writeback.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * include/linux/writeback.h
  3. */
  4. #ifndef WRITEBACK_H
  5. #define WRITEBACK_H
  6. #include <linux/sched.h>
  7. #include <linux/workqueue.h>
  8. #include <linux/fs.h>
  9. #include <linux/flex_proportions.h>
  10. #include <linux/backing-dev-defs.h>
  11. DECLARE_PER_CPU(int, dirty_throttle_leaks);
  12. /*
  13. * The 1/4 region under the global dirty thresh is for smooth dirty throttling:
  14. *
  15. * (thresh - thresh/DIRTY_FULL_SCOPE, thresh)
  16. *
  17. * Further beyond, all dirtier tasks will enter a loop waiting (possibly long
  18. * time) for the dirty pages to drop, unless written enough pages.
  19. *
  20. * The global dirty threshold is normally equal to the global dirty limit,
  21. * except when the system suddenly allocates a lot of anonymous memory and
  22. * knocks down the global dirty threshold quickly, in which case the global
  23. * dirty limit will follow down slowly to prevent livelocking all dirtier tasks.
  24. */
  25. #define DIRTY_SCOPE 8
  26. #define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2)
  27. struct backing_dev_info;
  28. /*
  29. * fs/fs-writeback.c
  30. */
  31. enum writeback_sync_modes {
  32. WB_SYNC_NONE, /* Don't wait on anything */
  33. WB_SYNC_ALL, /* Wait on every mapping */
  34. };
  35. /*
  36. * why some writeback work was initiated
  37. */
  38. enum wb_reason {
  39. WB_REASON_BACKGROUND,
  40. WB_REASON_TRY_TO_FREE_PAGES,
  41. WB_REASON_SYNC,
  42. WB_REASON_PERIODIC,
  43. WB_REASON_LAPTOP_TIMER,
  44. WB_REASON_FREE_MORE_MEM,
  45. WB_REASON_FS_FREE_SPACE,
  46. /*
  47. * There is no bdi forker thread any more and works are done
  48. * by emergency worker, however, this is TPs userland visible
  49. * and we'll be exposing exactly the same information,
  50. * so it has a mismatch name.
  51. */
  52. WB_REASON_FORKER_THREAD,
  53. WB_REASON_MAX,
  54. };
  55. /*
  56. * A control structure which tells the writeback code what to do. These are
  57. * always on the stack, and hence need no locking. They are always initialised
  58. * in a manner such that unspecified fields are set to zero.
  59. */
  60. struct writeback_control {
  61. long nr_to_write; /* Write this many pages, and decrement
  62. this for each page written */
  63. long pages_skipped; /* Pages which were not written */
  64. /*
  65. * For a_ops->writepages(): if start or end are non-zero then this is
  66. * a hint that the filesystem need only write out the pages inside that
  67. * byterange. The byte at `end' is included in the writeout request.
  68. */
  69. loff_t range_start;
  70. loff_t range_end;
  71. enum writeback_sync_modes sync_mode;
  72. unsigned for_kupdate:1; /* A kupdate writeback */
  73. unsigned for_background:1; /* A background writeback */
  74. unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */
  75. unsigned for_reclaim:1; /* Invoked from the page allocator */
  76. unsigned range_cyclic:1; /* range_start is cyclic */
  77. unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
  78. #ifdef CONFIG_CGROUP_WRITEBACK
  79. struct bdi_writeback *wb; /* wb this writeback is issued under */
  80. struct inode *inode; /* inode being written out */
  81. /* foreign inode detection, see wbc_detach_inode() */
  82. int wb_id; /* current wb id */
  83. int wb_lcand_id; /* last foreign candidate wb id */
  84. int wb_tcand_id; /* this foreign candidate wb id */
  85. size_t wb_bytes; /* bytes written by current wb */
  86. size_t wb_lcand_bytes; /* bytes written by last candidate */
  87. size_t wb_tcand_bytes; /* bytes written by this candidate */
  88. #endif
  89. };
  90. /*
  91. * A wb_domain represents a domain that wb's (bdi_writeback's) belong to
  92. * and are measured against each other in. There always is one global
  93. * domain, global_wb_domain, that every wb in the system is a member of.
  94. * This allows measuring the relative bandwidth of each wb to distribute
  95. * dirtyable memory accordingly.
  96. */
  97. struct wb_domain {
  98. spinlock_t lock;
  99. /*
  100. * Scale the writeback cache size proportional to the relative
  101. * writeout speed.
  102. *
  103. * We do this by keeping a floating proportion between BDIs, based
  104. * on page writeback completions [end_page_writeback()]. Those
  105. * devices that write out pages fastest will get the larger share,
  106. * while the slower will get a smaller share.
  107. *
  108. * We use page writeout completions because we are interested in
  109. * getting rid of dirty pages. Having them written out is the
  110. * primary goal.
