memory.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <asm/io.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/tlb.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/pgtable.h>
  65. #include "internal.h"
  66. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  67. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  68. #endif
  69. #ifndef CONFIG_NEED_MULTIPLE_NODES
  70. /* use the per-pgdat data instead for discontigmem - mbligh */
  71. unsigned long max_mapnr;
  72. struct page *mem_map;
  73. EXPORT_SYMBOL(max_mapnr);
  74. EXPORT_SYMBOL(mem_map);
  75. #endif
  76. /*
  77. * A number of key systems in x86 including ioremap() rely on the assumption
  78. * that high_memory defines the upper bound on direct map memory, then end
  79. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  80. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  81. * and ZONE_HIGHMEM.
  82. */
  83. void * high_memory;
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. EXPORT_SYMBOL(zero_pfn);
  106. /*
  107. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  108. */
  109. static int __init init_zero_pfn(void)
  110. {
  111. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  112. return 0;
  113. }
  114. core_initcall(init_zero_pfn);
  115. #if defined(SPLIT_RSS_COUNTING)
  116. void sync_mm_rss(struct mm_struct *mm)
  117. {
  118. int i;
  119. for (i = 0; i < NR_MM_COUNTERS; i++) {
  120. if (current->rss_stat.count[i]) {
  121. add_mm_counter(mm, i, current->rss_stat.count[i]);
  122. current->rss_stat.count[i] = 0;
  123. }
  124. }
  125. current->rss_stat.events = 0;
  126. }
  127. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  128. {
  129. struct task_struct *task = current;
  130. if (likely(task->mm == mm))
  131. task->rss_stat.count[member] += val;
  132. else
  133. add_mm_counter(mm, member, val);
  134. }
  135. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  136. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  137. /* sync counter once per 64 page faults */
  138. #define TASK_RSS_EVENTS_THRESH (64)
  139. static void check_sync_rss_stat(struct task_struct *task)
  140. {
  141. if (unlikely(task != current))
  142. return;
  143. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  144. sync_mm_rss(task->mm);
  145. }
  146. #else /* SPLIT_RSS_COUNTING */
  147. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  148. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  149. static void check_sync_rss_stat(struct task_struct *task)
  150. {
  151. }
  152. #endif /* SPLIT_RSS_COUNTING */
  153. #ifdef HAVE_GENERIC_MMU_GATHER
  154. static int tlb_next_batch(struct mmu_gather *tlb)
  155. {
  156. struct mmu_gather_batch *batch;
  157. batch = tlb->active;
  158. if (batch->next) {
  159. tlb->active = batch->next;
  160. return 1;
  161. }
  162. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  163. return 0;
  164. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  165. if (!batch)
  166. return 0;
  167. tlb->batch_count++;
  168. batch->next = NULL;
  169. batch->nr = 0;
  170. batch->max = MAX_GATHER_BATCH;
  171. tlb->active->next = batch;
  172. tlb->active = batch;
  173. return 1;
  174. }
  175. /* tlb_gather_mmu
  176. * Called to initialize an (on-stack) mmu_gather structure for page-table
  177. * tear-down from @mm. The @fullmm argument is used when @mm is without
  178. * users and we're going to destroy the full address space (exit/execve).
  179. */
  180. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  181. {
  182. tlb->mm = mm;
  183. /* Is it from 0 to ~0? */
  184. tlb->fullmm = !(start | (end+1));
  185. tlb->need_flush_all = 0;
  186. tlb->local.next = NULL;
  187. tlb->local.nr = 0;
  188. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  189. tlb->active = &tlb->local;
  190. tlb->batch_count = 0;
  191. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  192. tlb->batch = NULL;
  193. #endif
  194. __tlb_reset_range(tlb);
  195. }
  196. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  197. {
  198. if (!tlb->end)
  199. return;
  200. tlb_flush(tlb);
  201. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  202. tlb_table_flush(tlb);
  203. #endif
  204. __tlb_reset_range(tlb);
  205. }
  206. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  207. {
  208. struct mmu_gather_batch *batch;
  209. for (batch = &tlb->local; batch; batch = batch->next) {
  210. free_pages_and_swap_cache(batch->pages, batch->nr);
  211. batch->nr = 0;
  212. }
  213. tlb->active = &tlb->local;
  214. }
  215. void tlb_flush_mmu(struct mmu_gather *tlb)
  216. {
  217. tlb_flush_mmu_tlbonly(tlb);
  218. tlb_flush_mmu_free(tlb);
  219. }
  220. /* tlb_finish_mmu
  221. * Called at the end of the shootdown operation to free up any resources
  222. * that were required.
  223. */
  224. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  225. {
  226. struct mmu_gather_batch *batch, *next;
  227. tlb_flush_mmu(tlb);
  228. /* keep the page table cache within bounds */
  229. check_pgt_cache();
  230. for (batch = tlb->local.next; batch; batch = next) {
  231. next = batch->next;
  232. free_pages((unsigned long)batch, 0);
  233. }
  234. tlb->local.next = NULL;
  235. }
  236. /* __tlb_remove_page
  237. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  238. * handling the additional races in SMP caused by other CPUs caching valid
  239. * mappings in their TLBs. Returns the number of free page slots left.
  240. * When out of page slots we must call tlb_flush_mmu().
  241. */
  242. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  243. {
  244. struct mmu_gather_batch *batch;
  245. VM_BUG_ON(!tlb->end);
  246. batch = tlb->active;
  247. batch->pages[batch->nr++] = page;
  248. if (batch->nr == batch->max) {
  249. if (!tlb_next_batch(tlb))
  250. return 0;
  251. batch = tlb->active;
  252. }
  253. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  254. return batch->max - batch->nr;
  255. }
  256. #endif /* HAVE_GENERIC_MMU_GATHER */
  257. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  258. /*
  259. * See the comment near struct mmu_table_batch.
  260. */
  261. static void tlb_remove_table_smp_sync(void *arg)
  262. {
  263. /* Simply deliver the interrupt */
  264. }
  265. static void tlb_remove_table_one(void *table)
  266. {
  267. /*
  268. * This isn't an RCU grace period and hence the page-tables cannot be
  269. * assumed to be actually RCU-freed.
  270. *
  271. * It is however sufficient for software page-table walkers that rely on
  272. * IRQ disabling. See the comment near struct mmu_table_batch.
  273. */
  274. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  275. __tlb_remove_table(table);
  276. }
  277. static void tlb_remove_table_rcu(struct rcu_head *head)
  278. {
  279. struct mmu_table_batch *batch;
  280. int i;
  281. batch = container_of(head, struct mmu_table_batch, rcu);
  282. for (i = 0; i < batch->nr; i++)
  283. __tlb_remove_table(batch->tables[i]);
  284. free_page((unsigned long)batch);
  285. }
  286. void tlb_table_flush(struct mmu_gather *tlb)
  287. {
  288. struct mmu_table_batch **batch = &tlb->batch;
  289. if (*batch) {
  290. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  291. *batch = NULL;
  292. }
  293. }
  294. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  295. {
  296. struct mmu_table_batch **batch = &tlb->batch;
  297. /*
  298. * When there's less then two users of this mm there cannot be a
  299. * concurrent page-table walk.
  300. */
  301. if (atomic_read(&tlb->mm->mm_users) < 2) {
  302. __tlb_remove_table(table);
  303. return;
  304. }
  305. if (*batch == NULL) {
  306. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  307. if (*batch == NULL) {
  308. tlb_remove_table_one(table);
  309. return;
  310. }
  311. (*batch)->nr = 0;
  312. }
  313. (*batch)->tables[(*batch)->nr++] = table;
  314. if ((*batch)->nr == MAX_TABLE_BATCH)
  315. tlb_table_flush(tlb);
  316. }
  317. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  318. /*
  319. * Note: this doesn't free the actual pages themselves. That
  320. * has been handled earlier when unmapping all the memory regions.
  321. */
  322. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  323. unsigned long addr)
  324. {
  325. pgtable_t token = pmd_pgtable(*pmd);
  326. pmd_clear(pmd);
  327. pte_free_tlb(tlb, token, addr);
  328. atomic_long_dec(&tlb->mm->nr_ptes);
  329. }
  330. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  331. unsigned long addr, unsigned long end,
  332. unsigned long floor, unsigned long ceiling)
  333. {
  334. pmd_t *pmd;
  335. unsigned long next;
  336. unsigned long start;
  337. start = addr;
  338. pmd = pmd_offset(pud, addr);
  339. do {
  340. next = pmd_addr_end(addr, end);
  341. if (pmd_none_or_clear_bad(pmd))
  342. continue;
  343. free_pte_range(tlb, pmd, addr);
  344. } while (pmd++, addr = next, addr != end);
  345. start &= PUD_MASK;
  346. if (start < floor)
  347. return;
  348. if (ceiling) {
  349. ceiling &= PUD_MASK;
  350. if (!ceiling)
  351. return;
  352. }
  353. if (end - 1 > ceiling - 1)
  354. return;
  355. pmd = pmd_offset(pud, start);
  356. pud_clear(pud);
  357. pmd_free_tlb(tlb, pmd, start);
  358. }
  359. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  360. unsigned long addr, unsigned long end,
  361. unsigned long floor, unsigned long ceiling)
  362. {
  363. pud_t *pud;
  364. unsigned long next;
  365. unsigned long start;
  366. start = addr;
  367. pud = pud_offset(pgd, addr);
  368. do {
  369. next = pud_addr_end(addr, end);
  370. if (pud_none_or_clear_bad(pud))
  371. continue;
  372. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  373. } while (pud++, addr = next, addr != end);
  374. start &= PGDIR_MASK;
  375. if (start < floor)
  376. return;
  377. if (ceiling) {
  378. ceiling &= PGDIR_MASK;
  379. if (!ceiling)
  380. return;
  381. }
  382. if (end - 1 > ceiling - 1)
  383. return;
  384. pud = pud_offset(pgd, start);
  385. pgd_clear(pgd);
  386. pud_free_tlb(tlb, pud, start);
  387. }
  388. /*
  389. * This function frees user-level page tables of a process.
  390. */
  391. void free_pgd_range(struct mmu_gather *tlb,
  392. unsigned long addr, unsigned long end,
  393. unsigned long floor, unsigned long ceiling)
  394. {
  395. pgd_t *pgd;
  396. unsigned long next;
  397. /*
  398. * The next few lines have given us lots of grief...
  399. *
  400. * Why are we testing PMD* at this top level? Because often
  401. * there will be no work to do at all, and we'd prefer not to
  402. * go all the way down to the bottom just to discover that.
  403. *
  404. * Why all these "- 1"s? Because 0 represents both the bottom
  405. * of the address space and the top of it (using -1 for the
  406. * top wouldn't help much: the masks would do the wrong thing).
  407. * The rule is that addr 0 and floor 0 refer to the bottom of
  408. * the address space, but end 0 and ceiling 0 refer to the top
  409. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  410. * that end 0 case should be mythical).
  411. *
  412. * Wherever addr is brought up or ceiling brought down, we must
  413. * be careful to reject "the opposite 0" before it confuses the
  414. * subsequent tests. But what about where end is brought down
  415. * by PMD_SIZE below? no, end can't go down to 0 there.
  416. *
  417. * Whereas we round start (addr) and ceiling down, by different
  418. * masks at different levels, in order to test whether a table
  419. * now has no other vmas using it, so can be freed, we don't
  420. * bother to round floor or end up - the tests don't need that.
  421. */
  422. addr &= PMD_MASK;
  423. if (addr < floor) {
  424. addr += PMD_SIZE;
  425. if (!addr)
  426. return;
  427. }
  428. if (ceiling) {
  429. ceiling &= PMD_MASK;
  430. if (!ceiling)
  431. return;
  432. }
  433. if (end - 1 > ceiling - 1)
  434. end -= PMD_SIZE;
  435. if (addr > end - 1)
  436. return;
  437. pgd = pgd_offset(tlb->mm, addr);
  438. do {
  439. next = pgd_addr_end(addr, end);
  440. if (pgd_none_or_clear_bad(pgd))
  441. continue;
  442. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  443. } while (pgd++, addr = next, addr != end);
  444. }
  445. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  446. unsigned long floor, unsigned long ceiling)
  447. {
  448. while (vma) {
  449. struct vm_area_struct *next = vma->vm_next;
  450. unsigned long addr = vma->vm_start;
  451. /*
  452. * Hide vma from rmap and truncate_pagecache before freeing
  453. * pgtables
  454. */
  455. unlink_anon_vmas(vma);
  456. unlink_file_vma(vma);
  457. if (is_vm_hugetlb_page(vma)) {
  458. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  459. floor, next? next->vm_start: ceiling);
  460. } else {
  461. /*
  462. * Optimization: gather nearby vmas into one call down
  463. */
  464. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  465. && !is_vm_hugetlb_page(next)) {
  466. vma = next;
  467. next = vma->vm_next;
  468. unlink_anon_vmas(vma);
  469. unlink_file_vma(vma);
  470. }
  471. free_pgd_range(tlb, addr, vma->vm_end,
  472. floor, next? next->vm_start: ceiling);
  473. }
  474. vma = next;
  475. }
  476. }
  477. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  478. pmd_t *pmd, unsigned long address)
  479. {
  480. spinlock_t *ptl;
  481. pgtable_t new = pte_alloc_one(mm, address);
  482. int wait_split_huge_page;
  483. if (!new)
  484. return -ENOMEM;
  485. /*
  486. * Ensure all pte setup (eg. pte page lock and page clearing) are
  487. * visible before the pte is made visible to other CPUs by being
  488. * put into page tables.
  489. *
  490. * The other side of the story is the pointer chasing in the page
  491. * table walking code (when walking the page table without locking;
  492. * ie. most of the time). Fortunately, these data accesses consist
  493. * of a chain of data-dependent loads, meaning most CPUs (alpha
  494. * being the notable exception) will already guarantee loads are
  495. * seen in-order. See the alpha page table accessors for the
  496. * smp_read_barrier_depends() barriers in page table walking code.
