mm.h 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. #include <linux/overflow.h>
  26. struct mempolicy;
  27. struct anon_vma;
  28. struct anon_vma_chain;
  29. struct file_ra_state;
  30. struct user_struct;
  31. struct writeback_control;
  32. struct bdi_writeback;
  33. void init_mm_internals(void);
  34. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  35. extern unsigned long max_mapnr;
  36. static inline void set_max_mapnr(unsigned long limit)
  37. {
  38. max_mapnr = limit;
  39. }
  40. #else
  41. static inline void set_max_mapnr(unsigned long limit) { }
  42. #endif
  43. extern unsigned long totalram_pages;
  44. extern void * high_memory;
  45. extern int page_cluster;
  46. #ifdef CONFIG_SYSCTL
  47. extern int sysctl_legacy_va_layout;
  48. #else
  49. #define sysctl_legacy_va_layout 0
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  52. extern const int mmap_rnd_bits_min;
  53. extern const int mmap_rnd_bits_max;
  54. extern int mmap_rnd_bits __read_mostly;
  55. #endif
  56. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  57. extern const int mmap_rnd_compat_bits_min;
  58. extern const int mmap_rnd_compat_bits_max;
  59. extern int mmap_rnd_compat_bits __read_mostly;
  60. #endif
  61. #include <asm/page.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/processor.h>
  64. #ifndef __pa_symbol
  65. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  66. #endif
  67. #ifndef page_to_virt
  68. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  69. #endif
  70. #ifndef lm_alias
  71. #define lm_alias(x) __va(__pa_symbol(x))
  72. #endif
  73. /*
  74. * To prevent common memory management code establishing
  75. * a zero page mapping on a read fault.
  76. * This macro should be defined within <asm/pgtable.h>.
  77. * s390 does this to prevent multiplexing of hardware bits
  78. * related to the physical page in case of virtualization.
  79. */
  80. #ifndef mm_forbids_zeropage
  81. #define mm_forbids_zeropage(X) (0)
  82. #endif
  83. /*
  84. * On some architectures it is expensive to call memset() for small sizes.
  85. * Those architectures should provide their own implementation of "struct page"
  86. * zeroing by defining this macro in <asm/pgtable.h>.
  87. */
  88. #ifndef mm_zero_struct_page
  89. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  90. #endif
  91. /*
  92. * Default maximum number of active map areas, this limits the number of vmas
  93. * per mm struct. Users can overwrite this number by sysctl but there is a
  94. * problem.
  95. *
  96. * When a program's coredump is generated as ELF format, a section is created
  97. * per a vma. In ELF, the number of sections is represented in unsigned short.
  98. * This means the number of sections should be smaller than 65535 at coredump.
  99. * Because the kernel adds some informative sections to a image of program at
  100. * generating coredump, we need some margin. The number of extra sections is
  101. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  102. *
  103. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  104. * not a hard limit any more. Although some userspace tools can be surprised by
  105. * that.
  106. */
  107. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  108. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  109. extern int sysctl_max_map_count;
  110. extern unsigned long sysctl_user_reserve_kbytes;
  111. extern unsigned long sysctl_admin_reserve_kbytes;
  112. extern int sysctl_overcommit_memory;
  113. extern int sysctl_overcommit_ratio;
  114. extern unsigned long sysctl_overcommit_kbytes;
  115. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  116. size_t *, loff_t *);
  117. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  118. size_t *, loff_t *);
  119. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  120. /* to align the pointer to the (next) page boundary */
  121. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  122. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  123. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  124. /*
  125. * Linux kernel virtual memory manager primitives.
  126. * The idea being to have a "virtual" mm in the same way
  127. * we have a virtual fs - giving a cleaner interface to the
  128. * mm details, and allowing different kinds of memory mappings
  129. * (from shared memory to executable loading to arbitrary
  130. * mmap() functions).
  131. */
  132. struct vm_area_struct *vm_area_alloc(struct mm_struct *);
  133. struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
  134. void vm_area_free(struct vm_area_struct *);
  135. #ifndef CONFIG_MMU
  136. extern struct rb_root nommu_region_tree;
  137. extern struct rw_semaphore nommu_region_sem;
  138. extern unsigned int kobjsize(const void *objp);
  139. #endif
  140. /*
  141. * vm_flags in vm_area_struct, see mm_types.h.
  142. * When changing, update also include/trace/events/mmflags.h
  143. */
  144. #define VM_NONE 0x00000000
  145. #define VM_READ 0x00000001 /* currently active flags */
  146. #define VM_WRITE 0x00000002
  147. #define VM_EXEC 0x00000004
  148. #define VM_SHARED 0x00000008
  149. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  150. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  151. #define VM_MAYWRITE 0x00000020
  152. #define VM_MAYEXEC 0x00000040
  153. #define VM_MAYSHARE 0x00000080
  154. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  155. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  156. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  157. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  158. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  159. #define VM_LOCKED 0x00002000
  160. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  161. /* Used by sys_madvise() */
  162. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  163. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  164. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  165. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  166. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  167. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  168. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  169. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  170. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  171. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  172. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  173. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  174. #ifdef CONFIG_MEM_SOFT_DIRTY
  175. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  176. #else
  177. # define VM_SOFTDIRTY 0
  178. #endif
  179. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  180. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  181. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  182. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  183. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  184. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  187. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  188. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  189. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  190. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  191. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  192. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  193. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  194. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  195. #ifdef CONFIG_ARCH_HAS_PKEYS
  196. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  197. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  198. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
  199. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  200. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  201. #ifdef CONFIG_PPC
  202. # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
  203. #else
  204. # define VM_PKEY_BIT4 0
  205. #endif
  206. #endif /* CONFIG_ARCH_HAS_PKEYS */
  207. #if defined(CONFIG_X86)
  208. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  209. #elif defined(CONFIG_PPC)
  210. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  211. #elif defined(CONFIG_PARISC)
  212. # define VM_GROWSUP VM_ARCH_1
  213. #elif defined(CONFIG_IA64)
  214. # define VM_GROWSUP VM_ARCH_1
  215. #elif defined(CONFIG_SPARC64)
  216. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  217. # define VM_ARCH_CLEAR VM_SPARC_ADI
  218. #elif !defined(CONFIG_MMU)
  219. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  220. #endif
  221. #if defined(CONFIG_X86_INTEL_MPX)
  222. /* MPX specific bounds table or bounds directory */
  223. # define VM_MPX VM_HIGH_ARCH_4
  224. #else
  225. # define VM_MPX VM_NONE
  226. #endif
  227. #ifndef VM_GROWSUP
  228. # define VM_GROWSUP VM_NONE
  229. #endif
  230. /* Bits set in the VMA until the stack is in its final location */
  231. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  232. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  233. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  234. #endif
  235. #ifdef CONFIG_STACK_GROWSUP
  236. #define VM_STACK VM_GROWSUP
  237. #else
  238. #define VM_STACK VM_GROWSDOWN
  239. #endif
  240. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  241. /*
  242. * Special vmas that are non-mergable, non-mlock()able.
  243. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  244. */
  245. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  246. /* This mask defines which mm->def_flags a process can inherit its parent */
  247. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  248. /* This mask is used to clear all the VMA flags used by mlock */
  249. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  250. /* Arch-specific flags to clear when updating VM flags on protection change */
  251. #ifndef VM_ARCH_CLEAR
  252. # define VM_ARCH_CLEAR VM_NONE
  253. #endif
  254. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  255. /*
  256. * mapping from the currently active vm_flags protection bits (the
  257. * low four bits) to a page protection mask..
  258. */
  259. extern pgprot_t protection_map[16];
  260. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  261. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  262. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  263. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  264. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  265. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  266. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  267. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  268. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  269. #define FAULT_FLAG_TRACE \
  270. { FAULT_FLAG_WRITE, "WRITE" }, \
  271. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  272. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  273. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  274. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  275. { FAULT_FLAG_TRIED, "TRIED" }, \
  276. { FAULT_FLAG_USER, "USER" }, \
  277. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  278. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  279. /*
  280. * vm_fault is filled by the the pagefault handler and passed to the vma's
  281. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  282. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  283. *
  284. * MM layer fills up gfp_mask for page allocations but fault handler might
  285. * alter it if its implementation requires a different allocation context.
  286. *
  287. * pgoff should be used in favour of virtual_address, if possible.
  288. */
  289. struct vm_fault {
  290. struct vm_area_struct *vma; /* Target VMA */
  291. unsigned int flags; /* FAULT_FLAG_xxx flags */
  292. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  293. pgoff_t pgoff; /* Logical page offset based on vma */
  294. unsigned long address; /* Faulting virtual address */
  295. pmd_t *pmd; /* Pointer to pmd entry matching
  296. * the 'address' */
  297. pud_t *pud; /* Pointer to pud entry matching
  298. * the 'address'
  299. */
  300. pte_t orig_pte; /* Value of PTE at the time of fault */
  301. struct page *cow_page; /* Page handler may use for COW fault */
  302. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  303. struct page *page; /* ->fault handlers should return a
  304. * page here, unless VM_FAULT_NOPAGE
  305. * is set (which is also implied by
  306. * VM_FAULT_ERROR).
  307. */
  308. /* These three entries are valid only while holding ptl lock */
  309. pte_t *pte; /* Pointer to pte entry matching
  310. * the 'address'. NULL if the page
  311. * table hasn't been allocated.
  312. */
  313. spinlock_t *ptl; /* Page table lock.
  314. * Protects pte page table if 'pte'
  315. * is not NULL, otherwise pmd.
  316. */
  317. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  318. * vm_ops->map_pages() calls
  319. * alloc_set_pte() from atomic context.
  320. * do_fault_around() pre-allocates
  321. * page table to avoid allocation from
  322. * atomic context.
