAIT;
  387. } else
  388. return -1;
  389. return 0;
  390. }
  391. early_param("idle", idle_setup);
  392. unsigned long arch_align_stack(unsigned long sp)
  393. {
  394. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  395. sp -= get_random_int() % 8192;
  396. return sp & ~0xf;
  397. }
  398. unsigned long arch_randomize_brk(struct mm_struct *mm)
  399. {
  400. unsigned long range_end = mm->brk + 0x02000000;
  401. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  402. }