sched.c 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/smp_lock.h>
  36. #include <asm/mmu_context.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/capability.h>
  39. #include <linux/completion.h>
  40. #include <linux/kernel_stat.h>
  41. #include <linux/debug_locks.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/security.h>
  44. #include <linux/notifier.h>
  45. #include <linux/profile.h>
  46. #include <linux/freezer.h>
  47. #include <linux/vmalloc.h>
  48. #include <linux/blkdev.h>
  49. #include <linux/delay.h>
  50. #include <linux/pid_namespace.h>
  51. #include <linux/smp.h>
  52. #include <linux/threads.h>
  53. #include <linux/timer.h>
  54. #include <linux/rcupdate.h>
  55. #include <linux/cpu.h>
  56. #include <linux/cpuset.h>
  57. #include <linux/percpu.h>
  58. #include <linux/kthread.h>
  59. #include <linux/proc_fs.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/sysctl.h>
  62. #include <linux/syscalls.h>
  63. #include <linux/times.h>
  64. #include <linux/tsacct_kern.h>
  65. #include <linux/kprobes.h>
  66. #include <linux/delayacct.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_GROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. #ifdef CONFIG_CGROUP_SCHED
  209. struct cgroup_subsys_state css;
  210. #endif
  211. #ifdef CONFIG_USER_SCHED
  212. uid_t uid;
  213. #endif
  214. #ifdef CONFIG_FAIR_GROUP_SCHED
  215. /* schedulable entities of this group on each cpu */
  216. struct sched_entity **se;
  217. /* runqueue "owned" by this group on each cpu */
  218. struct cfs_rq **cfs_rq;
  219. unsigned long shares;
  220. #endif
  221. #ifdef CONFIG_RT_GROUP_SCHED
  222. struct sched_rt_entity **rt_se;
  223. struct rt_rq **rt_rq;
  224. struct rt_bandwidth rt_bandwidth;
  225. #endif
  226. struct rcu_head rcu;
  227. struct list_head list;
  228. struct task_group *parent;
  229. struct list_head siblings;
  230. struct list_head children;
  231. };
  232. #ifdef CONFIG_USER_SCHED
  233. /* Helper function to pass uid information to create_sched_user() */
  234. void set_tg_uid(struct user_struct *user)
  235. {
  236. user->tg->uid = user->uid;
  237. }
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_USER_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_USER_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_SMP
  263. static int root_task_group_empty(void)
  264. {
  265. return list_empty(&root_task_group.children);
  266. }
  267. #endif
  268. #ifdef CONFIG_USER_SCHED
  269. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  270. #else /* !CONFIG_USER_SCHED */
  271. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  272. #endif /* CONFIG_USER_SCHED */
  273. /*
  274. * A weight of 0 or 1 can cause arithmetics problems.
  275. * A weight of a cfs_rq is the sum of weights of which entities
  276. * are queued on this cfs_rq, so a weight of a entity should not be
  277. * too large, so as the shares value of a task group.
  278. * (The default weight is 1024 - so there's no practical
  279. * limitation from this.)
  280. */
  281. #define MIN_SHARES 2
  282. #define MAX_SHARES (1UL << 18)
  283. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  284. #endif
  285. /* Default task group.
  286. * Every task in system belong to this group at bootup.
  287. */
  288. struct task_group init_task_group;
  289. /* return group to which a task belongs */
  290. static inline struct task_group *task_group(struct task_struct *p)
  291. {
  292. struct task_group *tg;
  293. #ifdef CONFIG_USER_SCHED
  294. rcu_read_lock();
  295. tg = __task_cred(p)->user->tg;
  296. rcu_read_unlock();
  297. #elif defined(CONFIG_CGROUP_SCHED)
  298. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  299. struct task_group, css);
  300. #else
  301. tg = &init_task_group;
  302. #endif
  303. return tg;
  304. }
  305. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  307. {
  308. #ifdef CONFIG_FAIR_GROUP_SCHED
  309. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  310. p->se.parent = task_group(p)->se[cpu];
  311. #endif
  312. #ifdef CONFIG_RT_GROUP_SCHED
  313. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  314. p->rt.parent = task_group(p)->rt_se[cpu];
  315. #endif
  316. }
  317. #else
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  319. static inline struct task_group *task_group(struct task_struct *p)
  320. {
  321. return NULL;
  322. }
  323. #endif /* CONFIG_GROUP_SCHED */
  324. /* CFS-related fields in a runqueue */
  325. struct cfs_rq {
  326. struct load_weight load;
  327. unsigned long nr_running;
  328. u64 exec_clock;
  329. u64 min_vruntime;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next, *last;
  339. unsigned int nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. struct {
  381. int curr; /* highest queued rt task prio */
  382. #ifdef CONFIG_SMP
  383. int next; /* next highest */
  384. #endif
  385. } highest_prio;
  386. #endif
  387. #ifdef CONFIG_SMP
  388. unsigned long rt_nr_migratory;
  389. unsigned long rt_nr_total;
  390. int overloaded;
  391. struct plist_head pushable_tasks;
  392. #endif
  393. int rt_throttled;
  394. u64 rt_time;
  395. u64 rt_runtime;
  396. /* Nests inside the rq lock: */
  397. spinlock_t rt_runtime_lock;
  398. #ifdef CONFIG_RT_GROUP_SCHED
  399. unsigned long rt_nr_boosted;
  400. struct rq *rq;
  401. struct list_head leaf_rt_rq_list;
  402. struct task_group *tg;
  403. struct sched_rt_entity *rt_se;
  404. #endif
  405. };
  406. #ifdef CONFIG_SMP
  407. /*
  408. * We add the notion of a root-domain which will be used to define per-domain
  409. * variables. Each exclusive cpuset essentially defines an island domain by
  410. * fully partitioning the member cpus from any other cpuset. Whenever a new
  411. * exclusive cpuset is created, we also create and attach a new root-domain
  412. * object.
  413. *
  414. */
  415. struct root_domain {
  416. atomic_t refcount;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /*
  420. * The "RT overload" flag: it gets set if a CPU has more than
  421. * one runnable RT task.
  422. */
  423. cpumask_var_t rto_mask;
  424. atomic_t rto_count;
  425. #ifdef CONFIG_SMP
  426. struct cpupri cpupri;
  427. #endif
  428. };
  429. /*
  430. * By default the system creates a single root-domain with all cpus as
  431. * members (mimicking the global state we have today).
  432. */
  433. static struct root_domain def_root_domain;
  434. #endif
  435. /*
  436. * This is the main, per-CPU runqueue data structure.
  437. *
  438. * Locking rule: those places that want to lock multiple runqueues
  439. * (such as the load balancing or the thread migration code), lock
  440. * acquire operations must be ordered by ascending &runqueue.
  441. */
  442. struct rq {
  443. /* runqueue lock: */
  444. spinlock_t lock;
  445. /*
  446. * nr_running and cpu_load should be in the same cacheline because
  447. * remote CPUs use both these fields when doing load calculation.
  448. */
  449. unsigned long nr_running;
  450. #define CPU_LOAD_IDX_MAX 5
  451. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  452. #ifdef CONFIG_NO_HZ
  453. unsigned char in_nohz_recently;
  454. #endif
  455. /* capture load from *all* tasks on this cpu: */
  456. struct load_weight load;
  457. unsigned long nr_load_updates;
  458. u64 nr_switches;
  459. struct cfs_rq cfs;
  460. struct rt_rq rt;
  461. #ifdef CONFIG_FAIR_GROUP_SCHED
  462. /* list of leaf cfs_rq on this cpu: */
  463. struct list_head leaf_cfs_rq_list;
  464. #endif
  465. #ifdef CONFIG_RT_GROUP_SCHED
  466. struct list_head leaf_rt_rq_list;
  467. #endif
  468. /*
  469. * This is part of a global counter where only the total sum
  470. * over all CPUs matters. A task can increase this counter on
  471. * one CPU and if it got migrated afterwards it may decrease
  472. * it on another CPU. Always updated under the runqueue lock:
  473. */
  474. unsigned long nr_uninterruptible;
  475. struct task_struct *curr, *idle;
  476. unsigned long next_balance;
  477. struct mm_struct *prev_mm;
  478. u64 clock;
  479. atomic_t nr_iowait;
  480. #ifdef CONFIG_SMP
  481. struct root_domain *rd;
  482. struct sched_domain *sd;
  483. unsigned char idle_at_tick;
  484. /* For active balancing */
  485. int post_schedule;
  486. int active_balance;
  487. int push_cpu;
  488. /* cpu of this runqueue: */
  489. int cpu;
  490. int online;
  491. unsigned long avg_load_per_task;
  492. struct task_struct *migration_thread;
  493. struct list_head migration_queue;
  494. u64 rt_avg;
  495. u64 age_stamp;
  496. u64 idle_stamp;
  497. u64 avg_idle;
  498. #endif
  499. /* calc_load related fields */
  500. unsigned long calc_load_update;
  501. long calc_load_active;
  502. #ifdef CONFIG_SCHED_HRTICK
  503. #ifdef CONFIG_SMP
  504. int hrtick_csd_pending;
  505. struct call_single_data hrtick_csd;
  506. #endif
  507. struct hrtimer hrtick_timer;
  508. #endif
  509. #ifdef CONFIG_SCHEDSTATS
  510. /* latency stats */
  511. struct sched_info rq_sched_info;
  512. unsigned long long rq_cpu_time;
  513. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  514. /* sys_sched_yield() stats */
  515. unsigned int yld_count;
  516. /* schedule() stats */
  517. unsigned int sched_switch;
  518. unsigned int sched_count;
  519. unsigned int sched_goidle;
  520. /* try_to_wake_up() stats */
  521. unsigned int ttwu_count;
  522. unsigned int ttwu_local;
  523. /* BKL stats */
  524. unsigned int bkl_count;
  525. #endif
  526. };
  527. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  528. static inline
  529. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  555. inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. * @cpu: the processor in question.
  570. *
  571. * Returns true if the current cpu runqueue is locked.
  572. * This interface allows printk to be called with the runqueue lock
  573. * held and know whether or not it is OK to wake up the klogd.
  574. */
  575. int runqueue_is_locked(int cpu)
  576. {
  577. return spin_is_locked(&cpu_rq(cpu)->lock);
  578. }
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. #define SCHED_FEAT(name, enabled) \
  583. __SCHED_FEAT_##name ,
  584. enum {
  585. #include "sched_features.h"
  586. };
  587. #undef SCHED_FEAT
  588. #define SCHED_FEAT(name, enabled) \
  589. (1UL << __SCHED_FEAT_##name) * enabled |
  590. const_debug unsigned int sysctl_sched_features =
  591. #include "sched_features.h"
  592. 0;
  593. #undef SCHED_FEAT
  594. #ifdef CONFIG_SCHED_DEBUG
  595. #define SCHED_FEAT(name, enabled) \
  596. #name ,
  597. static __read_mostly char *sched_feat_names[] = {
  598. #include "sched_features.h"
  599. NULL
  600. };
  601. #undef SCHED_FEAT
  602. static int sched_feat_show(struct seq_file *m, void *v)
  603. {
  604. int i;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (!(sysctl_sched_features & (1UL << i)))
  607. seq_puts(m, "NO_");
  608. seq_printf(m, "%s ", sched_feat_names[i]);
  609. }
  610. seq_puts(m, "\n");
  611. return 0;
  612. }
  613. static ssize_t
  614. sched_feat_write(struct file *filp, const char __user *ubuf,
  615. size_t cnt, loff_t *ppos)
  616. {
  617. char buf[64];
  618. char *cmp = buf;
  619. int neg = 0;
  620. int i;
  621. if (cnt > 63)
  622. cnt = 63;
  623. if (copy_from_user(&buf, ubuf, cnt))
  624. return -EFAULT;
  625. buf[cnt] = 0;
  626. if (strncmp(buf, "NO_", 3) == 0) {
  627. neg = 1;
  628. cmp += 3;
  629. }
  630. for (i = 0; sched_feat_names[i]; i++) {
  631. int len = strlen(sched_feat_names[i]);
  632. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  633. if (neg)
  634. sysctl_sched_features &= ~(1UL << i);
  635. else
  636. sysctl_sched_features |= (1UL << i);
  637. break;
  638. }
  639. }
  640. if (!sched_feat_names[i])
  641. return -EINVAL;
  642. *ppos += cnt;
  643. return cnt;
  644. }
  645. static int sched_feat_open(struct inode *inode, struct file *filp)
  646. {
  647. return single_open(filp, sched_feat_show, NULL);
  648. }
  649. static const struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .write = sched_feat_write,
  652. .read = seq_read,
  653. .llseek = seq_lseek,
  654. .release = single_release,
  655. };
  656. static __init int sched_init_debug(void)
  657. {
  658. debugfs_create_file("sched_features", 0644, NULL, NULL,
  659. &sched_feat_fops);
  660. return 0;
  661. }
  662. late_initcall(sched_init_debug);
  663. #endif
  664. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  665. /*
  666. * Number of tasks to iterate in a single balance run.
  667. * Limited because this is done with IRQs disabled.
  668. */
  669. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  670. /*
  671. * ratelimit for updating the group shares.
  672. * default: 0.25ms
  673. */
  674. unsigned int sysctl_sched_shares_ratelimit = 250000;
  675. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  676. /*
  677. * Inject some fuzzyness into changing the per-cpu group shares
  678. * this avoids remote rq-locks at the expense of fairness.
  679. * default: 4
  680. */
  681. unsigned int sysctl_sched_shares_thresh = 4;
  682. /*
  683. * period over which we average the RT time consumption, measured
  684. * in ms.
  685. *
  686. * default: 1s
  687. */
  688. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  689. /*
  690. * period over which we measure -rt task cpu usage in us.
  691. * default: 1s
  692. */
  693. unsigned int sysctl_sched_rt_period = 1000000;
  694. static __read_mostly int scheduler_running;
  695. /*
  696. * part of the period that we allow rt tasks to run in us.
  697. * default: 0.95s
  698. */
  699. int sysctl_sched_rt_runtime = 950000;
  700. static inline u64 global_rt_period(void)
  701. {
  702. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  703. }
  704. static inline u64 global_rt_runtime(void)
  705. {
  706. if (sysctl_sched_rt_runtime < 0)
  707. return RUNTIME_INF;
  708. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  709. }
  710. #ifndef prepare_arch_switch
  711. # define prepare_arch_switch(next) do { } while (0)
  712. #endif
  713. #ifndef finish_arch_switch
  714. # define finish_arch_switch(prev) do { } while (0)
  715. #endif
  716. static inline int task_current(struct rq *rq, struct task_struct *p)
  717. {
  718. return rq->curr == p;
  719. }
  720. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  721. static inline int task_running(struct rq *rq, struct task_struct *p)
  722. {
  723. return task_current(rq, p);
  724. }
  725. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  726. {
  727. }
  728. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  729. {
  730. #ifdef CONFIG_DEBUG_SPINLOCK
  731. /* this is a valid case when another task releases the spinlock */
  732. rq->lock.owner = current;
  733. #endif
  734. /*
  735. * If we are tracking spinlock dependencies then we have to
  736. * fix up the runqueue lock - which gets 'carried over' from
  737. * prev into current:
  738. */
  739. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  740. spin_unlock_irq(&rq->lock);
  741. }
  742. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. #ifdef CONFIG_SMP
  746. return p->oncpu;
  747. #else
  748. return task_current(rq, p);
  749. #endif
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * We can optimise this out completely for !SMP, because the
  756. * SMP rebalancing from interrupt is the only thing that cares
  757. * here.
  758. */
  759. next->oncpu = 1;
  760. #endif
  761. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. spin_unlock_irq(&rq->lock);
  763. #else
  764. spin_unlock(&rq->lock);
  765. #endif
  766. }
  767. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  768. {
  769. #ifdef CONFIG_SMP
  770. /*
  771. * After ->oncpu is cleared, the task can be moved to a different CPU.
  772. * We must ensure this doesn't happen until the switch is completely
  773. * finished.
  774. */
  775. smp_wmb();
  776. prev->oncpu = 0;
  777. #endif
  778. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  779. local_irq_enable();
  780. #endif
  781. }
  782. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  783. /*
  784. * __task_rq_lock - lock the runqueue a given task resides on.
  785. * Must be called interrupts disabled.
  786. */
  787. static inline struct rq *__task_rq_lock(struct task_struct *p)
  788. __acquires(rq->lock)
  789. {
  790. for (;;) {
  791. struct rq *rq = task_rq(p);
  792. spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p)))
  794. return rq;
  795. spin_unlock(&rq->lock);
  796. }
  797. }
  798. /*
  799. * task_rq_lock - lock the runqueue a given task resides on and disable
  800. * interrupts. Note the ordering: we can safely lookup the task_rq without
  801. * explicitly disabling preemption.
  802. */
  803. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  804. __acquires(rq->lock)
  805. {
  806. struct rq *rq;
  807. for (;;) {
  808. local_irq_save(*flags);
  809. rq = task_rq(p);
  810. spin_lock(&rq->lock);
  811. if (likely(rq == task_rq(p)))
  812. return rq;
  813. spin_unlock_irqrestore(&rq->lock, *flags);
  814. }
  815. }
  816. void task_rq_unlock_wait(struct task_struct *p)
  817. {
  818. struct rq *rq = task_rq(p);
  819. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  820. spin_unlock_wait(&rq->lock);
  821. }
  822. static void __task_rq_unlock(struct rq *rq)
  823. __releases(rq->lock)
  824. {
  825. spin_unlock(&rq->lock);
  826. }
  827. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  828. __releases(rq->lock)
  829. {
  830. spin_unlock_irqrestore(&rq->lock, *flags);
  831. }
  832. /*
  833. * this_rq_lock - lock this runqueue and disable interrupts.
  834. */
  835. static struct rq *this_rq_lock(void)
  836. __acquires(rq->lock)
  837. {
  838. struct rq *rq;
  839. local_irq_disable();
  840. rq = this_rq();
  841. spin_lock(&rq->lock);
  842. return rq;
  843. }
  844. #ifdef CONFIG_SCHED_HRTICK
  845. /*
  846. * Use HR-timers to deliver accurate preemption points.
  847. *
  848. * Its all a bit involved since we cannot program an hrt while holding the
  849. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  850. * reschedule event.
  851. *
  852. * When we get rescheduled we reprogram the hrtick_timer outside of the
  853. * rq->lock.
  854. */
  855. /*
  856. * Use hrtick when:
  857. * - enabled by features
  858. * - hrtimer is actually high res
  859. */
  860. static inline int hrtick_enabled(struct rq *rq)
  861. {
  862. if (!sched_feat(HRTICK))
  863. return 0;
  864. if (!cpu_active(cpu_of(rq)))
  865. return 0;
  866. return hrtimer_is_hres_active(&rq->hrtick_timer);
  867. }
  868. static void hrtick_clear(struct rq *rq)
  869. {
  870. if (hrtimer_active(&rq->hrtick_timer))
  871. hrtimer_cancel(&rq->hrtick_timer);
  872. }
  873. /*
  874. * High-resolution timer tick.
  875. * Runs from hardirq context with interrupts disabled.
  876. */
  877. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  878. {
  879. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  880. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  881. spin_lock(&rq->lock);
  882. update_rq_clock(rq);
  883. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  884. spin_unlock(&rq->lock);
  885. return HRTIMER_NORESTART;
  886. }
  887. #ifdef CONFIG_SMP
  888. /*
  889. * called from hardirq (IPI) context
  890. */
  891. static void __hrtick_start(void *arg)
  892. {
  893. struct rq *rq = arg;
  894. spin_lock(&rq->lock);
  895. hrtimer_restart(&rq->hrtick_timer);
  896. rq->hrtick_csd_pending = 0;
  897. spin_unlock(&rq->lock);
  898. }
  899. /*
  900. * Called to set the hrtick timer state.
  901. *
  902. * called with rq->lock held and irqs disabled
  903. */
  904. static void hrtick_start(struct rq *rq, u64 delay)
  905. {
  906. struct hrtimer *timer = &rq->hrtick_timer;
  907. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  908. hrtimer_set_expires(timer, time);
  909. if (rq == this_rq()) {
  910. hrtimer_restart(timer);
  911. } else if (!rq->hrtick_csd_pending) {
  912. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  913. rq->hrtick_csd_pending = 1;
  914. }
  915. }
  916. static int
  917. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  918. {
  919. int cpu = (int)(long)hcpu;
  920. switch (action) {
  921. case CPU_UP_CANCELED:
  922. case CPU_UP_CANCELED_FROZEN:
  923. case CPU_DOWN_PREPARE:
  924. case CPU_DOWN_PREPARE_FROZEN:
  925. case CPU_DEAD:
  926. case CPU_DEAD_FROZEN:
  927. hrtick_clear(cpu_rq(cpu));
  928. return NOTIFY_OK;
  929. }
  930. return NOTIFY_DONE;
  931. }
  932. static __init void init_hrtick(void)
  933. {
  934. hotcpu_notifier(hotplug_hrtick, 0);
  935. }
  936. #else
  937. /*
  938. * Called to set the hrtick timer state.
  939. *
  940. * called with rq->lock held and irqs disabled
  941. */
  942. static void hrtick_start(struct rq *rq, u64 delay)
  943. {
  944. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  945. HRTIMER_MODE_REL_PINNED, 0);
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif /* CONFIG_SMP */
  951. static void init_rq_hrtick(struct rq *rq)
  952. {
  953. #ifdef CONFIG_SMP
  954. rq->hrtick_csd_pending = 0;
  955. rq->hrtick_csd.flags = 0;
  956. rq->hrtick_csd.func = __hrtick_start;
  957. rq->hrtick_csd.info = rq;
  958. #endif
  959. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  960. rq->hrtick_timer.function = hrtick;
  961. }
  962. #else /* CONFIG_SCHED_HRTICK */
  963. static inline void hrtick_clear(struct rq *rq)
  964. {
  965. }
  966. static inline void init_rq_hrtick(struct rq *rq)
  967. {
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SCHED_HRTICK */
  973. /*
  974. * resched_task - mark a task 'to be rescheduled now'.
  975. *
  976. * On UP this means the setting of the need_resched flag, on SMP it
  977. * might also involve a cross-CPU call to trigger the scheduler on
  978. * the target CPU.
  979. */
  980. #ifdef CONFIG_SMP
  981. #ifndef tsk_is_polling
  982. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  983. #endif
  984. static void resched_task(struct task_struct *p)
  985. {
  986. int cpu;
  987. assert_spin_locked(&task_rq(p)->lock);
  988. if (test_tsk_need_resched(p))
  989. return;
  990. set_tsk_need_resched(p);
  991. cpu = task_cpu(p);
  992. if (cpu == smp_processor_id())
  993. return;
  994. /* NEED_RESCHED must be visible before we test polling */
  995. smp_mb();
  996. if (!tsk_is_polling(p))
  997. smp_send_reschedule(cpu);
  998. }
  999. static void resched_cpu(int cpu)
  1000. {
  1001. struct rq *rq = cpu_rq(cpu);
  1002. unsigned long flags;
  1003. if (!spin_trylock_irqsave(&rq->lock, flags))
  1004. return;
  1005. resched_task(cpu_curr(cpu));
  1006. spin_unlock_irqrestore(&rq->lock, flags);
  1007. }
  1008. #ifdef CONFIG_NO_HZ
  1009. /*
  1010. * When add_timer_on() enqueues a timer into the timer wheel of an
  1011. * idle CPU then this timer might expire before the next timer event
  1012. * which is scheduled to wake up that CPU. In case of a completely
  1013. * idle system the next event might even be infinite time into the
  1014. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1015. * leaves the inner idle loop so the newly added timer is taken into
  1016. * account when the CPU goes back to idle and evaluates the timer
  1017. * wheel for the next timer event.
  1018. */
  1019. void wake_up_idle_cpu(int cpu)
  1020. {
  1021. struct rq *rq = cpu_rq(cpu);
  1022. if (cpu == smp_processor_id())
  1023. return;
  1024. /*
  1025. * This is safe, as this function is called with the timer
  1026. * wheel base lock of (cpu) held. When the CPU is on the way
  1027. * to idle and has not yet set rq->curr to idle then it will
  1028. * be serialized on the timer wheel base lock and take the new
  1029. * timer into account automatically.
  1030. */
  1031. if (rq->curr != rq->idle)
  1032. return;
  1033. /*
  1034. * We can set TIF_RESCHED on the idle task of the other CPU
  1035. * lockless. The worst case is that the other CPU runs the
  1036. * idle task through an additional NOOP schedule()
  1037. */
  1038. set_tsk_need_resched(rq->idle);
  1039. /* NEED_RESCHED must be visible before we test polling */
  1040. smp_mb();
  1041. if (!tsk_is_polling(rq->idle))
  1042. smp_send_reschedule(cpu);
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1168. /*
  1169. * runqueue iterator, to support SMP load-balancing between different
  1170. * scheduling classes, without having to expose their internal data
  1171. * structures to the load-balancing proper:
  1172. */
  1173. struct rq_iterator {
  1174. void *arg;
  1175. struct task_struct *(*start)(void *);
  1176. struct task_struct *(*next)(void *);
  1177. };
  1178. #ifdef CONFIG_SMP
  1179. static unsigned long
  1180. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1181. unsigned long max_load_move, struct sched_domain *sd,
  1182. enum cpu_idle_type idle, int *all_pinned,
  1183. int *this_best_prio, struct rq_iterator *iterator);
  1184. static int
  1185. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1186. struct sched_domain *sd, enum cpu_idle_type idle,
  1187. struct rq_iterator *iterator);
  1188. #endif
  1189. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1190. enum cpuacct_stat_index {
  1191. CPUACCT_STAT_USER, /* ... user mode */
  1192. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1193. CPUACCT_STAT_NSTATS,
  1194. };
  1195. #ifdef CONFIG_CGROUP_CPUACCT
  1196. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1197. static void cpuacct_update_stats(struct task_struct *tsk,
  1198. enum cpuacct_stat_index idx, cputime_t val);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val) {}
  1203. #endif
  1204. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1205. {
  1206. update_load_add(&rq->load, load);
  1207. }
  1208. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_sub(&rq->load, load);
  1211. }
  1212. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1213. typedef int (*tg_visitor)(struct task_group *, void *);
  1214. /*
  1215. * Iterate the full tree, calling @down when first entering a node and @up when
  1216. * leaving it for the final time.