  323. */
  324. };
  325. /* page entry size for vm->huge_fault() */
  326. enum page_entry_size {
  327. PE_SIZE_PTE = 0,
  328. PE_SIZE_PMD,
  329. PE_SIZE_PUD,
  330. };
  331. /*
  332. * These are the virtual MM functions - opening of an area, closing and
  333. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  334. * to the functions called when a no-page or a wp-page exception occurs.
  335. */
  336. struct vm_operations_struct {
  337. void (*open)(struct vm_area_struct * area);
  338. void (*close)(struct vm_area_struct * area);
  339. int (*split)(struct vm_area_struct * area, unsigned long addr);
  340. int (*mremap)(struct vm_area_struct * area);
  341. vm_fault_t (*fault)(struct vm_fault *vmf);
  342. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  343. enum page_entry_size pe_size);
  344. void (*map_pages)(struct vm_fault *vmf,
  345. pgoff_t start_pgoff, pgoff_t end_pgoff);
  346. unsigned long (*pagesize)(struct vm_area_struct * area);
  347. /* notification that a previously read-only page is about to become
  348. * writable, if an error is returned it will cause a SIGBUS */
  349. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  350. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  351. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  352. /* called by access_process_vm when get_user_pages() fails, typically
  353. * for use by special VMAs that can switch between memory and hardware
  354. */
  355. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  356. void *buf, int len, int write);
  357. /* Called by the /proc/PID/maps code to ask the vma whether it
  358. * has a special name. Returning non-NULL will also cause this
  359. * vma to be dumped unconditionally. */
  360. const char *(*name)(struct vm_area_struct *vma);
  361. #ifdef CONFIG_NUMA
  362. /*
  363. * set_policy() op must add a reference to any non-NULL @new mempolicy
  364. * to hold the policy upon return. Caller should pass NULL @new to
  365. * remove a policy and fall back to surrounding context--i.e. do not
  366. * install a MPOL_DEFAULT policy, nor the task or system default
  367. * mempolicy.
  368. */
  369. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  370. /*
  371. * get_policy() op must add reference [mpol_get()] to any policy at
  372. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  373. * in mm/mempolicy.c will do this automatically.
  374. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  375. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  376. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  377. * must return NULL--i.e., do not "fallback" to task or system default
  378. * policy.
  379. */
  380. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  381. unsigned long addr);
  382. #endif
  383. /*
  384. * Called by vm_normal_page() for special PTEs to find the
  385. * page for @addr. This is useful if the default behavior
  386. * (using pte_page()) would not find the correct page.
  387. */
  388. struct page *(*find_special_page)(struct vm_area_struct *vma,
  389. unsigned long addr);
  390. };
  391. static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
  392. {
  393. static const struct vm_operations_struct dummy_vm_ops = {};
  394. vma->vm_mm = mm;
  395. vma->vm_ops = &dummy_vm_ops;
  396. INIT_LIST_HEAD(&vma->anon_vma_chain);
  397. }
  398. static inline void vma_set_anonymous(struct vm_area_struct *vma)
  399. {
  400. vma->vm_ops = NULL;
  401. }
  402. /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
  403. #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
  404. struct mmu_gather;
  405. struct inode;
  406. #define page_private(page) ((page)->private)
  407. #define set_page_private(page, v) ((page)->private = (v))
  408. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  409. static inline int pmd_devmap(pmd_t pmd)
  410. {
  411. return 0;
  412. }
  413. static inline int pud_devmap(pud_t pud)
  414. {
  415. return 0;
  416. }
  417. static inline int pgd_devmap(pgd_t pgd)
  418. {
  419. return 0;
  420. }
  421. #endif
  422. /*
  423. * FIXME: take this include out, include page-flags.h in
  424. * files which need it (119 of them)
  425. */
  426. #include <linux/page-flags.h>
  427. #include <linux/huge_mm.h>
  428. /*
  429. * Methods to modify the page usage count.
  430. *
  431. * What counts for a page usage:
  432. * - cache mapping (page->mapping)
  433. * - private data (page->private)
  434. * - page mapped in a task's page tables, each mapping
  435. * is counted separately
  436. *
  437. * Also, many kernel routines increase the page count before a critical
  438. * routine so they can be sure the page doesn't go away from under them.
  439. */
  440. /*
  441. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  442. */
  443. static inline int put_page_testzero(struct page *page)
  444. {
  445. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  446. return page_ref_dec_and_test(page);
  447. }
  448. /*
  449. * Try to grab a ref unless the page has a refcount of zero, return false if
  450. * that is the case.
  451. * This can be called when MMU is off so it must not access
  452. * any of the virtual mappings.
  453. */
  454. static inline int get_page_unless_zero(struct page *page)
  455. {
  456. return page_ref_add_unless(page, 1, 0);
  457. }
  458. extern int page_is_ram(unsigned long pfn);
  459. enum {
  460. REGION_INTERSECTS,
  461. REGION_DISJOINT,
  462. REGION_MIXED,
  463. };
  464. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  465. unsigned long desc);
  466. /* Support for virtually mapped pages */
  467. struct page *vmalloc_to_page(const void *addr);
  468. unsigned long vmalloc_to_pfn(const void *addr);
  469. /*
  470. * Determine if an address is within the vmalloc range
  471. *
  472. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  473. * is no special casing required.
  474. */
  475. static inline bool is_vmalloc_addr(const void *x)
  476. {
  477. #ifdef CONFIG_MMU
  478. unsigned long addr = (unsigned long)x;
  479. return addr >= VMALLOC_START && addr < VMALLOC_END;
  480. #else
  481. return false;
  482. #endif
  483. }
  484. #ifdef CONFIG_MMU
  485. extern int is_vmalloc_or_module_addr(const void *x);
  486. #else
  487. static inline int is_vmalloc_or_module_addr(const void *x)
  488. {
  489. return 0;
  490. }
  491. #endif
  492. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  493. static inline void *kvmalloc(size_t size, gfp_t flags)
  494. {
  495. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  496. }
  497. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  498. {
  499. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  500. }
  501. static inline void *kvzalloc(size_t size, gfp_t flags)
  502. {
  503. return kvmalloc(size, flags | __GFP_ZERO);
  504. }
  505. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  506. {
  507. size_t bytes;
  508. if (unlikely(check_mul_overflow(n, size, &bytes)))
  509. return NULL;
  510. return kvmalloc(bytes, flags);
  511. }
  512. static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
  513. {
  514. return kvmalloc_array(n, size, flags | __GFP_ZERO);
  515. }
  516. extern void kvfree(const void *addr);
  517. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  518. {
  519. return &page[1].compound_mapcount;
  520. }
  521. static inline int compound_mapcount(struct page *page)
  522. {
  523. VM_BUG_ON_PAGE(!PageCompound(page), page);
  524. page = compound_head(page);
  525. return atomic_read(compound_mapcount_ptr(page)) + 1;
  526. }
  527. /*
  528. * The atomic page->_mapcount, starts from -1: so that transitions
  529. * both from it and to it can be tracked, using atomic_inc_and_test
  530. * and atomic_add_negative(-1).
  531. */
  532. static inline void page_mapcount_reset(struct page *page)
  533. {
  534. atomic_set(&(page)->_mapcount, -1);
  535. }
  536. int __page_mapcount(struct page *page);
  537. static inline int page_mapcount(struct page *page)
  538. {
  539. VM_BUG_ON_PAGE(PageSlab(page), page);
  540. if (unlikely(PageCompound(page)))
  541. return __page_mapcount(page);
  542. return atomic_read(&page->_mapcount) + 1;
  543. }
  544. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  545. int total_mapcount(struct page *page);
  546. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  547. #else
  548. static inline int total_mapcount(struct page *page)
  549. {
  550. return page_mapcount(page);
  551. }
  552. static inline int page_trans_huge_mapcount(struct page *page,
  553. int *total_mapcount)
  554. {
  555. int mapcount = page_mapcount(page);
  556. if (total_mapcount)
  557. *total_mapcount = mapcount;
  558. return mapcount;
  559. }
  560. #endif
  561. static inline struct page *virt_to_head_page(const void *x)
  562. {
  563. struct page *page = virt_to_page(x);
  564. return compound_head(page);
  565. }
  566. void __put_page(struct page *page);
  567. void put_pages_list(struct list_head *pages);
  568. void split_page(struct page *page, unsigned int order);
  569. /*
  570. * Compound pages have a destructor function. Provide a
  571. * prototype for that function and accessor functions.
  572. * These are _only_ valid on the head of a compound page.
  573. */
  574. typedef void compound_page_dtor(struct page *);
  575. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  576. enum compound_dtor_id {
  577. NULL_COMPOUND_DTOR,
  578. COMPOUND_PAGE_DTOR,
  579. #ifdef CONFIG_HUGETLB_PAGE
  580. HUGETLB_PAGE_DTOR,
  581. #endif
  582. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  583. TRANSHUGE_PAGE_DTOR,
  584. #endif
  585. NR_COMPOUND_DTORS,
  586. };
  587. extern compound_page_dtor * const compound_page_dtors[];
  588. static inline void set_compound_page_dtor(struct page *page,
  589. enum compound_dtor_id compound_dtor)
  590. {
  591. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  592. page[1].compound_dtor = compound_dtor;
  593. }
  594. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  595. {
  596. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  597. return compound_page_dtors[page[1].compound_dtor];
  598. }
  599. static inline unsigned int compound_order(struct page *page)
  600. {
  601. if (!PageHead(page))
  602. return 0;
  603. return page[1].compound_order;
  604. }
  605. static inline void set_compound_order(struct page *page, unsigned int order)
  606. {
  607. page[1].compound_order = order;
  608. }
  609. void free_compound_page(struct page *page);
  610. #ifdef CONFIG_MMU
  611. /*
  612. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  613. * servicing faults for write access. In the normal case, do always want
  614. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  615. * that do not have writing enabled, when used by access_process_vm.
