page_alloc.c 207 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. int watermark_scale_factor = 10;
  229. static unsigned long __meminitdata nr_kernel_pages;
  230. static unsigned long __meminitdata nr_all_pages;
  231. static unsigned long __meminitdata dma_reserve;
  232. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  233. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __initdata required_kernelcore;
  236. static unsigned long __initdata required_movablecore;
  237. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  238. static bool mirrored_kernelcore;
  239. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  240. int movable_zone;
  241. EXPORT_SYMBOL(movable_zone);
  242. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  243. #if MAX_NUMNODES > 1
  244. int nr_node_ids __read_mostly = MAX_NUMNODES;
  245. int nr_online_nodes __read_mostly = 1;
  246. EXPORT_SYMBOL(nr_node_ids);
  247. EXPORT_SYMBOL(nr_online_nodes);
  248. #endif
  249. int page_group_by_mobility_disabled __read_mostly;
  250. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  251. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  252. {
  253. pgdat->first_deferred_pfn = ULONG_MAX;
  254. }
  255. /* Returns true if the struct page for the pfn is uninitialised */
  256. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  257. {
  258. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  259. return true;
  260. return false;
  261. }
  262. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  263. {
  264. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  265. return true;
  266. return false;
  267. }
  268. /*
  269. * Returns false when the remaining initialisation should be deferred until
  270. * later in the boot cycle when it can be parallelised.
  271. */
  272. static inline bool update_defer_init(pg_data_t *pgdat,
  273. unsigned long pfn, unsigned long zone_end,
  274. unsigned long *nr_initialised)
  275. {
  276. unsigned long max_initialise;
  277. /* Always populate low zones for address-contrained allocations */
  278. if (zone_end < pgdat_end_pfn(pgdat))
  279. return true;
  280. /*
  281. * Initialise at least 2G of a node but also take into account that
  282. * two large system hashes that can take up 1GB for 0.25TB/node.
  283. */
  284. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  285. (pgdat->node_spanned_pages >> 8));
  286. (*nr_initialised)++;
  287. if ((*nr_initialised > max_initialise) &&
  288. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  289. pgdat->first_deferred_pfn = pfn;
  290. return false;
  291. }
  292. return true;
  293. }
  294. #else
  295. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  296. {
  297. }
  298. static inline bool early_page_uninitialised(unsigned long pfn)
  299. {
  300. return false;
  301. }
  302. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  303. {
  304. return false;
  305. }
  306. static inline bool update_defer_init(pg_data_t *pgdat,
  307. unsigned long pfn, unsigned long zone_end,
  308. unsigned long *nr_initialised)
  309. {
  310. return true;
  311. }
  312. #endif
  313. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  314. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  315. unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. return __pfn_to_section(pfn)->pageblock_flags;
  319. #else
  320. return page_zone(page)->pageblock_flags;
  321. #endif /* CONFIG_SPARSEMEM */
  322. }
  323. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  324. {
  325. #ifdef CONFIG_SPARSEMEM
  326. pfn &= (PAGES_PER_SECTION-1);
  327. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  328. #else
  329. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  330. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. /**
  334. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  335. * @page: The page within the block of interest
  336. * @pfn: The target page frame number
  337. * @end_bitidx: The last bit of interest to retrieve
  338. * @mask: mask of bits that the caller is interested in
  339. *
  340. * Return: pageblock_bits flags
  341. */
  342. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  343. unsigned long pfn,
  344. unsigned long end_bitidx,
  345. unsigned long mask)
  346. {
  347. unsigned long *bitmap;
  348. unsigned long bitidx, word_bitidx;
  349. unsigned long word;
  350. bitmap = get_pageblock_bitmap(page, pfn);
  351. bitidx = pfn_to_bitidx(page, pfn);
  352. word_bitidx = bitidx / BITS_PER_LONG;
  353. bitidx &= (BITS_PER_LONG-1);
  354. word = bitmap[word_bitidx];
  355. bitidx += end_bitidx;
  356. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  357. }
  358. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  359. unsigned long end_bitidx,
  360. unsigned long mask)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  363. }
  364. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  365. {
  366. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  367. }
  368. /**
  369. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  370. * @page: The page within the block of interest
  371. * @flags: The flags to set
  372. * @pfn: The target page frame number
  373. * @end_bitidx: The last bit of interest
  374. * @mask: mask of bits that the caller is interested in
  375. */
  376. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  377. unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. unsigned long *bitmap;
  382. unsigned long bitidx, word_bitidx;
  383. unsigned long old_word, word;
  384. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  385. bitmap = get_pageblock_bitmap(page, pfn);
  386. bitidx = pfn_to_bitidx(page, pfn);
  387. word_bitidx = bitidx / BITS_PER_LONG;
  388. bitidx &= (BITS_PER_LONG-1);
  389. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  390. bitidx += end_bitidx;
  391. mask <<= (BITS_PER_LONG - bitidx - 1);
  392. flags <<= (BITS_PER_LONG - bitidx - 1);
  393. word = READ_ONCE(bitmap[word_bitidx]);
  394. for (;;) {
  395. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  396. if (word == old_word)
  397. break;
  398. word = old_word;
  399. }
  400. }
  401. void set_pageblock_migratetype(struct page *page, int migratetype)
  402. {
  403. if (unlikely(page_group_by_mobility_disabled &&
  404. migratetype < MIGRATE_PCPTYPES))
  405. migratetype = MIGRATE_UNMOVABLE;
  406. set_pageblock_flags_group(page, (unsigned long)migratetype,
  407. PB_migrate, PB_migrate_end);
  408. }
  409. #ifdef CONFIG_DEBUG_VM
  410. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  411. {
  412. int ret = 0;
  413. unsigned seq;
  414. unsigned long pfn = page_to_pfn(page);
  415. unsigned long sp, start_pfn;
  416. do {
  417. seq = zone_span_seqbegin(zone);
  418. start_pfn = zone->zone_start_pfn;
  419. sp = zone->spanned_pages;
  420. if (!zone_spans_pfn(zone, pfn))
  421. ret = 1;
  422. } while (zone_span_seqretry(zone, seq));
  423. if (ret)
  424. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  425. pfn, zone_to_nid(zone), zone->name,
  426. start_pfn, start_pfn + sp);
  427. return ret;
  428. }
  429. static int page_is_consistent(struct zone *zone, struct page *page)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(page)))
  432. return 0;
  433. if (zone != page_zone(page))
  434. return 0;
  435. return 1;
  436. }
  437. /*
  438. * Temporary debugging check for pages not lying within a given zone.
  439. */
  440. static int bad_range(struct zone *zone, struct page *page)
  441. {
  442. if (page_outside_zone_boundaries(zone, page))
  443. return 1;
  444. if (!page_is_consistent(zone, page))
  445. return 1;
  446. return 0;
  447. }
  448. #else
  449. static inline int bad_range(struct zone *zone, struct page *page)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. static void bad_page(struct page *page, const char *reason,
  455. unsigned long bad_flags)
  456. {
  457. static unsigned long resume;
  458. static unsigned long nr_shown;
  459. static unsigned long nr_unshown;
  460. /* Don't complain about poisoned pages */
  461. if (PageHWPoison(page)) {
  462. page_mapcount_reset(page); /* remove PageBuddy */
  463. return;
  464. }
  465. /*
  466. * Allow a burst of 60 reports, then keep quiet for that minute;
  467. * or allow a steady drip of one report per second.
  468. */
  469. if (nr_shown == 60) {
  470. if (time_before(jiffies, resume)) {
  471. nr_unshown++;
  472. goto out;
  473. }
  474. if (nr_unshown) {
  475. pr_alert(
  476. "BUG: Bad page state: %lu messages suppressed\n",
  477. nr_unshown);
  478. nr_unshown = 0;
  479. }
  480. nr_shown = 0;
  481. }
  482. if (nr_shown++ == 0)
  483. resume = jiffies + 60 * HZ;
  484. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  485. current->comm, page_to_pfn(page));
  486. __dump_page(page, reason);
  487. bad_flags &= page->flags;
  488. if (bad_flags)
  489. pr_alert("bad because of flags: %#lx(%pGp)\n",
  490. bad_flags, &bad_flags);
  491. dump_page_owner(page);
  492. print_modules();
  493. dump_stack();
  494. out:
  495. /* Leave bad fields for debug, except PageBuddy could make trouble */
  496. page_mapcount_reset(page); /* remove PageBuddy */
  497. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  498. }
  499. /*
  500. * Higher-order pages are called "compound pages". They are structured thusly:
  501. *
  502. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  503. *
  504. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  505. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  506. *
  507. * The first tail page's ->compound_dtor holds the offset in array of compound
  508. * page destructors. See compound_page_dtors.
  509. *
  510. * The first tail page's ->compound_order holds the order of allocation.
  511. * This usage means that zero-order pages may not be compound.
  512. */
  513. void free_compound_page(struct page *page)
  514. {
  515. __free_pages_ok(page, compound_order(page));
  516. }
  517. void prep_compound_page(struct page *page, unsigned int order)
  518. {
  519. int i;
  520. int nr_pages = 1 << order;
  521. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  522. set_compound_order(page, order);
  523. __SetPageHead(page);
  524. for (i = 1; i < nr_pages; i++) {
  525. struct page *p = page + i;
  526. set_page_count(p, 0);
  527. p->mapping = TAIL_MAPPING;
  528. set_compound_head(p, page);
  529. }
  530. atomic_set(compound_mapcount_ptr(page), -1);
  531. }
  532. #ifdef CONFIG_DEBUG_PAGEALLOC
  533. unsigned int _debug_guardpage_minorder;
  534. bool _debug_pagealloc_enabled __read_mostly
  535. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  536. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  537. bool _debug_guardpage_enabled __read_mostly;
  538. static int __init early_debug_pagealloc(char *buf)
  539. {
  540. if (!buf)
  541. return -EINVAL;
  542. return kstrtobool(buf, &_debug_pagealloc_enabled);
  543. }
  544. early_param("debug_pagealloc", early_debug_pagealloc);
  545. static bool need_debug_guardpage(void)
  546. {
  547. /* If we don't use debug_pagealloc, we don't need guard page */
  548. if (!debug_pagealloc_enabled())
  549. return false;
  550. return true;
  551. }
  552. static void init_debug_guardpage(void)
  553. {
  554. if (!debug_pagealloc_enabled())
  555. return;
  556. _debug_guardpage_enabled = true;
  557. }
  558. struct page_ext_operations debug_guardpage_ops = {
  559. .need = need_debug_guardpage,
  560. .init = init_debug_guardpage,
  561. };
  562. static int __init debug_guardpage_minorder_setup(char *buf)
  563. {
  564. unsigned long res;
  565. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  566. pr_err("Bad debug_guardpage_minorder value\n");
  567. return 0;
  568. }
  569. _debug_guardpage_minorder = res;
  570. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  571. return 0;
  572. }
  573. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  574. static inline void set_page_guard(struct zone *zone, struct page *page,
  575. unsigned int order, int migratetype)
  576. {
  577. struct page_ext *page_ext;
  578. if (!debug_guardpage_enabled())
  579. return;
  580. page_ext = lookup_page_ext(page);
  581. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  582. INIT_LIST_HEAD(&page->lru);
  583. set_page_private(page, order);
  584. /* Guard pages are not available for any usage */
  585. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  586. }
  587. static inline void clear_page_guard(struct zone *zone, struct page *page,
  588. unsigned int order, int migratetype)
  589. {
  590. struct page_ext *page_ext;
  591. if (!debug_guardpage_enabled())
  592. return;
  593. page_ext = lookup_page_ext(page);
  594. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  595. set_page_private(page, 0);
  596. if (!is_migrate_isolate(migratetype))
  597. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  598. }
  599. #else
  600. struct page_ext_operations debug_guardpage_ops = { NULL, };
  601. static inline void set_page_guard(struct zone *zone, struct page *page,
  602. unsigned int order, int migratetype) {}
  603. static inline void clear_page_guard(struct zone *zone, struct page *page,
  604. unsigned int order, int migratetype) {}
  605. #endif
  606. static inline void set_page_order(struct page *page, unsigned int order)
  607. {
  608. set_page_private(page, order);
  609. __SetPageBuddy(page);
  610. }
  611. static inline void rmv_page_order(struct page *page)
  612. {
  613. __ClearPageBuddy(page);
  614. set_page_private(page, 0);
  615. }
  616. /*
  617. * This function checks whether a page is free && is the buddy
  618. * we can do coalesce a page and its buddy if
  619. * (a) the buddy is not in a hole &&
  620. * (b) the buddy is in the buddy system &&
  621. * (c) a page and its buddy have the same order &&
  622. * (d) a page and its buddy are in the same zone.
  623. *
  624. * For recording whether a page is in the buddy system, we set ->_mapcount
  625. * PAGE_BUDDY_MAPCOUNT_VALUE.
  626. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  627. * serialized by zone->lock.
  628. *
  629. * For recording page's order, we use page_private(page).
  630. */
  631. static inline int page_is_buddy(struct page *page, struct page *buddy,
  632. unsigned int order)
  633. {
  634. if (!pfn_valid_within(page_to_pfn(buddy)))
  635. return 0;
  636. if (page_is_guard(buddy) && page_order(buddy) == order) {
  637. if (page_zone_id(page) != page_zone_id(buddy))
  638. return 0;
  639. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  640. return 1;
  641. }
  642. if (PageBuddy(buddy) && page_order(buddy) == order) {
  643. /*
  644. * zone check is done late to avoid uselessly
  645. * calculating zone/node ids for pages that could
  646. * never merge.
  647. */
  648. if (page_zone_id(page) != page_zone_id(buddy))
  649. return 0;
  650. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  651. return 1;
  652. }
  653. return 0;
  654. }
  655. /*
  656. * Freeing function for a buddy system allocator.
  657. *
  658. * The concept of a buddy system is to maintain direct-mapped table
  659. * (containing bit values) for memory blocks of various "orders".
  660. * The bottom level table contains the map for the smallest allocatable
  661. * units of memory (here, pages), and each level above it describes
  662. * pairs of units from the levels below, hence, "buddies".
  663. * At a high level, all that happens here is marking the table entry
  664. * at the bottom level available, and propagating the changes upward
  665. * as necessary, plus some accounting needed to play nicely with other
  666. * parts of the VM system.
  667. * At each level, we keep a list of pages, which are heads of continuous
  668. * free pages of length of (1 << order) and marked with _mapcount
  669. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  670. * field.
  671. * So when we are allocating or freeing one, we can derive the state of the
  672. * other. That is, if we allocate a small block, and both were
  673. * free, the remainder of the region must be split into blocks.
  674. * If a block is freed, and its buddy is also free, then this
  675. * triggers coalescing into a block of larger size.
  676. *
  677. * -- nyc
  678. */
  679. static inline void __free_one_page(struct page *page,
  680. unsigned long pfn,
  681. struct zone *zone, unsigned int order,
  682. int migratetype)
  683. {
  684. unsigned long page_idx;
  685. unsigned long combined_idx;
  686. unsigned long uninitialized_var(buddy_idx);
  687. struct page *buddy;
  688. unsigned int max_order;
  689. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  690. VM_BUG_ON(!zone_is_initialized(zone));
  691. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  692. VM_BUG_ON(migratetype == -1);
  693. if (likely(!is_migrate_isolate(migratetype)))
  694. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  695. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  696. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  697. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  698. continue_merging:
  699. while (order < max_order - 1) {
  700. buddy_idx = __find_buddy_index(page_idx, order);
  701. buddy = page + (buddy_idx - page_idx);
  702. if (!page_is_buddy(page, buddy, order))
  703. goto done_merging;
  704. /*
  705. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  706. * merge with it and move up one order.
  707. */
  708. if (page_is_guard(buddy)) {
  709. clear_page_guard(zone, buddy, order, migratetype);
  710. } else {
  711. list_del(&buddy->lru);
  712. zone->free_area[order].nr_free--;
  713. rmv_page_order(buddy);
  714. }
  715. combined_idx = buddy_idx & page_idx;
  716. page = page + (combined_idx - page_idx);
  717. page_idx = combined_idx;
  718. order++;
  719. }
  720. if (max_order < MAX_ORDER) {
  721. /* If we are here, it means order is >= pageblock_order.
  722. * We want to prevent merge between freepages on isolate
  723. * pageblock and normal pageblock. Without this, pageblock
  724. * isolation could cause incorrect freepage or CMA accounting.
  725. *
  726. * We don't want to hit this code for the more frequent
  727. * low-order merging.
  728. */
  729. if (unlikely(has_isolate_pageblock(zone))) {
  730. int buddy_mt;
  731. buddy_idx = __find_buddy_index(page_idx, order);
  732. buddy = page + (buddy_idx - page_idx);
  733. buddy_mt = get_pageblock_migratetype(buddy);
  734. if (migratetype != buddy_mt
  735. && (is_migrate_isolate(migratetype) ||
  736. is_migrate_isolate(buddy_mt)))
  737. goto done_merging;
  738. }
  739. max_order++;
  740. goto continue_merging;
  741. }
  742. done_merging:
  743. set_page_order(page, order);
  744. /*
  745. * If this is not the largest possible page, check if the buddy
  746. * of the next-highest order is free. If it is, it's possible
  747. * that pages are being freed that will coalesce soon. In case,
  748. * that is happening, add the free page to the tail of the list
  749. * so it's less likely to be used soon and more likely to be merged
  750. * as a higher order page
  751. */
  752. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  753. struct page *higher_page, *higher_buddy;
  754. combined_idx = buddy_idx & page_idx;
  755. higher_page = page + (combined_idx - page_idx);
  756. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  757. higher_buddy = higher_page + (buddy_idx - combined_idx);
  758. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  759. list_add_tail(&page->lru,
  760. &zone->free_area[order].free_list[migratetype]);
  761. goto out;
  762. }
  763. }
  764. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  765. out:
  766. zone->free_area[order].nr_free++;
  767. }
  768. /*
  769. * A bad page could be due to a number of fields. Instead of multiple branches,
  770. * try and check multiple fields with one check. The caller must do a detailed
  771. * check if necessary.
  772. */
  773. static inline bool page_expected_state(struct page *page,
  774. unsigned long check_flags)
  775. {
  776. if (unlikely(atomic_read(&page->_mapcount) != -1))
  777. return false;
  778. if (unlikely((unsigned long)page->mapping |
  779. page_ref_count(page) |
  780. #ifdef CONFIG_MEMCG
  781. (unsigned long)page->mem_cgroup |
  782. #endif
  783. (page->flags & check_flags)))
  784. return false;
  785. return true;
  786. }
  787. static void free_pages_check_bad(struct page *page)
  788. {
  789. const char *bad_reason;
  790. unsigned long bad_flags;
  791. bad_reason = NULL;
  792. bad_flags = 0;
  793. if (unlikely(atomic_read(&page->_mapcount) != -1))
  794. bad_reason = "nonzero mapcount";
  795. if (unlikely(page->mapping != NULL))
  796. bad_reason = "non-NULL mapping";
  797. if (unlikely(page_ref_count(page) != 0))
  798. bad_reason = "nonzero _refcount";
  799. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  800. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  801. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  802. }
  803. #ifdef CONFIG_MEMCG
  804. if (unlikely(page->mem_cgroup))
  805. bad_reason = "page still charged to cgroup";
  806. #endif
  807. bad_page(page, bad_reason, bad_flags);
  808. }
  809. static inline int free_pages_check(struct page *page)
  810. {
  811. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  812. return 0;
  813. /* Something has gone sideways, find it */
  814. free_pages_check_bad(page);
  815. return 1;
  816. }
  817. static int free_tail_pages_check(struct page *head_page, struct page *page)
  818. {
  819. int ret = 1;
  820. /*
  821. * We rely page->lru.next never has bit 0 set, unless the page
  822. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  823. */
  824. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  825. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  826. ret = 0;
  827. goto out;
  828. }
  829. switch (page - head_page) {
  830. case 1:
  831. /* the first tail page: ->mapping is compound_mapcount() */
  832. if (unlikely(compound_mapcount(page))) {
  833. bad_page(page, "nonzero compound_mapcount", 0);
  834. goto out;
  835. }
  836. break;
  837. case 2:
  838. /*
  839. * the second tail page: ->mapping is
  840. * page_deferred_list().next -- ignore value.
  841. */
  842. break;
  843. default:
  844. if (page->mapping != TAIL_MAPPING) {
  845. bad_page(page, "corrupted mapping in tail page", 0);
  846. goto out;
  847. }
  848. break;
  849. }
  850. if (unlikely(!PageTail(page))) {
  851. bad_page(page, "PageTail not set", 0);
  852. goto out;
  853. }
  854. if (unlikely(compound_head(page) != head_page)) {
  855. bad_page(page, "compound_head not consistent", 0);
  856. goto out;
  857. }
  858. ret = 0;
  859. out:
  860. page->mapping = NULL;
  861. clear_compound_head(page);
  862. return ret;
  863. }
  864. static __always_inline bool free_pages_prepare(struct page *page,
  865. unsigned int order, bool check_free)
  866. {
  867. int bad = 0;
  868. VM_BUG_ON_PAGE(PageTail(page), page);
  869. trace_mm_page_free(page, order);
  870. kmemcheck_free_shadow(page, order);
  871. kasan_free_pages(page, order);
  872. /*
  873. * Check tail pages before head page information is cleared to
  874. * avoid checking PageCompound for order-0 pages.
  875. */
  876. if (unlikely(order)) {
  877. bool compound = PageCompound(page);
  878. int i;
  879. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  880. for (i = 1; i < (1 << order); i++) {
  881. if (compound)
  882. bad += free_tail_pages_check(page, page + i);
  883. if (unlikely(free_pages_check(page + i))) {
  884. bad++;
  885. continue;
  886. }
  887. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  888. }
  889. }
  890. if (PageAnonHead(page))
  891. page->mapping = NULL;
  892. if (check_free)
  893. bad += free_pages_check(page);
  894. if (bad)
  895. return false;
  896. page_cpupid_reset_last(page);
  897. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  898. reset_page_owner(page, order);
  899. if (!PageHighMem(page)) {
  900. debug_check_no_locks_freed(page_address(page),
  901. PAGE_SIZE << order);
  902. debug_check_no_obj_freed(page_address(page),
  903. PAGE_SIZE << order);
  904. }
  905. arch_free_page(page, order);
  906. kernel_poison_pages(page, 1 << order, 0);
  907. kernel_map_pages(page, 1 << order, 0);
  908. return true;
  909. }
  910. #ifdef CONFIG_DEBUG_VM
  911. static inline bool free_pcp_prepare(struct page *page)
  912. {
  913. return free_pages_prepare(page, 0, true);
  914. }
  915. static inline bool bulkfree_pcp_prepare(struct page *page)
  916. {
  917. return false;
  918. }
  919. #else
  920. static bool free_pcp_prepare(struct page *page)
  921. {
  922. return free_pages_prepare(page, 0, false);
  923. }
  924. static bool bulkfree_pcp_prepare(struct page *page)
  925. {
  926. return free_pages_check(page);
  927. }
  928. #endif /* CONFIG_DEBUG_VM */
  929. /*
  930. * Frees a number of pages from the PCP lists
  931. * Assumes all pages on list are in same zone, and of same order.
  932. * count is the number of pages to free.
  933. *
  934. * If the zone was previously in an "all pages pinned" state then look to
  935. * see if this freeing clears that state.
  936. *
  937. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  938. * pinned" detection logic.
  939. */
  940. static void free_pcppages_bulk(struct zone *zone, int count,
  941. struct per_cpu_pages *pcp)
  942. {
  943. int migratetype = 0;
  944. int batch_free = 0;
  945. unsigned long nr_scanned;
  946. bool isolated_pageblocks;
  947. spin_lock(&zone->lock);
  948. isolated_pageblocks = has_isolate_pageblock(zone);
  949. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  950. if (nr_scanned)
  951. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  952. while (count) {
  953. struct page *page;
  954. struct list_head *list;
  955. /*
  956. * Remove pages from lists in a round-robin fashion. A
  957. * batch_free count is maintained that is incremented when an
  958. * empty list is encountered. This is so more pages are freed
  959. * off fuller lists instead of spinning excessively around empty
  960. * lists
  961. */
  962. do {
  963. batch_free++;
  964. if (++migratetype == MIGRATE_PCPTYPES)
  965. migratetype = 0;
  966. list = &pcp->lists[migratetype];
  967. } while (list_empty(list));
  968. /* This is the only non-empty list. Free them all. */
  969. if (batch_free == MIGRATE_PCPTYPES)
  970. batch_free = count;
  971. do {
  972. int mt; /* migratetype of the to-be-freed page */
  973. page = list_last_entry(list, struct page, lru);
  974. /* must delete as __free_one_page list manipulates */
  975. list_del(&page->lru);
  976. mt = get_pcppage_migratetype(page);
  977. /* MIGRATE_ISOLATE page should not go to pcplists */
  978. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  979. /* Pageblock could have been isolated meanwhile */
  980. if (unlikely(isolated_pageblocks))
  981. mt = get_pageblock_migratetype(page);
  982. if (bulkfree_pcp_prepare(page))
  983. continue;
  984. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  985. trace_mm_page_pcpu_drain(page, 0, mt);
  986. } while (--count && --batch_free && !list_empty(list));
  987. }
  988. spin_unlock(&zone->lock);
  989. }
  990. static void free_one_page(struct zone *zone,
  991. struct page *page, unsigned long pfn,
  992. unsigned int order,
  993. int migratetype)
  994. {
  995. unsigned long nr_scanned;
  996. spin_lock(&zone->lock);
  997. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  998. if (nr_scanned)
  999. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  1000. if (unlikely(has_isolate_pageblock(zone) ||
  1001. is_migrate_isolate(migratetype))) {
  1002. migratetype = get_pfnblock_migratetype(page, pfn);
  1003. }
  1004. __free_one_page(page, pfn, zone, order, migratetype);
  1005. spin_unlock(&zone->lock);
  1006. }
  1007. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1008. unsigned long zone, int nid)
  1009. {
  1010. set_page_links(page, zone, nid, pfn);
  1011. init_page_count(page);
  1012. page_mapcount_reset(page);
  1013. page_cpupid_reset_last(page);
  1014. INIT_LIST_HEAD(&page->lru);
  1015. #ifdef WANT_PAGE_VIRTUAL
  1016. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1017. if (!is_highmem_idx(zone))
  1018. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1019. #endif
  1020. }
  1021. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1022. int nid)
  1023. {
  1024. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1025. }
  1026. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1027. static void init_reserved_page(unsigned long pfn)
  1028. {
  1029. pg_data_t *pgdat;
  1030. int nid, zid;
  1031. if (!early_page_uninitialised(pfn))
  1032. return;
  1033. nid = early_pfn_to_nid(pfn);
  1034. pgdat = NODE_DATA(nid);
  1035. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1036. struct zone *zone = &pgdat->node_zones[zid];
  1037. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1038. break;
  1039. }
  1040. __init_single_pfn(pfn, zid, nid);
  1041. }
  1042. #else
  1043. static inline void init_reserved_page(unsigned long pfn)
  1044. {
  1045. }
  1046. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1047. /*
  1048. * Initialised pages do not have PageReserved set. This function is
  1049. * called for each range allocated by the bootmem allocator and
  1050. * marks the pages PageReserved. The remaining valid pages are later
  1051. * sent to the buddy page allocator.
