cls_flower.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/dst.h>
  25. #include <net/dst_metadata.h>
  26. struct fl_flow_key {
  27. int indev_ifindex;
  28. struct flow_dissector_key_control control;
  29. struct flow_dissector_key_control enc_control;
  30. struct flow_dissector_key_basic basic;
  31. struct flow_dissector_key_eth_addrs eth;
  32. struct flow_dissector_key_vlan vlan;
  33. union {
  34. struct flow_dissector_key_ipv4_addrs ipv4;
  35. struct flow_dissector_key_ipv6_addrs ipv6;
  36. };
  37. struct flow_dissector_key_ports tp;
  38. struct flow_dissector_key_icmp icmp;
  39. struct flow_dissector_key_arp arp;
  40. struct flow_dissector_key_keyid enc_key_id;
  41. union {
  42. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  43. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  44. };
  45. struct flow_dissector_key_ports enc_tp;
  46. struct flow_dissector_key_mpls mpls;
  47. struct flow_dissector_key_tcp tcp;
  48. struct flow_dissector_key_ip ip;
  49. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  50. struct fl_flow_mask_range {
  51. unsigned short int start;
  52. unsigned short int end;
  53. };
  54. struct fl_flow_mask {
  55. struct fl_flow_key key;
  56. struct fl_flow_mask_range range;
  57. struct rcu_head rcu;
  58. };
  59. struct cls_fl_head {
  60. struct rhashtable ht;
  61. struct fl_flow_mask mask;
  62. struct flow_dissector dissector;
  63. u32 hgen;
  64. bool mask_assigned;
  65. struct list_head filters;
  66. struct rhashtable_params ht_params;
  67. union {
  68. struct work_struct work;
  69. struct rcu_head rcu;
  70. };
  71. };
  72. struct cls_fl_filter {
  73. struct rhash_head ht_node;
  74. struct fl_flow_key mkey;
  75. struct tcf_exts exts;
  76. struct tcf_result res;
  77. struct fl_flow_key key;
  78. struct list_head list;
  79. u32 handle;
  80. u32 flags;
  81. struct rcu_head rcu;
  82. struct tc_to_netdev tc;
  83. struct net_device *hw_dev;
  84. };
  85. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  86. {
  87. return mask->range.end - mask->range.start;
  88. }
  89. static void fl_mask_update_range(struct fl_flow_mask *mask)
  90. {
  91. const u8 *bytes = (const u8 *) &mask->key;
  92. size_t size = sizeof(mask->key);
  93. size_t i, first = 0, last = size - 1;
  94. for (i = 0; i < sizeof(mask->key); i++) {
  95. if (bytes[i]) {
  96. if (!first && i)
  97. first = i;
  98. last = i;
  99. }
  100. }
  101. mask->range.start = rounddown(first, sizeof(long));
  102. mask->range.end = roundup(last + 1, sizeof(long));
  103. }
  104. static void *fl_key_get_start(struct fl_flow_key *key,
  105. const struct fl_flow_mask *mask)
  106. {
  107. return (u8 *) key + mask->range.start;
  108. }
  109. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  110. struct fl_flow_mask *mask)
  111. {
  112. const long *lkey = fl_key_get_start(key, mask);
  113. const long *lmask = fl_key_get_start(&mask->key, mask);
  114. long *lmkey = fl_key_get_start(mkey, mask);
  115. int i;
  116. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  117. *lmkey++ = *lkey++ & *lmask++;
  118. }
  119. static void fl_clear_masked_range(struct fl_flow_key *key,
  120. struct fl_flow_mask *mask)
  121. {
  122. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  123. }
  124. static struct cls_fl_filter *fl_lookup(struct cls_fl_head *head,
  125. struct fl_flow_key *mkey)
  126. {
  127. return rhashtable_lookup_fast(&head->ht,
  128. fl_key_get_start(mkey, &head->mask),
  129. head->ht_params);
  130. }
  131. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  132. struct tcf_result *res)
  133. {
  134. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  135. struct cls_fl_filter *f;
  136. struct fl_flow_key skb_key;
  137. struct fl_flow_key skb_mkey;
  138. struct ip_tunnel_info *info;
  139. if (!atomic_read(&head->ht.nelems))
  140. return -1;
  141. fl_clear_masked_range(&skb_key, &head->mask);
  142. info = skb_tunnel_info(skb);
  143. if (info) {
  144. struct ip_tunnel_key *key = &info->key;
  145. switch (ip_tunnel_info_af(info)) {
  146. case AF_INET:
  147. skb_key.enc_control.addr_type =
  148. FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  149. skb_key.enc_ipv4.src = key->u.ipv4.src;
  150. skb_key.enc_ipv4.dst = key->u.ipv4.dst;
  151. break;
  152. case AF_INET6:
  153. skb_key.enc_control.addr_type =
  154. FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  155. skb_key.enc_ipv6.src = key->u.ipv6.src;
  156. skb_key.enc_ipv6.dst = key->u.ipv6.dst;
  157. break;
  158. }
  159. skb_key.enc_key_id.keyid = tunnel_id_to_key32(key->tun_id);
  160. skb_key.enc_tp.src = key->tp_src;
  161. skb_key.enc_tp.dst = key->tp_dst;
  162. }
  163. skb_key.indev_ifindex = skb->skb_iif;
  164. /* skb_flow_dissect() does not set n_proto in case an unknown protocol,
  165. * so do it rather here.
