node.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "trace.h"
  22. #include <trace/events/f2fs.h>
  23. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  24. static struct kmem_cache *nat_entry_slab;
  25. static struct kmem_cache *free_nid_slab;
  26. static struct kmem_cache *nat_entry_set_slab;
  27. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  28. {
  29. struct f2fs_nm_info *nm_i = NM_I(sbi);
  30. struct sysinfo val;
  31. unsigned long avail_ram;
  32. unsigned long mem_size = 0;
  33. bool res = false;
  34. si_meminfo(&val);
  35. /* only uses low memory */
  36. avail_ram = val.totalram - val.totalhigh;
  37. /*
  38. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  39. */
  40. if (type == FREE_NIDS) {
  41. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  42. PAGE_CACHE_SHIFT;
  43. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  44. } else if (type == NAT_ENTRIES) {
  45. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  46. PAGE_CACHE_SHIFT;
  47. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  48. } else if (type == DIRTY_DENTS) {
  49. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  50. return false;
  51. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  52. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  53. } else if (type == INO_ENTRIES) {
  54. int i;
  55. for (i = 0; i <= UPDATE_INO; i++)
  56. mem_size += (sbi->im[i].ino_num *
  57. sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  58. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  59. } else if (type == EXTENT_CACHE) {
  60. mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
  61. atomic_read(&sbi->total_ext_node) *
  62. sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  64. } else {
  65. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  66. return false;
  67. }
  68. return res;
  69. }
  70. static void clear_node_page_dirty(struct page *page)
  71. {
  72. struct address_space *mapping = page->mapping;
  73. unsigned int long flags;
  74. if (PageDirty(page)) {
  75. spin_lock_irqsave(&mapping->tree_lock, flags);
  76. radix_tree_tag_clear(&mapping->page_tree,
  77. page_index(page),
  78. PAGECACHE_TAG_DIRTY);
  79. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  80. clear_page_dirty_for_io(page);
  81. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  82. }
  83. ClearPageUptodate(page);
  84. }
  85. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  86. {
  87. pgoff_t index = current_nat_addr(sbi, nid);
  88. return get_meta_page(sbi, index);
  89. }
  90. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  91. {
  92. struct page *src_page;
  93. struct page *dst_page;
  94. pgoff_t src_off;
  95. pgoff_t dst_off;
  96. void *src_addr;
  97. void *dst_addr;
  98. struct f2fs_nm_info *nm_i = NM_I(sbi);
  99. src_off = current_nat_addr(sbi, nid);
  100. dst_off = next_nat_addr(sbi, src_off);
  101. /* get current nat block page with lock */
  102. src_page = get_meta_page(sbi, src_off);
  103. dst_page = grab_meta_page(sbi, dst_off);
  104. f2fs_bug_on(sbi, PageDirty(src_page));
  105. src_addr = page_address(src_page);
  106. dst_addr = page_address(dst_page);
  107. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  108. set_page_dirty(dst_page);
  109. f2fs_put_page(src_page, 1);
  110. set_to_next_nat(nm_i, nid);
  111. return dst_page;
  112. }
  113. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  114. {
  115. return radix_tree_lookup(&nm_i->nat_root, n);
  116. }
  117. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  118. nid_t start, unsigned int nr, struct nat_entry **ep)
  119. {
  120. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  121. }
  122. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  123. {
  124. list_del(&e->list);
  125. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  126. nm_i->nat_cnt--;
  127. kmem_cache_free(nat_entry_slab, e);
  128. }
  129. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  130. struct nat_entry *ne)
  131. {
  132. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  133. struct nat_entry_set *head;
  134. if (get_nat_flag(ne, IS_DIRTY))
  135. return;
  136. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  137. if (!head) {
  138. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  139. INIT_LIST_HEAD(&head->entry_list);
  140. INIT_LIST_HEAD(&head->set_list);
  141. head->set = set;
  142. head->entry_cnt = 0;
  143. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  144. }
  145. list_move_tail(&ne->list, &head->entry_list);
  146. nm_i->dirty_nat_cnt++;
  147. head->entry_cnt++;
  148. set_nat_flag(ne, IS_DIRTY, true);
  149. }
  150. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  151. struct nat_entry *ne)
  152. {
  153. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  154. struct nat_entry_set *head;
  155. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  156. if (head) {
  157. list_move_tail(&ne->list, &nm_i->nat_entries);
  158. set_nat_flag(ne, IS_DIRTY, false);
  159. head->entry_cnt--;
  160. nm_i->dirty_nat_cnt--;
  161. }
  162. }
  163. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  164. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  165. {
  166. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  167. start, nr);
  168. }
  169. int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  170. {
  171. struct f2fs_nm_info *nm_i = NM_I(sbi);
  172. struct nat_entry *e;
  173. bool need = false;
  174. down_read(&nm_i->nat_tree_lock);
  175. e = __lookup_nat_cache(nm_i, nid);
  176. if (e) {
  177. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  178. !get_nat_flag(e, HAS_FSYNCED_INODE))
  179. need = true;
  180. }
  181. up_read(&nm_i->nat_tree_lock);
  182. return need;
  183. }
  184. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  185. {
  186. struct f2fs_nm_info *nm_i = NM_I(sbi);
  187. struct nat_entry *e;
  188. bool is_cp = true;
  189. down_read(&nm_i->nat_tree_lock);
  190. e = __lookup_nat_cache(nm_i, nid);
  191. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  192. is_cp = false;
  193. up_read(&nm_i->nat_tree_lock);
  194. return is_cp;
  195. }
  196. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  197. {
  198. struct f2fs_nm_info *nm_i = NM_I(sbi);
  199. struct nat_entry *e;
  200. bool need_update = true;
  201. down_read(&nm_i->nat_tree_lock);
  202. e = __lookup_nat_cache(nm_i, ino);
  203. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  204. (get_nat_flag(e, IS_CHECKPOINTED) ||
  205. get_nat_flag(e, HAS_FSYNCED_INODE)))
  206. need_update = false;
  207. up_read(&nm_i->nat_tree_lock);
  208. return need_update;
  209. }
  210. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  211. {
  212. struct nat_entry *new;
  213. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  214. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  215. memset(new, 0, sizeof(struct nat_entry));
  216. nat_set_nid(new, nid);
  217. nat_reset_flag(new);
  218. list_add_tail(&new->list, &nm_i->nat_entries);
  219. nm_i->nat_cnt++;
  220. return new;
  221. }
  222. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  223. struct f2fs_nat_entry *ne)
  224. {
  225. struct nat_entry *e;
  226. down_write(&nm_i->nat_tree_lock);
  227. e = __lookup_nat_cache(nm_i, nid);
  228. if (!e) {
  229. e = grab_nat_entry(nm_i, nid);
  230. node_info_from_raw_nat(&e->ni, ne);
  231. }
  232. up_write(&nm_i->nat_tree_lock);
  233. }
  234. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  235. block_t new_blkaddr, bool fsync_done)
  236. {
  237. struct f2fs_nm_info *nm_i = NM_I(sbi);
  238. struct nat_entry *e;
  239. down_write(&nm_i->nat_tree_lock);
  240. e = __lookup_nat_cache(nm_i, ni->nid);
  241. if (!e) {
  242. e = grab_nat_entry(nm_i, ni->nid);
  243. copy_node_info(&e->ni, ni);
  244. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  245. } else if (new_blkaddr == NEW_ADDR) {
  246. /*
  247. * when nid is reallocated,
  248. * previous nat entry can be remained in nat cache.
  249. * So, reinitialize it with new information.