  497. */
  498. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  499. ptl = pmd_lock(mm, pmd);
  500. wait_split_huge_page = 0;
  501. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  502. atomic_long_inc(&mm->nr_ptes);
  503. pmd_populate(mm, pmd, new);
  504. new = NULL;
  505. } else if (unlikely(pmd_trans_splitting(*pmd)))
  506. wait_split_huge_page = 1;
  507. spin_unlock(ptl);
  508. if (new)
  509. pte_free(mm, new);
  510. if (wait_split_huge_page)
  511. wait_split_huge_page(vma->anon_vma, pmd);
  512. return 0;
  513. }
  514. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  515. {
  516. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  517. if (!new)
  518. return -ENOMEM;
  519. smp_wmb(); /* See comment in __pte_alloc */
  520. spin_lock(&init_mm.page_table_lock);
  521. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  522. pmd_populate_kernel(&init_mm, pmd, new);
  523. new = NULL;
  524. } else
  525. VM_BUG_ON(pmd_trans_splitting(*pmd));
  526. spin_unlock(&init_mm.page_table_lock);
  527. if (new)
  528. pte_free_kernel(&init_mm, new);
  529. return 0;
  530. }
  531. static inline void init_rss_vec(int *rss)
  532. {
  533. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  534. }
  535. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  536. {
  537. int i;
  538. if (current->mm == mm)
  539. sync_mm_rss(mm);
  540. for (i = 0; i < NR_MM_COUNTERS; i++)
  541. if (rss[i])
  542. add_mm_counter(mm, i, rss[i]);
  543. }
  544. /*
  545. * This function is called to print an error when a bad pte
  546. * is found. For example, we might have a PFN-mapped pte in
  547. * a region that doesn't allow it.
  548. *
  549. * The calling function must still handle the error.
  550. */
  551. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  552. pte_t pte, struct page *page)
  553. {
  554. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  555. pud_t *pud = pud_offset(pgd, addr);
  556. pmd_t *pmd = pmd_offset(pud, addr);
  557. struct address_space *mapping;
  558. pgoff_t index;
  559. static unsigned long resume;
  560. static unsigned long nr_shown;
  561. static unsigned long nr_unshown;
  562. /*
  563. * Allow a burst of 60 reports, then keep quiet for that minute;
  564. * or allow a steady drip of one report per second.
  565. */
  566. if (nr_shown == 60) {
  567. if (time_before(jiffies, resume)) {
  568. nr_unshown++;
  569. return;
  570. }
  571. if (nr_unshown) {
  572. printk(KERN_ALERT
  573. "BUG: Bad page map: %lu messages suppressed\n",
  574. nr_unshown);
  575. nr_unshown = 0;
  576. }
  577. nr_shown = 0;
  578. }
  579. if (nr_shown++ == 0)
  580. resume = jiffies + 60 * HZ;
  581. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  582. index = linear_page_index(vma, addr);
  583. printk(KERN_ALERT
  584. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  585. current->comm,
  586. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  587. if (page)
  588. dump_page(page, "bad pte");
  589. printk(KERN_ALERT
  590. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  591. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  592. /*
  593. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  594. */
  595. if (vma->vm_ops)
  596. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  597. vma->vm_ops->fault);
  598. if (vma->vm_file)
  599. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  600. vma->vm_file->f_op->mmap);
  601. dump_stack();
  602. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  603. }
  604. /*
  605. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  606. *
  607. * "Special" mappings do not wish to be associated with a "struct page" (either
  608. * it doesn't exist, or it exists but they don't want to touch it). In this
  609. * case, NULL is returned here. "Normal" mappings do have a struct page.
  610. *
  611. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  612. * pte bit, in which case this function is trivial. Secondly, an architecture
  613. * may not have a spare pte bit, which requires a more complicated scheme,
  614. * described below.
  615. *
  616. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  617. * special mapping (even if there are underlying and valid "struct pages").
  618. * COWed pages of a VM_PFNMAP are always normal.
  619. *
  620. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  621. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  622. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  623. * mapping will always honor the rule
  624. *
  625. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  626. *
  627. * And for normal mappings this is false.
  628. *
  629. * This restricts such mappings to be a linear translation from virtual address
  630. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  631. * as the vma is not a COW mapping; in that case, we know that all ptes are
  632. * special (because none can have been COWed).
  633. *
  634. *
  635. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  636. *
  637. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  638. * page" backing, however the difference is that _all_ pages with a struct
  639. * page (that is, those where pfn_valid is true) are refcounted and considered
  640. * normal pages by the VM. The disadvantage is that pages are refcounted
  641. * (which can be slower and simply not an option for some PFNMAP users). The
  642. * advantage is that we don't have to follow the strict linearity rule of
  643. * PFNMAP mappings in order to support COWable mappings.
  644. *
  645. */
  646. #ifdef __HAVE_ARCH_PTE_SPECIAL
  647. # define HAVE_PTE_SPECIAL 1
  648. #else
  649. # define HAVE_PTE_SPECIAL 0
  650. #endif
  651. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  652. pte_t pte)
  653. {
  654. unsigned long pfn = pte_pfn(pte);
  655. if (HAVE_PTE_SPECIAL) {
  656. if (likely(!pte_special(pte)))
  657. goto check_pfn;
  658. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  659. return NULL;
  660. if (!is_zero_pfn(pfn))
  661. print_bad_pte(vma, addr, pte, NULL);
  662. return NULL;
  663. }
  664. /* !HAVE_PTE_SPECIAL case follows: */
  665. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  666. if (vma->vm_flags & VM_MIXEDMAP) {
  667. if (!pfn_valid(pfn))
  668. return NULL;
  669. goto out;
  670. } else {
  671. unsigned long off;
  672. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  673. if (pfn == vma->vm_pgoff + off)
  674. return NULL;
  675. if (!is_cow_mapping(vma->vm_flags))
  676. return NULL;
  677. }
  678. }
  679. if (is_zero_pfn(pfn))
  680. return NULL;
  681. check_pfn:
  682. if (unlikely(pfn > highest_memmap_pfn)) {
  683. print_bad_pte(vma, addr, pte, NULL);
  684. return NULL;
  685. }
  686. /*
  687. * NOTE! We still have PageReserved() pages in the page tables.
  688. * eg. VDSO mappings can cause them to exist.
  689. */
  690. out:
  691. return pfn_to_page(pfn);
  692. }
  693. /*
  694. * copy one vm_area from one task to the other. Assumes the page tables
  695. * already present in the new task to be cleared in the whole range
  696. * covered by this vma.
  697. */
  698. static inline unsigned long
  699. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  700. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  701. unsigned long addr, int *rss)
  702. {
  703. unsigned long vm_flags = vma->vm_flags;
  704. pte_t pte = *src_pte;
  705. struct page *page;
  706. /* pte contains position in swap or file, so copy. */
  707. if (unlikely(!pte_present(pte))) {
  708. if (!pte_file(pte)) {
  709. swp_entry_t entry = pte_to_swp_entry(pte);
  710. if (likely(!non_swap_entry(entry))) {
  711. if (swap_duplicate(entry) < 0)
  712. return entry.val;
  713. /* make sure dst_mm is on swapoff's mmlist. */
  714. if (unlikely(list_empty(&dst_mm->mmlist))) {
  715. spin_lock(&mmlist_lock);
  716. if (list_empty(&dst_mm->mmlist))
  717. list_add(&dst_mm->mmlist,
  718. &src_mm->mmlist);
  719. spin_unlock(&mmlist_lock);
  720. }
  721. rss[MM_SWAPENTS]++;
  722. } else if (is_migration_entry(entry)) {
  723. page = migration_entry_to_page(entry);
  724. if (PageAnon(page))
  725. rss[MM_ANONPAGES]++;
  726. else
  727. rss[MM_FILEPAGES]++;
  728. if (is_write_migration_entry(entry) &&
  729. is_cow_mapping(vm_flags)) {
  730. /*
  731. * COW mappings require pages in both
  732. * parent and child to be set to read.
  733. */
  734. make_migration_entry_read(&entry);
  735. pte = swp_entry_to_pte(entry);
  736. if (pte_swp_soft_dirty(*src_pte))
  737. pte = pte_swp_mksoft_dirty(pte);
  738. set_pte_at(src_mm, addr, src_pte, pte);
  739. }
  740. }
  741. }
  742. goto out_set_pte;
  743. }
  744. /*
  745. * If it's a COW mapping, write protect it both
  746. * in the parent and the child
  747. */
  748. if (is_cow_mapping(vm_flags)) {
  749. ptep_set_wrprotect(src_mm, addr, src_pte);
  750. pte = pte_wrprotect(pte);
  751. }
  752. /*
  753. * If it's a shared mapping, mark it clean in
  754. * the child
  755. */
  756. if (vm_flags & VM_SHARED)
  757. pte = pte_mkclean(pte);
  758. pte = pte_mkold(pte);
  759. page = vm_normal_page(vma, addr, pte);
  760. if (page) {
  761. get_page(page);
  762. page_dup_rmap(page);
  763. if (PageAnon(page))
  764. rss[MM_ANONPAGES]++;
  765. else
  766. rss[MM_FILEPAGES]++;
  767. }
  768. out_set_pte:
  769. set_pte_at(dst_mm, addr, dst_pte, pte);
  770. return 0;
  771. }
  772. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  773. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  774. unsigned long addr, unsigned long end)
  775. {
  776. pte_t *orig_src_pte, *orig_dst_pte;
  777. pte_t *src_pte, *dst_pte;
  778. spinlock_t *src_ptl, *dst_ptl;
  779. int progress = 0;
  780. int rss[NR_MM_COUNTERS];
  781. swp_entry_t entry = (swp_entry_t){0};
  782. again:
  783. init_rss_vec(rss);
  784. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  785. if (!dst_pte)
  786. return -ENOMEM;
  787. src_pte = pte_offset_map(src_pmd, addr);
  788. src_ptl = pte_lockptr(src_mm, src_pmd);
  789. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  790. orig_src_pte = src_pte;
  791. orig_dst_pte = dst_pte;
  792. arch_enter_lazy_mmu_mode();
  793. do {
  794. /*
  795. * We are holding two locks at this point - either of them
  796. * could generate latencies in another task on another CPU.
  797. */
  798. if (progress >= 32) {
  799. progress = 0;
  800. if (need_resched() ||
  801. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  802. break;
  803. }
  804. if (pte_none(*src_pte)) {
  805. progress++;
  806. continue;
  807. }
  808. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  809. vma, addr, rss);
  810. if (entry.val)
  811. break;
  812. progress += 8;
  813. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  814. arch_leave_lazy_mmu_mode();
  815. spin_unlock(src_ptl);
  816. pte_unmap(orig_src_pte);
  817. add_mm_rss_vec(dst_mm, rss);
  818. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  819. cond_resched();
  820. if (entry.val) {
  821. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  822. return -ENOMEM;
  823. progress = 0;
  824. }
  825. if (addr != end)
  826. goto again;
  827. return 0;
  828. }
  829. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  830. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  831. unsigned long addr, unsigned long end)
  832. {
  833. pmd_t *src_pmd, *dst_pmd;
  834. unsigned long next;
  835. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  836. if (!dst_pmd)
  837. return -ENOMEM;
  838. src_pmd = pmd_offset(src_pud, addr);
  839. do {
  840. next = pmd_addr_end(addr, end);
  841. if (pmd_trans_huge(*src_pmd)) {
  842. int err;
  843. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  844. err = copy_huge_pmd(dst_mm, src_mm,
  845. dst_pmd, src_pmd, addr, vma);
  846. if (err == -ENOMEM)
  847. return -ENOMEM;
  848. if (!err)
  849. continue;
  850. /* fall through */
  851. }
  852. if (pmd_none_or_clear_bad(src_pmd))
  853. continue;
  854. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  855. vma, addr, next))
  856. return -ENOMEM;
  857. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  858. return 0;
  859. }
  860. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  861. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  862. unsigned long addr, unsigned long end)
  863. {
  864. pud_t *src_pud, *dst_pud;
  865. unsigned long next;
  866. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  867. if (!dst_pud)
  868. return -ENOMEM;
  869. src_pud = pud_offset(src_pgd, addr);
  870. do {
  871. next = pud_addr_end(addr, end);
  872. if (pud_none_or_clear_bad(src_pud))
  873. continue;
  874. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  875. vma, addr, next))
  876. return -ENOMEM;
  877. } while (dst_pud++, src_pud++, addr = next, addr != end);
  878. return 0;
  879. }
  880. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  881. struct vm_area_struct *vma)
  882. {
  883. pgd_t *src_pgd, *dst_pgd;
  884. unsigned long next;
  885. unsigned long addr = vma->vm_start;
  886. unsigned long end = vma->vm_end;
  887. unsigned long mmun_start; /* For mmu_notifiers */
  888. unsigned long mmun_end; /* For mmu_notifiers */
  889. bool is_cow;
  890. int ret;
  891. /*
  892. * Don't copy ptes where a page fault will fill them correctly.
  893. * Fork becomes much lighter when there are big shared or private
  894. * readonly mappings. The tradeoff is that copy_page_range is more
  895. * efficient than faulting.
  896. */
  897. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  898. VM_PFNMAP | VM_MIXEDMAP))) {
  899. if (!vma->anon_vma)
  900. return 0;
  901. }
  902. if (is_vm_hugetlb_page(vma))
  903. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  904. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  905. /*
  906. * We do not free on error cases below as remove_vma
  907. * gets called on error from higher level routine
  908. */
  909. ret = track_pfn_copy(vma);
  910. if (ret)
  911. return ret;
  912. }
  913. /*
  914. * We need to invalidate the secondary MMU mappings only when
  915. * there could be a permission downgrade on the ptes of the
  916. * parent mm. And a permission downgrade will only happen if
  917. * is_cow_mapping() returns true.
  918. */
  919. is_cow = is_cow_mapping(vma->vm_flags);
  920. mmun_start = addr;
  921. mmun_end = end;
  922. if (is_cow)
  923. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  924. mmun_end);
  925. ret = 0;
  926. dst_pgd = pgd_offset(dst_mm, addr);
  927. src_pgd = pgd_offset(src_mm, addr);
  928. do {
  929. next = pgd_addr_end(addr, end);
  930. if (pgd_none_or_clear_bad(src_pgd))
  931. continue;
  932. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  933. vma, addr, next))) {
  934. ret = -ENOMEM;
  935. break;
  936. }
  937. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  938. if (is_cow)
  939. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  940. return ret;
  941. }
  942. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  943. struct vm_area_struct *vma, pmd_t *pmd,
  944. unsigned long addr, unsigned long end,
  945. struct zap_details *details)
  946. {
  947. struct mm_struct *mm = tlb->mm;
  948. int force_flush = 0;
  949. int rss[NR_MM_COUNTERS];
  950. spinlock_t *ptl;
  951. pte_t *start_pte;
  952. pte_t *pte;
  953. again:
  954. init_rss_vec(rss);
  955. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  956. pte = start_pte;
  957. arch_enter_lazy_mmu_mode();
  958. do {
  959. pte_t ptent = *pte;
  960. if (pte_none(ptent)) {
  961. continue;
  962. }
  963. if (pte_present(ptent)) {
  964. struct page *page;
  965. page = vm_normal_page(vma, addr, ptent);
  966. if (unlikely(details) && page) {
  967. /*
  968. * unmap_shared_mapping_pages() wants to
  969. * invalidate cache without truncating:
  970. * unmap shared but keep private pages.