  166. */
  167. skb_key.basic.n_proto = skb->protocol;
  168. skb_flow_dissect(skb, &head->dissector, &skb_key, 0);
  169. fl_set_masked_key(&skb_mkey, &skb_key, &head->mask);
  170. f = fl_lookup(head, &skb_mkey);
  171. if (f && !tc_skip_sw(f->flags)) {
  172. *res = f->res;
  173. return tcf_exts_exec(skb, &f->exts, res);
  174. }
  175. return -1;
  176. }
  177. static int fl_init(struct tcf_proto *tp)
  178. {
  179. struct cls_fl_head *head;
  180. head = kzalloc(sizeof(*head), GFP_KERNEL);
  181. if (!head)
  182. return -ENOBUFS;
  183. INIT_LIST_HEAD_RCU(&head->filters);
  184. rcu_assign_pointer(tp->root, head);
  185. return 0;
  186. }
  187. static void fl_destroy_filter(struct rcu_head *head)
  188. {
  189. struct cls_fl_filter *f = container_of(head, struct cls_fl_filter, rcu);
  190. tcf_exts_destroy(&f->exts);
  191. kfree(f);
  192. }
  193. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f)
  194. {
  195. struct tc_cls_flower_offload offload = {0};
  196. struct net_device *dev = f->hw_dev;
  197. struct tc_to_netdev *tc = &f->tc;
  198. if (!tc_can_offload(dev, tp))
  199. return;
  200. offload.command = TC_CLSFLOWER_DESTROY;
  201. offload.prio = tp->prio;
  202. offload.cookie = (unsigned long)f;
  203. tc->cls_flower = &offload;
  204. dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER, tp->q->handle,
  205. tp->chain->index, tp->protocol, tc);
  206. }
  207. static int fl_hw_replace_filter(struct tcf_proto *tp,
  208. struct flow_dissector *dissector,
  209. struct fl_flow_key *mask,
  210. struct cls_fl_filter *f)
  211. {
  212. struct net_device *dev = tp->q->dev_queue->dev;
  213. struct tc_cls_flower_offload offload = {0};
  214. struct tc_to_netdev *tc = &f->tc;
  215. int err;
  216. if (!tc_can_offload(dev, tp)) {
  217. if (tcf_exts_get_dev(dev, &f->exts, &f->hw_dev) ||
  218. (f->hw_dev && !tc_can_offload(f->hw_dev, tp))) {
  219. f->hw_dev = dev;
  220. return tc_skip_sw(f->flags) ? -EINVAL : 0;
  221. }
  222. dev = f->hw_dev;
  223. tc->egress_dev = true;
  224. } else {
  225. f->hw_dev = dev;
  226. }
  227. offload.command = TC_CLSFLOWER_REPLACE;
  228. offload.prio = tp->prio;
  229. offload.cookie = (unsigned long)f;
  230. offload.dissector = dissector;
  231. offload.mask = mask;
  232. offload.key = &f->mkey;
  233. offload.exts = &f->exts;
  234. tc->cls_flower = &offload;
  235. err = dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_CLSFLOWER,
  236. tp->q->handle, tp->chain->index,
  237. tp->protocol, tc);
  238. if (!err)
  239. f->flags |= TCA_CLS_FLAGS_IN_HW;
  240. if (tc_skip_sw(f->flags))
  241. return err;
  242. return 0;
  243. }
  244. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  245. {
  246. struct tc_cls_flower_offload offload = {0};
  247. struct net_device *dev = f->hw_dev;
  248. struct tc_to_netdev *tc = &f->tc;
  249. if (!tc_can_offload(dev, tp))
  250. return;
  251. offload.command = TC_CLSFLOWER_STATS;
  252. offload.prio = tp->prio;
  253. offload.cookie = (unsigned long)f;
  254. offload.exts = &f->exts;
  255. tc->cls_flower = &offload;
  256. dev->netdev_ops->ndo_setup_tc(dev, TC_CLSFLOWER_STATS, tp->q->handle,
  257. tp->chain->index, tp->protocol, tc);
  258. }
  259. static void __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f)
  260. {
  261. list_del_rcu(&f->list);
  262. if (!tc_skip_hw(f->flags))
  263. fl_hw_destroy_filter(tp, f);
  264. tcf_unbind_filter(tp, &f->res);
  265. call_rcu(&f->rcu, fl_destroy_filter);
  266. }
  267. static void fl_destroy_sleepable(struct work_struct *work)
  268. {
  269. struct cls_fl_head *head = container_of(work, struct cls_fl_head,
  270. work);
  271. if (head->mask_assigned)
  272. rhashtable_destroy(&head->ht);
  273. kfree(head);
  274. module_put(THIS_MODULE);
  275. }
  276. static void fl_destroy_rcu(struct rcu_head *rcu)
  277. {
  278. struct cls_fl_head *head = container_of(rcu, struct cls_fl_head, rcu);
  279. INIT_WORK(&head->work, fl_destroy_sleepable);
  280. schedule_work(&head->work);
  281. }
  282. static void fl_destroy(struct tcf_proto *tp)
  283. {
  284. struct cls_fl_head *head = rtnl_dereference(tp->root);
  285. struct cls_fl_filter *f, *next;
  286. list_for_each_entry_safe(f, next, &head->filters, list)
  287. __fl_delete(tp, f);
  288. __module_get(THIS_MODULE);
  289. call_rcu(&head->rcu, fl_destroy_rcu);
  290. }
  291. static unsigned long fl_get(struct tcf_proto *tp, u32 handle)
  292. {
  293. struct cls_fl_head *head = rtnl_dereference(tp->root);
  294. struct cls_fl_filter *f;
  295. list_for_each_entry(f, &head->filters, list)
  296. if (f->handle == handle)
  297. return (unsigned long) f;
  298. return 0;
  299. }
  300. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  301. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  302. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  303. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  304. .len = IFNAMSIZ },
  305. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  306. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  307. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  308. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  309. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  310. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  311. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  312. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  313. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  314. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  315. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  316. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  317. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  318. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  319. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  320. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  321. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  322. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  323. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  324. