spi-rspi.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/sched.h>
  27. #include <linux/errno.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/io.h>
  31. #include <linux/clk.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/of_device.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/sh_dma.h>
  37. #include <linux/spi/spi.h>
  38. #include <linux/spi/rspi.h>
  39. #define RSPI_SPCR 0x00 /* Control Register */
  40. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  41. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  42. #define RSPI_SPSR 0x03 /* Status Register */
  43. #define RSPI_SPDR 0x04 /* Data Register */
  44. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  45. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  46. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  47. #define RSPI_SPDCR 0x0b /* Data Control Register */
  48. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  49. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  50. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  51. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  52. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  53. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  54. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  55. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  56. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  57. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  58. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  59. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  60. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  61. #define RSPI_NUM_SPCMD 8
  62. #define RSPI_RZ_NUM_SPCMD 4
  63. #define QSPI_NUM_SPCMD 4
  64. /* RSPI on RZ only */
  65. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  66. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  67. /* QSPI only */
  68. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  69. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  70. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  71. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  72. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  73. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  74. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  75. /* SPCR - Control Register */
  76. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  77. #define SPCR_SPE 0x40 /* Function Enable */
  78. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  79. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  80. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  81. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  82. /* RSPI on SH only */
  83. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  84. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  85. /* QSPI on R-Car M2 only */
  86. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  87. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  88. /* SSLP - Slave Select Polarity Register */
  89. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  90. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  91. /* SPPCR - Pin Control Register */
  92. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  93. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  94. #define SPPCR_SPOM 0x04
  95. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  96. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  97. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  98. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  99. /* SPSR - Status Register */
  100. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  101. #define SPSR_TEND 0x40 /* Transmit End */
  102. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  103. #define SPSR_PERF 0x08 /* Parity Error Flag */
  104. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  105. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  106. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  107. /* SPSCR - Sequence Control Register */
  108. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  109. /* SPSSR - Sequence Status Register */
  110. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  111. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  112. /* SPDCR - Data Control Register */
  113. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  114. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  115. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  116. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  117. #define SPDCR_SPLWORD SPDCR_SPLW1