  971. */
  972. if (details->check_mapping &&
  973. details->check_mapping != page->mapping)
  974. continue;
  975. /*
  976. * Each page->index must be checked when
  977. * invalidating or truncating nonlinear.
  978. */
  979. if (details->nonlinear_vma &&
  980. (page->index < details->first_index ||
  981. page->index > details->last_index))
  982. continue;
  983. }
  984. ptent = ptep_get_and_clear_full(mm, addr, pte,
  985. tlb->fullmm);
  986. tlb_remove_tlb_entry(tlb, pte, addr);
  987. if (unlikely(!page))
  988. continue;
  989. if (unlikely(details) && details->nonlinear_vma
  990. && linear_page_index(details->nonlinear_vma,
  991. addr) != page->index) {
  992. pte_t ptfile = pgoff_to_pte(page->index);
  993. if (pte_soft_dirty(ptent))
  994. ptfile = pte_file_mksoft_dirty(ptfile);
  995. set_pte_at(mm, addr, pte, ptfile);
  996. }
  997. if (PageAnon(page))
  998. rss[MM_ANONPAGES]--;
  999. else {
  1000. if (pte_dirty(ptent)) {
  1001. force_flush = 1;
  1002. set_page_dirty(page);
  1003. }
  1004. if (pte_young(ptent) &&
  1005. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1006. mark_page_accessed(page);
  1007. rss[MM_FILEPAGES]--;
  1008. }
  1009. page_remove_rmap(page);
  1010. if (unlikely(page_mapcount(page) < 0))
  1011. print_bad_pte(vma, addr, ptent, page);
  1012. if (unlikely(!__tlb_remove_page(tlb, page))) {
  1013. force_flush = 1;
  1014. addr += PAGE_SIZE;
  1015. break;
  1016. }
  1017. continue;
  1018. }
  1019. /*
  1020. * If details->check_mapping, we leave swap entries;
  1021. * if details->nonlinear_vma, we leave file entries.
  1022. */
  1023. if (unlikely(details))
  1024. continue;
  1025. if (pte_file(ptent)) {
  1026. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1027. print_bad_pte(vma, addr, ptent, NULL);
  1028. } else {
  1029. swp_entry_t entry = pte_to_swp_entry(ptent);
  1030. if (!non_swap_entry(entry))
  1031. rss[MM_SWAPENTS]--;
  1032. else if (is_migration_entry(entry)) {
  1033. struct page *page;
  1034. page = migration_entry_to_page(entry);
  1035. if (PageAnon(page))
  1036. rss[MM_ANONPAGES]--;
  1037. else
  1038. rss[MM_FILEPAGES]--;
  1039. }
  1040. if (unlikely(!free_swap_and_cache(entry)))
  1041. print_bad_pte(vma, addr, ptent, NULL);
  1042. }
  1043. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1044. } while (pte++, addr += PAGE_SIZE, addr != end);
  1045. add_mm_rss_vec(mm, rss);
  1046. arch_leave_lazy_mmu_mode();
  1047. /* Do the actual TLB flush before dropping ptl */
  1048. if (force_flush)
  1049. tlb_flush_mmu_tlbonly(tlb);
  1050. pte_unmap_unlock(start_pte, ptl);
  1051. /*
  1052. * If we forced a TLB flush (either due to running out of
  1053. * batch buffers or because we needed to flush dirty TLB
  1054. * entries before releasing the ptl), free the batched
  1055. * memory too. Restart if we didn't do everything.
  1056. */
  1057. if (force_flush) {
  1058. force_flush = 0;
  1059. tlb_flush_mmu_free(tlb);
  1060. if (addr != end)
  1061. goto again;
  1062. }
  1063. return addr;
  1064. }
  1065. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1066. struct vm_area_struct *vma, pud_t *pud,
  1067. unsigned long addr, unsigned long end,
  1068. struct zap_details *details)
  1069. {
  1070. pmd_t *pmd;
  1071. unsigned long next;
  1072. pmd = pmd_offset(pud, addr);
  1073. do {
  1074. next = pmd_addr_end(addr, end);
  1075. if (pmd_trans_huge(*pmd)) {
  1076. if (next - addr != HPAGE_PMD_SIZE) {
  1077. #ifdef CONFIG_DEBUG_VM
  1078. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1079. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1080. __func__, addr, end,
  1081. vma->vm_start,
  1082. vma->vm_end);
  1083. BUG();
  1084. }
  1085. #endif
  1086. split_huge_page_pmd(vma, addr, pmd);
  1087. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1088. goto next;
  1089. /* fall through */
  1090. }
  1091. /*
  1092. * Here there can be other concurrent MADV_DONTNEED or
  1093. * trans huge page faults running, and if the pmd is
  1094. * none or trans huge it can change under us. This is
  1095. * because MADV_DONTNEED holds the mmap_sem in read
  1096. * mode.
  1097. */
  1098. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1099. goto next;
  1100. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1101. next:
  1102. cond_resched();
  1103. } while (pmd++, addr = next, addr != end);
  1104. return addr;
  1105. }
  1106. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1107. struct vm_area_struct *vma, pgd_t *pgd,
  1108. unsigned long addr, unsigned long end,
  1109. struct zap_details *details)
  1110. {
  1111. pud_t *pud;
  1112. unsigned long next;
  1113. pud = pud_offset(pgd, addr);
  1114. do {
  1115. next = pud_addr_end(addr, end);
  1116. if (pud_none_or_clear_bad(pud))
  1117. continue;
  1118. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1119. } while (pud++, addr = next, addr != end);
  1120. return addr;
  1121. }
  1122. static void unmap_page_range(struct mmu_gather *tlb,
  1123. struct vm_area_struct *vma,
  1124. unsigned long addr, unsigned long end,
  1125. struct zap_details *details)
  1126. {
  1127. pgd_t *pgd;
  1128. unsigned long next;
  1129. if (details && !details->check_mapping && !details->nonlinear_vma)
  1130. details = NULL;
  1131. BUG_ON(addr >= end);
  1132. tlb_start_vma(tlb, vma);
  1133. pgd = pgd_offset(vma->vm_mm, addr);
  1134. do {
  1135. next = pgd_addr_end(addr, end);
  1136. if (pgd_none_or_clear_bad(pgd))
  1137. continue;
  1138. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1139. } while (pgd++, addr = next, addr != end);
  1140. tlb_end_vma(tlb, vma);
  1141. }
  1142. static void unmap_single_vma(struct mmu_gather *tlb,
  1143. struct vm_area_struct *vma, unsigned long start_addr,
  1144. unsigned long end_addr,
  1145. struct zap_details *details)
  1146. {
  1147. unsigned long start = max(vma->vm_start, start_addr);
  1148. unsigned long end;
  1149. if (start >= vma->vm_end)
  1150. return;
  1151. end = min(vma->vm_end, end_addr);
  1152. if (end <= vma->vm_start)
  1153. return;
  1154. if (vma->vm_file)
  1155. uprobe_munmap(vma, start, end);
  1156. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1157. untrack_pfn(vma, 0, 0);
  1158. if (start != end) {
  1159. if (unlikely(is_vm_hugetlb_page(vma))) {
  1160. /*
  1161. * It is undesirable to test vma->vm_file as it
  1162. * should be non-null for valid hugetlb area.
  1163. * However, vm_file will be NULL in the error
  1164. * cleanup path of mmap_region. When
  1165. * hugetlbfs ->mmap method fails,
  1166. * mmap_region() nullifies vma->vm_file
  1167. * before calling this function to clean up.
  1168. * Since no pte has actually been setup, it is
  1169. * safe to do nothing in this case.
  1170. */
  1171. if (vma->vm_file) {
  1172. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1173. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1174. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1175. }
  1176. } else
  1177. unmap_page_range(tlb, vma, start, end, details);
  1178. }
  1179. }
  1180. /**
  1181. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1182. * @tlb: address of the caller's struct mmu_gather
  1183. * @vma: the starting vma
  1184. * @start_addr: virtual address at which to start unmapping
  1185. * @end_addr: virtual address at which to end unmapping
  1186. *
  1187. * Unmap all pages in the vma list.
  1188. *
  1189. * Only addresses between `start' and `end' will be unmapped.
  1190. *
  1191. * The VMA list must be sorted in ascending virtual address order.
  1192. *
  1193. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1194. * range after unmap_vmas() returns. So the only responsibility here is to
  1195. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1196. * drops the lock and schedules.
  1197. */
  1198. void unmap_vmas(struct mmu_gather *tlb,
  1199. struct vm_area_struct *vma, unsigned long start_addr,
  1200. unsigned long end_addr)
  1201. {
  1202. struct mm_struct *mm = vma->vm_mm;
  1203. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1204. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1205. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1206. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1207. }
  1208. /**
  1209. * zap_page_range - remove user pages in a given range
  1210. * @vma: vm_area_struct holding the applicable pages
  1211. * @start: starting address of pages to zap
  1212. * @size: number of bytes to zap
  1213. * @details: details of nonlinear truncation or shared cache invalidation
  1214. *
  1215. * Caller must protect the VMA list
  1216. */
  1217. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1218. unsigned long size, struct zap_details *details)
  1219. {
  1220. struct mm_struct *mm = vma->vm_mm;
  1221. struct mmu_gather tlb;
  1222. unsigned long end = start + size;
  1223. lru_add_drain();
  1224. tlb_gather_mmu(&tlb, mm, start, end);
  1225. update_hiwater_rss(mm);
  1226. mmu_notifier_invalidate_range_start(mm, start, end);
  1227. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1228. unmap_single_vma(&tlb, vma, start, end, details);
  1229. mmu_notifier_invalidate_range_end(mm, start, end);
  1230. tlb_finish_mmu(&tlb, start, end);
  1231. }
  1232. /**
  1233. * zap_page_range_single - remove user pages in a given range
  1234. * @vma: vm_area_struct holding the applicable pages
  1235. * @address: starting address of pages to zap
  1236. * @size: number of bytes to zap
  1237. * @details: details of nonlinear truncation or shared cache invalidation
  1238. *
  1239. * The range must fit into one VMA.
  1240. */
  1241. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1242. unsigned long size, struct zap_details *details)
  1243. {
  1244. struct mm_struct *mm = vma->vm_mm;
  1245. struct mmu_gather tlb;
  1246. unsigned long end = address + size;
  1247. lru_add_drain();
  1248. tlb_gather_mmu(&tlb, mm, address, end);
  1249. update_hiwater_rss(mm);
  1250. mmu_notifier_invalidate_range_start(mm, address, end);
  1251. unmap_single_vma(&tlb, vma, address, end, details);
  1252. mmu_notifier_invalidate_range_end(mm, address, end);
  1253. tlb_finish_mmu(&tlb, address, end);
  1254. }
  1255. /**
  1256. * zap_vma_ptes - remove ptes mapping the vma
  1257. * @vma: vm_area_struct holding ptes to be zapped
  1258. * @address: starting address of pages to zap
  1259. * @size: number of bytes to zap
  1260. *
  1261. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1262. *
  1263. * The entire address range must be fully contained within the vma.
  1264. *
  1265. * Returns 0 if successful.
  1266. */
  1267. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1268. unsigned long size)
  1269. {
  1270. if (address < vma->vm_start || address + size > vma->vm_end ||
  1271. !(vma->vm_flags & VM_PFNMAP))
  1272. return -1;
  1273. zap_page_range_single(vma, address, size, NULL);
  1274. return 0;
  1275. }
  1276. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1277. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1278. spinlock_t **ptl)
  1279. {
  1280. pgd_t * pgd = pgd_offset(mm, addr);
  1281. pud_t * pud = pud_alloc(mm, pgd, addr);
  1282. if (pud) {
  1283. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1284. if (pmd) {
  1285. VM_BUG_ON(pmd_trans_huge(*pmd));
  1286. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1287. }
  1288. }
  1289. return NULL;
  1290. }
  1291. /*
  1292. * This is the old fallback for page remapping.
  1293. *
  1294. * For historical reasons, it only allows reserved pages. Only
  1295. * old drivers should use this, and they needed to mark their
  1296. * pages reserved for the old functions anyway.
  1297. */
  1298. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1299. struct page *page, pgprot_t prot)
  1300. {
  1301. struct mm_struct *mm = vma->vm_mm;
  1302. int retval;
  1303. pte_t *pte;
  1304. spinlock_t *ptl;
  1305. retval = -EINVAL;
  1306. if (PageAnon(page))
  1307. goto out;
  1308. retval = -ENOMEM;
  1309. flush_dcache_page(page);
  1310. pte = get_locked_pte(mm, addr, &ptl);
  1311. if (!pte)
  1312. goto out;
  1313. retval = -EBUSY;
  1314. if (!pte_none(*pte))
  1315. goto out_unlock;
  1316. /* Ok, finally just insert the thing.. */
  1317. get_page(page);
  1318. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1319. page_add_file_rmap(page);
  1320. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1321. retval = 0;
  1322. pte_unmap_unlock(pte, ptl);
  1323. return retval;
  1324. out_unlock:
  1325. pte_unmap_unlock(pte, ptl);
  1326. out:
  1327. return retval;
  1328. }
  1329. /**
  1330. * vm_insert_page - insert single page into user vma
  1331. * @vma: user vma to map to
  1332. * @addr: target user address of this page
  1333. * @page: source kernel page
  1334. *
  1335. * This allows drivers to insert individual pages they've allocated
  1336. * into a user vma.
  1337. *
  1338. * The page has to be a nice clean _individual_ kernel allocation.
  1339. * If you allocate a compound page, you need to have marked it as
  1340. * such (__GFP_COMP), or manually just split the page up yourself
  1341. * (see split_page()).
  1342. *
  1343. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1344. * took an arbitrary page protection parameter. This doesn't allow
  1345. * that. Your vma protection will have to be set up correctly, which
  1346. * means that if you want a shared writable mapping, you'd better
  1347. * ask for a shared writable mapping!