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  325. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  326. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  327. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  328. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  329. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  330. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  331. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  332. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  333. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  334. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  335. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  336. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  337. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  338. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  339. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  340. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  341. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  342. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  343. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  344. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  345. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  346. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  347. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  348. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  349. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  350. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  351. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  352. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  353. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  354. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  355. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  356. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  357. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  358. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  359. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  360. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  361. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  362. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  363. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  364. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  365. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  366. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  367. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  368. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  369. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  370. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  371. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  372. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  373. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  374. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  375. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  376. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  377. };
  378. static void fl_set_key_val(struct nlattr **tb,
  379. void *val, int val_type,
  380. void *mask, int mask_type, int len)
  381. {
  382. if (!tb[val_type])
  383. return;
  384. memcpy(val, nla_data(tb[val_type]), len);
  385. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  386. memset(mask, 0xff, len);
  387. else
  388. memcpy(mask, nla_data(tb[mask_type]), len);
  389. }
  390. static int fl_set_key_mpls(struct nlattr **tb,
  391. struct flow_dissector_key_mpls *key_val,
  392. struct flow_dissector_key_mpls *key_mask)
  393. {
  394. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  395. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  396. key_mask->mpls_ttl = MPLS_TTL_MASK;
  397. }
  398. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  399. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  400. if (bos & ~MPLS_BOS_MASK)
  401. return -EINVAL;
  402. key_val->mpls_bos = bos;
  403. key_mask->mpls_bos = MPLS_BOS_MASK;
  404. }
  405. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  406. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  407. if (tc & ~MPLS_TC_MASK)
  408. return -EINVAL;
  409. key_val->mpls_tc = tc;
  410. key_mask->mpls_tc = MPLS_TC_MASK;
  411. }
  412. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  413. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  414. if (label & ~MPLS_LABEL_MASK)
  415. return -EINVAL;
  416. key_val->mpls_label = label;
  417. key_mask->mpls_label = MPLS_LABEL_MASK;
  418. }
  419. return 0;
  420. }
  421. static void fl_set_key_vlan(struct nlattr **tb,
  422. struct flow_dissector_key_vlan *key_val,
  423. struct flow_dissector_key_vlan *key_mask)
  424. {
  425. #define VLAN_PRIORITY_MASK 0x7
  426. if (tb[TCA_FLOWER_KEY_VLAN_ID]) {
  427. key_val->vlan_id =
  428. nla_get_u16(tb[TCA_FLOWER_KEY_VLAN_ID]) & VLAN_VID_MASK;
  429. key_mask->vlan_id = VLAN_VID_MASK;
  430. }
  431. if (tb[TCA_FLOWER_KEY_VLAN_PRIO]) {
  432. key_val->vlan_priority =
  433. nla_get_u8(tb[TCA_FLOWER_KEY_VLAN_PRIO]) &
  434. VLAN_PRIORITY_MASK;
  435. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  436. }
  437. }
  438. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  439. u32 *dissector_key, u32 *dissector_mask,
  440. u32 flower_flag_bit, u32 dissector_flag_bit)
  441. {
  442. if (flower_mask & flower_flag_bit) {
  443. *dissector_mask |= dissector_flag_bit;
  444. if (flower_key & flower_flag_bit)
  445. *dissector_key |= dissector_flag_bit;
  446. }
  447. }
  448. static int fl_set_key_flags(struct nlattr **tb,
  449. u32 *flags_key, u32 *flags_mask)
  450. {
  451. u32 key, mask;
  452. /* mask is mandatory for flags */
  453. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  454. return -EINVAL;
  455. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  456. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  457. *flags_key = 0;
  458. *flags_mask = 0;