  1217. */
  1218. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1219. {
  1220. struct task_group *parent, *child;
  1221. int ret;
  1222. rcu_read_lock();
  1223. parent = &root_task_group;
  1224. down:
  1225. ret = (*down)(parent, data);
  1226. if (ret)
  1227. goto out_unlock;
  1228. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1229. parent = child;
  1230. goto down;
  1231. up:
  1232. continue;
  1233. }
  1234. ret = (*up)(parent, data);
  1235. if (ret)
  1236. goto out_unlock;
  1237. child = parent;
  1238. parent = parent->parent;
  1239. if (parent)
  1240. goto up;
  1241. out_unlock:
  1242. rcu_read_unlock();
  1243. return ret;
  1244. }
  1245. static int tg_nop(struct task_group *tg, void *data)
  1246. {
  1247. return 0;
  1248. }
  1249. #endif
  1250. #ifdef CONFIG_SMP
  1251. /* Used instead of source_load when we know the type == 0 */
  1252. static unsigned long weighted_cpuload(const int cpu)
  1253. {
  1254. return cpu_rq(cpu)->load.weight;
  1255. }
  1256. /*
  1257. * Return a low guess at the load of a migration-source cpu weighted
  1258. * according to the scheduling class and "nice" value.
  1259. *
  1260. * We want to under-estimate the load of migration sources, to
  1261. * balance conservatively.
  1262. */
  1263. static unsigned long source_load(int cpu, int type)
  1264. {
  1265. struct rq *rq = cpu_rq(cpu);
  1266. unsigned long total = weighted_cpuload(cpu);
  1267. if (type == 0 || !sched_feat(LB_BIAS))
  1268. return total;
  1269. return min(rq->cpu_load[type-1], total);
  1270. }
  1271. /*
  1272. * Return a high guess at the load of a migration-target cpu weighted
  1273. * according to the scheduling class and "nice" value.
  1274. */
  1275. static unsigned long target_load(int cpu, int type)
  1276. {
  1277. struct rq *rq = cpu_rq(cpu);
  1278. unsigned long total = weighted_cpuload(cpu);
  1279. if (type == 0 || !sched_feat(LB_BIAS))
  1280. return total;
  1281. return max(rq->cpu_load[type-1], total);
  1282. }
  1283. static struct sched_group *group_of(int cpu)
  1284. {
  1285. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1286. if (!sd)
  1287. return NULL;
  1288. return sd->groups;
  1289. }
  1290. static unsigned long power_of(int cpu)
  1291. {
  1292. struct sched_group *group = group_of(cpu);
  1293. if (!group)
  1294. return SCHED_LOAD_SCALE;
  1295. return group->cpu_power;
  1296. }
  1297. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1298. static unsigned long cpu_avg_load_per_task(int cpu)
  1299. {
  1300. struct rq *rq = cpu_rq(cpu);
  1301. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1302. if (nr_running)
  1303. rq->avg_load_per_task = rq->load.weight / nr_running;
  1304. else
  1305. rq->avg_load_per_task = 0;
  1306. return rq->avg_load_per_task;
  1307. }
  1308. #ifdef CONFIG_FAIR_GROUP_SCHED
  1309. static __read_mostly unsigned long *update_shares_data;
  1310. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1311. /*
  1312. * Calculate and set the cpu's group shares.
  1313. */
  1314. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1315. unsigned long sd_shares,
  1316. unsigned long sd_rq_weight,
  1317. unsigned long *usd_rq_weight)
  1318. {
  1319. unsigned long shares, rq_weight;
  1320. int boost = 0;
  1321. rq_weight = usd_rq_weight[cpu];
  1322. if (!rq_weight) {
  1323. boost = 1;
  1324. rq_weight = NICE_0_LOAD;
  1325. }
  1326. /*
  1327. * \Sum_j shares_j * rq_weight_i
  1328. * shares_i = -----------------------------
  1329. * \Sum_j rq_weight_j
  1330. */
  1331. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1332. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1333. if (abs(shares - tg->se[cpu]->load.weight) >
  1334. sysctl_sched_shares_thresh) {
  1335. struct rq *rq = cpu_rq(cpu);
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&rq->lock, flags);
  1338. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1339. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1340. __set_se_shares(tg->se[cpu], shares);
  1341. spin_unlock_irqrestore(&rq->lock, flags);
  1342. }
  1343. }
  1344. /*
  1345. * Re-compute the task group their per cpu shares over the given domain.
  1346. * This needs to be done in a bottom-up fashion because the rq weight of a
  1347. * parent group depends on the shares of its child groups.
  1348. */
  1349. static int tg_shares_up(struct task_group *tg, void *data)
  1350. {
  1351. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1352. unsigned long *usd_rq_weight;
  1353. struct sched_domain *sd = data;
  1354. unsigned long flags;
  1355. int i;
  1356. if (!tg->se[0])
  1357. return 0;
  1358. local_irq_save(flags);
  1359. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1360. for_each_cpu(i, sched_domain_span(sd)) {
  1361. weight = tg->cfs_rq[i]->load.weight;
  1362. usd_rq_weight[i] = weight;
  1363. rq_weight += weight;
  1364. /*
  1365. * If there are currently no tasks on the cpu pretend there
  1366. * is one of average load so that when a new task gets to
  1367. * run here it will not get delayed by group starvation.
  1368. */
  1369. if (!weight)
  1370. weight = NICE_0_LOAD;
  1371. sum_weight += weight;
  1372. shares += tg->cfs_rq[i]->shares;
  1373. }
  1374. if (!rq_weight)
  1375. rq_weight = sum_weight;
  1376. if ((!shares && rq_weight) || shares > tg->shares)
  1377. shares = tg->shares;
  1378. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1379. shares = tg->shares;
  1380. for_each_cpu(i, sched_domain_span(sd))
  1381. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1382. local_irq_restore(flags);
  1383. return 0;
  1384. }
  1385. /*
  1386. * Compute the cpu's hierarchical load factor for each task group.
  1387. * This needs to be done in a top-down fashion because the load of a child
  1388. * group is a fraction of its parents load.
  1389. */
  1390. static int tg_load_down(struct task_group *tg, void *data)
  1391. {
  1392. unsigned long load;
  1393. long cpu = (long)data;
  1394. if (!tg->parent) {
  1395. load = cpu_rq(cpu)->load.weight;
  1396. } else {
  1397. load = tg->parent->cfs_rq[cpu]->h_load;
  1398. load *= tg->cfs_rq[cpu]->shares;
  1399. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1400. }
  1401. tg->cfs_rq[cpu]->h_load = load;
  1402. return 0;
  1403. }
  1404. static void update_shares(struct sched_domain *sd)
  1405. {
  1406. s64 elapsed;
  1407. u64 now;
  1408. if (root_task_group_empty())
  1409. return;
  1410. now = cpu_clock(raw_smp_processor_id());
  1411. elapsed = now - sd->last_update;
  1412. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1413. sd->last_update = now;
  1414. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1415. }
  1416. }
  1417. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1418. {
  1419. if (root_task_group_empty())
  1420. return;
  1421. spin_unlock(&rq->lock);
  1422. update_shares(sd);
  1423. spin_lock(&rq->lock);
  1424. }
  1425. static void update_h_load(long cpu)
  1426. {
  1427. if (root_task_group_empty())
  1428. return;
  1429. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1430. }
  1431. #else
  1432. static inline void update_shares(struct sched_domain *sd)
  1433. {
  1434. }
  1435. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1436. {
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_PREEMPT
  1440. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1441. /*
  1442. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1443. * way at the expense of forcing extra atomic operations in all
  1444. * invocations. This assures that the double_lock is acquired using the
  1445. * same underlying policy as the spinlock_t on this architecture, which
  1446. * reduces latency compared to the unfair variant below. However, it
  1447. * also adds more overhead and therefore may reduce throughput.
  1448. */
  1449. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. __releases(this_rq->lock)
  1451. __acquires(busiest->lock)
  1452. __acquires(this_rq->lock)
  1453. {
  1454. spin_unlock(&this_rq->lock);
  1455. double_rq_lock(this_rq, busiest);
  1456. return 1;
  1457. }
  1458. #else
  1459. /*
  1460. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1461. * latency by eliminating extra atomic operations when the locks are
  1462. * already in proper order on entry. This favors lower cpu-ids and will
  1463. * grant the double lock to lower cpus over higher ids under contention,
  1464. * regardless of entry order into the function.
  1465. */
  1466. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1467. __releases(this_rq->lock)
  1468. __acquires(busiest->lock)
  1469. __acquires(this_rq->lock)
  1470. {
  1471. int ret = 0;
  1472. if (unlikely(!spin_trylock(&busiest->lock))) {
  1473. if (busiest < this_rq) {
  1474. spin_unlock(&this_rq->lock);
  1475. spin_lock(&busiest->lock);
  1476. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1477. ret = 1;
  1478. } else
  1479. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1480. }
  1481. return ret;
  1482. }
  1483. #endif /* CONFIG_PREEMPT */
  1484. /*
  1485. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1486. */
  1487. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1488. {
  1489. if (unlikely(!irqs_disabled())) {
  1490. /* printk() doesn't work good under rq->lock */
  1491. spin_unlock(&this_rq->lock);
  1492. BUG_ON(1);
  1493. }
  1494. return _double_lock_balance(this_rq, busiest);
  1495. }
  1496. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1497. __releases(busiest->lock)
  1498. {
  1499. spin_unlock(&busiest->lock);
  1500. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1501. }
  1502. #endif
  1503. #ifdef CONFIG_FAIR_GROUP_SCHED
  1504. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1505. {
  1506. #ifdef CONFIG_SMP
  1507. cfs_rq->shares = shares;
  1508. #endif
  1509. }
  1510. #endif
  1511. static void calc_load_account_active(struct rq *this_rq);
  1512. static void update_sysctl(void);
  1513. static int get_update_sysctl_factor(void);
  1514. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1515. {
  1516. set_task_rq(p, cpu);
  1517. #ifdef CONFIG_SMP
  1518. /*
  1519. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1520. * successfuly executed on another CPU. We must ensure that updates of
  1521. * per-task data have been completed by this moment.
  1522. */
  1523. smp_wmb();
  1524. task_thread_info(p)->cpu = cpu;
  1525. #endif
  1526. }
  1527. #include "sched_stats.h"
  1528. #include "sched_idletask.c"
  1529. #include "sched_fair.c"
  1530. #include "sched_rt.c"
  1531. #ifdef CONFIG_SCHED_DEBUG
  1532. # include "sched_debug.c"
  1533. #endif
  1534. #define sched_class_highest (&rt_sched_class)
  1535. #define for_each_class(class) \
  1536. for (class = sched_class_highest; class; class = class->next)
  1537. static void inc_nr_running(struct rq *rq)
  1538. {
  1539. rq->nr_running++;
  1540. }
  1541. static void dec_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running--;
  1544. }
  1545. static void set_load_weight(struct task_struct *p)
  1546. {
  1547. if (task_has_rt_policy(p)) {
  1548. p->se.load.weight = prio_to_weight[0] * 2;
  1549. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1550. return;
  1551. }
  1552. /*
  1553. * SCHED_IDLE tasks get minimal weight:
  1554. */
  1555. if (p->policy == SCHED_IDLE) {
  1556. p->se.load.weight = WEIGHT_IDLEPRIO;
  1557. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1558. return;
  1559. }
  1560. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1561. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1562. }
  1563. static void update_avg(u64 *avg, u64 sample)
  1564. {
  1565. s64 diff = sample - *avg;
  1566. *avg += diff >> 3;
  1567. }
  1568. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1569. {
  1570. if (wakeup)
  1571. p->se.start_runtime = p->se.sum_exec_runtime;
  1572. sched_info_queued(p);
  1573. p->sched_class->enqueue_task(rq, p, wakeup);
  1574. p->se.on_rq = 1;
  1575. }
  1576. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1577. {
  1578. if (sleep) {
  1579. if (p->se.last_wakeup) {
  1580. update_avg(&p->se.avg_overlap,
  1581. p->se.sum_exec_runtime - p->se.last_wakeup);
  1582. p->se.last_wakeup = 0;
  1583. } else {
  1584. update_avg(&p->se.avg_wakeup,
  1585. sysctl_sched_wakeup_granularity);
  1586. }
  1587. }
  1588. sched_info_dequeued(p);
  1589. p->sched_class->dequeue_task(rq, p, sleep);
  1590. p->se.on_rq = 0;
  1591. }
  1592. /*
  1593. * __normal_prio - return the priority that is based on the static prio
  1594. */
  1595. static inline int __normal_prio(struct task_struct *p)
  1596. {
  1597. return p->static_prio;
  1598. }
  1599. /*
  1600. * Calculate the expected normal priority: i.e. priority
  1601. * without taking RT-inheritance into account. Might be
  1602. * boosted by interactivity modifiers. Changes upon fork,
  1603. * setprio syscalls, and whenever the interactivity
  1604. * estimator recalculates.
  1605. */
  1606. static inline int normal_prio(struct task_struct *p)
  1607. {
  1608. int prio;
  1609. if (task_has_rt_policy(p))
  1610. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1611. else
  1612. prio = __normal_prio(p);
  1613. return prio;
  1614. }
  1615. /*
  1616. * Calculate the current priority, i.e. the priority
  1617. * taken into account by the scheduler. This value might
  1618. * be boosted by RT tasks, or might be boosted by
  1619. * interactivity modifiers. Will be RT if the task got
  1620. * RT-boosted. If not then it returns p->normal_prio.
  1621. */
  1622. static int effective_prio(struct task_struct *p)
  1623. {
  1624. p->normal_prio = normal_prio(p);
  1625. /*
  1626. * If we are RT tasks or we were boosted to RT priority,
  1627. * keep the priority unchanged. Otherwise, update priority
  1628. * to the normal priority:
  1629. */
  1630. if (!rt_prio(p->prio))
  1631. return p->normal_prio;
  1632. return p->prio;
  1633. }
  1634. /*
  1635. * activate_task - move a task to the runqueue.
  1636. */
  1637. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1638. {
  1639. if (task_contributes_to_load(p))
  1640. rq->nr_uninterruptible--;
  1641. enqueue_task(rq, p, wakeup);
  1642. inc_nr_running(rq);
  1643. }
  1644. /*
  1645. * deactivate_task - remove a task from the runqueue.
  1646. */
  1647. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1648. {
  1649. if (task_contributes_to_load(p))
  1650. rq->nr_uninterruptible++;
  1651. dequeue_task(rq, p, sleep);
  1652. dec_nr_running(rq);
  1653. }
  1654. /**
  1655. * task_curr - is this task currently executing on a CPU?
  1656. * @p: the task in question.
  1657. */
  1658. inline int task_curr(const struct task_struct *p)
  1659. {
  1660. return cpu_curr(task_cpu(p)) == p;
  1661. }
  1662. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1663. const struct sched_class *prev_class,
  1664. int oldprio, int running)
  1665. {
  1666. if (prev_class != p->sched_class) {
  1667. if (prev_class->switched_from)
  1668. prev_class->switched_from(rq, p, running);
  1669. p->sched_class->switched_to(rq, p, running);
  1670. } else
  1671. p->sched_class->prio_changed(rq, p, oldprio, running);
  1672. }
  1673. /**
  1674. * kthread_bind - bind a just-created kthread to a cpu.
  1675. * @p: thread created by kthread_create().
  1676. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1677. *
  1678. * Description: This function is equivalent to set_cpus_allowed(),
  1679. * except that @cpu doesn't need to be online, and the thread must be
  1680. * stopped (i.e., just returned from kthread_create()).
  1681. *
  1682. * Function lives here instead of kthread.c because it messes with
  1683. * scheduler internals which require locking.
  1684. */
  1685. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1686. {
  1687. struct rq *rq = cpu_rq(cpu);
  1688. unsigned long flags;
  1689. /* Must have done schedule() in kthread() before we set_task_cpu */
  1690. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1691. WARN_ON(1);
  1692. return;
  1693. }
  1694. spin_lock_irqsave(&rq->lock, flags);
  1695. update_rq_clock(rq);
  1696. set_task_cpu(p, cpu);
  1697. p->cpus_allowed = cpumask_of_cpu(cpu);
  1698. p->rt.nr_cpus_allowed = 1;
  1699. p->flags |= PF_THREAD_BOUND;
  1700. spin_unlock_irqrestore(&rq->lock, flags);
  1701. }
  1702. EXPORT_SYMBOL(kthread_bind);
  1703. #ifdef CONFIG_SMP
  1704. /*
  1705. * Is this task likely cache-hot:
  1706. */
  1707. static int
  1708. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1709. {
  1710. s64 delta;
  1711. /*
  1712. * Buddy candidates are cache hot:
  1713. */
  1714. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1715. (&p->se == cfs_rq_of(&p->se)->next ||
  1716. &p->se == cfs_rq_of(&p->se)->last))
  1717. return 1;
  1718. if (p->sched_class != &fair_sched_class)
  1719. return 0;
  1720. if (sysctl_sched_migration_cost == -1)
  1721. return 1;
  1722. if (sysctl_sched_migration_cost == 0)
  1723. return 0;
  1724. delta = now - p->se.exec_start;
  1725. return delta < (s64)sysctl_sched_migration_cost;
  1726. }
  1727. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1728. {
  1729. int old_cpu = task_cpu(p);
  1730. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1731. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1732. trace_sched_migrate_task(p, new_cpu);
  1733. if (old_cpu != new_cpu) {
  1734. p->se.nr_migrations++;
  1735. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1736. 1, 1, NULL, 0);
  1737. }
  1738. p->se.vruntime -= old_cfsrq->min_vruntime -
  1739. new_cfsrq->min_vruntime;
  1740. __set_task_cpu(p, new_cpu);
  1741. }
  1742. struct migration_req {
  1743. struct list_head list;
  1744. struct task_struct *task;
  1745. int dest_cpu;
  1746. struct completion done;
  1747. };
  1748. /*
  1749. * The task's runqueue lock must be held.
  1750. * Returns true if you have to wait for migration thread.
  1751. */
  1752. static int
  1753. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1754. {
  1755. struct rq *rq = task_rq(p);
  1756. /*
  1757. * If the task is not on a runqueue (and not running), then
  1758. * it is sufficient to simply update the task's cpu field.
  1759. */
  1760. if (!p->se.on_rq && !task_running(rq, p)) {
  1761. update_rq_clock(rq);
  1762. set_task_cpu(p, dest_cpu);
  1763. return 0;
  1764. }
  1765. init_completion(&req->done);
  1766. req->task = p;
  1767. req->dest_cpu = dest_cpu;
  1768. list_add(&req->list, &rq->migration_queue);
  1769. return 1;
  1770. }
  1771. /*
  1772. * wait_task_context_switch - wait for a thread to complete at least one
  1773. * context switch.
  1774. *
  1775. * @p must not be current.
  1776. */
  1777. void wait_task_context_switch(struct task_struct *p)
  1778. {
  1779. unsigned long nvcsw, nivcsw, flags;
  1780. int running;
  1781. struct rq *rq;
  1782. nvcsw = p->nvcsw;
  1783. nivcsw = p->nivcsw;
  1784. for (;;) {
  1785. /*
  1786. * The runqueue is assigned before the actual context
  1787. * switch. We need to take the runqueue lock.
  1788. *
  1789. * We could check initially without the lock but it is
  1790. * very likely that we need to take the lock in every
  1791. * iteration.
  1792. */
  1793. rq = task_rq_lock(p, &flags);
  1794. running = task_running(rq, p);
  1795. task_rq_unlock(rq, &flags);
  1796. if (likely(!running))
  1797. break;
  1798. /*
  1799. * The switch count is incremented before the actual
  1800. * context switch. We thus wait for two switches to be
  1801. * sure at least one completed.
  1802. */
  1803. if ((p->nvcsw - nvcsw) > 1)
  1804. break;
  1805. if ((p->nivcsw - nivcsw) > 1)
  1806. break;
  1807. cpu_relax();
  1808. }
  1809. }
  1810. /*
  1811. * wait_task_inactive - wait for a thread to unschedule.
  1812. *
  1813. * If @match_state is nonzero, it's the @p->state value just checked and
  1814. * not expected to change. If it changes, i.e. @p might have woken up,
  1815. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1816. * we return a positive number (its total switch count). If a second call
  1817. * a short while later returns the same number, the caller can be sure that
  1818. * @p has remained unscheduled the whole time.
  1819. *
  1820. * The caller must ensure that the task *will* unschedule sometime soon,
  1821. * else this function might spin for a *long* time. This function can't
  1822. * be called with interrupts off, or it may introduce deadlock with
  1823. * smp_call_function() if an IPI is sent by the same process we are
  1824. * waiting to become inactive.
  1825. */
  1826. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1827. {
  1828. unsigned long flags;
  1829. int running, on_rq;
  1830. unsigned long ncsw;
  1831. struct rq *rq;
  1832. for (;;) {
  1833. /*
  1834. * We do the initial early heuristics without holding
  1835. * any task-queue locks at all. We'll only try to get
  1836. * the runqueue lock when things look like they will
  1837. * work out!
  1838. */
  1839. rq = task_rq(p);
  1840. /*
  1841. * If the task is actively running on another CPU
  1842. * still, just relax and busy-wait without holding
  1843. * any locks.
  1844. *
  1845. * NOTE! Since we don't hold any locks, it's not
  1846. * even sure that "rq" stays as the right runqueue!
  1847. * But we don't care, since "task_running()" will
  1848. * return false if the runqueue has changed and p
  1849. * is actually now running somewhere else!
  1850. */
  1851. while (task_running(rq, p)) {
  1852. if (match_state && unlikely(p->state != match_state))
  1853. return 0;
  1854. cpu_relax();
  1855. }
  1856. /*
  1857. * Ok, time to look more closely! We need the rq
  1858. * lock now, to be *sure*. If we're wrong, we'll
  1859. * just go back and repeat.
  1860. */
  1861. rq = task_rq_lock(p, &flags);
  1862. trace_sched_wait_task(rq, p);
  1863. running = task_running(rq, p);
  1864. on_rq = p->se.on_rq;
  1865. ncsw = 0;
  1866. if (!match_state || p->state == match_state)
  1867. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1868. task_rq_unlock(rq, &flags);
  1869. /*
  1870. * If it changed from the expected state, bail out now.
  1871. */
  1872. if (unlikely(!ncsw))
  1873. break;
  1874. /*
  1875. * Was it really running after all now that we
  1876. * checked with the proper locks actually held?
  1877. *
  1878. * Oops. Go back and try again..
  1879. */
  1880. if (unlikely(running)) {
  1881. cpu_relax();
  1882. continue;
  1883. }
  1884. /*
  1885. * It's not enough that it's not actively running,
  1886. * it must be off the runqueue _entirely_, and not
  1887. * preempted!
  1888. *
  1889. * So if it was still runnable (but just not actively
  1890. * running right now), it's preempted, and we should
  1891. * yield - it could be a while.
  1892. */
  1893. if (unlikely(on_rq)) {
  1894. schedule_timeout_uninterruptible(1);
  1895. continue;
  1896. }
  1897. /*
  1898. * Ahh, all good. It wasn't running, and it wasn't
  1899. * runnable, which means that it will never become
  1900. * running in the future either. We're all done!
  1901. */
  1902. break;
  1903. }
  1904. return ncsw;
  1905. }
  1906. /***
  1907. * kick_process - kick a running thread to enter/exit the kernel
  1908. * @p: the to-be-kicked thread
  1909. *
  1910. * Cause a process which is running on another CPU to enter
  1911. * kernel-mode, without any delay. (to get signals handled.)
  1912. *
  1913. * NOTE: this function doesnt have to take the runqueue lock,
  1914. * because all it wants to ensure is that the remote task enters
  1915. * the kernel. If the IPI races and the task has been migrated
  1916. * to another CPU then no harm is done and the purpose has been
  1917. * achieved as well.
  1918. */
  1919. void kick_process(struct task_struct *p)
  1920. {
  1921. int cpu;
  1922. preempt_disable();
  1923. cpu = task_cpu(p);
  1924. if ((cpu != smp_processor_id()) && task_curr(p))
  1925. smp_send_reschedule(cpu);
  1926. preempt_enable();
  1927. }
  1928. EXPORT_SYMBOL_GPL(kick_process);
  1929. #endif /* CONFIG_SMP */
  1930. /**
  1931. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1932. * @p: the task to evaluate
  1933. * @func: the function to be called
  1934. * @info: the function call argument
  1935. *
  1936. * Calls the function @func when the task is currently running. This might
  1937. * be on the current CPU, which just calls the function directly
  1938. */
  1939. void task_oncpu_function_call(struct task_struct *p,
  1940. void (*func) (void *info), void *info)
  1941. {
  1942. int cpu;
  1943. preempt_disable();
  1944. cpu = task_cpu(p);
  1945. if (task_curr(p))
  1946. smp_call_function_single(cpu, func, info, 1);
  1947. preempt_enable();
  1948. }
  1949. #ifdef CONFIG_SMP
  1950. static inline
  1951. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1952. {
  1953. return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1954. }
  1955. #endif
  1956. /***
  1957. * try_to_wake_up - wake up a thread
  1958. * @p: the to-be-woken-up thread
  1959. * @state: the mask of task states that can be woken
  1960. * @sync: do a synchronous wakeup?