  250. */
  251. copy_node_info(&e->ni, ni);
  252. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  253. }
  254. /* sanity check */
  255. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  256. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  257. new_blkaddr == NULL_ADDR);
  258. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  259. new_blkaddr == NEW_ADDR);
  260. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  261. nat_get_blkaddr(e) != NULL_ADDR &&
  262. new_blkaddr == NEW_ADDR);
  263. /* increment version no as node is removed */
  264. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  265. unsigned char version = nat_get_version(e);
  266. nat_set_version(e, inc_node_version(version));
  267. /* in order to reuse the nid */
  268. if (nm_i->next_scan_nid > ni->nid)
  269. nm_i->next_scan_nid = ni->nid;
  270. }
  271. /* change address */
  272. nat_set_blkaddr(e, new_blkaddr);
  273. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  274. set_nat_flag(e, IS_CHECKPOINTED, false);
  275. __set_nat_cache_dirty(nm_i, e);
  276. /* update fsync_mark if its inode nat entry is still alive */
  277. if (ni->nid != ni->ino)
  278. e = __lookup_nat_cache(nm_i, ni->ino);
  279. if (e) {
  280. if (fsync_done && ni->nid == ni->ino)
  281. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  282. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  283. }
  284. up_write(&nm_i->nat_tree_lock);
  285. }
  286. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  287. {
  288. struct f2fs_nm_info *nm_i = NM_I(sbi);
  289. int nr = nr_shrink;
  290. if (!down_write_trylock(&nm_i->nat_tree_lock))
  291. return 0;
  292. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  293. struct nat_entry *ne;
  294. ne = list_first_entry(&nm_i->nat_entries,
  295. struct nat_entry, list);
  296. __del_from_nat_cache(nm_i, ne);
  297. nr_shrink--;
  298. }
  299. up_write(&nm_i->nat_tree_lock);
  300. return nr - nr_shrink;
  301. }
  302. /*
  303. * This function always returns success
  304. */
  305. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  306. {
  307. struct f2fs_nm_info *nm_i = NM_I(sbi);
  308. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  309. struct f2fs_summary_block *sum = curseg->sum_blk;
  310. nid_t start_nid = START_NID(nid);
  311. struct f2fs_nat_block *nat_blk;
  312. struct page *page = NULL;
  313. struct f2fs_nat_entry ne;
  314. struct nat_entry *e;
  315. int i;
  316. ni->nid = nid;
  317. /* Check nat cache */
  318. down_read(&nm_i->nat_tree_lock);
  319. e = __lookup_nat_cache(nm_i, nid);
  320. if (e) {
  321. ni->ino = nat_get_ino(e);
  322. ni->blk_addr = nat_get_blkaddr(e);
  323. ni->version = nat_get_version(e);
  324. }
  325. up_read(&nm_i->nat_tree_lock);
  326. if (e)
  327. return;
  328. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  329. /* Check current segment summary */
  330. mutex_lock(&curseg->curseg_mutex);
  331. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  332. if (i >= 0) {
  333. ne = nat_in_journal(sum, i);
  334. node_info_from_raw_nat(ni, &ne);
  335. }
  336. mutex_unlock(&curseg->curseg_mutex);
  337. if (i >= 0)
  338. goto cache;
  339. /* Fill node_info from nat page */
  340. page = get_current_nat_page(sbi, start_nid);
  341. nat_blk = (struct f2fs_nat_block *)page_address(page);
  342. ne = nat_blk->entries[nid - start_nid];
  343. node_info_from_raw_nat(ni, &ne);
  344. f2fs_put_page(page, 1);
  345. cache:
  346. /* cache nat entry */
  347. cache_nat_entry(NM_I(sbi), nid, &ne);
  348. }
  349. /*
  350. * The maximum depth is four.
  351. * Offset[0] will have raw inode offset.
  352. */
  353. static int get_node_path(struct f2fs_inode_info *fi, long block,
  354. int offset[4], unsigned int noffset[4])
  355. {
  356. const long direct_index = ADDRS_PER_INODE(fi);
  357. const long direct_blks = ADDRS_PER_BLOCK;
  358. const long dptrs_per_blk = NIDS_PER_BLOCK;
  359. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  360. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  361. int n = 0;
  362. int level = 0;
  363. noffset[0] = 0;
  364. if (block < direct_index) {
  365. offset[n] = block;
  366. goto got;
  367. }
  368. block -= direct_index;
  369. if (block < direct_blks) {
  370. offset[n++] = NODE_DIR1_BLOCK;
  371. noffset[n] = 1;
  372. offset[n] = block;
  373. level = 1;
  374. goto got;
  375. }
  376. block -= direct_blks;
  377. if (block < direct_blks) {
  378. offset[n++] = NODE_DIR2_BLOCK;
  379. noffset[n] = 2;
  380. offset[n] = block;
  381. level = 1;
  382. goto got;
  383. }
  384. block -= direct_blks;
  385. if (block < indirect_blks) {
  386. offset[n++] = NODE_IND1_BLOCK;
  387. noffset[n] = 3;
  388. offset[n++] = block / direct_blks;
  389. noffset[n] = 4 + offset[n - 1];
  390. offset[n] = block % direct_blks;
  391. level = 2;
  392. goto got;
  393. }
  394. block -= indirect_blks;
  395. if (block < indirect_blks) {
  396. offset[n++] = NODE_IND2_BLOCK;
  397. noffset[n] = 4 + dptrs_per_blk;
  398. offset[n++] = block / direct_blks;
  399. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  400. offset[n] = block % direct_blks;
  401. level = 2;
  402. goto got;
  403. }
  404. block -= indirect_blks;
  405. if (block < dindirect_blks) {
  406. offset[n++] = NODE_DIND_BLOCK;
  407. noffset[n] = 5 + (dptrs_per_blk * 2);
  408. offset[n++] = block / indirect_blks;
  409. noffset[n] = 6 + (dptrs_per_blk * 2) +
  410. offset[n - 1] * (dptrs_per_blk + 1);
  411. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  412. noffset[n] = 7 + (dptrs_per_blk * 2) +
  413. offset[n - 2] * (dptrs_per_blk + 1) +
  414. offset[n - 1];
  415. offset[n] = block % direct_blks;
  416. level = 3;
  417. goto got;
  418. } else {
  419. BUG();
  420. }
  421. got:
  422. return level;
  423. }
  424. /*
  425. * Caller should call f2fs_put_dnode(dn).
  426. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  427. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  428. * In the case of RDONLY_NODE, we don't need to care about mutex.