  1052. */
  1053. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  1054. {
  1055. unsigned long start_pfn = PFN_DOWN(start);
  1056. unsigned long end_pfn = PFN_UP(end);
  1057. for (; start_pfn < end_pfn; start_pfn++) {
  1058. if (pfn_valid(start_pfn)) {
  1059. struct page *page = pfn_to_page(start_pfn);
  1060. init_reserved_page(start_pfn);
  1061. /* Avoid false-positive PageTail() */
  1062. INIT_LIST_HEAD(&page->lru);
  1063. SetPageReserved(page);
  1064. }
  1065. }
  1066. }
  1067. static void __free_pages_ok(struct page *page, unsigned int order)
  1068. {
  1069. unsigned long flags;
  1070. int migratetype;
  1071. unsigned long pfn = page_to_pfn(page);
  1072. if (!free_pages_prepare(page, order, true))
  1073. return;
  1074. migratetype = get_pfnblock_migratetype(page, pfn);
  1075. local_irq_save(flags);
  1076. __count_vm_events(PGFREE, 1 << order);
  1077. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1078. local_irq_restore(flags);
  1079. }
  1080. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1081. {
  1082. unsigned int nr_pages = 1 << order;
  1083. struct page *p = page;
  1084. unsigned int loop;
  1085. prefetchw(p);
  1086. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1087. prefetchw(p + 1);
  1088. __ClearPageReserved(p);
  1089. set_page_count(p, 0);
  1090. }
  1091. __ClearPageReserved(p);
  1092. set_page_count(p, 0);
  1093. page_zone(page)->managed_pages += nr_pages;
  1094. set_page_refcounted(page);
  1095. __free_pages(page, order);
  1096. }
  1097. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1098. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1099. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1100. int __meminit early_pfn_to_nid(unsigned long pfn)
  1101. {
  1102. static DEFINE_SPINLOCK(early_pfn_lock);
  1103. int nid;
  1104. spin_lock(&early_pfn_lock);
  1105. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1106. if (nid < 0)
  1107. nid = 0;
  1108. spin_unlock(&early_pfn_lock);
  1109. return nid;
  1110. }
  1111. #endif
  1112. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1113. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1114. struct mminit_pfnnid_cache *state)
  1115. {
  1116. int nid;
  1117. nid = __early_pfn_to_nid(pfn, state);
  1118. if (nid >= 0 && nid != node)
  1119. return false;
  1120. return true;
  1121. }
  1122. /* Only safe to use early in boot when initialisation is single-threaded */
  1123. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1124. {
  1125. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1126. }
  1127. #else
  1128. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1129. {
  1130. return true;
  1131. }
  1132. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1133. struct mminit_pfnnid_cache *state)
  1134. {
  1135. return true;
  1136. }
  1137. #endif
  1138. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1139. unsigned int order)
  1140. {
  1141. if (early_page_uninitialised(pfn))
  1142. return;
  1143. return __free_pages_boot_core(page, order);
  1144. }
  1145. /*
  1146. * Check that the whole (or subset of) a pageblock given by the interval of
  1147. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1148. * with the migration of free compaction scanner. The scanners then need to
  1149. * use only pfn_valid_within() check for arches that allow holes within
  1150. * pageblocks.
  1151. *
  1152. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1153. *
  1154. * It's possible on some configurations to have a setup like node0 node1 node0
  1155. * i.e. it's possible that all pages within a zones range of pages do not
  1156. * belong to a single zone. We assume that a border between node0 and node1
  1157. * can occur within a single pageblock, but not a node0 node1 node0
  1158. * interleaving within a single pageblock. It is therefore sufficient to check
  1159. * the first and last page of a pageblock and avoid checking each individual
  1160. * page in a pageblock.
  1161. */
  1162. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1163. unsigned long end_pfn, struct zone *zone)
  1164. {
  1165. struct page *start_page;
  1166. struct page *end_page;
  1167. /* end_pfn is one past the range we are checking */
  1168. end_pfn--;
  1169. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1170. return NULL;
  1171. start_page = pfn_to_page(start_pfn);
  1172. if (page_zone(start_page) != zone)
  1173. return NULL;
  1174. end_page = pfn_to_page(end_pfn);
  1175. /* This gives a shorter code than deriving page_zone(end_page) */
  1176. if (page_zone_id(start_page) != page_zone_id(end_page))
  1177. return NULL;
  1178. return start_page;
  1179. }
  1180. void set_zone_contiguous(struct zone *zone)
  1181. {
  1182. unsigned long block_start_pfn = zone->zone_start_pfn;
  1183. unsigned long block_end_pfn;
  1184. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1185. for (; block_start_pfn < zone_end_pfn(zone);
  1186. block_start_pfn = block_end_pfn,
  1187. block_end_pfn += pageblock_nr_pages) {
  1188. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1189. if (!__pageblock_pfn_to_page(block_start_pfn,
  1190. block_end_pfn, zone))
  1191. return;
  1192. }
  1193. /* We confirm that there is no hole */
  1194. zone->contiguous = true;
  1195. }
  1196. void clear_zone_contiguous(struct zone *zone)
  1197. {
  1198. zone->contiguous = false;
  1199. }
  1200. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1201. static void __init deferred_free_range(struct page *page,
  1202. unsigned long pfn, int nr_pages)
  1203. {
  1204. int i;
  1205. if (!page)
  1206. return;
  1207. /* Free a large naturally-aligned chunk if possible */
  1208. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1209. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1210. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1211. __free_pages_boot_core(page, MAX_ORDER-1);
  1212. return;
  1213. }
  1214. for (i = 0; i < nr_pages; i++, page++)
  1215. __free_pages_boot_core(page, 0);
  1216. }
  1217. /* Completion tracking for deferred_init_memmap() threads */
  1218. static atomic_t pgdat_init_n_undone __initdata;
  1219. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1220. static inline void __init pgdat_init_report_one_done(void)
  1221. {
  1222. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1223. complete(&pgdat_init_all_done_comp);
  1224. }
  1225. /* Initialise remaining memory on a node */
  1226. static int __init deferred_init_memmap(void *data)
  1227. {
  1228. pg_data_t *pgdat = data;
  1229. int nid = pgdat->node_id;
  1230. struct mminit_pfnnid_cache nid_init_state = { };
  1231. unsigned long start = jiffies;
  1232. unsigned long nr_pages = 0;
  1233. unsigned long walk_start, walk_end;
  1234. int i, zid;
  1235. struct zone *zone;
  1236. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1237. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1238. if (first_init_pfn == ULONG_MAX) {
  1239. pgdat_init_report_one_done();
  1240. return 0;
  1241. }
  1242. /* Bind memory initialisation thread to a local node if possible */
  1243. if (!cpumask_empty(cpumask))
  1244. set_cpus_allowed_ptr(current, cpumask);
  1245. /* Sanity check boundaries */
  1246. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1247. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1248. pgdat->first_deferred_pfn = ULONG_MAX;
  1249. /* Only the highest zone is deferred so find it */
  1250. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1251. zone = pgdat->node_zones + zid;
  1252. if (first_init_pfn < zone_end_pfn(zone))
  1253. break;
  1254. }
  1255. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1256. unsigned long pfn, end_pfn;
  1257. struct page *page = NULL;
  1258. struct page *free_base_page = NULL;
  1259. unsigned long free_base_pfn = 0;
  1260. int nr_to_free = 0;
  1261. end_pfn = min(walk_end, zone_end_pfn(zone));
  1262. pfn = first_init_pfn;
  1263. if (pfn < walk_start)
  1264. pfn = walk_start;
  1265. if (pfn < zone->zone_start_pfn)
  1266. pfn = zone->zone_start_pfn;
  1267. for (; pfn < end_pfn; pfn++) {
  1268. if (!pfn_valid_within(pfn))
  1269. goto free_range;
  1270. /*
  1271. * Ensure pfn_valid is checked every
  1272. * MAX_ORDER_NR_PAGES for memory holes
  1273. */
  1274. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1275. if (!pfn_valid(pfn)) {
  1276. page = NULL;
  1277. goto free_range;
  1278. }
  1279. }
  1280. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1281. page = NULL;
  1282. goto free_range;
  1283. }
  1284. /* Minimise pfn page lookups and scheduler checks */
  1285. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1286. page++;
  1287. } else {
  1288. nr_pages += nr_to_free;
  1289. deferred_free_range(free_base_page,
  1290. free_base_pfn, nr_to_free);
  1291. free_base_page = NULL;
  1292. free_base_pfn = nr_to_free = 0;
  1293. page = pfn_to_page(pfn);
  1294. cond_resched();
  1295. }
  1296. if (page->flags) {
  1297. VM_BUG_ON(page_zone(page) != zone);
  1298. goto free_range;
  1299. }
  1300. __init_single_page(page, pfn, zid, nid);
  1301. if (!free_base_page) {
  1302. free_base_page = page;
  1303. free_base_pfn = pfn;
  1304. nr_to_free = 0;
  1305. }
  1306. nr_to_free++;
  1307. /* Where possible, batch up pages for a single free */
  1308. continue;
  1309. free_range:
  1310. /* Free the current block of pages to allocator */
  1311. nr_pages += nr_to_free;
  1312. deferred_free_range(free_base_page, free_base_pfn,
  1313. nr_to_free);
  1314. free_base_page = NULL;
  1315. free_base_pfn = nr_to_free = 0;
  1316. }
  1317. first_init_pfn = max(end_pfn, first_init_pfn);
  1318. }
  1319. /* Sanity check that the next zone really is unpopulated */
  1320. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1321. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1322. jiffies_to_msecs(jiffies - start));
  1323. pgdat_init_report_one_done();
  1324. return 0;
  1325. }
  1326. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1327. void __init page_alloc_init_late(void)
  1328. {
  1329. struct zone *zone;
  1330. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1331. int nid;
  1332. /* There will be num_node_state(N_MEMORY) threads */
  1333. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1334. for_each_node_state(nid, N_MEMORY) {
  1335. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1336. }
  1337. /* Block until all are initialised */
  1338. wait_for_completion(&pgdat_init_all_done_comp);
  1339. /* Reinit limits that are based on free pages after the kernel is up */
  1340. files_maxfiles_init();
  1341. #endif
  1342. for_each_populated_zone(zone)
  1343. set_zone_contiguous(zone);
  1344. }
  1345. #ifdef CONFIG_CMA
  1346. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1347. void __init init_cma_reserved_pageblock(struct page *page)
  1348. {
  1349. unsigned i = pageblock_nr_pages;
  1350. struct page *p = page;
  1351. do {
  1352. __ClearPageReserved(p);
  1353. set_page_count(p, 0);
  1354. } while (++p, --i);
  1355. set_pageblock_migratetype(page, MIGRATE_CMA);
  1356. if (pageblock_order >= MAX_ORDER) {
  1357. i = pageblock_nr_pages;
  1358. p = page;
  1359. do {
  1360. set_page_refcounted(p);
  1361. __free_pages(p, MAX_ORDER - 1);
  1362. p += MAX_ORDER_NR_PAGES;
  1363. } while (i -= MAX_ORDER_NR_PAGES);
  1364. } else {
  1365. set_page_refcounted(page);
  1366. __free_pages(page, pageblock_order);
  1367. }
  1368. adjust_managed_page_count(page, pageblock_nr_pages);
  1369. }
  1370. #endif
  1371. /*
  1372. * The order of subdivision here is critical for the IO subsystem.
  1373. * Please do not alter this order without good reasons and regression
  1374. * testing. Specifically, as large blocks of memory are subdivided,
  1375. * the order in which smaller blocks are delivered depends on the order
  1376. * they're subdivided in this function. This is the primary factor
  1377. * influencing the order in which pages are delivered to the IO
  1378. * subsystem according to empirical testing, and this is also justified
  1379. * by considering the behavior of a buddy system containing a single
  1380. * large block of memory acted on by a series of small allocations.
  1381. * This behavior is a critical factor in sglist merging's success.
  1382. *
  1383. * -- nyc
  1384. */
  1385. static inline void expand(struct zone *zone, struct page *page,
  1386. int low, int high, struct free_area *area,
  1387. int migratetype)
  1388. {
  1389. unsigned long size = 1 << high;
  1390. while (high > low) {
  1391. area--;
  1392. high--;
  1393. size >>= 1;
  1394. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1395. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1396. debug_guardpage_enabled() &&
  1397. high < debug_guardpage_minorder()) {
  1398. /*
  1399. * Mark as guard pages (or page), that will allow to
  1400. * merge back to allocator when buddy will be freed.
  1401. * Corresponding page table entries will not be touched,
  1402. * pages will stay not present in virtual address space
  1403. */
  1404. set_page_guard(zone, &page[size], high, migratetype);
  1405. continue;
  1406. }
  1407. list_add(&page[size].lru, &area->free_list[migratetype]);
  1408. area->nr_free++;
  1409. set_page_order(&page[size], high);
  1410. }
  1411. }
  1412. static void check_new_page_bad(struct page *page)
  1413. {
  1414. const char *bad_reason = NULL;
  1415. unsigned long bad_flags = 0;
  1416. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1417. bad_reason = "nonzero mapcount";
  1418. if (unlikely(page->mapping != NULL))
  1419. bad_reason = "non-NULL mapping";
  1420. if (unlikely(page_ref_count(page) != 0))
  1421. bad_reason = "nonzero _count";
  1422. if (unlikely(page->flags & __PG_HWPOISON)) {
  1423. bad_reason = "HWPoisoned (hardware-corrupted)";
  1424. bad_flags = __PG_HWPOISON;
  1425. }
  1426. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1427. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1428. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1429. }
  1430. #ifdef CONFIG_MEMCG
  1431. if (unlikely(page->mem_cgroup))
  1432. bad_reason = "page still charged to cgroup";
  1433. #endif
  1434. bad_page(page, bad_reason, bad_flags);
  1435. }
  1436. /*
  1437. * This page is about to be returned from the page allocator
  1438. */
  1439. static inline int check_new_page(struct page *page)
  1440. {
  1441. if (likely(page_expected_state(page,
  1442. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1443. return 0;
  1444. check_new_page_bad(page);
  1445. return 1;
  1446. }
  1447. static inline bool free_pages_prezeroed(bool poisoned)
  1448. {
  1449. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1450. page_poisoning_enabled() && poisoned;
  1451. }
  1452. #ifdef CONFIG_DEBUG_VM
  1453. static bool check_pcp_refill(struct page *page)
  1454. {
  1455. return false;
  1456. }
  1457. static bool check_new_pcp(struct page *page)
  1458. {
  1459. return check_new_page(page);
  1460. }
  1461. #else
  1462. static bool check_pcp_refill(struct page *page)
  1463. {
  1464. return check_new_page(page);
  1465. }
  1466. static bool check_new_pcp(struct page *page)
  1467. {
  1468. return false;
  1469. }
  1470. #endif /* CONFIG_DEBUG_VM */
  1471. static bool check_new_pages(struct page *page, unsigned int order)
  1472. {
  1473. int i;
  1474. for (i = 0; i < (1 << order); i++) {
  1475. struct page *p = page + i;
  1476. if (unlikely(check_new_page(p)))
  1477. return true;
  1478. }
  1479. return false;
  1480. }
  1481. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1482. unsigned int alloc_flags)
  1483. {
  1484. int i;
  1485. bool poisoned = true;
  1486. for (i = 0; i < (1 << order); i++) {
  1487. struct page *p = page + i;
  1488. if (poisoned)
  1489. poisoned &= page_is_poisoned(p);
  1490. }
  1491. set_page_private(page, 0);
  1492. set_page_refcounted(page);
  1493. arch_alloc_page(page, order);
  1494. kernel_map_pages(page, 1 << order, 1);
  1495. kernel_poison_pages(page, 1 << order, 1);
  1496. kasan_alloc_pages(page, order);
  1497. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1498. for (i = 0; i < (1 << order); i++)
  1499. clear_highpage(page + i);
  1500. if (order && (gfp_flags & __GFP_COMP))
  1501. prep_compound_page(page, order);
  1502. set_page_owner(page, order, gfp_flags);
  1503. /*
  1504. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1505. * allocate the page. The expectation is that the caller is taking
  1506. * steps that will free more memory. The caller should avoid the page
  1507. * being used for !PFMEMALLOC purposes.
  1508. */
  1509. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1510. set_page_pfmemalloc(page);
  1511. else
  1512. clear_page_pfmemalloc(page);
  1513. }
  1514. /*
  1515. * Go through the free lists for the given migratetype and remove
  1516. * the smallest available page from the freelists
  1517. */
  1518. static inline
  1519. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1520. int migratetype)
  1521. {
  1522. unsigned int current_order;
  1523. struct free_area *area;
  1524. struct page *page;
  1525. /* Find a page of the appropriate size in the preferred list */
  1526. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1527. area = &(zone->free_area[current_order]);
  1528. page = list_first_entry_or_null(&area->free_list[migratetype],
  1529. struct page, lru);
  1530. if (!page)
  1531. continue;
  1532. list_del(&page->lru);
  1533. rmv_page_order(page);
  1534. area->nr_free--;
  1535. expand(zone, page, order, current_order, area, migratetype);
  1536. set_pcppage_migratetype(page, migratetype);
  1537. return page;
  1538. }
  1539. return NULL;
  1540. }
  1541. /*
  1542. * This array describes the order lists are fallen back to when
  1543. * the free lists for the desirable migrate type are depleted
  1544. */
  1545. static int fallbacks[MIGRATE_TYPES][4] = {
  1546. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1547. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1548. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1549. #ifdef CONFIG_CMA
  1550. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1551. #endif
  1552. #ifdef CONFIG_MEMORY_ISOLATION
  1553. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1554. #endif
  1555. };
  1556. #ifdef CONFIG_CMA
  1557. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1558. unsigned int order)
  1559. {
  1560. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1561. }
  1562. #else
  1563. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1564. unsigned int order) { return NULL; }
  1565. #endif
  1566. /*
  1567. * Move the free pages in a range to the free lists of the requested type.
  1568. * Note that start_page and end_pages are not aligned on a pageblock
  1569. * boundary. If alignment is required, use move_freepages_block()
  1570. */
  1571. int move_freepages(struct zone *zone,
  1572. struct page *start_page, struct page *end_page,
  1573. int migratetype)
  1574. {
  1575. struct page *page;
  1576. unsigned int order;
  1577. int pages_moved = 0;
  1578. #ifndef CONFIG_HOLES_IN_ZONE
  1579. /*
  1580. * page_zone is not safe to call in this context when
  1581. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1582. * anyway as we check zone boundaries in move_freepages_block().
  1583. * Remove at a later date when no bug reports exist related to
  1584. * grouping pages by mobility
  1585. */
  1586. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1587. #endif
  1588. for (page = start_page; page <= end_page;) {
  1589. /* Make sure we are not inadvertently changing nodes */
  1590. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1591. if (!pfn_valid_within(page_to_pfn(page))) {
  1592. page++;
  1593. continue;
  1594. }
  1595. if (!PageBuddy(page)) {
  1596. page++;
  1597. continue;
  1598. }
  1599. order = page_order(page);
  1600. list_move(&page->lru,
  1601. &zone->free_area[order].free_list[migratetype]);
  1602. page += 1 << order;
  1603. pages_moved += 1 << order;
  1604. }
  1605. return pages_moved;
  1606. }
  1607. int move_freepages_block(struct zone *zone, struct page *page,
  1608. int migratetype)
  1609. {
  1610. unsigned long start_pfn, end_pfn;
  1611. struct page *start_page, *end_page;
  1612. start_pfn = page_to_pfn(page);
  1613. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1614. start_page = pfn_to_page(start_pfn);
  1615. end_page = start_page + pageblock_nr_pages - 1;
  1616. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1617. /* Do not cross zone boundaries */
  1618. if (!zone_spans_pfn(zone, start_pfn))
  1619. start_page = page;
  1620. if (!zone_spans_pfn(zone, end_pfn))
  1621. return 0;
  1622. return move_freepages(zone, start_page, end_page, migratetype);
  1623. }
  1624. static void change_pageblock_range(struct page *pageblock_page,
  1625. int start_order, int migratetype)
  1626. {
  1627. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1628. while (nr_pageblocks--) {
  1629. set_pageblock_migratetype(pageblock_page, migratetype);
  1630. pageblock_page += pageblock_nr_pages;
  1631. }
  1632. }
  1633. /*
  1634. * When we are falling back to another migratetype during allocation, try to
  1635. * steal extra free pages from the same pageblocks to satisfy further
  1636. * allocations, instead of polluting multiple pageblocks.
  1637. *
  1638. * If we are stealing a relatively large buddy page, it is likely there will
  1639. * be more free pages in the pageblock, so try to steal them all. For
  1640. * reclaimable and unmovable allocations, we steal regardless of page size,
  1641. * as fragmentation caused by those allocations polluting movable pageblocks
  1642. * is worse than movable allocations stealing from unmovable and reclaimable
  1643. * pageblocks.
  1644. */
  1645. static bool can_steal_fallback(unsigned int order, int start_mt)
  1646. {
  1647. /*
  1648. * Leaving this order check is intended, although there is
  1649. * relaxed order check in next check. The reason is that
  1650. * we can actually steal whole pageblock if this condition met,
  1651. * but, below check doesn't guarantee it and that is just heuristic
  1652. * so could be changed anytime.
  1653. */
  1654. if (order >= pageblock_order)
  1655. return true;
  1656. if (order >= pageblock_order / 2 ||
  1657. start_mt == MIGRATE_RECLAIMABLE ||
  1658. start_mt == MIGRATE_UNMOVABLE ||
  1659. page_group_by_mobility_disabled)
  1660. return true;
  1661. return false;
  1662. }
  1663. /*
  1664. * This function implements actual steal behaviour. If order is large enough,
  1665. * we can steal whole pageblock. If not, we first move freepages in this
  1666. * pageblock and check whether half of pages are moved or not. If half of
  1667. * pages are moved, we can change migratetype of pageblock and permanently
  1668. * use it's pages as requested migratetype in the future.
  1669. */
  1670. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1671. int start_type)
  1672. {
  1673. unsigned int current_order = page_order(page);
  1674. int pages;
  1675. /* Take ownership for orders >= pageblock_order */
  1676. if (current_order >= pageblock_order) {
  1677. change_pageblock_range(page, current_order, start_type);
  1678. return;
  1679. }
  1680. pages = move_freepages_block(zone, page, start_type);
  1681. /* Claim the whole block if over half of it is free */
  1682. if (pages >= (1 << (pageblock_order-1)) ||
  1683. page_group_by_mobility_disabled)
  1684. set_pageblock_migratetype(page, start_type);
  1685. }
  1686. /*
  1687. * Check whether there is a suitable fallback freepage with requested order.
  1688. * If only_stealable is true, this function returns fallback_mt only if
  1689. * we can steal other freepages all together. This would help to reduce
  1690. * fragmentation due to mixed migratetype pages in one pageblock.
  1691. */
  1692. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1693. int migratetype, bool only_stealable, bool *can_steal)
  1694. {
  1695. int i;
  1696. int fallback_mt;
  1697. if (area->nr_free == 0)
  1698. return -1;
  1699. *can_steal = false;
  1700. for (i = 0;; i++) {
  1701. fallback_mt = fallbacks[migratetype][i];
  1702. if (fallback_mt == MIGRATE_TYPES)
  1703. break;
  1704. if (list_empty(&area->free_list[fallback_mt]))
  1705. continue;
  1706. if (can_steal_fallback(order, migratetype))
  1707. *can_steal = true;
  1708. if (!only_stealable)
  1709. return fallback_mt;
  1710. if (*can_steal)
  1711. return fallback_mt;
  1712. }
  1713. return -1;
  1714. }
  1715. /*
  1716. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1717. * there are no empty page blocks that contain a page with a suitable order
  1718. */
  1719. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1720. unsigned int alloc_order)
  1721. {
  1722. int mt;
  1723. unsigned long max_managed, flags;
  1724. /*
  1725. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1726. * Check is race-prone but harmless.
  1727. */
  1728. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1729. if (zone->nr_reserved_highatomic >= max_managed)
  1730. return;
  1731. spin_lock_irqsave(&zone->lock, flags);
  1732. /* Recheck the nr_reserved_highatomic limit under the lock */
  1733. if (zone->nr_reserved_highatomic >= max_managed)
  1734. goto out_unlock;
  1735. /* Yoink! */
  1736. mt = get_pageblock_migratetype(page);
  1737. if (mt != MIGRATE_HIGHATOMIC &&
  1738. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1739. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1740. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1741. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1742. }
  1743. out_unlock:
  1744. spin_unlock_irqrestore(&zone->lock, flags);
  1745. }
  1746. /*
  1747. * Used when an allocation is about to fail under memory pressure. This
  1748. * potentially hurts the reliability of high-order allocations when under
  1749. * intense memory pressure but failed atomic allocations should be easier
  1750. * to recover from than an OOM.
  1751. */
  1752. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1753. {
  1754. struct zonelist *zonelist = ac->zonelist;
  1755. unsigned long flags;
  1756. struct zoneref *z;
  1757. struct zone *zone;
  1758. struct page *page;
  1759. int order;
  1760. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1761. ac->nodemask) {
  1762. /* Preserve at least one pageblock */
  1763. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1764. continue;
  1765. spin_lock_irqsave(&zone->lock, flags);
  1766. for (order = 0; order < MAX_ORDER; order++) {
  1767. struct free_area *area = &(zone->free_area[order]);
  1768. page = list_first_entry_or_null(
  1769. &area->free_list[MIGRATE_HIGHATOMIC],
  1770. struct page, lru);
  1771. if (!page)
  1772. continue;
  1773. /*
  1774. * It should never happen but changes to locking could
  1775. * inadvertently allow a per-cpu drain to add pages
  1776. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1777. * and watch for underflows.
  1778. */
  1779. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1780. zone->nr_reserved_highatomic);
  1781. /*
  1782. * Convert to ac->migratetype and avoid the normal
  1783. * pageblock stealing heuristics. Minimally, the caller
  1784. * is doing the work and needs the pages. More
  1785. * importantly, if the block was always converted to
  1786. * MIGRATE_UNMOVABLE or another type then the number
  1787. * of pageblocks that cannot be completely freed
  1788. * may increase.
  1789. */
  1790. set_pageblock_migratetype(page, ac->migratetype);
  1791. move_freepages_block(zone, page, ac->migratetype);
  1792. spin_unlock_irqrestore(&zone->lock, flags);
  1793. return;
  1794. }
  1795. spin_unlock_irqrestore(&zone->lock, flags);
  1796. }
  1797. }
  1798. /* Remove an element from the buddy allocator from the fallback list */
  1799. static inline struct page *
  1800. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1801. {
  1802. struct free_area *area;
  1803. unsigned int current_order;
  1804. struct page *page;
  1805. int fallback_mt;
  1806. bool can_steal;
  1807. /* Find the largest possible block of pages in the other list */
  1808. for (current_order = MAX_ORDER-1;
  1809. current_order >= order && current_order <= MAX_ORDER-1;
  1810. --current_order) {
  1811. area = &(zone->free_area[current_order]);
  1812. fallback_mt = find_suitable_fallback(area, current_order,
  1813. start_migratetype, false, &can_steal);
  1814. if (fallback_mt == -1)
  1815. continue;
  1816. page = list_first_entry(&area->free_list[fallback_mt],
  1817. struct page, lru);
  1818. if (can_steal)
  1819. steal_suitable_fallback(zone, page, start_migratetype);
  1820. /* Remove the page from the freelists */
  1821. area->nr_free--;
  1822. list_del(&page->lru);
  1823. rmv_page_order(page);
  1824. expand(zone, page, order, current_order, area,
  1825. start_migratetype);
  1826. /*
  1827. * The pcppage_migratetype may differ from pageblock's
  1828. * migratetype depending on the decisions in
  1829. * find_suitable_fallback(). This is OK as long as it does not
  1830. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1831. * fallback only via special __rmqueue_cma_fallback() function
  1832. */
  1833. set_pcppage_migratetype(page, start_migratetype);
  1834. trace_mm_page_alloc_extfrag(page, order, current_order,
  1835. start_migratetype, fallback_mt);
  1836. return page;
  1837. }
  1838. return NULL;
  1839. }
  1840. /*
  1841. * Do the hard work of removing an element from the buddy allocator.