  459. fl_set_key_flag(key, mask, flags_key, flags_mask,
  460. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  461. return 0;
  462. }
  463. static void fl_set_key_ip(struct nlattr **tb,
  464. struct flow_dissector_key_ip *key,
  465. struct flow_dissector_key_ip *mask)
  466. {
  467. fl_set_key_val(tb, &key->tos, TCA_FLOWER_KEY_IP_TOS,
  468. &mask->tos, TCA_FLOWER_KEY_IP_TOS_MASK,
  469. sizeof(key->tos));
  470. fl_set_key_val(tb, &key->ttl, TCA_FLOWER_KEY_IP_TTL,
  471. &mask->ttl, TCA_FLOWER_KEY_IP_TTL_MASK,
  472. sizeof(key->ttl));
  473. }
  474. static int fl_set_key(struct net *net, struct nlattr **tb,
  475. struct fl_flow_key *key, struct fl_flow_key *mask)
  476. {
  477. __be16 ethertype;
  478. int ret = 0;
  479. #ifdef CONFIG_NET_CLS_IND
  480. if (tb[TCA_FLOWER_INDEV]) {
  481. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV]);
  482. if (err < 0)
  483. return err;
  484. key->indev_ifindex = err;
  485. mask->indev_ifindex = 0xffffffff;
  486. }
  487. #endif
  488. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  489. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  490. sizeof(key->eth.dst));
  491. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  492. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  493. sizeof(key->eth.src));
  494. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  495. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  496. if (ethertype == htons(ETH_P_8021Q)) {
  497. fl_set_key_vlan(tb, &key->vlan, &mask->vlan);
  498. fl_set_key_val(tb, &key->basic.n_proto,
  499. TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  500. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  501. sizeof(key->basic.n_proto));
  502. } else {
  503. key->basic.n_proto = ethertype;
  504. mask->basic.n_proto = cpu_to_be16(~0);
  505. }
  506. }
  507. if (key->basic.n_proto == htons(ETH_P_IP) ||
  508. key->basic.n_proto == htons(ETH_P_IPV6)) {
  509. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  510. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  511. sizeof(key->basic.ip_proto));
  512. fl_set_key_ip(tb, &key->ip, &mask->ip);
  513. }
  514. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  515. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  516. mask->control.addr_type = ~0;
  517. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  518. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  519. sizeof(key->ipv4.src));
  520. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  521. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  522. sizeof(key->ipv4.dst));
  523. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  524. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  525. mask->control.addr_type = ~0;
  526. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  527. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  528. sizeof(key->ipv6.src));
  529. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  530. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  531. sizeof(key->ipv6.dst));
  532. }
  533. if (key->basic.ip_proto == IPPROTO_TCP) {
  534. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  535. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  536. sizeof(key->tp.src));
  537. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  538. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  539. sizeof(key->tp.dst));
  540. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  541. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  542. sizeof(key->tcp.flags));
  543. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  544. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  545. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  546. sizeof(key->tp.src));
  547. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  548. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  549. sizeof(key->tp.dst));
  550. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  551. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  552. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  553. sizeof(key->tp.src));
  554. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  555. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  556. sizeof(key->tp.dst));
  557. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  558. key->basic.ip_proto == IPPROTO_ICMP) {
  559. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  560. &mask->icmp.type,
  561. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  562. sizeof(key->icmp.type));
  563. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  564. &mask->icmp.code,
  565. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  566. sizeof(key->icmp.code));
  567. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  568. key->basic.ip_proto == IPPROTO_ICMPV6) {
  569. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  570. &mask->icmp.type,
  571. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  572. sizeof(key->icmp.type));
  573. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  574. &mask->icmp.code,
  575. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  576. sizeof(key->icmp.code));
  577. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  578. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  579. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  580. if (ret)
  581. return ret;
  582. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  583. key->basic.n_proto == htons(ETH_P_RARP)) {
  584. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  585. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  586. sizeof(key->arp.sip));
  587. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  588. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  589. sizeof(key->arp.tip));
  590. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  591. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  592. sizeof(key->arp.op));
  593. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  594. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  595. sizeof(key->arp.sha));