  429. */
  430. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  431. {
  432. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  433. struct page *npage[4];
  434. struct page *parent = NULL;
  435. int offset[4];
  436. unsigned int noffset[4];
  437. nid_t nids[4];
  438. int level, i;
  439. int err = 0;
  440. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  441. nids[0] = dn->inode->i_ino;
  442. npage[0] = dn->inode_page;
  443. if (!npage[0]) {
  444. npage[0] = get_node_page(sbi, nids[0]);
  445. if (IS_ERR(npage[0]))
  446. return PTR_ERR(npage[0]);
  447. }
  448. /* if inline_data is set, should not report any block indices */
  449. if (f2fs_has_inline_data(dn->inode) && index) {
  450. err = -ENOENT;
  451. f2fs_put_page(npage[0], 1);
  452. goto release_out;
  453. }
  454. parent = npage[0];
  455. if (level != 0)
  456. nids[1] = get_nid(parent, offset[0], true);
  457. dn->inode_page = npage[0];
  458. dn->inode_page_locked = true;
  459. /* get indirect or direct nodes */
  460. for (i = 1; i <= level; i++) {
  461. bool done = false;
  462. if (!nids[i] && mode == ALLOC_NODE) {
  463. /* alloc new node */
  464. if (!alloc_nid(sbi, &(nids[i]))) {
  465. err = -ENOSPC;
  466. goto release_pages;
  467. }
  468. dn->nid = nids[i];
  469. npage[i] = new_node_page(dn, noffset[i], NULL);
  470. if (IS_ERR(npage[i])) {
  471. alloc_nid_failed(sbi, nids[i]);
  472. err = PTR_ERR(npage[i]);
  473. goto release_pages;
  474. }
  475. set_nid(parent, offset[i - 1], nids[i], i == 1);
  476. alloc_nid_done(sbi, nids[i]);
  477. done = true;
  478. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  479. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  480. if (IS_ERR(npage[i])) {
  481. err = PTR_ERR(npage[i]);
  482. goto release_pages;
  483. }
  484. done = true;
  485. }
  486. if (i == 1) {
  487. dn->inode_page_locked = false;
  488. unlock_page(parent);
  489. } else {
  490. f2fs_put_page(parent, 1);
  491. }
  492. if (!done) {
  493. npage[i] = get_node_page(sbi, nids[i]);
  494. if (IS_ERR(npage[i])) {
  495. err = PTR_ERR(npage[i]);
  496. f2fs_put_page(npage[0], 0);
  497. goto release_out;
  498. }
  499. }
  500. if (i < level) {
  501. parent = npage[i];
  502. nids[i + 1] = get_nid(parent, offset[i], false);
  503. }
  504. }
  505. dn->nid = nids[level];
  506. dn->ofs_in_node = offset[level];
  507. dn->node_page = npage[level];
  508. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  509. return 0;
  510. release_pages:
  511. f2fs_put_page(parent, 1);
  512. if (i > 1)
  513. f2fs_put_page(npage[0], 0);
  514. release_out:
  515. dn->inode_page = NULL;
  516. dn->node_page = NULL;
  517. return err;
  518. }
  519. static void truncate_node(struct dnode_of_data *dn)
  520. {
  521. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  522. struct node_info ni;
  523. get_node_info(sbi, dn->nid, &ni);
  524. if (dn->inode->i_blocks == 0) {
  525. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  526. goto invalidate;
  527. }
  528. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  529. /* Deallocate node address */
  530. invalidate_blocks(sbi, ni.blk_addr);
  531. dec_valid_node_count(sbi, dn->inode);
  532. set_node_addr(sbi, &ni, NULL_ADDR, false);
  533. if (dn->nid == dn->inode->i_ino) {
  534. remove_orphan_inode(sbi, dn->nid);
  535. dec_valid_inode_count(sbi);
  536. } else {
  537. sync_inode_page(dn);
  538. }
  539. invalidate:
  540. clear_node_page_dirty(dn->node_page);
  541. set_sbi_flag(sbi, SBI_IS_DIRTY);
  542. f2fs_put_page(dn->node_page, 1);
  543. invalidate_mapping_pages(NODE_MAPPING(sbi),
  544. dn->node_page->index, dn->node_page->index);
  545. dn->node_page = NULL;
  546. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  547. }
  548. static int truncate_dnode(struct dnode_of_data *dn)
  549. {
  550. struct page *page;
  551. if (dn->nid == 0)
  552. return 1;
  553. /* get direct node */
  554. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  555. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  556. return 1;
  557. else if (IS_ERR(page))
  558. return PTR_ERR(page);
  559. /* Make dnode_of_data for parameter */
  560. dn->node_page = page;
  561. dn->ofs_in_node = 0;
  562. truncate_data_blocks(dn);
  563. truncate_node(dn);
  564. return 1;
  565. }
  566. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  567. int ofs, int depth)
  568. {
  569. struct dnode_of_data rdn = *dn;
  570. struct page *page;
  571. struct f2fs_node *rn;
  572. nid_t child_nid;
  573. unsigned int child_nofs;
  574. int freed = 0;
  575. int i, ret;
  576. if (dn->nid == 0)
  577. return NIDS_PER_BLOCK + 1;
  578. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  579. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  580. if (IS_ERR(page)) {
  581. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  582. return PTR_ERR(page);
  583. }
  584. rn = F2FS_NODE(page);
  585. if (depth < 3) {
  586. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  587. child_nid = le32_to_cpu(rn->in.nid[i]);
  588. if (child_nid == 0)
  589. continue;
  590. rdn.nid = child_nid;
  591. ret = truncate_dnode(&rdn);
  592. if (ret < 0)
  593. goto out_err;
  594. set_nid(page, i, 0, false);
  595. }
  596. } else {
  597. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  598. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  599. child_nid = le32_to_cpu(rn->in.nid[i]);
  600. if (child_nid == 0) {
  601. child_nofs += NIDS_PER_BLOCK + 1;
  602. continue;
  603. }
  604. rdn.nid = child_nid;
  605. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  606. if (ret == (NIDS_PER_BLOCK + 1)) {
  607. set_nid(page, i, 0, false);
  608. child_nofs += ret;
  609. } else if (ret < 0 && ret != -ENOENT) {
  610. goto out_err;
  611. }
  612. }
  613. freed = child_nofs;
  614. }
  615. if (!ofs) {
  616. /* remove current indirect node */
  617. dn->node_page = page;
  618. truncate_node(dn);
  619. freed++;
  620. } else {
  621. f2fs_put_page(page, 1);
  622. }
  623. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  624. return freed;
  625. out_err:
  626. f2fs_put_page(page, 1);
  627. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  628. return ret;
  629. }
  630. static int truncate_partial_nodes(struct dnode_of_data *dn,
  631. struct f2fs_inode *ri, int *offset, int depth)
  632. {
  633. struct page *pages[2];
  634. nid_t nid[3];
  635. nid_t child_nid;
  636. int err = 0;
  637. int i;
  638. int idx = depth - 2;
  639. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  640. if (!nid[0])
  641. return 0;
  642. /* get indirect nodes in the path */
  643. for (i = 0; i < idx + 1; i++) {
  644. /* reference count'll be increased */
  645. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  646. if (IS_ERR(pages[i])) {
  647. err = PTR_ERR(pages[i]);
  648. idx = i - 1;
  649. goto fail;
  650. }
  651. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  652. }
  653. /* free direct nodes linked to a partial indirect node */
  654. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  655. child_nid = get_nid(pages[idx], i, false);
  656. if (!child_nid)
  657. continue;
  658. dn->nid = child_nid;
  659. err = truncate_dnode(dn);
  660. if (err < 0)
  661. goto fail;
  662. set_nid(pages[idx], i, 0, false);
  663. }
  664. if (offset[idx + 1] == 0) {
  665. dn->node_page = pages[idx];
  666. dn->nid = nid[idx];
  667. truncate_node(dn);
  668. } else {
  669. f2fs_put_page(pages[idx], 1);
  670. }
  671. offset[idx]++;
  672. offset[idx + 1] = 0;
  673. idx--;
  674. fail:
  675. for (i = idx; i >= 0; i--)
  676. f2fs_put_page(pages[i], 1);
  677. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  678. return err;
  679. }
  680. /*
  681. * All the block addresses of data and nodes should be nullified.