  1842. * Call me with the zone->lock already held.
  1843. */
  1844. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1845. int migratetype)
  1846. {
  1847. struct page *page;
  1848. page = __rmqueue_smallest(zone, order, migratetype);
  1849. if (unlikely(!page)) {
  1850. if (migratetype == MIGRATE_MOVABLE)
  1851. page = __rmqueue_cma_fallback(zone, order);
  1852. if (!page)
  1853. page = __rmqueue_fallback(zone, order, migratetype);
  1854. }
  1855. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1856. return page;
  1857. }
  1858. /*
  1859. * Obtain a specified number of elements from the buddy allocator, all under
  1860. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1861. * Returns the number of new pages which were placed at *list.
  1862. */
  1863. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1864. unsigned long count, struct list_head *list,
  1865. int migratetype, bool cold)
  1866. {
  1867. int i;
  1868. spin_lock(&zone->lock);
  1869. for (i = 0; i < count; ++i) {
  1870. struct page *page = __rmqueue(zone, order, migratetype);
  1871. if (unlikely(page == NULL))
  1872. break;
  1873. if (unlikely(check_pcp_refill(page)))
  1874. continue;
  1875. /*
  1876. * Split buddy pages returned by expand() are received here
  1877. * in physical page order. The page is added to the callers and
  1878. * list and the list head then moves forward. From the callers
  1879. * perspective, the linked list is ordered by page number in
  1880. * some conditions. This is useful for IO devices that can
  1881. * merge IO requests if the physical pages are ordered
  1882. * properly.
  1883. */
  1884. if (likely(!cold))
  1885. list_add(&page->lru, list);
  1886. else
  1887. list_add_tail(&page->lru, list);
  1888. list = &page->lru;
  1889. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1890. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1891. -(1 << order));
  1892. }
  1893. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1894. spin_unlock(&zone->lock);
  1895. return i;
  1896. }
  1897. #ifdef CONFIG_NUMA
  1898. /*
  1899. * Called from the vmstat counter updater to drain pagesets of this
  1900. * currently executing processor on remote nodes after they have
  1901. * expired.
  1902. *
  1903. * Note that this function must be called with the thread pinned to
  1904. * a single processor.
  1905. */
  1906. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1907. {
  1908. unsigned long flags;
  1909. int to_drain, batch;
  1910. local_irq_save(flags);
  1911. batch = READ_ONCE(pcp->batch);
  1912. to_drain = min(pcp->count, batch);
  1913. if (to_drain > 0) {
  1914. free_pcppages_bulk(zone, to_drain, pcp);
  1915. pcp->count -= to_drain;
  1916. }
  1917. local_irq_restore(flags);
  1918. }
  1919. #endif
  1920. /*
  1921. * Drain pcplists of the indicated processor and zone.
  1922. *
  1923. * The processor must either be the current processor and the
  1924. * thread pinned to the current processor or a processor that
  1925. * is not online.
  1926. */
  1927. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1928. {
  1929. unsigned long flags;
  1930. struct per_cpu_pageset *pset;
  1931. struct per_cpu_pages *pcp;
  1932. local_irq_save(flags);
  1933. pset = per_cpu_ptr(zone->pageset, cpu);
  1934. pcp = &pset->pcp;
  1935. if (pcp->count) {
  1936. free_pcppages_bulk(zone, pcp->count, pcp);
  1937. pcp->count = 0;
  1938. }
  1939. local_irq_restore(flags);
  1940. }
  1941. /*
  1942. * Drain pcplists of all zones on the indicated processor.
  1943. *
  1944. * The processor must either be the current processor and the
  1945. * thread pinned to the current processor or a processor that
  1946. * is not online.
  1947. */
  1948. static void drain_pages(unsigned int cpu)
  1949. {
  1950. struct zone *zone;
  1951. for_each_populated_zone(zone) {
  1952. drain_pages_zone(cpu, zone);
  1953. }
  1954. }
  1955. /*
  1956. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1957. *
  1958. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1959. * the single zone's pages.
  1960. */
  1961. void drain_local_pages(struct zone *zone)
  1962. {
  1963. int cpu = smp_processor_id();
  1964. if (zone)
  1965. drain_pages_zone(cpu, zone);
  1966. else
  1967. drain_pages(cpu);
  1968. }
  1969. /*
  1970. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1971. *
  1972. * When zone parameter is non-NULL, spill just the single zone's pages.
  1973. *
  1974. * Note that this code is protected against sending an IPI to an offline
  1975. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1976. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1977. * nothing keeps CPUs from showing up after we populated the cpumask and
  1978. * before the call to on_each_cpu_mask().
  1979. */
  1980. void drain_all_pages(struct zone *zone)
  1981. {
  1982. int cpu;
  1983. /*
  1984. * Allocate in the BSS so we wont require allocation in
  1985. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1986. */
  1987. static cpumask_t cpus_with_pcps;
  1988. /*
  1989. * We don't care about racing with CPU hotplug event
  1990. * as offline notification will cause the notified
  1991. * cpu to drain that CPU pcps and on_each_cpu_mask
  1992. * disables preemption as part of its processing
  1993. */
  1994. for_each_online_cpu(cpu) {
  1995. struct per_cpu_pageset *pcp;
  1996. struct zone *z;
  1997. bool has_pcps = false;
  1998. if (zone) {
  1999. pcp = per_cpu_ptr(zone->pageset, cpu);
  2000. if (pcp->pcp.count)
  2001. has_pcps = true;
  2002. } else {
  2003. for_each_populated_zone(z) {
  2004. pcp = per_cpu_ptr(z->pageset, cpu);
  2005. if (pcp->pcp.count) {
  2006. has_pcps = true;
  2007. break;
  2008. }
  2009. }
  2010. }
  2011. if (has_pcps)
  2012. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2013. else
  2014. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2015. }
  2016. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2017. zone, 1);
  2018. }
  2019. #ifdef CONFIG_HIBERNATION
  2020. void mark_free_pages(struct zone *zone)
  2021. {
  2022. unsigned long pfn, max_zone_pfn;
  2023. unsigned long flags;
  2024. unsigned int order, t;
  2025. struct page *page;
  2026. if (zone_is_empty(zone))
  2027. return;
  2028. spin_lock_irqsave(&zone->lock, flags);
  2029. max_zone_pfn = zone_end_pfn(zone);
  2030. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2031. if (pfn_valid(pfn)) {
  2032. page = pfn_to_page(pfn);
  2033. if (page_zone(page) != zone)
  2034. continue;
  2035. if (!swsusp_page_is_forbidden(page))
  2036. swsusp_unset_page_free(page);
  2037. }
  2038. for_each_migratetype_order(order, t) {
  2039. list_for_each_entry(page,
  2040. &zone->free_area[order].free_list[t], lru) {
  2041. unsigned long i;
  2042. pfn = page_to_pfn(page);
  2043. for (i = 0; i < (1UL << order); i++)
  2044. swsusp_set_page_free(pfn_to_page(pfn + i));
  2045. }
  2046. }
  2047. spin_unlock_irqrestore(&zone->lock, flags);
  2048. }
  2049. #endif /* CONFIG_PM */
  2050. /*
  2051. * Free a 0-order page
  2052. * cold == true ? free a cold page : free a hot page
  2053. */
  2054. void free_hot_cold_page(struct page *page, bool cold)
  2055. {
  2056. struct zone *zone = page_zone(page);
  2057. struct per_cpu_pages *pcp;
  2058. unsigned long flags;
  2059. unsigned long pfn = page_to_pfn(page);
  2060. int migratetype;
  2061. if (!free_pcp_prepare(page))
  2062. return;
  2063. migratetype = get_pfnblock_migratetype(page, pfn);
  2064. set_pcppage_migratetype(page, migratetype);
  2065. local_irq_save(flags);
  2066. __count_vm_event(PGFREE);
  2067. /*
  2068. * We only track unmovable, reclaimable and movable on pcp lists.
  2069. * Free ISOLATE pages back to the allocator because they are being
  2070. * offlined but treat RESERVE as movable pages so we can get those
  2071. * areas back if necessary. Otherwise, we may have to free
  2072. * excessively into the page allocator
  2073. */
  2074. if (migratetype >= MIGRATE_PCPTYPES) {
  2075. if (unlikely(is_migrate_isolate(migratetype))) {
  2076. free_one_page(zone, page, pfn, 0, migratetype);
  2077. goto out;
  2078. }
  2079. migratetype = MIGRATE_MOVABLE;
  2080. }
  2081. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2082. if (!cold)
  2083. list_add(&page->lru, &pcp->lists[migratetype]);
  2084. else
  2085. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2086. pcp->count++;
  2087. if (pcp->count >= pcp->high) {
  2088. unsigned long batch = READ_ONCE(pcp->batch);
  2089. free_pcppages_bulk(zone, batch, pcp);
  2090. pcp->count -= batch;
  2091. }
  2092. out:
  2093. local_irq_restore(flags);
  2094. }
  2095. /*
  2096. * Free a list of 0-order pages
  2097. */
  2098. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2099. {
  2100. struct page *page, *next;
  2101. list_for_each_entry_safe(page, next, list, lru) {
  2102. trace_mm_page_free_batched(page, cold);
  2103. free_hot_cold_page(page, cold);
  2104. }
  2105. }
  2106. /*
  2107. * split_page takes a non-compound higher-order page, and splits it into
  2108. * n (1<<order) sub-pages: page[0..n]
  2109. * Each sub-page must be freed individually.
  2110. *
  2111. * Note: this is probably too low level an operation for use in drivers.
  2112. * Please consult with lkml before using this in your driver.
  2113. */
  2114. void split_page(struct page *page, unsigned int order)
  2115. {
  2116. int i;
  2117. gfp_t gfp_mask;
  2118. VM_BUG_ON_PAGE(PageCompound(page), page);
  2119. VM_BUG_ON_PAGE(!page_count(page), page);
  2120. #ifdef CONFIG_KMEMCHECK
  2121. /*
  2122. * Split shadow pages too, because free(page[0]) would
  2123. * otherwise free the whole shadow.
  2124. */
  2125. if (kmemcheck_page_is_tracked(page))
  2126. split_page(virt_to_page(page[0].shadow), order);
  2127. #endif
  2128. gfp_mask = get_page_owner_gfp(page);
  2129. set_page_owner(page, 0, gfp_mask);
  2130. for (i = 1; i < (1 << order); i++) {
  2131. set_page_refcounted(page + i);
  2132. set_page_owner(page + i, 0, gfp_mask);
  2133. }
  2134. }
  2135. EXPORT_SYMBOL_GPL(split_page);
  2136. int __isolate_free_page(struct page *page, unsigned int order)
  2137. {
  2138. unsigned long watermark;
  2139. struct zone *zone;
  2140. int mt;
  2141. BUG_ON(!PageBuddy(page));
  2142. zone = page_zone(page);
  2143. mt = get_pageblock_migratetype(page);
  2144. if (!is_migrate_isolate(mt)) {
  2145. /* Obey watermarks as if the page was being allocated */
  2146. watermark = low_wmark_pages(zone) + (1 << order);
  2147. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  2148. return 0;
  2149. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2150. }
  2151. /* Remove page from free list */
  2152. list_del(&page->lru);
  2153. zone->free_area[order].nr_free--;
  2154. rmv_page_order(page);
  2155. set_page_owner(page, order, __GFP_MOVABLE);
  2156. /* Set the pageblock if the isolated page is at least a pageblock */
  2157. if (order >= pageblock_order - 1) {
  2158. struct page *endpage = page + (1 << order) - 1;
  2159. for (; page < endpage; page += pageblock_nr_pages) {
  2160. int mt = get_pageblock_migratetype(page);
  2161. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2162. set_pageblock_migratetype(page,
  2163. MIGRATE_MOVABLE);
  2164. }
  2165. }
  2166. return 1UL << order;
  2167. }
  2168. /*
  2169. * Similar to split_page except the page is already free. As this is only
  2170. * being used for migration, the migratetype of the block also changes.
  2171. * As this is called with interrupts disabled, the caller is responsible
  2172. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  2173. * are enabled.
  2174. *
  2175. * Note: this is probably too low level an operation for use in drivers.
  2176. * Please consult with lkml before using this in your driver.
  2177. */
  2178. int split_free_page(struct page *page)
  2179. {
  2180. unsigned int order;
  2181. int nr_pages;
  2182. order = page_order(page);
  2183. nr_pages = __isolate_free_page(page, order);
  2184. if (!nr_pages)
  2185. return 0;
  2186. /* Split into individual pages */
  2187. set_page_refcounted(page);
  2188. split_page(page, order);
  2189. return nr_pages;
  2190. }
  2191. /*
  2192. * Update NUMA hit/miss statistics
  2193. *
  2194. * Must be called with interrupts disabled.
  2195. *
  2196. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2197. * zone is the local node. This is useful for daemons who allocate
  2198. * memory on behalf of other processes.
  2199. */
  2200. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2201. gfp_t flags)
  2202. {
  2203. #ifdef CONFIG_NUMA
  2204. int local_nid = numa_node_id();
  2205. enum zone_stat_item local_stat = NUMA_LOCAL;
  2206. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2207. local_stat = NUMA_OTHER;
  2208. local_nid = preferred_zone->node;
  2209. }
  2210. if (z->node == local_nid) {
  2211. __inc_zone_state(z, NUMA_HIT);
  2212. __inc_zone_state(z, local_stat);
  2213. } else {
  2214. __inc_zone_state(z, NUMA_MISS);
  2215. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2216. }
  2217. #endif
  2218. }
  2219. /*
  2220. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2221. */
  2222. static inline
  2223. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2224. struct zone *zone, unsigned int order,
  2225. gfp_t gfp_flags, unsigned int alloc_flags,
  2226. int migratetype)
  2227. {
  2228. unsigned long flags;
  2229. struct page *page;
  2230. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2231. if (likely(order == 0)) {
  2232. struct per_cpu_pages *pcp;
  2233. struct list_head *list;
  2234. local_irq_save(flags);
  2235. do {
  2236. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2237. list = &pcp->lists[migratetype];
  2238. if (list_empty(list)) {
  2239. pcp->count += rmqueue_bulk(zone, 0,
  2240. pcp->batch, list,
  2241. migratetype, cold);
  2242. if (unlikely(list_empty(list)))
  2243. goto failed;
  2244. }
  2245. if (cold)
  2246. page = list_last_entry(list, struct page, lru);
  2247. else
  2248. page = list_first_entry(list, struct page, lru);
  2249. } while (page && check_new_pcp(page));
  2250. __dec_zone_state(zone, NR_ALLOC_BATCH);
  2251. list_del(&page->lru);
  2252. pcp->count--;
  2253. } else {
  2254. /*
  2255. * We most definitely don't want callers attempting to
  2256. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2257. */
  2258. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2259. spin_lock_irqsave(&zone->lock, flags);
  2260. do {
  2261. page = NULL;
  2262. if (alloc_flags & ALLOC_HARDER) {
  2263. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2264. if (page)
  2265. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2266. }
  2267. if (!page)
  2268. page = __rmqueue(zone, order, migratetype);
  2269. } while (page && check_new_pages(page, order));
  2270. spin_unlock(&zone->lock);
  2271. if (!page)
  2272. goto failed;
  2273. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2274. __mod_zone_freepage_state(zone, -(1 << order),
  2275. get_pcppage_migratetype(page));
  2276. }
  2277. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2278. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2279. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2280. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2281. zone_statistics(preferred_zone, zone, gfp_flags);
  2282. local_irq_restore(flags);
  2283. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2284. return page;
  2285. failed:
  2286. local_irq_restore(flags);
  2287. return NULL;
  2288. }
  2289. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2290. static struct {
  2291. struct fault_attr attr;
  2292. bool ignore_gfp_highmem;
  2293. bool ignore_gfp_reclaim;
  2294. u32 min_order;
  2295. } fail_page_alloc = {
  2296. .attr = FAULT_ATTR_INITIALIZER,
  2297. .ignore_gfp_reclaim = true,
  2298. .ignore_gfp_highmem = true,
  2299. .min_order = 1,
  2300. };
  2301. static int __init setup_fail_page_alloc(char *str)
  2302. {
  2303. return setup_fault_attr(&fail_page_alloc.attr, str);
  2304. }
  2305. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2306. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2307. {
  2308. if (order < fail_page_alloc.min_order)
  2309. return false;
  2310. if (gfp_mask & __GFP_NOFAIL)
  2311. return false;
  2312. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2313. return false;
  2314. if (fail_page_alloc.ignore_gfp_reclaim &&
  2315. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2316. return false;
  2317. return should_fail(&fail_page_alloc.attr, 1 << order);
  2318. }
  2319. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2320. static int __init fail_page_alloc_debugfs(void)
  2321. {
  2322. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2323. struct dentry *dir;
  2324. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2325. &fail_page_alloc.attr);
  2326. if (IS_ERR(dir))
  2327. return PTR_ERR(dir);
  2328. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2329. &fail_page_alloc.ignore_gfp_reclaim))
  2330. goto fail;
  2331. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2332. &fail_page_alloc.ignore_gfp_highmem))
  2333. goto fail;
  2334. if (!debugfs_create_u32("min-order", mode, dir,
  2335. &fail_page_alloc.min_order))
  2336. goto fail;
  2337. return 0;
  2338. fail:
  2339. debugfs_remove_recursive(dir);
  2340. return -ENOMEM;
  2341. }
  2342. late_initcall(fail_page_alloc_debugfs);
  2343. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2344. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2345. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2346. {
  2347. return false;
  2348. }
  2349. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2350. /*
  2351. * Return true if free base pages are above 'mark'. For high-order checks it
  2352. * will return true of the order-0 watermark is reached and there is at least
  2353. * one free page of a suitable size. Checking now avoids taking the zone lock
  2354. * to check in the allocation paths if no pages are free.
  2355. */
  2356. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2357. int classzone_idx, unsigned int alloc_flags,
  2358. long free_pages)
  2359. {
  2360. long min = mark;
  2361. int o;
  2362. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2363. /* free_pages may go negative - that's OK */
  2364. free_pages -= (1 << order) - 1;
  2365. if (alloc_flags & ALLOC_HIGH)
  2366. min -= min / 2;
  2367. /*
  2368. * If the caller does not have rights to ALLOC_HARDER then subtract
  2369. * the high-atomic reserves. This will over-estimate the size of the
  2370. * atomic reserve but it avoids a search.
  2371. */
  2372. if (likely(!alloc_harder))
  2373. free_pages -= z->nr_reserved_highatomic;
  2374. else
  2375. min -= min / 4;
  2376. #ifdef CONFIG_CMA
  2377. /* If allocation can't use CMA areas don't use free CMA pages */
  2378. if (!(alloc_flags & ALLOC_CMA))
  2379. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2380. #endif
  2381. /*
  2382. * Check watermarks for an order-0 allocation request. If these
  2383. * are not met, then a high-order request also cannot go ahead
  2384. * even if a suitable page happened to be free.
  2385. */
  2386. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2387. return false;
  2388. /* If this is an order-0 request then the watermark is fine */
  2389. if (!order)
  2390. return true;
  2391. /* For a high-order request, check at least one suitable page is free */
  2392. for (o = order; o < MAX_ORDER; o++) {
  2393. struct free_area *area = &z->free_area[o];
  2394. int mt;
  2395. if (!area->nr_free)
  2396. continue;
  2397. if (alloc_harder)
  2398. return true;
  2399. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2400. if (!list_empty(&area->free_list[mt]))
  2401. return true;
  2402. }
  2403. #ifdef CONFIG_CMA
  2404. if ((alloc_flags & ALLOC_CMA) &&
  2405. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2406. return true;
  2407. }
  2408. #endif
  2409. }
  2410. return false;
  2411. }
  2412. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2413. int classzone_idx, unsigned int alloc_flags)
  2414. {
  2415. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2416. zone_page_state(z, NR_FREE_PAGES));
  2417. }
  2418. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2419. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2420. {
  2421. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2422. long cma_pages = 0;
  2423. #ifdef CONFIG_CMA
  2424. /* If allocation can't use CMA areas don't use free CMA pages */
  2425. if (!(alloc_flags & ALLOC_CMA))
  2426. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2427. #endif
  2428. /*
  2429. * Fast check for order-0 only. If this fails then the reserves
  2430. * need to be calculated. There is a corner case where the check
  2431. * passes but only the high-order atomic reserve are free. If
  2432. * the caller is !atomic then it'll uselessly search the free
  2433. * list. That corner case is then slower but it is harmless.
  2434. */
  2435. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2436. return true;
  2437. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2438. free_pages);
  2439. }
  2440. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2441. unsigned long mark, int classzone_idx)
  2442. {
  2443. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2444. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2445. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2446. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2447. free_pages);
  2448. }
  2449. #ifdef CONFIG_NUMA
  2450. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2451. {
  2452. return local_zone->node == zone->node;
  2453. }
  2454. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2455. {
  2456. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2457. RECLAIM_DISTANCE;
  2458. }
  2459. #else /* CONFIG_NUMA */
  2460. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2461. {
  2462. return true;
  2463. }
  2464. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2465. {
  2466. return true;
  2467. }
  2468. #endif /* CONFIG_NUMA */
  2469. static void reset_alloc_batches(struct zone *preferred_zone)
  2470. {
  2471. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2472. do {
  2473. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2474. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2475. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2476. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2477. } while (zone++ != preferred_zone);
  2478. }
  2479. /*
  2480. * get_page_from_freelist goes through the zonelist trying to allocate
  2481. * a page.
  2482. */
  2483. static struct page *
  2484. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2485. const struct alloc_context *ac)
  2486. {
  2487. struct zoneref *z = ac->preferred_zoneref;
  2488. struct zone *zone;
  2489. bool fair_skipped = false;
  2490. bool apply_fair = (alloc_flags & ALLOC_FAIR);
  2491. zonelist_scan:
  2492. /*
  2493. * Scan zonelist, looking for a zone with enough free.
  2494. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2495. */
  2496. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2497. ac->nodemask) {
  2498. struct page *page;
  2499. unsigned long mark;
  2500. if (cpusets_enabled() &&
  2501. (alloc_flags & ALLOC_CPUSET) &&
  2502. !__cpuset_zone_allowed(zone, gfp_mask))
  2503. continue;
  2504. /*
  2505. * Distribute pages in proportion to the individual
  2506. * zone size to ensure fair page aging. The zone a
  2507. * page was allocated in should have no effect on the
  2508. * time the page has in memory before being reclaimed.
  2509. */
  2510. if (apply_fair) {
  2511. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2512. fair_skipped = true;
  2513. continue;
  2514. }
  2515. if (!zone_local(ac->preferred_zoneref->zone, zone)) {
  2516. if (fair_skipped)
  2517. goto reset_fair;
  2518. apply_fair = false;
  2519. }
  2520. }
  2521. /*
  2522. * When allocating a page cache page for writing, we
  2523. * want to get it from a zone that is within its dirty
  2524. * limit, such that no single zone holds more than its
  2525. * proportional share of globally allowed dirty pages.
  2526. * The dirty limits take into account the zone's
  2527. * lowmem reserves and high watermark so that kswapd
  2528. * should be able to balance it without having to
  2529. * write pages from its LRU list.
  2530. *
  2531. * This may look like it could increase pressure on
  2532. * lower zones by failing allocations in higher zones
  2533. * before they are full. But the pages that do spill
  2534. * over are limited as the lower zones are protected
  2535. * by this very same mechanism. It should not become
  2536. * a practical burden to them.
  2537. *
  2538. * XXX: For now, allow allocations to potentially
  2539. * exceed the per-zone dirty limit in the slowpath
  2540. * (spread_dirty_pages unset) before going into reclaim,
  2541. * which is important when on a NUMA setup the allowed
  2542. * zones are together not big enough to reach the
  2543. * global limit. The proper fix for these situations
  2544. * will require awareness of zones in the
  2545. * dirty-throttling and the flusher threads.
  2546. */
  2547. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2548. continue;
  2549. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2550. if (!zone_watermark_fast(zone, order, mark,
  2551. ac_classzone_idx(ac), alloc_flags)) {
  2552. int ret;
  2553. /* Checked here to keep the fast path fast */
  2554. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2555. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2556. goto try_this_zone;
  2557. if (zone_reclaim_mode == 0 ||
  2558. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2559. continue;
  2560. ret = zone_reclaim(zone, gfp_mask, order);
  2561. switch (ret) {
  2562. case ZONE_RECLAIM_NOSCAN:
  2563. /* did not scan */
  2564. continue;
  2565. case ZONE_RECLAIM_FULL:
  2566. /* scanned but unreclaimable */
  2567. continue;
  2568. default:
  2569. /* did we reclaim enough */
  2570. if (zone_watermark_ok(zone, order, mark,
  2571. ac_classzone_idx(ac), alloc_flags))
  2572. goto try_this_zone;
  2573. continue;
  2574. }
  2575. }
  2576. try_this_zone:
  2577. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2578. gfp_mask, alloc_flags, ac->migratetype);
  2579. if (page) {
  2580. prep_new_page(page, order, gfp_mask, alloc_flags);
  2581. /*
  2582. * If this is a high-order atomic allocation then check
  2583. * if the pageblock should be reserved for the future
  2584. */
  2585. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2586. reserve_highatomic_pageblock(page, zone, order);
  2587. return page;
  2588. }
  2589. }
  2590. /*
  2591. * The first pass makes sure allocations are spread fairly within the
  2592. * local node. However, the local node might have free pages left
  2593. * after the fairness batches are exhausted, and remote zones haven't
  2594. * even been considered yet. Try once more without fairness, and
  2595. * include remote zones now, before entering the slowpath and waking
  2596. * kswapd: prefer spilling to a remote zone over swapping locally.
  2597. */
  2598. if (fair_skipped) {
  2599. reset_fair:
  2600. apply_fair = false;
  2601. fair_skipped = false;
  2602. reset_alloc_batches(ac->preferred_zoneref->zone);
  2603. goto zonelist_scan;
  2604. }
  2605. return NULL;
  2606. }
  2607. /*
  2608. * Large machines with many possible nodes should not always dump per-node
  2609. * meminfo in irq context.
  2610. */
  2611. static inline bool should_suppress_show_mem(void)
  2612. {
  2613. bool ret = false;
  2614. #if NODES_SHIFT > 8
  2615. ret = in_interrupt();
  2616. #endif
  2617. return ret;
  2618. }
  2619. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2620. DEFAULT_RATELIMIT_INTERVAL,
  2621. DEFAULT_RATELIMIT_BURST);
  2622. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2623. {
  2624. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2625. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2626. debug_guardpage_minorder() > 0)
  2627. return;
  2628. /*
  2629. * This documents exceptions given to allocations in certain
  2630. * contexts that are allowed to allocate outside current's set
  2631. * of allowed nodes.
  2632. */
  2633. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2634. if (test_thread_flag(TIF_MEMDIE) ||
  2635. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2636. filter &= ~SHOW_MEM_FILTER_NODES;
  2637. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2638. filter &= ~SHOW_MEM_FILTER_NODES;
  2639. if (fmt) {
  2640. struct va_format vaf;
  2641. va_list args;
  2642. va_start(args, fmt);
  2643. vaf.fmt = fmt;
  2644. vaf.va = &args;
  2645. pr_warn("%pV", &vaf);
  2646. va_end(args);
  2647. }
  2648. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2649. current->comm, order, gfp_mask, &gfp_mask);
  2650. dump_stack();
  2651. if (!should_suppress_show_mem())
  2652. show_mem(filter);
  2653. }
  2654. static inline struct page *
  2655. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2656. const struct alloc_context *ac, unsigned long *did_some_progress)
  2657. {
  2658. struct oom_control oc = {
  2659. .zonelist = ac->zonelist,
  2660. .nodemask = ac->nodemask,
  2661. .gfp_mask = gfp_mask,
  2662. .order = order,
  2663. };
  2664. struct page *page;
  2665. *did_some_progress = 0;
  2666. /*
  2667. * Acquire the oom lock. If that fails, somebody else is
  2668. * making progress for us.