  118. #define SPDCR_SPLBYTE SPDCR_SPLW0
  119. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  120. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  121. #define SPDCR_SLSEL1 0x08
  122. #define SPDCR_SLSEL0 0x04
  123. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  124. #define SPDCR_SPFC1 0x02
  125. #define SPDCR_SPFC0 0x01
  126. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  127. /* SPCKD - Clock Delay Register */
  128. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  129. /* SSLND - Slave Select Negation Delay Register */
  130. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  131. /* SPND - Next-Access Delay Register */
  132. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  133. /* SPCR2 - Control Register 2 */
  134. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  135. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  136. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  137. #define SPCR2_SPPE 0x01 /* Parity Enable */
  138. /* SPCMDn - Command Registers */
  139. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  140. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  141. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  142. #define SPCMD_LSBF 0x1000 /* LSB First */
  143. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  144. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  145. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  146. #define SPCMD_SPB_16BIT 0x0100
  147. #define SPCMD_SPB_20BIT 0x0000
  148. #define SPCMD_SPB_24BIT 0x0100
  149. #define SPCMD_SPB_32BIT 0x0200
  150. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  151. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  152. #define SPCMD_SPIMOD1 0x0040
  153. #define SPCMD_SPIMOD0 0x0020
  154. #define SPCMD_SPIMOD_SINGLE 0
  155. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  156. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  157. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  158. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  159. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  160. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  161. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  162. /* SPBFCR - Buffer Control Register */
  163. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  164. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  165. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  166. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  167. struct rspi_data {
  168. void __iomem *addr;
  169. u32 max_speed_hz;
  170. struct spi_master *master;
  171. wait_queue_head_t wait;
  172. struct clk *clk;
  173. u16 spcmd;
  174. u8 spsr;
  175. u8 sppcr;
  176. int rx_irq, tx_irq;
  177. const struct spi_ops *ops;
  178. /* for dmaengine */
  179. struct dma_chan *chan_tx;
  180. struct dma_chan *chan_rx;
  181. unsigned dma_callbacked:1;
  182. unsigned byte_access:1;
  183. };
  184. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  185. {
  186. iowrite8(data, rspi->addr + offset);
  187. }
  188. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  189. {
  190. iowrite16(data, rspi->addr + offset);
  191. }
  192. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  193. {
  194. iowrite32(data, rspi->addr + offset);
  195. }
  196. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  197. {
  198. return ioread8(rspi->addr + offset);
  199. }
  200. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  201. {
  202. return ioread16(rspi->addr + offset);
  203. }
  204. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  205. {
  206. if (rspi->byte_access)
  207. rspi_write8(rspi, data, RSPI_SPDR);
  208. else /* 16 bit */
  209. rspi_write16(rspi, data, RSPI_SPDR);
  210. }
  211. static u16 rspi_read_data(const struct rspi_data *rspi)
  212. {
  213. if (rspi->byte_access)
  214. return rspi_read8(rspi, RSPI_SPDR);
  215. else /* 16 bit */
  216. return rspi_read16(rspi, RSPI_SPDR);
  217. }
  218. /* optional functions */
  219. struct spi_ops {
  220. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  221. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  222. struct spi_transfer *xfer);
  223. u16 mode_bits;
  224. u16 flags;
  225. };
  226. /*
  227. * functions for RSPI on legacy SH
  228. */
  229. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  230. {
  231. int spbr;
  232. /* Sets output mode, MOSI signal, and (optionally) loopback */
  233. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  234. /* Sets transfer bit rate */