  682. */
  683. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  684. {
  685. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  686. int err = 0, cont = 1;
  687. int level, offset[4], noffset[4];
  688. unsigned int nofs = 0;
  689. struct f2fs_inode *ri;
  690. struct dnode_of_data dn;
  691. struct page *page;
  692. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  693. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  694. restart:
  695. page = get_node_page(sbi, inode->i_ino);
  696. if (IS_ERR(page)) {
  697. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  698. return PTR_ERR(page);
  699. }
  700. set_new_dnode(&dn, inode, page, NULL, 0);
  701. unlock_page(page);
  702. ri = F2FS_INODE(page);
  703. switch (level) {
  704. case 0:
  705. case 1:
  706. nofs = noffset[1];
  707. break;
  708. case 2:
  709. nofs = noffset[1];
  710. if (!offset[level - 1])
  711. goto skip_partial;
  712. err = truncate_partial_nodes(&dn, ri, offset, level);
  713. if (err < 0 && err != -ENOENT)
  714. goto fail;
  715. nofs += 1 + NIDS_PER_BLOCK;
  716. break;
  717. case 3:
  718. nofs = 5 + 2 * NIDS_PER_BLOCK;
  719. if (!offset[level - 1])
  720. goto skip_partial;
  721. err = truncate_partial_nodes(&dn, ri, offset, level);
  722. if (err < 0 && err != -ENOENT)
  723. goto fail;
  724. break;
  725. default:
  726. BUG();
  727. }
  728. skip_partial:
  729. while (cont) {
  730. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  731. switch (offset[0]) {
  732. case NODE_DIR1_BLOCK:
  733. case NODE_DIR2_BLOCK:
  734. err = truncate_dnode(&dn);
  735. break;
  736. case NODE_IND1_BLOCK:
  737. case NODE_IND2_BLOCK:
  738. err = truncate_nodes(&dn, nofs, offset[1], 2);
  739. break;
  740. case NODE_DIND_BLOCK:
  741. err = truncate_nodes(&dn, nofs, offset[1], 3);
  742. cont = 0;
  743. break;
  744. default:
  745. BUG();
  746. }
  747. if (err < 0 && err != -ENOENT)
  748. goto fail;
  749. if (offset[1] == 0 &&
  750. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  751. lock_page(page);
  752. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  753. f2fs_put_page(page, 1);
  754. goto restart;
  755. }
  756. f2fs_wait_on_page_writeback(page, NODE);
  757. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  758. set_page_dirty(page);
  759. unlock_page(page);
  760. }
  761. offset[1] = 0;
  762. offset[0]++;
  763. nofs += err;
  764. }
  765. fail:
  766. f2fs_put_page(page, 0);
  767. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  768. return err > 0 ? 0 : err;
  769. }
  770. int truncate_xattr_node(struct inode *inode, struct page *page)
  771. {
  772. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  773. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  774. struct dnode_of_data dn;
  775. struct page *npage;
  776. if (!nid)
  777. return 0;
  778. npage = get_node_page(sbi, nid);
  779. if (IS_ERR(npage))
  780. return PTR_ERR(npage);
  781. F2FS_I(inode)->i_xattr_nid = 0;
  782. /* need to do checkpoint during fsync */
  783. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  784. set_new_dnode(&dn, inode, page, npage, nid);
  785. if (page)
  786. dn.inode_page_locked = true;
  787. truncate_node(&dn);
  788. return 0;
  789. }
  790. /*
  791. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  792. * f2fs_unlock_op().
  793. */
  794. void remove_inode_page(struct inode *inode)
  795. {
  796. struct dnode_of_data dn;
  797. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  798. if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
  799. return;
  800. if (truncate_xattr_node(inode, dn.inode_page)) {
  801. f2fs_put_dnode(&dn);
  802. return;
  803. }
  804. /* remove potential inline_data blocks */
  805. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  806. S_ISLNK(inode->i_mode))
  807. truncate_data_blocks_range(&dn, 1);
  808. /* 0 is possible, after f2fs_new_inode() has failed */
  809. f2fs_bug_on(F2FS_I_SB(inode),
  810. inode->i_blocks != 0 && inode->i_blocks != 1);
  811. /* will put inode & node pages */
  812. truncate_node(&dn);
  813. }
  814. struct page *new_inode_page(struct inode *inode)
  815. {
  816. struct dnode_of_data dn;
  817. /* allocate inode page for new inode */
  818. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  819. /* caller should f2fs_put_page(page, 1); */
  820. return new_node_page(&dn, 0, NULL);
  821. }
  822. struct page *new_node_page(struct dnode_of_data *dn,
  823. unsigned int ofs, struct page *ipage)
  824. {
  825. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  826. struct node_info old_ni, new_ni;
  827. struct page *page;
  828. int err;
  829. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  830. return ERR_PTR(-EPERM);
  831. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  832. if (!page)
  833. return ERR_PTR(-ENOMEM);
  834. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  835. err = -ENOSPC;
  836. goto fail;
  837. }
  838. get_node_info(sbi, dn->nid, &old_ni);
  839. /* Reinitialize old_ni with new node page */
  840. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  841. new_ni = old_ni;
  842. new_ni.ino = dn->inode->i_ino;
  843. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  844. f2fs_wait_on_page_writeback(page, NODE);
  845. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  846. set_cold_node(dn->inode, page);
  847. SetPageUptodate(page);
  848. set_page_dirty(page);
  849. if (f2fs_has_xattr_block(ofs))
  850. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  851. dn->node_page = page;
  852. if (ipage)
  853. update_inode(dn->inode, ipage);
  854. else
  855. sync_inode_page(dn);
  856. if (ofs == 0)
  857. inc_valid_inode_count(sbi);
  858. return page;
  859. fail:
  860. clear_node_page_dirty(page);
  861. f2fs_put_page(page, 1);
  862. return ERR_PTR(err);
  863. }
  864. /*
  865. * Caller should do after getting the following values.
  866. * 0: f2fs_put_page(page, 0)
  867. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  868. */
  869. static int read_node_page(struct page *page, int rw)
  870. {
  871. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  872. struct node_info ni;
  873. struct f2fs_io_info fio = {
  874. .sbi = sbi,
  875. .type = NODE,
  876. .rw = rw,
  877. .page = page,
  878. .encrypted_page = NULL,
  879. };
  880. get_node_info(sbi, page->index, &ni);
  881. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  882. ClearPageUptodate(page);
  883. return -ENOENT;
  884. }
  885. if (PageUptodate(page))
  886. return LOCKED_PAGE;
  887. fio.blk_addr = ni.blk_addr;
  888. return f2fs_submit_page_bio(&fio);
  889. }
  890. /*
  891. * Readahead a node page
  892. */
  893. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  894. {
  895. struct page *apage;
  896. int err;
  897. apage = find_get_page(NODE_MAPPING(sbi), nid);
  898. if (apage && PageUptodate(apage)) {
  899. f2fs_put_page(apage, 0);
  900. return;
  901. }
  902. f2fs_put_page(apage, 0);
  903. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  904. if (!apage)
  905. return;
  906. err = read_node_page(apage, READA);
  907. f2fs_put_page(apage, err ? 1 : 0);
  908. }
  909. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  910. {
  911. struct page *page;
  912. int err;
  913. repeat:
  914. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  915. if (!page)
  916. return ERR_PTR(-ENOMEM);
  917. err = read_node_page(page, READ_SYNC);
  918. if (err < 0) {
  919. f2fs_put_page(page, 1);
  920. return ERR_PTR(err);
  921. } else if (err != LOCKED_PAGE) {
  922. lock_page(page);
  923. }
  924. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  925. ClearPageUptodate(page);
  926. f2fs_put_page(page, 1);
  927. return ERR_PTR(-EIO);
  928. }
  929. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  930. f2fs_put_page(page, 1);
  931. goto repeat;
  932. }
  933. return page;
  934. }
  935. /*
  936. * Return a locked page for the desired node page.
  937. * And, readahead MAX_RA_NODE number of node pages.