  616. */
  617. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  618. {
  619. if (likely(vma->vm_flags & VM_WRITE))
  620. pte = pte_mkwrite(pte);
  621. return pte;
  622. }
  623. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  624. struct page *page);
  625. int finish_fault(struct vm_fault *vmf);
  626. int finish_mkwrite_fault(struct vm_fault *vmf);
  627. #endif
  628. /*
  629. * Multiple processes may "see" the same page. E.g. for untouched
  630. * mappings of /dev/null, all processes see the same page full of
  631. * zeroes, and text pages of executables and shared libraries have
  632. * only one copy in memory, at most, normally.
  633. *
  634. * For the non-reserved pages, page_count(page) denotes a reference count.
  635. * page_count() == 0 means the page is free. page->lru is then used for
  636. * freelist management in the buddy allocator.
  637. * page_count() > 0 means the page has been allocated.
  638. *
  639. * Pages are allocated by the slab allocator in order to provide memory
  640. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  641. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  642. * unless a particular usage is carefully commented. (the responsibility of
  643. * freeing the kmalloc memory is the caller's, of course).
  644. *
  645. * A page may be used by anyone else who does a __get_free_page().
  646. * In this case, page_count still tracks the references, and should only
  647. * be used through the normal accessor functions. The top bits of page->flags
  648. * and page->virtual store page management information, but all other fields
  649. * are unused and could be used privately, carefully. The management of this
  650. * page is the responsibility of the one who allocated it, and those who have
  651. * subsequently been given references to it.
  652. *
  653. * The other pages (we may call them "pagecache pages") are completely
  654. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  655. * The following discussion applies only to them.
  656. *
  657. * A pagecache page contains an opaque `private' member, which belongs to the
  658. * page's address_space. Usually, this is the address of a circular list of
  659. * the page's disk buffers. PG_private must be set to tell the VM to call
  660. * into the filesystem to release these pages.
  661. *
  662. * A page may belong to an inode's memory mapping. In this case, page->mapping
  663. * is the pointer to the inode, and page->index is the file offset of the page,
  664. * in units of PAGE_SIZE.
  665. *
  666. * If pagecache pages are not associated with an inode, they are said to be
  667. * anonymous pages. These may become associated with the swapcache, and in that
  668. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  669. *
  670. * In either case (swapcache or inode backed), the pagecache itself holds one
  671. * reference to the page. Setting PG_private should also increment the
  672. * refcount. The each user mapping also has a reference to the page.
  673. *
  674. * The pagecache pages are stored in a per-mapping radix tree, which is
  675. * rooted at mapping->i_pages, and indexed by offset.
  676. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  677. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  678. *
  679. * All pagecache pages may be subject to I/O:
  680. * - inode pages may need to be read from disk,
  681. * - inode pages which have been modified and are MAP_SHARED may need
  682. * to be written back to the inode on disk,
  683. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  684. * modified may need to be swapped out to swap space and (later) to be read
  685. * back into memory.
  686. */
  687. /*
  688. * The zone field is never updated after free_area_init_core()
  689. * sets it, so none of the operations on it need to be atomic.
  690. */
  691. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  692. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  693. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  694. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  695. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  696. /*
  697. * Define the bit shifts to access each section. For non-existent
  698. * sections we define the shift as 0; that plus a 0 mask ensures
  699. * the compiler will optimise away reference to them.
  700. */
  701. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  702. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  703. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  704. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  705. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  706. #ifdef NODE_NOT_IN_PAGE_FLAGS
  707. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  708. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  709. SECTIONS_PGOFF : ZONES_PGOFF)
  710. #else
  711. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  712. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  713. NODES_PGOFF : ZONES_PGOFF)
  714. #endif
  715. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  716. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  717. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  718. #endif
  719. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  720. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  721. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  722. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  723. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  724. static inline enum zone_type page_zonenum(const struct page *page)
  725. {
  726. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  727. }
  728. #ifdef CONFIG_ZONE_DEVICE
  729. static inline bool is_zone_device_page(const struct page *page)
  730. {
  731. return page_zonenum(page) == ZONE_DEVICE;
  732. }
  733. #else
  734. static inline bool is_zone_device_page(const struct page *page)
  735. {
  736. return false;
  737. }
  738. #endif
  739. #ifdef CONFIG_DEV_PAGEMAP_OPS
  740. void dev_pagemap_get_ops(void);
  741. void dev_pagemap_put_ops(void);
  742. void __put_devmap_managed_page(struct page *page);
  743. DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
  744. static inline bool put_devmap_managed_page(struct page *page)
  745. {
  746. if (!static_branch_unlikely(&devmap_managed_key))
  747. return false;
  748. if (!is_zone_device_page(page))
  749. return false;
  750. switch (page->pgmap->type) {
  751. case MEMORY_DEVICE_PRIVATE:
  752. case MEMORY_DEVICE_PUBLIC:
  753. case MEMORY_DEVICE_FS_DAX:
  754. __put_devmap_managed_page(page);
  755. return true;
  756. default:
  757. break;
  758. }
  759. return false;
  760. }
  761. static inline bool is_device_private_page(const struct page *page)
  762. {
  763. return is_zone_device_page(page) &&
  764. page->pgmap->type == MEMORY_DEVICE_PRIVATE;
  765. }
  766. static inline bool is_device_public_page(const struct page *page)
  767. {
  768. return is_zone_device_page(page) &&
  769. page->pgmap->type == MEMORY_DEVICE_PUBLIC;
  770. }
  771. #else /* CONFIG_DEV_PAGEMAP_OPS */
  772. static inline void dev_pagemap_get_ops(void)
  773. {
  774. }
  775. static inline void dev_pagemap_put_ops(void)
  776. {
  777. }
  778. static inline bool put_devmap_managed_page(struct page *page)
  779. {
  780. return false;
  781. }
  782. static inline bool is_device_private_page(const struct page *page)
  783. {
  784. return false;
  785. }
  786. static inline bool is_device_public_page(const struct page *page)
  787. {
  788. return false;
  789. }
  790. #endif /* CONFIG_DEV_PAGEMAP_OPS */
  791. static inline void get_page(struct page *page)
  792. {
  793. page = compound_head(page);
  794. /*
  795. * Getting a normal page or the head of a compound page
  796. * requires to already have an elevated page->_refcount.
  797. */
  798. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  799. page_ref_inc(page);
  800. }
  801. static inline void put_page(struct page *page)
  802. {
  803. page = compound_head(page);
  804. /*
  805. * For devmap managed pages we need to catch refcount transition from
  806. * 2 to 1, when refcount reach one it means the page is free and we
  807. * need to inform the device driver through callback. See
  808. * include/linux/memremap.h and HMM for details.
  809. */
  810. if (put_devmap_managed_page(page))
  811. return;
  812. if (put_page_testzero(page))
  813. __put_page(page);
  814. }
  815. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  816. #define SECTION_IN_PAGE_FLAGS
  817. #endif
  818. /*
  819. * The identification function is mainly used by the buddy allocator for
  820. * determining if two pages could be buddies. We are not really identifying
  821. * the zone since we could be using the section number id if we do not have
  822. * node id available in page flags.
  823. * We only guarantee that it will return the same value for two combinable
  824. * pages in a zone.