  2669. */
  2670. if (!mutex_trylock(&oom_lock)) {
  2671. *did_some_progress = 1;
  2672. schedule_timeout_uninterruptible(1);
  2673. return NULL;
  2674. }
  2675. /*
  2676. * Go through the zonelist yet one more time, keep very high watermark
  2677. * here, this is only to catch a parallel oom killing, we must fail if
  2678. * we're still under heavy pressure.
  2679. */
  2680. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2681. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2682. if (page)
  2683. goto out;
  2684. if (!(gfp_mask & __GFP_NOFAIL)) {
  2685. /* Coredumps can quickly deplete all memory reserves */
  2686. if (current->flags & PF_DUMPCORE)
  2687. goto out;
  2688. /* The OOM killer will not help higher order allocs */
  2689. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2690. goto out;
  2691. /* The OOM killer does not needlessly kill tasks for lowmem */
  2692. if (ac->high_zoneidx < ZONE_NORMAL)
  2693. goto out;
  2694. if (pm_suspended_storage())
  2695. goto out;
  2696. /*
  2697. * XXX: GFP_NOFS allocations should rather fail than rely on
  2698. * other request to make a forward progress.
  2699. * We are in an unfortunate situation where out_of_memory cannot
  2700. * do much for this context but let's try it to at least get
  2701. * access to memory reserved if the current task is killed (see
  2702. * out_of_memory). Once filesystems are ready to handle allocation
  2703. * failures more gracefully we should just bail out here.
  2704. */
  2705. /* The OOM killer may not free memory on a specific node */
  2706. if (gfp_mask & __GFP_THISNODE)
  2707. goto out;
  2708. }
  2709. /* Exhausted what can be done so it's blamo time */
  2710. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2711. *did_some_progress = 1;
  2712. if (gfp_mask & __GFP_NOFAIL) {
  2713. page = get_page_from_freelist(gfp_mask, order,
  2714. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2715. /*
  2716. * fallback to ignore cpuset restriction if our nodes
  2717. * are depleted
  2718. */
  2719. if (!page)
  2720. page = get_page_from_freelist(gfp_mask, order,
  2721. ALLOC_NO_WATERMARKS, ac);
  2722. }
  2723. }
  2724. out:
  2725. mutex_unlock(&oom_lock);
  2726. return page;
  2727. }
  2728. /*
  2729. * Maximum number of compaction retries wit a progress before OOM
  2730. * killer is consider as the only way to move forward.
  2731. */
  2732. #define MAX_COMPACT_RETRIES 16
  2733. #ifdef CONFIG_COMPACTION
  2734. /* Try memory compaction for high-order allocations before reclaim */
  2735. static struct page *
  2736. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2737. unsigned int alloc_flags, const struct alloc_context *ac,
  2738. enum migrate_mode mode, enum compact_result *compact_result)
  2739. {
  2740. struct page *page;
  2741. int contended_compaction;
  2742. if (!order)
  2743. return NULL;
  2744. current->flags |= PF_MEMALLOC;
  2745. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2746. mode, &contended_compaction);
  2747. current->flags &= ~PF_MEMALLOC;
  2748. if (*compact_result <= COMPACT_INACTIVE)
  2749. return NULL;
  2750. /*
  2751. * At least in one zone compaction wasn't deferred or skipped, so let's
  2752. * count a compaction stall
  2753. */
  2754. count_vm_event(COMPACTSTALL);
  2755. page = get_page_from_freelist(gfp_mask, order,
  2756. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2757. if (page) {
  2758. struct zone *zone = page_zone(page);
  2759. zone->compact_blockskip_flush = false;
  2760. compaction_defer_reset(zone, order, true);
  2761. count_vm_event(COMPACTSUCCESS);
  2762. return page;
  2763. }
  2764. /*
  2765. * It's bad if compaction run occurs and fails. The most likely reason
  2766. * is that pages exist, but not enough to satisfy watermarks.
  2767. */
  2768. count_vm_event(COMPACTFAIL);
  2769. /*
  2770. * In all zones where compaction was attempted (and not
  2771. * deferred or skipped), lock contention has been detected.
  2772. * For THP allocation we do not want to disrupt the others
  2773. * so we fallback to base pages instead.
  2774. */
  2775. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2776. *compact_result = COMPACT_CONTENDED;
  2777. /*
  2778. * If compaction was aborted due to need_resched(), we do not
  2779. * want to further increase allocation latency, unless it is
  2780. * khugepaged trying to collapse.
  2781. */
  2782. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2783. && !(current->flags & PF_KTHREAD))
  2784. *compact_result = COMPACT_CONTENDED;
  2785. cond_resched();
  2786. return NULL;
  2787. }
  2788. static inline bool
  2789. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2790. enum compact_result compact_result, enum migrate_mode *migrate_mode,
  2791. int compaction_retries)
  2792. {
  2793. int max_retries = MAX_COMPACT_RETRIES;
  2794. if (!order)
  2795. return false;
  2796. /*
  2797. * compaction considers all the zone as desperately out of memory
  2798. * so it doesn't really make much sense to retry except when the
  2799. * failure could be caused by weak migration mode.
  2800. */
  2801. if (compaction_failed(compact_result)) {
  2802. if (*migrate_mode == MIGRATE_ASYNC) {
  2803. *migrate_mode = MIGRATE_SYNC_LIGHT;
  2804. return true;
  2805. }
  2806. return false;
  2807. }
  2808. /*
  2809. * make sure the compaction wasn't deferred or didn't bail out early
  2810. * due to locks contention before we declare that we should give up.
  2811. * But do not retry if the given zonelist is not suitable for
  2812. * compaction.
  2813. */
  2814. if (compaction_withdrawn(compact_result))
  2815. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2816. /*
  2817. * !costly requests are much more important than __GFP_REPEAT
  2818. * costly ones because they are de facto nofail and invoke OOM
  2819. * killer to move on while costly can fail and users are ready
  2820. * to cope with that. 1/4 retries is rather arbitrary but we
  2821. * would need much more detailed feedback from compaction to
  2822. * make a better decision.
  2823. */
  2824. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2825. max_retries /= 4;
  2826. if (compaction_retries <= max_retries)
  2827. return true;
  2828. return false;
  2829. }
  2830. #else
  2831. static inline struct page *
  2832. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2833. unsigned int alloc_flags, const struct alloc_context *ac,
  2834. enum migrate_mode mode, enum compact_result *compact_result)
  2835. {
  2836. *compact_result = COMPACT_SKIPPED;
  2837. return NULL;
  2838. }
  2839. static inline bool
  2840. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2841. enum compact_result compact_result,
  2842. enum migrate_mode *migrate_mode,
  2843. int compaction_retries)
  2844. {
  2845. struct zone *zone;
  2846. struct zoneref *z;
  2847. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  2848. return false;
  2849. /*
  2850. * There are setups with compaction disabled which would prefer to loop
  2851. * inside the allocator rather than hit the oom killer prematurely.
  2852. * Let's give them a good hope and keep retrying while the order-0
  2853. * watermarks are OK.
  2854. */
  2855. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2856. ac->nodemask) {
  2857. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  2858. ac_classzone_idx(ac), alloc_flags))
  2859. return true;
  2860. }
  2861. return false;
  2862. }
  2863. #endif /* CONFIG_COMPACTION */
  2864. /* Perform direct synchronous page reclaim */
  2865. static int
  2866. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2867. const struct alloc_context *ac)
  2868. {
  2869. struct reclaim_state reclaim_state;
  2870. int progress;
  2871. cond_resched();
  2872. /* We now go into synchronous reclaim */
  2873. cpuset_memory_pressure_bump();
  2874. current->flags |= PF_MEMALLOC;
  2875. lockdep_set_current_reclaim_state(gfp_mask);
  2876. reclaim_state.reclaimed_slab = 0;
  2877. current->reclaim_state = &reclaim_state;
  2878. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2879. ac->nodemask);
  2880. current->reclaim_state = NULL;
  2881. lockdep_clear_current_reclaim_state();
  2882. current->flags &= ~PF_MEMALLOC;
  2883. cond_resched();
  2884. return progress;
  2885. }
  2886. /* The really slow allocator path where we enter direct reclaim */
  2887. static inline struct page *
  2888. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2889. unsigned int alloc_flags, const struct alloc_context *ac,
  2890. unsigned long *did_some_progress)
  2891. {
  2892. struct page *page = NULL;
  2893. bool drained = false;
  2894. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2895. if (unlikely(!(*did_some_progress)))
  2896. return NULL;
  2897. retry:
  2898. page = get_page_from_freelist(gfp_mask, order,
  2899. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2900. /*
  2901. * If an allocation failed after direct reclaim, it could be because
  2902. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2903. * Shrink them them and try again
  2904. */
  2905. if (!page && !drained) {
  2906. unreserve_highatomic_pageblock(ac);
  2907. drain_all_pages(NULL);
  2908. drained = true;
  2909. goto retry;
  2910. }
  2911. return page;
  2912. }
  2913. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2914. {
  2915. struct zoneref *z;
  2916. struct zone *zone;
  2917. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2918. ac->high_zoneidx, ac->nodemask)
  2919. wakeup_kswapd(zone, order, ac_classzone_idx(ac));
  2920. }
  2921. static inline unsigned int
  2922. gfp_to_alloc_flags(gfp_t gfp_mask)
  2923. {
  2924. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2925. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2926. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2927. /*
  2928. * The caller may dip into page reserves a bit more if the caller
  2929. * cannot run direct reclaim, or if the caller has realtime scheduling
  2930. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2931. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2932. */
  2933. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2934. if (gfp_mask & __GFP_ATOMIC) {
  2935. /*
  2936. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2937. * if it can't schedule.
  2938. */
  2939. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2940. alloc_flags |= ALLOC_HARDER;
  2941. /*
  2942. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2943. * comment for __cpuset_node_allowed().
  2944. */
  2945. alloc_flags &= ~ALLOC_CPUSET;
  2946. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2947. alloc_flags |= ALLOC_HARDER;
  2948. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2949. if (gfp_mask & __GFP_MEMALLOC)
  2950. alloc_flags |= ALLOC_NO_WATERMARKS;
  2951. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2952. alloc_flags |= ALLOC_NO_WATERMARKS;
  2953. else if (!in_interrupt() &&
  2954. ((current->flags & PF_MEMALLOC) ||
  2955. unlikely(test_thread_flag(TIF_MEMDIE))))
  2956. alloc_flags |= ALLOC_NO_WATERMARKS;
  2957. }
  2958. #ifdef CONFIG_CMA
  2959. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2960. alloc_flags |= ALLOC_CMA;
  2961. #endif
  2962. return alloc_flags;
  2963. }
  2964. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2965. {
  2966. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2967. }
  2968. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2969. {
  2970. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2971. }
  2972. /*
  2973. * Maximum number of reclaim retries without any progress before OOM killer
  2974. * is consider as the only way to move forward.
  2975. */
  2976. #define MAX_RECLAIM_RETRIES 16
  2977. /*
  2978. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2979. * for the given allocation request.
  2980. * The reclaim feedback represented by did_some_progress (any progress during
  2981. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2982. * any progress in a row) is considered as well as the reclaimable pages on the
  2983. * applicable zone list (with a backoff mechanism which is a function of
  2984. * no_progress_loops).
  2985. *
  2986. * Returns true if a retry is viable or false to enter the oom path.
  2987. */
  2988. static inline bool
  2989. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2990. struct alloc_context *ac, int alloc_flags,
  2991. bool did_some_progress, int no_progress_loops)
  2992. {
  2993. struct zone *zone;
  2994. struct zoneref *z;
  2995. /*
  2996. * Make sure we converge to OOM if we cannot make any progress
  2997. * several times in the row.
  2998. */
  2999. if (no_progress_loops > MAX_RECLAIM_RETRIES)
  3000. return false;
  3001. /*
  3002. * Keep reclaiming pages while there is a chance this will lead somewhere.
  3003. * If none of the target zones can satisfy our allocation request even
  3004. * if all reclaimable pages are considered then we are screwed and have
  3005. * to go OOM.
  3006. */
  3007. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3008. ac->nodemask) {
  3009. unsigned long available;
  3010. unsigned long reclaimable;
  3011. available = reclaimable = zone_reclaimable_pages(zone);
  3012. available -= DIV_ROUND_UP(no_progress_loops * available,
  3013. MAX_RECLAIM_RETRIES);
  3014. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3015. /*
  3016. * Would the allocation succeed if we reclaimed the whole
  3017. * available?
  3018. */
  3019. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  3020. ac_classzone_idx(ac), alloc_flags, available)) {
  3021. /*
  3022. * If we didn't make any progress and have a lot of
  3023. * dirty + writeback pages then we should wait for
  3024. * an IO to complete to slow down the reclaim and
  3025. * prevent from pre mature OOM
  3026. */
  3027. if (!did_some_progress) {
  3028. unsigned long writeback;
  3029. unsigned long dirty;
  3030. writeback = zone_page_state_snapshot(zone,
  3031. NR_WRITEBACK);
  3032. dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
  3033. if (2*(writeback + dirty) > reclaimable) {
  3034. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3035. return true;
  3036. }
  3037. }
  3038. /*
  3039. * Memory allocation/reclaim might be called from a WQ
  3040. * context and the current implementation of the WQ
  3041. * concurrency control doesn't recognize that
  3042. * a particular WQ is congested if the worker thread is
  3043. * looping without ever sleeping. Therefore we have to
  3044. * do a short sleep here rather than calling
  3045. * cond_resched().
  3046. */
  3047. if (current->flags & PF_WQ_WORKER)
  3048. schedule_timeout_uninterruptible(1);
  3049. else
  3050. cond_resched();
  3051. return true;
  3052. }
  3053. }
  3054. return false;
  3055. }
  3056. static inline struct page *
  3057. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3058. struct alloc_context *ac)
  3059. {
  3060. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3061. struct page *page = NULL;
  3062. unsigned int alloc_flags;
  3063. unsigned long did_some_progress;
  3064. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  3065. enum compact_result compact_result;
  3066. int compaction_retries = 0;
  3067. int no_progress_loops = 0;
  3068. /*
  3069. * In the slowpath, we sanity check order to avoid ever trying to
  3070. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3071. * be using allocators in order of preference for an area that is
  3072. * too large.
  3073. */
  3074. if (order >= MAX_ORDER) {
  3075. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3076. return NULL;
  3077. }
  3078. /*
  3079. * We also sanity check to catch abuse of atomic reserves being used by
  3080. * callers that are not in atomic context.
  3081. */
  3082. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3083. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3084. gfp_mask &= ~__GFP_ATOMIC;
  3085. retry:
  3086. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3087. wake_all_kswapds(order, ac);
  3088. /*
  3089. * OK, we're below the kswapd watermark and have kicked background
  3090. * reclaim. Now things get more complex, so set up alloc_flags according
  3091. * to how we want to proceed.
  3092. */
  3093. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3094. /* This is the last chance, in general, before the goto nopage. */
  3095. page = get_page_from_freelist(gfp_mask, order,
  3096. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  3097. if (page)
  3098. goto got_pg;
  3099. /* Allocate without watermarks if the context allows */
  3100. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  3101. /*
  3102. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  3103. * the allocation is high priority and these type of
  3104. * allocations are system rather than user orientated
  3105. */
  3106. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3107. page = get_page_from_freelist(gfp_mask, order,
  3108. ALLOC_NO_WATERMARKS, ac);
  3109. if (page)
  3110. goto got_pg;
  3111. }
  3112. /* Caller is not willing to reclaim, we can't balance anything */
  3113. if (!can_direct_reclaim) {
  3114. /*
  3115. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3116. * of any new users that actually allow this type of allocation
  3117. * to fail.
  3118. */
  3119. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3120. goto nopage;
  3121. }
  3122. /* Avoid recursion of direct reclaim */
  3123. if (current->flags & PF_MEMALLOC) {
  3124. /*
  3125. * __GFP_NOFAIL request from this context is rather bizarre
  3126. * because we cannot reclaim anything and only can loop waiting
  3127. * for somebody to do a work for us.
  3128. */
  3129. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3130. cond_resched();
  3131. goto retry;
  3132. }
  3133. goto nopage;
  3134. }
  3135. /* Avoid allocations with no watermarks from looping endlessly */
  3136. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3137. goto nopage;
  3138. /*
  3139. * Try direct compaction. The first pass is asynchronous. Subsequent
  3140. * attempts after direct reclaim are synchronous
  3141. */
  3142. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3143. migration_mode,
  3144. &compact_result);
  3145. if (page)
  3146. goto got_pg;
  3147. /* Checks for THP-specific high-order allocations */
  3148. if (is_thp_gfp_mask(gfp_mask)) {
  3149. /*
  3150. * If compaction is deferred for high-order allocations, it is
  3151. * because sync compaction recently failed. If this is the case
  3152. * and the caller requested a THP allocation, we do not want
  3153. * to heavily disrupt the system, so we fail the allocation
  3154. * instead of entering direct reclaim.
  3155. */
  3156. if (compact_result == COMPACT_DEFERRED)
  3157. goto nopage;
  3158. /*
  3159. * Compaction is contended so rather back off than cause
  3160. * excessive stalls.
  3161. */
  3162. if(compact_result == COMPACT_CONTENDED)
  3163. goto nopage;
  3164. }
  3165. if (order && compaction_made_progress(compact_result))
  3166. compaction_retries++;
  3167. /* Try direct reclaim and then allocating */
  3168. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3169. &did_some_progress);
  3170. if (page)
  3171. goto got_pg;
  3172. /* Do not loop if specifically requested */
  3173. if (gfp_mask & __GFP_NORETRY)
  3174. goto noretry;
  3175. /*
  3176. * Do not retry costly high order allocations unless they are
  3177. * __GFP_REPEAT
  3178. */
  3179. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3180. goto noretry;
  3181. /*
  3182. * Costly allocations might have made a progress but this doesn't mean
  3183. * their order will become available due to high fragmentation so
  3184. * always increment the no progress counter for them
  3185. */
  3186. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3187. no_progress_loops = 0;
  3188. else
  3189. no_progress_loops++;
  3190. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3191. did_some_progress > 0, no_progress_loops))
  3192. goto retry;
  3193. /*
  3194. * It doesn't make any sense to retry for the compaction if the order-0
  3195. * reclaim is not able to make any progress because the current
  3196. * implementation of the compaction depends on the sufficient amount
  3197. * of free memory (see __compaction_suitable)
  3198. */
  3199. if (did_some_progress > 0 &&
  3200. should_compact_retry(ac, order, alloc_flags,
  3201. compact_result, &migration_mode,
  3202. compaction_retries))
  3203. goto retry;
  3204. /* Reclaim has failed us, start killing things */
  3205. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3206. if (page)
  3207. goto got_pg;
  3208. /* Retry as long as the OOM killer is making progress */
  3209. if (did_some_progress) {
  3210. no_progress_loops = 0;
  3211. goto retry;
  3212. }
  3213. noretry:
  3214. /*
  3215. * High-order allocations do not necessarily loop after direct reclaim
  3216. * and reclaim/compaction depends on compaction being called after
  3217. * reclaim so call directly if necessary.
  3218. * It can become very expensive to allocate transparent hugepages at
  3219. * fault, so use asynchronous memory compaction for THP unless it is
  3220. * khugepaged trying to collapse. All other requests should tolerate
  3221. * at least light sync migration.
  3222. */
  3223. if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
  3224. migration_mode = MIGRATE_ASYNC;
  3225. else
  3226. migration_mode = MIGRATE_SYNC_LIGHT;
  3227. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  3228. ac, migration_mode,
  3229. &compact_result);
  3230. if (page)
  3231. goto got_pg;
  3232. nopage:
  3233. warn_alloc_failed(gfp_mask, order, NULL);
  3234. got_pg:
  3235. return page;
  3236. }
  3237. /*
  3238. * This is the 'heart' of the zoned buddy allocator.
  3239. */
  3240. struct page *
  3241. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3242. struct zonelist *zonelist, nodemask_t *nodemask)
  3243. {
  3244. struct page *page;
  3245. unsigned int cpuset_mems_cookie;
  3246. unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
  3247. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3248. struct alloc_context ac = {
  3249. .high_zoneidx = gfp_zone(gfp_mask),
  3250. .zonelist = zonelist,
  3251. .nodemask = nodemask,
  3252. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3253. };
  3254. if (cpusets_enabled()) {
  3255. alloc_mask |= __GFP_HARDWALL;
  3256. alloc_flags |= ALLOC_CPUSET;
  3257. if (!ac.nodemask)
  3258. ac.nodemask = &cpuset_current_mems_allowed;
  3259. }
  3260. gfp_mask &= gfp_allowed_mask;
  3261. lockdep_trace_alloc(gfp_mask);
  3262. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3263. if (should_fail_alloc_page(gfp_mask, order))
  3264. return NULL;
  3265. /*
  3266. * Check the zones suitable for the gfp_mask contain at least one
  3267. * valid zone. It's possible to have an empty zonelist as a result
  3268. * of __GFP_THISNODE and a memoryless node
  3269. */
  3270. if (unlikely(!zonelist->_zonerefs->zone))
  3271. return NULL;
  3272. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3273. alloc_flags |= ALLOC_CMA;
  3274. retry_cpuset:
  3275. cpuset_mems_cookie = read_mems_allowed_begin();
  3276. /* Dirty zone balancing only done in the fast path */
  3277. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3278. /* The preferred zone is used for statistics later */
  3279. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3280. ac.high_zoneidx, ac.nodemask);
  3281. if (!ac.preferred_zoneref) {
  3282. page = NULL;
  3283. goto no_zone;
  3284. }
  3285. /* First allocation attempt */
  3286. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3287. if (likely(page))
  3288. goto out;
  3289. /*
  3290. * Runtime PM, block IO and its error handling path can deadlock
  3291. * because I/O on the device might not complete.
  3292. */
  3293. alloc_mask = memalloc_noio_flags(gfp_mask);
  3294. ac.spread_dirty_pages = false;
  3295. /*
  3296. * Restore the original nodemask if it was potentially replaced with
  3297. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3298. */
  3299. if (cpusets_enabled())
  3300. ac.nodemask = nodemask;
  3301. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3302. no_zone:
  3303. /*
  3304. * When updating a task's mems_allowed, it is possible to race with
  3305. * parallel threads in such a way that an allocation can fail while
  3306. * the mask is being updated. If a page allocation is about to fail,
  3307. * check if the cpuset changed during allocation and if so, retry.
  3308. */
  3309. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3310. alloc_mask = gfp_mask;
  3311. goto retry_cpuset;
  3312. }
  3313. out:
  3314. if (kmemcheck_enabled && page)
  3315. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3316. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3317. return page;
  3318. }
  3319. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3320. /*
  3321. * Common helper functions.
  3322. */
  3323. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3324. {
  3325. struct page *page;
  3326. /*
  3327. * __get_free_pages() returns a 32-bit address, which cannot represent
  3328. * a highmem page
  3329. */
  3330. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3331. page = alloc_pages(gfp_mask, order);
  3332. if (!page)
  3333. return 0;
  3334. return (unsigned long) page_address(page);
  3335. }
  3336. EXPORT_SYMBOL(__get_free_pages);
  3337. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3338. {
  3339. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3340. }
  3341. EXPORT_SYMBOL(get_zeroed_page);
  3342. void __free_pages(struct page *page, unsigned int order)
  3343. {
  3344. if (put_page_testzero(page)) {
  3345. if (order == 0)
  3346. free_hot_cold_page(page, false);
  3347. else
  3348. __free_pages_ok(page, order);
  3349. }
  3350. }
  3351. EXPORT_SYMBOL(__free_pages);
  3352. void free_pages(unsigned long addr, unsigned int order)
  3353. {
  3354. if (addr != 0) {
  3355. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3356. __free_pages(virt_to_page((void *)addr), order);
  3357. }
  3358. }
  3359. EXPORT_SYMBOL(free_pages);
  3360. /*
  3361. * Page Fragment:
  3362. * An arbitrary-length arbitrary-offset area of memory which resides
  3363. * within a 0 or higher order page. Multiple fragments within that page
  3364. * are individually refcounted, in the page's reference counter.
  3365. *
  3366. * The page_frag functions below provide a simple allocation framework for
  3367. * page fragments. This is used by the network stack and network device
  3368. * drivers to provide a backing region of memory for use as either an
  3369. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3370. */
  3371. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3372. gfp_t gfp_mask)
  3373. {
  3374. struct page *page = NULL;
  3375. gfp_t gfp = gfp_mask;
  3376. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3377. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3378. __GFP_NOMEMALLOC;
  3379. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3380. PAGE_FRAG_CACHE_MAX_ORDER);
  3381. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3382. #endif
  3383. if (unlikely(!page))
  3384. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3385. nc->va = page ? page_address(page) : NULL;
  3386. return page;
  3387. }
  3388. void *__alloc_page_frag(struct page_frag_cache *nc,
  3389. unsigned int fragsz, gfp_t gfp_mask)
  3390. {
  3391. unsigned int size = PAGE_SIZE;
  3392. struct page *page;
  3393. int offset;
  3394. if (unlikely(!nc->va)) {
  3395. refill:
  3396. page = __page_frag_refill(nc, gfp_mask);
  3397. if (!page)
  3398. return NULL;
  3399. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3400. /* if size can vary use size else just use PAGE_SIZE */
  3401. size = nc->size;
  3402. #endif
  3403. /* Even if we own the page, we do not use atomic_set().
  3404. * This would break get_page_unless_zero() users.
  3405. */
  3406. page_ref_add(page, size - 1);
  3407. /* reset page count bias and offset to start of new frag */
  3408. nc->pfmemalloc = page_is_pfmemalloc(page);
  3409. nc->pagecnt_bias = size;
  3410. nc->offset = size;
  3411. }
  3412. offset = nc->offset - fragsz;
  3413. if (unlikely(offset < 0)) {
  3414. page = virt_to_page(nc->va);
  3415. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3416. goto refill;
  3417. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3418. /* if size can vary use size else just use PAGE_SIZE */
  3419. size = nc->size;
  3420. #endif
  3421. /* OK, page count is 0, we can safely set it */
  3422. set_page_count(page, size);
  3423. /* reset page count bias and offset to start of new frag */
  3424. nc->pagecnt_bias = size;
  3425. offset = size - fragsz;
  3426. }
  3427. nc->pagecnt_bias--;
  3428. nc->offset = offset;
  3429. return nc->va + offset;
  3430. }
  3431. EXPORT_SYMBOL(__alloc_page_frag);
  3432. /*
  3433. * Frees a page fragment allocated out of either a compound or order 0 page.
  3434. */
  3435. void __free_page_frag(void *addr)
  3436. {
  3437. struct page *page = virt_to_head_page(addr);
  3438. if (unlikely(put_page_testzero(page)))
  3439. __free_pages_ok(page, compound_order(page));
  3440. }
  3441. EXPORT_SYMBOL(__free_page_frag);
  3442. /*
  3443. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  3444. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  3445. * equivalent to alloc_pages.
  3446. *
  3447. * It should be used when the caller would like to use kmalloc, but since the
  3448. * allocation is large, it has to fall back to the page allocator.