  1348. *
  1349. * The page does not need to be reserved.
  1350. *
  1351. * Usually this function is called from f_op->mmap() handler
  1352. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1353. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1354. * function from other places, for example from page-fault handler.
  1355. */
  1356. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1357. struct page *page)
  1358. {
  1359. if (addr < vma->vm_start || addr >= vma->vm_end)
  1360. return -EFAULT;
  1361. if (!page_count(page))
  1362. return -EINVAL;
  1363. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1364. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1365. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1366. vma->vm_flags |= VM_MIXEDMAP;
  1367. }
  1368. return insert_page(vma, addr, page, vma->vm_page_prot);
  1369. }
  1370. EXPORT_SYMBOL(vm_insert_page);
  1371. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1372. unsigned long pfn, pgprot_t prot)
  1373. {
  1374. struct mm_struct *mm = vma->vm_mm;
  1375. int retval;
  1376. pte_t *pte, entry;
  1377. spinlock_t *ptl;
  1378. retval = -ENOMEM;
  1379. pte = get_locked_pte(mm, addr, &ptl);
  1380. if (!pte)
  1381. goto out;
  1382. retval = -EBUSY;
  1383. if (!pte_none(*pte))
  1384. goto out_unlock;
  1385. /* Ok, finally just insert the thing.. */
  1386. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1387. set_pte_at(mm, addr, pte, entry);
  1388. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1389. retval = 0;
  1390. out_unlock:
  1391. pte_unmap_unlock(pte, ptl);
  1392. out:
  1393. return retval;
  1394. }
  1395. /**
  1396. * vm_insert_pfn - insert single pfn into user vma
  1397. * @vma: user vma to map to
  1398. * @addr: target user address of this page
  1399. * @pfn: source kernel pfn
  1400. *
  1401. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1402. * they've allocated into a user vma. Same comments apply.
  1403. *
  1404. * This function should only be called from a vm_ops->fault handler, and
  1405. * in that case the handler should return NULL.
  1406. *
  1407. * vma cannot be a COW mapping.
  1408. *
  1409. * As this is called only for pages that do not currently exist, we
  1410. * do not need to flush old virtual caches or the TLB.
  1411. */
  1412. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1413. unsigned long pfn)
  1414. {
  1415. int ret;
  1416. pgprot_t pgprot = vma->vm_page_prot;
  1417. /*
  1418. * Technically, architectures with pte_special can avoid all these
  1419. * restrictions (same for remap_pfn_range). However we would like
  1420. * consistency in testing and feature parity among all, so we should
  1421. * try to keep these invariants in place for everybody.
  1422. */
  1423. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1424. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1425. (VM_PFNMAP|VM_MIXEDMAP));
  1426. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1427. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1428. if (addr < vma->vm_start || addr >= vma->vm_end)
  1429. return -EFAULT;
  1430. if (track_pfn_insert(vma, &pgprot, pfn))
  1431. return -EINVAL;
  1432. ret = insert_pfn(vma, addr, pfn, pgprot);
  1433. return ret;
  1434. }
  1435. EXPORT_SYMBOL(vm_insert_pfn);
  1436. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1437. unsigned long pfn)
  1438. {
  1439. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1440. if (addr < vma->vm_start || addr >= vma->vm_end)
  1441. return -EFAULT;
  1442. /*
  1443. * If we don't have pte special, then we have to use the pfn_valid()
  1444. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1445. * refcount the page if pfn_valid is true (hence insert_page rather
  1446. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1447. * without pte special, it would there be refcounted as a normal page.
  1448. */
  1449. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1450. struct page *page;
  1451. page = pfn_to_page(pfn);
  1452. return insert_page(vma, addr, page, vma->vm_page_prot);
  1453. }
  1454. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1455. }
  1456. EXPORT_SYMBOL(vm_insert_mixed);
  1457. /*
  1458. * maps a range of physical memory into the requested pages. the old
  1459. * mappings are removed. any references to nonexistent pages results
  1460. * in null mappings (currently treated as "copy-on-access")
  1461. */
  1462. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1463. unsigned long addr, unsigned long end,
  1464. unsigned long pfn, pgprot_t prot)
  1465. {
  1466. pte_t *pte;
  1467. spinlock_t *ptl;
  1468. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1469. if (!pte)
  1470. return -ENOMEM;
  1471. arch_enter_lazy_mmu_mode();
  1472. do {
  1473. BUG_ON(!pte_none(*pte));
  1474. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1475. pfn++;
  1476. } while (pte++, addr += PAGE_SIZE, addr != end);
  1477. arch_leave_lazy_mmu_mode();
  1478. pte_unmap_unlock(pte - 1, ptl);
  1479. return 0;
  1480. }
  1481. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1482. unsigned long addr, unsigned long end,
  1483. unsigned long pfn, pgprot_t prot)
  1484. {
  1485. pmd_t *pmd;
  1486. unsigned long next;
  1487. pfn -= addr >> PAGE_SHIFT;
  1488. pmd = pmd_alloc(mm, pud, addr);
  1489. if (!pmd)
  1490. return -ENOMEM;
  1491. VM_BUG_ON(pmd_trans_huge(*pmd));
  1492. do {
  1493. next = pmd_addr_end(addr, end);
  1494. if (remap_pte_range(mm, pmd, addr, next,
  1495. pfn + (addr >> PAGE_SHIFT), prot))
  1496. return -ENOMEM;
  1497. } while (pmd++, addr = next, addr != end);
  1498. return 0;
  1499. }
  1500. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1501. unsigned long addr, unsigned long end,
  1502. unsigned long pfn, pgprot_t prot)
  1503. {
  1504. pud_t *pud;
  1505. unsigned long next;
  1506. pfn -= addr >> PAGE_SHIFT;
  1507. pud = pud_alloc(mm, pgd, addr);
  1508. if (!pud)
  1509. return -ENOMEM;
  1510. do {
  1511. next = pud_addr_end(addr, end);
  1512. if (remap_pmd_range(mm, pud, addr, next,
  1513. pfn + (addr >> PAGE_SHIFT), prot))
  1514. return -ENOMEM;
  1515. } while (pud++, addr = next, addr != end);
  1516. return 0;
  1517. }
  1518. /**
  1519. * remap_pfn_range - remap kernel memory to userspace
  1520. * @vma: user vma to map to
  1521. * @addr: target user address to start at
  1522. * @pfn: physical address of kernel memory
  1523. * @size: size of map area
  1524. * @prot: page protection flags for this mapping
  1525. *
  1526. * Note: this is only safe if the mm semaphore is held when called.
  1527. */
  1528. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1529. unsigned long pfn, unsigned long size, pgprot_t prot)
  1530. {
  1531. pgd_t *pgd;
  1532. unsigned long next;
  1533. unsigned long end = addr + PAGE_ALIGN(size);
  1534. struct mm_struct *mm = vma->vm_mm;
  1535. int err;
  1536. /*
  1537. * Physically remapped pages are special. Tell the
  1538. * rest of the world about it:
  1539. * VM_IO tells people not to look at these pages
  1540. * (accesses can have side effects).
  1541. * VM_PFNMAP tells the core MM that the base pages are just
  1542. * raw PFN mappings, and do not have a "struct page" associated
  1543. * with them.
  1544. * VM_DONTEXPAND
  1545. * Disable vma merging and expanding with mremap().
  1546. * VM_DONTDUMP
  1547. * Omit vma from core dump, even when VM_IO turned off.
  1548. *
  1549. * There's a horrible special case to handle copy-on-write
  1550. * behaviour that some programs depend on. We mark the "original"
  1551. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1552. * See vm_normal_page() for details.
  1553. */
  1554. if (is_cow_mapping(vma->vm_flags)) {
  1555. if (addr != vma->vm_start || end != vma->vm_end)
  1556. return -EINVAL;
  1557. vma->vm_pgoff = pfn;
  1558. }
  1559. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1560. if (err)
  1561. return -EINVAL;
  1562. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1563. BUG_ON(addr >= end);
  1564. pfn -= addr >> PAGE_SHIFT;
  1565. pgd = pgd_offset(mm, addr);
  1566. flush_cache_range(vma, addr, end);
  1567. do {
  1568. next = pgd_addr_end(addr, end);
  1569. err = remap_pud_range(mm, pgd, addr, next,
  1570. pfn + (addr >> PAGE_SHIFT), prot);
  1571. if (err)
  1572. break;
  1573. } while (pgd++, addr = next, addr != end);
  1574. if (err)
  1575. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1576. return err;
  1577. }
  1578. EXPORT_SYMBOL(remap_pfn_range);
  1579. /**
  1580. * vm_iomap_memory - remap memory to userspace
  1581. * @vma: user vma to map to
  1582. * @start: start of area
  1583. * @len: size of area
  1584. *
  1585. * This is a simplified io_remap_pfn_range() for common driver use. The
  1586. * driver just needs to give us the physical memory range to be mapped,
  1587. * we'll figure out the rest from the vma information.
  1588. *
  1589. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1590. * whatever write-combining details or similar.
  1591. */
  1592. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1593. {
  1594. unsigned long vm_len, pfn, pages;
  1595. /* Check that the physical memory area passed in looks valid */
  1596. if (start + len < start)
  1597. return -EINVAL;
  1598. /*
  1599. * You *really* shouldn't map things that aren't page-aligned,
  1600. * but we've historically allowed it because IO memory might
  1601. * just have smaller alignment.
  1602. */
  1603. len += start & ~PAGE_MASK;
  1604. pfn = start >> PAGE_SHIFT;
  1605. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1606. if (pfn + pages < pfn)
  1607. return -EINVAL;
  1608. /* We start the mapping 'vm_pgoff' pages into the area */
  1609. if (vma->vm_pgoff > pages)
  1610. return -EINVAL;
  1611. pfn += vma->vm_pgoff;
  1612. pages -= vma->vm_pgoff;
  1613. /* Can we fit all of the mapping? */
  1614. vm_len = vma->vm_end - vma->vm_start;
  1615. if (vm_len >> PAGE_SHIFT > pages)
  1616. return -EINVAL;
  1617. /* Ok, let it rip */
  1618. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1619. }
  1620. EXPORT_SYMBOL(vm_iomap_memory);
  1621. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1622. unsigned long addr, unsigned long end,
  1623. pte_fn_t fn, void *data)
  1624. {
  1625. pte_t *pte;
  1626. int err;
  1627. pgtable_t token;
  1628. spinlock_t *uninitialized_var(ptl);
  1629. pte = (mm == &init_mm) ?
  1630. pte_alloc_kernel(pmd, addr) :
  1631. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1632. if (!pte)
  1633. return -ENOMEM;
  1634. BUG_ON(pmd_huge(*pmd));
  1635. arch_enter_lazy_mmu_mode();
  1636. token = pmd_pgtable(*pmd);
  1637. do {
  1638. err = fn(pte++, token, addr, data);
  1639. if (err)
  1640. break;
  1641. } while (addr += PAGE_SIZE, addr != end);
  1642. arch_leave_lazy_mmu_mode();
  1643. if (mm != &init_mm)
  1644. pte_unmap_unlock(pte-1, ptl);
  1645. return err;
  1646. }
  1647. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1648. unsigned long addr, unsigned long end,
  1649. pte_fn_t fn, void *data)
  1650. {
  1651. pmd_t *pmd;
  1652. unsigned long next;
  1653. int err;
  1654. BUG_ON(pud_huge(*pud));
  1655. pmd = pmd_alloc(mm, pud, addr);
  1656. if (!pmd)
  1657. return -ENOMEM;
  1658. do {
  1659. next = pmd_addr_end(addr, end);
  1660. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1661. if (err)
  1662. break;
  1663. } while (pmd++, addr = next, addr != end);
  1664. return err;
  1665. }
  1666. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1667. unsigned long addr, unsigned long end,
  1668. pte_fn_t fn, void *data)
  1669. {
  1670. pud_t *pud;
  1671. unsigned long next;
  1672. int err;
  1673. pud = pud_alloc(mm, pgd, addr);
  1674. if (!pud)
  1675. return -ENOMEM;
  1676. do {
  1677. next = pud_addr_end(addr, end);
  1678. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1679. if (err)
  1680. break;
  1681. } while (pud++, addr = next, addr != end);
  1682. return err;
  1683. }
  1684. /*
  1685. * Scan a region of virtual memory, filling in page tables as necessary
  1686. * and calling a provided function on each leaf page table.
  1687. */
  1688. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1689. unsigned long size, pte_fn_t fn, void *data)
  1690. {
  1691. pgd_t *pgd;
  1692. unsigned long next;
  1693. unsigned long end = addr + size;
  1694. int err;
  1695. BUG_ON(addr >= end);
  1696. pgd = pgd_offset(mm, addr);
  1697. do {
  1698. next = pgd_addr_end(addr, end);
  1699. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1700. if (err)
  1701. break;
  1702. } while (pgd++, addr = next, addr != end);
  1703. return err;
  1704. }
  1705. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1706. /*
  1707. * handle_pte_fault chooses page fault handler according to an entry
  1708. * which was read non-atomically. Before making any commitment, on
  1709. * those architectures or configurations (e.g. i386 with PAE) which
  1710. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1711. * must check under lock before unmapping the pte and proceeding
  1712. * (but do_wp_page is only called after already making such a check;
  1713. * and do_anonymous_page can safely check later on).
  1714. */
  1715. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1716. pte_t *page_table, pte_t orig_pte)
  1717. {
  1718. int same = 1;
  1719. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1720. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1721. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1722. spin_lock(ptl);
  1723. same = pte_same(*page_table, orig_pte);
  1724. spin_unlock(ptl);
  1725. }
  1726. #endif
  1727. pte_unmap(page_table);
  1728. return same;
  1729. }
  1730. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1731. {
  1732. debug_dma_assert_idle(src);
  1733. /*
  1734. * If the source page was a PFN mapping, we don't have
  1735. * a "struct page" for it. We do a best-effort copy by
  1736. * just copying from the original user address. If that
  1737. * fails, we just zero-fill it. Live with it.
  1738. */
  1739. if (unlikely(!src)) {
  1740. void *kaddr = kmap_atomic(dst);
  1741. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1742. /*
  1743. * This really shouldn't fail, because the page is there
  1744. * in the page tables. But it might just be unreadable,
  1745. * in which case we just give up and fill the result with
  1746. * zeroes.