  235. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  236. 2 * rspi->max_speed_hz) - 1;
  237. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  238. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  239. rspi_write8(rspi, 0, RSPI_SPDCR);
  240. rspi->byte_access = 0;
  241. /* Sets RSPCK, SSL, next-access delay value */
  242. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  243. rspi_write8(rspi, 0x00, RSPI_SSLND);
  244. rspi_write8(rspi, 0x00, RSPI_SPND);
  245. /* Sets parity, interrupt mask */
  246. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  247. /* Sets SPCMD */
  248. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  249. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  250. /* Sets RSPI mode */
  251. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  252. return 0;
  253. }
  254. /*
  255. * functions for RSPI on RZ
  256. */
  257. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  258. {
  259. int spbr;
  260. /* Sets output mode, MOSI signal, and (optionally) loopback */
  261. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  262. /* Sets transfer bit rate */
  263. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  264. 2 * rspi->max_speed_hz) - 1;
  265. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  266. /* Disable dummy transmission, set byte access */
  267. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  268. rspi->byte_access = 1;
  269. /* Sets RSPCK, SSL, next-access delay value */
  270. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  271. rspi_write8(rspi, 0x00, RSPI_SSLND);
  272. rspi_write8(rspi, 0x00, RSPI_SPND);
  273. /* Sets SPCMD */
  274. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  275. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  276. /* Sets RSPI mode */
  277. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  278. return 0;
  279. }
  280. /*
  281. * functions for QSPI
  282. */
  283. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  284. {
  285. int spbr;
  286. /* Sets output mode, MOSI signal, and (optionally) loopback */
  287. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  288. /* Sets transfer bit rate */
  289. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  290. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  291. /* Disable dummy transmission, set byte access */
  292. rspi_write8(rspi, 0, RSPI_SPDCR);
  293. rspi->byte_access = 1;
  294. /* Sets RSPCK, SSL, next-access delay value */
  295. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  296. rspi_write8(rspi, 0x00, RSPI_SSLND);
  297. rspi_write8(rspi, 0x00, RSPI_SPND);
  298. /* Data Length Setting */
  299. if (access_size == 8)
  300. rspi->spcmd |= SPCMD_SPB_8BIT;
  301. else if (access_size == 16)
  302. rspi->spcmd |= SPCMD_SPB_16BIT;
  303. else
  304. rspi->spcmd |= SPCMD_SPB_32BIT;
  305. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  306. /* Resets transfer data length */
  307. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  308. /* Resets transmit and receive buffer */
  309. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  310. /* Sets buffer to allow normal operation */
  311. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  312. /* Sets SPCMD */
  313. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  314. /* Enables SPI function in master mode */
  315. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  316. return 0;
  317. }
  318. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  319. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  320. {
  321. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  322. }
  323. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  324. {
  325. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  326. }
  327. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  328. u8 enable_bit)
  329. {
  330. int ret;
  331. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  332. if (rspi->spsr & wait_mask)
  333. return 0;
  334. rspi_enable_irq(rspi, enable_bit);
  335. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  336. if (ret == 0 && !(rspi->spsr & wait_mask))
  337. return -ETIMEDOUT;
  338. return 0;
  339. }
  340. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  341. {
  342. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  343. }
  344. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  345. {
  346. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  347. }
  348. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  349. {
  350. int error = rspi_wait_for_tx_empty(rspi);
  351. if (error < 0) {