  3449. */
  3450. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  3451. {
  3452. struct page *page;
  3453. page = alloc_pages(gfp_mask, order);
  3454. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3455. __free_pages(page, order);
  3456. page = NULL;
  3457. }
  3458. return page;
  3459. }
  3460. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  3461. {
  3462. struct page *page;
  3463. page = alloc_pages_node(nid, gfp_mask, order);
  3464. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3465. __free_pages(page, order);
  3466. page = NULL;
  3467. }
  3468. return page;
  3469. }
  3470. /*
  3471. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  3472. * alloc_kmem_pages.
  3473. */
  3474. void __free_kmem_pages(struct page *page, unsigned int order)
  3475. {
  3476. memcg_kmem_uncharge(page, order);
  3477. __free_pages(page, order);
  3478. }
  3479. void free_kmem_pages(unsigned long addr, unsigned int order)
  3480. {
  3481. if (addr != 0) {
  3482. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3483. __free_kmem_pages(virt_to_page((void *)addr), order);
  3484. }
  3485. }
  3486. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3487. size_t size)
  3488. {
  3489. if (addr) {
  3490. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3491. unsigned long used = addr + PAGE_ALIGN(size);
  3492. split_page(virt_to_page((void *)addr), order);
  3493. while (used < alloc_end) {
  3494. free_page(used);
  3495. used += PAGE_SIZE;
  3496. }
  3497. }
  3498. return (void *)addr;
  3499. }
  3500. /**
  3501. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3502. * @size: the number of bytes to allocate
  3503. * @gfp_mask: GFP flags for the allocation
  3504. *
  3505. * This function is similar to alloc_pages(), except that it allocates the
  3506. * minimum number of pages to satisfy the request. alloc_pages() can only
  3507. * allocate memory in power-of-two pages.
  3508. *
  3509. * This function is also limited by MAX_ORDER.
  3510. *
  3511. * Memory allocated by this function must be released by free_pages_exact().
  3512. */
  3513. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3514. {
  3515. unsigned int order = get_order(size);
  3516. unsigned long addr;
  3517. addr = __get_free_pages(gfp_mask, order);
  3518. return make_alloc_exact(addr, order, size);
  3519. }
  3520. EXPORT_SYMBOL(alloc_pages_exact);
  3521. /**
  3522. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3523. * pages on a node.
  3524. * @nid: the preferred node ID where memory should be allocated
  3525. * @size: the number of bytes to allocate
  3526. * @gfp_mask: GFP flags for the allocation
  3527. *
  3528. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3529. * back.
  3530. */
  3531. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3532. {
  3533. unsigned int order = get_order(size);
  3534. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3535. if (!p)
  3536. return NULL;
  3537. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3538. }
  3539. /**
  3540. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3541. * @virt: the value returned by alloc_pages_exact.
  3542. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3543. *
  3544. * Release the memory allocated by a previous call to alloc_pages_exact.
  3545. */
  3546. void free_pages_exact(void *virt, size_t size)
  3547. {
  3548. unsigned long addr = (unsigned long)virt;
  3549. unsigned long end = addr + PAGE_ALIGN(size);
  3550. while (addr < end) {
  3551. free_page(addr);
  3552. addr += PAGE_SIZE;
  3553. }
  3554. }
  3555. EXPORT_SYMBOL(free_pages_exact);
  3556. /**
  3557. * nr_free_zone_pages - count number of pages beyond high watermark
  3558. * @offset: The zone index of the highest zone
  3559. *
  3560. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3561. * high watermark within all zones at or below a given zone index. For each
  3562. * zone, the number of pages is calculated as:
  3563. * managed_pages - high_pages
  3564. */
  3565. static unsigned long nr_free_zone_pages(int offset)
  3566. {
  3567. struct zoneref *z;
  3568. struct zone *zone;
  3569. /* Just pick one node, since fallback list is circular */
  3570. unsigned long sum = 0;
  3571. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3572. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3573. unsigned long size = zone->managed_pages;
  3574. unsigned long high = high_wmark_pages(zone);
  3575. if (size > high)
  3576. sum += size - high;
  3577. }
  3578. return sum;
  3579. }
  3580. /**
  3581. * nr_free_buffer_pages - count number of pages beyond high watermark
  3582. *
  3583. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3584. * watermark within ZONE_DMA and ZONE_NORMAL.
  3585. */
  3586. unsigned long nr_free_buffer_pages(void)
  3587. {
  3588. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3589. }
  3590. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3591. /**
  3592. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3593. *
  3594. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3595. * high watermark within all zones.
  3596. */
  3597. unsigned long nr_free_pagecache_pages(void)
  3598. {
  3599. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3600. }
  3601. static inline void show_node(struct zone *zone)
  3602. {
  3603. if (IS_ENABLED(CONFIG_NUMA))
  3604. printk("Node %d ", zone_to_nid(zone));
  3605. }
  3606. long si_mem_available(void)
  3607. {
  3608. long available;
  3609. unsigned long pagecache;
  3610. unsigned long wmark_low = 0;
  3611. unsigned long pages[NR_LRU_LISTS];
  3612. struct zone *zone;
  3613. int lru;
  3614. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3615. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3616. for_each_zone(zone)
  3617. wmark_low += zone->watermark[WMARK_LOW];
  3618. /*
  3619. * Estimate the amount of memory available for userspace allocations,
  3620. * without causing swapping.
  3621. */
  3622. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3623. /*
  3624. * Not all the page cache can be freed, otherwise the system will
  3625. * start swapping. Assume at least half of the page cache, or the
  3626. * low watermark worth of cache, needs to stay.
  3627. */
  3628. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3629. pagecache -= min(pagecache / 2, wmark_low);
  3630. available += pagecache;
  3631. /*
  3632. * Part of the reclaimable slab consists of items that are in use,
  3633. * and cannot be freed. Cap this estimate at the low watermark.
  3634. */
  3635. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3636. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3637. if (available < 0)
  3638. available = 0;
  3639. return available;
  3640. }
  3641. EXPORT_SYMBOL_GPL(si_mem_available);
  3642. void si_meminfo(struct sysinfo *val)
  3643. {
  3644. val->totalram = totalram_pages;
  3645. val->sharedram = global_page_state(NR_SHMEM);
  3646. val->freeram = global_page_state(NR_FREE_PAGES);
  3647. val->bufferram = nr_blockdev_pages();
  3648. val->totalhigh = totalhigh_pages;
  3649. val->freehigh = nr_free_highpages();
  3650. val->mem_unit = PAGE_SIZE;
  3651. }
  3652. EXPORT_SYMBOL(si_meminfo);
  3653. #ifdef CONFIG_NUMA
  3654. void si_meminfo_node(struct sysinfo *val, int nid)
  3655. {
  3656. int zone_type; /* needs to be signed */
  3657. unsigned long managed_pages = 0;
  3658. unsigned long managed_highpages = 0;
  3659. unsigned long free_highpages = 0;
  3660. pg_data_t *pgdat = NODE_DATA(nid);
  3661. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3662. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3663. val->totalram = managed_pages;
  3664. val->sharedram = node_page_state(nid, NR_SHMEM);
  3665. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3666. #ifdef CONFIG_HIGHMEM
  3667. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3668. struct zone *zone = &pgdat->node_zones[zone_type];
  3669. if (is_highmem(zone)) {
  3670. managed_highpages += zone->managed_pages;
  3671. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3672. }
  3673. }
  3674. val->totalhigh = managed_highpages;
  3675. val->freehigh = free_highpages;
  3676. #else
  3677. val->totalhigh = managed_highpages;
  3678. val->freehigh = free_highpages;
  3679. #endif
  3680. val->mem_unit = PAGE_SIZE;
  3681. }
  3682. #endif
  3683. /*
  3684. * Determine whether the node should be displayed or not, depending on whether
  3685. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3686. */
  3687. bool skip_free_areas_node(unsigned int flags, int nid)
  3688. {
  3689. bool ret = false;
  3690. unsigned int cpuset_mems_cookie;
  3691. if (!(flags & SHOW_MEM_FILTER_NODES))
  3692. goto out;
  3693. do {
  3694. cpuset_mems_cookie = read_mems_allowed_begin();
  3695. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3696. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3697. out:
  3698. return ret;
  3699. }
  3700. #define K(x) ((x) << (PAGE_SHIFT-10))
  3701. static void show_migration_types(unsigned char type)
  3702. {
  3703. static const char types[MIGRATE_TYPES] = {
  3704. [MIGRATE_UNMOVABLE] = 'U',
  3705. [MIGRATE_MOVABLE] = 'M',
  3706. [MIGRATE_RECLAIMABLE] = 'E',
  3707. [MIGRATE_HIGHATOMIC] = 'H',
  3708. #ifdef CONFIG_CMA
  3709. [MIGRATE_CMA] = 'C',
  3710. #endif
  3711. #ifdef CONFIG_MEMORY_ISOLATION
  3712. [MIGRATE_ISOLATE] = 'I',
  3713. #endif
  3714. };
  3715. char tmp[MIGRATE_TYPES + 1];
  3716. char *p = tmp;
  3717. int i;
  3718. for (i = 0; i < MIGRATE_TYPES; i++) {
  3719. if (type & (1 << i))
  3720. *p++ = types[i];
  3721. }
  3722. *p = '\0';
  3723. printk("(%s) ", tmp);
  3724. }
  3725. /*
  3726. * Show free area list (used inside shift_scroll-lock stuff)
  3727. * We also calculate the percentage fragmentation. We do this by counting the
  3728. * memory on each free list with the exception of the first item on the list.
  3729. *
  3730. * Bits in @filter:
  3731. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3732. * cpuset.
  3733. */
  3734. void show_free_areas(unsigned int filter)
  3735. {
  3736. unsigned long free_pcp = 0;
  3737. int cpu;
  3738. struct zone *zone;
  3739. for_each_populated_zone(zone) {
  3740. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3741. continue;
  3742. for_each_online_cpu(cpu)
  3743. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3744. }
  3745. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3746. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3747. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3748. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3749. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3750. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3751. global_page_state(NR_ACTIVE_ANON),
  3752. global_page_state(NR_INACTIVE_ANON),
  3753. global_page_state(NR_ISOLATED_ANON),
  3754. global_page_state(NR_ACTIVE_FILE),
  3755. global_page_state(NR_INACTIVE_FILE),
  3756. global_page_state(NR_ISOLATED_FILE),
  3757. global_page_state(NR_UNEVICTABLE),
  3758. global_page_state(NR_FILE_DIRTY),
  3759. global_page_state(NR_WRITEBACK),
  3760. global_page_state(NR_UNSTABLE_NFS),
  3761. global_page_state(NR_SLAB_RECLAIMABLE),
  3762. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3763. global_page_state(NR_FILE_MAPPED),
  3764. global_page_state(NR_SHMEM),
  3765. global_page_state(NR_PAGETABLE),
  3766. global_page_state(NR_BOUNCE),
  3767. global_page_state(NR_FREE_PAGES),
  3768. free_pcp,
  3769. global_page_state(NR_FREE_CMA_PAGES));
  3770. for_each_populated_zone(zone) {
  3771. int i;
  3772. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3773. continue;
  3774. free_pcp = 0;
  3775. for_each_online_cpu(cpu)
  3776. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3777. show_node(zone);
  3778. printk("%s"
  3779. " free:%lukB"
  3780. " min:%lukB"
  3781. " low:%lukB"
  3782. " high:%lukB"
  3783. " active_anon:%lukB"
  3784. " inactive_anon:%lukB"
  3785. " active_file:%lukB"
  3786. " inactive_file:%lukB"
  3787. " unevictable:%lukB"
  3788. " isolated(anon):%lukB"
  3789. " isolated(file):%lukB"
  3790. " present:%lukB"
  3791. " managed:%lukB"
  3792. " mlocked:%lukB"
  3793. " dirty:%lukB"
  3794. " writeback:%lukB"
  3795. " mapped:%lukB"
  3796. " shmem:%lukB"
  3797. " slab_reclaimable:%lukB"
  3798. " slab_unreclaimable:%lukB"
  3799. " kernel_stack:%lukB"
  3800. " pagetables:%lukB"
  3801. " unstable:%lukB"
  3802. " bounce:%lukB"
  3803. " free_pcp:%lukB"
  3804. " local_pcp:%ukB"
  3805. " free_cma:%lukB"
  3806. " writeback_tmp:%lukB"
  3807. " pages_scanned:%lu"
  3808. " all_unreclaimable? %s"
  3809. "\n",
  3810. zone->name,
  3811. K(zone_page_state(zone, NR_FREE_PAGES)),
  3812. K(min_wmark_pages(zone)),
  3813. K(low_wmark_pages(zone)),
  3814. K(high_wmark_pages(zone)),
  3815. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3816. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3817. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3818. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3819. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3820. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3821. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3822. K(zone->present_pages),
  3823. K(zone->managed_pages),
  3824. K(zone_page_state(zone, NR_MLOCK)),
  3825. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3826. K(zone_page_state(zone, NR_WRITEBACK)),
  3827. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3828. K(zone_page_state(zone, NR_SHMEM)),
  3829. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3830. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3831. zone_page_state(zone, NR_KERNEL_STACK) *
  3832. THREAD_SIZE / 1024,
  3833. K(zone_page_state(zone, NR_PAGETABLE)),
  3834. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3835. K(zone_page_state(zone, NR_BOUNCE)),
  3836. K(free_pcp),
  3837. K(this_cpu_read(zone->pageset->pcp.count)),
  3838. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3839. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3840. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3841. (!zone_reclaimable(zone) ? "yes" : "no")
  3842. );
  3843. printk("lowmem_reserve[]:");
  3844. for (i = 0; i < MAX_NR_ZONES; i++)
  3845. printk(" %ld", zone->lowmem_reserve[i]);
  3846. printk("\n");
  3847. }
  3848. for_each_populated_zone(zone) {
  3849. unsigned int order;
  3850. unsigned long nr[MAX_ORDER], flags, total = 0;
  3851. unsigned char types[MAX_ORDER];
  3852. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3853. continue;
  3854. show_node(zone);
  3855. printk("%s: ", zone->name);
  3856. spin_lock_irqsave(&zone->lock, flags);
  3857. for (order = 0; order < MAX_ORDER; order++) {
  3858. struct free_area *area = &zone->free_area[order];
  3859. int type;
  3860. nr[order] = area->nr_free;
  3861. total += nr[order] << order;
  3862. types[order] = 0;
  3863. for (type = 0; type < MIGRATE_TYPES; type++) {
  3864. if (!list_empty(&area->free_list[type]))
  3865. types[order] |= 1 << type;
  3866. }
  3867. }
  3868. spin_unlock_irqrestore(&zone->lock, flags);
  3869. for (order = 0; order < MAX_ORDER; order++) {
  3870. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3871. if (nr[order])
  3872. show_migration_types(types[order]);
  3873. }
  3874. printk("= %lukB\n", K(total));
  3875. }
  3876. hugetlb_show_meminfo();
  3877. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3878. show_swap_cache_info();
  3879. }
  3880. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3881. {
  3882. zoneref->zone = zone;
  3883. zoneref->zone_idx = zone_idx(zone);
  3884. }
  3885. /*
  3886. * Builds allocation fallback zone lists.
  3887. *
  3888. * Add all populated zones of a node to the zonelist.
  3889. */
  3890. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3891. int nr_zones)
  3892. {
  3893. struct zone *zone;
  3894. enum zone_type zone_type = MAX_NR_ZONES;
  3895. do {
  3896. zone_type--;
  3897. zone = pgdat->node_zones + zone_type;
  3898. if (populated_zone(zone)) {
  3899. zoneref_set_zone(zone,
  3900. &zonelist->_zonerefs[nr_zones++]);
  3901. check_highest_zone(zone_type);
  3902. }
  3903. } while (zone_type);
  3904. return nr_zones;
  3905. }
  3906. /*
  3907. * zonelist_order:
  3908. * 0 = automatic detection of better ordering.
  3909. * 1 = order by ([node] distance, -zonetype)
  3910. * 2 = order by (-zonetype, [node] distance)
  3911. *
  3912. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3913. * the same zonelist. So only NUMA can configure this param.
  3914. */
  3915. #define ZONELIST_ORDER_DEFAULT 0
  3916. #define ZONELIST_ORDER_NODE 1
  3917. #define ZONELIST_ORDER_ZONE 2
  3918. /* zonelist order in the kernel.
  3919. * set_zonelist_order() will set this to NODE or ZONE.
  3920. */
  3921. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3922. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3923. #ifdef CONFIG_NUMA
  3924. /* The value user specified ....changed by config */
  3925. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3926. /* string for sysctl */
  3927. #define NUMA_ZONELIST_ORDER_LEN 16
  3928. char numa_zonelist_order[16] = "default";
  3929. /*
  3930. * interface for configure zonelist ordering.
  3931. * command line option "numa_zonelist_order"
  3932. * = "[dD]efault - default, automatic configuration.
  3933. * = "[nN]ode - order by node locality, then by zone within node
  3934. * = "[zZ]one - order by zone, then by locality within zone
  3935. */
  3936. static int __parse_numa_zonelist_order(char *s)
  3937. {
  3938. if (*s == 'd' || *s == 'D') {
  3939. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3940. } else if (*s == 'n' || *s == 'N') {
  3941. user_zonelist_order = ZONELIST_ORDER_NODE;
  3942. } else if (*s == 'z' || *s == 'Z') {
  3943. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3944. } else {
  3945. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3946. return -EINVAL;
  3947. }
  3948. return 0;
  3949. }
  3950. static __init int setup_numa_zonelist_order(char *s)
  3951. {
  3952. int ret;
  3953. if (!s)
  3954. return 0;
  3955. ret = __parse_numa_zonelist_order(s);
  3956. if (ret == 0)
  3957. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3958. return ret;
  3959. }
  3960. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3961. /*
  3962. * sysctl handler for numa_zonelist_order
  3963. */
  3964. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3965. void __user *buffer, size_t *length,
  3966. loff_t *ppos)
  3967. {
  3968. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3969. int ret;
  3970. static DEFINE_MUTEX(zl_order_mutex);
  3971. mutex_lock(&zl_order_mutex);
  3972. if (write) {
  3973. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3974. ret = -EINVAL;
  3975. goto out;
  3976. }
  3977. strcpy(saved_string, (char *)table->data);
  3978. }
  3979. ret = proc_dostring(table, write, buffer, length, ppos);
  3980. if (ret)
  3981. goto out;
  3982. if (write) {
  3983. int oldval = user_zonelist_order;
  3984. ret = __parse_numa_zonelist_order((char *)table->data);
  3985. if (ret) {
  3986. /*
  3987. * bogus value. restore saved string
  3988. */
  3989. strncpy((char *)table->data, saved_string,
  3990. NUMA_ZONELIST_ORDER_LEN);
  3991. user_zonelist_order = oldval;
  3992. } else if (oldval != user_zonelist_order) {
  3993. mutex_lock(&zonelists_mutex);
  3994. build_all_zonelists(NULL, NULL);
  3995. mutex_unlock(&zonelists_mutex);
  3996. }
  3997. }
  3998. out:
  3999. mutex_unlock(&zl_order_mutex);
  4000. return ret;
  4001. }
  4002. #define MAX_NODE_LOAD (nr_online_nodes)
  4003. static int node_load[MAX_NUMNODES];
  4004. /**
  4005. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4006. * @node: node whose fallback list we're appending
  4007. * @used_node_mask: nodemask_t of already used nodes
  4008. *
  4009. * We use a number of factors to determine which is the next node that should
  4010. * appear on a given node's fallback list. The node should not have appeared
  4011. * already in @node's fallback list, and it should be the next closest node
  4012. * according to the distance array (which contains arbitrary distance values
  4013. * from each node to each node in the system), and should also prefer nodes
  4014. * with no CPUs, since presumably they'll have very little allocation pressure
  4015. * on them otherwise.
  4016. * It returns -1 if no node is found.
  4017. */
  4018. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4019. {
  4020. int n, val;
  4021. int min_val = INT_MAX;
  4022. int best_node = NUMA_NO_NODE;
  4023. const struct cpumask *tmp = cpumask_of_node(0);
  4024. /* Use the local node if we haven't already */
  4025. if (!node_isset(node, *used_node_mask)) {
  4026. node_set(node, *used_node_mask);
  4027. return node;
  4028. }
  4029. for_each_node_state(n, N_MEMORY) {
  4030. /* Don't want a node to appear more than once */
  4031. if (node_isset(n, *used_node_mask))
  4032. continue;
  4033. /* Use the distance array to find the distance */
  4034. val = node_distance(node, n);
  4035. /* Penalize nodes under us ("prefer the next node") */
  4036. val += (n < node);
  4037. /* Give preference to headless and unused nodes */
  4038. tmp = cpumask_of_node(n);
  4039. if (!cpumask_empty(tmp))
  4040. val += PENALTY_FOR_NODE_WITH_CPUS;
  4041. /* Slight preference for less loaded node */
  4042. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4043. val += node_load[n];
  4044. if (val < min_val) {
  4045. min_val = val;
  4046. best_node = n;
  4047. }
  4048. }
  4049. if (best_node >= 0)
  4050. node_set(best_node, *used_node_mask);
  4051. return best_node;
  4052. }
  4053. /*
  4054. * Build zonelists ordered by node and zones within node.
  4055. * This results in maximum locality--normal zone overflows into local
  4056. * DMA zone, if any--but risks exhausting DMA zone.
  4057. */
  4058. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4059. {
  4060. int j;
  4061. struct zonelist *zonelist;
  4062. zonelist = &pgdat->node_zonelists[0];
  4063. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4064. ;
  4065. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4066. zonelist->_zonerefs[j].zone = NULL;
  4067. zonelist->_zonerefs[j].zone_idx = 0;
  4068. }
  4069. /*
  4070. * Build gfp_thisnode zonelists
  4071. */
  4072. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4073. {
  4074. int j;
  4075. struct zonelist *zonelist;
  4076. zonelist = &pgdat->node_zonelists[1];
  4077. j = build_zonelists_node(pgdat, zonelist, 0);
  4078. zonelist->_zonerefs[j].zone = NULL;
  4079. zonelist->_zonerefs[j].zone_idx = 0;
  4080. }
  4081. /*
  4082. * Build zonelists ordered by zone and nodes within zones.
  4083. * This results in conserving DMA zone[s] until all Normal memory is
  4084. * exhausted, but results in overflowing to remote node while memory
  4085. * may still exist in local DMA zone.
  4086. */
  4087. static int node_order[MAX_NUMNODES];
  4088. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4089. {
  4090. int pos, j, node;
  4091. int zone_type; /* needs to be signed */
  4092. struct zone *z;
  4093. struct zonelist *zonelist;
  4094. zonelist = &pgdat->node_zonelists[0];
  4095. pos = 0;
  4096. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4097. for (j = 0; j < nr_nodes; j++) {
  4098. node = node_order[j];
  4099. z = &NODE_DATA(node)->node_zones[zone_type];
  4100. if (populated_zone(z)) {
  4101. zoneref_set_zone(z,
  4102. &zonelist->_zonerefs[pos++]);
  4103. check_highest_zone(zone_type);
  4104. }
  4105. }
  4106. }
  4107. zonelist->_zonerefs[pos].zone = NULL;
  4108. zonelist->_zonerefs[pos].zone_idx = 0;
  4109. }
  4110. #if defined(CONFIG_64BIT)
  4111. /*
  4112. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4113. * penalty to every machine in case the specialised case applies. Default
  4114. * to Node-ordering on 64-bit NUMA machines
  4115. */
  4116. static int default_zonelist_order(void)
  4117. {
  4118. return ZONELIST_ORDER_NODE;
  4119. }
  4120. #else
  4121. /*
  4122. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4123. * by the kernel. If processes running on node 0 deplete the low memory zone
  4124. * then reclaim will occur more frequency increasing stalls and potentially
  4125. * be easier to OOM if a large percentage of the zone is under writeback or
  4126. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4127. * Hence, default to zone ordering on 32-bit.
  4128. */
  4129. static int default_zonelist_order(void)
  4130. {
  4131. return ZONELIST_ORDER_ZONE;
  4132. }
  4133. #endif /* CONFIG_64BIT */
  4134. static void set_zonelist_order(void)
  4135. {
  4136. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4137. current_zonelist_order = default_zonelist_order();
  4138. else
  4139. current_zonelist_order = user_zonelist_order;
  4140. }
  4141. static void build_zonelists(pg_data_t *pgdat)
  4142. {
  4143. int i, node, load;
  4144. nodemask_t used_mask;
  4145. int local_node, prev_node;
  4146. struct zonelist *zonelist;
  4147. unsigned int order = current_zonelist_order;
  4148. /* initialize zonelists */
  4149. for (i = 0; i < MAX_ZONELISTS; i++) {
  4150. zonelist = pgdat->node_zonelists + i;
  4151. zonelist->_zonerefs[0].zone = NULL;
  4152. zonelist->_zonerefs[0].zone_idx = 0;
  4153. }
  4154. /* NUMA-aware ordering of nodes */
  4155. local_node = pgdat->node_id;
  4156. load = nr_online_nodes;
  4157. prev_node = local_node;
  4158. nodes_clear(used_mask);
  4159. memset(node_order, 0, sizeof(node_order));
  4160. i = 0;
  4161. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4162. /*
  4163. * We don't want to pressure a particular node.
  4164. * So adding penalty to the first node in same
  4165. * distance group to make it round-robin.
  4166. */
  4167. if (node_distance(local_node, node) !=
  4168. node_distance(local_node, prev_node))
  4169. node_load[node] = load;
  4170. prev_node = node;
  4171. load--;
  4172. if (order == ZONELIST_ORDER_NODE)
  4173. build_zonelists_in_node_order(pgdat, node);
  4174. else
  4175. node_order[i++] = node; /* remember order */
  4176. }
  4177. if (order == ZONELIST_ORDER_ZONE) {
  4178. /* calculate node order -- i.e., DMA last! */
  4179. build_zonelists_in_zone_order(pgdat, i);
  4180. }
  4181. build_thisnode_zonelists(pgdat);
  4182. }
  4183. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4184. /*
  4185. * Return node id of node used for "local" allocations.
  4186. * I.e., first node id of first zone in arg node's generic zonelist.
  4187. * Used for initializing percpu 'numa_mem', which is used primarily
  4188. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4189. */
  4190. int local_memory_node(int node)
  4191. {
  4192. struct zoneref *z;
  4193. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4194. gfp_zone(GFP_KERNEL),
  4195. NULL);
  4196. return z->zone->node;
  4197. }
  4198. #endif
  4199. #else /* CONFIG_NUMA */
  4200. static void set_zonelist_order(void)
  4201. {
  4202. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4203. }
  4204. static void build_zonelists(pg_data_t *pgdat)
  4205. {
  4206. int node, local_node;
  4207. enum zone_type j;
  4208. struct zonelist *zonelist;
  4209. local_node = pgdat->node_id;
  4210. zonelist = &pgdat->node_zonelists[0];
  4211. j = build_zonelists_node(pgdat, zonelist, 0);
  4212. /*
  4213. * Now we build the zonelist so that it contains the zones
  4214. * of all the other nodes.
  4215. * We don't want to pressure a particular node, so when
  4216. * building the zones for node N, we make sure that the
  4217. * zones coming right after the local ones are those from
  4218. * node N+1 (modulo N)
  4219. */
  4220. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4221. if (!node_online(node))
  4222. continue;
  4223. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4224. }
  4225. for (node = 0; node < local_node; node++) {
  4226. if (!node_online(node))
  4227. continue;
  4228. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4229. }
  4230. zonelist->_zonerefs[j].zone = NULL;
  4231. zonelist->_zonerefs[j].zone_idx = 0;
  4232. }
  4233. #endif /* CONFIG_NUMA */
  4234. /*
  4235. * Boot pageset table. One per cpu which is going to be used for all
  4236. * zones and all nodes. The parameters will be set in such a way
  4237. * that an item put on a list will immediately be handed over to
  4238. * the buddy list. This is safe since pageset manipulation is done
  4239. * with interrupts disabled.