  1961. *
  1962. * Put it on the run-queue if it's not already there. The "current"
  1963. * thread is always on the run-queue (except when the actual
  1964. * re-schedule is in progress), and as such you're allowed to do
  1965. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1966. * runnable without the overhead of this.
  1967. *
  1968. * returns failure only if the task is already active.
  1969. */
  1970. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1971. int wake_flags)
  1972. {
  1973. int cpu, orig_cpu, this_cpu, success = 0;
  1974. unsigned long flags;
  1975. struct rq *rq, *orig_rq;
  1976. if (!sched_feat(SYNC_WAKEUPS))
  1977. wake_flags &= ~WF_SYNC;
  1978. this_cpu = get_cpu();
  1979. smp_wmb();
  1980. rq = orig_rq = task_rq_lock(p, &flags);
  1981. update_rq_clock(rq);
  1982. if (!(p->state & state))
  1983. goto out;
  1984. if (p->se.on_rq)
  1985. goto out_running;
  1986. cpu = task_cpu(p);
  1987. orig_cpu = cpu;
  1988. #ifdef CONFIG_SMP
  1989. if (unlikely(task_running(rq, p)))
  1990. goto out_activate;
  1991. /*
  1992. * In order to handle concurrent wakeups and release the rq->lock
  1993. * we put the task in TASK_WAKING state.
  1994. *
  1995. * First fix up the nr_uninterruptible count:
  1996. */
  1997. if (task_contributes_to_load(p))
  1998. rq->nr_uninterruptible--;
  1999. p->state = TASK_WAKING;
  2000. __task_rq_unlock(rq);
  2001. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2002. if (cpu != orig_cpu)
  2003. set_task_cpu(p, cpu);
  2004. rq = __task_rq_lock(p);
  2005. update_rq_clock(rq);
  2006. WARN_ON(p->state != TASK_WAKING);
  2007. cpu = task_cpu(p);
  2008. #ifdef CONFIG_SCHEDSTATS
  2009. schedstat_inc(rq, ttwu_count);
  2010. if (cpu == this_cpu)
  2011. schedstat_inc(rq, ttwu_local);
  2012. else {
  2013. struct sched_domain *sd;
  2014. for_each_domain(this_cpu, sd) {
  2015. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2016. schedstat_inc(sd, ttwu_wake_remote);
  2017. break;
  2018. }
  2019. }
  2020. }
  2021. #endif /* CONFIG_SCHEDSTATS */
  2022. out_activate:
  2023. #endif /* CONFIG_SMP */
  2024. schedstat_inc(p, se.nr_wakeups);
  2025. if (wake_flags & WF_SYNC)
  2026. schedstat_inc(p, se.nr_wakeups_sync);
  2027. if (orig_cpu != cpu)
  2028. schedstat_inc(p, se.nr_wakeups_migrate);
  2029. if (cpu == this_cpu)
  2030. schedstat_inc(p, se.nr_wakeups_local);
  2031. else
  2032. schedstat_inc(p, se.nr_wakeups_remote);
  2033. activate_task(rq, p, 1);
  2034. success = 1;
  2035. /*
  2036. * Only attribute actual wakeups done by this task.
  2037. */
  2038. if (!in_interrupt()) {
  2039. struct sched_entity *se = &current->se;
  2040. u64 sample = se->sum_exec_runtime;
  2041. if (se->last_wakeup)
  2042. sample -= se->last_wakeup;
  2043. else
  2044. sample -= se->start_runtime;
  2045. update_avg(&se->avg_wakeup, sample);
  2046. se->last_wakeup = se->sum_exec_runtime;
  2047. }
  2048. out_running:
  2049. trace_sched_wakeup(rq, p, success);
  2050. check_preempt_curr(rq, p, wake_flags);
  2051. p->state = TASK_RUNNING;
  2052. #ifdef CONFIG_SMP
  2053. if (p->sched_class->task_wake_up)
  2054. p->sched_class->task_wake_up(rq, p);
  2055. if (unlikely(rq->idle_stamp)) {
  2056. u64 delta = rq->clock - rq->idle_stamp;
  2057. u64 max = 2*sysctl_sched_migration_cost;
  2058. if (delta > max)
  2059. rq->avg_idle = max;
  2060. else
  2061. update_avg(&rq->avg_idle, delta);
  2062. rq->idle_stamp = 0;
  2063. }
  2064. #endif
  2065. out:
  2066. task_rq_unlock(rq, &flags);
  2067. put_cpu();
  2068. return success;
  2069. }
  2070. /**
  2071. * wake_up_process - Wake up a specific process
  2072. * @p: The process to be woken up.
  2073. *
  2074. * Attempt to wake up the nominated process and move it to the set of runnable
  2075. * processes. Returns 1 if the process was woken up, 0 if it was already
  2076. * running.
  2077. *
  2078. * It may be assumed that this function implies a write memory barrier before
  2079. * changing the task state if and only if any tasks are woken up.
  2080. */
  2081. int wake_up_process(struct task_struct *p)
  2082. {
  2083. return try_to_wake_up(p, TASK_ALL, 0);
  2084. }
  2085. EXPORT_SYMBOL(wake_up_process);
  2086. int wake_up_state(struct task_struct *p, unsigned int state)
  2087. {
  2088. return try_to_wake_up(p, state, 0);
  2089. }
  2090. /*
  2091. * Perform scheduler related setup for a newly forked process p.
  2092. * p is forked by current.
  2093. *
  2094. * __sched_fork() is basic setup used by init_idle() too:
  2095. */
  2096. static void __sched_fork(struct task_struct *p)
  2097. {
  2098. p->se.exec_start = 0;
  2099. p->se.sum_exec_runtime = 0;
  2100. p->se.prev_sum_exec_runtime = 0;
  2101. p->se.nr_migrations = 0;
  2102. p->se.last_wakeup = 0;
  2103. p->se.avg_overlap = 0;
  2104. p->se.start_runtime = 0;
  2105. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2106. #ifdef CONFIG_SCHEDSTATS
  2107. p->se.wait_start = 0;
  2108. p->se.wait_max = 0;
  2109. p->se.wait_count = 0;
  2110. p->se.wait_sum = 0;
  2111. p->se.sleep_start = 0;
  2112. p->se.sleep_max = 0;
  2113. p->se.sum_sleep_runtime = 0;
  2114. p->se.block_start = 0;
  2115. p->se.block_max = 0;
  2116. p->se.exec_max = 0;
  2117. p->se.slice_max = 0;
  2118. p->se.nr_migrations_cold = 0;
  2119. p->se.nr_failed_migrations_affine = 0;
  2120. p->se.nr_failed_migrations_running = 0;
  2121. p->se.nr_failed_migrations_hot = 0;
  2122. p->se.nr_forced_migrations = 0;
  2123. p->se.nr_wakeups = 0;
  2124. p->se.nr_wakeups_sync = 0;
  2125. p->se.nr_wakeups_migrate = 0;
  2126. p->se.nr_wakeups_local = 0;
  2127. p->se.nr_wakeups_remote = 0;
  2128. p->se.nr_wakeups_affine = 0;
  2129. p->se.nr_wakeups_affine_attempts = 0;
  2130. p->se.nr_wakeups_passive = 0;
  2131. p->se.nr_wakeups_idle = 0;
  2132. #endif
  2133. INIT_LIST_HEAD(&p->rt.run_list);
  2134. p->se.on_rq = 0;
  2135. INIT_LIST_HEAD(&p->se.group_node);
  2136. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2137. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2138. #endif
  2139. /*
  2140. * We mark the process as running here, but have not actually
  2141. * inserted it onto the runqueue yet. This guarantees that
  2142. * nobody will actually run it, and a signal or other external
  2143. * event cannot wake it up and insert it on the runqueue either.
  2144. */
  2145. p->state = TASK_RUNNING;
  2146. }
  2147. /*
  2148. * fork()/clone()-time setup:
  2149. */
  2150. void sched_fork(struct task_struct *p, int clone_flags)
  2151. {
  2152. int cpu = get_cpu();
  2153. __sched_fork(p);
  2154. /*
  2155. * Revert to default priority/policy on fork if requested.
  2156. */
  2157. if (unlikely(p->sched_reset_on_fork)) {
  2158. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2159. p->policy = SCHED_NORMAL;
  2160. p->normal_prio = p->static_prio;
  2161. }
  2162. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2163. p->static_prio = NICE_TO_PRIO(0);
  2164. p->normal_prio = p->static_prio;
  2165. set_load_weight(p);
  2166. }
  2167. /*
  2168. * We don't need the reset flag anymore after the fork. It has
  2169. * fulfilled its duty:
  2170. */
  2171. p->sched_reset_on_fork = 0;
  2172. }
  2173. /*
  2174. * Make sure we do not leak PI boosting priority to the child.
  2175. */
  2176. p->prio = current->normal_prio;
  2177. if (!rt_prio(p->prio))
  2178. p->sched_class = &fair_sched_class;
  2179. if (p->sched_class->task_fork)
  2180. p->sched_class->task_fork(p);
  2181. #ifdef CONFIG_SMP
  2182. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2183. #endif
  2184. set_task_cpu(p, cpu);
  2185. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2186. if (likely(sched_info_on()))
  2187. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2188. #endif
  2189. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2190. p->oncpu = 0;
  2191. #endif
  2192. #ifdef CONFIG_PREEMPT
  2193. /* Want to start with kernel preemption disabled. */
  2194. task_thread_info(p)->preempt_count = 1;
  2195. #endif
  2196. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2197. put_cpu();
  2198. }
  2199. /*
  2200. * wake_up_new_task - wake up a newly created task for the first time.
  2201. *
  2202. * This function will do some initial scheduler statistics housekeeping
  2203. * that must be done for every newly created context, then puts the task
  2204. * on the runqueue and wakes it.
  2205. */
  2206. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2207. {
  2208. unsigned long flags;
  2209. struct rq *rq;
  2210. rq = task_rq_lock(p, &flags);
  2211. BUG_ON(p->state != TASK_RUNNING);
  2212. update_rq_clock(rq);
  2213. activate_task(rq, p, 0);
  2214. trace_sched_wakeup_new(rq, p, 1);
  2215. check_preempt_curr(rq, p, WF_FORK);
  2216. #ifdef CONFIG_SMP
  2217. if (p->sched_class->task_wake_up)
  2218. p->sched_class->task_wake_up(rq, p);
  2219. #endif
  2220. task_rq_unlock(rq, &flags);
  2221. }
  2222. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2223. /**
  2224. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2225. * @notifier: notifier struct to register
  2226. */
  2227. void preempt_notifier_register(struct preempt_notifier *notifier)
  2228. {
  2229. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2230. }
  2231. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2232. /**
  2233. * preempt_notifier_unregister - no longer interested in preemption notifications
  2234. * @notifier: notifier struct to unregister
  2235. *
  2236. * This is safe to call from within a preemption notifier.
  2237. */
  2238. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2239. {
  2240. hlist_del(&notifier->link);
  2241. }
  2242. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2243. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2244. {
  2245. struct preempt_notifier *notifier;
  2246. struct hlist_node *node;
  2247. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2248. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2249. }
  2250. static void
  2251. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2252. struct task_struct *next)
  2253. {
  2254. struct preempt_notifier *notifier;
  2255. struct hlist_node *node;
  2256. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2257. notifier->ops->sched_out(notifier, next);
  2258. }
  2259. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2260. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2261. {
  2262. }
  2263. static void
  2264. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2265. struct task_struct *next)
  2266. {
  2267. }
  2268. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2269. /**
  2270. * prepare_task_switch - prepare to switch tasks
  2271. * @rq: the runqueue preparing to switch
  2272. * @prev: the current task that is being switched out
  2273. * @next: the task we are going to switch to.
  2274. *
  2275. * This is called with the rq lock held and interrupts off. It must
  2276. * be paired with a subsequent finish_task_switch after the context
  2277. * switch.
  2278. *
  2279. * prepare_task_switch sets up locking and calls architecture specific
  2280. * hooks.
  2281. */
  2282. static inline void
  2283. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2284. struct task_struct *next)
  2285. {
  2286. fire_sched_out_preempt_notifiers(prev, next);
  2287. prepare_lock_switch(rq, next);
  2288. prepare_arch_switch(next);
  2289. }
  2290. /**
  2291. * finish_task_switch - clean up after a task-switch
  2292. * @rq: runqueue associated with task-switch
  2293. * @prev: the thread we just switched away from.
  2294. *
  2295. * finish_task_switch must be called after the context switch, paired
  2296. * with a prepare_task_switch call before the context switch.
  2297. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2298. * and do any other architecture-specific cleanup actions.
  2299. *
  2300. * Note that we may have delayed dropping an mm in context_switch(). If
  2301. * so, we finish that here outside of the runqueue lock. (Doing it
  2302. * with the lock held can cause deadlocks; see schedule() for
  2303. * details.)
  2304. */
  2305. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2306. __releases(rq->lock)
  2307. {
  2308. struct mm_struct *mm = rq->prev_mm;
  2309. long prev_state;
  2310. rq->prev_mm = NULL;
  2311. /*
  2312. * A task struct has one reference for the use as "current".
  2313. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2314. * schedule one last time. The schedule call will never return, and
  2315. * the scheduled task must drop that reference.
  2316. * The test for TASK_DEAD must occur while the runqueue locks are
  2317. * still held, otherwise prev could be scheduled on another cpu, die
  2318. * there before we look at prev->state, and then the reference would
  2319. * be dropped twice.
  2320. * Manfred Spraul <manfred@colorfullife.com>
  2321. */
  2322. prev_state = prev->state;
  2323. finish_arch_switch(prev);
  2324. perf_event_task_sched_in(current, cpu_of(rq));
  2325. finish_lock_switch(rq, prev);
  2326. fire_sched_in_preempt_notifiers(current);
  2327. if (mm)
  2328. mmdrop(mm);
  2329. if (unlikely(prev_state == TASK_DEAD)) {
  2330. /*
  2331. * Remove function-return probe instances associated with this
  2332. * task and put them back on the free list.
  2333. */
  2334. kprobe_flush_task(prev);
  2335. put_task_struct(prev);
  2336. }
  2337. }
  2338. #ifdef CONFIG_SMP
  2339. /* assumes rq->lock is held */
  2340. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2341. {
  2342. if (prev->sched_class->pre_schedule)
  2343. prev->sched_class->pre_schedule(rq, prev);
  2344. }
  2345. /* rq->lock is NOT held, but preemption is disabled */
  2346. static inline void post_schedule(struct rq *rq)
  2347. {
  2348. if (rq->post_schedule) {
  2349. unsigned long flags;
  2350. spin_lock_irqsave(&rq->lock, flags);
  2351. if (rq->curr->sched_class->post_schedule)
  2352. rq->curr->sched_class->post_schedule(rq);
  2353. spin_unlock_irqrestore(&rq->lock, flags);
  2354. rq->post_schedule = 0;
  2355. }
  2356. }
  2357. #else
  2358. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2359. {
  2360. }
  2361. static inline void post_schedule(struct rq *rq)
  2362. {
  2363. }
  2364. #endif
  2365. /**
  2366. * schedule_tail - first thing a freshly forked thread must call.
  2367. * @prev: the thread we just switched away from.
  2368. */
  2369. asmlinkage void schedule_tail(struct task_struct *prev)
  2370. __releases(rq->lock)
  2371. {
  2372. struct rq *rq = this_rq();
  2373. finish_task_switch(rq, prev);
  2374. /*
  2375. * FIXME: do we need to worry about rq being invalidated by the
  2376. * task_switch?
  2377. */
  2378. post_schedule(rq);
  2379. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2380. /* In this case, finish_task_switch does not reenable preemption */
  2381. preempt_enable();
  2382. #endif
  2383. if (current->set_child_tid)
  2384. put_user(task_pid_vnr(current), current->set_child_tid);
  2385. }
  2386. /*
  2387. * context_switch - switch to the new MM and the new
  2388. * thread's register state.
  2389. */
  2390. static inline void
  2391. context_switch(struct rq *rq, struct task_struct *prev,
  2392. struct task_struct *next)
  2393. {
  2394. struct mm_struct *mm, *oldmm;
  2395. prepare_task_switch(rq, prev, next);
  2396. trace_sched_switch(rq, prev, next);
  2397. mm = next->mm;
  2398. oldmm = prev->active_mm;
  2399. /*
  2400. * For paravirt, this is coupled with an exit in switch_to to
  2401. * combine the page table reload and the switch backend into
  2402. * one hypercall.
  2403. */
  2404. arch_start_context_switch(prev);
  2405. if (likely(!mm)) {
  2406. next->active_mm = oldmm;
  2407. atomic_inc(&oldmm->mm_count);
  2408. enter_lazy_tlb(oldmm, next);
  2409. } else
  2410. switch_mm(oldmm, mm, next);
  2411. if (likely(!prev->mm)) {
  2412. prev->active_mm = NULL;
  2413. rq->prev_mm = oldmm;
  2414. }
  2415. /*
  2416. * Since the runqueue lock will be released by the next
  2417. * task (which is an invalid locking op but in the case
  2418. * of the scheduler it's an obvious special-case), so we
  2419. * do an early lockdep release here:
  2420. */
  2421. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2422. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2423. #endif
  2424. /* Here we just switch the register state and the stack. */
  2425. switch_to(prev, next, prev);
  2426. barrier();
  2427. /*
  2428. * this_rq must be evaluated again because prev may have moved
  2429. * CPUs since it called schedule(), thus the 'rq' on its stack
  2430. * frame will be invalid.
  2431. */
  2432. finish_task_switch(this_rq(), prev);
  2433. }
  2434. /*
  2435. * nr_running, nr_uninterruptible and nr_context_switches:
  2436. *
  2437. * externally visible scheduler statistics: current number of runnable
  2438. * threads, current number of uninterruptible-sleeping threads, total
  2439. * number of context switches performed since bootup.
  2440. */
  2441. unsigned long nr_running(void)
  2442. {
  2443. unsigned long i, sum = 0;
  2444. for_each_online_cpu(i)
  2445. sum += cpu_rq(i)->nr_running;
  2446. return sum;
  2447. }
  2448. unsigned long nr_uninterruptible(void)
  2449. {
  2450. unsigned long i, sum = 0;
  2451. for_each_possible_cpu(i)
  2452. sum += cpu_rq(i)->nr_uninterruptible;
  2453. /*
  2454. * Since we read the counters lockless, it might be slightly
  2455. * inaccurate. Do not allow it to go below zero though:
  2456. */
  2457. if (unlikely((long)sum < 0))
  2458. sum = 0;
  2459. return sum;
  2460. }
  2461. unsigned long long nr_context_switches(void)
  2462. {
  2463. int i;
  2464. unsigned long long sum = 0;
  2465. for_each_possible_cpu(i)
  2466. sum += cpu_rq(i)->nr_switches;
  2467. return sum;
  2468. }
  2469. unsigned long nr_iowait(void)
  2470. {
  2471. unsigned long i, sum = 0;
  2472. for_each_possible_cpu(i)
  2473. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2474. return sum;
  2475. }
  2476. unsigned long nr_iowait_cpu(void)
  2477. {
  2478. struct rq *this = this_rq();
  2479. return atomic_read(&this->nr_iowait);
  2480. }
  2481. unsigned long this_cpu_load(void)
  2482. {
  2483. struct rq *this = this_rq();
  2484. return this->cpu_load[0];
  2485. }
  2486. /* Variables and functions for calc_load */
  2487. static atomic_long_t calc_load_tasks;
  2488. static unsigned long calc_load_update;
  2489. unsigned long avenrun[3];
  2490. EXPORT_SYMBOL(avenrun);
  2491. /**
  2492. * get_avenrun - get the load average array
  2493. * @loads: pointer to dest load array
  2494. * @offset: offset to add
  2495. * @shift: shift count to shift the result left
  2496. *
  2497. * These values are estimates at best, so no need for locking.
  2498. */
  2499. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2500. {
  2501. loads[0] = (avenrun[0] + offset) << shift;
  2502. loads[1] = (avenrun[1] + offset) << shift;
  2503. loads[2] = (avenrun[2] + offset) << shift;
  2504. }
  2505. static unsigned long
  2506. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2507. {
  2508. load *= exp;
  2509. load += active * (FIXED_1 - exp);
  2510. return load >> FSHIFT;
  2511. }
  2512. /*
  2513. * calc_load - update the avenrun load estimates 10 ticks after the
  2514. * CPUs have updated calc_load_tasks.
  2515. */
  2516. void calc_global_load(void)
  2517. {
  2518. unsigned long upd = calc_load_update + 10;
  2519. long active;
  2520. if (time_before(jiffies, upd))
  2521. return;
  2522. active = atomic_long_read(&calc_load_tasks);
  2523. active = active > 0 ? active * FIXED_1 : 0;
  2524. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2525. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2526. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2527. calc_load_update += LOAD_FREQ;
  2528. }
  2529. /*
  2530. * Either called from update_cpu_load() or from a cpu going idle
  2531. */
  2532. static void calc_load_account_active(struct rq *this_rq)
  2533. {
  2534. long nr_active, delta;
  2535. nr_active = this_rq->nr_running;
  2536. nr_active += (long) this_rq->nr_uninterruptible;
  2537. if (nr_active != this_rq->calc_load_active) {
  2538. delta = nr_active - this_rq->calc_load_active;
  2539. this_rq->calc_load_active = nr_active;
  2540. atomic_long_add(delta, &calc_load_tasks);
  2541. }
  2542. }
  2543. /*
  2544. * Update rq->cpu_load[] statistics. This function is usually called every
  2545. * scheduler tick (TICK_NSEC).
  2546. */
  2547. static void update_cpu_load(struct rq *this_rq)
  2548. {
  2549. unsigned long this_load = this_rq->load.weight;
  2550. int i, scale;
  2551. this_rq->nr_load_updates++;
  2552. /* Update our load: */
  2553. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2554. unsigned long old_load, new_load;
  2555. /* scale is effectively 1 << i now, and >> i divides by scale */
  2556. old_load = this_rq->cpu_load[i];
  2557. new_load = this_load;
  2558. /*
  2559. * Round up the averaging division if load is increasing. This
  2560. * prevents us from getting stuck on 9 if the load is 10, for
  2561. * example.
  2562. */
  2563. if (new_load > old_load)
  2564. new_load += scale-1;
  2565. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2566. }
  2567. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2568. this_rq->calc_load_update += LOAD_FREQ;
  2569. calc_load_account_active(this_rq);
  2570. }
  2571. }
  2572. #ifdef CONFIG_SMP
  2573. /*
  2574. * double_rq_lock - safely lock two runqueues
  2575. *
  2576. * Note this does not disable interrupts like task_rq_lock,
  2577. * you need to do so manually before calling.
  2578. */
  2579. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2580. __acquires(rq1->lock)
  2581. __acquires(rq2->lock)
  2582. {
  2583. BUG_ON(!irqs_disabled());
  2584. if (rq1 == rq2) {
  2585. spin_lock(&rq1->lock);
  2586. __acquire(rq2->lock); /* Fake it out ;) */
  2587. } else {
  2588. if (rq1 < rq2) {
  2589. spin_lock(&rq1->lock);
  2590. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2591. } else {
  2592. spin_lock(&rq2->lock);
  2593. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2594. }
  2595. }
  2596. update_rq_clock(rq1);
  2597. update_rq_clock(rq2);
  2598. }
  2599. /*
  2600. * double_rq_unlock - safely unlock two runqueues
  2601. *
  2602. * Note this does not restore interrupts like task_rq_unlock,
  2603. * you need to do so manually after calling.
  2604. */
  2605. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2606. __releases(rq1->lock)
  2607. __releases(rq2->lock)
  2608. {
  2609. spin_unlock(&rq1->lock);
  2610. if (rq1 != rq2)
  2611. spin_unlock(&rq2->lock);
  2612. else
  2613. __release(rq2->lock);
  2614. }
  2615. /*
  2616. * If dest_cpu is allowed for this process, migrate the task to it.
  2617. * This is accomplished by forcing the cpu_allowed mask to only
  2618. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2619. * the cpu_allowed mask is restored.
  2620. */
  2621. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2622. {
  2623. struct migration_req req;
  2624. unsigned long flags;
  2625. struct rq *rq;
  2626. rq = task_rq_lock(p, &flags);
  2627. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2628. || unlikely(!cpu_active(dest_cpu)))
  2629. goto out;
  2630. /* force the process onto the specified CPU */
  2631. if (migrate_task(p, dest_cpu, &req)) {
  2632. /* Need to wait for migration thread (might exit: take ref). */
  2633. struct task_struct *mt = rq->migration_thread;
  2634. get_task_struct(mt);
  2635. task_rq_unlock(rq, &flags);
  2636. wake_up_process(mt);
  2637. put_task_struct(mt);
  2638. wait_for_completion(&req.done);
  2639. return;
  2640. }
  2641. out:
  2642. task_rq_unlock(rq, &flags);
  2643. }
  2644. /*
  2645. * sched_exec - execve() is a valuable balancing opportunity, because at
  2646. * this point the task has the smallest effective memory and cache footprint.
  2647. */
  2648. void sched_exec(void)
  2649. {
  2650. int new_cpu, this_cpu = get_cpu();
  2651. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2652. put_cpu();
  2653. if (new_cpu != this_cpu)
  2654. sched_migrate_task(current, new_cpu);
  2655. }
  2656. /*
  2657. * pull_task - move a task from a remote runqueue to the local runqueue.