  111. *
  112. * We introduce a concept of time, a period over which we measure
  113. * these events, because demand can/will vary over time. The length
  114. * of this period itself is measured in page writeback completions.
  115. */
  116. struct fprop_global completions;
  117. struct timer_list period_timer; /* timer for aging of completions */
  118. unsigned long period_time;
  119. /*
  120. * The dirtyable memory and dirty threshold could be suddenly
  121. * knocked down by a large amount (eg. on the startup of KVM in a
  122. * swapless system). This may throw the system into deep dirty
  123. * exceeded state and throttle heavy/light dirtiers alike. To
  124. * retain good responsiveness, maintain global_dirty_limit for
  125. * tracking slowly down to the knocked down dirty threshold.
  126. *
  127. * Both fields are protected by ->lock.
  128. */
  129. unsigned long dirty_limit_tstamp;
  130. unsigned long dirty_limit;
  131. };
  132. /**
  133. * wb_domain_size_changed - memory available to a wb_domain has changed
  134. * @dom: wb_domain of interest
  135. *
  136. * This function should be called when the amount of memory available to
  137. * @dom has changed. It resets @dom's dirty limit parameters to prevent
  138. * the past values which don't match the current configuration from skewing
  139. * dirty throttling. Without this, when memory size of a wb_domain is
  140. * greatly reduced, the dirty throttling logic may allow too many pages to
  141. * be dirtied leading to consecutive unnecessary OOMs and may get stuck in
  142. * that situation.
  143. */
  144. static inline void wb_domain_size_changed(struct wb_domain *dom)
  145. {
  146. spin_lock(&dom->lock);
  147. dom->dirty_limit_tstamp = jiffies;
  148. dom->dirty_limit = 0;
  149. spin_unlock(&dom->lock);
  150. }
  151. /*
  152. * fs/fs-writeback.c
  153. */
  154. struct bdi_writeback;
  155. void writeback_inodes_sb(struct super_block *, enum wb_reason reason);
  156. void writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
  157. enum wb_reason reason);
  158. bool try_to_writeback_inodes_sb(struct super_block *, enum wb_reason reason);
  159. bool try_to_writeback_inodes_sb_nr(struct super_block *, unsigned long nr,
  160. enum wb_reason reason);
  161. void sync_inodes_sb(struct super_block *);
  162. void wakeup_flusher_threads(long nr_pages, enum wb_reason reason);
  163. void inode_wait_for_writeback(struct inode *inode);
  164. /* writeback.h requires fs.h; it, too, is not included from here. */
  165. static inline void wait_on_inode(struct inode *inode)
  166. {
  167. might_sleep();
  168. wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE);
  169. }
  170. #ifdef CONFIG_CGROUP_WRITEBACK
  171. #include <linux/cgroup.h>
  172. #include <linux/bio.h>
  173. void __inode_attach_wb(struct inode *inode, struct page *page);
  174. void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
  175. struct inode *inode)
  176. __releases(&inode->i_lock);
  177. void wbc_detach_inode(struct writeback_control *wbc);
  178. void wbc_account_io(struct writeback_control *wbc, struct page *page,
  179. size_t bytes);
  180. /**
  181. * inode_attach_wb - associate an inode with its wb
  182. * @inode: inode of interest
  183. * @page: page being dirtied (may be NULL)
  184. *
  185. * If @inode doesn't have its wb, associate it with the wb matching the
  186. * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o
  187. * @inode->i_lock.
  188. */
  189. static inline void inode_attach_wb(struct inode *inode, struct page *page)
  190. {
  191. if (!inode->i_wb)
  192. __inode_attach_wb(inode, page);
  193. }
  194. /**
  195. * inode_detach_wb - disassociate an inode from its wb
  196. * @inode: inode of interest
  197. *
  198. * @inode is being freed. Detach from its wb.
  199. */
  200. static inline void inode_detach_wb(struct inode *inode)
  201. {
  202. if (inode->i_wb) {
  203. wb_put(inode->i_wb);
  204. inode->i_wb = NULL;
  205. }
  206. }
  207. /**
  208. * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite
  209. * @wbc: writeback_control of interest
  210. * @inode: target inode
  211. *
  212. * This function is to be used by __filemap_fdatawrite_range(), which is an
  213. * alternative entry point into writeback code, and first ensures @inode is
  214. * associated with a bdi_writeback and attaches it to @wbc.
  215. */
  216. static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
  217. struct inode *inode)
  218. {
  219. spin_lock(&inode->i_lock);
  220. inode_attach_wb(inode, NULL);
  221. wbc_attach_and_unlock_inode(wbc, inode);
  222. }
  223. /**
  224. * wbc_init_bio - writeback specific initializtion of bio
  225. * @wbc: writeback_control for the writeback in progress
  226. * @bio: bio to be initialized
  227. *
  228. * @bio is a part of the writeback in progress controlled by @wbc. Perform
  229. * writeback specific initialization. This is used to apply the cgroup
  230. * writeback context.