  4240. *
  4241. * The boot_pagesets must be kept even after bootup is complete for
  4242. * unused processors and/or zones. They do play a role for bootstrapping
  4243. * hotplugged processors.
  4244. *
  4245. * zoneinfo_show() and maybe other functions do
  4246. * not check if the processor is online before following the pageset pointer.
  4247. * Other parts of the kernel may not check if the zone is available.
  4248. */
  4249. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4250. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4251. static void setup_zone_pageset(struct zone *zone);
  4252. /*
  4253. * Global mutex to protect against size modification of zonelists
  4254. * as well as to serialize pageset setup for the new populated zone.
  4255. */
  4256. DEFINE_MUTEX(zonelists_mutex);
  4257. /* return values int ....just for stop_machine() */
  4258. static int __build_all_zonelists(void *data)
  4259. {
  4260. int nid;
  4261. int cpu;
  4262. pg_data_t *self = data;
  4263. #ifdef CONFIG_NUMA
  4264. memset(node_load, 0, sizeof(node_load));
  4265. #endif
  4266. if (self && !node_online(self->node_id)) {
  4267. build_zonelists(self);
  4268. }
  4269. for_each_online_node(nid) {
  4270. pg_data_t *pgdat = NODE_DATA(nid);
  4271. build_zonelists(pgdat);
  4272. }
  4273. /*
  4274. * Initialize the boot_pagesets that are going to be used
  4275. * for bootstrapping processors. The real pagesets for
  4276. * each zone will be allocated later when the per cpu
  4277. * allocator is available.
  4278. *
  4279. * boot_pagesets are used also for bootstrapping offline
  4280. * cpus if the system is already booted because the pagesets
  4281. * are needed to initialize allocators on a specific cpu too.
  4282. * F.e. the percpu allocator needs the page allocator which
  4283. * needs the percpu allocator in order to allocate its pagesets
  4284. * (a chicken-egg dilemma).
  4285. */
  4286. for_each_possible_cpu(cpu) {
  4287. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4288. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4289. /*
  4290. * We now know the "local memory node" for each node--
  4291. * i.e., the node of the first zone in the generic zonelist.
  4292. * Set up numa_mem percpu variable for on-line cpus. During
  4293. * boot, only the boot cpu should be on-line; we'll init the
  4294. * secondary cpus' numa_mem as they come on-line. During
  4295. * node/memory hotplug, we'll fixup all on-line cpus.
  4296. */
  4297. if (cpu_online(cpu))
  4298. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4299. #endif
  4300. }
  4301. return 0;
  4302. }
  4303. static noinline void __init
  4304. build_all_zonelists_init(void)
  4305. {
  4306. __build_all_zonelists(NULL);
  4307. mminit_verify_zonelist();
  4308. cpuset_init_current_mems_allowed();
  4309. }
  4310. /*
  4311. * Called with zonelists_mutex held always
  4312. * unless system_state == SYSTEM_BOOTING.
  4313. *
  4314. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4315. * [we're only called with non-NULL zone through __meminit paths] and
  4316. * (2) call of __init annotated helper build_all_zonelists_init
  4317. * [protected by SYSTEM_BOOTING].
  4318. */
  4319. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4320. {
  4321. set_zonelist_order();
  4322. if (system_state == SYSTEM_BOOTING) {
  4323. build_all_zonelists_init();
  4324. } else {
  4325. #ifdef CONFIG_MEMORY_HOTPLUG
  4326. if (zone)
  4327. setup_zone_pageset(zone);
  4328. #endif
  4329. /* we have to stop all cpus to guarantee there is no user
  4330. of zonelist */
  4331. stop_machine(__build_all_zonelists, pgdat, NULL);
  4332. /* cpuset refresh routine should be here */
  4333. }
  4334. vm_total_pages = nr_free_pagecache_pages();
  4335. /*
  4336. * Disable grouping by mobility if the number of pages in the
  4337. * system is too low to allow the mechanism to work. It would be
  4338. * more accurate, but expensive to check per-zone. This check is
  4339. * made on memory-hotadd so a system can start with mobility
  4340. * disabled and enable it later
  4341. */
  4342. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4343. page_group_by_mobility_disabled = 1;
  4344. else
  4345. page_group_by_mobility_disabled = 0;
  4346. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4347. nr_online_nodes,
  4348. zonelist_order_name[current_zonelist_order],
  4349. page_group_by_mobility_disabled ? "off" : "on",
  4350. vm_total_pages);
  4351. #ifdef CONFIG_NUMA
  4352. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4353. #endif
  4354. }
  4355. /*
  4356. * Helper functions to size the waitqueue hash table.
  4357. * Essentially these want to choose hash table sizes sufficiently
  4358. * large so that collisions trying to wait on pages are rare.
  4359. * But in fact, the number of active page waitqueues on typical
  4360. * systems is ridiculously low, less than 200. So this is even
  4361. * conservative, even though it seems large.
  4362. *
  4363. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4364. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4365. */
  4366. #define PAGES_PER_WAITQUEUE 256
  4367. #ifndef CONFIG_MEMORY_HOTPLUG
  4368. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4369. {
  4370. unsigned long size = 1;
  4371. pages /= PAGES_PER_WAITQUEUE;
  4372. while (size < pages)
  4373. size <<= 1;
  4374. /*
  4375. * Once we have dozens or even hundreds of threads sleeping
  4376. * on IO we've got bigger problems than wait queue collision.
  4377. * Limit the size of the wait table to a reasonable size.
  4378. */
  4379. size = min(size, 4096UL);
  4380. return max(size, 4UL);
  4381. }
  4382. #else
  4383. /*
  4384. * A zone's size might be changed by hot-add, so it is not possible to determine
  4385. * a suitable size for its wait_table. So we use the maximum size now.
  4386. *
  4387. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4388. *
  4389. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4390. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4391. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4392. *
  4393. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4394. * or more by the traditional way. (See above). It equals:
  4395. *
  4396. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4397. * ia64(16K page size) : = ( 8G + 4M)byte.
  4398. * powerpc (64K page size) : = (32G +16M)byte.
  4399. */
  4400. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4401. {
  4402. return 4096UL;
  4403. }
  4404. #endif
  4405. /*
  4406. * This is an integer logarithm so that shifts can be used later
  4407. * to extract the more random high bits from the multiplicative
  4408. * hash function before the remainder is taken.
  4409. */
  4410. static inline unsigned long wait_table_bits(unsigned long size)
  4411. {
  4412. return ffz(~size);
  4413. }
  4414. /*
  4415. * Initially all pages are reserved - free ones are freed
  4416. * up by free_all_bootmem() once the early boot process is
  4417. * done. Non-atomic initialization, single-pass.
  4418. */
  4419. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4420. unsigned long start_pfn, enum memmap_context context)
  4421. {
  4422. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4423. unsigned long end_pfn = start_pfn + size;
  4424. pg_data_t *pgdat = NODE_DATA(nid);
  4425. unsigned long pfn;
  4426. unsigned long nr_initialised = 0;
  4427. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4428. struct memblock_region *r = NULL, *tmp;
  4429. #endif
  4430. if (highest_memmap_pfn < end_pfn - 1)
  4431. highest_memmap_pfn = end_pfn - 1;
  4432. /*
  4433. * Honor reservation requested by the driver for this ZONE_DEVICE
  4434. * memory
  4435. */
  4436. if (altmap && start_pfn == altmap->base_pfn)
  4437. start_pfn += altmap->reserve;
  4438. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4439. /*
  4440. * There can be holes in boot-time mem_map[]s handed to this
  4441. * function. They do not exist on hotplugged memory.
  4442. */
  4443. if (context != MEMMAP_EARLY)
  4444. goto not_early;
  4445. if (!early_pfn_valid(pfn))
  4446. continue;
  4447. if (!early_pfn_in_nid(pfn, nid))
  4448. continue;
  4449. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4450. break;
  4451. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4452. /*
  4453. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4454. * from zone_movable_pfn[nid] to end of each node should be
  4455. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4456. */
  4457. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4458. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4459. continue;
  4460. /*
  4461. * Check given memblock attribute by firmware which can affect
  4462. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4463. * mirrored, it's an overlapped memmap init. skip it.
  4464. */
  4465. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4466. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4467. for_each_memblock(memory, tmp)
  4468. if (pfn < memblock_region_memory_end_pfn(tmp))
  4469. break;
  4470. r = tmp;
  4471. }
  4472. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4473. memblock_is_mirror(r)) {
  4474. /* already initialized as NORMAL */
  4475. pfn = memblock_region_memory_end_pfn(r);
  4476. continue;
  4477. }
  4478. }
  4479. #endif
  4480. not_early:
  4481. /*
  4482. * Mark the block movable so that blocks are reserved for
  4483. * movable at startup. This will force kernel allocations
  4484. * to reserve their blocks rather than leaking throughout
  4485. * the address space during boot when many long-lived
  4486. * kernel allocations are made.
  4487. *
  4488. * bitmap is created for zone's valid pfn range. but memmap
  4489. * can be created for invalid pages (for alignment)
  4490. * check here not to call set_pageblock_migratetype() against
  4491. * pfn out of zone.
  4492. */
  4493. if (!(pfn & (pageblock_nr_pages - 1))) {
  4494. struct page *page = pfn_to_page(pfn);
  4495. __init_single_page(page, pfn, zone, nid);
  4496. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4497. } else {
  4498. __init_single_pfn(pfn, zone, nid);
  4499. }
  4500. }
  4501. }
  4502. static void __meminit zone_init_free_lists(struct zone *zone)
  4503. {
  4504. unsigned int order, t;
  4505. for_each_migratetype_order(order, t) {
  4506. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4507. zone->free_area[order].nr_free = 0;
  4508. }
  4509. }
  4510. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4511. #define memmap_init(size, nid, zone, start_pfn) \
  4512. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4513. #endif
  4514. static int zone_batchsize(struct zone *zone)
  4515. {
  4516. #ifdef CONFIG_MMU
  4517. int batch;
  4518. /*
  4519. * The per-cpu-pages pools are set to around 1000th of the
  4520. * size of the zone. But no more than 1/2 of a meg.
  4521. *
  4522. * OK, so we don't know how big the cache is. So guess.
  4523. */
  4524. batch = zone->managed_pages / 1024;
  4525. if (batch * PAGE_SIZE > 512 * 1024)
  4526. batch = (512 * 1024) / PAGE_SIZE;
  4527. batch /= 4; /* We effectively *= 4 below */
  4528. if (batch < 1)
  4529. batch = 1;
  4530. /*
  4531. * Clamp the batch to a 2^n - 1 value. Having a power
  4532. * of 2 value was found to be more likely to have
  4533. * suboptimal cache aliasing properties in some cases.
  4534. *
  4535. * For example if 2 tasks are alternately allocating
  4536. * batches of pages, one task can end up with a lot
  4537. * of pages of one half of the possible page colors
  4538. * and the other with pages of the other colors.
  4539. */
  4540. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4541. return batch;
  4542. #else
  4543. /* The deferral and batching of frees should be suppressed under NOMMU
  4544. * conditions.
  4545. *
  4546. * The problem is that NOMMU needs to be able to allocate large chunks
  4547. * of contiguous memory as there's no hardware page translation to
  4548. * assemble apparent contiguous memory from discontiguous pages.
  4549. *
  4550. * Queueing large contiguous runs of pages for batching, however,
  4551. * causes the pages to actually be freed in smaller chunks. As there
  4552. * can be a significant delay between the individual batches being
  4553. * recycled, this leads to the once large chunks of space being
  4554. * fragmented and becoming unavailable for high-order allocations.
  4555. */
  4556. return 0;
  4557. #endif
  4558. }
  4559. /*
  4560. * pcp->high and pcp->batch values are related and dependent on one another:
  4561. * ->batch must never be higher then ->high.
  4562. * The following function updates them in a safe manner without read side
  4563. * locking.
  4564. *
  4565. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4566. * those fields changing asynchronously (acording the the above rule).
  4567. *
  4568. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4569. * outside of boot time (or some other assurance that no concurrent updaters
  4570. * exist).
  4571. */
  4572. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4573. unsigned long batch)
  4574. {
  4575. /* start with a fail safe value for batch */
  4576. pcp->batch = 1;
  4577. smp_wmb();
  4578. /* Update high, then batch, in order */
  4579. pcp->high = high;
  4580. smp_wmb();
  4581. pcp->batch = batch;
  4582. }
  4583. /* a companion to pageset_set_high() */
  4584. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4585. {
  4586. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4587. }
  4588. static void pageset_init(struct per_cpu_pageset *p)
  4589. {
  4590. struct per_cpu_pages *pcp;
  4591. int migratetype;
  4592. memset(p, 0, sizeof(*p));
  4593. pcp = &p->pcp;
  4594. pcp->count = 0;
  4595. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4596. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4597. }
  4598. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4599. {
  4600. pageset_init(p);
  4601. pageset_set_batch(p, batch);
  4602. }
  4603. /*
  4604. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4605. * to the value high for the pageset p.
  4606. */
  4607. static void pageset_set_high(struct per_cpu_pageset *p,
  4608. unsigned long high)
  4609. {
  4610. unsigned long batch = max(1UL, high / 4);
  4611. if ((high / 4) > (PAGE_SHIFT * 8))
  4612. batch = PAGE_SHIFT * 8;
  4613. pageset_update(&p->pcp, high, batch);
  4614. }
  4615. static void pageset_set_high_and_batch(struct zone *zone,
  4616. struct per_cpu_pageset *pcp)
  4617. {
  4618. if (percpu_pagelist_fraction)
  4619. pageset_set_high(pcp,
  4620. (zone->managed_pages /
  4621. percpu_pagelist_fraction));
  4622. else
  4623. pageset_set_batch(pcp, zone_batchsize(zone));
  4624. }
  4625. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4626. {
  4627. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4628. pageset_init(pcp);
  4629. pageset_set_high_and_batch(zone, pcp);
  4630. }
  4631. static void __meminit setup_zone_pageset(struct zone *zone)
  4632. {
  4633. int cpu;
  4634. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4635. for_each_possible_cpu(cpu)
  4636. zone_pageset_init(zone, cpu);
  4637. }
  4638. /*
  4639. * Allocate per cpu pagesets and initialize them.
  4640. * Before this call only boot pagesets were available.
  4641. */
  4642. void __init setup_per_cpu_pageset(void)
  4643. {
  4644. struct zone *zone;
  4645. for_each_populated_zone(zone)
  4646. setup_zone_pageset(zone);
  4647. }
  4648. static noinline __init_refok
  4649. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4650. {
  4651. int i;
  4652. size_t alloc_size;
  4653. /*
  4654. * The per-page waitqueue mechanism uses hashed waitqueues
  4655. * per zone.
  4656. */
  4657. zone->wait_table_hash_nr_entries =
  4658. wait_table_hash_nr_entries(zone_size_pages);
  4659. zone->wait_table_bits =
  4660. wait_table_bits(zone->wait_table_hash_nr_entries);
  4661. alloc_size = zone->wait_table_hash_nr_entries
  4662. * sizeof(wait_queue_head_t);
  4663. if (!slab_is_available()) {
  4664. zone->wait_table = (wait_queue_head_t *)
  4665. memblock_virt_alloc_node_nopanic(
  4666. alloc_size, zone->zone_pgdat->node_id);
  4667. } else {
  4668. /*
  4669. * This case means that a zone whose size was 0 gets new memory
  4670. * via memory hot-add.
  4671. * But it may be the case that a new node was hot-added. In
  4672. * this case vmalloc() will not be able to use this new node's
  4673. * memory - this wait_table must be initialized to use this new
  4674. * node itself as well.
  4675. * To use this new node's memory, further consideration will be
  4676. * necessary.
  4677. */
  4678. zone->wait_table = vmalloc(alloc_size);
  4679. }
  4680. if (!zone->wait_table)
  4681. return -ENOMEM;
  4682. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4683. init_waitqueue_head(zone->wait_table + i);
  4684. return 0;
  4685. }
  4686. static __meminit void zone_pcp_init(struct zone *zone)
  4687. {
  4688. /*
  4689. * per cpu subsystem is not up at this point. The following code
  4690. * relies on the ability of the linker to provide the
  4691. * offset of a (static) per cpu variable into the per cpu area.
  4692. */
  4693. zone->pageset = &boot_pageset;
  4694. if (populated_zone(zone))
  4695. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4696. zone->name, zone->present_pages,
  4697. zone_batchsize(zone));
  4698. }
  4699. int __meminit init_currently_empty_zone(struct zone *zone,
  4700. unsigned long zone_start_pfn,
  4701. unsigned long size)
  4702. {
  4703. struct pglist_data *pgdat = zone->zone_pgdat;
  4704. int ret;
  4705. ret = zone_wait_table_init(zone, size);
  4706. if (ret)
  4707. return ret;
  4708. pgdat->nr_zones = zone_idx(zone) + 1;
  4709. zone->zone_start_pfn = zone_start_pfn;
  4710. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4711. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4712. pgdat->node_id,
  4713. (unsigned long)zone_idx(zone),
  4714. zone_start_pfn, (zone_start_pfn + size));
  4715. zone_init_free_lists(zone);
  4716. return 0;
  4717. }
  4718. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4719. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4720. /*
  4721. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4722. */
  4723. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4724. struct mminit_pfnnid_cache *state)
  4725. {
  4726. unsigned long start_pfn, end_pfn;
  4727. int nid;
  4728. if (state->last_start <= pfn && pfn < state->last_end)
  4729. return state->last_nid;
  4730. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4731. if (nid != -1) {
  4732. state->last_start = start_pfn;
  4733. state->last_end = end_pfn;
  4734. state->last_nid = nid;
  4735. }
  4736. return nid;
  4737. }
  4738. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4739. /**
  4740. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4741. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4742. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4743. *
  4744. * If an architecture guarantees that all ranges registered contain no holes
  4745. * and may be freed, this this function may be used instead of calling
  4746. * memblock_free_early_nid() manually.
  4747. */
  4748. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4749. {
  4750. unsigned long start_pfn, end_pfn;
  4751. int i, this_nid;
  4752. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4753. start_pfn = min(start_pfn, max_low_pfn);
  4754. end_pfn = min(end_pfn, max_low_pfn);
  4755. if (start_pfn < end_pfn)
  4756. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4757. (end_pfn - start_pfn) << PAGE_SHIFT,
  4758. this_nid);
  4759. }
  4760. }
  4761. /**
  4762. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4763. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4764. *
  4765. * If an architecture guarantees that all ranges registered contain no holes and may
  4766. * be freed, this function may be used instead of calling memory_present() manually.
  4767. */
  4768. void __init sparse_memory_present_with_active_regions(int nid)
  4769. {
  4770. unsigned long start_pfn, end_pfn;
  4771. int i, this_nid;
  4772. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4773. memory_present(this_nid, start_pfn, end_pfn);
  4774. }
  4775. /**
  4776. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4777. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4778. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4779. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4780. *
  4781. * It returns the start and end page frame of a node based on information
  4782. * provided by memblock_set_node(). If called for a node
  4783. * with no available memory, a warning is printed and the start and end
  4784. * PFNs will be 0.
  4785. */
  4786. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4787. unsigned long *start_pfn, unsigned long *end_pfn)
  4788. {
  4789. unsigned long this_start_pfn, this_end_pfn;
  4790. int i;
  4791. *start_pfn = -1UL;
  4792. *end_pfn = 0;
  4793. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4794. *start_pfn = min(*start_pfn, this_start_pfn);
  4795. *end_pfn = max(*end_pfn, this_end_pfn);
  4796. }
  4797. if (*start_pfn == -1UL)
  4798. *start_pfn = 0;
  4799. }
  4800. /*
  4801. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4802. * assumption is made that zones within a node are ordered in monotonic
  4803. * increasing memory addresses so that the "highest" populated zone is used
  4804. */
  4805. static void __init find_usable_zone_for_movable(void)
  4806. {
  4807. int zone_index;
  4808. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4809. if (zone_index == ZONE_MOVABLE)
  4810. continue;
  4811. if (arch_zone_highest_possible_pfn[zone_index] >
  4812. arch_zone_lowest_possible_pfn[zone_index])
  4813. break;
  4814. }
  4815. VM_BUG_ON(zone_index == -1);
  4816. movable_zone = zone_index;
  4817. }
  4818. /*
  4819. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4820. * because it is sized independent of architecture. Unlike the other zones,
  4821. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4822. * in each node depending on the size of each node and how evenly kernelcore
  4823. * is distributed. This helper function adjusts the zone ranges
  4824. * provided by the architecture for a given node by using the end of the
  4825. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4826. * zones within a node are in order of monotonic increases memory addresses
  4827. */
  4828. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4829. unsigned long zone_type,
  4830. unsigned long node_start_pfn,
  4831. unsigned long node_end_pfn,
  4832. unsigned long *zone_start_pfn,
  4833. unsigned long *zone_end_pfn)
  4834. {
  4835. /* Only adjust if ZONE_MOVABLE is on this node */
  4836. if (zone_movable_pfn[nid]) {
  4837. /* Size ZONE_MOVABLE */
  4838. if (zone_type == ZONE_MOVABLE) {
  4839. *zone_start_pfn = zone_movable_pfn[nid];
  4840. *zone_end_pfn = min(node_end_pfn,
  4841. arch_zone_highest_possible_pfn[movable_zone]);
  4842. /* Check if this whole range is within ZONE_MOVABLE */
  4843. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4844. *zone_start_pfn = *zone_end_pfn;
  4845. }
  4846. }
  4847. /*
  4848. * Return the number of pages a zone spans in a node, including holes
  4849. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4850. */
  4851. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4852. unsigned long zone_type,
  4853. unsigned long node_start_pfn,
  4854. unsigned long node_end_pfn,
  4855. unsigned long *zone_start_pfn,
  4856. unsigned long *zone_end_pfn,
  4857. unsigned long *ignored)
  4858. {
  4859. /* When hotadd a new node from cpu_up(), the node should be empty */
  4860. if (!node_start_pfn && !node_end_pfn)
  4861. return 0;
  4862. /* Get the start and end of the zone */
  4863. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4864. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4865. adjust_zone_range_for_zone_movable(nid, zone_type,
  4866. node_start_pfn, node_end_pfn,
  4867. zone_start_pfn, zone_end_pfn);
  4868. /* Check that this node has pages within the zone's required range */
  4869. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4870. return 0;
  4871. /* Move the zone boundaries inside the node if necessary */
  4872. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4873. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4874. /* Return the spanned pages */
  4875. return *zone_end_pfn - *zone_start_pfn;
  4876. }
  4877. /*
  4878. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4879. * then all holes in the requested range will be accounted for.
  4880. */
  4881. unsigned long __meminit __absent_pages_in_range(int nid,
  4882. unsigned long range_start_pfn,
  4883. unsigned long range_end_pfn)
  4884. {
  4885. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4886. unsigned long start_pfn, end_pfn;
  4887. int i;
  4888. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4889. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4890. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4891. nr_absent -= end_pfn - start_pfn;
  4892. }
  4893. return nr_absent;
  4894. }
  4895. /**
  4896. * absent_pages_in_range - Return number of page frames in holes within a range
  4897. * @start_pfn: The start PFN to start searching for holes
  4898. * @end_pfn: The end PFN to stop searching for holes
  4899. *
  4900. * It returns the number of pages frames in memory holes within a range.
  4901. */
  4902. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4903. unsigned long end_pfn)
  4904. {
  4905. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4906. }
  4907. /* Return the number of page frames in holes in a zone on a node */
  4908. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4909. unsigned long zone_type,
  4910. unsigned long node_start_pfn,
  4911. unsigned long node_end_pfn,
  4912. unsigned long *ignored)
  4913. {
  4914. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4915. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4916. unsigned long zone_start_pfn, zone_end_pfn;
  4917. unsigned long nr_absent;
  4918. /* When hotadd a new node from cpu_up(), the node should be empty */
  4919. if (!node_start_pfn && !node_end_pfn)
  4920. return 0;
  4921. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4922. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4923. adjust_zone_range_for_zone_movable(nid, zone_type,
  4924. node_start_pfn, node_end_pfn,
  4925. &zone_start_pfn, &zone_end_pfn);
  4926. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4927. /*
  4928. * ZONE_MOVABLE handling.
  4929. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4930. * and vice versa.
  4931. */
  4932. if (zone_movable_pfn[nid]) {
  4933. if (mirrored_kernelcore) {
  4934. unsigned long start_pfn, end_pfn;
  4935. struct memblock_region *r;
  4936. for_each_memblock(memory, r) {
  4937. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4938. zone_start_pfn, zone_end_pfn);
  4939. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4940. zone_start_pfn, zone_end_pfn);
  4941. if (zone_type == ZONE_MOVABLE &&
  4942. memblock_is_mirror(r))
  4943. nr_absent += end_pfn - start_pfn;
  4944. if (zone_type == ZONE_NORMAL &&
  4945. !memblock_is_mirror(r))
  4946. nr_absent += end_pfn - start_pfn;
  4947. }
  4948. } else {
  4949. if (zone_type == ZONE_NORMAL)
  4950. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4951. }
  4952. }
  4953. return nr_absent;
  4954. }
  4955. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4956. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4957. unsigned long zone_type,
  4958. unsigned long node_start_pfn,
  4959. unsigned long node_end_pfn,
  4960. unsigned long *zone_start_pfn,
  4961. unsigned long *zone_end_pfn,
  4962. unsigned long *zones_size)
  4963. {
  4964. unsigned int zone;
  4965. *zone_start_pfn = node_start_pfn;
  4966. for (zone = 0; zone < zone_type; zone++)
  4967. *zone_start_pfn += zones_size[zone];
  4968. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4969. return zones_size[zone_type];
  4970. }
  4971. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4972. unsigned long zone_type,
  4973. unsigned long node_start_pfn,
  4974. unsigned long node_end_pfn,
  4975. unsigned long *zholes_size)
  4976. {
  4977. if (!zholes_size)
  4978. return 0;
  4979. return zholes_size[zone_type];
  4980. }
  4981. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4982. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4983. unsigned long node_start_pfn,
  4984. unsigned long node_end_pfn,
  4985. unsigned long *zones_size,
  4986. unsigned long *zholes_size)
  4987. {
  4988. unsigned long realtotalpages = 0, totalpages = 0;
  4989. enum zone_type i;
  4990. for (i = 0; i < MAX_NR_ZONES; i++) {
  4991. struct zone *zone = pgdat->node_zones + i;
  4992. unsigned long zone_start_pfn, zone_end_pfn;
  4993. unsigned long size, real_size;
  4994. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4995. node_start_pfn,
  4996. node_end_pfn,
  4997. &zone_start_pfn,
  4998. &zone_end_pfn,
  4999. zones_size);
  5000. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5001. node_start_pfn, node_end_pfn,
  5002. zholes_size);
  5003. if (size)
  5004. zone->zone_start_pfn = zone_start_pfn;
  5005. else
  5006. zone->zone_start_pfn = 0;
  5007. zone->spanned_pages = size;
  5008. zone->present_pages = real_size;
  5009. totalpages += size;
  5010. realtotalpages += real_size;
  5011. }
  5012. pgdat->node_spanned_pages = totalpages;
  5013. pgdat->node_present_pages = realtotalpages;
  5014. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5015. realtotalpages);
  5016. }
  5017. #ifndef CONFIG_SPARSEMEM
  5018. /*
  5019. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5020. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5021. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5022. * round what is now in bits to nearest long in bits, then return it in
  5023. * bytes.