  2658. * Both runqueues must be locked.
  2659. */
  2660. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2661. struct rq *this_rq, int this_cpu)
  2662. {
  2663. deactivate_task(src_rq, p, 0);
  2664. set_task_cpu(p, this_cpu);
  2665. activate_task(this_rq, p, 0);
  2666. check_preempt_curr(this_rq, p, 0);
  2667. }
  2668. /*
  2669. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2670. */
  2671. static
  2672. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2673. struct sched_domain *sd, enum cpu_idle_type idle,
  2674. int *all_pinned)
  2675. {
  2676. int tsk_cache_hot = 0;
  2677. /*
  2678. * We do not migrate tasks that are:
  2679. * 1) running (obviously), or
  2680. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2681. * 3) are cache-hot on their current CPU.
  2682. */
  2683. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2684. schedstat_inc(p, se.nr_failed_migrations_affine);
  2685. return 0;
  2686. }
  2687. *all_pinned = 0;
  2688. if (task_running(rq, p)) {
  2689. schedstat_inc(p, se.nr_failed_migrations_running);
  2690. return 0;
  2691. }
  2692. /*
  2693. * Aggressive migration if:
  2694. * 1) task is cache cold, or
  2695. * 2) too many balance attempts have failed.
  2696. */
  2697. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2698. if (!tsk_cache_hot ||
  2699. sd->nr_balance_failed > sd->cache_nice_tries) {
  2700. #ifdef CONFIG_SCHEDSTATS
  2701. if (tsk_cache_hot) {
  2702. schedstat_inc(sd, lb_hot_gained[idle]);
  2703. schedstat_inc(p, se.nr_forced_migrations);
  2704. }
  2705. #endif
  2706. return 1;
  2707. }
  2708. if (tsk_cache_hot) {
  2709. schedstat_inc(p, se.nr_failed_migrations_hot);
  2710. return 0;
  2711. }
  2712. return 1;
  2713. }
  2714. static unsigned long
  2715. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2716. unsigned long max_load_move, struct sched_domain *sd,
  2717. enum cpu_idle_type idle, int *all_pinned,
  2718. int *this_best_prio, struct rq_iterator *iterator)
  2719. {
  2720. int loops = 0, pulled = 0, pinned = 0;
  2721. struct task_struct *p;
  2722. long rem_load_move = max_load_move;
  2723. if (max_load_move == 0)
  2724. goto out;
  2725. pinned = 1;
  2726. /*
  2727. * Start the load-balancing iterator:
  2728. */
  2729. p = iterator->start(iterator->arg);
  2730. next:
  2731. if (!p || loops++ > sysctl_sched_nr_migrate)
  2732. goto out;
  2733. if ((p->se.load.weight >> 1) > rem_load_move ||
  2734. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2735. p = iterator->next(iterator->arg);
  2736. goto next;
  2737. }
  2738. pull_task(busiest, p, this_rq, this_cpu);
  2739. pulled++;
  2740. rem_load_move -= p->se.load.weight;
  2741. #ifdef CONFIG_PREEMPT
  2742. /*
  2743. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2744. * will stop after the first task is pulled to minimize the critical
  2745. * section.
  2746. */
  2747. if (idle == CPU_NEWLY_IDLE)
  2748. goto out;
  2749. #endif
  2750. /*
  2751. * We only want to steal up to the prescribed amount of weighted load.
  2752. */
  2753. if (rem_load_move > 0) {
  2754. if (p->prio < *this_best_prio)
  2755. *this_best_prio = p->prio;
  2756. p = iterator->next(iterator->arg);
  2757. goto next;
  2758. }
  2759. out:
  2760. /*
  2761. * Right now, this is one of only two places pull_task() is called,
  2762. * so we can safely collect pull_task() stats here rather than
  2763. * inside pull_task().
  2764. */
  2765. schedstat_add(sd, lb_gained[idle], pulled);
  2766. if (all_pinned)
  2767. *all_pinned = pinned;
  2768. return max_load_move - rem_load_move;
  2769. }
  2770. /*
  2771. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2772. * this_rq, as part of a balancing operation within domain "sd".
  2773. * Returns 1 if successful and 0 otherwise.
  2774. *
  2775. * Called with both runqueues locked.
  2776. */
  2777. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2778. unsigned long max_load_move,
  2779. struct sched_domain *sd, enum cpu_idle_type idle,
  2780. int *all_pinned)
  2781. {
  2782. const struct sched_class *class = sched_class_highest;
  2783. unsigned long total_load_moved = 0;
  2784. int this_best_prio = this_rq->curr->prio;
  2785. do {
  2786. total_load_moved +=
  2787. class->load_balance(this_rq, this_cpu, busiest,
  2788. max_load_move - total_load_moved,
  2789. sd, idle, all_pinned, &this_best_prio);
  2790. class = class->next;
  2791. #ifdef CONFIG_PREEMPT
  2792. /*
  2793. * NEWIDLE balancing is a source of latency, so preemptible
  2794. * kernels will stop after the first task is pulled to minimize
  2795. * the critical section.
  2796. */
  2797. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2798. break;
  2799. #endif
  2800. } while (class && max_load_move > total_load_moved);
  2801. return total_load_moved > 0;
  2802. }
  2803. static int
  2804. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2805. struct sched_domain *sd, enum cpu_idle_type idle,
  2806. struct rq_iterator *iterator)
  2807. {
  2808. struct task_struct *p = iterator->start(iterator->arg);
  2809. int pinned = 0;
  2810. while (p) {
  2811. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2812. pull_task(busiest, p, this_rq, this_cpu);
  2813. /*
  2814. * Right now, this is only the second place pull_task()
  2815. * is called, so we can safely collect pull_task()
  2816. * stats here rather than inside pull_task().
  2817. */
  2818. schedstat_inc(sd, lb_gained[idle]);
  2819. return 1;
  2820. }
  2821. p = iterator->next(iterator->arg);
  2822. }
  2823. return 0;
  2824. }
  2825. /*
  2826. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2827. * part of active balancing operations within "domain".
  2828. * Returns 1 if successful and 0 otherwise.
  2829. *
  2830. * Called with both runqueues locked.
  2831. */
  2832. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2833. struct sched_domain *sd, enum cpu_idle_type idle)
  2834. {
  2835. const struct sched_class *class;
  2836. for_each_class(class) {
  2837. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2838. return 1;
  2839. }
  2840. return 0;
  2841. }
  2842. /********** Helpers for find_busiest_group ************************/
  2843. /*
  2844. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2845. * during load balancing.
  2846. */
  2847. struct sd_lb_stats {
  2848. struct sched_group *busiest; /* Busiest group in this sd */
  2849. struct sched_group *this; /* Local group in this sd */
  2850. unsigned long total_load; /* Total load of all groups in sd */
  2851. unsigned long total_pwr; /* Total power of all groups in sd */
  2852. unsigned long avg_load; /* Average load across all groups in sd */
  2853. /** Statistics of this group */
  2854. unsigned long this_load;
  2855. unsigned long this_load_per_task;
  2856. unsigned long this_nr_running;
  2857. /* Statistics of the busiest group */
  2858. unsigned long max_load;
  2859. unsigned long busiest_load_per_task;
  2860. unsigned long busiest_nr_running;
  2861. int group_imb; /* Is there imbalance in this sd */
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. int power_savings_balance; /* Is powersave balance needed for this sd */
  2864. struct sched_group *group_min; /* Least loaded group in sd */
  2865. struct sched_group *group_leader; /* Group which relieves group_min */
  2866. unsigned long min_load_per_task; /* load_per_task in group_min */
  2867. unsigned long leader_nr_running; /* Nr running of group_leader */
  2868. unsigned long min_nr_running; /* Nr running of group_min */
  2869. #endif
  2870. };
  2871. /*
  2872. * sg_lb_stats - stats of a sched_group required for load_balancing
  2873. */
  2874. struct sg_lb_stats {
  2875. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2876. unsigned long group_load; /* Total load over the CPUs of the group */
  2877. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2878. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2879. unsigned long group_capacity;
  2880. int group_imb; /* Is there an imbalance in the group ? */
  2881. };
  2882. /**
  2883. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2884. * @group: The group whose first cpu is to be returned.
  2885. */
  2886. static inline unsigned int group_first_cpu(struct sched_group *group)
  2887. {
  2888. return cpumask_first(sched_group_cpus(group));
  2889. }
  2890. /**
  2891. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2892. * @sd: The sched_domain whose load_idx is to be obtained.
  2893. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2894. */
  2895. static inline int get_sd_load_idx(struct sched_domain *sd,
  2896. enum cpu_idle_type idle)
  2897. {
  2898. int load_idx;
  2899. switch (idle) {
  2900. case CPU_NOT_IDLE:
  2901. load_idx = sd->busy_idx;
  2902. break;
  2903. case CPU_NEWLY_IDLE:
  2904. load_idx = sd->newidle_idx;
  2905. break;
  2906. default:
  2907. load_idx = sd->idle_idx;
  2908. break;
  2909. }
  2910. return load_idx;
  2911. }
  2912. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2913. /**
  2914. * init_sd_power_savings_stats - Initialize power savings statistics for
  2915. * the given sched_domain, during load balancing.
  2916. *
  2917. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2918. * @sds: Variable containing the statistics for sd.
  2919. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2920. */
  2921. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2922. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2923. {
  2924. /*
  2925. * Busy processors will not participate in power savings
  2926. * balance.
  2927. */
  2928. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2929. sds->power_savings_balance = 0;
  2930. else {
  2931. sds->power_savings_balance = 1;
  2932. sds->min_nr_running = ULONG_MAX;
  2933. sds->leader_nr_running = 0;
  2934. }
  2935. }
  2936. /**
  2937. * update_sd_power_savings_stats - Update the power saving stats for a
  2938. * sched_domain while performing load balancing.
  2939. *
  2940. * @group: sched_group belonging to the sched_domain under consideration.
  2941. * @sds: Variable containing the statistics of the sched_domain
  2942. * @local_group: Does group contain the CPU for which we're performing
  2943. * load balancing ?
  2944. * @sgs: Variable containing the statistics of the group.
  2945. */
  2946. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2947. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2948. {
  2949. if (!sds->power_savings_balance)
  2950. return;
  2951. /*
  2952. * If the local group is idle or completely loaded
  2953. * no need to do power savings balance at this domain
  2954. */
  2955. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2956. !sds->this_nr_running))
  2957. sds->power_savings_balance = 0;
  2958. /*
  2959. * If a group is already running at full capacity or idle,
  2960. * don't include that group in power savings calculations
  2961. */
  2962. if (!sds->power_savings_balance ||
  2963. sgs->sum_nr_running >= sgs->group_capacity ||
  2964. !sgs->sum_nr_running)
  2965. return;
  2966. /*
  2967. * Calculate the group which has the least non-idle load.
  2968. * This is the group from where we need to pick up the load
  2969. * for saving power
  2970. */
  2971. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2972. (sgs->sum_nr_running == sds->min_nr_running &&
  2973. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2974. sds->group_min = group;
  2975. sds->min_nr_running = sgs->sum_nr_running;
  2976. sds->min_load_per_task = sgs->sum_weighted_load /
  2977. sgs->sum_nr_running;
  2978. }
  2979. /*
  2980. * Calculate the group which is almost near its
  2981. * capacity but still has some space to pick up some load
  2982. * from other group and save more power
  2983. */
  2984. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2985. return;
  2986. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2987. (sgs->sum_nr_running == sds->leader_nr_running &&
  2988. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2989. sds->group_leader = group;
  2990. sds->leader_nr_running = sgs->sum_nr_running;
  2991. }
  2992. }
  2993. /**
  2994. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2995. * @sds: Variable containing the statistics of the sched_domain
  2996. * under consideration.
  2997. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2998. * @imbalance: Variable to store the imbalance.
  2999. *
  3000. * Description:
  3001. * Check if we have potential to perform some power-savings balance.
  3002. * If yes, set the busiest group to be the least loaded group in the
  3003. * sched_domain, so that it's CPUs can be put to idle.
  3004. *
  3005. * Returns 1 if there is potential to perform power-savings balance.
  3006. * Else returns 0.
  3007. */
  3008. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3009. int this_cpu, unsigned long *imbalance)
  3010. {
  3011. if (!sds->power_savings_balance)
  3012. return 0;
  3013. if (sds->this != sds->group_leader ||
  3014. sds->group_leader == sds->group_min)
  3015. return 0;
  3016. *imbalance = sds->min_load_per_task;
  3017. sds->busiest = sds->group_min;
  3018. return 1;
  3019. }
  3020. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3021. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3022. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3023. {
  3024. return;
  3025. }
  3026. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3027. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3028. {
  3029. return;
  3030. }
  3031. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3032. int this_cpu, unsigned long *imbalance)
  3033. {
  3034. return 0;
  3035. }
  3036. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3037. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3038. {
  3039. return SCHED_LOAD_SCALE;
  3040. }
  3041. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3042. {
  3043. return default_scale_freq_power(sd, cpu);
  3044. }
  3045. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3046. {
  3047. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3048. unsigned long smt_gain = sd->smt_gain;
  3049. smt_gain /= weight;
  3050. return smt_gain;
  3051. }
  3052. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3053. {
  3054. return default_scale_smt_power(sd, cpu);
  3055. }
  3056. unsigned long scale_rt_power(int cpu)
  3057. {
  3058. struct rq *rq = cpu_rq(cpu);
  3059. u64 total, available;
  3060. sched_avg_update(rq);
  3061. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3062. available = total - rq->rt_avg;
  3063. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3064. total = SCHED_LOAD_SCALE;
  3065. total >>= SCHED_LOAD_SHIFT;
  3066. return div_u64(available, total);
  3067. }
  3068. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3069. {
  3070. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3071. unsigned long power = SCHED_LOAD_SCALE;
  3072. struct sched_group *sdg = sd->groups;
  3073. if (sched_feat(ARCH_POWER))
  3074. power *= arch_scale_freq_power(sd, cpu);
  3075. else
  3076. power *= default_scale_freq_power(sd, cpu);
  3077. power >>= SCHED_LOAD_SHIFT;
  3078. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3079. if (sched_feat(ARCH_POWER))
  3080. power *= arch_scale_smt_power(sd, cpu);
  3081. else
  3082. power *= default_scale_smt_power(sd, cpu);
  3083. power >>= SCHED_LOAD_SHIFT;
  3084. }
  3085. power *= scale_rt_power(cpu);
  3086. power >>= SCHED_LOAD_SHIFT;
  3087. if (!power)
  3088. power = 1;
  3089. sdg->cpu_power = power;
  3090. }
  3091. static void update_group_power(struct sched_domain *sd, int cpu)
  3092. {
  3093. struct sched_domain *child = sd->child;
  3094. struct sched_group *group, *sdg = sd->groups;
  3095. unsigned long power;
  3096. if (!child) {
  3097. update_cpu_power(sd, cpu);
  3098. return;
  3099. }
  3100. power = 0;
  3101. group = child->groups;
  3102. do {
  3103. power += group->cpu_power;
  3104. group = group->next;
  3105. } while (group != child->groups);
  3106. sdg->cpu_power = power;
  3107. }
  3108. /**
  3109. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3110. * @sd: The sched_domain whose statistics are to be updated.
  3111. * @group: sched_group whose statistics are to be updated.
  3112. * @this_cpu: Cpu for which load balance is currently performed.
  3113. * @idle: Idle status of this_cpu
  3114. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3115. * @sd_idle: Idle status of the sched_domain containing group.
  3116. * @local_group: Does group contain this_cpu.
  3117. * @cpus: Set of cpus considered for load balancing.
  3118. * @balance: Should we balance.
  3119. * @sgs: variable to hold the statistics for this group.
  3120. */
  3121. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3122. struct sched_group *group, int this_cpu,
  3123. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3124. int local_group, const struct cpumask *cpus,
  3125. int *balance, struct sg_lb_stats *sgs)
  3126. {
  3127. unsigned long load, max_cpu_load, min_cpu_load;
  3128. int i;
  3129. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3130. unsigned long sum_avg_load_per_task;
  3131. unsigned long avg_load_per_task;
  3132. if (local_group) {
  3133. balance_cpu = group_first_cpu(group);
  3134. if (balance_cpu == this_cpu)
  3135. update_group_power(sd, this_cpu);
  3136. }
  3137. /* Tally up the load of all CPUs in the group */
  3138. sum_avg_load_per_task = avg_load_per_task = 0;
  3139. max_cpu_load = 0;
  3140. min_cpu_load = ~0UL;
  3141. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3142. struct rq *rq = cpu_rq(i);
  3143. if (*sd_idle && rq->nr_running)
  3144. *sd_idle = 0;
  3145. /* Bias balancing toward cpus of our domain */
  3146. if (local_group) {
  3147. if (idle_cpu(i) && !first_idle_cpu) {
  3148. first_idle_cpu = 1;
  3149. balance_cpu = i;
  3150. }
  3151. load = target_load(i, load_idx);
  3152. } else {
  3153. load = source_load(i, load_idx);
  3154. if (load > max_cpu_load)
  3155. max_cpu_load = load;
  3156. if (min_cpu_load > load)
  3157. min_cpu_load = load;
  3158. }
  3159. sgs->group_load += load;
  3160. sgs->sum_nr_running += rq->nr_running;
  3161. sgs->sum_weighted_load += weighted_cpuload(i);
  3162. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3163. }
  3164. /*
  3165. * First idle cpu or the first cpu(busiest) in this sched group
  3166. * is eligible for doing load balancing at this and above
  3167. * domains. In the newly idle case, we will allow all the cpu's
  3168. * to do the newly idle load balance.
  3169. */
  3170. if (idle != CPU_NEWLY_IDLE && local_group &&
  3171. balance_cpu != this_cpu && balance) {
  3172. *balance = 0;
  3173. return;
  3174. }
  3175. /* Adjust by relative CPU power of the group */
  3176. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3177. /*
  3178. * Consider the group unbalanced when the imbalance is larger
  3179. * than the average weight of two tasks.
  3180. *
  3181. * APZ: with cgroup the avg task weight can vary wildly and
  3182. * might not be a suitable number - should we keep a
  3183. * normalized nr_running number somewhere that negates
  3184. * the hierarchy?
  3185. */
  3186. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3187. group->cpu_power;
  3188. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3189. sgs->group_imb = 1;
  3190. sgs->group_capacity =
  3191. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3192. }
  3193. /**
  3194. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3195. * @sd: sched_domain whose statistics are to be updated.
  3196. * @this_cpu: Cpu for which load balance is currently performed.
  3197. * @idle: Idle status of this_cpu
  3198. * @sd_idle: Idle status of the sched_domain containing group.
  3199. * @cpus: Set of cpus considered for load balancing.
  3200. * @balance: Should we balance.
  3201. * @sds: variable to hold the statistics for this sched_domain.
  3202. */
  3203. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3204. enum cpu_idle_type idle, int *sd_idle,
  3205. const struct cpumask *cpus, int *balance,
  3206. struct sd_lb_stats *sds)
  3207. {
  3208. struct sched_domain *child = sd->child;
  3209. struct sched_group *group = sd->groups;
  3210. struct sg_lb_stats sgs;
  3211. int load_idx, prefer_sibling = 0;
  3212. if (child && child->flags & SD_PREFER_SIBLING)
  3213. prefer_sibling = 1;
  3214. init_sd_power_savings_stats(sd, sds, idle);
  3215. load_idx = get_sd_load_idx(sd, idle);
  3216. do {
  3217. int local_group;
  3218. local_group = cpumask_test_cpu(this_cpu,
  3219. sched_group_cpus(group));
  3220. memset(&sgs, 0, sizeof(sgs));
  3221. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3222. local_group, cpus, balance, &sgs);
  3223. if (local_group && balance && !(*balance))
  3224. return;
  3225. sds->total_load += sgs.group_load;
  3226. sds->total_pwr += group->cpu_power;
  3227. /*
  3228. * In case the child domain prefers tasks go to siblings
  3229. * first, lower the group capacity to one so that we'll try
  3230. * and move all the excess tasks away.
  3231. */
  3232. if (prefer_sibling)
  3233. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3234. if (local_group) {
  3235. sds->this_load = sgs.avg_load;
  3236. sds->this = group;
  3237. sds->this_nr_running = sgs.sum_nr_running;
  3238. sds->this_load_per_task = sgs.sum_weighted_load;
  3239. } else if (sgs.avg_load > sds->max_load &&
  3240. (sgs.sum_nr_running > sgs.group_capacity ||
  3241. sgs.group_imb)) {
  3242. sds->max_load = sgs.avg_load;
  3243. sds->busiest = group;
  3244. sds->busiest_nr_running = sgs.sum_nr_running;
  3245. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3246. sds->group_imb = sgs.group_imb;
  3247. }
  3248. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3249. group = group->next;
  3250. } while (group != sd->groups);
  3251. }
  3252. /**
  3253. * fix_small_imbalance - Calculate the minor imbalance that exists
  3254. * amongst the groups of a sched_domain, during
  3255. * load balancing.
  3256. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3257. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3258. * @imbalance: Variable to store the imbalance.
  3259. */
  3260. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3261. int this_cpu, unsigned long *imbalance)
  3262. {
  3263. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3264. unsigned int imbn = 2;
  3265. if (sds->this_nr_running) {
  3266. sds->this_load_per_task /= sds->this_nr_running;
  3267. if (sds->busiest_load_per_task >
  3268. sds->this_load_per_task)
  3269. imbn = 1;
  3270. } else
  3271. sds->this_load_per_task =
  3272. cpu_avg_load_per_task(this_cpu);
  3273. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3274. sds->busiest_load_per_task * imbn) {
  3275. *imbalance = sds->busiest_load_per_task;
  3276. return;
  3277. }
  3278. /*
  3279. * OK, we don't have enough imbalance to justify moving tasks,
  3280. * however we may be able to increase total CPU power used by
  3281. * moving them.
  3282. */
  3283. pwr_now += sds->busiest->cpu_power *
  3284. min(sds->busiest_load_per_task, sds->max_load);
  3285. pwr_now += sds->this->cpu_power *
  3286. min(sds->this_load_per_task, sds->this_load);
  3287. pwr_now /= SCHED_LOAD_SCALE;
  3288. /* Amount of load we'd subtract */
  3289. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3290. sds->busiest->cpu_power;
  3291. if (sds->max_load > tmp)
  3292. pwr_move += sds->busiest->cpu_power *
  3293. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3294. /* Amount of load we'd add */
  3295. if (sds->max_load * sds->busiest->cpu_power <
  3296. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3297. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3298. sds->this->cpu_power;
  3299. else
  3300. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3301. sds->this->cpu_power;
  3302. pwr_move += sds->this->cpu_power *
  3303. min(sds->this_load_per_task, sds->this_load + tmp);
  3304. pwr_move /= SCHED_LOAD_SCALE;
  3305. /* Move if we gain throughput */
  3306. if (pwr_move > pwr_now)
  3307. *imbalance = sds->busiest_load_per_task;
  3308. }
  3309. /**
  3310. * calculate_imbalance - Calculate the amount of imbalance present within the
  3311. * groups of a given sched_domain during load balance.
  3312. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3313. * @this_cpu: Cpu for which currently load balance is being performed.
  3314. * @imbalance: The variable to store the imbalance.
  3315. */
  3316. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3317. unsigned long *imbalance)
  3318. {
  3319. unsigned long max_pull;
  3320. /*
  3321. * In the presence of smp nice balancing, certain scenarios can have
  3322. * max load less than avg load(as we skip the groups at or below
  3323. * its cpu_power, while calculating max_load..)
  3324. */
  3325. if (sds->max_load < sds->avg_load) {
  3326. *imbalance = 0;
  3327. return fix_small_imbalance(sds, this_cpu, imbalance);
  3328. }
  3329. /* Don't want to pull so many tasks that a group would go idle */
  3330. max_pull = min(sds->max_load - sds->avg_load,
  3331. sds->max_load - sds->busiest_load_per_task);
  3332. /* How much load to actually move to equalise the imbalance */
  3333. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3334. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3335. / SCHED_LOAD_SCALE;
  3336. /*
  3337. * if *imbalance is less than the average load per runnable task
  3338. * there is no gaurantee that any tasks will be moved so we'll have
  3339. * a think about bumping its value to force at least one task to be
  3340. * moved
  3341. */
  3342. if (*imbalance < sds->busiest_load_per_task)
  3343. return fix_small_imbalance(sds, this_cpu, imbalance);
  3344. }
  3345. /******* find_busiest_group() helpers end here *********************/
  3346. /**
  3347. * find_busiest_group - Returns the busiest group within the sched_domain
  3348. * if there is an imbalance. If there isn't an imbalance, and
  3349. * the user has opted for power-savings, it returns a group whose
  3350. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3351. * such a group exists.
  3352. *
  3353. * Also calculates the amount of weighted load which should be moved
  3354. * to restore balance.
  3355. *
  3356. * @sd: The sched_domain whose busiest group is to be returned.
  3357. * @this_cpu: The cpu for which load balancing is currently being performed.
  3358. * @imbalance: Variable which stores amount of weighted load which should
  3359. * be moved to restore balance/put a group to idle.
  3360. * @idle: The idle status of this_cpu.
  3361. * @sd_idle: The idleness of sd
  3362. * @cpus: The set of CPUs under consideration for load-balancing.
  3363. * @balance: Pointer to a variable indicating if this_cpu
  3364. * is the appropriate cpu to perform load balancing at this_level.
  3365. *
  3366. * Returns: - the busiest group if imbalance exists.