  352. dev_err(&rspi->master->dev, "transmit timeout\n");
  353. return error;
  354. }
  355. rspi_write_data(rspi, data);
  356. return 0;
  357. }
  358. static int rspi_data_in(struct rspi_data *rspi)
  359. {
  360. int error;
  361. u8 data;
  362. error = rspi_wait_for_rx_full(rspi);
  363. if (error < 0) {
  364. dev_err(&rspi->master->dev, "receive timeout\n");
  365. return error;
  366. }
  367. data = rspi_read_data(rspi);
  368. return data;
  369. }
  370. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  371. unsigned int n)
  372. {
  373. while (n-- > 0) {
  374. if (tx) {
  375. int ret = rspi_data_out(rspi, *tx++);
  376. if (ret < 0)
  377. return ret;
  378. }
  379. if (rx) {
  380. int ret = rspi_data_in(rspi);
  381. if (ret < 0)
  382. return ret;
  383. *rx++ = ret;
  384. }
  385. }
  386. return 0;
  387. }
  388. static void rspi_dma_complete(void *arg)
  389. {
  390. struct rspi_data *rspi = arg;
  391. rspi->dma_callbacked = 1;
  392. wake_up_interruptible(&rspi->wait);
  393. }
  394. static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
  395. unsigned len, struct dma_chan *chan,
  396. enum dma_transfer_direction dir)
  397. {
  398. sg_init_table(sg, 1);
  399. sg_set_buf(sg, buf, len);
  400. sg_dma_len(sg) = len;
  401. return dma_map_sg(chan->device->dev, sg, 1, dir);
  402. }
  403. static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
  404. enum dma_transfer_direction dir)
  405. {
  406. dma_unmap_sg(chan->device->dev, sg, 1, dir);
  407. }
  408. static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
  409. {
  410. struct scatterlist sg;
  411. const void *buf = t->tx_buf;
  412. struct dma_async_tx_descriptor *desc;
  413. unsigned int len = t->len;
  414. int ret = 0;
  415. if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE))
  416. return -EFAULT;
  417. desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
  418. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  419. if (!desc) {
  420. ret = -EIO;
  421. goto end;
  422. }
  423. /*
  424. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  425. * called. So, this driver disables the IRQ while DMA transfer.
  426. */
  427. disable_irq(rspi->tx_irq);
  428. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
  429. rspi_enable_irq(rspi, SPCR_SPTIE);
  430. rspi->dma_callbacked = 0;
  431. desc->callback = rspi_dma_complete;
  432. desc->callback_param = rspi;
  433. dmaengine_submit(desc);
  434. dma_async_issue_pending(rspi->chan_tx);
  435. ret = wait_event_interruptible_timeout(rspi->wait,
  436. rspi->dma_callbacked, HZ);
  437. if (ret > 0 && rspi->dma_callbacked)
  438. ret = 0;
  439. else if (!ret)
  440. ret = -ETIMEDOUT;
  441. rspi_disable_irq(rspi, SPCR_SPTIE);
  442. enable_irq(rspi->tx_irq);
  443. end:
  444. rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
  445. return ret;
  446. }
  447. static void rspi_receive_init(const struct rspi_data *rspi)
  448. {
  449. u8 spsr;
  450. spsr = rspi_read8(rspi, RSPI_SPSR);
  451. if (spsr & SPSR_SPRF)
  452. rspi_read_data(rspi); /* dummy read */
  453. if (spsr & SPSR_OVRF)
  454. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  455. RSPI_SPSR);
  456. }
  457. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  458. {
  459. rspi_receive_init(rspi);
  460. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  461. rspi_write8(rspi, 0, RSPI_SPBFCR);
  462. }
  463. static void qspi_receive_init(const struct rspi_data *rspi)
  464. {
  465. u8 spsr;
  466. spsr = rspi_read8(rspi, RSPI_SPSR);
  467. if (spsr & SPSR_SPRF)
  468. rspi_read_data(rspi); /* dummy read */
  469. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  470. rspi_write8(rspi, 0, QSPI_SPBFCR);
  471. }
  472. static int rspi_send_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
  473. {
  474. struct scatterlist sg_rx, sg_tx;
  475. const void *tx_buf = t->tx_buf;
  476. void *rx_buf = t->rx_buf;
  477. struct dma_async_tx_descriptor *desc_tx, *desc_rx;
  478. unsigned int len = t->len;
  479. int ret = 0;
  480. /* prepare transmit transfer */
  481. if (!rspi_dma_map_sg(&sg_tx, tx_buf, len, rspi->chan_tx,
  482. DMA_TO_DEVICE))
  483. return -EFAULT;
  484. desc_tx = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_tx, 1,
  485. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  486. if (!desc_tx) {
  487. ret = -EIO;
  488. goto end_tx_mapped;
  489. }
  490. /* prepare receive transfer */
  491. if (!rspi_dma_map_sg(&sg_rx, rx_buf, len, rspi->chan_rx,
  492. DMA_FROM_DEVICE)) {
  493. ret = -EFAULT;