  5024. */
  5025. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5026. {
  5027. unsigned long usemapsize;
  5028. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5029. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5030. usemapsize = usemapsize >> pageblock_order;
  5031. usemapsize *= NR_PAGEBLOCK_BITS;
  5032. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5033. return usemapsize / 8;
  5034. }
  5035. static void __init setup_usemap(struct pglist_data *pgdat,
  5036. struct zone *zone,
  5037. unsigned long zone_start_pfn,
  5038. unsigned long zonesize)
  5039. {
  5040. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5041. zone->pageblock_flags = NULL;
  5042. if (usemapsize)
  5043. zone->pageblock_flags =
  5044. memblock_virt_alloc_node_nopanic(usemapsize,
  5045. pgdat->node_id);
  5046. }
  5047. #else
  5048. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5049. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5050. #endif /* CONFIG_SPARSEMEM */
  5051. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5052. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5053. void __paginginit set_pageblock_order(void)
  5054. {
  5055. unsigned int order;
  5056. /* Check that pageblock_nr_pages has not already been setup */
  5057. if (pageblock_order)
  5058. return;
  5059. if (HPAGE_SHIFT > PAGE_SHIFT)
  5060. order = HUGETLB_PAGE_ORDER;
  5061. else
  5062. order = MAX_ORDER - 1;
  5063. /*
  5064. * Assume the largest contiguous order of interest is a huge page.
  5065. * This value may be variable depending on boot parameters on IA64 and
  5066. * powerpc.
  5067. */
  5068. pageblock_order = order;
  5069. }
  5070. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5071. /*
  5072. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5073. * is unused as pageblock_order is set at compile-time. See
  5074. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5075. * the kernel config
  5076. */
  5077. void __paginginit set_pageblock_order(void)
  5078. {
  5079. }
  5080. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5081. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5082. unsigned long present_pages)
  5083. {
  5084. unsigned long pages = spanned_pages;
  5085. /*
  5086. * Provide a more accurate estimation if there are holes within
  5087. * the zone and SPARSEMEM is in use. If there are holes within the
  5088. * zone, each populated memory region may cost us one or two extra
  5089. * memmap pages due to alignment because memmap pages for each
  5090. * populated regions may not naturally algined on page boundary.
  5091. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5092. */
  5093. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5094. IS_ENABLED(CONFIG_SPARSEMEM))
  5095. pages = present_pages;
  5096. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5097. }
  5098. /*
  5099. * Set up the zone data structures:
  5100. * - mark all pages reserved
  5101. * - mark all memory queues empty
  5102. * - clear the memory bitmaps
  5103. *
  5104. * NOTE: pgdat should get zeroed by caller.
  5105. */
  5106. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5107. {
  5108. enum zone_type j;
  5109. int nid = pgdat->node_id;
  5110. int ret;
  5111. pgdat_resize_init(pgdat);
  5112. #ifdef CONFIG_NUMA_BALANCING
  5113. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5114. pgdat->numabalancing_migrate_nr_pages = 0;
  5115. pgdat->numabalancing_migrate_next_window = jiffies;
  5116. #endif
  5117. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5118. spin_lock_init(&pgdat->split_queue_lock);
  5119. INIT_LIST_HEAD(&pgdat->split_queue);
  5120. pgdat->split_queue_len = 0;
  5121. #endif
  5122. init_waitqueue_head(&pgdat->kswapd_wait);
  5123. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5124. #ifdef CONFIG_COMPACTION
  5125. init_waitqueue_head(&pgdat->kcompactd_wait);
  5126. #endif
  5127. pgdat_page_ext_init(pgdat);
  5128. for (j = 0; j < MAX_NR_ZONES; j++) {
  5129. struct zone *zone = pgdat->node_zones + j;
  5130. unsigned long size, realsize, freesize, memmap_pages;
  5131. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5132. size = zone->spanned_pages;
  5133. realsize = freesize = zone->present_pages;
  5134. /*
  5135. * Adjust freesize so that it accounts for how much memory
  5136. * is used by this zone for memmap. This affects the watermark
  5137. * and per-cpu initialisations
  5138. */
  5139. memmap_pages = calc_memmap_size(size, realsize);
  5140. if (!is_highmem_idx(j)) {
  5141. if (freesize >= memmap_pages) {
  5142. freesize -= memmap_pages;
  5143. if (memmap_pages)
  5144. printk(KERN_DEBUG
  5145. " %s zone: %lu pages used for memmap\n",
  5146. zone_names[j], memmap_pages);
  5147. } else
  5148. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5149. zone_names[j], memmap_pages, freesize);
  5150. }
  5151. /* Account for reserved pages */
  5152. if (j == 0 && freesize > dma_reserve) {
  5153. freesize -= dma_reserve;
  5154. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5155. zone_names[0], dma_reserve);
  5156. }
  5157. if (!is_highmem_idx(j))
  5158. nr_kernel_pages += freesize;
  5159. /* Charge for highmem memmap if there are enough kernel pages */
  5160. else if (nr_kernel_pages > memmap_pages * 2)
  5161. nr_kernel_pages -= memmap_pages;
  5162. nr_all_pages += freesize;
  5163. /*
  5164. * Set an approximate value for lowmem here, it will be adjusted
  5165. * when the bootmem allocator frees pages into the buddy system.
  5166. * And all highmem pages will be managed by the buddy system.
  5167. */
  5168. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5169. #ifdef CONFIG_NUMA
  5170. zone->node = nid;
  5171. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  5172. / 100;
  5173. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  5174. #endif
  5175. zone->name = zone_names[j];
  5176. spin_lock_init(&zone->lock);
  5177. spin_lock_init(&zone->lru_lock);
  5178. zone_seqlock_init(zone);
  5179. zone->zone_pgdat = pgdat;
  5180. zone_pcp_init(zone);
  5181. /* For bootup, initialized properly in watermark setup */
  5182. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  5183. lruvec_init(&zone->lruvec);
  5184. if (!size)
  5185. continue;
  5186. set_pageblock_order();
  5187. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5188. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5189. BUG_ON(ret);
  5190. memmap_init(size, nid, j, zone_start_pfn);
  5191. }
  5192. }
  5193. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  5194. {
  5195. unsigned long __maybe_unused start = 0;
  5196. unsigned long __maybe_unused offset = 0;
  5197. /* Skip empty nodes */
  5198. if (!pgdat->node_spanned_pages)
  5199. return;
  5200. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5201. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5202. offset = pgdat->node_start_pfn - start;
  5203. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5204. if (!pgdat->node_mem_map) {
  5205. unsigned long size, end;
  5206. struct page *map;
  5207. /*
  5208. * The zone's endpoints aren't required to be MAX_ORDER
  5209. * aligned but the node_mem_map endpoints must be in order
  5210. * for the buddy allocator to function correctly.
  5211. */
  5212. end = pgdat_end_pfn(pgdat);
  5213. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5214. size = (end - start) * sizeof(struct page);
  5215. map = alloc_remap(pgdat->node_id, size);
  5216. if (!map)
  5217. map = memblock_virt_alloc_node_nopanic(size,
  5218. pgdat->node_id);
  5219. pgdat->node_mem_map = map + offset;
  5220. }
  5221. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5222. /*
  5223. * With no DISCONTIG, the global mem_map is just set as node 0's
  5224. */
  5225. if (pgdat == NODE_DATA(0)) {
  5226. mem_map = NODE_DATA(0)->node_mem_map;
  5227. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5228. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5229. mem_map -= offset;
  5230. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5231. }
  5232. #endif
  5233. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5234. }
  5235. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5236. unsigned long node_start_pfn, unsigned long *zholes_size)
  5237. {
  5238. pg_data_t *pgdat = NODE_DATA(nid);
  5239. unsigned long start_pfn = 0;
  5240. unsigned long end_pfn = 0;
  5241. /* pg_data_t should be reset to zero when it's allocated */
  5242. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  5243. reset_deferred_meminit(pgdat);
  5244. pgdat->node_id = nid;
  5245. pgdat->node_start_pfn = node_start_pfn;
  5246. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5247. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5248. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5249. (u64)start_pfn << PAGE_SHIFT,
  5250. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5251. #else
  5252. start_pfn = node_start_pfn;
  5253. #endif
  5254. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5255. zones_size, zholes_size);
  5256. alloc_node_mem_map(pgdat);
  5257. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5258. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5259. nid, (unsigned long)pgdat,
  5260. (unsigned long)pgdat->node_mem_map);
  5261. #endif
  5262. free_area_init_core(pgdat);
  5263. }
  5264. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5265. #if MAX_NUMNODES > 1
  5266. /*
  5267. * Figure out the number of possible node ids.
  5268. */
  5269. void __init setup_nr_node_ids(void)
  5270. {
  5271. unsigned int highest;
  5272. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5273. nr_node_ids = highest + 1;
  5274. }
  5275. #endif
  5276. /**
  5277. * node_map_pfn_alignment - determine the maximum internode alignment
  5278. *
  5279. * This function should be called after node map is populated and sorted.
  5280. * It calculates the maximum power of two alignment which can distinguish
  5281. * all the nodes.
  5282. *
  5283. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5284. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5285. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5286. * shifted, 1GiB is enough and this function will indicate so.
  5287. *
  5288. * This is used to test whether pfn -> nid mapping of the chosen memory
  5289. * model has fine enough granularity to avoid incorrect mapping for the
  5290. * populated node map.
  5291. *
  5292. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5293. * requirement (single node).
  5294. */
  5295. unsigned long __init node_map_pfn_alignment(void)
  5296. {
  5297. unsigned long accl_mask = 0, last_end = 0;
  5298. unsigned long start, end, mask;
  5299. int last_nid = -1;
  5300. int i, nid;
  5301. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5302. if (!start || last_nid < 0 || last_nid == nid) {
  5303. last_nid = nid;
  5304. last_end = end;
  5305. continue;
  5306. }
  5307. /*
  5308. * Start with a mask granular enough to pin-point to the
  5309. * start pfn and tick off bits one-by-one until it becomes
  5310. * too coarse to separate the current node from the last.
  5311. */
  5312. mask = ~((1 << __ffs(start)) - 1);
  5313. while (mask && last_end <= (start & (mask << 1)))
  5314. mask <<= 1;
  5315. /* accumulate all internode masks */
  5316. accl_mask |= mask;
  5317. }
  5318. /* convert mask to number of pages */
  5319. return ~accl_mask + 1;
  5320. }
  5321. /* Find the lowest pfn for a node */
  5322. static unsigned long __init find_min_pfn_for_node(int nid)
  5323. {
  5324. unsigned long min_pfn = ULONG_MAX;
  5325. unsigned long start_pfn;
  5326. int i;
  5327. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5328. min_pfn = min(min_pfn, start_pfn);
  5329. if (min_pfn == ULONG_MAX) {
  5330. pr_warn("Could not find start_pfn for node %d\n", nid);
  5331. return 0;
  5332. }
  5333. return min_pfn;
  5334. }
  5335. /**
  5336. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5337. *
  5338. * It returns the minimum PFN based on information provided via
  5339. * memblock_set_node().
  5340. */
  5341. unsigned long __init find_min_pfn_with_active_regions(void)
  5342. {
  5343. return find_min_pfn_for_node(MAX_NUMNODES);
  5344. }
  5345. /*
  5346. * early_calculate_totalpages()
  5347. * Sum pages in active regions for movable zone.
  5348. * Populate N_MEMORY for calculating usable_nodes.
  5349. */
  5350. static unsigned long __init early_calculate_totalpages(void)
  5351. {
  5352. unsigned long totalpages = 0;
  5353. unsigned long start_pfn, end_pfn;
  5354. int i, nid;
  5355. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5356. unsigned long pages = end_pfn - start_pfn;
  5357. totalpages += pages;
  5358. if (pages)
  5359. node_set_state(nid, N_MEMORY);
  5360. }
  5361. return totalpages;
  5362. }
  5363. /*
  5364. * Find the PFN the Movable zone begins in each node. Kernel memory
  5365. * is spread evenly between nodes as long as the nodes have enough
  5366. * memory. When they don't, some nodes will have more kernelcore than
  5367. * others
  5368. */
  5369. static void __init find_zone_movable_pfns_for_nodes(void)
  5370. {
  5371. int i, nid;
  5372. unsigned long usable_startpfn;
  5373. unsigned long kernelcore_node, kernelcore_remaining;
  5374. /* save the state before borrow the nodemask */
  5375. nodemask_t saved_node_state = node_states[N_MEMORY];
  5376. unsigned long totalpages = early_calculate_totalpages();
  5377. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5378. struct memblock_region *r;
  5379. /* Need to find movable_zone earlier when movable_node is specified. */
  5380. find_usable_zone_for_movable();
  5381. /*
  5382. * If movable_node is specified, ignore kernelcore and movablecore
  5383. * options.
  5384. */
  5385. if (movable_node_is_enabled()) {
  5386. for_each_memblock(memory, r) {
  5387. if (!memblock_is_hotpluggable(r))
  5388. continue;
  5389. nid = r->nid;
  5390. usable_startpfn = PFN_DOWN(r->base);
  5391. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5392. min(usable_startpfn, zone_movable_pfn[nid]) :
  5393. usable_startpfn;
  5394. }
  5395. goto out2;
  5396. }
  5397. /*
  5398. * If kernelcore=mirror is specified, ignore movablecore option
  5399. */
  5400. if (mirrored_kernelcore) {
  5401. bool mem_below_4gb_not_mirrored = false;
  5402. for_each_memblock(memory, r) {
  5403. if (memblock_is_mirror(r))
  5404. continue;
  5405. nid = r->nid;
  5406. usable_startpfn = memblock_region_memory_base_pfn(r);
  5407. if (usable_startpfn < 0x100000) {
  5408. mem_below_4gb_not_mirrored = true;
  5409. continue;
  5410. }
  5411. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5412. min(usable_startpfn, zone_movable_pfn[nid]) :
  5413. usable_startpfn;
  5414. }
  5415. if (mem_below_4gb_not_mirrored)
  5416. pr_warn("This configuration results in unmirrored kernel memory.");
  5417. goto out2;
  5418. }
  5419. /*
  5420. * If movablecore=nn[KMG] was specified, calculate what size of
  5421. * kernelcore that corresponds so that memory usable for
  5422. * any allocation type is evenly spread. If both kernelcore
  5423. * and movablecore are specified, then the value of kernelcore
  5424. * will be used for required_kernelcore if it's greater than
  5425. * what movablecore would have allowed.
  5426. */
  5427. if (required_movablecore) {
  5428. unsigned long corepages;
  5429. /*
  5430. * Round-up so that ZONE_MOVABLE is at least as large as what
  5431. * was requested by the user
  5432. */
  5433. required_movablecore =
  5434. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5435. required_movablecore = min(totalpages, required_movablecore);
  5436. corepages = totalpages - required_movablecore;
  5437. required_kernelcore = max(required_kernelcore, corepages);
  5438. }
  5439. /*
  5440. * If kernelcore was not specified or kernelcore size is larger
  5441. * than totalpages, there is no ZONE_MOVABLE.
  5442. */
  5443. if (!required_kernelcore || required_kernelcore >= totalpages)
  5444. goto out;
  5445. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5446. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5447. restart:
  5448. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5449. kernelcore_node = required_kernelcore / usable_nodes;
  5450. for_each_node_state(nid, N_MEMORY) {
  5451. unsigned long start_pfn, end_pfn;
  5452. /*
  5453. * Recalculate kernelcore_node if the division per node
  5454. * now exceeds what is necessary to satisfy the requested
  5455. * amount of memory for the kernel
  5456. */
  5457. if (required_kernelcore < kernelcore_node)
  5458. kernelcore_node = required_kernelcore / usable_nodes;
  5459. /*
  5460. * As the map is walked, we track how much memory is usable
  5461. * by the kernel using kernelcore_remaining. When it is
  5462. * 0, the rest of the node is usable by ZONE_MOVABLE
  5463. */
  5464. kernelcore_remaining = kernelcore_node;
  5465. /* Go through each range of PFNs within this node */
  5466. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5467. unsigned long size_pages;
  5468. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5469. if (start_pfn >= end_pfn)
  5470. continue;
  5471. /* Account for what is only usable for kernelcore */
  5472. if (start_pfn < usable_startpfn) {
  5473. unsigned long kernel_pages;
  5474. kernel_pages = min(end_pfn, usable_startpfn)
  5475. - start_pfn;
  5476. kernelcore_remaining -= min(kernel_pages,
  5477. kernelcore_remaining);
  5478. required_kernelcore -= min(kernel_pages,
  5479. required_kernelcore);
  5480. /* Continue if range is now fully accounted */
  5481. if (end_pfn <= usable_startpfn) {
  5482. /*
  5483. * Push zone_movable_pfn to the end so
  5484. * that if we have to rebalance
  5485. * kernelcore across nodes, we will
  5486. * not double account here
  5487. */
  5488. zone_movable_pfn[nid] = end_pfn;
  5489. continue;
  5490. }
  5491. start_pfn = usable_startpfn;
  5492. }
  5493. /*
  5494. * The usable PFN range for ZONE_MOVABLE is from
  5495. * start_pfn->end_pfn. Calculate size_pages as the
  5496. * number of pages used as kernelcore
  5497. */
  5498. size_pages = end_pfn - start_pfn;
  5499. if (size_pages > kernelcore_remaining)
  5500. size_pages = kernelcore_remaining;
  5501. zone_movable_pfn[nid] = start_pfn + size_pages;
  5502. /*
  5503. * Some kernelcore has been met, update counts and
  5504. * break if the kernelcore for this node has been
  5505. * satisfied
  5506. */
  5507. required_kernelcore -= min(required_kernelcore,
  5508. size_pages);
  5509. kernelcore_remaining -= size_pages;
  5510. if (!kernelcore_remaining)
  5511. break;
  5512. }
  5513. }
  5514. /*
  5515. * If there is still required_kernelcore, we do another pass with one
  5516. * less node in the count. This will push zone_movable_pfn[nid] further
  5517. * along on the nodes that still have memory until kernelcore is
  5518. * satisfied
  5519. */
  5520. usable_nodes--;
  5521. if (usable_nodes && required_kernelcore > usable_nodes)
  5522. goto restart;
  5523. out2:
  5524. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5525. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5526. zone_movable_pfn[nid] =
  5527. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5528. out:
  5529. /* restore the node_state */
  5530. node_states[N_MEMORY] = saved_node_state;
  5531. }
  5532. /* Any regular or high memory on that node ? */
  5533. static void check_for_memory(pg_data_t *pgdat, int nid)
  5534. {
  5535. enum zone_type zone_type;
  5536. if (N_MEMORY == N_NORMAL_MEMORY)
  5537. return;
  5538. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5539. struct zone *zone = &pgdat->node_zones[zone_type];
  5540. if (populated_zone(zone)) {
  5541. node_set_state(nid, N_HIGH_MEMORY);
  5542. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5543. zone_type <= ZONE_NORMAL)
  5544. node_set_state(nid, N_NORMAL_MEMORY);
  5545. break;
  5546. }
  5547. }
  5548. }
  5549. /**
  5550. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5551. * @max_zone_pfn: an array of max PFNs for each zone
  5552. *
  5553. * This will call free_area_init_node() for each active node in the system.
  5554. * Using the page ranges provided by memblock_set_node(), the size of each
  5555. * zone in each node and their holes is calculated. If the maximum PFN
  5556. * between two adjacent zones match, it is assumed that the zone is empty.
  5557. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5558. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5559. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5560. * at arch_max_dma_pfn.
  5561. */
  5562. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5563. {
  5564. unsigned long start_pfn, end_pfn;
  5565. int i, nid;
  5566. /* Record where the zone boundaries are */
  5567. memset(arch_zone_lowest_possible_pfn, 0,
  5568. sizeof(arch_zone_lowest_possible_pfn));
  5569. memset(arch_zone_highest_possible_pfn, 0,
  5570. sizeof(arch_zone_highest_possible_pfn));
  5571. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5572. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5573. for (i = 1; i < MAX_NR_ZONES; i++) {
  5574. if (i == ZONE_MOVABLE)
  5575. continue;
  5576. arch_zone_lowest_possible_pfn[i] =
  5577. arch_zone_highest_possible_pfn[i-1];
  5578. arch_zone_highest_possible_pfn[i] =
  5579. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5580. }
  5581. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5582. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5583. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5584. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5585. find_zone_movable_pfns_for_nodes();
  5586. /* Print out the zone ranges */
  5587. pr_info("Zone ranges:\n");
  5588. for (i = 0; i < MAX_NR_ZONES; i++) {
  5589. if (i == ZONE_MOVABLE)
  5590. continue;
  5591. pr_info(" %-8s ", zone_names[i]);
  5592. if (arch_zone_lowest_possible_pfn[i] ==
  5593. arch_zone_highest_possible_pfn[i])
  5594. pr_cont("empty\n");
  5595. else
  5596. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5597. (u64)arch_zone_lowest_possible_pfn[i]
  5598. << PAGE_SHIFT,
  5599. ((u64)arch_zone_highest_possible_pfn[i]
  5600. << PAGE_SHIFT) - 1);
  5601. }
  5602. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5603. pr_info("Movable zone start for each node\n");
  5604. for (i = 0; i < MAX_NUMNODES; i++) {
  5605. if (zone_movable_pfn[i])
  5606. pr_info(" Node %d: %#018Lx\n", i,
  5607. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5608. }
  5609. /* Print out the early node map */
  5610. pr_info("Early memory node ranges\n");
  5611. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5612. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5613. (u64)start_pfn << PAGE_SHIFT,
  5614. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5615. /* Initialise every node */
  5616. mminit_verify_pageflags_layout();
  5617. setup_nr_node_ids();
  5618. for_each_online_node(nid) {
  5619. pg_data_t *pgdat = NODE_DATA(nid);
  5620. free_area_init_node(nid, NULL,
  5621. find_min_pfn_for_node(nid), NULL);
  5622. /* Any memory on that node */
  5623. if (pgdat->node_present_pages)
  5624. node_set_state(nid, N_MEMORY);
  5625. check_for_memory(pgdat, nid);
  5626. }
  5627. }
  5628. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5629. {
  5630. unsigned long long coremem;
  5631. if (!p)
  5632. return -EINVAL;
  5633. coremem = memparse(p, &p);
  5634. *core = coremem >> PAGE_SHIFT;
  5635. /* Paranoid check that UL is enough for the coremem value */
  5636. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5637. return 0;
  5638. }
  5639. /*
  5640. * kernelcore=size sets the amount of memory for use for allocations that
  5641. * cannot be reclaimed or migrated.
  5642. */
  5643. static int __init cmdline_parse_kernelcore(char *p)
  5644. {
  5645. /* parse kernelcore=mirror */
  5646. if (parse_option_str(p, "mirror")) {
  5647. mirrored_kernelcore = true;
  5648. return 0;
  5649. }
  5650. return cmdline_parse_core(p, &required_kernelcore);
  5651. }
  5652. /*
  5653. * movablecore=size sets the amount of memory for use for allocations that
  5654. * can be reclaimed or migrated.
  5655. */
  5656. static int __init cmdline_parse_movablecore(char *p)
  5657. {
  5658. return cmdline_parse_core(p, &required_movablecore);
  5659. }
  5660. early_param("kernelcore", cmdline_parse_kernelcore);
  5661. early_param("movablecore", cmdline_parse_movablecore);
  5662. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5663. void adjust_managed_page_count(struct page *page, long count)
  5664. {
  5665. spin_lock(&managed_page_count_lock);
  5666. page_zone(page)->managed_pages += count;
  5667. totalram_pages += count;
  5668. #ifdef CONFIG_HIGHMEM
  5669. if (PageHighMem(page))
  5670. totalhigh_pages += count;
  5671. #endif
  5672. spin_unlock(&managed_page_count_lock);
  5673. }
  5674. EXPORT_SYMBOL(adjust_managed_page_count);
  5675. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5676. {
  5677. void *pos;
  5678. unsigned long pages = 0;
  5679. start = (void *)PAGE_ALIGN((unsigned long)start);
  5680. end = (void *)((unsigned long)end & PAGE_MASK);
  5681. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5682. if ((unsigned int)poison <= 0xFF)
  5683. memset(pos, poison, PAGE_SIZE);
  5684. free_reserved_page(virt_to_page(pos));
  5685. }
  5686. if (pages && s)
  5687. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5688. s, pages << (PAGE_SHIFT - 10), start, end);
  5689. return pages;
  5690. }
  5691. EXPORT_SYMBOL(free_reserved_area);
  5692. #ifdef CONFIG_HIGHMEM
  5693. void free_highmem_page(struct page *page)
  5694. {
  5695. __free_reserved_page(page);
  5696. totalram_pages++;
  5697. page_zone(page)->managed_pages++;
  5698. totalhigh_pages++;
  5699. }
  5700. #endif
  5701. void __init mem_init_print_info(const char *str)
  5702. {
  5703. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5704. unsigned long init_code_size, init_data_size;
  5705. physpages = get_num_physpages();
  5706. codesize = _etext - _stext;
  5707. datasize = _edata - _sdata;
  5708. rosize = __end_rodata - __start_rodata;
  5709. bss_size = __bss_stop - __bss_start;
  5710. init_data_size = __init_end - __init_begin;
  5711. init_code_size = _einittext - _sinittext;
  5712. /*
  5713. * Detect special cases and adjust section sizes accordingly:
  5714. * 1) .init.* may be embedded into .data sections
  5715. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5716. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5717. * 3) .rodata.* may be embedded into .text or .data sections.
  5718. */
  5719. #define adj_init_size(start, end, size, pos, adj) \
  5720. do { \
  5721. if (start <= pos && pos < end && size > adj) \
  5722. size -= adj; \
  5723. } while (0)
  5724. adj_init_size(__init_begin, __init_end, init_data_size,
  5725. _sinittext, init_code_size);
  5726. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5727. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5728. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5729. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5730. #undef adj_init_size
  5731. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5732. #ifdef CONFIG_HIGHMEM
  5733. ", %luK highmem"
  5734. #endif
  5735. "%s%s)\n",
  5736. nr_free_pages() << (PAGE_SHIFT - 10),
  5737. physpages << (PAGE_SHIFT - 10),
  5738. codesize >> 10, datasize >> 10, rosize >> 10,
  5739. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5740. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5741. totalcma_pages << (PAGE_SHIFT - 10),
  5742. #ifdef CONFIG_HIGHMEM
  5743. totalhigh_pages << (PAGE_SHIFT - 10),
  5744. #endif
  5745. str ? ", " : "", str ? str : "");
  5746. }
  5747. /**
  5748. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5749. * @new_dma_reserve: The number of pages to mark reserved
  5750. *
  5751. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5752. * In the DMA zone, a significant percentage may be consumed by kernel image
  5753. * and other unfreeable allocations which can skew the watermarks badly. This
  5754. * function may optionally be used to account for unfreeable pages in the
  5755. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5756. * smaller per-cpu batchsize.
  5757. */
  5758. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5759. {
  5760. dma_reserve = new_dma_reserve;
  5761. }
  5762. void __init free_area_init(unsigned long *zones_size)
  5763. {
  5764. free_area_init_node(0, zones_size,
  5765. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5766. }
  5767. static int page_alloc_cpu_notify(struct notifier_block *self,
  5768. unsigned long action, void *hcpu)
  5769. {
  5770. int cpu = (unsigned long)hcpu;
  5771. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5772. lru_add_drain_cpu(cpu);
  5773. drain_pages(cpu);
  5774. /*
  5775. * Spill the event counters of the dead processor
  5776. * into the current processors event counters.