  825. */
  826. static inline int page_zone_id(struct page *page)
  827. {
  828. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  829. }
  830. static inline int zone_to_nid(struct zone *zone)
  831. {
  832. #ifdef CONFIG_NUMA
  833. return zone->node;
  834. #else
  835. return 0;
  836. #endif
  837. }
  838. #ifdef NODE_NOT_IN_PAGE_FLAGS
  839. extern int page_to_nid(const struct page *page);
  840. #else
  841. static inline int page_to_nid(const struct page *page)
  842. {
  843. struct page *p = (struct page *)page;
  844. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  845. }
  846. #endif
  847. #ifdef CONFIG_NUMA_BALANCING
  848. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  849. {
  850. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  851. }
  852. static inline int cpupid_to_pid(int cpupid)
  853. {
  854. return cpupid & LAST__PID_MASK;
  855. }
  856. static inline int cpupid_to_cpu(int cpupid)
  857. {
  858. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  859. }
  860. static inline int cpupid_to_nid(int cpupid)
  861. {
  862. return cpu_to_node(cpupid_to_cpu(cpupid));
  863. }
  864. static inline bool cpupid_pid_unset(int cpupid)
  865. {
  866. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  867. }
  868. static inline bool cpupid_cpu_unset(int cpupid)
  869. {
  870. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  871. }
  872. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  873. {
  874. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  875. }
  876. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  877. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  878. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  879. {
  880. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  881. }
  882. static inline int page_cpupid_last(struct page *page)
  883. {
  884. return page->_last_cpupid;
  885. }
  886. static inline void page_cpupid_reset_last(struct page *page)
  887. {
  888. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  889. }
  890. #else
  891. static inline int page_cpupid_last(struct page *page)
  892. {
  893. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  894. }
  895. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  896. static inline void page_cpupid_reset_last(struct page *page)
  897. {
  898. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  899. }
  900. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  901. #else /* !CONFIG_NUMA_BALANCING */
  902. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  903. {
  904. return page_to_nid(page); /* XXX */
  905. }
  906. static inline int page_cpupid_last(struct page *page)
  907. {
  908. return page_to_nid(page); /* XXX */
  909. }
  910. static inline int cpupid_to_nid(int cpupid)
  911. {
  912. return -1;
  913. }
  914. static inline int cpupid_to_pid(int cpupid)
  915. {
  916. return -1;
  917. }
  918. static inline int cpupid_to_cpu(int cpupid)
  919. {
  920. return -1;
  921. }
  922. static inline int cpu_pid_to_cpupid(int nid, int pid)
  923. {
  924. return -1;
  925. }
  926. static inline bool cpupid_pid_unset(int cpupid)
  927. {
  928. return 1;
  929. }
  930. static inline void page_cpupid_reset_last(struct page *page)
  931. {
  932. }
  933. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  934. {
  935. return false;
  936. }
  937. #endif /* CONFIG_NUMA_BALANCING */
  938. static inline struct zone *page_zone(const struct page *page)
  939. {
  940. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  941. }
  942. static inline pg_data_t *page_pgdat(const struct page *page)
  943. {
  944. return NODE_DATA(page_to_nid(page));
  945. }
  946. #ifdef SECTION_IN_PAGE_FLAGS
  947. static inline void set_page_section(struct page *page, unsigned long section)
  948. {
  949. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  950. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  951. }
  952. static inline unsigned long page_to_section(const struct page *page)
  953. {
  954. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  955. }
  956. #endif
  957. static inline void set_page_zone(struct page *page, enum zone_type zone)
  958. {
  959. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  960. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  961. }
  962. static inline void set_page_node(struct page *page, unsigned long node)
  963. {
  964. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  965. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  966. }
  967. static inline void set_page_links(struct page *page, enum zone_type zone,
  968. unsigned long node, unsigned long pfn)
  969. {
  970. set_page_zone(page, zone);
  971. set_page_node(page, node);
  972. #ifdef SECTION_IN_PAGE_FLAGS
  973. set_page_section(page, pfn_to_section_nr(pfn));
  974. #endif
  975. }
  976. #ifdef CONFIG_MEMCG
  977. static inline struct mem_cgroup *page_memcg(struct page *page)
  978. {
  979. return page->mem_cgroup;
  980. }
  981. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  982. {
  983. WARN_ON_ONCE(!rcu_read_lock_held());
  984. return READ_ONCE(page->mem_cgroup);
  985. }
  986. #else
  987. static inline struct mem_cgroup *page_memcg(struct page *page)
  988. {
  989. return NULL;
  990. }
  991. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  992. {
  993. WARN_ON_ONCE(!rcu_read_lock_held());
  994. return NULL;
  995. }
  996. #endif
  997. /*
  998. * Some inline functions in vmstat.h depend on page_zone()
  999. */
  1000. #include <linux/vmstat.h>
  1001. static __always_inline void *lowmem_page_address(const struct page *page)
  1002. {
  1003. return page_to_virt(page);
  1004. }
  1005. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  1006. #define HASHED_PAGE_VIRTUAL
  1007. #endif
  1008. #if defined(WANT_PAGE_VIRTUAL)
  1009. static inline void *page_address(const struct page *page)
  1010. {
  1011. return page->virtual;
  1012. }
  1013. static inline void set_page_address(struct page *page, void *address)
  1014. {
  1015. page->virtual = address;
  1016. }
  1017. #define page_address_init() do { } while(0)
  1018. #endif
  1019. #if defined(HASHED_PAGE_VIRTUAL)
  1020. void *page_address(const struct page *page);
  1021. void set_page_address(struct page *page, void *virtual);
  1022. void page_address_init(void);
  1023. #endif
  1024. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  1025. #define page_address(page) lowmem_page_address(page)
  1026. #define set_page_address(page, address) do { } while(0)
  1027. #define page_address_init() do { } while(0)
  1028. #endif
  1029. extern void *page_rmapping(struct page *page);
  1030. extern struct anon_vma *page_anon_vma(struct page *page);
  1031. extern struct address_space *page_mapping(struct page *page);
  1032. extern struct address_space *__page_file_mapping(struct page *);
  1033. static inline
  1034. struct address_space *page_file_mapping(struct page *page)
  1035. {
  1036. if (unlikely(PageSwapCache(page)))
  1037. return __page_file_mapping(page);
  1038. return page->mapping;
  1039. }
  1040. extern pgoff_t __page_file_index(struct page *page);
  1041. /*
  1042. * Return the pagecache index of the passed page. Regular pagecache pages
  1043. * use ->index whereas swapcache pages use swp_offset(->private)
  1044. */
  1045. static inline pgoff_t page_index(struct page *page)
  1046. {
  1047. if (unlikely(PageSwapCache(page)))
  1048. return __page_file_index(page);
  1049. return page->index;
  1050. }
  1051. bool page_mapped(struct page *page);
  1052. struct address_space *page_mapping(struct page *page);
  1053. struct address_space *page_mapping_file(struct page *page);
  1054. /*
  1055. * Return true only if the page has been allocated with
  1056. * ALLOC_NO_WATERMARKS and the low watermark was not
  1057. * met implying that the system is under some pressure.
  1058. */
  1059. static inline bool page_is_pfmemalloc(struct page *page)
  1060. {
  1061. /*
  1062. * Page index cannot be this large so this must be
  1063. * a pfmemalloc page.
  1064. */
  1065. return page->index == -1UL;
  1066. }
  1067. /*
  1068. * Only to be called by the page allocator on a freshly allocated
  1069. * page.
  1070. */
  1071. static inline void set_page_pfmemalloc(struct page *page)
  1072. {
  1073. page->index = -1UL;
  1074. }
  1075. static inline void clear_page_pfmemalloc(struct page *page)
  1076. {
  1077. page->index = 0;
  1078. }
  1079. /*
  1080. * Different kinds of faults, as returned by handle_mm_fault().
  1081. * Used to decide whether a process gets delivered SIGBUS or
  1082. * just gets major/minor fault counters bumped up.
  1083. */
  1084. #define VM_FAULT_OOM 0x0001
  1085. #define VM_FAULT_SIGBUS 0x0002
  1086. #define VM_FAULT_MAJOR 0x0004
  1087. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1088. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1089. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1090. #define VM_FAULT_SIGSEGV 0x0040
  1091. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1092. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1093. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1094. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1095. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1096. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1097. * and needs fsync() to complete (for
  1098. * synchronous page faults in DAX) */
  1099. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1100. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1101. VM_FAULT_FALLBACK)
  1102. #define VM_FAULT_RESULT_TRACE \
  1103. { VM_FAULT_OOM, "OOM" }, \
  1104. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1105. { VM_FAULT_MAJOR, "MAJOR" }, \
  1106. { VM_FAULT_WRITE, "WRITE" }, \
  1107. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1108. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1109. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1110. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1111. { VM_FAULT_LOCKED, "LOCKED" }, \
  1112. { VM_FAULT_RETRY, "RETRY" }, \
  1113. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1114. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1115. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1116. /* Encode hstate index for a hwpoisoned large page */
  1117. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1118. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1119. /*
  1120. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1121. */
  1122. extern void pagefault_out_of_memory(void);
  1123. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1124. /*
  1125. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1126. * various contexts.
  1127. */
  1128. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1129. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1130. extern bool can_do_mlock(void);
  1131. extern int user_shm_lock(size_t, struct user_struct *);
  1132. extern void user_shm_unlock(size_t, struct user_struct *);
  1133. /*
  1134. * Parameter block passed down to zap_pte_range in exceptional cases.
  1135. */
  1136. struct zap_details {
  1137. struct address_space *check_mapping; /* Check page->mapping if set */
  1138. pgoff_t first_index; /* Lowest page->index to unmap */
  1139. pgoff_t last_index; /* Highest page->index to unmap */
  1140. };
  1141. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1142. pte_t pte, bool with_public_device);
  1143. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1144. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1145. pmd_t pmd);
  1146. void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1147. unsigned long size);
  1148. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1149. unsigned long size);
  1150. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1151. unsigned long start, unsigned long end);
  1152. /**
  1153. * mm_walk - callbacks for walk_page_range
  1154. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1155. * this handler should only handle pud_trans_huge() puds.
  1156. * the pmd_entry or pte_entry callbacks will be used for
  1157. * regular PUDs.
  1158. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1159. * this handler is required to be able to handle
  1160. * pmd_trans_huge() pmds. They may simply choose to
  1161. * split_huge_page() instead of handling it explicitly.
  1162. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1163. * @pte_hole: if set, called for each hole at all levels
  1164. * @hugetlb_entry: if set, called for each hugetlb entry
  1165. * @test_walk: caller specific callback function to determine whether
  1166. * we walk over the current vma or not. Returning 0
  1167. * value means "do page table walk over the current vma,"
  1168. * and a negative one means "abort current page table walk
  1169. * right now." 1 means "skip the current vma."