  494. goto end_tx_mapped;
  495. }
  496. desc_rx = dmaengine_prep_slave_sg(rspi->chan_rx, &sg_rx, 1,
  497. DMA_FROM_DEVICE,
  498. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  499. if (!desc_rx) {
  500. ret = -EIO;
  501. goto end;
  502. }
  503. rspi_receive_init(rspi);
  504. /*
  505. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  506. * called. So, this driver disables the IRQ while DMA transfer.
  507. */
  508. disable_irq(rspi->tx_irq);
  509. if (rspi->rx_irq != rspi->tx_irq)
  510. disable_irq(rspi->rx_irq);
  511. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
  512. rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  513. rspi->dma_callbacked = 0;
  514. desc_rx->callback = rspi_dma_complete;
  515. desc_rx->callback_param = rspi;
  516. dmaengine_submit(desc_rx);
  517. dma_async_issue_pending(rspi->chan_rx);
  518. desc_tx->callback = NULL; /* No callback */
  519. dmaengine_submit(desc_tx);
  520. dma_async_issue_pending(rspi->chan_tx);
  521. ret = wait_event_interruptible_timeout(rspi->wait,
  522. rspi->dma_callbacked, HZ);
  523. if (ret > 0 && rspi->dma_callbacked)
  524. ret = 0;
  525. else if (!ret)
  526. ret = -ETIMEDOUT;
  527. rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  528. enable_irq(rspi->tx_irq);
  529. if (rspi->rx_irq != rspi->tx_irq)
  530. enable_irq(rspi->rx_irq);
  531. end:
  532. rspi_dma_unmap_sg(&sg_rx, rspi->chan_rx, DMA_FROM_DEVICE);
  533. end_tx_mapped:
  534. rspi_dma_unmap_sg(&sg_tx, rspi->chan_tx, DMA_TO_DEVICE);
  535. return ret;
  536. }
  537. static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
  538. {
  539. /* If the module receives data by DMAC, it also needs TX DMAC */
  540. if (t->rx_buf)
  541. return rspi->chan_tx && rspi->chan_rx;
  542. if (rspi->chan_tx)
  543. return 1;
  544. return 0;
  545. }
  546. static int rspi_transfer_out_in(struct rspi_data *rspi,
  547. struct spi_transfer *xfer)
  548. {
  549. u8 spcr;
  550. int ret;
  551. spcr = rspi_read8(rspi, RSPI_SPCR);
  552. if (xfer->rx_buf) {
  553. rspi_receive_init(rspi);
  554. spcr &= ~SPCR_TXMD;
  555. } else {
  556. spcr |= SPCR_TXMD;
  557. }
  558. rspi_write8(rspi, spcr, RSPI_SPCR);
  559. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  560. if (ret < 0)
  561. return ret;
  562. /* Wait for the last transmission */
  563. rspi_wait_for_tx_empty(rspi);
  564. return 0;
  565. }
  566. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  567. struct spi_transfer *xfer)
  568. {
  569. struct rspi_data *rspi = spi_master_get_devdata(master);
  570. if (!rspi_is_dma(rspi, xfer))
  571. return rspi_transfer_out_in(rspi, xfer);
  572. if (xfer->rx_buf)
  573. return rspi_send_receive_dma(rspi, xfer);
  574. else
  575. return rspi_send_dma(rspi, xfer);
  576. }
  577. static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
  578. struct spi_transfer *xfer)
  579. {
  580. int ret;
  581. rspi_rz_receive_init(rspi);
  582. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  583. if (ret < 0)
  584. return ret;
  585. /* Wait for the last transmission */
  586. rspi_wait_for_tx_empty(rspi);
  587. return 0;
  588. }
  589. static int rspi_rz_transfer_one(struct spi_master *master,
  590. struct spi_device *spi,
  591. struct spi_transfer *xfer)
  592. {
  593. struct rspi_data *rspi = spi_master_get_devdata(master);
  594. return rspi_rz_transfer_out_in(rspi, xfer);
  595. }
  596. static int qspi_transfer_out_in(struct rspi_data *rspi,
  597. struct spi_transfer *xfer)
  598. {
  599. int ret;
  600. qspi_receive_init(rspi);
  601. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  602. if (ret < 0)
  603. return ret;
  604. /* Wait for the last transmission */
  605. rspi_wait_for_tx_empty(rspi);
  606. return 0;
  607. }
  608. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  609. {
  610. int ret;
  611. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  612. if (ret < 0)
  613. return ret;
  614. /* Wait for the last transmission */
  615. rspi_wait_for_tx_empty(rspi);
  616. return 0;
  617. }
  618. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  619. {
  620. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  621. }
  622. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  623. struct spi_transfer *xfer)
  624. {
  625. struct rspi_data *rspi = spi_master_get_devdata(master);
  626. if (spi->mode & SPI_LOOP) {
  627. return qspi_transfer_out_in(rspi, xfer);
  628. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  629. /* Quad or Dual SPI Write */
  630. return qspi_transfer_out(rspi, xfer);