  5777. * This artificially elevates the count of the current
  5778. * processor.
  5779. */
  5780. vm_events_fold_cpu(cpu);
  5781. /*
  5782. * Zero the differential counters of the dead processor
  5783. * so that the vm statistics are consistent.
  5784. *
  5785. * This is only okay since the processor is dead and cannot
  5786. * race with what we are doing.
  5787. */
  5788. cpu_vm_stats_fold(cpu);
  5789. }
  5790. return NOTIFY_OK;
  5791. }
  5792. void __init page_alloc_init(void)
  5793. {
  5794. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5795. }
  5796. /*
  5797. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5798. * or min_free_kbytes changes.
  5799. */
  5800. static void calculate_totalreserve_pages(void)
  5801. {
  5802. struct pglist_data *pgdat;
  5803. unsigned long reserve_pages = 0;
  5804. enum zone_type i, j;
  5805. for_each_online_pgdat(pgdat) {
  5806. for (i = 0; i < MAX_NR_ZONES; i++) {
  5807. struct zone *zone = pgdat->node_zones + i;
  5808. long max = 0;
  5809. /* Find valid and maximum lowmem_reserve in the zone */
  5810. for (j = i; j < MAX_NR_ZONES; j++) {
  5811. if (zone->lowmem_reserve[j] > max)
  5812. max = zone->lowmem_reserve[j];
  5813. }
  5814. /* we treat the high watermark as reserved pages. */
  5815. max += high_wmark_pages(zone);
  5816. if (max > zone->managed_pages)
  5817. max = zone->managed_pages;
  5818. zone->totalreserve_pages = max;
  5819. reserve_pages += max;
  5820. }
  5821. }
  5822. totalreserve_pages = reserve_pages;
  5823. }
  5824. /*
  5825. * setup_per_zone_lowmem_reserve - called whenever
  5826. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5827. * has a correct pages reserved value, so an adequate number of
  5828. * pages are left in the zone after a successful __alloc_pages().
  5829. */
  5830. static void setup_per_zone_lowmem_reserve(void)
  5831. {
  5832. struct pglist_data *pgdat;
  5833. enum zone_type j, idx;
  5834. for_each_online_pgdat(pgdat) {
  5835. for (j = 0; j < MAX_NR_ZONES; j++) {
  5836. struct zone *zone = pgdat->node_zones + j;
  5837. unsigned long managed_pages = zone->managed_pages;
  5838. zone->lowmem_reserve[j] = 0;
  5839. idx = j;
  5840. while (idx) {
  5841. struct zone *lower_zone;
  5842. idx--;
  5843. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5844. sysctl_lowmem_reserve_ratio[idx] = 1;
  5845. lower_zone = pgdat->node_zones + idx;
  5846. lower_zone->lowmem_reserve[j] = managed_pages /
  5847. sysctl_lowmem_reserve_ratio[idx];
  5848. managed_pages += lower_zone->managed_pages;
  5849. }
  5850. }
  5851. }
  5852. /* update totalreserve_pages */
  5853. calculate_totalreserve_pages();
  5854. }
  5855. static void __setup_per_zone_wmarks(void)
  5856. {
  5857. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5858. unsigned long lowmem_pages = 0;
  5859. struct zone *zone;
  5860. unsigned long flags;
  5861. /* Calculate total number of !ZONE_HIGHMEM pages */
  5862. for_each_zone(zone) {
  5863. if (!is_highmem(zone))
  5864. lowmem_pages += zone->managed_pages;
  5865. }
  5866. for_each_zone(zone) {
  5867. u64 tmp;
  5868. spin_lock_irqsave(&zone->lock, flags);
  5869. tmp = (u64)pages_min * zone->managed_pages;
  5870. do_div(tmp, lowmem_pages);
  5871. if (is_highmem(zone)) {
  5872. /*
  5873. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5874. * need highmem pages, so cap pages_min to a small
  5875. * value here.
  5876. *
  5877. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5878. * deltas control asynch page reclaim, and so should
  5879. * not be capped for highmem.
  5880. */
  5881. unsigned long min_pages;
  5882. min_pages = zone->managed_pages / 1024;
  5883. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5884. zone->watermark[WMARK_MIN] = min_pages;
  5885. } else {
  5886. /*
  5887. * If it's a lowmem zone, reserve a number of pages
  5888. * proportionate to the zone's size.
  5889. */
  5890. zone->watermark[WMARK_MIN] = tmp;
  5891. }
  5892. /*
  5893. * Set the kswapd watermarks distance according to the
  5894. * scale factor in proportion to available memory, but
  5895. * ensure a minimum size on small systems.
  5896. */
  5897. tmp = max_t(u64, tmp >> 2,
  5898. mult_frac(zone->managed_pages,
  5899. watermark_scale_factor, 10000));
  5900. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5901. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5902. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5903. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5904. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5905. spin_unlock_irqrestore(&zone->lock, flags);
  5906. }
  5907. /* update totalreserve_pages */
  5908. calculate_totalreserve_pages();
  5909. }
  5910. /**
  5911. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5912. * or when memory is hot-{added|removed}
  5913. *
  5914. * Ensures that the watermark[min,low,high] values for each zone are set
  5915. * correctly with respect to min_free_kbytes.
  5916. */
  5917. void setup_per_zone_wmarks(void)
  5918. {
  5919. mutex_lock(&zonelists_mutex);
  5920. __setup_per_zone_wmarks();
  5921. mutex_unlock(&zonelists_mutex);
  5922. }
  5923. /*
  5924. * Initialise min_free_kbytes.
  5925. *
  5926. * For small machines we want it small (128k min). For large machines
  5927. * we want it large (64MB max). But it is not linear, because network
  5928. * bandwidth does not increase linearly with machine size. We use
  5929. *
  5930. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5931. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5932. *
  5933. * which yields
  5934. *
  5935. * 16MB: 512k
  5936. * 32MB: 724k
  5937. * 64MB: 1024k
  5938. * 128MB: 1448k
  5939. * 256MB: 2048k
  5940. * 512MB: 2896k
  5941. * 1024MB: 4096k
  5942. * 2048MB: 5792k
  5943. * 4096MB: 8192k
  5944. * 8192MB: 11584k
  5945. * 16384MB: 16384k
  5946. */
  5947. int __meminit init_per_zone_wmark_min(void)
  5948. {
  5949. unsigned long lowmem_kbytes;
  5950. int new_min_free_kbytes;
  5951. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5952. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5953. if (new_min_free_kbytes > user_min_free_kbytes) {
  5954. min_free_kbytes = new_min_free_kbytes;
  5955. if (min_free_kbytes < 128)
  5956. min_free_kbytes = 128;
  5957. if (min_free_kbytes > 65536)
  5958. min_free_kbytes = 65536;
  5959. } else {
  5960. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5961. new_min_free_kbytes, user_min_free_kbytes);
  5962. }
  5963. setup_per_zone_wmarks();
  5964. refresh_zone_stat_thresholds();
  5965. setup_per_zone_lowmem_reserve();
  5966. return 0;
  5967. }
  5968. core_initcall(init_per_zone_wmark_min)
  5969. /*
  5970. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5971. * that we can call two helper functions whenever min_free_kbytes
  5972. * changes.
  5973. */
  5974. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5975. void __user *buffer, size_t *length, loff_t *ppos)
  5976. {
  5977. int rc;
  5978. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5979. if (rc)
  5980. return rc;
  5981. if (write) {
  5982. user_min_free_kbytes = min_free_kbytes;
  5983. setup_per_zone_wmarks();
  5984. }
  5985. return 0;
  5986. }
  5987. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5988. void __user *buffer, size_t *length, loff_t *ppos)
  5989. {
  5990. int rc;
  5991. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5992. if (rc)
  5993. return rc;
  5994. if (write)
  5995. setup_per_zone_wmarks();
  5996. return 0;
  5997. }
  5998. #ifdef CONFIG_NUMA
  5999. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6000. void __user *buffer, size_t *length, loff_t *ppos)
  6001. {
  6002. struct zone *zone;
  6003. int rc;
  6004. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6005. if (rc)
  6006. return rc;
  6007. for_each_zone(zone)
  6008. zone->min_unmapped_pages = (zone->managed_pages *
  6009. sysctl_min_unmapped_ratio) / 100;
  6010. return 0;
  6011. }
  6012. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6013. void __user *buffer, size_t *length, loff_t *ppos)
  6014. {
  6015. struct zone *zone;
  6016. int rc;
  6017. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6018. if (rc)
  6019. return rc;
  6020. for_each_zone(zone)
  6021. zone->min_slab_pages = (zone->managed_pages *
  6022. sysctl_min_slab_ratio) / 100;
  6023. return 0;
  6024. }
  6025. #endif
  6026. /*
  6027. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6028. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6029. * whenever sysctl_lowmem_reserve_ratio changes.
  6030. *
  6031. * The reserve ratio obviously has absolutely no relation with the
  6032. * minimum watermarks. The lowmem reserve ratio can only make sense
  6033. * if in function of the boot time zone sizes.
  6034. */
  6035. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6036. void __user *buffer, size_t *length, loff_t *ppos)
  6037. {
  6038. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6039. setup_per_zone_lowmem_reserve();
  6040. return 0;
  6041. }
  6042. /*
  6043. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6044. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6045. * pagelist can have before it gets flushed back to buddy allocator.
  6046. */
  6047. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6048. void __user *buffer, size_t *length, loff_t *ppos)
  6049. {
  6050. struct zone *zone;
  6051. int old_percpu_pagelist_fraction;
  6052. int ret;
  6053. mutex_lock(&pcp_batch_high_lock);
  6054. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6055. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6056. if (!write || ret < 0)
  6057. goto out;
  6058. /* Sanity checking to avoid pcp imbalance */
  6059. if (percpu_pagelist_fraction &&
  6060. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6061. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6062. ret = -EINVAL;
  6063. goto out;
  6064. }
  6065. /* No change? */
  6066. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6067. goto out;
  6068. for_each_populated_zone(zone) {
  6069. unsigned int cpu;
  6070. for_each_possible_cpu(cpu)
  6071. pageset_set_high_and_batch(zone,
  6072. per_cpu_ptr(zone->pageset, cpu));
  6073. }
  6074. out:
  6075. mutex_unlock(&pcp_batch_high_lock);
  6076. return ret;
  6077. }
  6078. #ifdef CONFIG_NUMA
  6079. int hashdist = HASHDIST_DEFAULT;
  6080. static int __init set_hashdist(char *str)
  6081. {
  6082. if (!str)
  6083. return 0;
  6084. hashdist = simple_strtoul(str, &str, 0);
  6085. return 1;
  6086. }
  6087. __setup("hashdist=", set_hashdist);
  6088. #endif
  6089. /*
  6090. * allocate a large system hash table from bootmem
  6091. * - it is assumed that the hash table must contain an exact power-of-2
  6092. * quantity of entries
  6093. * - limit is the number of hash buckets, not the total allocation size
  6094. */
  6095. void *__init alloc_large_system_hash(const char *tablename,
  6096. unsigned long bucketsize,
  6097. unsigned long numentries,
  6098. int scale,
  6099. int flags,
  6100. unsigned int *_hash_shift,
  6101. unsigned int *_hash_mask,
  6102. unsigned long low_limit,
  6103. unsigned long high_limit)
  6104. {
  6105. unsigned long long max = high_limit;
  6106. unsigned long log2qty, size;
  6107. void *table = NULL;
  6108. /* allow the kernel cmdline to have a say */
  6109. if (!numentries) {
  6110. /* round applicable memory size up to nearest megabyte */
  6111. numentries = nr_kernel_pages;
  6112. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6113. if (PAGE_SHIFT < 20)
  6114. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6115. /* limit to 1 bucket per 2^scale bytes of low memory */
  6116. if (scale > PAGE_SHIFT)
  6117. numentries >>= (scale - PAGE_SHIFT);
  6118. else
  6119. numentries <<= (PAGE_SHIFT - scale);
  6120. /* Make sure we've got at least a 0-order allocation.. */
  6121. if (unlikely(flags & HASH_SMALL)) {
  6122. /* Makes no sense without HASH_EARLY */
  6123. WARN_ON(!(flags & HASH_EARLY));
  6124. if (!(numentries >> *_hash_shift)) {
  6125. numentries = 1UL << *_hash_shift;
  6126. BUG_ON(!numentries);
  6127. }
  6128. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6129. numentries = PAGE_SIZE / bucketsize;
  6130. }
  6131. numentries = roundup_pow_of_two(numentries);
  6132. /* limit allocation size to 1/16 total memory by default */
  6133. if (max == 0) {
  6134. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6135. do_div(max, bucketsize);
  6136. }
  6137. max = min(max, 0x80000000ULL);
  6138. if (numentries < low_limit)
  6139. numentries = low_limit;
  6140. if (numentries > max)
  6141. numentries = max;
  6142. log2qty = ilog2(numentries);
  6143. do {
  6144. size = bucketsize << log2qty;
  6145. if (flags & HASH_EARLY)
  6146. table = memblock_virt_alloc_nopanic(size, 0);
  6147. else if (hashdist)
  6148. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6149. else {
  6150. /*
  6151. * If bucketsize is not a power-of-two, we may free
  6152. * some pages at the end of hash table which
  6153. * alloc_pages_exact() automatically does
  6154. */
  6155. if (get_order(size) < MAX_ORDER) {
  6156. table = alloc_pages_exact(size, GFP_ATOMIC);
  6157. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6158. }
  6159. }
  6160. } while (!table && size > PAGE_SIZE && --log2qty);
  6161. if (!table)
  6162. panic("Failed to allocate %s hash table\n", tablename);
  6163. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6164. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6165. if (_hash_shift)
  6166. *_hash_shift = log2qty;
  6167. if (_hash_mask)
  6168. *_hash_mask = (1 << log2qty) - 1;
  6169. return table;
  6170. }
  6171. /*
  6172. * This function checks whether pageblock includes unmovable pages or not.
  6173. * If @count is not zero, it is okay to include less @count unmovable pages
  6174. *
  6175. * PageLRU check without isolation or lru_lock could race so that
  6176. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6177. * expect this function should be exact.
  6178. */
  6179. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6180. bool skip_hwpoisoned_pages)
  6181. {
  6182. unsigned long pfn, iter, found;
  6183. int mt;
  6184. /*
  6185. * For avoiding noise data, lru_add_drain_all() should be called
  6186. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6187. */
  6188. if (zone_idx(zone) == ZONE_MOVABLE)
  6189. return false;
  6190. mt = get_pageblock_migratetype(page);
  6191. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6192. return false;
  6193. pfn = page_to_pfn(page);
  6194. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6195. unsigned long check = pfn + iter;
  6196. if (!pfn_valid_within(check))
  6197. continue;
  6198. page = pfn_to_page(check);
  6199. /*
  6200. * Hugepages are not in LRU lists, but they're movable.
  6201. * We need not scan over tail pages bacause we don't
  6202. * handle each tail page individually in migration.
  6203. */
  6204. if (PageHuge(page)) {
  6205. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6206. continue;
  6207. }
  6208. /*
  6209. * We can't use page_count without pin a page
  6210. * because another CPU can free compound page.
  6211. * This check already skips compound tails of THP
  6212. * because their page->_refcount is zero at all time.
  6213. */
  6214. if (!page_ref_count(page)) {
  6215. if (PageBuddy(page))
  6216. iter += (1 << page_order(page)) - 1;
  6217. continue;
  6218. }
  6219. /*
  6220. * The HWPoisoned page may be not in buddy system, and
  6221. * page_count() is not 0.
  6222. */
  6223. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6224. continue;
  6225. if (!PageLRU(page))
  6226. found++;
  6227. /*
  6228. * If there are RECLAIMABLE pages, we need to check
  6229. * it. But now, memory offline itself doesn't call
  6230. * shrink_node_slabs() and it still to be fixed.
  6231. */
  6232. /*
  6233. * If the page is not RAM, page_count()should be 0.
  6234. * we don't need more check. This is an _used_ not-movable page.
  6235. *
  6236. * The problematic thing here is PG_reserved pages. PG_reserved
  6237. * is set to both of a memory hole page and a _used_ kernel
  6238. * page at boot.
  6239. */
  6240. if (found > count)
  6241. return true;
  6242. }
  6243. return false;
  6244. }
  6245. bool is_pageblock_removable_nolock(struct page *page)
  6246. {
  6247. struct zone *zone;
  6248. unsigned long pfn;
  6249. /*
  6250. * We have to be careful here because we are iterating over memory
  6251. * sections which are not zone aware so we might end up outside of
  6252. * the zone but still within the section.
  6253. * We have to take care about the node as well. If the node is offline
  6254. * its NODE_DATA will be NULL - see page_zone.
  6255. */
  6256. if (!node_online(page_to_nid(page)))
  6257. return false;
  6258. zone = page_zone(page);
  6259. pfn = page_to_pfn(page);
  6260. if (!zone_spans_pfn(zone, pfn))
  6261. return false;
  6262. return !has_unmovable_pages(zone, page, 0, true);
  6263. }
  6264. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6265. static unsigned long pfn_max_align_down(unsigned long pfn)
  6266. {
  6267. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6268. pageblock_nr_pages) - 1);
  6269. }
  6270. static unsigned long pfn_max_align_up(unsigned long pfn)
  6271. {
  6272. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6273. pageblock_nr_pages));
  6274. }
  6275. /* [start, end) must belong to a single zone. */
  6276. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6277. unsigned long start, unsigned long end)
  6278. {
  6279. /* This function is based on compact_zone() from compaction.c. */
  6280. unsigned long nr_reclaimed;
  6281. unsigned long pfn = start;
  6282. unsigned int tries = 0;
  6283. int ret = 0;
  6284. migrate_prep();
  6285. while (pfn < end || !list_empty(&cc->migratepages)) {
  6286. if (fatal_signal_pending(current)) {
  6287. ret = -EINTR;
  6288. break;
  6289. }
  6290. if (list_empty(&cc->migratepages)) {
  6291. cc->nr_migratepages = 0;
  6292. pfn = isolate_migratepages_range(cc, pfn, end);
  6293. if (!pfn) {
  6294. ret = -EINTR;
  6295. break;
  6296. }
  6297. tries = 0;
  6298. } else if (++tries == 5) {
  6299. ret = ret < 0 ? ret : -EBUSY;
  6300. break;
  6301. }
  6302. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6303. &cc->migratepages);
  6304. cc->nr_migratepages -= nr_reclaimed;
  6305. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6306. NULL, 0, cc->mode, MR_CMA);
  6307. }
  6308. if (ret < 0) {
  6309. putback_movable_pages(&cc->migratepages);
  6310. return ret;
  6311. }
  6312. return 0;
  6313. }
  6314. /**
  6315. * alloc_contig_range() -- tries to allocate given range of pages
  6316. * @start: start PFN to allocate
  6317. * @end: one-past-the-last PFN to allocate
  6318. * @migratetype: migratetype of the underlaying pageblocks (either
  6319. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6320. * in range must have the same migratetype and it must
  6321. * be either of the two.
  6322. *
  6323. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6324. * aligned, however it's the caller's responsibility to guarantee that
  6325. * we are the only thread that changes migrate type of pageblocks the
  6326. * pages fall in.
  6327. *
  6328. * The PFN range must belong to a single zone.
  6329. *
  6330. * Returns zero on success or negative error code. On success all
  6331. * pages which PFN is in [start, end) are allocated for the caller and
  6332. * need to be freed with free_contig_range().
  6333. */
  6334. int alloc_contig_range(unsigned long start, unsigned long end,
  6335. unsigned migratetype)
  6336. {
  6337. unsigned long outer_start, outer_end;
  6338. unsigned int order;
  6339. int ret = 0;
  6340. struct compact_control cc = {
  6341. .nr_migratepages = 0,
  6342. .order = -1,
  6343. .zone = page_zone(pfn_to_page(start)),
  6344. .mode = MIGRATE_SYNC,
  6345. .ignore_skip_hint = true,
  6346. };
  6347. INIT_LIST_HEAD(&cc.migratepages);
  6348. /*
  6349. * What we do here is we mark all pageblocks in range as
  6350. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6351. * have different sizes, and due to the way page allocator
  6352. * work, we align the range to biggest of the two pages so
  6353. * that page allocator won't try to merge buddies from
  6354. * different pageblocks and change MIGRATE_ISOLATE to some
  6355. * other migration type.
  6356. *
  6357. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6358. * migrate the pages from an unaligned range (ie. pages that
  6359. * we are interested in). This will put all the pages in
  6360. * range back to page allocator as MIGRATE_ISOLATE.
  6361. *
  6362. * When this is done, we take the pages in range from page
  6363. * allocator removing them from the buddy system. This way
  6364. * page allocator will never consider using them.
  6365. *
  6366. * This lets us mark the pageblocks back as
  6367. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6368. * aligned range but not in the unaligned, original range are
  6369. * put back to page allocator so that buddy can use them.
  6370. */
  6371. ret = start_isolate_page_range(pfn_max_align_down(start),
  6372. pfn_max_align_up(end), migratetype,
  6373. false);
  6374. if (ret)
  6375. return ret;
  6376. /*
  6377. * In case of -EBUSY, we'd like to know which page causes problem.
  6378. * So, just fall through. We will check it in test_pages_isolated().
  6379. */
  6380. ret = __alloc_contig_migrate_range(&cc, start, end);
  6381. if (ret && ret != -EBUSY)
  6382. goto done;
  6383. /*
  6384. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6385. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6386. * more, all pages in [start, end) are free in page allocator.
  6387. * What we are going to do is to allocate all pages from
  6388. * [start, end) (that is remove them from page allocator).
  6389. *
  6390. * The only problem is that pages at the beginning and at the
  6391. * end of interesting range may be not aligned with pages that
  6392. * page allocator holds, ie. they can be part of higher order
  6393. * pages. Because of this, we reserve the bigger range and
  6394. * once this is done free the pages we are not interested in.
  6395. *
  6396. * We don't have to hold zone->lock here because the pages are
  6397. * isolated thus they won't get removed from buddy.
  6398. */
  6399. lru_add_drain_all();
  6400. drain_all_pages(cc.zone);
  6401. order = 0;
  6402. outer_start = start;
  6403. while (!PageBuddy(pfn_to_page(outer_start))) {
  6404. if (++order >= MAX_ORDER) {
  6405. outer_start = start;
  6406. break;
  6407. }
  6408. outer_start &= ~0UL << order;
  6409. }
  6410. if (outer_start != start) {
  6411. order = page_order(pfn_to_page(outer_start));
  6412. /*
  6413. * outer_start page could be small order buddy page and
  6414. * it doesn't include start page. Adjust outer_start
  6415. * in this case to report failed page properly
  6416. * on tracepoint in test_pages_isolated()
  6417. */
  6418. if (outer_start + (1UL << order) <= start)
  6419. outer_start = start;
  6420. }
  6421. /* Make sure the range is really isolated. */
  6422. if (test_pages_isolated(outer_start, end, false)) {
  6423. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6424. __func__, outer_start, end);
  6425. ret = -EBUSY;
  6426. goto done;
  6427. }
  6428. /* Grab isolated pages from freelists. */
  6429. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6430. if (!outer_end) {
  6431. ret = -EBUSY;
  6432. goto done;
  6433. }
  6434. /* Free head and tail (if any) */
  6435. if (start != outer_start)
  6436. free_contig_range(outer_start, start - outer_start);
  6437. if (end != outer_end)
  6438. free_contig_range(end, outer_end - end);
  6439. done:
  6440. undo_isolate_page_range(pfn_max_align_down(start),
  6441. pfn_max_align_up(end), migratetype);
  6442. return ret;
  6443. }
  6444. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6445. {
  6446. unsigned int count = 0;
  6447. for (; nr_pages--; pfn++) {
  6448. struct page *page = pfn_to_page(pfn);
  6449. count += page_count(page) != 1;
  6450. __free_page(page);
  6451. }
  6452. WARN(count != 0, "%d pages are still in use!\n", count);
  6453. }
  6454. #endif
  6455. #ifdef CONFIG_MEMORY_HOTPLUG
  6456. /*
  6457. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6458. * page high values need to be recalulated.
  6459. */
  6460. void __meminit zone_pcp_update(struct zone *zone)
  6461. {
  6462. unsigned cpu;
  6463. mutex_lock(&pcp_batch_high_lock);
  6464. for_each_possible_cpu(cpu)
  6465. pageset_set_high_and_batch(zone,
  6466. per_cpu_ptr(zone->pageset, cpu));
  6467. mutex_unlock(&pcp_batch_high_lock);
  6468. }
  6469. #endif
  6470. void zone_pcp_reset(struct zone *zone)
  6471. {
  6472. unsigned long flags;
  6473. int cpu;
  6474. struct per_cpu_pageset *pset;
  6475. /* avoid races with drain_pages() */
  6476. local_irq_save(flags);
  6477. if (zone->pageset != &boot_pageset) {
  6478. for_each_online_cpu(cpu) {
  6479. pset = per_cpu_ptr(zone->pageset, cpu);
  6480. drain_zonestat(zone, pset);
  6481. }
  6482. free_percpu(zone->pageset);
  6483. zone->pageset = &boot_pageset;
  6484. }
  6485. local_irq_restore(flags);
  6486. }
  6487. #ifdef CONFIG_MEMORY_HOTREMOVE
  6488. /*
  6489. * All pages in the range must be in a single zone and isolated
  6490. * before calling this.
  6491. */
  6492. void
  6493. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6494. {
  6495. struct page *page;
  6496. struct zone *zone;
  6497. unsigned int order, i;
  6498. unsigned long pfn;
  6499. unsigned long flags;
  6500. /* find the first valid pfn */
  6501. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6502. if (pfn_valid(pfn))
  6503. break;
  6504. if (pfn == end_pfn)
  6505. return;
  6506. zone = page_zone(pfn_to_page(pfn));
  6507. spin_lock_irqsave(&zone->lock, flags);
  6508. pfn = start_pfn;
  6509. while (pfn < end_pfn) {
  6510. if (!pfn_valid(pfn)) {
  6511. pfn++;
  6512. continue;
  6513. }
  6514. page = pfn_to_page(pfn);
  6515. /*
  6516. * The HWPoisoned page may be not in buddy system, and
  6517. * page_count() is not 0.
  6518. */
  6519. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6520. pfn++;
  6521. SetPageReserved(page);
  6522. continue;
  6523. }
  6524. BUG_ON(page_count(page));
  6525. BUG_ON(!PageBuddy(page));
  6526. order = page_order(page);
  6527. #ifdef CONFIG_DEBUG_VM
  6528. pr_info("remove from free list %lx %d %lx\n",
  6529. pfn, 1 << order, end_pfn);
  6530. #endif
  6531. list_del(&page->lru);
  6532. rmv_page_order(page);
  6533. zone->free_area[order].nr_free--;
  6534. for (i = 0; i < (1 << order); i++)
  6535. SetPageReserved((page+i));
  6536. pfn += (1 << order);
  6537. }
  6538. spin_unlock_irqrestore(&zone->lock, flags);
  6539. }
  6540. #endif
  6541. bool is_free_buddy_page(struct page *page)
  6542. {
  6543. struct zone *zone = page_zone(page);
  6544. unsigned long pfn = page_to_pfn(page);
  6545. unsigned long flags;
  6546. unsigned int order;
  6547. spin_lock_irqsave(&zone->lock, flags);
  6548. for (order = 0; order < MAX_ORDER; order++) {
  6549. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6550. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6551. break;
  6552. }
  6553. spin_unlock_irqrestore(&zone->lock, flags);
  6554. return order < MAX_ORDER;
  6555. }