  938. */
  939. struct page *get_node_page_ra(struct page *parent, int start)
  940. {
  941. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  942. struct blk_plug plug;
  943. struct page *page;
  944. int err, i, end;
  945. nid_t nid;
  946. /* First, try getting the desired direct node. */
  947. nid = get_nid(parent, start, false);
  948. if (!nid)
  949. return ERR_PTR(-ENOENT);
  950. repeat:
  951. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  952. if (!page)
  953. return ERR_PTR(-ENOMEM);
  954. err = read_node_page(page, READ_SYNC);
  955. if (err < 0) {
  956. f2fs_put_page(page, 1);
  957. return ERR_PTR(err);
  958. } else if (err == LOCKED_PAGE) {
  959. goto page_hit;
  960. }
  961. blk_start_plug(&plug);
  962. /* Then, try readahead for siblings of the desired node */
  963. end = start + MAX_RA_NODE;
  964. end = min(end, NIDS_PER_BLOCK);
  965. for (i = start + 1; i < end; i++) {
  966. nid = get_nid(parent, i, false);
  967. if (!nid)
  968. continue;
  969. ra_node_page(sbi, nid);
  970. }
  971. blk_finish_plug(&plug);
  972. lock_page(page);
  973. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  974. f2fs_put_page(page, 1);
  975. goto repeat;
  976. }
  977. page_hit:
  978. if (unlikely(!PageUptodate(page))) {
  979. f2fs_put_page(page, 1);
  980. return ERR_PTR(-EIO);
  981. }
  982. return page;
  983. }
  984. void sync_inode_page(struct dnode_of_data *dn)
  985. {
  986. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  987. update_inode(dn->inode, dn->node_page);
  988. } else if (dn->inode_page) {
  989. if (!dn->inode_page_locked)
  990. lock_page(dn->inode_page);
  991. update_inode(dn->inode, dn->inode_page);
  992. if (!dn->inode_page_locked)
  993. unlock_page(dn->inode_page);
  994. } else {
  995. update_inode_page(dn->inode);
  996. }
  997. }
  998. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  999. struct writeback_control *wbc)
  1000. {
  1001. pgoff_t index, end;
  1002. struct pagevec pvec;
  1003. int step = ino ? 2 : 0;
  1004. int nwritten = 0, wrote = 0;
  1005. pagevec_init(&pvec, 0);
  1006. next_step:
  1007. index = 0;
  1008. end = LONG_MAX;
  1009. while (index <= end) {
  1010. int i, nr_pages;
  1011. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1012. PAGECACHE_TAG_DIRTY,
  1013. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1014. if (nr_pages == 0)
  1015. break;
  1016. for (i = 0; i < nr_pages; i++) {
  1017. struct page *page = pvec.pages[i];
  1018. /*
  1019. * flushing sequence with step:
  1020. * 0. indirect nodes
  1021. * 1. dentry dnodes
  1022. * 2. file dnodes
  1023. */
  1024. if (step == 0 && IS_DNODE(page))
  1025. continue;
  1026. if (step == 1 && (!IS_DNODE(page) ||
  1027. is_cold_node(page)))
  1028. continue;
  1029. if (step == 2 && (!IS_DNODE(page) ||
  1030. !is_cold_node(page)))
  1031. continue;
  1032. /*
  1033. * If an fsync mode,
  1034. * we should not skip writing node pages.
  1035. */
  1036. if (ino && ino_of_node(page) == ino)
  1037. lock_page(page);
  1038. else if (!trylock_page(page))
  1039. continue;
  1040. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1041. continue_unlock:
  1042. unlock_page(page);
  1043. continue;
  1044. }
  1045. if (ino && ino_of_node(page) != ino)
  1046. goto continue_unlock;
  1047. if (!PageDirty(page)) {
  1048. /* someone wrote it for us */
  1049. goto continue_unlock;
  1050. }
  1051. if (!clear_page_dirty_for_io(page))
  1052. goto continue_unlock;
  1053. /* called by fsync() */
  1054. if (ino && IS_DNODE(page)) {
  1055. set_fsync_mark(page, 1);
  1056. if (IS_INODE(page))
  1057. set_dentry_mark(page,
  1058. need_dentry_mark(sbi, ino));
  1059. nwritten++;
  1060. } else {
  1061. set_fsync_mark(page, 0);
  1062. set_dentry_mark(page, 0);
  1063. }
  1064. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1065. unlock_page(page);
  1066. else
  1067. wrote++;
  1068. if (--wbc->nr_to_write == 0)
  1069. break;
  1070. }
  1071. pagevec_release(&pvec);
  1072. cond_resched();
  1073. if (wbc->nr_to_write == 0) {
  1074. step = 2;
  1075. break;
  1076. }
  1077. }
  1078. if (step < 2) {
  1079. step++;
  1080. goto next_step;
  1081. }
  1082. if (wrote)
  1083. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1084. return nwritten;
  1085. }
  1086. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1087. {
  1088. pgoff_t index = 0, end = LONG_MAX;
  1089. struct pagevec pvec;
  1090. int ret2 = 0, ret = 0;
  1091. pagevec_init(&pvec, 0);
  1092. while (index <= end) {
  1093. int i, nr_pages;
  1094. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1095. PAGECACHE_TAG_WRITEBACK,
  1096. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1097. if (nr_pages == 0)
  1098. break;
  1099. for (i = 0; i < nr_pages; i++) {
  1100. struct page *page = pvec.pages[i];
  1101. /* until radix tree lookup accepts end_index */
  1102. if (unlikely(page->index > end))
  1103. continue;
  1104. if (ino && ino_of_node(page) == ino) {
  1105. f2fs_wait_on_page_writeback(page, NODE);
  1106. if (TestClearPageError(page))
  1107. ret = -EIO;
  1108. }
  1109. }
  1110. pagevec_release(&pvec);
  1111. cond_resched();
  1112. }
  1113. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1114. ret2 = -ENOSPC;
  1115. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1116. ret2 = -EIO;
  1117. if (!ret)
  1118. ret = ret2;
  1119. return ret;
  1120. }
  1121. static int f2fs_write_node_page(struct page *page,
  1122. struct writeback_control *wbc)
  1123. {
  1124. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1125. nid_t nid;
  1126. struct node_info ni;
  1127. struct f2fs_io_info fio = {
  1128. .sbi = sbi,
  1129. .type = NODE,
  1130. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1131. .page = page,
  1132. .encrypted_page = NULL,
  1133. };
  1134. trace_f2fs_writepage(page, NODE);
  1135. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1136. goto redirty_out;
  1137. if (unlikely(f2fs_cp_error(sbi)))
  1138. goto redirty_out;
  1139. f2fs_wait_on_page_writeback(page, NODE);
  1140. /* get old block addr of this node page */
  1141. nid = nid_of_node(page);
  1142. f2fs_bug_on(sbi, page->index != nid);
  1143. get_node_info(sbi, nid, &ni);
  1144. /* This page is already truncated */
  1145. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1146. ClearPageUptodate(page);
  1147. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1148. unlock_page(page);
  1149. return 0;
  1150. }
  1151. if (wbc->for_reclaim) {
  1152. if (!down_read_trylock(&sbi->node_write))
  1153. goto redirty_out;
  1154. } else {
  1155. down_read(&sbi->node_write);
  1156. }
  1157. set_page_writeback(page);
  1158. fio.blk_addr = ni.blk_addr;
  1159. write_node_page(nid, &fio);
  1160. set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
  1161. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1162. up_read(&sbi->node_write);
  1163. unlock_page(page);
  1164. if (wbc->for_reclaim)
  1165. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1166. return 0;
  1167. redirty_out:
  1168. redirty_page_for_writepage(wbc, page);
  1169. return AOP_WRITEPAGE_ACTIVATE;
  1170. }
  1171. static int f2fs_write_node_pages(struct address_space *mapping,
  1172. struct writeback_control *wbc)
  1173. {
  1174. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1175. long diff;
  1176. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1177. /* balancing f2fs's metadata in background */
  1178. f2fs_balance_fs_bg(sbi);
  1179. /* collect a number of dirty node pages and write together */