  631. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  632. /* Quad or Dual SPI Read */
  633. return qspi_transfer_in(rspi, xfer);
  634. } else {
  635. /* Single SPI Transfer */
  636. return qspi_transfer_out_in(rspi, xfer);
  637. }
  638. }
  639. static int rspi_setup(struct spi_device *spi)
  640. {
  641. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  642. rspi->max_speed_hz = spi->max_speed_hz;
  643. rspi->spcmd = SPCMD_SSLKP;
  644. if (spi->mode & SPI_CPOL)
  645. rspi->spcmd |= SPCMD_CPOL;
  646. if (spi->mode & SPI_CPHA)
  647. rspi->spcmd |= SPCMD_CPHA;
  648. /* CMOS output mode and MOSI signal from previous transfer */
  649. rspi->sppcr = 0;
  650. if (spi->mode & SPI_LOOP)
  651. rspi->sppcr |= SPPCR_SPLP;
  652. set_config_register(rspi, 8);
  653. return 0;
  654. }
  655. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  656. {
  657. if (xfer->tx_buf)
  658. switch (xfer->tx_nbits) {
  659. case SPI_NBITS_QUAD:
  660. return SPCMD_SPIMOD_QUAD;
  661. case SPI_NBITS_DUAL:
  662. return SPCMD_SPIMOD_DUAL;
  663. default:
  664. return 0;
  665. }
  666. if (xfer->rx_buf)
  667. switch (xfer->rx_nbits) {
  668. case SPI_NBITS_QUAD:
  669. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  670. case SPI_NBITS_DUAL:
  671. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  672. default:
  673. return 0;
  674. }
  675. return 0;
  676. }
  677. static int qspi_setup_sequencer(struct rspi_data *rspi,
  678. const struct spi_message *msg)
  679. {
  680. const struct spi_transfer *xfer;
  681. unsigned int i = 0, len = 0;
  682. u16 current_mode = 0xffff, mode;
  683. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  684. mode = qspi_transfer_mode(xfer);
  685. if (mode == current_mode) {
  686. len += xfer->len;
  687. continue;
  688. }
  689. /* Transfer mode change */
  690. if (i) {
  691. /* Set transfer data length of previous transfer */
  692. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  693. }
  694. if (i >= QSPI_NUM_SPCMD) {
  695. dev_err(&msg->spi->dev,
  696. "Too many different transfer modes");
  697. return -EINVAL;
  698. }
  699. /* Program transfer mode for this transfer */
  700. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  701. current_mode = mode;
  702. len = xfer->len;
  703. i++;
  704. }
  705. if (i) {
  706. /* Set final transfer data length and sequence length */
  707. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  708. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  709. }
  710. return 0;
  711. }
  712. static int rspi_prepare_message(struct spi_master *master,
  713. struct spi_message *msg)
  714. {
  715. struct rspi_data *rspi = spi_master_get_devdata(master);
  716. int ret;
  717. if (msg->spi->mode &
  718. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  719. /* Setup sequencer for messages with multiple transfer modes */
  720. ret = qspi_setup_sequencer(rspi, msg);
  721. if (ret < 0)
  722. return ret;
  723. }
  724. /* Enable SPI function in master mode */
  725. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  726. return 0;
  727. }
  728. static int rspi_unprepare_message(struct spi_master *master,
  729. struct spi_message *msg)
  730. {
  731. struct rspi_data *rspi = spi_master_get_devdata(master);
  732. /* Disable SPI function */
  733. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  734. /* Reset sequencer for Single SPI Transfers */
  735. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  736. rspi_write8(rspi, 0, RSPI_SPSCR);
  737. return 0;
  738. }
  739. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  740. {
  741. struct rspi_data *rspi = _sr;
  742. u8 spsr;
  743. irqreturn_t ret = IRQ_NONE;
  744. u8 disable_irq = 0;
  745. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  746. if (spsr & SPSR_SPRF)
  747. disable_irq |= SPCR_SPRIE;
  748. if (spsr & SPSR_SPTEF)
  749. disable_irq |= SPCR_SPTIE;
  750. if (disable_irq) {
  751. ret = IRQ_HANDLED;
  752. rspi_disable_irq(rspi, disable_irq);
  753. wake_up(&rspi->wait);
  754. }
  755. return ret;
  756. }
  757. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  758. {
  759. struct rspi_data *rspi = _sr;
  760. u8 spsr;
  761. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  762. if (spsr & SPSR_SPRF) {
  763. rspi_disable_irq(rspi, SPCR_SPRIE);
  764. wake_up(&rspi->wait);
  765. return IRQ_HANDLED;
  766. }
  767. return 0;
  768. }
  769. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  770. {
  771. struct rspi_data *rspi = _sr;
  772. u8 spsr;