  1747. */
  1748. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1749. clear_page(kaddr);
  1750. kunmap_atomic(kaddr);
  1751. flush_dcache_page(dst);
  1752. } else
  1753. copy_user_highpage(dst, src, va, vma);
  1754. }
  1755. /*
  1756. * Notify the address space that the page is about to become writable so that
  1757. * it can prohibit this or wait for the page to get into an appropriate state.
  1758. *
  1759. * We do this without the lock held, so that it can sleep if it needs to.
  1760. */
  1761. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1762. unsigned long address)
  1763. {
  1764. struct vm_fault vmf;
  1765. int ret;
  1766. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1767. vmf.pgoff = page->index;
  1768. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1769. vmf.page = page;
  1770. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1771. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1772. return ret;
  1773. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1774. lock_page(page);
  1775. if (!page->mapping) {
  1776. unlock_page(page);
  1777. return 0; /* retry */
  1778. }
  1779. ret |= VM_FAULT_LOCKED;
  1780. } else
  1781. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1782. return ret;
  1783. }
  1784. /*
  1785. * This routine handles present pages, when users try to write
  1786. * to a shared page. It is done by copying the page to a new address
  1787. * and decrementing the shared-page counter for the old page.
  1788. *
  1789. * Note that this routine assumes that the protection checks have been
  1790. * done by the caller (the low-level page fault routine in most cases).
  1791. * Thus we can safely just mark it writable once we've done any necessary
  1792. * COW.
  1793. *
  1794. * We also mark the page dirty at this point even though the page will
  1795. * change only once the write actually happens. This avoids a few races,
  1796. * and potentially makes it more efficient.
  1797. *
  1798. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1799. * but allow concurrent faults), with pte both mapped and locked.
  1800. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1801. */
  1802. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1803. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1804. spinlock_t *ptl, pte_t orig_pte)
  1805. __releases(ptl)
  1806. {
  1807. struct page *old_page, *new_page = NULL;
  1808. pte_t entry;
  1809. int ret = 0;
  1810. int page_mkwrite = 0;
  1811. struct page *dirty_page = NULL;
  1812. unsigned long mmun_start = 0; /* For mmu_notifiers */
  1813. unsigned long mmun_end = 0; /* For mmu_notifiers */
  1814. struct mem_cgroup *memcg;
  1815. old_page = vm_normal_page(vma, address, orig_pte);
  1816. if (!old_page) {
  1817. /*
  1818. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  1819. * VM_PFNMAP VMA.
  1820. *
  1821. * We should not cow pages in a shared writeable mapping.
  1822. * Just mark the pages writable as we can't do any dirty
  1823. * accounting on raw pfn maps.
  1824. */
  1825. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1826. (VM_WRITE|VM_SHARED))
  1827. goto reuse;
  1828. goto gotten;
  1829. }
  1830. /*
  1831. * Take out anonymous pages first, anonymous shared vmas are
  1832. * not dirty accountable.
  1833. */
  1834. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1835. if (!trylock_page(old_page)) {
  1836. page_cache_get(old_page);
  1837. pte_unmap_unlock(page_table, ptl);
  1838. lock_page(old_page);
  1839. page_table = pte_offset_map_lock(mm, pmd, address,
  1840. &ptl);
  1841. if (!pte_same(*page_table, orig_pte)) {
  1842. unlock_page(old_page);
  1843. goto unlock;
  1844. }
  1845. page_cache_release(old_page);
  1846. }
  1847. if (reuse_swap_page(old_page)) {
  1848. /*
  1849. * The page is all ours. Move it to our anon_vma so
  1850. * the rmap code will not search our parent or siblings.
  1851. * Protected against the rmap code by the page lock.
  1852. */
  1853. page_move_anon_rmap(old_page, vma, address);
  1854. unlock_page(old_page);
  1855. goto reuse;
  1856. }
  1857. unlock_page(old_page);
  1858. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1859. (VM_WRITE|VM_SHARED))) {
  1860. /*
  1861. * Only catch write-faults on shared writable pages,
  1862. * read-only shared pages can get COWed by
  1863. * get_user_pages(.write=1, .force=1).
  1864. */
  1865. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1866. int tmp;
  1867. page_cache_get(old_page);
  1868. pte_unmap_unlock(page_table, ptl);
  1869. tmp = do_page_mkwrite(vma, old_page, address);
  1870. if (unlikely(!tmp || (tmp &
  1871. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1872. page_cache_release(old_page);
  1873. return tmp;
  1874. }
  1875. /*
  1876. * Since we dropped the lock we need to revalidate
  1877. * the PTE as someone else may have changed it. If
  1878. * they did, we just return, as we can count on the
  1879. * MMU to tell us if they didn't also make it writable.
  1880. */
  1881. page_table = pte_offset_map_lock(mm, pmd, address,
  1882. &ptl);
  1883. if (!pte_same(*page_table, orig_pte)) {
  1884. unlock_page(old_page);
  1885. goto unlock;
  1886. }
  1887. page_mkwrite = 1;
  1888. }
  1889. dirty_page = old_page;
  1890. get_page(dirty_page);
  1891. reuse:
  1892. /*
  1893. * Clear the pages cpupid information as the existing
  1894. * information potentially belongs to a now completely
  1895. * unrelated process.
  1896. */
  1897. if (old_page)
  1898. page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
  1899. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1900. entry = pte_mkyoung(orig_pte);
  1901. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1902. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1903. update_mmu_cache(vma, address, page_table);
  1904. pte_unmap_unlock(page_table, ptl);
  1905. ret |= VM_FAULT_WRITE;
  1906. if (!dirty_page)
  1907. return ret;
  1908. /*
  1909. * Yes, Virginia, this is actually required to prevent a race
  1910. * with clear_page_dirty_for_io() from clearing the page dirty
  1911. * bit after it clear all dirty ptes, but before a racing
  1912. * do_wp_page installs a dirty pte.
  1913. *
  1914. * do_shared_fault is protected similarly.
  1915. */
  1916. if (!page_mkwrite) {
  1917. wait_on_page_locked(dirty_page);
  1918. set_page_dirty_balance(dirty_page);
  1919. /* file_update_time outside page_lock */
  1920. if (vma->vm_file)
  1921. file_update_time(vma->vm_file);
  1922. }
  1923. put_page(dirty_page);
  1924. if (page_mkwrite) {
  1925. struct address_space *mapping = dirty_page->mapping;
  1926. set_page_dirty(dirty_page);
  1927. unlock_page(dirty_page);
  1928. page_cache_release(dirty_page);
  1929. if (mapping) {
  1930. /*
  1931. * Some device drivers do not set page.mapping
  1932. * but still dirty their pages
  1933. */
  1934. balance_dirty_pages_ratelimited(mapping);
  1935. }
  1936. }
  1937. return ret;
  1938. }
  1939. /*
  1940. * Ok, we need to copy. Oh, well..
  1941. */
  1942. page_cache_get(old_page);
  1943. gotten:
  1944. pte_unmap_unlock(page_table, ptl);
  1945. if (unlikely(anon_vma_prepare(vma)))
  1946. goto oom;
  1947. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1948. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1949. if (!new_page)
  1950. goto oom;
  1951. } else {
  1952. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1953. if (!new_page)
  1954. goto oom;
  1955. cow_user_page(new_page, old_page, address, vma);
  1956. }
  1957. __SetPageUptodate(new_page);
  1958. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
  1959. goto oom_free_new;
  1960. mmun_start = address & PAGE_MASK;
  1961. mmun_end = mmun_start + PAGE_SIZE;
  1962. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1963. /*
  1964. * Re-check the pte - we dropped the lock
  1965. */
  1966. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1967. if (likely(pte_same(*page_table, orig_pte))) {
  1968. if (old_page) {
  1969. if (!PageAnon(old_page)) {
  1970. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1971. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1972. }
  1973. } else
  1974. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1975. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1976. entry = mk_pte(new_page, vma->vm_page_prot);
  1977. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1978. /*
  1979. * Clear the pte entry and flush it first, before updating the
  1980. * pte with the new entry. This will avoid a race condition
  1981. * seen in the presence of one thread doing SMC and another
  1982. * thread doing COW.
  1983. */
  1984. ptep_clear_flush(vma, address, page_table);
  1985. page_add_new_anon_rmap(new_page, vma, address);
  1986. mem_cgroup_commit_charge(new_page, memcg, false);
  1987. lru_cache_add_active_or_unevictable(new_page, vma);
  1988. /*
  1989. * We call the notify macro here because, when using secondary
  1990. * mmu page tables (such as kvm shadow page tables), we want the
  1991. * new page to be mapped directly into the secondary page table.
  1992. */
  1993. set_pte_at_notify(mm, address, page_table, entry);
  1994. update_mmu_cache(vma, address, page_table);
  1995. if (old_page) {
  1996. /*
  1997. * Only after switching the pte to the new page may
  1998. * we remove the mapcount here. Otherwise another
  1999. * process may come and find the rmap count decremented
  2000. * before the pte is switched to the new page, and
  2001. * "reuse" the old page writing into it while our pte
  2002. * here still points into it and can be read by other
  2003. * threads.
  2004. *
  2005. * The critical issue is to order this
  2006. * page_remove_rmap with the ptp_clear_flush above.
  2007. * Those stores are ordered by (if nothing else,)
  2008. * the barrier present in the atomic_add_negative
  2009. * in page_remove_rmap.
  2010. *
  2011. * Then the TLB flush in ptep_clear_flush ensures that
  2012. * no process can access the old page before the
  2013. * decremented mapcount is visible. And the old page
  2014. * cannot be reused until after the decremented
  2015. * mapcount is visible. So transitively, TLBs to
  2016. * old page will be flushed before it can be reused.
  2017. */
  2018. page_remove_rmap(old_page);
  2019. }
  2020. /* Free the old page.. */
  2021. new_page = old_page;
  2022. ret |= VM_FAULT_WRITE;
  2023. } else
  2024. mem_cgroup_cancel_charge(new_page, memcg);
  2025. if (new_page)
  2026. page_cache_release(new_page);
  2027. unlock:
  2028. pte_unmap_unlock(page_table, ptl);
  2029. if (mmun_end > mmun_start)
  2030. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2031. if (old_page) {
  2032. /*
  2033. * Don't let another task, with possibly unlocked vma,
  2034. * keep the mlocked page.
  2035. */
  2036. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2037. lock_page(old_page); /* LRU manipulation */
  2038. munlock_vma_page(old_page);
  2039. unlock_page(old_page);
  2040. }
  2041. page_cache_release(old_page);
  2042. }
  2043. return ret;
  2044. oom_free_new:
  2045. page_cache_release(new_page);
  2046. oom:
  2047. if (old_page)
  2048. page_cache_release(old_page);
  2049. return VM_FAULT_OOM;
  2050. }
  2051. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2052. unsigned long start_addr, unsigned long end_addr,
  2053. struct zap_details *details)
  2054. {
  2055. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2056. }
  2057. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2058. struct zap_details *details)
  2059. {
  2060. struct vm_area_struct *vma;
  2061. pgoff_t vba, vea, zba, zea;
  2062. vma_interval_tree_foreach(vma, root,
  2063. details->first_index, details->last_index) {
  2064. vba = vma->vm_pgoff;
  2065. vea = vba + vma_pages(vma) - 1;
  2066. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2067. zba = details->first_index;
  2068. if (zba < vba)
  2069. zba = vba;
  2070. zea = details->last_index;
  2071. if (zea > vea)
  2072. zea = vea;
  2073. unmap_mapping_range_vma(vma,
  2074. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2075. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2076. details);
  2077. }
  2078. }
  2079. static inline void unmap_mapping_range_list(struct list_head *head,
  2080. struct zap_details *details)
  2081. {
  2082. struct vm_area_struct *vma;
  2083. /*
  2084. * In nonlinear VMAs there is no correspondence between virtual address
  2085. * offset and file offset. So we must perform an exhaustive search
  2086. * across *all* the pages in each nonlinear VMA, not just the pages
  2087. * whose virtual address lies outside the file truncation point.
  2088. */
  2089. list_for_each_entry(vma, head, shared.nonlinear) {
  2090. details->nonlinear_vma = vma;
  2091. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2092. }
  2093. }
  2094. /**
  2095. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2096. * @mapping: the address space containing mmaps to be unmapped.
  2097. * @holebegin: byte in first page to unmap, relative to the start of
  2098. * the underlying file. This will be rounded down to a PAGE_SIZE
  2099. * boundary. Note that this is different from truncate_pagecache(), which
  2100. * must keep the partial page. In contrast, we must get rid of
  2101. * partial pages.
  2102. * @holelen: size of prospective hole in bytes. This will be rounded
  2103. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2104. * end of the file.
  2105. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2106. * but 0 when invalidating pagecache, don't throw away private data.
  2107. */
  2108. void unmap_mapping_range(struct address_space *mapping,
  2109. loff_t const holebegin, loff_t const holelen, int even_cows)
  2110. {
  2111. struct zap_details details;
  2112. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2113. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2114. /* Check for overflow. */
  2115. if (sizeof(holelen) > sizeof(hlen)) {
  2116. long long holeend =
  2117. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2118. if (holeend & ~(long long)ULONG_MAX)
  2119. hlen = ULONG_MAX - hba + 1;
  2120. }
  2121. details.check_mapping = even_cows? NULL: mapping;
  2122. details.nonlinear_vma = NULL;
  2123. details.first_index = hba;
  2124. details.last_index = hba + hlen - 1;
  2125. if (details.last_index < details.first_index)
  2126. details.last_index = ULONG_MAX;
  2127. mutex_lock(&mapping->i_mmap_mutex);
  2128. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2129. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2130. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2131. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2132. mutex_unlock(&mapping->i_mmap_mutex);
  2133. }
  2134. EXPORT_SYMBOL(unmap_mapping_range);
  2135. /*
  2136. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2137. * but allow concurrent faults), and pte mapped but not yet locked.
  2138. * We return with pte unmapped and unlocked.
  2139. *
  2140. * We return with the mmap_sem locked or unlocked in the same cases
  2141. * as does filemap_fault().