  596. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  597. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  598. sizeof(key->arp.tha));
  599. }
  600. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  601. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  602. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  603. mask->enc_control.addr_type = ~0;
  604. fl_set_key_val(tb, &key->enc_ipv4.src,
  605. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  606. &mask->enc_ipv4.src,
  607. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  608. sizeof(key->enc_ipv4.src));
  609. fl_set_key_val(tb, &key->enc_ipv4.dst,
  610. TCA_FLOWER_KEY_ENC_IPV4_DST,
  611. &mask->enc_ipv4.dst,
  612. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  613. sizeof(key->enc_ipv4.dst));
  614. }
  615. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  616. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  617. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  618. mask->enc_control.addr_type = ~0;
  619. fl_set_key_val(tb, &key->enc_ipv6.src,
  620. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  621. &mask->enc_ipv6.src,
  622. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  623. sizeof(key->enc_ipv6.src));
  624. fl_set_key_val(tb, &key->enc_ipv6.dst,
  625. TCA_FLOWER_KEY_ENC_IPV6_DST,
  626. &mask->enc_ipv6.dst,
  627. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  628. sizeof(key->enc_ipv6.dst));
  629. }
  630. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  631. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  632. sizeof(key->enc_key_id.keyid));
  633. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  634. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  635. sizeof(key->enc_tp.src));
  636. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  637. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  638. sizeof(key->enc_tp.dst));
  639. if (tb[TCA_FLOWER_KEY_FLAGS])
  640. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  641. return ret;
  642. }
  643. static bool fl_mask_eq(struct fl_flow_mask *mask1,
  644. struct fl_flow_mask *mask2)
  645. {
  646. const long *lmask1 = fl_key_get_start(&mask1->key, mask1);
  647. const long *lmask2 = fl_key_get_start(&mask2->key, mask2);
  648. return !memcmp(&mask1->range, &mask2->range, sizeof(mask1->range)) &&
  649. !memcmp(lmask1, lmask2, fl_mask_range(mask1));
  650. }
  651. static const struct rhashtable_params fl_ht_params = {
  652. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  653. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  654. .automatic_shrinking = true,
  655. };
  656. static int fl_init_hashtable(struct cls_fl_head *head,
  657. struct fl_flow_mask *mask)
  658. {
  659. head->ht_params = fl_ht_params;
  660. head->ht_params.key_len = fl_mask_range(mask);
  661. head->ht_params.key_offset += mask->range.start;
  662. return rhashtable_init(&head->ht, &head->ht_params);
  663. }
  664. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  665. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  666. #define FL_KEY_IS_MASKED(mask, member) \
  667. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  668. 0, FL_KEY_MEMBER_SIZE(member)) \
  669. #define FL_KEY_SET(keys, cnt, id, member) \
  670. do { \
  671. keys[cnt].key_id = id; \
  672. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  673. cnt++; \
  674. } while(0);
  675. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  676. do { \
  677. if (FL_KEY_IS_MASKED(mask, member)) \
  678. FL_KEY_SET(keys, cnt, id, member); \
  679. } while(0);
  680. static void fl_init_dissector(struct cls_fl_head *head,
  681. struct fl_flow_mask *mask)
  682. {
  683. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  684. size_t cnt = 0;
  685. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  686. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  687. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  688. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  689. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  690. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  691. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  692. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  693. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  694. FLOW_DISSECTOR_KEY_PORTS, tp);
  695. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  696. FLOW_DISSECTOR_KEY_IP, ip);
  697. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  698. FLOW_DISSECTOR_KEY_TCP, tcp);
  699. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  700. FLOW_DISSECTOR_KEY_ICMP, icmp);
  701. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  702. FLOW_DISSECTOR_KEY_ARP, arp);
  703. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  704. FLOW_DISSECTOR_KEY_MPLS, mpls);
  705. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  706. FLOW_DISSECTOR_KEY_VLAN, vlan);
  707. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  708. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  709. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  710. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  711. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  712. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  713. if (FL_KEY_IS_MASKED(&mask->key, enc_ipv4) ||
  714. FL_KEY_IS_MASKED(&mask->key, enc_ipv6))
  715. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  716. enc_control);
  717. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  718. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  719. skb_flow_dissector_init(&head->dissector, keys, cnt);
  720. }
  721. static int fl_check_assign_mask(struct cls_fl_head *head,
  722. struct fl_flow_mask *mask)
  723. {
  724. int err;
  725. if (head->mask_assigned) {
  726. if (!fl_mask_eq(&head->mask, mask))
  727. return -EINVAL;
  728. else
  729. return 0;
  730. }
  731. /* Mask is not assigned yet. So assign it and init hashtable
  732. * according to that.