  773. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  774. if (spsr & SPSR_SPTEF) {
  775. rspi_disable_irq(rspi, SPCR_SPTIE);
  776. wake_up(&rspi->wait);
  777. return IRQ_HANDLED;
  778. }
  779. return 0;
  780. }
  781. static int rspi_request_dma(struct rspi_data *rspi,
  782. struct platform_device *pdev)
  783. {
  784. const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
  785. struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  786. dma_cap_mask_t mask;
  787. struct dma_slave_config cfg;
  788. int ret;
  789. if (!res || !rspi_pd)
  790. return 0; /* The driver assumes no error. */
  791. /* If the module receives data by DMAC, it also needs TX DMAC */
  792. if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
  793. dma_cap_zero(mask);
  794. dma_cap_set(DMA_SLAVE, mask);
  795. rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
  796. (void *)rspi_pd->dma_rx_id);
  797. if (rspi->chan_rx) {
  798. cfg.slave_id = rspi_pd->dma_rx_id;
  799. cfg.direction = DMA_DEV_TO_MEM;
  800. cfg.dst_addr = 0;
  801. cfg.src_addr = res->start + RSPI_SPDR;
  802. ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
  803. if (!ret)
  804. dev_info(&pdev->dev, "Use DMA when rx.\n");
  805. else
  806. return ret;
  807. }
  808. }
  809. if (rspi_pd->dma_tx_id) {
  810. dma_cap_zero(mask);
  811. dma_cap_set(DMA_SLAVE, mask);
  812. rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
  813. (void *)rspi_pd->dma_tx_id);
  814. if (rspi->chan_tx) {
  815. cfg.slave_id = rspi_pd->dma_tx_id;
  816. cfg.direction = DMA_MEM_TO_DEV;
  817. cfg.dst_addr = res->start + RSPI_SPDR;
  818. cfg.src_addr = 0;
  819. ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
  820. if (!ret)
  821. dev_info(&pdev->dev, "Use DMA when tx\n");
  822. else
  823. return ret;
  824. }
  825. }
  826. return 0;
  827. }
  828. static void rspi_release_dma(struct rspi_data *rspi)
  829. {
  830. if (rspi->chan_tx)
  831. dma_release_channel(rspi->chan_tx);
  832. if (rspi->chan_rx)
  833. dma_release_channel(rspi->chan_rx);
  834. }
  835. static int rspi_remove(struct platform_device *pdev)
  836. {
  837. struct rspi_data *rspi = platform_get_drvdata(pdev);
  838. rspi_release_dma(rspi);
  839. pm_runtime_disable(&pdev->dev);
  840. return 0;
  841. }
  842. static const struct spi_ops rspi_ops = {
  843. .set_config_register = rspi_set_config_register,
  844. .transfer_one = rspi_transfer_one,
  845. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  846. .flags = SPI_MASTER_MUST_TX,
  847. };
  848. static const struct spi_ops rspi_rz_ops = {
  849. .set_config_register = rspi_rz_set_config_register,
  850. .transfer_one = rspi_rz_transfer_one,
  851. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  852. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  853. };
  854. static const struct spi_ops qspi_ops = {
  855. .set_config_register = qspi_set_config_register,
  856. .transfer_one = qspi_transfer_one,
  857. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  858. SPI_TX_DUAL | SPI_TX_QUAD |
  859. SPI_RX_DUAL | SPI_RX_QUAD,
  860. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  861. };
  862. #ifdef CONFIG_OF
  863. static const struct of_device_id rspi_of_match[] = {
  864. /* RSPI on legacy SH */
  865. { .compatible = "renesas,rspi", .data = &rspi_ops },
  866. /* RSPI on RZ/A1H */
  867. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  868. /* QSPI on R-Car Gen2 */
  869. { .compatible = "renesas,qspi", .data = &qspi_ops },
  870. { /* sentinel */ }
  871. };
  872. MODULE_DEVICE_TABLE(of, rspi_of_match);
  873. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  874. {
  875. u32 num_cs;
  876. int error;
  877. /* Parse DT properties */
  878. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  879. if (error) {
  880. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  881. return error;
  882. }
  883. master->num_chipselect = num_cs;
  884. return 0;
  885. }
  886. #else
  887. #define rspi_of_match NULL
  888. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  889. {
  890. return -EINVAL;
  891. }
  892. #endif /* CONFIG_OF */
  893. static int rspi_request_irq(struct device *dev, unsigned int irq,
  894. irq_handler_t handler, const char *suffix,
  895. void *dev_id)
  896. {
  897. const char *base = dev_name(dev);
  898. size_t len = strlen(base) + strlen(suffix) + 2;
  899. char *name = devm_kzalloc(dev, len, GFP_KERNEL);
  900. if (!name)
  901. return -ENOMEM;
  902. snprintf(name, len, "%s:%s", base, suffix);
  903. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  904. }