  1170. * @mm: mm_struct representing the target process of page table walk
  1171. * @vma: vma currently walked (NULL if walking outside vmas)
  1172. * @private: private data for callbacks' usage
  1173. *
  1174. * (see the comment on walk_page_range() for more details)
  1175. */
  1176. struct mm_walk {
  1177. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1178. unsigned long next, struct mm_walk *walk);
  1179. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1180. unsigned long next, struct mm_walk *walk);
  1181. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1182. unsigned long next, struct mm_walk *walk);
  1183. int (*pte_hole)(unsigned long addr, unsigned long next,
  1184. struct mm_walk *walk);
  1185. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1186. unsigned long addr, unsigned long next,
  1187. struct mm_walk *walk);
  1188. int (*test_walk)(unsigned long addr, unsigned long next,
  1189. struct mm_walk *walk);
  1190. struct mm_struct *mm;
  1191. struct vm_area_struct *vma;
  1192. void *private;
  1193. };
  1194. int walk_page_range(unsigned long addr, unsigned long end,
  1195. struct mm_walk *walk);
  1196. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1197. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1198. unsigned long end, unsigned long floor, unsigned long ceiling);
  1199. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1200. struct vm_area_struct *vma);
  1201. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1202. unsigned long *start, unsigned long *end,
  1203. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1204. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1205. unsigned long *pfn);
  1206. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1207. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1208. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1209. void *buf, int len, int write);
  1210. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1211. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1212. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1213. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1214. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1215. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1216. int invalidate_inode_page(struct page *page);
  1217. #ifdef CONFIG_MMU
  1218. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1219. unsigned int flags);
  1220. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1221. unsigned long address, unsigned int fault_flags,
  1222. bool *unlocked);
  1223. void unmap_mapping_pages(struct address_space *mapping,
  1224. pgoff_t start, pgoff_t nr, bool even_cows);
  1225. void unmap_mapping_range(struct address_space *mapping,
  1226. loff_t const holebegin, loff_t const holelen, int even_cows);
  1227. #else
  1228. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1229. unsigned long address, unsigned int flags)
  1230. {
  1231. /* should never happen if there's no MMU */
  1232. BUG();
  1233. return VM_FAULT_SIGBUS;
  1234. }
  1235. static inline int fixup_user_fault(struct task_struct *tsk,
  1236. struct mm_struct *mm, unsigned long address,
  1237. unsigned int fault_flags, bool *unlocked)
  1238. {
  1239. /* should never happen if there's no MMU */
  1240. BUG();
  1241. return -EFAULT;
  1242. }
  1243. static inline void unmap_mapping_pages(struct address_space *mapping,
  1244. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1245. static inline void unmap_mapping_range(struct address_space *mapping,
  1246. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1247. #endif
  1248. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1249. loff_t const holebegin, loff_t const holelen)
  1250. {
  1251. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1252. }
  1253. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1254. void *buf, int len, unsigned int gup_flags);
  1255. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1256. void *buf, int len, unsigned int gup_flags);
  1257. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1258. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1259. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1260. unsigned long start, unsigned long nr_pages,
  1261. unsigned int gup_flags, struct page **pages,
  1262. struct vm_area_struct **vmas, int *locked);
  1263. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1264. unsigned int gup_flags, struct page **pages,
  1265. struct vm_area_struct **vmas);
  1266. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1267. unsigned int gup_flags, struct page **pages, int *locked);
  1268. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1269. struct page **pages, unsigned int gup_flags);
  1270. #ifdef CONFIG_FS_DAX
  1271. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1272. unsigned int gup_flags, struct page **pages,
  1273. struct vm_area_struct **vmas);
  1274. #else
  1275. static inline long get_user_pages_longterm(unsigned long start,
  1276. unsigned long nr_pages, unsigned int gup_flags,
  1277. struct page **pages, struct vm_area_struct **vmas)
  1278. {
  1279. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1280. }
  1281. #endif /* CONFIG_FS_DAX */
  1282. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1283. struct page **pages);
  1284. /* Container for pinned pfns / pages */
  1285. struct frame_vector {
  1286. unsigned int nr_allocated; /* Number of frames we have space for */
  1287. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1288. bool got_ref; /* Did we pin pages by getting page ref? */
  1289. bool is_pfns; /* Does array contain pages or pfns? */
  1290. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1291. * pfns_vector_pages() or pfns_vector_pfns()
  1292. * for access */
  1293. };
  1294. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1295. void frame_vector_destroy(struct frame_vector *vec);
  1296. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1297. unsigned int gup_flags, struct frame_vector *vec);
  1298. void put_vaddr_frames(struct frame_vector *vec);
  1299. int frame_vector_to_pages(struct frame_vector *vec);
  1300. void frame_vector_to_pfns(struct frame_vector *vec);
  1301. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1302. {
  1303. return vec->nr_frames;
  1304. }
  1305. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1306. {
  1307. if (vec->is_pfns) {
  1308. int err = frame_vector_to_pages(vec);
  1309. if (err)
  1310. return ERR_PTR(err);
  1311. }
  1312. return (struct page **)(vec->ptrs);
  1313. }
  1314. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1315. {
  1316. if (!vec->is_pfns)
  1317. frame_vector_to_pfns(vec);
  1318. return (unsigned long *)(vec->ptrs);
  1319. }
  1320. struct kvec;
  1321. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1322. struct page **pages);
  1323. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1324. struct page *get_dump_page(unsigned long addr);
  1325. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1326. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1327. unsigned int length);
  1328. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1329. int __set_page_dirty_nobuffers(struct page *page);
  1330. int __set_page_dirty_no_writeback(struct page *page);
  1331. int redirty_page_for_writepage(struct writeback_control *wbc,
  1332. struct page *page);
  1333. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1334. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1335. struct bdi_writeback *wb);
  1336. int set_page_dirty(struct page *page);
  1337. int set_page_dirty_lock(struct page *page);
  1338. void __cancel_dirty_page(struct page *page);
  1339. static inline void cancel_dirty_page(struct page *page)
  1340. {
  1341. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1342. if (PageDirty(page))
  1343. __cancel_dirty_page(page);
  1344. }
  1345. int clear_page_dirty_for_io(struct page *page);
  1346. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1347. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1348. {
  1349. return !vma->vm_ops;
  1350. }
  1351. #ifdef CONFIG_SHMEM
  1352. /*
  1353. * The vma_is_shmem is not inline because it is used only by slow
  1354. * paths in userfault.
  1355. */
  1356. bool vma_is_shmem(struct vm_area_struct *vma);
  1357. #else
  1358. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1359. #endif
  1360. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1361. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1362. unsigned long old_addr, struct vm_area_struct *new_vma,
  1363. unsigned long new_addr, unsigned long len,
  1364. bool need_rmap_locks);
  1365. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1366. unsigned long end, pgprot_t newprot,
  1367. int dirty_accountable, int prot_numa);
  1368. extern int mprotect_fixup(struct vm_area_struct *vma,
  1369. struct vm_area_struct **pprev, unsigned long start,
  1370. unsigned long end, unsigned long newflags);
  1371. /*
  1372. * doesn't attempt to fault and will return short.
  1373. */
  1374. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1375. struct page **pages);
  1376. /*
  1377. * per-process(per-mm_struct) statistics.
  1378. */
  1379. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1380. {
  1381. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1382. #ifdef SPLIT_RSS_COUNTING
  1383. /*
  1384. * counter is updated in asynchronous manner and may go to minus.
  1385. * But it's never be expected number for users.
  1386. */
  1387. if (val < 0)
  1388. val = 0;
  1389. #endif
  1390. return (unsigned long)val;
  1391. }
  1392. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1393. {
  1394. atomic_long_add(value, &mm->rss_stat.count[member]);
  1395. }
  1396. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1397. {
  1398. atomic_long_inc(&mm->rss_stat.count[member]);
  1399. }
  1400. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1401. {
  1402. atomic_long_dec(&mm->rss_stat.count[member]);
  1403. }
  1404. /* Optimized variant when page is already known not to be PageAnon */
  1405. static inline int mm_counter_file(struct page *page)
  1406. {
  1407. if (PageSwapBacked(page))
  1408. return MM_SHMEMPAGES;
  1409. return MM_FILEPAGES;
  1410. }
  1411. static inline int mm_counter(struct page *page)
  1412. {
  1413. if (PageAnon(page))
  1414. return MM_ANONPAGES;
  1415. return mm_counter_file(page);
  1416. }
  1417. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1418. {
  1419. return get_mm_counter(mm, MM_FILEPAGES) +
  1420. get_mm_counter(mm, MM_ANONPAGES) +
  1421. get_mm_counter(mm, MM_SHMEMPAGES);
  1422. }
  1423. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1424. {
  1425. return max(mm->hiwater_rss, get_mm_rss(mm));
  1426. }
  1427. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1428. {
  1429. return max(mm->hiwater_vm, mm->total_vm);
  1430. }
  1431. static inline void update_hiwater_rss(struct mm_struct *mm)
  1432. {
  1433. unsigned long _rss = get_mm_rss(mm);
  1434. if ((mm)->hiwater_rss < _rss)
  1435. (mm)->hiwater_rss = _rss;
  1436. }
  1437. static inline void update_hiwater_vm(struct mm_struct *mm)
  1438. {
  1439. if (mm->hiwater_vm < mm->total_vm)
  1440. mm->hiwater_vm = mm->total_vm;
  1441. }
  1442. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1443. {
  1444. mm->hiwater_rss = get_mm_rss(mm);
  1445. }
  1446. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1447. struct mm_struct *mm)
  1448. {
  1449. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1450. if (*maxrss < hiwater_rss)
  1451. *maxrss = hiwater_rss;
  1452. }
  1453. #if defined(SPLIT_RSS_COUNTING)
  1454. void sync_mm_rss(struct mm_struct *mm);
  1455. #else
  1456. static inline void sync_mm_rss(struct mm_struct *mm)
  1457. {
  1458. }
  1459. #endif
  1460. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1461. static inline int pte_devmap(pte_t pte)
  1462. {
  1463. return 0;
  1464. }
  1465. #endif
  1466. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1467. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1468. spinlock_t **ptl);
  1469. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1470. spinlock_t **ptl)
  1471. {
  1472. pte_t *ptep;
  1473. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1474. return ptep;
  1475. }
  1476. #ifdef __PAGETABLE_P4D_FOLDED
  1477. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1478. unsigned long address)
  1479. {
  1480. return 0;
  1481. }
  1482. #else
  1483. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1484. #endif
  1485. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1486. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1487. unsigned long address)
  1488. {
  1489. return 0;
  1490. }
  1491. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1492. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1493. #else
  1494. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1495. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1496. {
  1497. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1498. }
  1499. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1500. {
  1501. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1502. }
  1503. #endif
  1504. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1505. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1506. unsigned long address)
  1507. {
  1508. return 0;
  1509. }
  1510. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1511. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1512. #else
  1513. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1514. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1515. {
  1516. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1517. }
  1518. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1519. {
  1520. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1521. }
  1522. #endif
  1523. #ifdef CONFIG_MMU
  1524. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1525. {
  1526. atomic_long_set(&mm->pgtables_bytes, 0);
  1527. }
  1528. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1529. {
  1530. return atomic_long_read(&mm->pgtables_bytes);
  1531. }
  1532. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1533. {
  1534. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1535. }
  1536. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1537. {
  1538. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1539. }
  1540. #else
  1541. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1542. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1543. {
  1544. return 0;
  1545. }
  1546. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1547. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1548. #endif
  1549. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1550. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1551. /*
  1552. * The following ifdef needed to get the 4level-fixup.h header to work.
  1553. * Remove it when 4level-fixup.h has been removed.