  3367. * - If no imbalance and user has opted for power-savings balance,
  3368. * return the least loaded group whose CPUs can be
  3369. * put to idle by rebalancing its tasks onto our group.
  3370. */
  3371. static struct sched_group *
  3372. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3373. unsigned long *imbalance, enum cpu_idle_type idle,
  3374. int *sd_idle, const struct cpumask *cpus, int *balance)
  3375. {
  3376. struct sd_lb_stats sds;
  3377. memset(&sds, 0, sizeof(sds));
  3378. /*
  3379. * Compute the various statistics relavent for load balancing at
  3380. * this level.
  3381. */
  3382. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3383. balance, &sds);
  3384. /* Cases where imbalance does not exist from POV of this_cpu */
  3385. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3386. * at this level.
  3387. * 2) There is no busy sibling group to pull from.
  3388. * 3) This group is the busiest group.
  3389. * 4) This group is more busy than the avg busieness at this
  3390. * sched_domain.
  3391. * 5) The imbalance is within the specified limit.
  3392. * 6) Any rebalance would lead to ping-pong
  3393. */
  3394. if (balance && !(*balance))
  3395. goto ret;
  3396. if (!sds.busiest || sds.busiest_nr_running == 0)
  3397. goto out_balanced;
  3398. if (sds.this_load >= sds.max_load)
  3399. goto out_balanced;
  3400. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3401. if (sds.this_load >= sds.avg_load)
  3402. goto out_balanced;
  3403. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3404. goto out_balanced;
  3405. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3406. if (sds.group_imb)
  3407. sds.busiest_load_per_task =
  3408. min(sds.busiest_load_per_task, sds.avg_load);
  3409. /*
  3410. * We're trying to get all the cpus to the average_load, so we don't
  3411. * want to push ourselves above the average load, nor do we wish to
  3412. * reduce the max loaded cpu below the average load, as either of these
  3413. * actions would just result in more rebalancing later, and ping-pong
  3414. * tasks around. Thus we look for the minimum possible imbalance.
  3415. * Negative imbalances (*we* are more loaded than anyone else) will
  3416. * be counted as no imbalance for these purposes -- we can't fix that
  3417. * by pulling tasks to us. Be careful of negative numbers as they'll
  3418. * appear as very large values with unsigned longs.
  3419. */
  3420. if (sds.max_load <= sds.busiest_load_per_task)
  3421. goto out_balanced;
  3422. /* Looks like there is an imbalance. Compute it */
  3423. calculate_imbalance(&sds, this_cpu, imbalance);
  3424. return sds.busiest;
  3425. out_balanced:
  3426. /*
  3427. * There is no obvious imbalance. But check if we can do some balancing
  3428. * to save power.
  3429. */
  3430. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3431. return sds.busiest;
  3432. ret:
  3433. *imbalance = 0;
  3434. return NULL;
  3435. }
  3436. /*
  3437. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3438. */
  3439. static struct rq *
  3440. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3441. unsigned long imbalance, const struct cpumask *cpus)
  3442. {
  3443. struct rq *busiest = NULL, *rq;
  3444. unsigned long max_load = 0;
  3445. int i;
  3446. for_each_cpu(i, sched_group_cpus(group)) {
  3447. unsigned long power = power_of(i);
  3448. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3449. unsigned long wl;
  3450. if (!cpumask_test_cpu(i, cpus))
  3451. continue;
  3452. rq = cpu_rq(i);
  3453. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3454. wl /= power;
  3455. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3456. continue;
  3457. if (wl > max_load) {
  3458. max_load = wl;
  3459. busiest = rq;
  3460. }
  3461. }
  3462. return busiest;
  3463. }
  3464. /*
  3465. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3466. * so long as it is large enough.
  3467. */
  3468. #define MAX_PINNED_INTERVAL 512
  3469. /* Working cpumask for load_balance and load_balance_newidle. */
  3470. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3471. /*
  3472. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3473. * tasks if there is an imbalance.
  3474. */
  3475. static int load_balance(int this_cpu, struct rq *this_rq,
  3476. struct sched_domain *sd, enum cpu_idle_type idle,
  3477. int *balance)
  3478. {
  3479. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3480. struct sched_group *group;
  3481. unsigned long imbalance;
  3482. struct rq *busiest;
  3483. unsigned long flags;
  3484. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3485. cpumask_copy(cpus, cpu_active_mask);
  3486. /*
  3487. * When power savings policy is enabled for the parent domain, idle
  3488. * sibling can pick up load irrespective of busy siblings. In this case,
  3489. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3490. * portraying it as CPU_NOT_IDLE.
  3491. */
  3492. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3493. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3494. sd_idle = 1;
  3495. schedstat_inc(sd, lb_count[idle]);
  3496. redo:
  3497. update_shares(sd);
  3498. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3499. cpus, balance);
  3500. if (*balance == 0)
  3501. goto out_balanced;
  3502. if (!group) {
  3503. schedstat_inc(sd, lb_nobusyg[idle]);
  3504. goto out_balanced;
  3505. }
  3506. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3507. if (!busiest) {
  3508. schedstat_inc(sd, lb_nobusyq[idle]);
  3509. goto out_balanced;
  3510. }
  3511. BUG_ON(busiest == this_rq);
  3512. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3513. ld_moved = 0;
  3514. if (busiest->nr_running > 1) {
  3515. /*
  3516. * Attempt to move tasks. If find_busiest_group has found
  3517. * an imbalance but busiest->nr_running <= 1, the group is
  3518. * still unbalanced. ld_moved simply stays zero, so it is
  3519. * correctly treated as an imbalance.
  3520. */
  3521. local_irq_save(flags);
  3522. double_rq_lock(this_rq, busiest);
  3523. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3524. imbalance, sd, idle, &all_pinned);
  3525. double_rq_unlock(this_rq, busiest);
  3526. local_irq_restore(flags);
  3527. /*
  3528. * some other cpu did the load balance for us.
  3529. */
  3530. if (ld_moved && this_cpu != smp_processor_id())
  3531. resched_cpu(this_cpu);
  3532. /* All tasks on this runqueue were pinned by CPU affinity */
  3533. if (unlikely(all_pinned)) {
  3534. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3535. if (!cpumask_empty(cpus))
  3536. goto redo;
  3537. goto out_balanced;
  3538. }
  3539. }
  3540. if (!ld_moved) {
  3541. schedstat_inc(sd, lb_failed[idle]);
  3542. sd->nr_balance_failed++;
  3543. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3544. spin_lock_irqsave(&busiest->lock, flags);
  3545. /* don't kick the migration_thread, if the curr
  3546. * task on busiest cpu can't be moved to this_cpu
  3547. */
  3548. if (!cpumask_test_cpu(this_cpu,
  3549. &busiest->curr->cpus_allowed)) {
  3550. spin_unlock_irqrestore(&busiest->lock, flags);
  3551. all_pinned = 1;
  3552. goto out_one_pinned;
  3553. }
  3554. if (!busiest->active_balance) {
  3555. busiest->active_balance = 1;
  3556. busiest->push_cpu = this_cpu;
  3557. active_balance = 1;
  3558. }
  3559. spin_unlock_irqrestore(&busiest->lock, flags);
  3560. if (active_balance)
  3561. wake_up_process(busiest->migration_thread);
  3562. /*
  3563. * We've kicked active balancing, reset the failure
  3564. * counter.
  3565. */
  3566. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3567. }
  3568. } else
  3569. sd->nr_balance_failed = 0;
  3570. if (likely(!active_balance)) {
  3571. /* We were unbalanced, so reset the balancing interval */
  3572. sd->balance_interval = sd->min_interval;
  3573. } else {
  3574. /*
  3575. * If we've begun active balancing, start to back off. This
  3576. * case may not be covered by the all_pinned logic if there
  3577. * is only 1 task on the busy runqueue (because we don't call
  3578. * move_tasks).
  3579. */
  3580. if (sd->balance_interval < sd->max_interval)
  3581. sd->balance_interval *= 2;
  3582. }
  3583. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3584. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3585. ld_moved = -1;
  3586. goto out;
  3587. out_balanced:
  3588. schedstat_inc(sd, lb_balanced[idle]);
  3589. sd->nr_balance_failed = 0;
  3590. out_one_pinned:
  3591. /* tune up the balancing interval */
  3592. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3593. (sd->balance_interval < sd->max_interval))
  3594. sd->balance_interval *= 2;
  3595. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3596. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3597. ld_moved = -1;
  3598. else
  3599. ld_moved = 0;
  3600. out:
  3601. if (ld_moved)
  3602. update_shares(sd);
  3603. return ld_moved;
  3604. }
  3605. /*
  3606. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3607. * tasks if there is an imbalance.
  3608. *
  3609. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3610. * this_rq is locked.
  3611. */
  3612. static int
  3613. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3614. {
  3615. struct sched_group *group;
  3616. struct rq *busiest = NULL;
  3617. unsigned long imbalance;
  3618. int ld_moved = 0;
  3619. int sd_idle = 0;
  3620. int all_pinned = 0;
  3621. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3622. cpumask_copy(cpus, cpu_active_mask);
  3623. /*
  3624. * When power savings policy is enabled for the parent domain, idle
  3625. * sibling can pick up load irrespective of busy siblings. In this case,
  3626. * let the state of idle sibling percolate up as IDLE, instead of
  3627. * portraying it as CPU_NOT_IDLE.
  3628. */
  3629. if (sd->flags & SD_SHARE_CPUPOWER &&
  3630. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3631. sd_idle = 1;
  3632. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3633. redo:
  3634. update_shares_locked(this_rq, sd);
  3635. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3636. &sd_idle, cpus, NULL);
  3637. if (!group) {
  3638. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3639. goto out_balanced;
  3640. }
  3641. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3642. if (!busiest) {
  3643. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3644. goto out_balanced;
  3645. }
  3646. BUG_ON(busiest == this_rq);
  3647. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3648. ld_moved = 0;
  3649. if (busiest->nr_running > 1) {
  3650. /* Attempt to move tasks */
  3651. double_lock_balance(this_rq, busiest);
  3652. /* this_rq->clock is already updated */
  3653. update_rq_clock(busiest);
  3654. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3655. imbalance, sd, CPU_NEWLY_IDLE,
  3656. &all_pinned);
  3657. double_unlock_balance(this_rq, busiest);
  3658. if (unlikely(all_pinned)) {
  3659. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3660. if (!cpumask_empty(cpus))
  3661. goto redo;
  3662. }
  3663. }
  3664. if (!ld_moved) {
  3665. int active_balance = 0;
  3666. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3667. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3668. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3669. return -1;
  3670. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3671. return -1;
  3672. if (sd->nr_balance_failed++ < 2)
  3673. return -1;
  3674. /*
  3675. * The only task running in a non-idle cpu can be moved to this
  3676. * cpu in an attempt to completely freeup the other CPU
  3677. * package. The same method used to move task in load_balance()
  3678. * have been extended for load_balance_newidle() to speedup
  3679. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3680. *
  3681. * The package power saving logic comes from
  3682. * find_busiest_group(). If there are no imbalance, then
  3683. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3684. * f_b_g() will select a group from which a running task may be
  3685. * pulled to this cpu in order to make the other package idle.
  3686. * If there is no opportunity to make a package idle and if
  3687. * there are no imbalance, then f_b_g() will return NULL and no
  3688. * action will be taken in load_balance_newidle().
  3689. *
  3690. * Under normal task pull operation due to imbalance, there
  3691. * will be more than one task in the source run queue and
  3692. * move_tasks() will succeed. ld_moved will be true and this
  3693. * active balance code will not be triggered.
  3694. */
  3695. /* Lock busiest in correct order while this_rq is held */
  3696. double_lock_balance(this_rq, busiest);
  3697. /*
  3698. * don't kick the migration_thread, if the curr
  3699. * task on busiest cpu can't be moved to this_cpu
  3700. */
  3701. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3702. double_unlock_balance(this_rq, busiest);
  3703. all_pinned = 1;
  3704. return ld_moved;
  3705. }
  3706. if (!busiest->active_balance) {
  3707. busiest->active_balance = 1;
  3708. busiest->push_cpu = this_cpu;
  3709. active_balance = 1;
  3710. }
  3711. double_unlock_balance(this_rq, busiest);
  3712. /*
  3713. * Should not call ttwu while holding a rq->lock
  3714. */
  3715. spin_unlock(&this_rq->lock);
  3716. if (active_balance)
  3717. wake_up_process(busiest->migration_thread);
  3718. spin_lock(&this_rq->lock);
  3719. } else
  3720. sd->nr_balance_failed = 0;
  3721. update_shares_locked(this_rq, sd);
  3722. return ld_moved;
  3723. out_balanced:
  3724. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3725. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3726. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3727. return -1;
  3728. sd->nr_balance_failed = 0;
  3729. return 0;
  3730. }
  3731. /*
  3732. * idle_balance is called by schedule() if this_cpu is about to become
  3733. * idle. Attempts to pull tasks from other CPUs.
  3734. */
  3735. static void idle_balance(int this_cpu, struct rq *this_rq)
  3736. {
  3737. struct sched_domain *sd;
  3738. int pulled_task = 0;
  3739. unsigned long next_balance = jiffies + HZ;
  3740. this_rq->idle_stamp = this_rq->clock;
  3741. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3742. return;
  3743. for_each_domain(this_cpu, sd) {
  3744. unsigned long interval;
  3745. if (!(sd->flags & SD_LOAD_BALANCE))
  3746. continue;
  3747. if (sd->flags & SD_BALANCE_NEWIDLE)
  3748. /* If we've pulled tasks over stop searching: */
  3749. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3750. sd);
  3751. interval = msecs_to_jiffies(sd->balance_interval);
  3752. if (time_after(next_balance, sd->last_balance + interval))
  3753. next_balance = sd->last_balance + interval;
  3754. if (pulled_task) {
  3755. this_rq->idle_stamp = 0;
  3756. break;
  3757. }
  3758. }
  3759. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3760. /*
  3761. * We are going idle. next_balance may be set based on
  3762. * a busy processor. So reset next_balance.
  3763. */
  3764. this_rq->next_balance = next_balance;
  3765. }
  3766. }
  3767. /*
  3768. * active_load_balance is run by migration threads. It pushes running tasks
  3769. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3770. * running on each physical CPU where possible, and avoids physical /
  3771. * logical imbalances.
  3772. *
  3773. * Called with busiest_rq locked.
  3774. */
  3775. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3776. {
  3777. int target_cpu = busiest_rq->push_cpu;
  3778. struct sched_domain *sd;
  3779. struct rq *target_rq;
  3780. /* Is there any task to move? */
  3781. if (busiest_rq->nr_running <= 1)
  3782. return;
  3783. target_rq = cpu_rq(target_cpu);
  3784. /*
  3785. * This condition is "impossible", if it occurs
  3786. * we need to fix it. Originally reported by
  3787. * Bjorn Helgaas on a 128-cpu setup.
  3788. */
  3789. BUG_ON(busiest_rq == target_rq);
  3790. /* move a task from busiest_rq to target_rq */
  3791. double_lock_balance(busiest_rq, target_rq);
  3792. update_rq_clock(busiest_rq);
  3793. update_rq_clock(target_rq);
  3794. /* Search for an sd spanning us and the target CPU. */
  3795. for_each_domain(target_cpu, sd) {
  3796. if ((sd->flags & SD_LOAD_BALANCE) &&
  3797. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3798. break;
  3799. }
  3800. if (likely(sd)) {
  3801. schedstat_inc(sd, alb_count);
  3802. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3803. sd, CPU_IDLE))
  3804. schedstat_inc(sd, alb_pushed);
  3805. else
  3806. schedstat_inc(sd, alb_failed);
  3807. }
  3808. double_unlock_balance(busiest_rq, target_rq);
  3809. }
  3810. #ifdef CONFIG_NO_HZ
  3811. static struct {
  3812. atomic_t load_balancer;
  3813. cpumask_var_t cpu_mask;
  3814. cpumask_var_t ilb_grp_nohz_mask;
  3815. } nohz ____cacheline_aligned = {
  3816. .load_balancer = ATOMIC_INIT(-1),
  3817. };
  3818. int get_nohz_load_balancer(void)
  3819. {
  3820. return atomic_read(&nohz.load_balancer);
  3821. }
  3822. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3823. /**
  3824. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3825. * @cpu: The cpu whose lowest level of sched domain is to
  3826. * be returned.
  3827. * @flag: The flag to check for the lowest sched_domain
  3828. * for the given cpu.
  3829. *
  3830. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3831. */
  3832. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3833. {
  3834. struct sched_domain *sd;
  3835. for_each_domain(cpu, sd)
  3836. if (sd && (sd->flags & flag))
  3837. break;
  3838. return sd;
  3839. }
  3840. /**
  3841. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3842. * @cpu: The cpu whose domains we're iterating over.
  3843. * @sd: variable holding the value of the power_savings_sd
  3844. * for cpu.
  3845. * @flag: The flag to filter the sched_domains to be iterated.
  3846. *
  3847. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3848. * set, starting from the lowest sched_domain to the highest.
  3849. */
  3850. #define for_each_flag_domain(cpu, sd, flag) \
  3851. for (sd = lowest_flag_domain(cpu, flag); \
  3852. (sd && (sd->flags & flag)); sd = sd->parent)
  3853. /**
  3854. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3855. * @ilb_group: group to be checked for semi-idleness
  3856. *
  3857. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3858. *
  3859. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3860. * and atleast one non-idle CPU. This helper function checks if the given
  3861. * sched_group is semi-idle or not.
  3862. */
  3863. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3864. {
  3865. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3866. sched_group_cpus(ilb_group));
  3867. /*
  3868. * A sched_group is semi-idle when it has atleast one busy cpu
  3869. * and atleast one idle cpu.
  3870. */
  3871. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3872. return 0;
  3873. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3874. return 0;
  3875. return 1;
  3876. }
  3877. /**
  3878. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3879. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3880. *
  3881. * Returns: Returns the id of the idle load balancer if it exists,
  3882. * Else, returns >= nr_cpu_ids.
  3883. *
  3884. * This algorithm picks the idle load balancer such that it belongs to a
  3885. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3886. * completely idle packages/cores just for the purpose of idle load balancing
  3887. * when there are other idle cpu's which are better suited for that job.
  3888. */
  3889. static int find_new_ilb(int cpu)
  3890. {
  3891. struct sched_domain *sd;
  3892. struct sched_group *ilb_group;
  3893. /*
  3894. * Have idle load balancer selection from semi-idle packages only
  3895. * when power-aware load balancing is enabled
  3896. */
  3897. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3898. goto out_done;
  3899. /*
  3900. * Optimize for the case when we have no idle CPUs or only one
  3901. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3902. */
  3903. if (cpumask_weight(nohz.cpu_mask) < 2)
  3904. goto out_done;
  3905. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3906. ilb_group = sd->groups;
  3907. do {
  3908. if (is_semi_idle_group(ilb_group))
  3909. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3910. ilb_group = ilb_group->next;
  3911. } while (ilb_group != sd->groups);
  3912. }
  3913. out_done:
  3914. return cpumask_first(nohz.cpu_mask);
  3915. }
  3916. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3917. static inline int find_new_ilb(int call_cpu)
  3918. {
  3919. return cpumask_first(nohz.cpu_mask);
  3920. }
  3921. #endif
  3922. /*
  3923. * This routine will try to nominate the ilb (idle load balancing)
  3924. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3925. * load balancing on behalf of all those cpus. If all the cpus in the system
  3926. * go into this tickless mode, then there will be no ilb owner (as there is
  3927. * no need for one) and all the cpus will sleep till the next wakeup event
  3928. * arrives...
  3929. *
  3930. * For the ilb owner, tick is not stopped. And this tick will be used
  3931. * for idle load balancing. ilb owner will still be part of
  3932. * nohz.cpu_mask..
  3933. *
  3934. * While stopping the tick, this cpu will become the ilb owner if there
  3935. * is no other owner. And will be the owner till that cpu becomes busy
  3936. * or if all cpus in the system stop their ticks at which point
  3937. * there is no need for ilb owner.
  3938. *
  3939. * When the ilb owner becomes busy, it nominates another owner, during the
  3940. * next busy scheduler_tick()
  3941. */
  3942. int select_nohz_load_balancer(int stop_tick)
  3943. {
  3944. int cpu = smp_processor_id();
  3945. if (stop_tick) {
  3946. cpu_rq(cpu)->in_nohz_recently = 1;
  3947. if (!cpu_active(cpu)) {
  3948. if (atomic_read(&nohz.load_balancer) != cpu)
  3949. return 0;
  3950. /*
  3951. * If we are going offline and still the leader,
  3952. * give up!
  3953. */
  3954. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3955. BUG();
  3956. return 0;
  3957. }
  3958. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3959. /* time for ilb owner also to sleep */
  3960. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3961. if (atomic_read(&nohz.load_balancer) == cpu)
  3962. atomic_set(&nohz.load_balancer, -1);
  3963. return 0;
  3964. }
  3965. if (atomic_read(&nohz.load_balancer) == -1) {
  3966. /* make me the ilb owner */
  3967. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3968. return 1;
  3969. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3970. int new_ilb;
  3971. if (!(sched_smt_power_savings ||
  3972. sched_mc_power_savings))
  3973. return 1;
  3974. /*
  3975. * Check to see if there is a more power-efficient
  3976. * ilb.
  3977. */
  3978. new_ilb = find_new_ilb(cpu);
  3979. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3980. atomic_set(&nohz.load_balancer, -1);
  3981. resched_cpu(new_ilb);
  3982. return 0;
  3983. }
  3984. return 1;
  3985. }
  3986. } else {
  3987. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3988. return 0;
  3989. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3990. if (atomic_read(&nohz.load_balancer) == cpu)
  3991. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3992. BUG();
  3993. }
  3994. return 0;
  3995. }
  3996. #endif
  3997. static DEFINE_SPINLOCK(balancing);
  3998. /*
  3999. * It checks each scheduling domain to see if it is due to be balanced,
  4000. * and initiates a balancing operation if so.
  4001. *
  4002. * Balancing parameters are set up in arch_init_sched_domains.
  4003. */
  4004. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4005. {
  4006. int balance = 1;
  4007. struct rq *rq = cpu_rq(cpu);
  4008. unsigned long interval;
  4009. struct sched_domain *sd;
  4010. /* Earliest time when we have to do rebalance again */
  4011. unsigned long next_balance = jiffies + 60*HZ;
  4012. int update_next_balance = 0;
  4013. int need_serialize;
  4014. for_each_domain(cpu, sd) {
  4015. if (!(sd->flags & SD_LOAD_BALANCE))
  4016. continue;
  4017. interval = sd->balance_interval;
  4018. if (idle != CPU_IDLE)
  4019. interval *= sd->busy_factor;
  4020. /* scale ms to jiffies */
  4021. interval = msecs_to_jiffies(interval);
  4022. if (unlikely(!interval))
  4023. interval = 1;
  4024. if (interval > HZ*NR_CPUS/10)
  4025. interval = HZ*NR_CPUS/10;
  4026. need_serialize = sd->flags & SD_SERIALIZE;
  4027. if (need_serialize) {
  4028. if (!spin_trylock(&balancing))
  4029. goto out;
  4030. }
  4031. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4032. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4033. /*
  4034. * We've pulled tasks over so either we're no
  4035. * longer idle, or one of our SMT siblings is
  4036. * not idle.
  4037. */
  4038. idle = CPU_NOT_IDLE;
  4039. }
  4040. sd->last_balance = jiffies;
  4041. }
  4042. if (need_serialize)
  4043. spin_unlock(&balancing);
  4044. out:
  4045. if (time_after(next_balance, sd->last_balance + interval)) {
  4046. next_balance = sd->last_balance + interval;
  4047. update_next_balance = 1;
  4048. }
  4049. /*
  4050. * Stop the load balance at this level. There is another
  4051. * CPU in our sched group which is doing load balancing more
  4052. * actively.
  4053. */
  4054. if (!balance)
  4055. break;
  4056. }
  4057. /*
  4058. * next_balance will be updated only when there is a need.
  4059. * When the cpu is attached to null domain for ex, it will not be
  4060. * updated.
  4061. */
  4062. if (likely(update_next_balance))
  4063. rq->next_balance = next_balance;
  4064. }
  4065. /*
  4066. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4067. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4068. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4069. */
  4070. static void run_rebalance_domains(struct softirq_action *h)
  4071. {
  4072. int this_cpu = smp_processor_id();
  4073. struct rq *this_rq = cpu_rq(this_cpu);
  4074. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4075. CPU_IDLE : CPU_NOT_IDLE;
  4076. rebalance_domains(this_cpu, idle);
  4077. #ifdef CONFIG_NO_HZ
  4078. /*
  4079. * If this cpu is the owner for idle load balancing, then do the
  4080. * balancing on behalf of the other idle cpus whose ticks are
  4081. * stopped.
  4082. */
  4083. if (this_rq->idle_at_tick &&
  4084. atomic_read(&nohz.load_balancer) == this_cpu) {
  4085. struct rq *rq;
  4086. int balance_cpu;
  4087. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4088. if (balance_cpu == this_cpu)
  4089. continue;
  4090. /*
  4091. * If this cpu gets work to do, stop the load balancing
  4092. * work being done for other cpus. Next load
  4093. * balancing owner will pick it up.
  4094. */
  4095. if (need_resched())
  4096. break;
  4097. rebalance_domains(balance_cpu, CPU_IDLE);
  4098. rq = cpu_rq(balance_cpu);
  4099. if (time_after(this_rq->next_balance, rq->next_balance))
  4100. this_rq->next_balance = rq->next_balance;
  4101. }
  4102. }
  4103. #endif
  4104. }
  4105. static inline int on_null_domain(int cpu)
  4106. {
  4107. return !rcu_dereference(cpu_rq(cpu)->sd);
  4108. }
  4109. /*
  4110. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4111. *
  4112. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4113. * idle load balancing owner or decide to stop the periodic load balancing,
  4114. * if the whole system is idle.