  905. static int rspi_probe(struct platform_device *pdev)
  906. {
  907. struct resource *res;
  908. struct spi_master *master;
  909. struct rspi_data *rspi;
  910. int ret;
  911. const struct of_device_id *of_id;
  912. const struct rspi_plat_data *rspi_pd;
  913. const struct spi_ops *ops;
  914. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  915. if (master == NULL) {
  916. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  917. return -ENOMEM;
  918. }
  919. of_id = of_match_device(rspi_of_match, &pdev->dev);
  920. if (of_id) {
  921. ops = of_id->data;
  922. ret = rspi_parse_dt(&pdev->dev, master);
  923. if (ret)
  924. goto error1;
  925. } else {
  926. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  927. rspi_pd = dev_get_platdata(&pdev->dev);
  928. if (rspi_pd && rspi_pd->num_chipselect)
  929. master->num_chipselect = rspi_pd->num_chipselect;
  930. else
  931. master->num_chipselect = 2; /* default */
  932. };
  933. /* ops parameter check */
  934. if (!ops->set_config_register) {
  935. dev_err(&pdev->dev, "there is no set_config_register\n");
  936. ret = -ENODEV;
  937. goto error1;
  938. }
  939. rspi = spi_master_get_devdata(master);
  940. platform_set_drvdata(pdev, rspi);
  941. rspi->ops = ops;
  942. rspi->master = master;
  943. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  944. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  945. if (IS_ERR(rspi->addr)) {
  946. ret = PTR_ERR(rspi->addr);
  947. goto error1;
  948. }
  949. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  950. if (IS_ERR(rspi->clk)) {
  951. dev_err(&pdev->dev, "cannot get clock\n");
  952. ret = PTR_ERR(rspi->clk);
  953. goto error1;
  954. }
  955. pm_runtime_enable(&pdev->dev);
  956. init_waitqueue_head(&rspi->wait);
  957. master->bus_num = pdev->id;
  958. master->setup = rspi_setup;
  959. master->auto_runtime_pm = true;
  960. master->transfer_one = ops->transfer_one;
  961. master->prepare_message = rspi_prepare_message;
  962. master->unprepare_message = rspi_unprepare_message;
  963. master->mode_bits = ops->mode_bits;
  964. master->flags = ops->flags;
  965. master->dev.of_node = pdev->dev.of_node;
  966. ret = platform_get_irq_byname(pdev, "rx");
  967. if (ret < 0) {
  968. ret = platform_get_irq_byname(pdev, "mux");
  969. if (ret < 0)
  970. ret = platform_get_irq(pdev, 0);
  971. if (ret >= 0)
  972. rspi->rx_irq = rspi->tx_irq = ret;
  973. } else {
  974. rspi->rx_irq = ret;
  975. ret = platform_get_irq_byname(pdev, "tx");
  976. if (ret >= 0)
  977. rspi->tx_irq = ret;
  978. }
  979. if (ret < 0) {
  980. dev_err(&pdev->dev, "platform_get_irq error\n");
  981. goto error2;
  982. }
  983. if (rspi->rx_irq == rspi->tx_irq) {
  984. /* Single multiplexed interrupt */
  985. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  986. "mux", rspi);
  987. } else {
  988. /* Multi-interrupt mode, only SPRI and SPTI are used */
  989. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  990. "rx", rspi);
  991. if (!ret)
  992. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  993. rspi_irq_tx, "tx", rspi);
  994. }
  995. if (ret < 0) {
  996. dev_err(&pdev->dev, "request_irq error\n");
  997. goto error2;
  998. }
  999. ret = rspi_request_dma(rspi, pdev);
  1000. if (ret < 0)
  1001. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1002. ret = devm_spi_register_master(&pdev->dev, master);
  1003. if (ret < 0) {
  1004. dev_err(&pdev->dev, "spi_register_master error.\n");
  1005. goto error3;
  1006. }
  1007. dev_info(&pdev->dev, "probed\n");
  1008. return 0;
  1009. error3:
  1010. rspi_release_dma(rspi);
  1011. error2:
  1012. pm_runtime_disable(&pdev->dev);
  1013. error1:
  1014. spi_master_put(master);
  1015. return ret;
  1016. }
  1017. static struct platform_device_id spi_driver_ids[] = {
  1018. { "rspi", (kernel_ulong_t)&rspi_ops },
  1019. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1020. { "qspi", (kernel_ulong_t)&qspi_ops },
  1021. {},
  1022. };
  1023. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1024. static struct platform_driver rspi_driver = {
  1025. .probe = rspi_probe,
  1026. .remove = rspi_remove,
  1027. .id_table = spi_driver_ids,
  1028. .driver = {
  1029. .name = "renesas_spi",
  1030. .owner = THIS_MODULE,
  1031. .of_match_table = of_match_ptr(rspi_of_match),
  1032. },
  1033. };
  1034. module_platform_driver(rspi_driver);
  1035. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1036. MODULE_LICENSE("GPL v2");
  1037. MODULE_AUTHOR("Yoshihiro Shimoda");
  1038. MODULE_ALIAS("platform:rspi");