  1554. */
  1555. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1556. #ifndef __ARCH_HAS_5LEVEL_HACK
  1557. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1558. unsigned long address)
  1559. {
  1560. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1561. NULL : p4d_offset(pgd, address);
  1562. }
  1563. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1564. unsigned long address)
  1565. {
  1566. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1567. NULL : pud_offset(p4d, address);
  1568. }
  1569. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1570. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1571. {
  1572. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1573. NULL: pmd_offset(pud, address);
  1574. }
  1575. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1576. #if USE_SPLIT_PTE_PTLOCKS
  1577. #if ALLOC_SPLIT_PTLOCKS
  1578. void __init ptlock_cache_init(void);
  1579. extern bool ptlock_alloc(struct page *page);
  1580. extern void ptlock_free(struct page *page);
  1581. static inline spinlock_t *ptlock_ptr(struct page *page)
  1582. {
  1583. return page->ptl;
  1584. }
  1585. #else /* ALLOC_SPLIT_PTLOCKS */
  1586. static inline void ptlock_cache_init(void)
  1587. {
  1588. }
  1589. static inline bool ptlock_alloc(struct page *page)
  1590. {
  1591. return true;
  1592. }
  1593. static inline void ptlock_free(struct page *page)
  1594. {
  1595. }
  1596. static inline spinlock_t *ptlock_ptr(struct page *page)
  1597. {
  1598. return &page->ptl;
  1599. }
  1600. #endif /* ALLOC_SPLIT_PTLOCKS */
  1601. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1602. {
  1603. return ptlock_ptr(pmd_page(*pmd));
  1604. }
  1605. static inline bool ptlock_init(struct page *page)
  1606. {
  1607. /*
  1608. * prep_new_page() initialize page->private (and therefore page->ptl)
  1609. * with 0. Make sure nobody took it in use in between.
  1610. *
  1611. * It can happen if arch try to use slab for page table allocation:
  1612. * slab code uses page->slab_cache, which share storage with page->ptl.
  1613. */
  1614. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1615. if (!ptlock_alloc(page))
  1616. return false;
  1617. spin_lock_init(ptlock_ptr(page));
  1618. return true;
  1619. }
  1620. /* Reset page->mapping so free_pages_check won't complain. */
  1621. static inline void pte_lock_deinit(struct page *page)
  1622. {
  1623. page->mapping = NULL;
  1624. ptlock_free(page);
  1625. }
  1626. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1627. /*
  1628. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1629. */
  1630. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1631. {
  1632. return &mm->page_table_lock;
  1633. }
  1634. static inline void ptlock_cache_init(void) {}
  1635. static inline bool ptlock_init(struct page *page) { return true; }
  1636. static inline void pte_lock_deinit(struct page *page) {}
  1637. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1638. static inline void pgtable_init(void)
  1639. {
  1640. ptlock_cache_init();
  1641. pgtable_cache_init();
  1642. }
  1643. static inline bool pgtable_page_ctor(struct page *page)
  1644. {
  1645. if (!ptlock_init(page))
  1646. return false;
  1647. __SetPageTable(page);
  1648. inc_zone_page_state(page, NR_PAGETABLE);
  1649. return true;
  1650. }
  1651. static inline void pgtable_page_dtor(struct page *page)
  1652. {
  1653. pte_lock_deinit(page);
  1654. __ClearPageTable(page);
  1655. dec_zone_page_state(page, NR_PAGETABLE);
  1656. }
  1657. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1658. ({ \
  1659. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1660. pte_t *__pte = pte_offset_map(pmd, address); \
  1661. *(ptlp) = __ptl; \
  1662. spin_lock(__ptl); \
  1663. __pte; \
  1664. })
  1665. #define pte_unmap_unlock(pte, ptl) do { \
  1666. spin_unlock(ptl); \
  1667. pte_unmap(pte); \
  1668. } while (0)
  1669. #define pte_alloc(mm, pmd, address) \
  1670. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1671. #define pte_alloc_map(mm, pmd, address) \
  1672. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1673. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1674. (pte_alloc(mm, pmd, address) ? \
  1675. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1676. #define pte_alloc_kernel(pmd, address) \
  1677. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1678. NULL: pte_offset_kernel(pmd, address))
  1679. #if USE_SPLIT_PMD_PTLOCKS
  1680. static struct page *pmd_to_page(pmd_t *pmd)
  1681. {
  1682. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1683. return virt_to_page((void *)((unsigned long) pmd & mask));
  1684. }
  1685. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1686. {
  1687. return ptlock_ptr(pmd_to_page(pmd));
  1688. }
  1689. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1690. {
  1691. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1692. page->pmd_huge_pte = NULL;
  1693. #endif
  1694. return ptlock_init(page);
  1695. }
  1696. static inline void pgtable_pmd_page_dtor(struct page *page)
  1697. {
  1698. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1699. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1700. #endif
  1701. ptlock_free(page);
  1702. }
  1703. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1704. #else
  1705. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1706. {
  1707. return &mm->page_table_lock;
  1708. }
  1709. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1710. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1711. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1712. #endif
  1713. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1714. {
  1715. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1716. spin_lock(ptl);
  1717. return ptl;
  1718. }
  1719. /*
  1720. * No scalability reason to split PUD locks yet, but follow the same pattern
  1721. * as the PMD locks to make it easier if we decide to. The VM should not be
  1722. * considered ready to switch to split PUD locks yet; there may be places
  1723. * which need to be converted from page_table_lock.
  1724. */
  1725. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1726. {
  1727. return &mm->page_table_lock;
  1728. }
  1729. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1730. {
  1731. spinlock_t *ptl = pud_lockptr(mm, pud);
  1732. spin_lock(ptl);
  1733. return ptl;
  1734. }
  1735. extern void __init pagecache_init(void);
  1736. extern void free_area_init(unsigned long * zones_size);
  1737. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1738. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1739. extern void free_initmem(void);
  1740. /*
  1741. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1742. * into the buddy system. The freed pages will be poisoned with pattern
  1743. * "poison" if it's within range [0, UCHAR_MAX].
  1744. * Return pages freed into the buddy system.
  1745. */
  1746. extern unsigned long free_reserved_area(void *start, void *end,
  1747. int poison, char *s);
  1748. #ifdef CONFIG_HIGHMEM
  1749. /*
  1750. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1751. * and totalram_pages.
  1752. */
  1753. extern void free_highmem_page(struct page *page);
  1754. #endif
  1755. extern void adjust_managed_page_count(struct page *page, long count);
  1756. extern void mem_init_print_info(const char *str);
  1757. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1758. /* Free the reserved page into the buddy system, so it gets managed. */
  1759. static inline void __free_reserved_page(struct page *page)
  1760. {
  1761. ClearPageReserved(page);
  1762. init_page_count(page);
  1763. __free_page(page);
  1764. }
  1765. static inline void free_reserved_page(struct page *page)
  1766. {
  1767. __free_reserved_page(page);
  1768. adjust_managed_page_count(page, 1);
  1769. }
  1770. static inline void mark_page_reserved(struct page *page)
  1771. {
  1772. SetPageReserved(page);
  1773. adjust_managed_page_count(page, -1);
  1774. }
  1775. /*
  1776. * Default method to free all the __init memory into the buddy system.
  1777. * The freed pages will be poisoned with pattern "poison" if it's within
  1778. * range [0, UCHAR_MAX].
  1779. * Return pages freed into the buddy system.
  1780. */
  1781. static inline unsigned long free_initmem_default(int poison)
  1782. {
  1783. extern char __init_begin[], __init_end[];
  1784. return free_reserved_area(&__init_begin, &__init_end,
  1785. poison, "unused kernel");
  1786. }
  1787. static inline unsigned long get_num_physpages(void)
  1788. {
  1789. int nid;
  1790. unsigned long phys_pages = 0;
  1791. for_each_online_node(nid)
  1792. phys_pages += node_present_pages(nid);
  1793. return phys_pages;
  1794. }
  1795. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1796. /*
  1797. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1798. * zones, allocate the backing mem_map and account for memory holes in a more
  1799. * architecture independent manner. This is a substitute for creating the
  1800. * zone_sizes[] and zholes_size[] arrays and passing them to
  1801. * free_area_init_node()
  1802. *
  1803. * An architecture is expected to register range of page frames backed by
  1804. * physical memory with memblock_add[_node]() before calling
  1805. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1806. * usage, an architecture is expected to do something like
  1807. *
  1808. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1809. * max_highmem_pfn};
  1810. * for_each_valid_physical_page_range()
  1811. * memblock_add_node(base, size, nid)
  1812. * free_area_init_nodes(max_zone_pfns);
  1813. *
  1814. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1815. * registered physical page range. Similarly
  1816. * sparse_memory_present_with_active_regions() calls memory_present() for
  1817. * each range when SPARSEMEM is enabled.