  733. */
  734. err = fl_init_hashtable(head, mask);
  735. if (err)
  736. return err;
  737. memcpy(&head->mask, mask, sizeof(head->mask));
  738. head->mask_assigned = true;
  739. fl_init_dissector(head, mask);
  740. return 0;
  741. }
  742. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  743. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  744. unsigned long base, struct nlattr **tb,
  745. struct nlattr *est, bool ovr)
  746. {
  747. int err;
  748. err = tcf_exts_validate(net, tp, tb, est, &f->exts, ovr);
  749. if (err < 0)
  750. return err;
  751. if (tb[TCA_FLOWER_CLASSID]) {
  752. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  753. tcf_bind_filter(tp, &f->res, base);
  754. }
  755. err = fl_set_key(net, tb, &f->key, &mask->key);
  756. if (err)
  757. return err;
  758. fl_mask_update_range(mask);
  759. fl_set_masked_key(&f->mkey, &f->key, mask);
  760. return 0;
  761. }
  762. static u32 fl_grab_new_handle(struct tcf_proto *tp,
  763. struct cls_fl_head *head)
  764. {
  765. unsigned int i = 0x80000000;
  766. u32 handle;
  767. do {
  768. if (++head->hgen == 0x7FFFFFFF)
  769. head->hgen = 1;
  770. } while (--i > 0 && fl_get(tp, head->hgen));
  771. if (unlikely(i == 0)) {
  772. pr_err("Insufficient number of handles\n");
  773. handle = 0;
  774. } else {
  775. handle = head->hgen;
  776. }
  777. return handle;
  778. }
  779. static int fl_change(struct net *net, struct sk_buff *in_skb,
  780. struct tcf_proto *tp, unsigned long base,
  781. u32 handle, struct nlattr **tca,
  782. unsigned long *arg, bool ovr)
  783. {
  784. struct cls_fl_head *head = rtnl_dereference(tp->root);
  785. struct cls_fl_filter *fold = (struct cls_fl_filter *) *arg;
  786. struct cls_fl_filter *fnew;
  787. struct nlattr **tb;
  788. struct fl_flow_mask mask = {};
  789. int err;
  790. if (!tca[TCA_OPTIONS])
  791. return -EINVAL;
  792. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  793. if (!tb)
  794. return -ENOBUFS;
  795. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  796. fl_policy, NULL);
  797. if (err < 0)
  798. goto errout_tb;
  799. if (fold && handle && fold->handle != handle) {
  800. err = -EINVAL;
  801. goto errout_tb;
  802. }
  803. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  804. if (!fnew) {
  805. err = -ENOBUFS;
  806. goto errout_tb;
  807. }
  808. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  809. if (err < 0)
  810. goto errout;
  811. if (!handle) {
  812. handle = fl_grab_new_handle(tp, head);
  813. if (!handle) {
  814. err = -EINVAL;
  815. goto errout;
  816. }
  817. }
  818. fnew->handle = handle;
  819. if (tb[TCA_FLOWER_FLAGS]) {
  820. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  821. if (!tc_flags_valid(fnew->flags)) {
  822. err = -EINVAL;
  823. goto errout;
  824. }
  825. }
  826. err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr);
  827. if (err)
  828. goto errout;
  829. err = fl_check_assign_mask(head, &mask);
  830. if (err)
  831. goto errout;
  832. if (!tc_skip_sw(fnew->flags)) {
  833. if (!fold && fl_lookup(head, &fnew->mkey)) {
  834. err = -EEXIST;
  835. goto errout;
  836. }
  837. err = rhashtable_insert_fast(&head->ht, &fnew->ht_node,
  838. head->ht_params);
  839. if (err)
  840. goto errout;
  841. }
  842. if (!tc_skip_hw(fnew->flags)) {
  843. err = fl_hw_replace_filter(tp,
  844. &head->dissector,
  845. &mask.key,
  846. fnew);
  847. if (err)
  848. goto errout;
  849. }
  850. if (!tc_in_hw(fnew->flags))
  851. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  852. if (fold) {
  853. if (!tc_skip_sw(fold->flags))
  854. rhashtable_remove_fast(&head->ht, &fold->ht_node,
  855. head->ht_params);
  856. if (!tc_skip_hw(fold->flags))
  857. fl_hw_destroy_filter(tp, fold);
  858. }
  859. *arg = (unsigned long) fnew;
  860. if (fold) {
  861. list_replace_rcu(&fold->list, &fnew->list);
  862. tcf_unbind_filter(tp, &fold->res);
  863. call_rcu(&fold->rcu, fl_destroy_filter);
  864. } else {
  865. list_add_tail_rcu(&fnew->list, &head->filters);
  866. }
  867. kfree(tb);
  868. return 0;
  869. errout:
  870. tcf_exts_destroy(&fnew->exts);
  871. kfree(fnew);
  872. errout_tb:
  873. kfree(tb);
  874. return err;
  875. }
  876. static int fl_delete(struct tcf_proto *tp, unsigned long arg, bool *last)
  877. {
  878. struct cls_fl_head *head = rtnl_dereference(tp->root);
  879. struct cls_fl_filter *f = (struct cls_fl_filter *) arg;
  880. if (!tc_skip_sw(f->flags))
  881. rhashtable_remove_fast(&head->ht, &f->ht_node,
  882. head->ht_params);
  883. __fl_delete(tp, f);
  884. *last = list_empty(&head->filters);
  885. return 0;
  886. }
  887. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  888. {
  889. struct cls_fl_head *head = rtnl_dereference(tp->root);
  890. struct cls_fl_filter *f;
  891. list_for_each_entry_rcu(f, &head->filters, list) {
  892. if (arg->count < arg->skip)
  893. goto skip;
  894. if (arg->fn(tp, (unsigned long) f, arg) < 0) {
  895. arg->stop = 1;
  896. break;
  897. }
  898. skip:
  899. arg->count++;
  900. }
  901. }
  902. static int fl_dump_key_val(struct sk_buff *skb,
  903. void *val, int val_type,
  904. void *mask, int mask_type, int len)
  905. {
  906. int err;
  907. if (!memchr_inv(mask, 0, len))
  908. return 0;
  909. err = nla_put(skb, val_type, len, val);
  910. if (err)
  911. return err;
  912. if (mask_type != TCA_FLOWER_UNSPEC) {
  913. err = nla_put(skb, mask_type, len, mask);
  914. if (err)
  915. return err;
  916. }
  917. return 0;
  918. }
  919. static int fl_dump_key_mpls(struct sk_buff *skb,
  920. struct flow_dissector_key_mpls *mpls_key,
  921. struct flow_dissector_key_mpls *mpls_mask)
  922. {
  923. int err;
  924. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  925. return 0;
  926. if (mpls_mask->mpls_ttl) {