  2142. */
  2143. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2144. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2145. unsigned int flags, pte_t orig_pte)
  2146. {
  2147. spinlock_t *ptl;
  2148. struct page *page, *swapcache;
  2149. struct mem_cgroup *memcg;
  2150. swp_entry_t entry;
  2151. pte_t pte;
  2152. int locked;
  2153. int exclusive = 0;
  2154. int ret = 0;
  2155. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2156. goto out;
  2157. entry = pte_to_swp_entry(orig_pte);
  2158. if (unlikely(non_swap_entry(entry))) {
  2159. if (is_migration_entry(entry)) {
  2160. migration_entry_wait(mm, pmd, address);
  2161. } else if (is_hwpoison_entry(entry)) {
  2162. ret = VM_FAULT_HWPOISON;
  2163. } else {
  2164. print_bad_pte(vma, address, orig_pte, NULL);
  2165. ret = VM_FAULT_SIGBUS;
  2166. }
  2167. goto out;
  2168. }
  2169. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2170. page = lookup_swap_cache(entry);
  2171. if (!page) {
  2172. page = swapin_readahead(entry,
  2173. GFP_HIGHUSER_MOVABLE, vma, address);
  2174. if (!page) {
  2175. /*
  2176. * Back out if somebody else faulted in this pte
  2177. * while we released the pte lock.
  2178. */
  2179. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2180. if (likely(pte_same(*page_table, orig_pte)))
  2181. ret = VM_FAULT_OOM;
  2182. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2183. goto unlock;
  2184. }
  2185. /* Had to read the page from swap area: Major fault */
  2186. ret = VM_FAULT_MAJOR;
  2187. count_vm_event(PGMAJFAULT);
  2188. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2189. } else if (PageHWPoison(page)) {
  2190. /*
  2191. * hwpoisoned dirty swapcache pages are kept for killing
  2192. * owner processes (which may be unknown at hwpoison time)
  2193. */
  2194. ret = VM_FAULT_HWPOISON;
  2195. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2196. swapcache = page;
  2197. goto out_release;
  2198. }
  2199. swapcache = page;
  2200. locked = lock_page_or_retry(page, mm, flags);
  2201. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2202. if (!locked) {
  2203. ret |= VM_FAULT_RETRY;
  2204. goto out_release;
  2205. }
  2206. /*
  2207. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2208. * release the swapcache from under us. The page pin, and pte_same
  2209. * test below, are not enough to exclude that. Even if it is still
  2210. * swapcache, we need to check that the page's swap has not changed.
  2211. */
  2212. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2213. goto out_page;
  2214. page = ksm_might_need_to_copy(page, vma, address);
  2215. if (unlikely(!page)) {
  2216. ret = VM_FAULT_OOM;
  2217. page = swapcache;
  2218. goto out_page;
  2219. }
  2220. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
  2221. ret = VM_FAULT_OOM;
  2222. goto out_page;
  2223. }
  2224. /*
  2225. * Back out if somebody else already faulted in this pte.
  2226. */
  2227. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2228. if (unlikely(!pte_same(*page_table, orig_pte)))
  2229. goto out_nomap;
  2230. if (unlikely(!PageUptodate(page))) {
  2231. ret = VM_FAULT_SIGBUS;
  2232. goto out_nomap;
  2233. }
  2234. /*
  2235. * The page isn't present yet, go ahead with the fault.
  2236. *
  2237. * Be careful about the sequence of operations here.
  2238. * To get its accounting right, reuse_swap_page() must be called
  2239. * while the page is counted on swap but not yet in mapcount i.e.
  2240. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2241. * must be called after the swap_free(), or it will never succeed.
  2242. */
  2243. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2244. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2245. pte = mk_pte(page, vma->vm_page_prot);
  2246. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2247. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2248. flags &= ~FAULT_FLAG_WRITE;
  2249. ret |= VM_FAULT_WRITE;
  2250. exclusive = 1;
  2251. }
  2252. flush_icache_page(vma, page);
  2253. if (pte_swp_soft_dirty(orig_pte))
  2254. pte = pte_mksoft_dirty(pte);
  2255. set_pte_at(mm, address, page_table, pte);
  2256. if (page == swapcache) {
  2257. do_page_add_anon_rmap(page, vma, address, exclusive);
  2258. mem_cgroup_commit_charge(page, memcg, true);
  2259. } else { /* ksm created a completely new copy */
  2260. page_add_new_anon_rmap(page, vma, address);
  2261. mem_cgroup_commit_charge(page, memcg, false);
  2262. lru_cache_add_active_or_unevictable(page, vma);
  2263. }
  2264. swap_free(entry);
  2265. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2266. try_to_free_swap(page);
  2267. unlock_page(page);
  2268. if (page != swapcache) {
  2269. /*
  2270. * Hold the lock to avoid the swap entry to be reused
  2271. * until we take the PT lock for the pte_same() check
  2272. * (to avoid false positives from pte_same). For
  2273. * further safety release the lock after the swap_free
  2274. * so that the swap count won't change under a
  2275. * parallel locked swapcache.
  2276. */
  2277. unlock_page(swapcache);
  2278. page_cache_release(swapcache);
  2279. }
  2280. if (flags & FAULT_FLAG_WRITE) {
  2281. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2282. if (ret & VM_FAULT_ERROR)
  2283. ret &= VM_FAULT_ERROR;
  2284. goto out;
  2285. }
  2286. /* No need to invalidate - it was non-present before */
  2287. update_mmu_cache(vma, address, page_table);
  2288. unlock:
  2289. pte_unmap_unlock(page_table, ptl);
  2290. out:
  2291. return ret;
  2292. out_nomap:
  2293. mem_cgroup_cancel_charge(page, memcg);
  2294. pte_unmap_unlock(page_table, ptl);
  2295. out_page:
  2296. unlock_page(page);
  2297. out_release:
  2298. page_cache_release(page);
  2299. if (page != swapcache) {
  2300. unlock_page(swapcache);
  2301. page_cache_release(swapcache);
  2302. }
  2303. return ret;
  2304. }
  2305. /*
  2306. * This is like a special single-page "expand_{down|up}wards()",
  2307. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2308. * doesn't hit another vma.
  2309. */
  2310. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2311. {
  2312. address &= PAGE_MASK;
  2313. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2314. struct vm_area_struct *prev = vma->vm_prev;
  2315. /*
  2316. * Is there a mapping abutting this one below?
  2317. *
  2318. * That's only ok if it's the same stack mapping
  2319. * that has gotten split..
  2320. */
  2321. if (prev && prev->vm_end == address)
  2322. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2323. expand_downwards(vma, address - PAGE_SIZE);
  2324. }
  2325. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2326. struct vm_area_struct *next = vma->vm_next;
  2327. /* As VM_GROWSDOWN but s/below/above/ */
  2328. if (next && next->vm_start == address + PAGE_SIZE)
  2329. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2330. expand_upwards(vma, address + PAGE_SIZE);
  2331. }
  2332. return 0;
  2333. }
  2334. /*
  2335. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2336. * but allow concurrent faults), and pte mapped but not yet locked.
  2337. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2338. */
  2339. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2340. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2341. unsigned int flags)
  2342. {
  2343. struct mem_cgroup *memcg;
  2344. struct page *page;
  2345. spinlock_t *ptl;
  2346. pte_t entry;
  2347. pte_unmap(page_table);
  2348. /* Check if we need to add a guard page to the stack */
  2349. if (check_stack_guard_page(vma, address) < 0)
  2350. return VM_FAULT_SIGBUS;
  2351. /* Use the zero-page for reads */
  2352. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
  2353. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2354. vma->vm_page_prot));
  2355. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2356. if (!pte_none(*page_table))
  2357. goto unlock;
  2358. goto setpte;
  2359. }
  2360. /* Allocate our own private page. */
  2361. if (unlikely(anon_vma_prepare(vma)))
  2362. goto oom;
  2363. page = alloc_zeroed_user_highpage_movable(vma, address);
  2364. if (!page)
  2365. goto oom;
  2366. /*
  2367. * The memory barrier inside __SetPageUptodate makes sure that
  2368. * preceeding stores to the page contents become visible before
  2369. * the set_pte_at() write.
  2370. */
  2371. __SetPageUptodate(page);
  2372. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
  2373. goto oom_free_page;
  2374. entry = mk_pte(page, vma->vm_page_prot);
  2375. if (vma->vm_flags & VM_WRITE)
  2376. entry = pte_mkwrite(pte_mkdirty(entry));
  2377. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2378. if (!pte_none(*page_table))
  2379. goto release;
  2380. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2381. page_add_new_anon_rmap(page, vma, address);
  2382. mem_cgroup_commit_charge(page, memcg, false);
  2383. lru_cache_add_active_or_unevictable(page, vma);
  2384. setpte:
  2385. set_pte_at(mm, address, page_table, entry);
  2386. /* No need to invalidate - it was non-present before */
  2387. update_mmu_cache(vma, address, page_table);
  2388. unlock:
  2389. pte_unmap_unlock(page_table, ptl);
  2390. return 0;
  2391. release:
  2392. mem_cgroup_cancel_charge(page, memcg);
  2393. page_cache_release(page);
  2394. goto unlock;
  2395. oom_free_page:
  2396. page_cache_release(page);
  2397. oom:
  2398. return VM_FAULT_OOM;
  2399. }
  2400. /*
  2401. * The mmap_sem must have been held on entry, and may have been
  2402. * released depending on flags and vma->vm_ops->fault() return value.
  2403. * See filemap_fault() and __lock_page_retry().
  2404. */
  2405. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2406. pgoff_t pgoff, unsigned int flags, struct page **page)
  2407. {
  2408. struct vm_fault vmf;
  2409. int ret;
  2410. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2411. vmf.pgoff = pgoff;
  2412. vmf.flags = flags;
  2413. vmf.page = NULL;
  2414. ret = vma->vm_ops->fault(vma, &vmf);
  2415. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2416. return ret;
  2417. if (unlikely(PageHWPoison(vmf.page))) {
  2418. if (ret & VM_FAULT_LOCKED)
  2419. unlock_page(vmf.page);
  2420. page_cache_release(vmf.page);
  2421. return VM_FAULT_HWPOISON;
  2422. }
  2423. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2424. lock_page(vmf.page);
  2425. else
  2426. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2427. *page = vmf.page;
  2428. return ret;
  2429. }
  2430. /**
  2431. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2432. *
  2433. * @vma: virtual memory area
  2434. * @address: user virtual address
  2435. * @page: page to map
  2436. * @pte: pointer to target page table entry
  2437. * @write: true, if new entry is writable
  2438. * @anon: true, if it's anonymous page
  2439. *
  2440. * Caller must hold page table lock relevant for @pte.
  2441. *
  2442. * Target users are page handler itself and implementations of
  2443. * vm_ops->map_pages.
  2444. */
  2445. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2446. struct page *page, pte_t *pte, bool write, bool anon)
  2447. {
  2448. pte_t entry;
  2449. flush_icache_page(vma, page);
  2450. entry = mk_pte(page, vma->vm_page_prot);
  2451. if (write)
  2452. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2453. else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
  2454. entry = pte_mksoft_dirty(entry);
  2455. if (anon) {
  2456. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2457. page_add_new_anon_rmap(page, vma, address);
  2458. } else {
  2459. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2460. page_add_file_rmap(page);
  2461. }
  2462. set_pte_at(vma->vm_mm, address, pte, entry);
  2463. /* no need to invalidate: a not-present page won't be cached */
  2464. update_mmu_cache(vma, address, pte);
  2465. }
  2466. static unsigned long fault_around_bytes __read_mostly =
  2467. rounddown_pow_of_two(65536);
  2468. #ifdef CONFIG_DEBUG_FS
  2469. static int fault_around_bytes_get(void *data, u64 *val)
  2470. {
  2471. *val = fault_around_bytes;
  2472. return 0;
  2473. }
  2474. /*
  2475. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2476. * rounded down to nearest page order. It's what do_fault_around() expects to
  2477. * see.
  2478. */
  2479. static int fault_around_bytes_set(void *data, u64 val)
  2480. {
  2481. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2482. return -EINVAL;
  2483. if (val > PAGE_SIZE)
  2484. fault_around_bytes = rounddown_pow_of_two(val);
  2485. else
  2486. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2487. return 0;
  2488. }
  2489. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2490. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2491. static int __init fault_around_debugfs(void)
  2492. {
  2493. void *ret;
  2494. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2495. &fault_around_bytes_fops);
  2496. if (!ret)
  2497. pr_warn("Failed to create fault_around_bytes in debugfs");
  2498. return 0;
  2499. }
  2500. late_initcall(fault_around_debugfs);
  2501. #endif
  2502. /*
  2503. * do_fault_around() tries to map few pages around the fault address. The hope
  2504. * is that the pages will be needed soon and this will lower the number of
  2505. * faults to handle.
  2506. *
  2507. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2508. * not ready to be mapped: not up-to-date, locked, etc.
  2509. *
  2510. * This function is called with the page table lock taken. In the split ptlock
  2511. * case the page table lock only protects only those entries which belong to
  2512. * the page table corresponding to the fault address.
  2513. *
  2514. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2515. * only once.
  2516. *
  2517. * fault_around_pages() defines how many pages we'll try to map.
  2518. * do_fault_around() expects it to return a power of two less than or equal to
  2519. * PTRS_PER_PTE.
  2520. *
  2521. * The virtual address of the area that we map is naturally aligned to the
  2522. * fault_around_pages() value (and therefore to page order). This way it's
  2523. * easier to guarantee that we don't cross page table boundaries.
  2524. */
  2525. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2526. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2527. {
  2528. unsigned long start_addr, nr_pages, mask;
  2529. pgoff_t max_pgoff;
  2530. struct vm_fault vmf;
  2531. int off;
  2532. nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2533. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2534. start_addr = max(address & mask, vma->vm_start);
  2535. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2536. pte -= off;
  2537. pgoff -= off;
  2538. /*
  2539. * max_pgoff is either end of page table or end of vma
  2540. * or fault_around_pages() from pgoff, depending what is nearest.
  2541. */
  2542. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2543. PTRS_PER_PTE - 1;
  2544. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2545. pgoff + nr_pages - 1);
  2546. /* Check if it makes any sense to call ->map_pages */
  2547. while (!pte_none(*pte)) {
  2548. if (++pgoff > max_pgoff)
  2549. return;
  2550. start_addr += PAGE_SIZE;
  2551. if (start_addr >= vma->vm_end)
  2552. return;
  2553. pte++;
  2554. }
  2555. vmf.virtual_address = (void __user *) start_addr;
  2556. vmf.pte = pte;
  2557. vmf.pgoff = pgoff;
  2558. vmf.max_pgoff = max_pgoff;
  2559. vmf.flags = flags;
  2560. vma->vm_ops->map_pages(vma, &vmf);
  2561. }
  2562. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2563. unsigned long address, pmd_t *pmd,
  2564. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2565. {
  2566. struct page *fault_page;
  2567. spinlock_t *ptl;
  2568. pte_t *pte;
  2569. int ret = 0;
  2570. /*
  2571. * Let's call ->map_pages() first and use ->fault() as fallback
  2572. * if page by the offset is not ready to be mapped (cold cache or
  2573. * something).