  1180. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1181. goto skip_write;
  1182. diff = nr_pages_to_write(sbi, NODE, wbc);
  1183. wbc->sync_mode = WB_SYNC_NONE;
  1184. sync_node_pages(sbi, 0, wbc);
  1185. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1186. return 0;
  1187. skip_write:
  1188. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1189. return 0;
  1190. }
  1191. static int f2fs_set_node_page_dirty(struct page *page)
  1192. {
  1193. trace_f2fs_set_page_dirty(page, NODE);
  1194. SetPageUptodate(page);
  1195. if (!PageDirty(page)) {
  1196. __set_page_dirty_nobuffers(page);
  1197. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1198. SetPagePrivate(page);
  1199. f2fs_trace_pid(page);
  1200. return 1;
  1201. }
  1202. return 0;
  1203. }
  1204. /*
  1205. * Structure of the f2fs node operations
  1206. */
  1207. const struct address_space_operations f2fs_node_aops = {
  1208. .writepage = f2fs_write_node_page,
  1209. .writepages = f2fs_write_node_pages,
  1210. .set_page_dirty = f2fs_set_node_page_dirty,
  1211. .invalidatepage = f2fs_invalidate_page,
  1212. .releasepage = f2fs_release_page,
  1213. };
  1214. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1215. nid_t n)
  1216. {
  1217. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1218. }
  1219. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1220. struct free_nid *i)
  1221. {
  1222. list_del(&i->list);
  1223. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1224. }
  1225. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1226. {
  1227. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1228. struct free_nid *i;
  1229. struct nat_entry *ne;
  1230. bool allocated = false;
  1231. if (!available_free_memory(sbi, FREE_NIDS))
  1232. return -1;
  1233. /* 0 nid should not be used */
  1234. if (unlikely(nid == 0))
  1235. return 0;
  1236. if (build) {
  1237. /* do not add allocated nids */
  1238. down_read(&nm_i->nat_tree_lock);
  1239. ne = __lookup_nat_cache(nm_i, nid);
  1240. if (ne &&
  1241. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1242. nat_get_blkaddr(ne) != NULL_ADDR))
  1243. allocated = true;
  1244. up_read(&nm_i->nat_tree_lock);
  1245. if (allocated)
  1246. return 0;
  1247. }
  1248. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1249. i->nid = nid;
  1250. i->state = NID_NEW;
  1251. if (radix_tree_preload(GFP_NOFS)) {
  1252. kmem_cache_free(free_nid_slab, i);
  1253. return 0;
  1254. }
  1255. spin_lock(&nm_i->free_nid_list_lock);
  1256. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1257. spin_unlock(&nm_i->free_nid_list_lock);
  1258. radix_tree_preload_end();
  1259. kmem_cache_free(free_nid_slab, i);
  1260. return 0;
  1261. }
  1262. list_add_tail(&i->list, &nm_i->free_nid_list);
  1263. nm_i->fcnt++;
  1264. spin_unlock(&nm_i->free_nid_list_lock);
  1265. radix_tree_preload_end();
  1266. return 1;
  1267. }
  1268. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1269. {
  1270. struct free_nid *i;
  1271. bool need_free = false;
  1272. spin_lock(&nm_i->free_nid_list_lock);
  1273. i = __lookup_free_nid_list(nm_i, nid);
  1274. if (i && i->state == NID_NEW) {
  1275. __del_from_free_nid_list(nm_i, i);
  1276. nm_i->fcnt--;
  1277. need_free = true;
  1278. }
  1279. spin_unlock(&nm_i->free_nid_list_lock);
  1280. if (need_free)
  1281. kmem_cache_free(free_nid_slab, i);
  1282. }
  1283. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1284. struct page *nat_page, nid_t start_nid)
  1285. {
  1286. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1287. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1288. block_t blk_addr;
  1289. int i;
  1290. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1291. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1292. if (unlikely(start_nid >= nm_i->max_nid))
  1293. break;
  1294. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1295. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1296. if (blk_addr == NULL_ADDR) {
  1297. if (add_free_nid(sbi, start_nid, true) < 0)
  1298. break;
  1299. }
  1300. }
  1301. }
  1302. static void build_free_nids(struct f2fs_sb_info *sbi)
  1303. {
  1304. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1305. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1306. struct f2fs_summary_block *sum = curseg->sum_blk;
  1307. int i = 0;
  1308. nid_t nid = nm_i->next_scan_nid;
  1309. /* Enough entries */
  1310. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1311. return;
  1312. /* readahead nat pages to be scanned */
  1313. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1314. while (1) {
  1315. struct page *page = get_current_nat_page(sbi, nid);
  1316. scan_nat_page(sbi, page, nid);
  1317. f2fs_put_page(page, 1);
  1318. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1319. if (unlikely(nid >= nm_i->max_nid))
  1320. nid = 0;
  1321. if (++i >= FREE_NID_PAGES)
  1322. break;
  1323. }
  1324. /* go to the next free nat pages to find free nids abundantly */
  1325. nm_i->next_scan_nid = nid;
  1326. /* find free nids from current sum_pages */
  1327. mutex_lock(&curseg->curseg_mutex);
  1328. for (i = 0; i < nats_in_cursum(sum); i++) {
  1329. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1330. nid = le32_to_cpu(nid_in_journal(sum, i));
  1331. if (addr == NULL_ADDR)
  1332. add_free_nid(sbi, nid, true);
  1333. else
  1334. remove_free_nid(nm_i, nid);
  1335. }
  1336. mutex_unlock(&curseg->curseg_mutex);
  1337. }
  1338. /*
  1339. * If this function returns success, caller can obtain a new nid
  1340. * from second parameter of this function.
  1341. * The returned nid could be used ino as well as nid when inode is created.
  1342. */
  1343. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1344. {
  1345. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1346. struct free_nid *i = NULL;
  1347. retry:
  1348. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1349. return false;
  1350. spin_lock(&nm_i->free_nid_list_lock);
  1351. /* We should not use stale free nids created by build_free_nids */
  1352. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1353. struct node_info ni;
  1354. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1355. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1356. if (i->state == NID_NEW)
  1357. break;
  1358. f2fs_bug_on(sbi, i->state != NID_NEW);
  1359. *nid = i->nid;
  1360. i->state = NID_ALLOC;
  1361. nm_i->fcnt--;
  1362. spin_unlock(&nm_i->free_nid_list_lock);
  1363. /* check nid is allocated already */
  1364. get_node_info(sbi, *nid, &ni);
  1365. if (ni.blk_addr != NULL_ADDR) {
  1366. alloc_nid_done(sbi, *nid);
  1367. goto retry;
  1368. }
  1369. return true;
  1370. }
  1371. spin_unlock(&nm_i->free_nid_list_lock);
  1372. /* Let's scan nat pages and its caches to get free nids */
  1373. mutex_lock(&nm_i->build_lock);
  1374. build_free_nids(sbi);
  1375. mutex_unlock(&nm_i->build_lock);
  1376. goto retry;
  1377. }
  1378. /*
  1379. * alloc_nid() should be called prior to this function.
  1380. */
  1381. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1382. {
  1383. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1384. struct free_nid *i;
  1385. spin_lock(&nm_i->free_nid_list_lock);
  1386. i = __lookup_free_nid_list(nm_i, nid);
  1387. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1388. __del_from_free_nid_list(nm_i, i);
  1389. spin_unlock(&nm_i->free_nid_list_lock);
  1390. kmem_cache_free(free_nid_slab, i);
  1391. }
  1392. /*
  1393. * alloc_nid() should be called prior to this function.