  1818. *
  1819. * See mm/page_alloc.c for more information on each function exposed by
  1820. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1821. */
  1822. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1823. unsigned long node_map_pfn_alignment(void);
  1824. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1825. unsigned long end_pfn);
  1826. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1827. unsigned long end_pfn);
  1828. extern void get_pfn_range_for_nid(unsigned int nid,
  1829. unsigned long *start_pfn, unsigned long *end_pfn);
  1830. extern unsigned long find_min_pfn_with_active_regions(void);
  1831. extern void free_bootmem_with_active_regions(int nid,
  1832. unsigned long max_low_pfn);
  1833. extern void sparse_memory_present_with_active_regions(int nid);
  1834. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1835. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1836. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1837. static inline int __early_pfn_to_nid(unsigned long pfn,
  1838. struct mminit_pfnnid_cache *state)
  1839. {
  1840. return 0;
  1841. }
  1842. #else
  1843. /* please see mm/page_alloc.c */
  1844. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1845. /* there is a per-arch backend function. */
  1846. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1847. struct mminit_pfnnid_cache *state);
  1848. #endif
  1849. #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
  1850. void zero_resv_unavail(void);
  1851. #else
  1852. static inline void zero_resv_unavail(void) {}
  1853. #endif
  1854. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1855. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1856. enum memmap_context, struct vmem_altmap *);
  1857. extern void setup_per_zone_wmarks(void);
  1858. extern int __meminit init_per_zone_wmark_min(void);
  1859. extern void mem_init(void);
  1860. extern void __init mmap_init(void);
  1861. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1862. extern long si_mem_available(void);
  1863. extern void si_meminfo(struct sysinfo * val);
  1864. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1865. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1866. extern unsigned long arch_reserved_kernel_pages(void);
  1867. #endif
  1868. extern __printf(3, 4)
  1869. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1870. extern void setup_per_cpu_pageset(void);
  1871. extern void zone_pcp_update(struct zone *zone);
  1872. extern void zone_pcp_reset(struct zone *zone);
  1873. /* page_alloc.c */
  1874. extern int min_free_kbytes;
  1875. extern int watermark_scale_factor;
  1876. /* nommu.c */
  1877. extern atomic_long_t mmap_pages_allocated;
  1878. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1879. /* interval_tree.c */
  1880. void vma_interval_tree_insert(struct vm_area_struct *node,
  1881. struct rb_root_cached *root);
  1882. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1883. struct vm_area_struct *prev,
  1884. struct rb_root_cached *root);
  1885. void vma_interval_tree_remove(struct vm_area_struct *node,
  1886. struct rb_root_cached *root);
  1887. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1888. unsigned long start, unsigned long last);
  1889. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1890. unsigned long start, unsigned long last);
  1891. #define vma_interval_tree_foreach(vma, root, start, last) \
  1892. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1893. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1894. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1895. struct rb_root_cached *root);
  1896. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1897. struct rb_root_cached *root);
  1898. struct anon_vma_chain *
  1899. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1900. unsigned long start, unsigned long last);
  1901. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1902. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1903. #ifdef CONFIG_DEBUG_VM_RB
  1904. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1905. #endif
  1906. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1907. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1908. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1909. /* mmap.c */
  1910. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1911. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1912. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1913. struct vm_area_struct *expand);
  1914. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1915. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1916. {
  1917. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1918. }
  1919. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1920. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1921. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1922. struct mempolicy *, struct vm_userfaultfd_ctx);
  1923. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1924. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1925. unsigned long addr, int new_below);
  1926. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1927. unsigned long addr, int new_below);
  1928. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1929. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1930. struct rb_node **, struct rb_node *);
  1931. extern void unlink_file_vma(struct vm_area_struct *);
  1932. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1933. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1934. bool *need_rmap_locks);
  1935. extern void exit_mmap(struct mm_struct *);
  1936. static inline int check_data_rlimit(unsigned long rlim,
  1937. unsigned long new,
  1938. unsigned long start,
  1939. unsigned long end_data,
  1940. unsigned long start_data)
  1941. {
  1942. if (rlim < RLIM_INFINITY) {
  1943. if (((new - start) + (end_data - start_data)) > rlim)
  1944. return -ENOSPC;
  1945. }
  1946. return 0;
  1947. }
  1948. extern int mm_take_all_locks(struct mm_struct *mm);
  1949. extern void mm_drop_all_locks(struct mm_struct *mm);
  1950. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1951. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1952. extern struct file *get_task_exe_file(struct task_struct *task);
  1953. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1954. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1955. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1956. const struct vm_special_mapping *sm);
  1957. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1958. unsigned long addr, unsigned long len,
  1959. unsigned long flags,
  1960. const struct vm_special_mapping *spec);
  1961. /* This is an obsolete alternative to _install_special_mapping. */
  1962. extern int install_special_mapping(struct mm_struct *mm,
  1963. unsigned long addr, unsigned long len,
  1964. unsigned long flags, struct page **pages);
  1965. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1966. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1967. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1968. struct list_head *uf);
  1969. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1970. unsigned long len, unsigned long prot, unsigned long flags,
  1971. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1972. struct list_head *uf);
  1973. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1974. struct list_head *uf);
  1975. static inline unsigned long
  1976. do_mmap_pgoff(struct file *file, unsigned long addr,
  1977. unsigned long len, unsigned long prot, unsigned long flags,
  1978. unsigned long pgoff, unsigned long *populate,
  1979. struct list_head *uf)
  1980. {
  1981. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1982. }
  1983. #ifdef CONFIG_MMU
  1984. extern int __mm_populate(unsigned long addr, unsigned long len,
  1985. int ignore_errors);
  1986. static inline void mm_populate(unsigned long addr, unsigned long len)
  1987. {
  1988. /* Ignore errors */
  1989. (void) __mm_populate(addr, len, 1);
  1990. }
  1991. #else
  1992. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1993. #endif
  1994. /* These take the mm semaphore themselves */
  1995. extern int __must_check vm_brk(unsigned long, unsigned long);
  1996. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1997. extern int vm_munmap(unsigned long, size_t);
  1998. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1999. unsigned long, unsigned long,
  2000. unsigned long, unsigned long);
  2001. struct vm_unmapped_area_info {
  2002. #define VM_UNMAPPED_AREA_TOPDOWN 1
  2003. unsigned long flags;
  2004. unsigned long length;
  2005. unsigned long low_limit;
  2006. unsigned long high_limit;
  2007. unsigned long align_mask;
  2008. unsigned long align_offset;
  2009. };
  2010. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  2011. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  2012. /*
  2013. * Search for an unmapped address range.
  2014. *
  2015. * We are looking for a range that:
  2016. * - does not intersect with any VMA;
  2017. * - is contained within the [low_limit, high_limit) interval;
  2018. * - is at least the desired size.
  2019. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  2020. */
  2021. static inline unsigned long
  2022. vm_unmapped_area(struct vm_unmapped_area_info *info)
  2023. {
  2024. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  2025. return unmapped_area_topdown(info);
  2026. else
  2027. return unmapped_area(info);
  2028. }
  2029. /* truncate.c */
  2030. extern void truncate_inode_pages(struct address_space *, loff_t);
  2031. extern void truncate_inode_pages_range(struct address_space *,
  2032. loff_t lstart, loff_t lend);
  2033. extern void truncate_inode_pages_final(struct address_space *);
  2034. /* generic vm_area_ops exported for stackable file systems */
  2035. extern vm_fault_t filemap_fault(struct vm_fault *vmf);
  2036. extern void filemap_map_pages(struct vm_fault *vmf,
  2037. pgoff_t start_pgoff, pgoff_t end_pgoff);
  2038. extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
  2039. /* mm/page-writeback.c */
  2040. int __must_check write_one_page(struct page *page);
  2041. void task_dirty_inc(struct task_struct *tsk);
  2042. /* readahead.c */
  2043. #define VM_MAX_READAHEAD 128 /* kbytes */
  2044. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  2045. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  2046. pgoff_t offset, unsigned long nr_to_read);
  2047. void page_cache_sync_readahead(struct address_space *mapping,
  2048. struct file_ra_state *ra,
  2049. struct file *filp,
  2050. pgoff_t offset,
  2051. unsigned long size);
  2052. void page_cache_async_readahead(struct address_space *mapping,
  2053. struct file_ra_state *ra,
  2054. struct file *filp,
  2055. struct page *pg,
  2056. pgoff_t offset,
  2057. unsigned long size);
  2058. extern unsigned long stack_guard_gap;
  2059. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2060. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2061. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2062. extern int expand_downwards(struct vm_area_struct *vma,
  2063. unsigned long address);
  2064. #if VM_GROWSUP
  2065. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2066. #else
  2067. #define expand_upwards(vma, address) (0)
  2068. #endif
  2069. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2070. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2071. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2072. struct vm_area_struct **pprev);
  2073. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2074. NULL if none. Assume start_addr < end_addr. */
  2075. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2076. {
  2077. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2078. if (vma && end_addr <= vma->vm_start)
  2079. vma = NULL;
  2080. return vma;
  2081. }
  2082. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2083. {
  2084. unsigned long vm_start = vma->vm_start;
  2085. if (vma->vm_flags & VM_GROWSDOWN) {
  2086. vm_start -= stack_guard_gap;
  2087. if (vm_start > vma->vm_start)
  2088. vm_start = 0;
  2089. }
  2090. return vm_start;
  2091. }
  2092. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2093. {
  2094. unsigned long vm_end = vma->vm_end;