  4115. */
  4116. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4117. {
  4118. #ifdef CONFIG_NO_HZ
  4119. /*
  4120. * If we were in the nohz mode recently and busy at the current
  4121. * scheduler tick, then check if we need to nominate new idle
  4122. * load balancer.
  4123. */
  4124. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4125. rq->in_nohz_recently = 0;
  4126. if (atomic_read(&nohz.load_balancer) == cpu) {
  4127. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4128. atomic_set(&nohz.load_balancer, -1);
  4129. }
  4130. if (atomic_read(&nohz.load_balancer) == -1) {
  4131. int ilb = find_new_ilb(cpu);
  4132. if (ilb < nr_cpu_ids)
  4133. resched_cpu(ilb);
  4134. }
  4135. }
  4136. /*
  4137. * If this cpu is idle and doing idle load balancing for all the
  4138. * cpus with ticks stopped, is it time for that to stop?
  4139. */
  4140. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4141. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4142. resched_cpu(cpu);
  4143. return;
  4144. }
  4145. /*
  4146. * If this cpu is idle and the idle load balancing is done by
  4147. * someone else, then no need raise the SCHED_SOFTIRQ
  4148. */
  4149. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4150. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4151. return;
  4152. #endif
  4153. /* Don't need to rebalance while attached to NULL domain */
  4154. if (time_after_eq(jiffies, rq->next_balance) &&
  4155. likely(!on_null_domain(cpu)))
  4156. raise_softirq(SCHED_SOFTIRQ);
  4157. }
  4158. #else /* CONFIG_SMP */
  4159. /*
  4160. * on UP we do not need to balance between CPUs:
  4161. */
  4162. static inline void idle_balance(int cpu, struct rq *rq)
  4163. {
  4164. }
  4165. #endif
  4166. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4167. EXPORT_PER_CPU_SYMBOL(kstat);
  4168. /*
  4169. * Return any ns on the sched_clock that have not yet been accounted in
  4170. * @p in case that task is currently running.
  4171. *
  4172. * Called with task_rq_lock() held on @rq.
  4173. */
  4174. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4175. {
  4176. u64 ns = 0;
  4177. if (task_current(rq, p)) {
  4178. update_rq_clock(rq);
  4179. ns = rq->clock - p->se.exec_start;
  4180. if ((s64)ns < 0)
  4181. ns = 0;
  4182. }
  4183. return ns;
  4184. }
  4185. unsigned long long task_delta_exec(struct task_struct *p)
  4186. {
  4187. unsigned long flags;
  4188. struct rq *rq;
  4189. u64 ns = 0;
  4190. rq = task_rq_lock(p, &flags);
  4191. ns = do_task_delta_exec(p, rq);
  4192. task_rq_unlock(rq, &flags);
  4193. return ns;
  4194. }
  4195. /*
  4196. * Return accounted runtime for the task.
  4197. * In case the task is currently running, return the runtime plus current's
  4198. * pending runtime that have not been accounted yet.
  4199. */
  4200. unsigned long long task_sched_runtime(struct task_struct *p)
  4201. {
  4202. unsigned long flags;
  4203. struct rq *rq;
  4204. u64 ns = 0;
  4205. rq = task_rq_lock(p, &flags);
  4206. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4207. task_rq_unlock(rq, &flags);
  4208. return ns;
  4209. }
  4210. /*
  4211. * Return sum_exec_runtime for the thread group.
  4212. * In case the task is currently running, return the sum plus current's
  4213. * pending runtime that have not been accounted yet.
  4214. *
  4215. * Note that the thread group might have other running tasks as well,
  4216. * so the return value not includes other pending runtime that other
  4217. * running tasks might have.
  4218. */
  4219. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4220. {
  4221. struct task_cputime totals;
  4222. unsigned long flags;
  4223. struct rq *rq;
  4224. u64 ns;
  4225. rq = task_rq_lock(p, &flags);
  4226. thread_group_cputime(p, &totals);
  4227. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4228. task_rq_unlock(rq, &flags);
  4229. return ns;
  4230. }
  4231. /*
  4232. * Account user cpu time to a process.
  4233. * @p: the process that the cpu time gets accounted to
  4234. * @cputime: the cpu time spent in user space since the last update
  4235. * @cputime_scaled: cputime scaled by cpu frequency
  4236. */
  4237. void account_user_time(struct task_struct *p, cputime_t cputime,
  4238. cputime_t cputime_scaled)
  4239. {
  4240. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4241. cputime64_t tmp;
  4242. /* Add user time to process. */
  4243. p->utime = cputime_add(p->utime, cputime);
  4244. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4245. account_group_user_time(p, cputime);
  4246. /* Add user time to cpustat. */
  4247. tmp = cputime_to_cputime64(cputime);
  4248. if (TASK_NICE(p) > 0)
  4249. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4250. else
  4251. cpustat->user = cputime64_add(cpustat->user, tmp);
  4252. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4253. /* Account for user time used */
  4254. acct_update_integrals(p);
  4255. }
  4256. /*
  4257. * Account guest cpu time to a process.
  4258. * @p: the process that the cpu time gets accounted to
  4259. * @cputime: the cpu time spent in virtual machine since the last update
  4260. * @cputime_scaled: cputime scaled by cpu frequency
  4261. */
  4262. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4263. cputime_t cputime_scaled)
  4264. {
  4265. cputime64_t tmp;
  4266. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4267. tmp = cputime_to_cputime64(cputime);
  4268. /* Add guest time to process. */
  4269. p->utime = cputime_add(p->utime, cputime);
  4270. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4271. account_group_user_time(p, cputime);
  4272. p->gtime = cputime_add(p->gtime, cputime);
  4273. /* Add guest time to cpustat. */
  4274. if (TASK_NICE(p) > 0) {
  4275. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4276. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4277. } else {
  4278. cpustat->user = cputime64_add(cpustat->user, tmp);
  4279. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4280. }
  4281. }
  4282. /*
  4283. * Account system cpu time to a process.
  4284. * @p: the process that the cpu time gets accounted to
  4285. * @hardirq_offset: the offset to subtract from hardirq_count()
  4286. * @cputime: the cpu time spent in kernel space since the last update
  4287. * @cputime_scaled: cputime scaled by cpu frequency
  4288. */
  4289. void account_system_time(struct task_struct *p, int hardirq_offset,
  4290. cputime_t cputime, cputime_t cputime_scaled)
  4291. {
  4292. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4293. cputime64_t tmp;
  4294. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4295. account_guest_time(p, cputime, cputime_scaled);
  4296. return;
  4297. }
  4298. /* Add system time to process. */
  4299. p->stime = cputime_add(p->stime, cputime);
  4300. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4301. account_group_system_time(p, cputime);
  4302. /* Add system time to cpustat. */
  4303. tmp = cputime_to_cputime64(cputime);
  4304. if (hardirq_count() - hardirq_offset)
  4305. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4306. else if (softirq_count())
  4307. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4308. else
  4309. cpustat->system = cputime64_add(cpustat->system, tmp);
  4310. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4311. /* Account for system time used */
  4312. acct_update_integrals(p);
  4313. }
  4314. /*
  4315. * Account for involuntary wait time.
  4316. * @steal: the cpu time spent in involuntary wait
  4317. */
  4318. void account_steal_time(cputime_t cputime)
  4319. {
  4320. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4321. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4322. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4323. }
  4324. /*
  4325. * Account for idle time.
  4326. * @cputime: the cpu time spent in idle wait
  4327. */
  4328. void account_idle_time(cputime_t cputime)
  4329. {
  4330. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4331. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4332. struct rq *rq = this_rq();
  4333. if (atomic_read(&rq->nr_iowait) > 0)
  4334. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4335. else
  4336. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4337. }
  4338. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4339. /*
  4340. * Account a single tick of cpu time.
  4341. * @p: the process that the cpu time gets accounted to
  4342. * @user_tick: indicates if the tick is a user or a system tick
  4343. */
  4344. void account_process_tick(struct task_struct *p, int user_tick)
  4345. {
  4346. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4347. struct rq *rq = this_rq();
  4348. if (user_tick)
  4349. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4350. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4351. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4352. one_jiffy_scaled);
  4353. else
  4354. account_idle_time(cputime_one_jiffy);
  4355. }
  4356. /*
  4357. * Account multiple ticks of steal time.
  4358. * @p: the process from which the cpu time has been stolen
  4359. * @ticks: number of stolen ticks
  4360. */
  4361. void account_steal_ticks(unsigned long ticks)
  4362. {
  4363. account_steal_time(jiffies_to_cputime(ticks));
  4364. }
  4365. /*
  4366. * Account multiple ticks of idle time.
  4367. * @ticks: number of stolen ticks
  4368. */
  4369. void account_idle_ticks(unsigned long ticks)
  4370. {
  4371. account_idle_time(jiffies_to_cputime(ticks));
  4372. }
  4373. #endif
  4374. /*
  4375. * Use precise platform statistics if available:
  4376. */
  4377. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4378. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4379. {
  4380. *ut = p->utime;
  4381. *st = p->stime;
  4382. }
  4383. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4384. {
  4385. struct task_cputime cputime;
  4386. thread_group_cputime(p, &cputime);
  4387. *ut = cputime.utime;
  4388. *st = cputime.stime;
  4389. }
  4390. #else
  4391. #ifndef nsecs_to_cputime
  4392. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4393. #endif
  4394. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4395. {
  4396. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4397. /*
  4398. * Use CFS's precise accounting:
  4399. */
  4400. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4401. if (total) {
  4402. u64 temp;
  4403. temp = (u64)(rtime * utime);
  4404. do_div(temp, total);
  4405. utime = (cputime_t)temp;
  4406. } else
  4407. utime = rtime;
  4408. /*
  4409. * Compare with previous values, to keep monotonicity:
  4410. */
  4411. p->prev_utime = max(p->prev_utime, utime);
  4412. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4413. *ut = p->prev_utime;
  4414. *st = p->prev_stime;
  4415. }
  4416. /*
  4417. * Must be called with siglock held.
  4418. */
  4419. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4420. {
  4421. struct signal_struct *sig = p->signal;
  4422. struct task_cputime cputime;
  4423. cputime_t rtime, utime, total;
  4424. thread_group_cputime(p, &cputime);
  4425. total = cputime_add(cputime.utime, cputime.stime);
  4426. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4427. if (total) {
  4428. u64 temp;
  4429. temp = (u64)(rtime * cputime.utime);
  4430. do_div(temp, total);
  4431. utime = (cputime_t)temp;
  4432. } else
  4433. utime = rtime;
  4434. sig->prev_utime = max(sig->prev_utime, utime);
  4435. sig->prev_stime = max(sig->prev_stime,
  4436. cputime_sub(rtime, sig->prev_utime));
  4437. *ut = sig->prev_utime;
  4438. *st = sig->prev_stime;
  4439. }
  4440. #endif
  4441. /*
  4442. * This function gets called by the timer code, with HZ frequency.
  4443. * We call it with interrupts disabled.
  4444. *
  4445. * It also gets called by the fork code, when changing the parent's
  4446. * timeslices.
  4447. */
  4448. void scheduler_tick(void)
  4449. {
  4450. int cpu = smp_processor_id();
  4451. struct rq *rq = cpu_rq(cpu);
  4452. struct task_struct *curr = rq->curr;
  4453. sched_clock_tick();
  4454. spin_lock(&rq->lock);
  4455. update_rq_clock(rq);
  4456. update_cpu_load(rq);
  4457. curr->sched_class->task_tick(rq, curr, 0);
  4458. spin_unlock(&rq->lock);
  4459. perf_event_task_tick(curr, cpu);
  4460. #ifdef CONFIG_SMP
  4461. rq->idle_at_tick = idle_cpu(cpu);
  4462. trigger_load_balance(rq, cpu);
  4463. #endif
  4464. }
  4465. notrace unsigned long get_parent_ip(unsigned long addr)
  4466. {
  4467. if (in_lock_functions(addr)) {
  4468. addr = CALLER_ADDR2;
  4469. if (in_lock_functions(addr))
  4470. addr = CALLER_ADDR3;
  4471. }
  4472. return addr;
  4473. }
  4474. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4475. defined(CONFIG_PREEMPT_TRACER))
  4476. void __kprobes add_preempt_count(int val)
  4477. {
  4478. #ifdef CONFIG_DEBUG_PREEMPT
  4479. /*
  4480. * Underflow?
  4481. */
  4482. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4483. return;
  4484. #endif
  4485. preempt_count() += val;
  4486. #ifdef CONFIG_DEBUG_PREEMPT
  4487. /*
  4488. * Spinlock count overflowing soon?
  4489. */
  4490. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4491. PREEMPT_MASK - 10);
  4492. #endif
  4493. if (preempt_count() == val)
  4494. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4495. }
  4496. EXPORT_SYMBOL(add_preempt_count);
  4497. void __kprobes sub_preempt_count(int val)
  4498. {
  4499. #ifdef CONFIG_DEBUG_PREEMPT
  4500. /*
  4501. * Underflow?
  4502. */
  4503. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4504. return;
  4505. /*
  4506. * Is the spinlock portion underflowing?
  4507. */
  4508. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4509. !(preempt_count() & PREEMPT_MASK)))
  4510. return;
  4511. #endif
  4512. if (preempt_count() == val)
  4513. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4514. preempt_count() -= val;
  4515. }
  4516. EXPORT_SYMBOL(sub_preempt_count);
  4517. #endif
  4518. /*
  4519. * Print scheduling while atomic bug:
  4520. */
  4521. static noinline void __schedule_bug(struct task_struct *prev)
  4522. {
  4523. struct pt_regs *regs = get_irq_regs();
  4524. pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4525. prev->comm, prev->pid, preempt_count());
  4526. debug_show_held_locks(prev);
  4527. print_modules();
  4528. if (irqs_disabled())
  4529. print_irqtrace_events(prev);
  4530. if (regs)
  4531. show_regs(regs);
  4532. else
  4533. dump_stack();
  4534. }
  4535. /*
  4536. * Various schedule()-time debugging checks and statistics:
  4537. */
  4538. static inline void schedule_debug(struct task_struct *prev)
  4539. {
  4540. /*
  4541. * Test if we are atomic. Since do_exit() needs to call into
  4542. * schedule() atomically, we ignore that path for now.
  4543. * Otherwise, whine if we are scheduling when we should not be.
  4544. */
  4545. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4546. __schedule_bug(prev);
  4547. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4548. schedstat_inc(this_rq(), sched_count);
  4549. #ifdef CONFIG_SCHEDSTATS
  4550. if (unlikely(prev->lock_depth >= 0)) {
  4551. schedstat_inc(this_rq(), bkl_count);
  4552. schedstat_inc(prev, sched_info.bkl_count);
  4553. }
  4554. #endif
  4555. }
  4556. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4557. {
  4558. if (prev->state == TASK_RUNNING) {
  4559. u64 runtime = prev->se.sum_exec_runtime;
  4560. runtime -= prev->se.prev_sum_exec_runtime;
  4561. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4562. /*
  4563. * In order to avoid avg_overlap growing stale when we are
  4564. * indeed overlapping and hence not getting put to sleep, grow
  4565. * the avg_overlap on preemption.
  4566. *
  4567. * We use the average preemption runtime because that
  4568. * correlates to the amount of cache footprint a task can
  4569. * build up.
  4570. */
  4571. update_avg(&prev->se.avg_overlap, runtime);
  4572. }
  4573. prev->sched_class->put_prev_task(rq, prev);
  4574. }
  4575. /*
  4576. * Pick up the highest-prio task:
  4577. */
  4578. static inline struct task_struct *
  4579. pick_next_task(struct rq *rq)
  4580. {
  4581. const struct sched_class *class;
  4582. struct task_struct *p;
  4583. /*
  4584. * Optimization: we know that if all tasks are in
  4585. * the fair class we can call that function directly:
  4586. */
  4587. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4588. p = fair_sched_class.pick_next_task(rq);
  4589. if (likely(p))
  4590. return p;
  4591. }
  4592. class = sched_class_highest;
  4593. for ( ; ; ) {
  4594. p = class->pick_next_task(rq);
  4595. if (p)
  4596. return p;
  4597. /*
  4598. * Will never be NULL as the idle class always
  4599. * returns a non-NULL p:
  4600. */
  4601. class = class->next;
  4602. }
  4603. }
  4604. /*
  4605. * schedule() is the main scheduler function.
  4606. */
  4607. asmlinkage void __sched schedule(void)
  4608. {
  4609. struct task_struct *prev, *next;
  4610. unsigned long *switch_count;
  4611. struct rq *rq;
  4612. int cpu;
  4613. need_resched:
  4614. preempt_disable();
  4615. cpu = smp_processor_id();
  4616. rq = cpu_rq(cpu);
  4617. rcu_sched_qs(cpu);
  4618. prev = rq->curr;
  4619. switch_count = &prev->nivcsw;
  4620. release_kernel_lock(prev);
  4621. need_resched_nonpreemptible:
  4622. schedule_debug(prev);
  4623. if (sched_feat(HRTICK))
  4624. hrtick_clear(rq);
  4625. spin_lock_irq(&rq->lock);
  4626. update_rq_clock(rq);
  4627. clear_tsk_need_resched(prev);
  4628. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4629. if (unlikely(signal_pending_state(prev->state, prev)))
  4630. prev->state = TASK_RUNNING;
  4631. else
  4632. deactivate_task(rq, prev, 1);
  4633. switch_count = &prev->nvcsw;
  4634. }
  4635. pre_schedule(rq, prev);
  4636. if (unlikely(!rq->nr_running))
  4637. idle_balance(cpu, rq);
  4638. put_prev_task(rq, prev);
  4639. next = pick_next_task(rq);
  4640. if (likely(prev != next)) {
  4641. sched_info_switch(prev, next);
  4642. perf_event_task_sched_out(prev, next, cpu);
  4643. rq->nr_switches++;
  4644. rq->curr = next;
  4645. ++*switch_count;
  4646. context_switch(rq, prev, next); /* unlocks the rq */
  4647. /*
  4648. * the context switch might have flipped the stack from under
  4649. * us, hence refresh the local variables.
  4650. */
  4651. cpu = smp_processor_id();
  4652. rq = cpu_rq(cpu);
  4653. } else
  4654. spin_unlock_irq(&rq->lock);
  4655. post_schedule(rq);
  4656. if (unlikely(reacquire_kernel_lock(current) < 0))
  4657. goto need_resched_nonpreemptible;
  4658. preempt_enable_no_resched();
  4659. if (need_resched())
  4660. goto need_resched;
  4661. }
  4662. EXPORT_SYMBOL(schedule);
  4663. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4664. /*
  4665. * Look out! "owner" is an entirely speculative pointer
  4666. * access and not reliable.
  4667. */
  4668. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4669. {
  4670. unsigned int cpu;
  4671. struct rq *rq;
  4672. if (!sched_feat(OWNER_SPIN))
  4673. return 0;
  4674. #ifdef CONFIG_DEBUG_PAGEALLOC
  4675. /*
  4676. * Need to access the cpu field knowing that
  4677. * DEBUG_PAGEALLOC could have unmapped it if
  4678. * the mutex owner just released it and exited.
  4679. */
  4680. if (probe_kernel_address(&owner->cpu, cpu))
  4681. goto out;
  4682. #else
  4683. cpu = owner->cpu;
  4684. #endif
  4685. /*
  4686. * Even if the access succeeded (likely case),
  4687. * the cpu field may no longer be valid.
  4688. */
  4689. if (cpu >= nr_cpumask_bits)
  4690. goto out;
  4691. /*
  4692. * We need to validate that we can do a
  4693. * get_cpu() and that we have the percpu area.
  4694. */
  4695. if (!cpu_online(cpu))
  4696. goto out;
  4697. rq = cpu_rq(cpu);
  4698. for (;;) {
  4699. /*
  4700. * Owner changed, break to re-assess state.
  4701. */
  4702. if (lock->owner != owner)
  4703. break;
  4704. /*
  4705. * Is that owner really running on that cpu?
  4706. */
  4707. if (task_thread_info(rq->curr) != owner || need_resched())
  4708. return 0;
  4709. cpu_relax();
  4710. }
  4711. out:
  4712. return 1;
  4713. }
  4714. #endif
  4715. #ifdef CONFIG_PREEMPT
  4716. /*
  4717. * this is the entry point to schedule() from in-kernel preemption
  4718. * off of preempt_enable. Kernel preemptions off return from interrupt
  4719. * occur there and call schedule directly.
  4720. */
  4721. asmlinkage void __sched preempt_schedule(void)
  4722. {
  4723. struct thread_info *ti = current_thread_info();
  4724. /*
  4725. * If there is a non-zero preempt_count or interrupts are disabled,
  4726. * we do not want to preempt the current task. Just return..
  4727. */
  4728. if (likely(ti->preempt_count || irqs_disabled()))
  4729. return;
  4730. do {
  4731. add_preempt_count(PREEMPT_ACTIVE);
  4732. schedule();
  4733. sub_preempt_count(PREEMPT_ACTIVE);
  4734. /*
  4735. * Check again in case we missed a preemption opportunity
  4736. * between schedule and now.
  4737. */
  4738. barrier();
  4739. } while (need_resched());
  4740. }
  4741. EXPORT_SYMBOL(preempt_schedule);
  4742. /*
  4743. * this is the entry point to schedule() from kernel preemption
  4744. * off of irq context.
  4745. * Note, that this is called and return with irqs disabled. This will
  4746. * protect us against recursive calling from irq.
  4747. */
  4748. asmlinkage void __sched preempt_schedule_irq(void)
  4749. {
  4750. struct thread_info *ti = current_thread_info();
  4751. /* Catch callers which need to be fixed */
  4752. BUG_ON(ti->preempt_count || !irqs_disabled());
  4753. do {
  4754. add_preempt_count(PREEMPT_ACTIVE);
  4755. local_irq_enable();
  4756. schedule();
  4757. local_irq_disable();
  4758. sub_preempt_count(PREEMPT_ACTIVE);
  4759. /*
  4760. * Check again in case we missed a preemption opportunity
  4761. * between schedule and now.
  4762. */
  4763. barrier();
  4764. } while (need_resched());
  4765. }
  4766. #endif /* CONFIG_PREEMPT */
  4767. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4768. void *key)
  4769. {
  4770. return try_to_wake_up(curr->private, mode, wake_flags);
  4771. }
  4772. EXPORT_SYMBOL(default_wake_function);
  4773. /*
  4774. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4775. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4776. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4777. *
  4778. * There are circumstances in which we can try to wake a task which has already
  4779. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4780. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4781. */
  4782. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4783. int nr_exclusive, int wake_flags, void *key)
  4784. {
  4785. wait_queue_t *curr, *next;
  4786. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4787. unsigned flags = curr->flags;
  4788. if (curr->func(curr, mode, wake_flags, key) &&
  4789. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4790. break;
  4791. }
  4792. }
  4793. /**
  4794. * __wake_up - wake up threads blocked on a waitqueue.
  4795. * @q: the waitqueue
  4796. * @mode: which threads
  4797. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4798. * @key: is directly passed to the wakeup function
  4799. *
  4800. * It may be assumed that this function implies a write memory barrier before
  4801. * changing the task state if and only if any tasks are woken up.
  4802. */
  4803. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4804. int nr_exclusive, void *key)
  4805. {
  4806. unsigned long flags;
  4807. spin_lock_irqsave(&q->lock, flags);
  4808. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4809. spin_unlock_irqrestore(&q->lock, flags);
  4810. }
  4811. EXPORT_SYMBOL(__wake_up);
  4812. /*
  4813. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4814. */
  4815. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4816. {
  4817. __wake_up_common(q, mode, 1, 0, NULL);
  4818. }
  4819. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4820. {
  4821. __wake_up_common(q, mode, 1, 0, key);
  4822. }
  4823. /**
  4824. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4825. * @q: the waitqueue
  4826. * @mode: which threads
  4827. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4828. * @key: opaque value to be passed to wakeup targets
  4829. *
  4830. * The sync wakeup differs that the waker knows that it will schedule
  4831. * away soon, so while the target thread will be woken up, it will not
  4832. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4833. * with each other. This can prevent needless bouncing between CPUs.
  4834. *
  4835. * On UP it can prevent extra preemption.
  4836. *
  4837. * It may be assumed that this function implies a write memory barrier before
  4838. * changing the task state if and only if any tasks are woken up.
  4839. */
  4840. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4841. int nr_exclusive, void *key)
  4842. {
  4843. unsigned long flags;
  4844. int wake_flags = WF_SYNC;
  4845. if (unlikely(!q))
  4846. return;
  4847. if (unlikely(!nr_exclusive))
  4848. wake_flags = 0;
  4849. spin_lock_irqsave(&q->lock, flags);
  4850. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4851. spin_unlock_irqrestore(&q->lock, flags);
  4852. }
  4853. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4854. /*
  4855. * __wake_up_sync - see __wake_up_sync_key()
  4856. */
  4857. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4858. {
  4859. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4860. }
  4861. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4862. /**
  4863. * complete: - signals a single thread waiting on this completion
  4864. * @x: holds the state of this particular completion
  4865. *
  4866. * This will wake up a single thread waiting on this completion. Threads will be
  4867. * awakened in the same order in which they were queued.
  4868. *
  4869. * See also complete_all(), wait_for_completion() and related routines.
  4870. *
  4871. * It may be assumed that this function implies a write memory barrier before
  4872. * changing the task state if and only if any tasks are woken up.