  927. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  928. mpls_key->mpls_ttl);
  929. if (err)
  930. return err;
  931. }
  932. if (mpls_mask->mpls_tc) {
  933. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  934. mpls_key->mpls_tc);
  935. if (err)
  936. return err;
  937. }
  938. if (mpls_mask->mpls_label) {
  939. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  940. mpls_key->mpls_label);
  941. if (err)
  942. return err;
  943. }
  944. if (mpls_mask->mpls_bos) {
  945. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  946. mpls_key->mpls_bos);
  947. if (err)
  948. return err;
  949. }
  950. return 0;
  951. }
  952. static int fl_dump_key_ip(struct sk_buff *skb,
  953. struct flow_dissector_key_ip *key,
  954. struct flow_dissector_key_ip *mask)
  955. {
  956. if (fl_dump_key_val(skb, &key->tos, TCA_FLOWER_KEY_IP_TOS, &mask->tos,
  957. TCA_FLOWER_KEY_IP_TOS_MASK, sizeof(key->tos)) ||
  958. fl_dump_key_val(skb, &key->ttl, TCA_FLOWER_KEY_IP_TTL, &mask->ttl,
  959. TCA_FLOWER_KEY_IP_TTL_MASK, sizeof(key->ttl)))
  960. return -1;
  961. return 0;
  962. }
  963. static int fl_dump_key_vlan(struct sk_buff *skb,
  964. struct flow_dissector_key_vlan *vlan_key,
  965. struct flow_dissector_key_vlan *vlan_mask)
  966. {
  967. int err;
  968. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  969. return 0;
  970. if (vlan_mask->vlan_id) {
  971. err = nla_put_u16(skb, TCA_FLOWER_KEY_VLAN_ID,
  972. vlan_key->vlan_id);
  973. if (err)
  974. return err;
  975. }
  976. if (vlan_mask->vlan_priority) {
  977. err = nla_put_u8(skb, TCA_FLOWER_KEY_VLAN_PRIO,
  978. vlan_key->vlan_priority);
  979. if (err)
  980. return err;
  981. }
  982. return 0;
  983. }
  984. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  985. u32 *flower_key, u32 *flower_mask,
  986. u32 flower_flag_bit, u32 dissector_flag_bit)
  987. {
  988. if (dissector_mask & dissector_flag_bit) {
  989. *flower_mask |= flower_flag_bit;
  990. if (dissector_key & dissector_flag_bit)
  991. *flower_key |= flower_flag_bit;
  992. }
  993. }
  994. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  995. {
  996. u32 key, mask;
  997. __be32 _key, _mask;
  998. int err;
  999. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  1000. return 0;
  1001. key = 0;
  1002. mask = 0;
  1003. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1004. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  1005. _key = cpu_to_be32(key);
  1006. _mask = cpu_to_be32(mask);
  1007. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  1008. if (err)
  1009. return err;
  1010. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1011. }
  1012. static int fl_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
  1013. struct sk_buff *skb, struct tcmsg *t)
  1014. {
  1015. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1016. struct cls_fl_filter *f = (struct cls_fl_filter *) fh;
  1017. struct nlattr *nest;
  1018. struct fl_flow_key *key, *mask;
  1019. if (!f)
  1020. return skb->len;
  1021. t->tcm_handle = f->handle;
  1022. nest = nla_nest_start(skb, TCA_OPTIONS);
  1023. if (!nest)
  1024. goto nla_put_failure;
  1025. if (f->res.classid &&
  1026. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1027. goto nla_put_failure;
  1028. key = &f->key;
  1029. mask = &head->mask.key;
  1030. if (mask->indev_ifindex) {
  1031. struct net_device *dev;
  1032. dev = __dev_get_by_index(net, key->indev_ifindex);
  1033. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1034. goto nla_put_failure;
  1035. }
  1036. if (!tc_skip_hw(f->flags))
  1037. fl_hw_update_stats(tp, f);
  1038. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1039. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1040. sizeof(key->eth.dst)) ||
  1041. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1042. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1043. sizeof(key->eth.src)) ||
  1044. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1045. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1046. sizeof(key->basic.n_proto)))
  1047. goto nla_put_failure;
  1048. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1049. goto nla_put_failure;
  1050. if (fl_dump_key_vlan(skb, &key->vlan, &mask->vlan))
  1051. goto nla_put_failure;
  1052. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1053. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1054. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1055. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1056. sizeof(key->basic.ip_proto)) ||
  1057. fl_dump_key_ip(skb, &key->ip, &mask->ip)))
  1058. goto nla_put_failure;
  1059. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1060. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1061. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1062. sizeof(key->ipv4.src)) ||
  1063. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1064. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1065. sizeof(key->ipv4.dst))))
  1066. goto nla_put_failure;
  1067. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1068. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1069. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1070. sizeof(key->ipv6.src)) ||
  1071. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1072. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1073. sizeof(key->ipv6.dst))))
  1074. goto nla_put_failure;
  1075. if (key->basic.ip_proto == IPPROTO_TCP &&
  1076. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1077. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1078. sizeof(key->tp.src)) ||
  1079. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1080. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1081. sizeof(key->tp.dst)) ||
  1082. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1083. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1084. sizeof(key->tcp.flags))))