  1394. */
  1395. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1396. {
  1397. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1398. struct free_nid *i;
  1399. bool need_free = false;
  1400. if (!nid)
  1401. return;
  1402. spin_lock(&nm_i->free_nid_list_lock);
  1403. i = __lookup_free_nid_list(nm_i, nid);
  1404. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1405. if (!available_free_memory(sbi, FREE_NIDS)) {
  1406. __del_from_free_nid_list(nm_i, i);
  1407. need_free = true;
  1408. } else {
  1409. i->state = NID_NEW;
  1410. nm_i->fcnt++;
  1411. }
  1412. spin_unlock(&nm_i->free_nid_list_lock);
  1413. if (need_free)
  1414. kmem_cache_free(free_nid_slab, i);
  1415. }
  1416. int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  1417. {
  1418. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1419. struct free_nid *i, *next;
  1420. int nr = nr_shrink;
  1421. if (!mutex_trylock(&nm_i->build_lock))
  1422. return 0;
  1423. spin_lock(&nm_i->free_nid_list_lock);
  1424. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  1425. if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
  1426. break;
  1427. if (i->state == NID_ALLOC)
  1428. continue;
  1429. __del_from_free_nid_list(nm_i, i);
  1430. nm_i->fcnt--;
  1431. spin_unlock(&nm_i->free_nid_list_lock);
  1432. kmem_cache_free(free_nid_slab, i);
  1433. nr_shrink--;
  1434. spin_lock(&nm_i->free_nid_list_lock);
  1435. }
  1436. spin_unlock(&nm_i->free_nid_list_lock);
  1437. mutex_unlock(&nm_i->build_lock);
  1438. return nr - nr_shrink;
  1439. }
  1440. void recover_inline_xattr(struct inode *inode, struct page *page)
  1441. {
  1442. void *src_addr, *dst_addr;
  1443. size_t inline_size;
  1444. struct page *ipage;
  1445. struct f2fs_inode *ri;
  1446. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1447. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1448. ri = F2FS_INODE(page);
  1449. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1450. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1451. goto update_inode;
  1452. }
  1453. dst_addr = inline_xattr_addr(ipage);
  1454. src_addr = inline_xattr_addr(page);
  1455. inline_size = inline_xattr_size(inode);
  1456. f2fs_wait_on_page_writeback(ipage, NODE);
  1457. memcpy(dst_addr, src_addr, inline_size);
  1458. update_inode:
  1459. update_inode(inode, ipage);
  1460. f2fs_put_page(ipage, 1);
  1461. }
  1462. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1463. {
  1464. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1465. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1466. nid_t new_xnid = nid_of_node(page);
  1467. struct node_info ni;
  1468. /* 1: invalidate the previous xattr nid */
  1469. if (!prev_xnid)
  1470. goto recover_xnid;
  1471. /* Deallocate node address */
  1472. get_node_info(sbi, prev_xnid, &ni);
  1473. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1474. invalidate_blocks(sbi, ni.blk_addr);
  1475. dec_valid_node_count(sbi, inode);
  1476. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1477. recover_xnid:
  1478. /* 2: allocate new xattr nid */
  1479. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1480. f2fs_bug_on(sbi, 1);
  1481. remove_free_nid(NM_I(sbi), new_xnid);
  1482. get_node_info(sbi, new_xnid, &ni);
  1483. ni.ino = inode->i_ino;
  1484. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1485. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1486. /* 3: update xattr blkaddr */
  1487. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1488. set_node_addr(sbi, &ni, blkaddr, false);
  1489. update_inode_page(inode);
  1490. }
  1491. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1492. {
  1493. struct f2fs_inode *src, *dst;
  1494. nid_t ino = ino_of_node(page);
  1495. struct node_info old_ni, new_ni;
  1496. struct page *ipage;
  1497. get_node_info(sbi, ino, &old_ni);
  1498. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1499. return -EINVAL;
  1500. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1501. if (!ipage)
  1502. return -ENOMEM;
  1503. /* Should not use this inode from free nid list */
  1504. remove_free_nid(NM_I(sbi), ino);
  1505. SetPageUptodate(ipage);
  1506. fill_node_footer(ipage, ino, ino, 0, true);
  1507. src = F2FS_INODE(page);
  1508. dst = F2FS_INODE(ipage);
  1509. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1510. dst->i_size = 0;
  1511. dst->i_blocks = cpu_to_le64(1);
  1512. dst->i_links = cpu_to_le32(1);
  1513. dst->i_xattr_nid = 0;
  1514. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1515. new_ni = old_ni;
  1516. new_ni.ino = ino;
  1517. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1518. WARN_ON(1);
  1519. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1520. inc_valid_inode_count(sbi);
  1521. set_page_dirty(ipage);
  1522. f2fs_put_page(ipage, 1);
  1523. return 0;
  1524. }
  1525. int restore_node_summary(struct f2fs_sb_info *sbi,
  1526. unsigned int segno, struct f2fs_summary_block *sum)
  1527. {
  1528. struct f2fs_node *rn;
  1529. struct f2fs_summary *sum_entry;
  1530. block_t addr;
  1531. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1532. int i, idx, last_offset, nrpages;
  1533. /* scan the node segment */
  1534. last_offset = sbi->blocks_per_seg;
  1535. addr = START_BLOCK(sbi, segno);
  1536. sum_entry = &sum->entries[0];
  1537. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1538. nrpages = min(last_offset - i, bio_blocks);
  1539. /* readahead node pages */
  1540. ra_meta_pages(sbi, addr, nrpages, META_POR);
  1541. for (idx = addr; idx < addr + nrpages; idx++) {
  1542. struct page *page = get_meta_page(sbi, idx);
  1543. rn = F2FS_NODE(page);
  1544. sum_entry->nid = rn->footer.nid;
  1545. sum_entry->version = 0;
  1546. sum_entry->ofs_in_node = 0;
  1547. sum_entry++;
  1548. f2fs_put_page(page, 1);
  1549. }
  1550. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1551. addr + nrpages);
  1552. }
  1553. return 0;
  1554. }
  1555. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1556. {
  1557. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1558. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1559. struct f2fs_summary_block *sum = curseg->sum_blk;
  1560. int i;
  1561. mutex_lock(&curseg->curseg_mutex);
  1562. for (i = 0; i < nats_in_cursum(sum); i++) {
  1563. struct nat_entry *ne;
  1564. struct f2fs_nat_entry raw_ne;
  1565. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1566. raw_ne = nat_in_journal(sum, i);
  1567. down_write(&nm_i->nat_tree_lock);
  1568. ne = __lookup_nat_cache(nm_i, nid);
  1569. if (!ne) {
  1570. ne = grab_nat_entry(nm_i, nid);
  1571. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1572. }
  1573. __set_nat_cache_dirty(nm_i, ne);
  1574. up_write(&nm_i->nat_tree_lock);
  1575. }
  1576. update_nats_in_cursum(sum, -i);
  1577. mutex_unlock(&curseg->curseg_mutex);
  1578. }
  1579. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1580. struct list_head *head, int max)
  1581. {
  1582. struct nat_entry_set *cur;
  1583. if (nes->entry_cnt >= max)
  1584. goto add_out;
  1585. list_for_each_entry(cur, head, set_list) {
  1586. if (cur->entry_cnt >= nes->entry_cnt) {
  1587. list_add(&nes->set_list, cur->set_list.prev);
  1588. return;
  1589. }
  1590. }
  1591. add_out:
  1592. list_add_tail(&nes->set_list, head);
  1593. }
  1594. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1595. struct nat_entry_set *set)
  1596. {
  1597. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1598. struct f2fs_summary_block *sum = curseg->sum_blk;
  1599. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1600. bool to_journal = true;
  1601. struct f2fs_nat_block *nat_blk;
  1602. struct nat_entry *ne, *cur;
  1603. struct page *page = NULL;
  1604. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1605. /*
  1606. * there are two steps to flush nat entries:
  1607. * #1, flush nat entries to journal in current hot data summary block.
  1608. * #2, flush nat entries to nat page.