  4873. */
  4874. void complete(struct completion *x)
  4875. {
  4876. unsigned long flags;
  4877. spin_lock_irqsave(&x->wait.lock, flags);
  4878. x->done++;
  4879. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4880. spin_unlock_irqrestore(&x->wait.lock, flags);
  4881. }
  4882. EXPORT_SYMBOL(complete);
  4883. /**
  4884. * complete_all: - signals all threads waiting on this completion
  4885. * @x: holds the state of this particular completion
  4886. *
  4887. * This will wake up all threads waiting on this particular completion event.
  4888. *
  4889. * It may be assumed that this function implies a write memory barrier before
  4890. * changing the task state if and only if any tasks are woken up.
  4891. */
  4892. void complete_all(struct completion *x)
  4893. {
  4894. unsigned long flags;
  4895. spin_lock_irqsave(&x->wait.lock, flags);
  4896. x->done += UINT_MAX/2;
  4897. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4898. spin_unlock_irqrestore(&x->wait.lock, flags);
  4899. }
  4900. EXPORT_SYMBOL(complete_all);
  4901. static inline long __sched
  4902. do_wait_for_common(struct completion *x, long timeout, int state)
  4903. {
  4904. if (!x->done) {
  4905. DECLARE_WAITQUEUE(wait, current);
  4906. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4907. __add_wait_queue_tail(&x->wait, &wait);
  4908. do {
  4909. if (signal_pending_state(state, current)) {
  4910. timeout = -ERESTARTSYS;
  4911. break;
  4912. }
  4913. __set_current_state(state);
  4914. spin_unlock_irq(&x->wait.lock);
  4915. timeout = schedule_timeout(timeout);
  4916. spin_lock_irq(&x->wait.lock);
  4917. } while (!x->done && timeout);
  4918. __remove_wait_queue(&x->wait, &wait);
  4919. if (!x->done)
  4920. return timeout;
  4921. }
  4922. x->done--;
  4923. return timeout ?: 1;
  4924. }
  4925. static long __sched
  4926. wait_for_common(struct completion *x, long timeout, int state)
  4927. {
  4928. might_sleep();
  4929. spin_lock_irq(&x->wait.lock);
  4930. timeout = do_wait_for_common(x, timeout, state);
  4931. spin_unlock_irq(&x->wait.lock);
  4932. return timeout;
  4933. }
  4934. /**
  4935. * wait_for_completion: - waits for completion of a task
  4936. * @x: holds the state of this particular completion
  4937. *
  4938. * This waits to be signaled for completion of a specific task. It is NOT
  4939. * interruptible and there is no timeout.
  4940. *
  4941. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4942. * and interrupt capability. Also see complete().
  4943. */
  4944. void __sched wait_for_completion(struct completion *x)
  4945. {
  4946. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4947. }
  4948. EXPORT_SYMBOL(wait_for_completion);
  4949. /**
  4950. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4951. * @x: holds the state of this particular completion
  4952. * @timeout: timeout value in jiffies
  4953. *
  4954. * This waits for either a completion of a specific task to be signaled or for a
  4955. * specified timeout to expire. The timeout is in jiffies. It is not
  4956. * interruptible.
  4957. */
  4958. unsigned long __sched
  4959. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4960. {
  4961. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4962. }
  4963. EXPORT_SYMBOL(wait_for_completion_timeout);
  4964. /**
  4965. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4966. * @x: holds the state of this particular completion
  4967. *
  4968. * This waits for completion of a specific task to be signaled. It is
  4969. * interruptible.
  4970. */
  4971. int __sched wait_for_completion_interruptible(struct completion *x)
  4972. {
  4973. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4974. if (t == -ERESTARTSYS)
  4975. return t;
  4976. return 0;
  4977. }
  4978. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4979. /**
  4980. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4981. * @x: holds the state of this particular completion
  4982. * @timeout: timeout value in jiffies
  4983. *
  4984. * This waits for either a completion of a specific task to be signaled or for a
  4985. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4986. */
  4987. unsigned long __sched
  4988. wait_for_completion_interruptible_timeout(struct completion *x,
  4989. unsigned long timeout)
  4990. {
  4991. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4992. }
  4993. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4994. /**
  4995. * wait_for_completion_killable: - waits for completion of a task (killable)
  4996. * @x: holds the state of this particular completion
  4997. *
  4998. * This waits to be signaled for completion of a specific task. It can be
  4999. * interrupted by a kill signal.
  5000. */
  5001. int __sched wait_for_completion_killable(struct completion *x)
  5002. {
  5003. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5004. if (t == -ERESTARTSYS)
  5005. return t;
  5006. return 0;
  5007. }
  5008. EXPORT_SYMBOL(wait_for_completion_killable);
  5009. /**
  5010. * try_wait_for_completion - try to decrement a completion without blocking
  5011. * @x: completion structure
  5012. *
  5013. * Returns: 0 if a decrement cannot be done without blocking
  5014. * 1 if a decrement succeeded.
  5015. *
  5016. * If a completion is being used as a counting completion,
  5017. * attempt to decrement the counter without blocking. This
  5018. * enables us to avoid waiting if the resource the completion
  5019. * is protecting is not available.
  5020. */
  5021. bool try_wait_for_completion(struct completion *x)
  5022. {
  5023. unsigned long flags;
  5024. int ret = 1;
  5025. spin_lock_irqsave(&x->wait.lock, flags);
  5026. if (!x->done)
  5027. ret = 0;
  5028. else
  5029. x->done--;
  5030. spin_unlock_irqrestore(&x->wait.lock, flags);
  5031. return ret;
  5032. }
  5033. EXPORT_SYMBOL(try_wait_for_completion);
  5034. /**
  5035. * completion_done - Test to see if a completion has any waiters
  5036. * @x: completion structure
  5037. *
  5038. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5039. * 1 if there are no waiters.
  5040. *
  5041. */
  5042. bool completion_done(struct completion *x)
  5043. {
  5044. unsigned long flags;
  5045. int ret = 1;
  5046. spin_lock_irqsave(&x->wait.lock, flags);
  5047. if (!x->done)
  5048. ret = 0;
  5049. spin_unlock_irqrestore(&x->wait.lock, flags);
  5050. return ret;
  5051. }
  5052. EXPORT_SYMBOL(completion_done);
  5053. static long __sched
  5054. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5055. {
  5056. unsigned long flags;
  5057. wait_queue_t wait;
  5058. init_waitqueue_entry(&wait, current);
  5059. __set_current_state(state);
  5060. spin_lock_irqsave(&q->lock, flags);
  5061. __add_wait_queue(q, &wait);
  5062. spin_unlock(&q->lock);
  5063. timeout = schedule_timeout(timeout);
  5064. spin_lock_irq(&q->lock);
  5065. __remove_wait_queue(q, &wait);
  5066. spin_unlock_irqrestore(&q->lock, flags);
  5067. return timeout;
  5068. }
  5069. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5070. {
  5071. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5072. }
  5073. EXPORT_SYMBOL(interruptible_sleep_on);
  5074. long __sched
  5075. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5076. {
  5077. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5078. }
  5079. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5080. void __sched sleep_on(wait_queue_head_t *q)
  5081. {
  5082. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5083. }
  5084. EXPORT_SYMBOL(sleep_on);
  5085. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5086. {
  5087. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5088. }
  5089. EXPORT_SYMBOL(sleep_on_timeout);
  5090. #ifdef CONFIG_RT_MUTEXES
  5091. /*
  5092. * rt_mutex_setprio - set the current priority of a task
  5093. * @p: task
  5094. * @prio: prio value (kernel-internal form)
  5095. *
  5096. * This function changes the 'effective' priority of a task. It does
  5097. * not touch ->normal_prio like __setscheduler().
  5098. *
  5099. * Used by the rt_mutex code to implement priority inheritance logic.
  5100. */
  5101. void rt_mutex_setprio(struct task_struct *p, int prio)
  5102. {
  5103. unsigned long flags;
  5104. int oldprio, on_rq, running;
  5105. struct rq *rq;
  5106. const struct sched_class *prev_class = p->sched_class;
  5107. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5108. rq = task_rq_lock(p, &flags);
  5109. update_rq_clock(rq);
  5110. oldprio = p->prio;
  5111. on_rq = p->se.on_rq;
  5112. running = task_current(rq, p);
  5113. if (on_rq)
  5114. dequeue_task(rq, p, 0);
  5115. if (running)
  5116. p->sched_class->put_prev_task(rq, p);
  5117. if (rt_prio(prio))
  5118. p->sched_class = &rt_sched_class;
  5119. else
  5120. p->sched_class = &fair_sched_class;
  5121. p->prio = prio;
  5122. if (running)
  5123. p->sched_class->set_curr_task(rq);
  5124. if (on_rq) {
  5125. enqueue_task(rq, p, 0);
  5126. check_class_changed(rq, p, prev_class, oldprio, running);
  5127. }
  5128. task_rq_unlock(rq, &flags);
  5129. }
  5130. #endif
  5131. void set_user_nice(struct task_struct *p, long nice)
  5132. {
  5133. int old_prio, delta, on_rq;
  5134. unsigned long flags;
  5135. struct rq *rq;
  5136. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5137. return;
  5138. /*
  5139. * We have to be careful, if called from sys_setpriority(),
  5140. * the task might be in the middle of scheduling on another CPU.
  5141. */
  5142. rq = task_rq_lock(p, &flags);
  5143. update_rq_clock(rq);
  5144. /*
  5145. * The RT priorities are set via sched_setscheduler(), but we still
  5146. * allow the 'normal' nice value to be set - but as expected
  5147. * it wont have any effect on scheduling until the task is
  5148. * SCHED_FIFO/SCHED_RR:
  5149. */
  5150. if (task_has_rt_policy(p)) {
  5151. p->static_prio = NICE_TO_PRIO(nice);
  5152. goto out_unlock;
  5153. }
  5154. on_rq = p->se.on_rq;
  5155. if (on_rq)
  5156. dequeue_task(rq, p, 0);
  5157. p->static_prio = NICE_TO_PRIO(nice);
  5158. set_load_weight(p);
  5159. old_prio = p->prio;
  5160. p->prio = effective_prio(p);
  5161. delta = p->prio - old_prio;
  5162. if (on_rq) {
  5163. enqueue_task(rq, p, 0);
  5164. /*
  5165. * If the task increased its priority or is running and
  5166. * lowered its priority, then reschedule its CPU:
  5167. */
  5168. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5169. resched_task(rq->curr);
  5170. }
  5171. out_unlock:
  5172. task_rq_unlock(rq, &flags);
  5173. }
  5174. EXPORT_SYMBOL(set_user_nice);
  5175. /*
  5176. * can_nice - check if a task can reduce its nice value
  5177. * @p: task
  5178. * @nice: nice value
  5179. */
  5180. int can_nice(const struct task_struct *p, const int nice)
  5181. {
  5182. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5183. int nice_rlim = 20 - nice;
  5184. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5185. capable(CAP_SYS_NICE));
  5186. }
  5187. #ifdef __ARCH_WANT_SYS_NICE
  5188. /*
  5189. * sys_nice - change the priority of the current process.
  5190. * @increment: priority increment
  5191. *
  5192. * sys_setpriority is a more generic, but much slower function that
  5193. * does similar things.
  5194. */
  5195. SYSCALL_DEFINE1(nice, int, increment)
  5196. {
  5197. long nice, retval;
  5198. /*
  5199. * Setpriority might change our priority at the same moment.
  5200. * We don't have to worry. Conceptually one call occurs first
  5201. * and we have a single winner.
  5202. */
  5203. if (increment < -40)
  5204. increment = -40;
  5205. if (increment > 40)
  5206. increment = 40;
  5207. nice = TASK_NICE(current) + increment;
  5208. if (nice < -20)
  5209. nice = -20;
  5210. if (nice > 19)
  5211. nice = 19;
  5212. if (increment < 0 && !can_nice(current, nice))
  5213. return -EPERM;
  5214. retval = security_task_setnice(current, nice);
  5215. if (retval)
  5216. return retval;
  5217. set_user_nice(current, nice);
  5218. return 0;
  5219. }
  5220. #endif
  5221. /**
  5222. * task_prio - return the priority value of a given task.
  5223. * @p: the task in question.
  5224. *
  5225. * This is the priority value as seen by users in /proc.
  5226. * RT tasks are offset by -200. Normal tasks are centered
  5227. * around 0, value goes from -16 to +15.
  5228. */
  5229. int task_prio(const struct task_struct *p)
  5230. {
  5231. return p->prio - MAX_RT_PRIO;
  5232. }
  5233. /**
  5234. * task_nice - return the nice value of a given task.
  5235. * @p: the task in question.
  5236. */
  5237. int task_nice(const struct task_struct *p)
  5238. {
  5239. return TASK_NICE(p);
  5240. }
  5241. EXPORT_SYMBOL(task_nice);
  5242. /**
  5243. * idle_cpu - is a given cpu idle currently?
  5244. * @cpu: the processor in question.
  5245. */
  5246. int idle_cpu(int cpu)
  5247. {
  5248. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5249. }
  5250. /**
  5251. * idle_task - return the idle task for a given cpu.
  5252. * @cpu: the processor in question.
  5253. */
  5254. struct task_struct *idle_task(int cpu)
  5255. {
  5256. return cpu_rq(cpu)->idle;
  5257. }
  5258. /**
  5259. * find_process_by_pid - find a process with a matching PID value.
  5260. * @pid: the pid in question.
  5261. */
  5262. static struct task_struct *find_process_by_pid(pid_t pid)
  5263. {
  5264. return pid ? find_task_by_vpid(pid) : current;
  5265. }
  5266. /* Actually do priority change: must hold rq lock. */
  5267. static void
  5268. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5269. {
  5270. BUG_ON(p->se.on_rq);
  5271. p->policy = policy;
  5272. p->rt_priority = prio;
  5273. p->normal_prio = normal_prio(p);
  5274. /* we are holding p->pi_lock already */
  5275. p->prio = rt_mutex_getprio(p);
  5276. if (rt_prio(p->prio))
  5277. p->sched_class = &rt_sched_class;
  5278. else
  5279. p->sched_class = &fair_sched_class;
  5280. set_load_weight(p);
  5281. }
  5282. /*
  5283. * check the target process has a UID that matches the current process's
  5284. */
  5285. static bool check_same_owner(struct task_struct *p)
  5286. {
  5287. const struct cred *cred = current_cred(), *pcred;
  5288. bool match;
  5289. rcu_read_lock();
  5290. pcred = __task_cred(p);
  5291. match = (cred->euid == pcred->euid ||
  5292. cred->euid == pcred->uid);
  5293. rcu_read_unlock();
  5294. return match;
  5295. }
  5296. static int __sched_setscheduler(struct task_struct *p, int policy,
  5297. struct sched_param *param, bool user)
  5298. {
  5299. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5300. unsigned long flags;
  5301. const struct sched_class *prev_class = p->sched_class;
  5302. struct rq *rq;
  5303. int reset_on_fork;
  5304. /* may grab non-irq protected spin_locks */
  5305. BUG_ON(in_interrupt());
  5306. recheck:
  5307. /* double check policy once rq lock held */
  5308. if (policy < 0) {
  5309. reset_on_fork = p->sched_reset_on_fork;
  5310. policy = oldpolicy = p->policy;
  5311. } else {
  5312. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5313. policy &= ~SCHED_RESET_ON_FORK;
  5314. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5315. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5316. policy != SCHED_IDLE)
  5317. return -EINVAL;
  5318. }
  5319. /*
  5320. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5321. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5322. * SCHED_BATCH and SCHED_IDLE is 0.
  5323. */
  5324. if (param->sched_priority < 0 ||
  5325. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5326. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5327. return -EINVAL;
  5328. if (rt_policy(policy) != (param->sched_priority != 0))
  5329. return -EINVAL;
  5330. /*
  5331. * Allow unprivileged RT tasks to decrease priority:
  5332. */
  5333. if (user && !capable(CAP_SYS_NICE)) {
  5334. if (rt_policy(policy)) {
  5335. unsigned long rlim_rtprio;
  5336. if (!lock_task_sighand(p, &flags))
  5337. return -ESRCH;
  5338. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5339. unlock_task_sighand(p, &flags);
  5340. /* can't set/change the rt policy */
  5341. if (policy != p->policy && !rlim_rtprio)
  5342. return -EPERM;
  5343. /* can't increase priority */
  5344. if (param->sched_priority > p->rt_priority &&
  5345. param->sched_priority > rlim_rtprio)
  5346. return -EPERM;
  5347. }
  5348. /*
  5349. * Like positive nice levels, dont allow tasks to
  5350. * move out of SCHED_IDLE either:
  5351. */
  5352. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5353. return -EPERM;
  5354. /* can't change other user's priorities */
  5355. if (!check_same_owner(p))
  5356. return -EPERM;
  5357. /* Normal users shall not reset the sched_reset_on_fork flag */
  5358. if (p->sched_reset_on_fork && !reset_on_fork)
  5359. return -EPERM;
  5360. }
  5361. if (user) {
  5362. #ifdef CONFIG_RT_GROUP_SCHED
  5363. /*
  5364. * Do not allow realtime tasks into groups that have no runtime
  5365. * assigned.
  5366. */
  5367. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5368. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5369. return -EPERM;
  5370. #endif
  5371. retval = security_task_setscheduler(p, policy, param);
  5372. if (retval)
  5373. return retval;
  5374. }
  5375. /*
  5376. * make sure no PI-waiters arrive (or leave) while we are
  5377. * changing the priority of the task:
  5378. */
  5379. spin_lock_irqsave(&p->pi_lock, flags);
  5380. /*
  5381. * To be able to change p->policy safely, the apropriate
  5382. * runqueue lock must be held.
  5383. */
  5384. rq = __task_rq_lock(p);
  5385. /* recheck policy now with rq lock held */
  5386. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5387. policy = oldpolicy = -1;
  5388. __task_rq_unlock(rq);
  5389. spin_unlock_irqrestore(&p->pi_lock, flags);
  5390. goto recheck;
  5391. }
  5392. update_rq_clock(rq);
  5393. on_rq = p->se.on_rq;
  5394. running = task_current(rq, p);
  5395. if (on_rq)
  5396. deactivate_task(rq, p, 0);
  5397. if (running)
  5398. p->sched_class->put_prev_task(rq, p);
  5399. p->sched_reset_on_fork = reset_on_fork;
  5400. oldprio = p->prio;
  5401. __setscheduler(rq, p, policy, param->sched_priority);
  5402. if (running)
  5403. p->sched_class->set_curr_task(rq);
  5404. if (on_rq) {
  5405. activate_task(rq, p, 0);
  5406. check_class_changed(rq, p, prev_class, oldprio, running);
  5407. }
  5408. __task_rq_unlock(rq);
  5409. spin_unlock_irqrestore(&p->pi_lock, flags);
  5410. rt_mutex_adjust_pi(p);
  5411. return 0;
  5412. }
  5413. /**
  5414. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5415. * @p: the task in question.
  5416. * @policy: new policy.
  5417. * @param: structure containing the new RT priority.
  5418. *
  5419. * NOTE that the task may be already dead.
  5420. */
  5421. int sched_setscheduler(struct task_struct *p, int policy,
  5422. struct sched_param *param)
  5423. {
  5424. return __sched_setscheduler(p, policy, param, true);
  5425. }
  5426. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5427. /**
  5428. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5429. * @p: the task in question.
  5430. * @policy: new policy.
  5431. * @param: structure containing the new RT priority.
  5432. *
  5433. * Just like sched_setscheduler, only don't bother checking if the
  5434. * current context has permission. For example, this is needed in
  5435. * stop_machine(): we create temporary high priority worker threads,
  5436. * but our caller might not have that capability.
  5437. */
  5438. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5439. struct sched_param *param)
  5440. {
  5441. return __sched_setscheduler(p, policy, param, false);
  5442. }
  5443. static int
  5444. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5445. {
  5446. struct sched_param lparam;
  5447. struct task_struct *p;
  5448. int retval;
  5449. if (!param || pid < 0)
  5450. return -EINVAL;
  5451. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5452. return -EFAULT;
  5453. rcu_read_lock();
  5454. retval = -ESRCH;
  5455. p = find_process_by_pid(pid);
  5456. if (p != NULL)
  5457. retval = sched_setscheduler(p, policy, &lparam);
  5458. rcu_read_unlock();
  5459. return retval;
  5460. }
  5461. /**
  5462. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5463. * @pid: the pid in question.
  5464. * @policy: new policy.
  5465. * @param: structure containing the new RT priority.
  5466. */
  5467. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5468. struct sched_param __user *, param)
  5469. {
  5470. /* negative values for policy are not valid */
  5471. if (policy < 0)
  5472. return -EINVAL;
  5473. return do_sched_setscheduler(pid, policy, param);
  5474. }
  5475. /**
  5476. * sys_sched_setparam - set/change the RT priority of a thread
  5477. * @pid: the pid in question.
  5478. * @param: structure containing the new RT priority.
  5479. */
  5480. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5481. {
  5482. return do_sched_setscheduler(pid, -1, param);
  5483. }
  5484. /**
  5485. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5486. * @pid: the pid in question.
  5487. */
  5488. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5489. {
  5490. struct task_struct *p;
  5491. int retval;
  5492. if (pid < 0)
  5493. return -EINVAL;
  5494. retval = -ESRCH;
  5495. rcu_read_lock();
  5496. p = find_process_by_pid(pid);
  5497. if (p) {
  5498. retval = security_task_getscheduler(p);
  5499. if (!retval)
  5500. retval = p->policy
  5501. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5502. }
  5503. rcu_read_unlock();
  5504. return retval;
  5505. }
  5506. /**
  5507. * sys_sched_getparam - get the RT priority of a thread
  5508. * @pid: the pid in question.
  5509. * @param: structure containing the RT priority.
  5510. */
  5511. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5512. {
  5513. struct sched_param lp;
  5514. struct task_struct *p;
  5515. int retval;
  5516. if (!param || pid < 0)
  5517. return -EINVAL;
  5518. rcu_read_lock();
  5519. p = find_process_by_pid(pid);
  5520. retval = -ESRCH;
  5521. if (!p)
  5522. goto out_unlock;
  5523. retval = security_task_getscheduler(p);
  5524. if (retval)
  5525. goto out_unlock;
  5526. lp.sched_priority = p->rt_priority;
  5527. rcu_read_unlock();
  5528. /*
  5529. * This one might sleep, we cannot do it with a spinlock held ...
  5530. */
  5531. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5532. return retval;
  5533. out_unlock:
  5534. rcu_read_unlock();
  5535. return retval;
  5536. }
  5537. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5538. {
  5539. cpumask_var_t cpus_allowed, new_mask;
  5540. struct task_struct *p;
  5541. int retval;
  5542. get_online_cpus();
  5543. rcu_read_lock();
  5544. p = find_process_by_pid(pid);
  5545. if (!p) {
  5546. rcu_read_unlock();
  5547. put_online_cpus();
  5548. return -ESRCH;
  5549. }
  5550. /* Prevent p going away */
  5551. get_task_struct(p);
  5552. rcu_read_unlock();
  5553. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5554. retval = -ENOMEM;
  5555. goto out_put_task;
  5556. }
  5557. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5558. retval = -ENOMEM;
  5559. goto out_free_cpus_allowed;
  5560. }
  5561. retval = -EPERM;
  5562. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5563. goto out_unlock;
  5564. retval = security_task_setscheduler(p, 0, NULL);
  5565. if (retval)
  5566. goto out_unlock;
  5567. cpuset_cpus_allowed(p, cpus_allowed);
  5568. cpumask_and(new_mask, in_mask, cpus_allowed);
  5569. again:
  5570. retval = set_cpus_allowed_ptr(p, new_mask);
  5571. if (!retval) {
  5572. cpuset_cpus_allowed(p, cpus_allowed);
  5573. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5574. /*
  5575. * We must have raced with a concurrent cpuset
  5576. * update. Just reset the cpus_allowed to the
  5577. * cpuset's cpus_allowed
  5578. */
  5579. cpumask_copy(new_mask, cpus_allowed);
  5580. goto again;
  5581. }
  5582. }
  5583. out_unlock:
  5584. free_cpumask_var(new_mask);
  5585. out_free_cpus_allowed:
  5586. free_cpumask_var(cpus_allowed);
  5587. out_put_task:
  5588. put_task_struct(p);
  5589. put_online_cpus();
  5590. return retval;
  5591. }
  5592. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5593. struct cpumask *new_mask)
  5594. {
  5595. if (len < cpumask_size())
  5596. cpumask_clear(new_mask);
  5597. else if (len > cpumask_size())
  5598. len = cpumask_size();
  5599. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5600. }
  5601. /**
  5602. * sys_sched_setaffinity - set the cpu affinity of a process
  5603. * @pid: pid of the process
  5604. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5605. * @user_mask_ptr: user-space pointer to the new cpu mask
  5606. */
  5607. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5608. unsigned long __user *, user_mask_ptr)
  5609. {
  5610. cpumask_var_t new_mask;
  5611. int retval;
  5612. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5613. return -ENOMEM;
  5614. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5615. if (retval == 0)
  5616. retval = sched_setaffinity(pid, new_mask);
  5617. free_cpumask_var(new_mask);
  5618. return retval;
  5619. }
  5620. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5621. {
  5622. struct task_struct *p;
  5623. unsigned long flags;
  5624. struct rq *rq;
  5625. int retval;
  5626. get_online_cpus();
  5627. rcu_read_lock();
  5628. retval = -ESRCH;
  5629. p = find_process_by_pid(pid);
  5630. if (!p)
  5631. goto out_unlock;
  5632. retval = security_task_getscheduler(p);
  5633. if (retval)
  5634. goto out_unlock;
  5635. rq = task_rq_lock(p, &flags);
  5636. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5637. task_rq_unlock(rq, &flags);
  5638. out_unlock:
  5639. rcu_read_unlock();
  5640. put_online_cpus();
  5641. return retval;
  5642. }
  5643. /**
  5644. * sys_sched_getaffinity - get the cpu affinity of a process
  5645. * @pid: pid of the process
  5646. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5647. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5648. */
  5649. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5650. unsigned long __user *, user_mask_ptr)
  5651. {
  5652. int ret;
  5653. cpumask_var_t mask;
  5654. if (len < cpumask_size())
  5655. return -EINVAL;
  5656. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5657. return -ENOMEM;
  5658. ret = sched_getaffinity(pid, mask);
  5659. if (ret == 0) {
  5660. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5661. ret = -EFAULT;
  5662. else
  5663. ret = cpumask_size();
  5664. }
  5665. free_cpumask_var(mask);
  5666. return ret;
  5667. }
  5668. /**
  5669. * sys_sched_yield - yield the current processor to other threads.