  2574. */
  2575. if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
  2576. fault_around_bytes >> PAGE_SHIFT > 1) {
  2577. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2578. do_fault_around(vma, address, pte, pgoff, flags);
  2579. if (!pte_same(*pte, orig_pte))
  2580. goto unlock_out;
  2581. pte_unmap_unlock(pte, ptl);
  2582. }
  2583. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2584. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2585. return ret;
  2586. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2587. if (unlikely(!pte_same(*pte, orig_pte))) {
  2588. pte_unmap_unlock(pte, ptl);
  2589. unlock_page(fault_page);
  2590. page_cache_release(fault_page);
  2591. return ret;
  2592. }
  2593. do_set_pte(vma, address, fault_page, pte, false, false);
  2594. unlock_page(fault_page);
  2595. unlock_out:
  2596. pte_unmap_unlock(pte, ptl);
  2597. return ret;
  2598. }
  2599. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2600. unsigned long address, pmd_t *pmd,
  2601. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2602. {
  2603. struct page *fault_page, *new_page;
  2604. struct mem_cgroup *memcg;
  2605. spinlock_t *ptl;
  2606. pte_t *pte;
  2607. int ret;
  2608. if (unlikely(anon_vma_prepare(vma)))
  2609. return VM_FAULT_OOM;
  2610. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2611. if (!new_page)
  2612. return VM_FAULT_OOM;
  2613. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
  2614. page_cache_release(new_page);
  2615. return VM_FAULT_OOM;
  2616. }
  2617. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2618. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2619. goto uncharge_out;
  2620. copy_user_highpage(new_page, fault_page, address, vma);
  2621. __SetPageUptodate(new_page);
  2622. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2623. if (unlikely(!pte_same(*pte, orig_pte))) {
  2624. pte_unmap_unlock(pte, ptl);
  2625. unlock_page(fault_page);
  2626. page_cache_release(fault_page);
  2627. goto uncharge_out;
  2628. }
  2629. do_set_pte(vma, address, new_page, pte, true, true);
  2630. mem_cgroup_commit_charge(new_page, memcg, false);
  2631. lru_cache_add_active_or_unevictable(new_page, vma);
  2632. pte_unmap_unlock(pte, ptl);
  2633. unlock_page(fault_page);
  2634. page_cache_release(fault_page);
  2635. return ret;
  2636. uncharge_out:
  2637. mem_cgroup_cancel_charge(new_page, memcg);
  2638. page_cache_release(new_page);
  2639. return ret;
  2640. }
  2641. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2642. unsigned long address, pmd_t *pmd,
  2643. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2644. {
  2645. struct page *fault_page;
  2646. struct address_space *mapping;
  2647. spinlock_t *ptl;
  2648. pte_t *pte;
  2649. int dirtied = 0;
  2650. int ret, tmp;
  2651. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2652. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2653. return ret;
  2654. /*
  2655. * Check if the backing address space wants to know that the page is
  2656. * about to become writable
  2657. */
  2658. if (vma->vm_ops->page_mkwrite) {
  2659. unlock_page(fault_page);
  2660. tmp = do_page_mkwrite(vma, fault_page, address);
  2661. if (unlikely(!tmp ||
  2662. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2663. page_cache_release(fault_page);
  2664. return tmp;
  2665. }
  2666. }
  2667. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2668. if (unlikely(!pte_same(*pte, orig_pte))) {
  2669. pte_unmap_unlock(pte, ptl);
  2670. unlock_page(fault_page);
  2671. page_cache_release(fault_page);
  2672. return ret;
  2673. }
  2674. do_set_pte(vma, address, fault_page, pte, true, false);
  2675. pte_unmap_unlock(pte, ptl);
  2676. if (set_page_dirty(fault_page))
  2677. dirtied = 1;
  2678. mapping = fault_page->mapping;
  2679. unlock_page(fault_page);
  2680. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2681. /*
  2682. * Some device drivers do not set page.mapping but still
  2683. * dirty their pages
  2684. */
  2685. balance_dirty_pages_ratelimited(mapping);
  2686. }
  2687. /* file_update_time outside page_lock */
  2688. if (vma->vm_file && !vma->vm_ops->page_mkwrite)
  2689. file_update_time(vma->vm_file);
  2690. return ret;
  2691. }
  2692. /*
  2693. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2694. * but allow concurrent faults).
  2695. * The mmap_sem may have been released depending on flags and our
  2696. * return value. See filemap_fault() and __lock_page_or_retry().
  2697. */
  2698. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2699. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2700. unsigned int flags, pte_t orig_pte)
  2701. {
  2702. pgoff_t pgoff = (((address & PAGE_MASK)
  2703. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2704. pte_unmap(page_table);
  2705. if (!(flags & FAULT_FLAG_WRITE))
  2706. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2707. orig_pte);
  2708. if (!(vma->vm_flags & VM_SHARED))
  2709. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2710. orig_pte);
  2711. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2712. }
  2713. /*
  2714. * Fault of a previously existing named mapping. Repopulate the pte
  2715. * from the encoded file_pte if possible. This enables swappable
  2716. * nonlinear vmas.
  2717. *
  2718. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2719. * but allow concurrent faults), and pte mapped but not yet locked.
  2720. * We return with pte unmapped and unlocked.
  2721. * The mmap_sem may have been released depending on flags and our
  2722. * return value. See filemap_fault() and __lock_page_or_retry().
  2723. */
  2724. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2725. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2726. unsigned int flags, pte_t orig_pte)
  2727. {
  2728. pgoff_t pgoff;
  2729. flags |= FAULT_FLAG_NONLINEAR;
  2730. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2731. return 0;
  2732. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2733. /*
  2734. * Page table corrupted: show pte and kill process.
  2735. */
  2736. print_bad_pte(vma, address, orig_pte, NULL);
  2737. return VM_FAULT_SIGBUS;
  2738. }
  2739. pgoff = pte_to_pgoff(orig_pte);
  2740. if (!(flags & FAULT_FLAG_WRITE))
  2741. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2742. orig_pte);
  2743. if (!(vma->vm_flags & VM_SHARED))
  2744. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2745. orig_pte);
  2746. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2747. }
  2748. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2749. unsigned long addr, int page_nid,
  2750. int *flags)
  2751. {
  2752. get_page(page);
  2753. count_vm_numa_event(NUMA_HINT_FAULTS);
  2754. if (page_nid == numa_node_id()) {
  2755. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2756. *flags |= TNF_FAULT_LOCAL;
  2757. }
  2758. return mpol_misplaced(page, vma, addr);
  2759. }
  2760. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2761. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2762. {
  2763. struct page *page = NULL;
  2764. spinlock_t *ptl;
  2765. int page_nid = -1;
  2766. int last_cpupid;
  2767. int target_nid;
  2768. bool migrated = false;
  2769. int flags = 0;
  2770. /*
  2771. * The "pte" at this point cannot be used safely without
  2772. * validation through pte_unmap_same(). It's of NUMA type but
  2773. * the pfn may be screwed if the read is non atomic.
  2774. *
  2775. * ptep_modify_prot_start is not called as this is clearing
  2776. * the _PAGE_NUMA bit and it is not really expected that there
  2777. * would be concurrent hardware modifications to the PTE.
  2778. */
  2779. ptl = pte_lockptr(mm, pmd);
  2780. spin_lock(ptl);
  2781. if (unlikely(!pte_same(*ptep, pte))) {
  2782. pte_unmap_unlock(ptep, ptl);
  2783. goto out;
  2784. }
  2785. pte = pte_mknonnuma(pte);
  2786. set_pte_at(mm, addr, ptep, pte);
  2787. update_mmu_cache(vma, addr, ptep);
  2788. page = vm_normal_page(vma, addr, pte);
  2789. if (!page) {
  2790. pte_unmap_unlock(ptep, ptl);
  2791. return 0;
  2792. }
  2793. BUG_ON(is_zero_pfn(page_to_pfn(page)));
  2794. /*
  2795. * Avoid grouping on DSO/COW pages in specific and RO pages
  2796. * in general, RO pages shouldn't hurt as much anyway since
  2797. * they can be in shared cache state.
  2798. */
  2799. if (!pte_write(pte))
  2800. flags |= TNF_NO_GROUP;
  2801. /*
  2802. * Flag if the page is shared between multiple address spaces. This
  2803. * is later used when determining whether to group tasks together
  2804. */
  2805. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2806. flags |= TNF_SHARED;
  2807. last_cpupid = page_cpupid_last(page);
  2808. page_nid = page_to_nid(page);
  2809. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2810. pte_unmap_unlock(ptep, ptl);
  2811. if (target_nid == -1) {
  2812. put_page(page);
  2813. goto out;
  2814. }
  2815. /* Migrate to the requested node */
  2816. migrated = migrate_misplaced_page(page, vma, target_nid);
  2817. if (migrated) {
  2818. page_nid = target_nid;
  2819. flags |= TNF_MIGRATED;
  2820. }
  2821. out:
  2822. if (page_nid != -1)
  2823. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2824. return 0;
  2825. }
  2826. /*
  2827. * These routines also need to handle stuff like marking pages dirty
  2828. * and/or accessed for architectures that don't do it in hardware (most
  2829. * RISC architectures). The early dirtying is also good on the i386.
  2830. *
  2831. * There is also a hook called "update_mmu_cache()" that architectures
  2832. * with external mmu caches can use to update those (ie the Sparc or
  2833. * PowerPC hashed page tables that act as extended TLBs).
  2834. *
  2835. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2836. * but allow concurrent faults), and pte mapped but not yet locked.
  2837. * We return with pte unmapped and unlocked.
  2838. *
  2839. * The mmap_sem may have been released depending on flags and our
  2840. * return value. See filemap_fault() and __lock_page_or_retry().
  2841. */
  2842. static int handle_pte_fault(struct mm_struct *mm,
  2843. struct vm_area_struct *vma, unsigned long address,
  2844. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2845. {
  2846. pte_t entry;
  2847. spinlock_t *ptl;
  2848. entry = ACCESS_ONCE(*pte);
  2849. if (!pte_present(entry)) {
  2850. if (pte_none(entry)) {
  2851. if (vma->vm_ops) {
  2852. if (likely(vma->vm_ops->fault))
  2853. return do_linear_fault(mm, vma, address,
  2854. pte, pmd, flags, entry);
  2855. }
  2856. return do_anonymous_page(mm, vma, address,
  2857. pte, pmd, flags);
  2858. }
  2859. if (pte_file(entry))
  2860. return do_nonlinear_fault(mm, vma, address,
  2861. pte, pmd, flags, entry);
  2862. return do_swap_page(mm, vma, address,
  2863. pte, pmd, flags, entry);
  2864. }
  2865. if (pte_numa(entry))
  2866. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2867. ptl = pte_lockptr(mm, pmd);
  2868. spin_lock(ptl);
  2869. if (unlikely(!pte_same(*pte, entry)))
  2870. goto unlock;
  2871. if (flags & FAULT_FLAG_WRITE) {
  2872. if (!pte_write(entry))
  2873. return do_wp_page(mm, vma, address,
  2874. pte, pmd, ptl, entry);
  2875. entry = pte_mkdirty(entry);
  2876. }
  2877. entry = pte_mkyoung(entry);
  2878. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2879. update_mmu_cache(vma, address, pte);
  2880. } else {
  2881. /*
  2882. * This is needed only for protection faults but the arch code
  2883. * is not yet telling us if this is a protection fault or not.
  2884. * This still avoids useless tlb flushes for .text page faults
  2885. * with threads.
  2886. */
  2887. if (flags & FAULT_FLAG_WRITE)
  2888. flush_tlb_fix_spurious_fault(vma, address);
  2889. }
  2890. unlock:
  2891. pte_unmap_unlock(pte, ptl);
  2892. return 0;
  2893. }
  2894. /*
  2895. * By the time we get here, we already hold the mm semaphore
  2896. *
  2897. * The mmap_sem may have been released depending on flags and our
  2898. * return value. See filemap_fault() and __lock_page_or_retry().
  2899. */
  2900. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2901. unsigned long address, unsigned int flags)
  2902. {
  2903. pgd_t *pgd;
  2904. pud_t *pud;
  2905. pmd_t *pmd;
  2906. pte_t *pte;
  2907. if (unlikely(is_vm_hugetlb_page(vma)))
  2908. return hugetlb_fault(mm, vma, address, flags);
  2909. pgd = pgd_offset(mm, address);
  2910. pud = pud_alloc(mm, pgd, address);
  2911. if (!pud)
  2912. return VM_FAULT_OOM;
  2913. pmd = pmd_alloc(mm, pud, address);
  2914. if (!pmd)
  2915. return VM_FAULT_OOM;
  2916. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2917. int ret = VM_FAULT_FALLBACK;
  2918. if (!vma->vm_ops)
  2919. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  2920. pmd, flags);
  2921. if (!(ret & VM_FAULT_FALLBACK))
  2922. return ret;
  2923. } else {
  2924. pmd_t orig_pmd = *pmd;
  2925. int ret;
  2926. barrier();
  2927. if (pmd_trans_huge(orig_pmd)) {
  2928. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  2929. /*
  2930. * If the pmd is splitting, return and retry the
  2931. * the fault. Alternative: wait until the split
  2932. * is done, and goto retry.
  2933. */
  2934. if (pmd_trans_splitting(orig_pmd))
  2935. return 0;
  2936. if (pmd_numa(orig_pmd))
  2937. return do_huge_pmd_numa_page(mm, vma, address,
  2938. orig_pmd, pmd);
  2939. if (dirty && !pmd_write(orig_pmd)) {
  2940. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  2941. orig_pmd);
  2942. if (!(ret & VM_FAULT_FALLBACK))
  2943. return ret;
  2944. } else {
  2945. huge_pmd_set_accessed(mm, vma, address, pmd,
  2946. orig_pmd, dirty);
  2947. return 0;
  2948. }
  2949. }
  2950. }
  2951. /*
  2952. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2953. * run pte_offset_map on the pmd, if an huge pmd could
  2954. * materialize from under us from a different thread.