  1609. */
  1610. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1611. to_journal = false;
  1612. if (to_journal) {
  1613. mutex_lock(&curseg->curseg_mutex);
  1614. } else {
  1615. page = get_next_nat_page(sbi, start_nid);
  1616. nat_blk = page_address(page);
  1617. f2fs_bug_on(sbi, !nat_blk);
  1618. }
  1619. /* flush dirty nats in nat entry set */
  1620. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1621. struct f2fs_nat_entry *raw_ne;
  1622. nid_t nid = nat_get_nid(ne);
  1623. int offset;
  1624. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1625. continue;
  1626. if (to_journal) {
  1627. offset = lookup_journal_in_cursum(sum,
  1628. NAT_JOURNAL, nid, 1);
  1629. f2fs_bug_on(sbi, offset < 0);
  1630. raw_ne = &nat_in_journal(sum, offset);
  1631. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1632. } else {
  1633. raw_ne = &nat_blk->entries[nid - start_nid];
  1634. }
  1635. raw_nat_from_node_info(raw_ne, &ne->ni);
  1636. down_write(&NM_I(sbi)->nat_tree_lock);
  1637. nat_reset_flag(ne);
  1638. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1639. up_write(&NM_I(sbi)->nat_tree_lock);
  1640. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1641. add_free_nid(sbi, nid, false);
  1642. }
  1643. if (to_journal)
  1644. mutex_unlock(&curseg->curseg_mutex);
  1645. else
  1646. f2fs_put_page(page, 1);
  1647. f2fs_bug_on(sbi, set->entry_cnt);
  1648. down_write(&nm_i->nat_tree_lock);
  1649. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1650. up_write(&nm_i->nat_tree_lock);
  1651. kmem_cache_free(nat_entry_set_slab, set);
  1652. }
  1653. /*
  1654. * This function is called during the checkpointing process.
  1655. */
  1656. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1657. {
  1658. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1659. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1660. struct f2fs_summary_block *sum = curseg->sum_blk;
  1661. struct nat_entry_set *setvec[SETVEC_SIZE];
  1662. struct nat_entry_set *set, *tmp;
  1663. unsigned int found;
  1664. nid_t set_idx = 0;
  1665. LIST_HEAD(sets);
  1666. if (!nm_i->dirty_nat_cnt)
  1667. return;
  1668. /*
  1669. * if there are no enough space in journal to store dirty nat
  1670. * entries, remove all entries from journal and merge them
  1671. * into nat entry set.
  1672. */
  1673. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1674. remove_nats_in_journal(sbi);
  1675. down_write(&nm_i->nat_tree_lock);
  1676. while ((found = __gang_lookup_nat_set(nm_i,
  1677. set_idx, SETVEC_SIZE, setvec))) {
  1678. unsigned idx;
  1679. set_idx = setvec[found - 1]->set + 1;
  1680. for (idx = 0; idx < found; idx++)
  1681. __adjust_nat_entry_set(setvec[idx], &sets,
  1682. MAX_NAT_JENTRIES(sum));
  1683. }
  1684. up_write(&nm_i->nat_tree_lock);
  1685. /* flush dirty nats in nat entry set */
  1686. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1687. __flush_nat_entry_set(sbi, set);
  1688. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1689. }
  1690. static int init_node_manager(struct f2fs_sb_info *sbi)
  1691. {
  1692. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1693. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1694. unsigned char *version_bitmap;
  1695. unsigned int nat_segs, nat_blocks;
  1696. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1697. /* segment_count_nat includes pair segment so divide to 2. */
  1698. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1699. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1700. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1701. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1702. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1703. nm_i->fcnt = 0;
  1704. nm_i->nat_cnt = 0;
  1705. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1706. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1707. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1708. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  1709. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  1710. INIT_LIST_HEAD(&nm_i->nat_entries);
  1711. mutex_init(&nm_i->build_lock);
  1712. spin_lock_init(&nm_i->free_nid_list_lock);
  1713. init_rwsem(&nm_i->nat_tree_lock);
  1714. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1715. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1716. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1717. if (!version_bitmap)
  1718. return -EFAULT;
  1719. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1720. GFP_KERNEL);
  1721. if (!nm_i->nat_bitmap)
  1722. return -ENOMEM;
  1723. return 0;
  1724. }
  1725. int build_node_manager(struct f2fs_sb_info *sbi)
  1726. {
  1727. int err;
  1728. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1729. if (!sbi->nm_info)
  1730. return -ENOMEM;
  1731. err = init_node_manager(sbi);
  1732. if (err)
  1733. return err;
  1734. build_free_nids(sbi);
  1735. return 0;
  1736. }
  1737. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1738. {
  1739. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1740. struct free_nid *i, *next_i;
  1741. struct nat_entry *natvec[NATVEC_SIZE];
  1742. struct nat_entry_set *setvec[SETVEC_SIZE];
  1743. nid_t nid = 0;
  1744. unsigned int found;
  1745. if (!nm_i)
  1746. return;
  1747. /* destroy free nid list */
  1748. spin_lock(&nm_i->free_nid_list_lock);
  1749. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1750. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1751. __del_from_free_nid_list(nm_i, i);
  1752. nm_i->fcnt--;
  1753. spin_unlock(&nm_i->free_nid_list_lock);
  1754. kmem_cache_free(free_nid_slab, i);
  1755. spin_lock(&nm_i->free_nid_list_lock);
  1756. }
  1757. f2fs_bug_on(sbi, nm_i->fcnt);
  1758. spin_unlock(&nm_i->free_nid_list_lock);
  1759. /* destroy nat cache */
  1760. down_write(&nm_i->nat_tree_lock);
  1761. while ((found = __gang_lookup_nat_cache(nm_i,
  1762. nid, NATVEC_SIZE, natvec))) {
  1763. unsigned idx;
  1764. nid = nat_get_nid(natvec[found - 1]) + 1;
  1765. for (idx = 0; idx < found; idx++)
  1766. __del_from_nat_cache(nm_i, natvec[idx]);
  1767. }
  1768. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1769. /* destroy nat set cache */
  1770. nid = 0;
  1771. while ((found = __gang_lookup_nat_set(nm_i,
  1772. nid, SETVEC_SIZE, setvec))) {
  1773. unsigned idx;
  1774. nid = setvec[found - 1]->set + 1;
  1775. for (idx = 0; idx < found; idx++) {
  1776. /* entry_cnt is not zero, when cp_error was occurred */
  1777. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  1778. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  1779. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  1780. }
  1781. }
  1782. up_write(&nm_i->nat_tree_lock);
  1783. kfree(nm_i->nat_bitmap);
  1784. sbi->nm_info = NULL;
  1785. kfree(nm_i);
  1786. }
  1787. int __init create_node_manager_caches(void)
  1788. {
  1789. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1790. sizeof(struct nat_entry));
  1791. if (!nat_entry_slab)
  1792. goto fail;
  1793. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1794. sizeof(struct free_nid));
  1795. if (!free_nid_slab)
  1796. goto destroy_nat_entry;
  1797. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1798. sizeof(struct nat_entry_set));
  1799. if (!nat_entry_set_slab)
  1800. goto destroy_free_nid;
  1801. return 0;
  1802. destroy_free_nid:
  1803. kmem_cache_destroy(free_nid_slab);
  1804. destroy_nat_entry:
  1805. kmem_cache_destroy(nat_entry_slab);
  1806. fail:
  1807. return -ENOMEM;
  1808. }
  1809. void destroy_node_manager_caches(void)
  1810. {
  1811. kmem_cache_destroy(nat_entry_set_slab);
  1812. kmem_cache_destroy(free_nid_slab);
  1813. kmem_cache_destroy(nat_entry_slab);
  1814. }