  2095. if (vma->vm_flags & VM_GROWSUP) {
  2096. vm_end += stack_guard_gap;
  2097. if (vm_end < vma->vm_end)
  2098. vm_end = -PAGE_SIZE;
  2099. }
  2100. return vm_end;
  2101. }
  2102. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2103. {
  2104. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2105. }
  2106. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2107. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2108. unsigned long vm_start, unsigned long vm_end)
  2109. {
  2110. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2111. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2112. vma = NULL;
  2113. return vma;
  2114. }
  2115. #ifdef CONFIG_MMU
  2116. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2117. void vma_set_page_prot(struct vm_area_struct *vma);
  2118. #else
  2119. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2120. {
  2121. return __pgprot(0);
  2122. }
  2123. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2124. {
  2125. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2126. }
  2127. #endif
  2128. #ifdef CONFIG_NUMA_BALANCING
  2129. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2130. unsigned long start, unsigned long end);
  2131. #endif
  2132. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2133. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2134. unsigned long pfn, unsigned long size, pgprot_t);
  2135. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2136. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2137. unsigned long pfn);
  2138. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2139. unsigned long pfn, pgprot_t pgprot);
  2140. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2141. pfn_t pfn);
  2142. vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
  2143. unsigned long addr, pfn_t pfn);
  2144. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2145. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2146. unsigned long addr, struct page *page)
  2147. {
  2148. int err = vm_insert_page(vma, addr, page);
  2149. if (err == -ENOMEM)
  2150. return VM_FAULT_OOM;
  2151. if (err < 0 && err != -EBUSY)
  2152. return VM_FAULT_SIGBUS;
  2153. return VM_FAULT_NOPAGE;
  2154. }
  2155. static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
  2156. unsigned long addr, pfn_t pfn)
  2157. {
  2158. int err = vm_insert_mixed(vma, addr, pfn);
  2159. if (err == -ENOMEM)
  2160. return VM_FAULT_OOM;
  2161. if (err < 0 && err != -EBUSY)
  2162. return VM_FAULT_SIGBUS;
  2163. return VM_FAULT_NOPAGE;
  2164. }
  2165. static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
  2166. unsigned long addr, unsigned long pfn)
  2167. {
  2168. int err = vm_insert_pfn(vma, addr, pfn);
  2169. if (err == -ENOMEM)
  2170. return VM_FAULT_OOM;
  2171. if (err < 0 && err != -EBUSY)
  2172. return VM_FAULT_SIGBUS;
  2173. return VM_FAULT_NOPAGE;
  2174. }
  2175. static inline vm_fault_t vmf_error(int err)
  2176. {
  2177. if (err == -ENOMEM)
  2178. return VM_FAULT_OOM;
  2179. return VM_FAULT_SIGBUS;
  2180. }
  2181. struct page *follow_page_mask(struct vm_area_struct *vma,
  2182. unsigned long address, unsigned int foll_flags,
  2183. unsigned int *page_mask);
  2184. static inline struct page *follow_page(struct vm_area_struct *vma,
  2185. unsigned long address, unsigned int foll_flags)
  2186. {
  2187. unsigned int unused_page_mask;
  2188. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2189. }
  2190. #define FOLL_WRITE 0x01 /* check pte is writable */
  2191. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2192. #define FOLL_GET 0x04 /* do get_page on page */
  2193. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2194. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2195. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2196. * and return without waiting upon it */
  2197. #define FOLL_POPULATE 0x40 /* fault in page */
  2198. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2199. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2200. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2201. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2202. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2203. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2204. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2205. #define FOLL_COW 0x4000 /* internal GUP flag */
  2206. #define FOLL_ANON 0x8000 /* don't do file mappings */
  2207. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2208. {
  2209. if (vm_fault & VM_FAULT_OOM)
  2210. return -ENOMEM;
  2211. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2212. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2213. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2214. return -EFAULT;
  2215. return 0;
  2216. }
  2217. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2218. void *data);
  2219. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2220. unsigned long size, pte_fn_t fn, void *data);
  2221. #ifdef CONFIG_PAGE_POISONING
  2222. extern bool page_poisoning_enabled(void);
  2223. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2224. #else
  2225. static inline bool page_poisoning_enabled(void) { return false; }
  2226. static inline void kernel_poison_pages(struct page *page, int numpages,
  2227. int enable) { }
  2228. #endif
  2229. #ifdef CONFIG_DEBUG_PAGEALLOC
  2230. extern bool _debug_pagealloc_enabled;
  2231. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2232. static inline bool debug_pagealloc_enabled(void)
  2233. {
  2234. return _debug_pagealloc_enabled;
  2235. }
  2236. static inline void
  2237. kernel_map_pages(struct page *page, int numpages, int enable)
  2238. {
  2239. if (!debug_pagealloc_enabled())
  2240. return;
  2241. __kernel_map_pages(page, numpages, enable);
  2242. }
  2243. #ifdef CONFIG_HIBERNATION
  2244. extern bool kernel_page_present(struct page *page);
  2245. #endif /* CONFIG_HIBERNATION */
  2246. #else /* CONFIG_DEBUG_PAGEALLOC */
  2247. static inline void
  2248. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2249. #ifdef CONFIG_HIBERNATION
  2250. static inline bool kernel_page_present(struct page *page) { return true; }
  2251. #endif /* CONFIG_HIBERNATION */
  2252. static inline bool debug_pagealloc_enabled(void)
  2253. {
  2254. return false;
  2255. }
  2256. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2257. #ifdef __HAVE_ARCH_GATE_AREA
  2258. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2259. extern int in_gate_area_no_mm(unsigned long addr);
  2260. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2261. #else
  2262. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2263. {
  2264. return NULL;
  2265. }
  2266. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2267. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2268. {
  2269. return 0;
  2270. }
  2271. #endif /* __HAVE_ARCH_GATE_AREA */
  2272. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2273. #ifdef CONFIG_SYSCTL
  2274. extern int sysctl_drop_caches;
  2275. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2276. void __user *, size_t *, loff_t *);
  2277. #endif
  2278. void drop_slab(void);
  2279. void drop_slab_node(int nid);
  2280. #ifndef CONFIG_MMU
  2281. #define randomize_va_space 0
  2282. #else
  2283. extern int randomize_va_space;
  2284. #endif
  2285. const char * arch_vma_name(struct vm_area_struct *vma);
  2286. void print_vma_addr(char *prefix, unsigned long rip);
  2287. void *sparse_buffer_alloc(unsigned long size);
  2288. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2289. struct vmem_altmap *altmap);
  2290. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2291. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2292. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2293. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2294. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2295. void *vmemmap_alloc_block(unsigned long size, int node);
  2296. struct vmem_altmap;
  2297. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2298. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2299. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2300. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2301. int node);
  2302. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2303. struct vmem_altmap *altmap);
  2304. void vmemmap_populate_print_last(void);
  2305. #ifdef CONFIG_MEMORY_HOTPLUG
  2306. void vmemmap_free(unsigned long start, unsigned long end,
  2307. struct vmem_altmap *altmap);
  2308. #endif
  2309. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2310. unsigned long nr_pages);
  2311. enum mf_flags {
  2312. MF_COUNT_INCREASED = 1 << 0,
  2313. MF_ACTION_REQUIRED = 1 << 1,
  2314. MF_MUST_KILL = 1 << 2,
  2315. MF_SOFT_OFFLINE = 1 << 3,
  2316. };
  2317. extern int memory_failure(unsigned long pfn, int flags);
  2318. extern void memory_failure_queue(unsigned long pfn, int flags);
  2319. extern int unpoison_memory(unsigned long pfn);
  2320. extern int get_hwpoison_page(struct page *page);
  2321. #define put_hwpoison_page(page) put_page(page)
  2322. extern int sysctl_memory_failure_early_kill;
  2323. extern int sysctl_memory_failure_recovery;
  2324. extern void shake_page(struct page *p, int access);
  2325. extern atomic_long_t num_poisoned_pages __read_mostly;
  2326. extern int soft_offline_page(struct page *page, int flags);
  2327. /*
  2328. * Error handlers for various types of pages.
  2329. */
  2330. enum mf_result {
  2331. MF_IGNORED, /* Error: cannot be handled */
  2332. MF_FAILED, /* Error: handling failed */
  2333. MF_DELAYED, /* Will be handled later */
  2334. MF_RECOVERED, /* Successfully recovered */
  2335. };
  2336. enum mf_action_page_type {
  2337. MF_MSG_KERNEL,
  2338. MF_MSG_KERNEL_HIGH_ORDER,
  2339. MF_MSG_SLAB,
  2340. MF_MSG_DIFFERENT_COMPOUND,
  2341. MF_MSG_POISONED_HUGE,
  2342. MF_MSG_HUGE,
  2343. MF_MSG_FREE_HUGE,
  2344. MF_MSG_NON_PMD_HUGE,
  2345. MF_MSG_UNMAP_FAILED,
  2346. MF_MSG_DIRTY_SWAPCACHE,
  2347. MF_MSG_CLEAN_SWAPCACHE,
  2348. MF_MSG_DIRTY_MLOCKED_LRU,
  2349. MF_MSG_CLEAN_MLOCKED_LRU,
  2350. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2351. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2352. MF_MSG_DIRTY_LRU,
  2353. MF_MSG_CLEAN_LRU,
  2354. MF_MSG_TRUNCATED_LRU,
  2355. MF_MSG_BUDDY,
  2356. MF_MSG_BUDDY_2ND,
  2357. MF_MSG_UNKNOWN,
  2358. };
  2359. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2360. extern void clear_huge_page(struct page *page,
  2361. unsigned long addr_hint,
  2362. unsigned int pages_per_huge_page);
  2363. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2364. unsigned long addr_hint,
  2365. struct vm_area_struct *vma,
  2366. unsigned int pages_per_huge_page);
  2367. extern long copy_huge_page_from_user(struct page *dst_page,
  2368. const void __user *usr_src,
  2369. unsigned int pages_per_huge_page,
  2370. bool allow_pagefault);
  2371. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2372. extern struct page_ext_operations debug_guardpage_ops;
  2373. #ifdef CONFIG_DEBUG_PAGEALLOC
  2374. extern unsigned int _debug_guardpage_minorder;
  2375. extern bool _debug_guardpage_enabled;
  2376. static inline unsigned int debug_guardpage_minorder(void)
  2377. {
  2378. return _debug_guardpage_minorder;
  2379. }
  2380. static inline bool debug_guardpage_enabled(void)
  2381. {
  2382. return _debug_guardpage_enabled;
  2383. }
  2384. static inline bool page_is_guard(struct page *page)
  2385. {
  2386. struct page_ext *page_ext;
  2387. if (!debug_guardpage_enabled())
  2388. return false;
  2389. page_ext = lookup_page_ext(page);
  2390. if (unlikely(!page_ext))
  2391. return false;
  2392. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2393. }
  2394. #else
  2395. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2396. static inline bool debug_guardpage_enabled(void) { return false; }
  2397. static inline bool page_is_guard(struct page *page) { return false; }
  2398. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2399. #if MAX_NUMNODES > 1
  2400. void __init setup_nr_node_ids(void);
  2401. #else
  2402. static inline void setup_nr_node_ids(void) {}
  2403. #endif
  2404. #endif /* __KERNEL__ */
  2405. #endif /* _LINUX_MM_H */