  2955. */
  2956. if (unlikely(pmd_none(*pmd)) &&
  2957. unlikely(__pte_alloc(mm, vma, pmd, address)))
  2958. return VM_FAULT_OOM;
  2959. /* if an huge pmd materialized from under us just retry later */
  2960. if (unlikely(pmd_trans_huge(*pmd)))
  2961. return 0;
  2962. /*
  2963. * A regular pmd is established and it can't morph into a huge pmd
  2964. * from under us anymore at this point because we hold the mmap_sem
  2965. * read mode and khugepaged takes it in write mode. So now it's
  2966. * safe to run pte_offset_map().
  2967. */
  2968. pte = pte_offset_map(pmd, address);
  2969. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2970. }
  2971. /*
  2972. * By the time we get here, we already hold the mm semaphore
  2973. *
  2974. * The mmap_sem may have been released depending on flags and our
  2975. * return value. See filemap_fault() and __lock_page_or_retry().
  2976. */
  2977. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2978. unsigned long address, unsigned int flags)
  2979. {
  2980. int ret;
  2981. __set_current_state(TASK_RUNNING);
  2982. count_vm_event(PGFAULT);
  2983. mem_cgroup_count_vm_event(mm, PGFAULT);
  2984. /* do counter updates before entering really critical section. */
  2985. check_sync_rss_stat(current);
  2986. /*
  2987. * Enable the memcg OOM handling for faults triggered in user
  2988. * space. Kernel faults are handled more gracefully.
  2989. */
  2990. if (flags & FAULT_FLAG_USER)
  2991. mem_cgroup_oom_enable();
  2992. ret = __handle_mm_fault(mm, vma, address, flags);
  2993. if (flags & FAULT_FLAG_USER) {
  2994. mem_cgroup_oom_disable();
  2995. /*
  2996. * The task may have entered a memcg OOM situation but
  2997. * if the allocation error was handled gracefully (no
  2998. * VM_FAULT_OOM), there is no need to kill anything.
  2999. * Just clean up the OOM state peacefully.
  3000. */
  3001. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3002. mem_cgroup_oom_synchronize(false);
  3003. }
  3004. return ret;
  3005. }
  3006. #ifndef __PAGETABLE_PUD_FOLDED
  3007. /*
  3008. * Allocate page upper directory.
  3009. * We've already handled the fast-path in-line.
  3010. */
  3011. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3012. {
  3013. pud_t *new = pud_alloc_one(mm, address);
  3014. if (!new)
  3015. return -ENOMEM;
  3016. smp_wmb(); /* See comment in __pte_alloc */
  3017. spin_lock(&mm->page_table_lock);
  3018. if (pgd_present(*pgd)) /* Another has populated it */
  3019. pud_free(mm, new);
  3020. else
  3021. pgd_populate(mm, pgd, new);
  3022. spin_unlock(&mm->page_table_lock);
  3023. return 0;
  3024. }
  3025. #endif /* __PAGETABLE_PUD_FOLDED */
  3026. #ifndef __PAGETABLE_PMD_FOLDED
  3027. /*
  3028. * Allocate page middle directory.
  3029. * We've already handled the fast-path in-line.
  3030. */
  3031. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3032. {
  3033. pmd_t *new = pmd_alloc_one(mm, address);
  3034. if (!new)
  3035. return -ENOMEM;
  3036. smp_wmb(); /* See comment in __pte_alloc */
  3037. spin_lock(&mm->page_table_lock);
  3038. #ifndef __ARCH_HAS_4LEVEL_HACK
  3039. if (pud_present(*pud)) /* Another has populated it */
  3040. pmd_free(mm, new);
  3041. else
  3042. pud_populate(mm, pud, new);
  3043. #else
  3044. if (pgd_present(*pud)) /* Another has populated it */
  3045. pmd_free(mm, new);
  3046. else
  3047. pgd_populate(mm, pud, new);
  3048. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3049. spin_unlock(&mm->page_table_lock);
  3050. return 0;
  3051. }
  3052. #endif /* __PAGETABLE_PMD_FOLDED */
  3053. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3054. pte_t **ptepp, spinlock_t **ptlp)
  3055. {
  3056. pgd_t *pgd;
  3057. pud_t *pud;
  3058. pmd_t *pmd;
  3059. pte_t *ptep;
  3060. pgd = pgd_offset(mm, address);
  3061. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3062. goto out;
  3063. pud = pud_offset(pgd, address);
  3064. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3065. goto out;
  3066. pmd = pmd_offset(pud, address);
  3067. VM_BUG_ON(pmd_trans_huge(*pmd));
  3068. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3069. goto out;
  3070. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3071. if (pmd_huge(*pmd))
  3072. goto out;
  3073. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3074. if (!ptep)
  3075. goto out;
  3076. if (!pte_present(*ptep))
  3077. goto unlock;
  3078. *ptepp = ptep;
  3079. return 0;
  3080. unlock:
  3081. pte_unmap_unlock(ptep, *ptlp);
  3082. out:
  3083. return -EINVAL;
  3084. }
  3085. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3086. pte_t **ptepp, spinlock_t **ptlp)
  3087. {
  3088. int res;
  3089. /* (void) is needed to make gcc happy */
  3090. (void) __cond_lock(*ptlp,
  3091. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3092. return res;
  3093. }
  3094. /**
  3095. * follow_pfn - look up PFN at a user virtual address
  3096. * @vma: memory mapping
  3097. * @address: user virtual address
  3098. * @pfn: location to store found PFN
  3099. *
  3100. * Only IO mappings and raw PFN mappings are allowed.
  3101. *
  3102. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3103. */
  3104. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3105. unsigned long *pfn)
  3106. {
  3107. int ret = -EINVAL;
  3108. spinlock_t *ptl;
  3109. pte_t *ptep;
  3110. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3111. return ret;
  3112. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3113. if (ret)
  3114. return ret;
  3115. *pfn = pte_pfn(*ptep);
  3116. pte_unmap_unlock(ptep, ptl);
  3117. return 0;
  3118. }
  3119. EXPORT_SYMBOL(follow_pfn);
  3120. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3121. int follow_phys(struct vm_area_struct *vma,
  3122. unsigned long address, unsigned int flags,
  3123. unsigned long *prot, resource_size_t *phys)
  3124. {
  3125. int ret = -EINVAL;
  3126. pte_t *ptep, pte;
  3127. spinlock_t *ptl;
  3128. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3129. goto out;
  3130. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3131. goto out;
  3132. pte = *ptep;
  3133. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3134. goto unlock;
  3135. *prot = pgprot_val(pte_pgprot(pte));
  3136. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3137. ret = 0;
  3138. unlock:
  3139. pte_unmap_unlock(ptep, ptl);
  3140. out:
  3141. return ret;
  3142. }
  3143. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3144. void *buf, int len, int write)
  3145. {
  3146. resource_size_t phys_addr;
  3147. unsigned long prot = 0;
  3148. void __iomem *maddr;
  3149. int offset = addr & (PAGE_SIZE-1);
  3150. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3151. return -EINVAL;
  3152. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3153. if (write)
  3154. memcpy_toio(maddr + offset, buf, len);
  3155. else
  3156. memcpy_fromio(buf, maddr + offset, len);
  3157. iounmap(maddr);
  3158. return len;
  3159. }
  3160. EXPORT_SYMBOL_GPL(generic_access_phys);
  3161. #endif
  3162. /*
  3163. * Access another process' address space as given in mm. If non-NULL, use the
  3164. * given task for page fault accounting.
  3165. */
  3166. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3167. unsigned long addr, void *buf, int len, int write)
  3168. {
  3169. struct vm_area_struct *vma;
  3170. void *old_buf = buf;
  3171. down_read(&mm->mmap_sem);
  3172. /* ignore errors, just check how much was successfully transferred */
  3173. while (len) {
  3174. int bytes, ret, offset;
  3175. void *maddr;
  3176. struct page *page = NULL;
  3177. ret = get_user_pages(tsk, mm, addr, 1,
  3178. write, 1, &page, &vma);
  3179. if (ret <= 0) {
  3180. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3181. break;
  3182. #else
  3183. /*
  3184. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3185. * we can access using slightly different code.
  3186. */
  3187. vma = find_vma(mm, addr);
  3188. if (!vma || vma->vm_start > addr)
  3189. break;
  3190. if (vma->vm_ops && vma->vm_ops->access)
  3191. ret = vma->vm_ops->access(vma, addr, buf,
  3192. len, write);
  3193. if (ret <= 0)
  3194. break;
  3195. bytes = ret;
  3196. #endif
  3197. } else {
  3198. bytes = len;
  3199. offset = addr & (PAGE_SIZE-1);
  3200. if (bytes > PAGE_SIZE-offset)
  3201. bytes = PAGE_SIZE-offset;
  3202. maddr = kmap(page);
  3203. if (write) {
  3204. copy_to_user_page(vma, page, addr,
  3205. maddr + offset, buf, bytes);
  3206. set_page_dirty_lock(page);
  3207. } else {
  3208. copy_from_user_page(vma, page, addr,
  3209. buf, maddr + offset, bytes);
  3210. }
  3211. kunmap(page);
  3212. page_cache_release(page);
  3213. }
  3214. len -= bytes;
  3215. buf += bytes;
  3216. addr += bytes;
  3217. }
  3218. up_read(&mm->mmap_sem);
  3219. return buf - old_buf;
  3220. }
  3221. /**
  3222. * access_remote_vm - access another process' address space
  3223. * @mm: the mm_struct of the target address space
  3224. * @addr: start address to access
  3225. * @buf: source or destination buffer
  3226. * @len: number of bytes to transfer
  3227. * @write: whether the access is a write
  3228. *
  3229. * The caller must hold a reference on @mm.
  3230. */
  3231. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3232. void *buf, int len, int write)
  3233. {
  3234. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3235. }
  3236. /*
  3237. * Access another process' address space.
  3238. * Source/target buffer must be kernel space,
  3239. * Do not walk the page table directly, use get_user_pages
  3240. */
  3241. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3242. void *buf, int len, int write)
  3243. {
  3244. struct mm_struct *mm;
  3245. int ret;
  3246. mm = get_task_mm(tsk);
  3247. if (!mm)
  3248. return 0;
  3249. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3250. mmput(mm);
  3251. return ret;
  3252. }
  3253. /*
  3254. * Print the name of a VMA.
  3255. */
  3256. void print_vma_addr(char *prefix, unsigned long ip)
  3257. {
  3258. struct mm_struct *mm = current->mm;
  3259. struct vm_area_struct *vma;
  3260. /*
  3261. * Do not print if we are in atomic
  3262. * contexts (in exception stacks, etc.):
  3263. */
  3264. if (preempt_count())
  3265. return;
  3266. down_read(&mm->mmap_sem);
  3267. vma = find_vma(mm, ip);
  3268. if (vma && vma->vm_file) {
  3269. struct file *f = vma->vm_file;
  3270. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3271. if (buf) {
  3272. char *p;
  3273. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3274. if (IS_ERR(p))
  3275. p = "?";
  3276. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3277. vma->vm_start,
  3278. vma->vm_end - vma->vm_start);
  3279. free_page((unsigned long)buf);
  3280. }
  3281. }
  3282. up_read(&mm->mmap_sem);
  3283. }
  3284. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3285. void might_fault(void)
  3286. {
  3287. /*
  3288. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3289. * holding the mmap_sem, this is safe because kernel memory doesn't
  3290. * get paged out, therefore we'll never actually fault, and the
  3291. * below annotations will generate false positives.
  3292. */
  3293. if (segment_eq(get_fs(), KERNEL_DS))
  3294. return;
  3295. /*
  3296. * it would be nicer only to annotate paths which are not under
  3297. * pagefault_disable, however that requires a larger audit and
  3298. * providing helpers like get_user_atomic.
  3299. */
  3300. if (in_atomic())
  3301. return;
  3302. __might_sleep(__FILE__, __LINE__, 0);
  3303. if (current->mm)
  3304. might_lock_read(&current->mm->mmap_sem);
  3305. }
  3306. EXPORT_SYMBOL(might_fault);
  3307. #endif
  3308. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3309. static void clear_gigantic_page(struct page *page,
  3310. unsigned long addr,
  3311. unsigned int pages_per_huge_page)
  3312. {
  3313. int i;
  3314. struct page *p = page;
  3315. might_sleep();
  3316. for (i = 0; i < pages_per_huge_page;
  3317. i++, p = mem_map_next(p, page, i)) {
  3318. cond_resched();
  3319. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3320. }
  3321. }
  3322. void clear_huge_page(struct page *page,
  3323. unsigned long addr, unsigned int pages_per_huge_page)
  3324. {
  3325. int i;
  3326. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3327. clear_gigantic_page(page, addr, pages_per_huge_page);
  3328. return;
  3329. }
  3330. might_sleep();
  3331. for (i = 0; i < pages_per_huge_page; i++) {
  3332. cond_resched();
  3333. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3334. }
  3335. }
  3336. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3337. unsigned long addr,
  3338. struct vm_area_struct *vma,
  3339. unsigned int pages_per_huge_page)
  3340. {
  3341. int i;
  3342. struct page *dst_base = dst;
  3343. struct page *src_base = src;
  3344. for (i = 0; i < pages_per_huge_page; ) {
  3345. cond_resched();
  3346. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3347. i++;
  3348. dst = mem_map_next(dst, dst_base, i);
  3349. src = mem_map_next(src, src_base, i);
  3350. }
  3351. }
  3352. void copy_user_huge_page(struct page *dst, struct page *src,
  3353. unsigned long addr, struct vm_area_struct *vma,
  3354. unsigned int pages_per_huge_page)
  3355. {
  3356. int i;
  3357. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3358. copy_user_gigantic_page(dst, src, addr, vma,
  3359. pages_per_huge_page);
  3360. return;
  3361. }
  3362. might_sleep();
  3363. for (i = 0; i < pages_per_huge_page; i++) {
  3364. cond_resched();
  3365. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3366. }
  3367. }
  3368. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3369. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3370. static struct kmem_cache *page_ptl_cachep;
  3371. void __init ptlock_cache_init(void)
  3372. {
  3373. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3374. SLAB_PANIC, NULL);
  3375. }
  3376. bool ptlock_alloc(struct page *page)
  3377. {
  3378. spinlock_t *ptl;
  3379. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3380. if (!ptl)
  3381. return false;
  3382. page->ptl = ptl;
  3383. return true;
  3384. }
  3385. void ptlock_free(struct page *page)
  3386. {
  3387. kmem_cache_free(page_ptl_cachep, page->ptl);
  3388. }
  3389. #endif