  231. */
  232. static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
  233. {
  234. /*
  235. * pageout() path doesn't attach @wbc to the inode being written
  236. * out. This is intentional as we don't want the function to block
  237. * behind a slow cgroup. Ultimately, we want pageout() to kick off
  238. * regular writeback instead of writing things out itself.
  239. */
  240. if (wbc->wb)
  241. bio_associate_blkcg(bio, wbc->wb->blkcg_css);
  242. }
  243. #else /* CONFIG_CGROUP_WRITEBACK */
  244. static inline void inode_attach_wb(struct inode *inode, struct page *page)
  245. {
  246. }
  247. static inline void inode_detach_wb(struct inode *inode)
  248. {
  249. }
  250. static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
  251. struct inode *inode)
  252. __releases(&inode->i_lock)
  253. {
  254. spin_unlock(&inode->i_lock);
  255. }
  256. static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc,
  257. struct inode *inode)
  258. {
  259. }
  260. static inline void wbc_detach_inode(struct writeback_control *wbc)
  261. {
  262. }
  263. static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio)
  264. {
  265. }
  266. static inline void wbc_account_io(struct writeback_control *wbc,
  267. struct page *page, size_t bytes)
  268. {
  269. }
  270. #endif /* CONFIG_CGROUP_WRITEBACK */
  271. /*
  272. * mm/page-writeback.c
  273. */
  274. #ifdef CONFIG_BLOCK
  275. void laptop_io_completion(struct backing_dev_info *info);
  276. void laptop_sync_completion(void);
  277. void laptop_mode_sync(struct work_struct *work);
  278. void laptop_mode_timer_fn(unsigned long data);
  279. #else
  280. static inline void laptop_sync_completion(void) { }
  281. #endif
  282. void throttle_vm_writeout(gfp_t gfp_mask);
  283. bool zone_dirty_ok(struct zone *zone);
  284. int wb_domain_init(struct wb_domain *dom, gfp_t gfp);
  285. #ifdef CONFIG_CGROUP_WRITEBACK
  286. void wb_domain_exit(struct wb_domain *dom);
  287. #endif
  288. extern struct wb_domain global_wb_domain;
  289. /* These are exported to sysctl. */
  290. extern int dirty_background_ratio;
  291. extern unsigned long dirty_background_bytes;
  292. extern int vm_dirty_ratio;
  293. extern unsigned long vm_dirty_bytes;
  294. extern unsigned int dirty_writeback_interval;
  295. extern unsigned int dirty_expire_interval;
  296. extern unsigned int dirtytime_expire_interval;
  297. extern int vm_highmem_is_dirtyable;
  298. extern int block_dump;
  299. extern int laptop_mode;
  300. extern int dirty_background_ratio_handler(struct ctl_table *table, int write,
  301. void __user *buffer, size_t *lenp,
  302. loff_t *ppos);
  303. extern int dirty_background_bytes_handler(struct ctl_table *table, int write,
  304. void __user *buffer, size_t *lenp,
  305. loff_t *ppos);
  306. extern int dirty_ratio_handler(struct ctl_table *table, int write,
  307. void __user *buffer, size_t *lenp,
  308. loff_t *ppos);
  309. extern int dirty_bytes_handler(struct ctl_table *table, int write,
  310. void __user *buffer, size_t *lenp,
  311. loff_t *ppos);
  312. int dirtytime_interval_handler(struct ctl_table *table, int write,
  313. void __user *buffer, size_t *lenp, loff_t *ppos);
  314. struct ctl_table;
  315. int dirty_writeback_centisecs_handler(struct ctl_table *, int,
  316. void __user *, size_t *, loff_t *);
  317. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty);
  318. unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh);
  319. void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time);
  320. void page_writeback_init(void);
  321. void balance_dirty_pages_ratelimited(struct address_space *mapping);
  322. bool wb_over_bg_thresh(struct bdi_writeback *wb);
  323. typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
  324. void *data);
  325. int generic_writepages(struct address_space *mapping,
  326. struct writeback_control *wbc);
  327. void tag_pages_for_writeback(struct address_space *mapping,
  328. pgoff_t start, pgoff_t end);
  329. int write_cache_pages(struct address_space *mapping,
  330. struct writeback_control *wbc, writepage_t writepage,
  331. void *data);
  332. int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
  333. void writeback_set_ratelimit(void);
  334. void tag_pages_for_writeback(struct address_space *mapping,
  335. pgoff_t start, pgoff_t end);
  336. void account_page_redirty(struct page *page);
  337. #endif /* WRITEBACK_H */