  1085. goto nla_put_failure;
  1086. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1087. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1088. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1089. sizeof(key->tp.src)) ||
  1090. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1091. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1092. sizeof(key->tp.dst))))
  1093. goto nla_put_failure;
  1094. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1095. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1096. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1097. sizeof(key->tp.src)) ||
  1098. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1099. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1100. sizeof(key->tp.dst))))
  1101. goto nla_put_failure;
  1102. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1103. key->basic.ip_proto == IPPROTO_ICMP &&
  1104. (fl_dump_key_val(skb, &key->icmp.type,
  1105. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1106. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1107. sizeof(key->icmp.type)) ||
  1108. fl_dump_key_val(skb, &key->icmp.code,
  1109. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1110. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1111. sizeof(key->icmp.code))))
  1112. goto nla_put_failure;
  1113. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1114. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1115. (fl_dump_key_val(skb, &key->icmp.type,
  1116. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1117. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1118. sizeof(key->icmp.type)) ||
  1119. fl_dump_key_val(skb, &key->icmp.code,
  1120. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1121. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1122. sizeof(key->icmp.code))))
  1123. goto nla_put_failure;
  1124. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1125. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1126. (fl_dump_key_val(skb, &key->arp.sip,
  1127. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1128. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1129. sizeof(key->arp.sip)) ||
  1130. fl_dump_key_val(skb, &key->arp.tip,
  1131. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1132. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1133. sizeof(key->arp.tip)) ||
  1134. fl_dump_key_val(skb, &key->arp.op,
  1135. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1136. TCA_FLOWER_KEY_ARP_OP_MASK,
  1137. sizeof(key->arp.op)) ||
  1138. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1139. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1140. sizeof(key->arp.sha)) ||
  1141. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1142. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1143. sizeof(key->arp.tha))))
  1144. goto nla_put_failure;
  1145. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1146. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1147. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1148. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1149. sizeof(key->enc_ipv4.src)) ||
  1150. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1151. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1152. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1153. sizeof(key->enc_ipv4.dst))))
  1154. goto nla_put_failure;
  1155. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1156. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1157. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1158. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1159. sizeof(key->enc_ipv6.src)) ||
  1160. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1161. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1162. &mask->enc_ipv6.dst,
  1163. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1164. sizeof(key->enc_ipv6.dst))))
  1165. goto nla_put_failure;
  1166. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1167. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1168. sizeof(key->enc_key_id)) ||
  1169. fl_dump_key_val(skb, &key->enc_tp.src,
  1170. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1171. &mask->enc_tp.src,
  1172. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1173. sizeof(key->enc_tp.src)) ||
  1174. fl_dump_key_val(skb, &key->enc_tp.dst,
  1175. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1176. &mask->enc_tp.dst,
  1177. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1178. sizeof(key->enc_tp.dst)))
  1179. goto nla_put_failure;
  1180. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1181. goto nla_put_failure;
  1182. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1183. goto nla_put_failure;
  1184. if (tcf_exts_dump(skb, &f->exts))
  1185. goto nla_put_failure;
  1186. nla_nest_end(skb, nest);
  1187. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1188. goto nla_put_failure;
  1189. return skb->len;
  1190. nla_put_failure:
  1191. nla_nest_cancel(skb, nest);
  1192. return -1;
  1193. }
  1194. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1195. .kind = "flower",
  1196. .classify = fl_classify,
  1197. .init = fl_init,
  1198. .destroy = fl_destroy,
  1199. .get = fl_get,
  1200. .change = fl_change,
  1201. .delete = fl_delete,
  1202. .walk = fl_walk,
  1203. .dump = fl_dump,
  1204. .owner = THIS_MODULE,
  1205. };
  1206. static int __init cls_fl_init(void)
  1207. {
  1208. return register_tcf_proto_ops(&cls_fl_ops);
  1209. }
  1210. static void __exit cls_fl_exit(void)
  1211. {
  1212. unregister_tcf_proto_ops(&cls_fl_ops);
  1213. }
  1214. module_init(cls_fl_init);
  1215. module_exit(cls_fl_exit);
  1216. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1217. MODULE_DESCRIPTION("Flower classifier");
  1218. MODULE_LICENSE("GPL v2");