  5670. *
  5671. * This function yields the current CPU to other tasks. If there are no
  5672. * other threads running on this CPU then this function will return.
  5673. */
  5674. SYSCALL_DEFINE0(sched_yield)
  5675. {
  5676. struct rq *rq = this_rq_lock();
  5677. schedstat_inc(rq, yld_count);
  5678. current->sched_class->yield_task(rq);
  5679. /*
  5680. * Since we are going to call schedule() anyway, there's
  5681. * no need to preempt or enable interrupts:
  5682. */
  5683. __release(rq->lock);
  5684. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5685. _raw_spin_unlock(&rq->lock);
  5686. preempt_enable_no_resched();
  5687. schedule();
  5688. return 0;
  5689. }
  5690. static inline int should_resched(void)
  5691. {
  5692. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5693. }
  5694. static void __cond_resched(void)
  5695. {
  5696. add_preempt_count(PREEMPT_ACTIVE);
  5697. schedule();
  5698. sub_preempt_count(PREEMPT_ACTIVE);
  5699. }
  5700. int __sched _cond_resched(void)
  5701. {
  5702. if (should_resched()) {
  5703. __cond_resched();
  5704. return 1;
  5705. }
  5706. return 0;
  5707. }
  5708. EXPORT_SYMBOL(_cond_resched);
  5709. /*
  5710. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5711. * call schedule, and on return reacquire the lock.
  5712. *
  5713. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5714. * operations here to prevent schedule() from being called twice (once via
  5715. * spin_unlock(), once by hand).
  5716. */
  5717. int __cond_resched_lock(spinlock_t *lock)
  5718. {
  5719. int resched = should_resched();
  5720. int ret = 0;
  5721. lockdep_assert_held(lock);
  5722. if (spin_needbreak(lock) || resched) {
  5723. spin_unlock(lock);
  5724. if (resched)
  5725. __cond_resched();
  5726. else
  5727. cpu_relax();
  5728. ret = 1;
  5729. spin_lock(lock);
  5730. }
  5731. return ret;
  5732. }
  5733. EXPORT_SYMBOL(__cond_resched_lock);
  5734. int __sched __cond_resched_softirq(void)
  5735. {
  5736. BUG_ON(!in_softirq());
  5737. if (should_resched()) {
  5738. local_bh_enable();
  5739. __cond_resched();
  5740. local_bh_disable();
  5741. return 1;
  5742. }
  5743. return 0;
  5744. }
  5745. EXPORT_SYMBOL(__cond_resched_softirq);
  5746. /**
  5747. * yield - yield the current processor to other threads.
  5748. *
  5749. * This is a shortcut for kernel-space yielding - it marks the
  5750. * thread runnable and calls sys_sched_yield().
  5751. */
  5752. void __sched yield(void)
  5753. {
  5754. set_current_state(TASK_RUNNING);
  5755. sys_sched_yield();
  5756. }
  5757. EXPORT_SYMBOL(yield);
  5758. /*
  5759. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5760. * that process accounting knows that this is a task in IO wait state.
  5761. */
  5762. void __sched io_schedule(void)
  5763. {
  5764. struct rq *rq = raw_rq();
  5765. delayacct_blkio_start();
  5766. atomic_inc(&rq->nr_iowait);
  5767. current->in_iowait = 1;
  5768. schedule();
  5769. current->in_iowait = 0;
  5770. atomic_dec(&rq->nr_iowait);
  5771. delayacct_blkio_end();
  5772. }
  5773. EXPORT_SYMBOL(io_schedule);
  5774. long __sched io_schedule_timeout(long timeout)
  5775. {
  5776. struct rq *rq = raw_rq();
  5777. long ret;
  5778. delayacct_blkio_start();
  5779. atomic_inc(&rq->nr_iowait);
  5780. current->in_iowait = 1;
  5781. ret = schedule_timeout(timeout);
  5782. current->in_iowait = 0;
  5783. atomic_dec(&rq->nr_iowait);
  5784. delayacct_blkio_end();
  5785. return ret;
  5786. }
  5787. /**
  5788. * sys_sched_get_priority_max - return maximum RT priority.
  5789. * @policy: scheduling class.
  5790. *
  5791. * this syscall returns the maximum rt_priority that can be used
  5792. * by a given scheduling class.
  5793. */
  5794. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5795. {
  5796. int ret = -EINVAL;
  5797. switch (policy) {
  5798. case SCHED_FIFO:
  5799. case SCHED_RR:
  5800. ret = MAX_USER_RT_PRIO-1;
  5801. break;
  5802. case SCHED_NORMAL:
  5803. case SCHED_BATCH:
  5804. case SCHED_IDLE:
  5805. ret = 0;
  5806. break;
  5807. }
  5808. return ret;
  5809. }
  5810. /**
  5811. * sys_sched_get_priority_min - return minimum RT priority.
  5812. * @policy: scheduling class.
  5813. *
  5814. * this syscall returns the minimum rt_priority that can be used
  5815. * by a given scheduling class.
  5816. */
  5817. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5818. {
  5819. int ret = -EINVAL;
  5820. switch (policy) {
  5821. case SCHED_FIFO:
  5822. case SCHED_RR:
  5823. ret = 1;
  5824. break;
  5825. case SCHED_NORMAL:
  5826. case SCHED_BATCH:
  5827. case SCHED_IDLE:
  5828. ret = 0;
  5829. }
  5830. return ret;
  5831. }
  5832. /**
  5833. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5834. * @pid: pid of the process.
  5835. * @interval: userspace pointer to the timeslice value.
  5836. *
  5837. * this syscall writes the default timeslice value of a given process
  5838. * into the user-space timespec buffer. A value of '0' means infinity.
  5839. */
  5840. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5841. struct timespec __user *, interval)
  5842. {
  5843. struct task_struct *p;
  5844. unsigned int time_slice;
  5845. unsigned long flags;
  5846. struct rq *rq;
  5847. int retval;
  5848. struct timespec t;
  5849. if (pid < 0)
  5850. return -EINVAL;
  5851. retval = -ESRCH;
  5852. read_lock(&tasklist_lock);
  5853. p = find_process_by_pid(pid);
  5854. if (!p)
  5855. goto out_unlock;
  5856. retval = security_task_getscheduler(p);
  5857. if (retval)
  5858. goto out_unlock;
  5859. rq = task_rq_lock(p, &flags);
  5860. time_slice = p->sched_class->get_rr_interval(rq, p);
  5861. task_rq_unlock(rq, &flags);
  5862. read_unlock(&tasklist_lock);
  5863. jiffies_to_timespec(time_slice, &t);
  5864. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5865. return retval;
  5866. out_unlock:
  5867. read_unlock(&tasklist_lock);
  5868. return retval;
  5869. }
  5870. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5871. void sched_show_task(struct task_struct *p)
  5872. {
  5873. unsigned long free = 0;
  5874. unsigned state;
  5875. state = p->state ? __ffs(p->state) + 1 : 0;
  5876. pr_info("%-13.13s %c", p->comm,
  5877. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5878. #if BITS_PER_LONG == 32
  5879. if (state == TASK_RUNNING)
  5880. pr_cont(" running ");
  5881. else
  5882. pr_cont(" %08lx ", thread_saved_pc(p));
  5883. #else
  5884. if (state == TASK_RUNNING)
  5885. pr_cont(" running task ");
  5886. else
  5887. pr_cont(" %016lx ", thread_saved_pc(p));
  5888. #endif
  5889. #ifdef CONFIG_DEBUG_STACK_USAGE
  5890. free = stack_not_used(p);
  5891. #endif
  5892. pr_cont("%5lu %5d %6d 0x%08lx\n", free,
  5893. task_pid_nr(p), task_pid_nr(p->real_parent),
  5894. (unsigned long)task_thread_info(p)->flags);
  5895. show_stack(p, NULL);
  5896. }
  5897. void show_state_filter(unsigned long state_filter)
  5898. {
  5899. struct task_struct *g, *p;
  5900. #if BITS_PER_LONG == 32
  5901. pr_info(" task PC stack pid father\n");
  5902. #else
  5903. pr_info(" task PC stack pid father\n");
  5904. #endif
  5905. read_lock(&tasklist_lock);
  5906. do_each_thread(g, p) {
  5907. /*
  5908. * reset the NMI-timeout, listing all files on a slow
  5909. * console might take alot of time:
  5910. */
  5911. touch_nmi_watchdog();
  5912. if (!state_filter || (p->state & state_filter))
  5913. sched_show_task(p);
  5914. } while_each_thread(g, p);
  5915. touch_all_softlockup_watchdogs();
  5916. #ifdef CONFIG_SCHED_DEBUG
  5917. sysrq_sched_debug_show();
  5918. #endif
  5919. read_unlock(&tasklist_lock);
  5920. /*
  5921. * Only show locks if all tasks are dumped:
  5922. */
  5923. if (!state_filter)
  5924. debug_show_all_locks();
  5925. }
  5926. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5927. {
  5928. idle->sched_class = &idle_sched_class;
  5929. }
  5930. /**
  5931. * init_idle - set up an idle thread for a given CPU
  5932. * @idle: task in question
  5933. * @cpu: cpu the idle task belongs to
  5934. *
  5935. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5936. * flag, to make booting more robust.
  5937. */
  5938. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5939. {
  5940. struct rq *rq = cpu_rq(cpu);
  5941. unsigned long flags;
  5942. spin_lock_irqsave(&rq->lock, flags);
  5943. __sched_fork(idle);
  5944. idle->se.exec_start = sched_clock();
  5945. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5946. __set_task_cpu(idle, cpu);
  5947. rq->curr = rq->idle = idle;
  5948. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5949. idle->oncpu = 1;
  5950. #endif
  5951. spin_unlock_irqrestore(&rq->lock, flags);
  5952. /* Set the preempt count _outside_ the spinlocks! */
  5953. #if defined(CONFIG_PREEMPT)
  5954. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5955. #else
  5956. task_thread_info(idle)->preempt_count = 0;
  5957. #endif
  5958. /*
  5959. * The idle tasks have their own, simple scheduling class:
  5960. */
  5961. idle->sched_class = &idle_sched_class;
  5962. ftrace_graph_init_task(idle);
  5963. }
  5964. /*
  5965. * In a system that switches off the HZ timer nohz_cpu_mask
  5966. * indicates which cpus entered this state. This is used
  5967. * in the rcu update to wait only for active cpus. For system
  5968. * which do not switch off the HZ timer nohz_cpu_mask should
  5969. * always be CPU_BITS_NONE.
  5970. */
  5971. cpumask_var_t nohz_cpu_mask;
  5972. /*
  5973. * Increase the granularity value when there are more CPUs,
  5974. * because with more CPUs the 'effective latency' as visible
  5975. * to users decreases. But the relationship is not linear,
  5976. * so pick a second-best guess by going with the log2 of the
  5977. * number of CPUs.
  5978. *
  5979. * This idea comes from the SD scheduler of Con Kolivas:
  5980. */
  5981. static int get_update_sysctl_factor(void)
  5982. {
  5983. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5984. unsigned int factor;
  5985. switch (sysctl_sched_tunable_scaling) {
  5986. case SCHED_TUNABLESCALING_NONE:
  5987. factor = 1;
  5988. break;
  5989. case SCHED_TUNABLESCALING_LINEAR:
  5990. factor = cpus;
  5991. break;
  5992. case SCHED_TUNABLESCALING_LOG:
  5993. default:
  5994. factor = 1 + ilog2(cpus);
  5995. break;
  5996. }
  5997. return factor;
  5998. }
  5999. static void update_sysctl(void)
  6000. {
  6001. unsigned int factor = get_update_sysctl_factor();
  6002. #define SET_SYSCTL(name) \
  6003. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6004. SET_SYSCTL(sched_min_granularity);
  6005. SET_SYSCTL(sched_latency);
  6006. SET_SYSCTL(sched_wakeup_granularity);
  6007. SET_SYSCTL(sched_shares_ratelimit);
  6008. #undef SET_SYSCTL
  6009. }
  6010. static inline void sched_init_granularity(void)
  6011. {
  6012. update_sysctl();
  6013. }
  6014. #ifdef CONFIG_SMP
  6015. /*
  6016. * This is how migration works:
  6017. *
  6018. * 1) we queue a struct migration_req structure in the source CPU's
  6019. * runqueue and wake up that CPU's migration thread.
  6020. * 2) we down() the locked semaphore => thread blocks.
  6021. * 3) migration thread wakes up (implicitly it forces the migrated
  6022. * thread off the CPU)
  6023. * 4) it gets the migration request and checks whether the migrated
  6024. * task is still in the wrong runqueue.
  6025. * 5) if it's in the wrong runqueue then the migration thread removes
  6026. * it and puts it into the right queue.
  6027. * 6) migration thread up()s the semaphore.
  6028. * 7) we wake up and the migration is done.
  6029. */
  6030. /*
  6031. * Change a given task's CPU affinity. Migrate the thread to a
  6032. * proper CPU and schedule it away if the CPU it's executing on
  6033. * is removed from the allowed bitmask.
  6034. *
  6035. * NOTE: the caller must have a valid reference to the task, the
  6036. * task must not exit() & deallocate itself prematurely. The
  6037. * call is not atomic; no spinlocks may be held.
  6038. */
  6039. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6040. {
  6041. struct migration_req req;
  6042. unsigned long flags;
  6043. struct rq *rq;
  6044. int ret = 0;
  6045. rq = task_rq_lock(p, &flags);
  6046. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6047. ret = -EINVAL;
  6048. goto out;
  6049. }
  6050. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6051. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6052. ret = -EINVAL;
  6053. goto out;
  6054. }
  6055. if (p->sched_class->set_cpus_allowed)
  6056. p->sched_class->set_cpus_allowed(p, new_mask);
  6057. else {
  6058. cpumask_copy(&p->cpus_allowed, new_mask);
  6059. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6060. }
  6061. /* Can the task run on the task's current CPU? If so, we're done */
  6062. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6063. goto out;
  6064. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6065. /* Need help from migration thread: drop lock and wait. */
  6066. struct task_struct *mt = rq->migration_thread;
  6067. get_task_struct(mt);
  6068. task_rq_unlock(rq, &flags);
  6069. wake_up_process(rq->migration_thread);
  6070. put_task_struct(mt);
  6071. wait_for_completion(&req.done);
  6072. tlb_migrate_finish(p->mm);
  6073. return 0;
  6074. }
  6075. out:
  6076. task_rq_unlock(rq, &flags);
  6077. return ret;
  6078. }
  6079. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6080. /*
  6081. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6082. * this because either it can't run here any more (set_cpus_allowed()
  6083. * away from this CPU, or CPU going down), or because we're
  6084. * attempting to rebalance this task on exec (sched_exec).
  6085. *
  6086. * So we race with normal scheduler movements, but that's OK, as long
  6087. * as the task is no longer on this CPU.
  6088. *
  6089. * Returns non-zero if task was successfully migrated.
  6090. */
  6091. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6092. {
  6093. struct rq *rq_dest, *rq_src;
  6094. int ret = 0, on_rq;
  6095. if (unlikely(!cpu_active(dest_cpu)))
  6096. return ret;
  6097. rq_src = cpu_rq(src_cpu);
  6098. rq_dest = cpu_rq(dest_cpu);
  6099. double_rq_lock(rq_src, rq_dest);
  6100. /* Already moved. */
  6101. if (task_cpu(p) != src_cpu)
  6102. goto done;
  6103. /* Affinity changed (again). */
  6104. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6105. goto fail;
  6106. on_rq = p->se.on_rq;
  6107. if (on_rq)
  6108. deactivate_task(rq_src, p, 0);
  6109. set_task_cpu(p, dest_cpu);
  6110. if (on_rq) {
  6111. activate_task(rq_dest, p, 0);
  6112. check_preempt_curr(rq_dest, p, 0);
  6113. }
  6114. done:
  6115. ret = 1;
  6116. fail:
  6117. double_rq_unlock(rq_src, rq_dest);
  6118. return ret;
  6119. }
  6120. #define RCU_MIGRATION_IDLE 0
  6121. #define RCU_MIGRATION_NEED_QS 1
  6122. #define RCU_MIGRATION_GOT_QS 2
  6123. #define RCU_MIGRATION_MUST_SYNC 3
  6124. /*
  6125. * migration_thread - this is a highprio system thread that performs
  6126. * thread migration by bumping thread off CPU then 'pushing' onto
  6127. * another runqueue.
  6128. */
  6129. static int migration_thread(void *data)
  6130. {
  6131. int badcpu;
  6132. int cpu = (long)data;
  6133. struct rq *rq;
  6134. rq = cpu_rq(cpu);
  6135. BUG_ON(rq->migration_thread != current);
  6136. set_current_state(TASK_INTERRUPTIBLE);
  6137. while (!kthread_should_stop()) {
  6138. struct migration_req *req;
  6139. struct list_head *head;
  6140. spin_lock_irq(&rq->lock);
  6141. if (cpu_is_offline(cpu)) {
  6142. spin_unlock_irq(&rq->lock);
  6143. break;
  6144. }
  6145. if (rq->active_balance) {
  6146. active_load_balance(rq, cpu);
  6147. rq->active_balance = 0;
  6148. }
  6149. head = &rq->migration_queue;
  6150. if (list_empty(head)) {
  6151. spin_unlock_irq(&rq->lock);
  6152. schedule();
  6153. set_current_state(TASK_INTERRUPTIBLE);
  6154. continue;
  6155. }
  6156. req = list_entry(head->next, struct migration_req, list);
  6157. list_del_init(head->next);
  6158. if (req->task != NULL) {
  6159. spin_unlock(&rq->lock);
  6160. __migrate_task(req->task, cpu, req->dest_cpu);
  6161. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6162. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6163. spin_unlock(&rq->lock);
  6164. } else {
  6165. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6166. spin_unlock(&rq->lock);
  6167. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6168. }
  6169. local_irq_enable();
  6170. complete(&req->done);
  6171. }
  6172. __set_current_state(TASK_RUNNING);
  6173. return 0;
  6174. }
  6175. #ifdef CONFIG_HOTPLUG_CPU
  6176. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6177. {
  6178. int ret;
  6179. local_irq_disable();
  6180. ret = __migrate_task(p, src_cpu, dest_cpu);
  6181. local_irq_enable();
  6182. return ret;
  6183. }
  6184. /*
  6185. * Figure out where task on dead CPU should go, use force if necessary.
  6186. */
  6187. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6188. {
  6189. int dest_cpu;
  6190. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6191. again:
  6192. /* Look for allowed, online CPU in same node. */
  6193. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6194. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6195. goto move;
  6196. /* Any allowed, online CPU? */
  6197. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6198. if (dest_cpu < nr_cpu_ids)
  6199. goto move;
  6200. /* No more Mr. Nice Guy. */
  6201. if (dest_cpu >= nr_cpu_ids) {
  6202. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6203. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6204. /*
  6205. * Don't tell them about moving exiting tasks or
  6206. * kernel threads (both mm NULL), since they never
  6207. * leave kernel.
  6208. */
  6209. if (p->mm && printk_ratelimit()) {
  6210. pr_info("process %d (%s) no longer affine to cpu%d\n",
  6211. task_pid_nr(p), p->comm, dead_cpu);
  6212. }
  6213. }
  6214. move:
  6215. /* It can have affinity changed while we were choosing. */
  6216. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6217. goto again;
  6218. }
  6219. /*
  6220. * While a dead CPU has no uninterruptible tasks queued at this point,
  6221. * it might still have a nonzero ->nr_uninterruptible counter, because
  6222. * for performance reasons the counter is not stricly tracking tasks to
  6223. * their home CPUs. So we just add the counter to another CPU's counter,
  6224. * to keep the global sum constant after CPU-down:
  6225. */
  6226. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6227. {
  6228. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6229. unsigned long flags;
  6230. local_irq_save(flags);
  6231. double_rq_lock(rq_src, rq_dest);
  6232. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6233. rq_src->nr_uninterruptible = 0;
  6234. double_rq_unlock(rq_src, rq_dest);
  6235. local_irq_restore(flags);
  6236. }
  6237. /* Run through task list and migrate tasks from the dead cpu. */
  6238. static void migrate_live_tasks(int src_cpu)
  6239. {
  6240. struct task_struct *p, *t;
  6241. read_lock(&tasklist_lock);
  6242. do_each_thread(t, p) {
  6243. if (p == current)
  6244. continue;
  6245. if (task_cpu(p) == src_cpu)
  6246. move_task_off_dead_cpu(src_cpu, p);
  6247. } while_each_thread(t, p);
  6248. read_unlock(&tasklist_lock);
  6249. }
  6250. /*
  6251. * Schedules idle task to be the next runnable task on current CPU.
  6252. * It does so by boosting its priority to highest possible.
  6253. * Used by CPU offline code.
  6254. */
  6255. void sched_idle_next(void)
  6256. {
  6257. int this_cpu = smp_processor_id();
  6258. struct rq *rq = cpu_rq(this_cpu);
  6259. struct task_struct *p = rq->idle;
  6260. unsigned long flags;
  6261. /* cpu has to be offline */
  6262. BUG_ON(cpu_online(this_cpu));
  6263. /*
  6264. * Strictly not necessary since rest of the CPUs are stopped by now
  6265. * and interrupts disabled on the current cpu.
  6266. */
  6267. spin_lock_irqsave(&rq->lock, flags);
  6268. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6269. update_rq_clock(rq);
  6270. activate_task(rq, p, 0);
  6271. spin_unlock_irqrestore(&rq->lock, flags);
  6272. }
  6273. /*
  6274. * Ensures that the idle task is using init_mm right before its cpu goes
  6275. * offline.
  6276. */
  6277. void idle_task_exit(void)
  6278. {
  6279. struct mm_struct *mm = current->active_mm;
  6280. BUG_ON(cpu_online(smp_processor_id()));
  6281. if (mm != &init_mm)
  6282. switch_mm(mm, &init_mm, current);
  6283. mmdrop(mm);
  6284. }
  6285. /* called under rq->lock with disabled interrupts */
  6286. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6287. {
  6288. struct rq *rq = cpu_rq(dead_cpu);
  6289. /* Must be exiting, otherwise would be on tasklist. */
  6290. BUG_ON(!p->exit_state);
  6291. /* Cannot have done final schedule yet: would have vanished. */
  6292. BUG_ON(p->state == TASK_DEAD);
  6293. get_task_struct(p);
  6294. /*
  6295. * Drop lock around migration; if someone else moves it,
  6296. * that's OK. No task can be added to this CPU, so iteration is
  6297. * fine.
  6298. */
  6299. spin_unlock_irq(&rq->lock);
  6300. move_task_off_dead_cpu(dead_cpu, p);
  6301. spin_lock_irq(&rq->lock);
  6302. put_task_struct(p);
  6303. }
  6304. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6305. static void migrate_dead_tasks(unsigned int dead_cpu)
  6306. {
  6307. struct rq *rq = cpu_rq(dead_cpu);
  6308. struct task_struct *next;
  6309. for ( ; ; ) {
  6310. if (!rq->nr_running)
  6311. break;
  6312. update_rq_clock(rq);
  6313. next = pick_next_task(rq);
  6314. if (!next)
  6315. break;
  6316. next->sched_class->put_prev_task(rq, next);
  6317. migrate_dead(dead_cpu, next);
  6318. }
  6319. }
  6320. /*
  6321. * remove the tasks which were accounted by rq from calc_load_tasks.
  6322. */
  6323. static void calc_global_load_remove(struct rq *rq)
  6324. {
  6325. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6326. rq->calc_load_active = 0;
  6327. }
  6328. #endif /* CONFIG_HOTPLUG_CPU */
  6329. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6330. static struct ctl_table sd_ctl_dir[] = {
  6331. {
  6332. .procname = "sched_domain",
  6333. .mode = 0555,
  6334. },
  6335. {}
  6336. };
  6337. static struct ctl_table sd_ctl_root[] = {
  6338. {
  6339. .procname = "kernel",
  6340. .mode = 0555,
  6341. .child = sd_ctl_dir,
  6342. },
  6343. {}
  6344. };
  6345. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6346. {
  6347. struct ctl_table *entry =
  6348. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6349. return entry;
  6350. }
  6351. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6352. {
  6353. struct ctl_table *entry;
  6354. /*
  6355. * In the intermediate directories, both the child directory and
  6356. * procname are dynamically allocated and could fail but the mode
  6357. * will always be set. In the lowest directory the names are
  6358. * static strings and all have proc handlers.
  6359. */
  6360. for (entry = *tablep; entry->mode; entry++) {
  6361. if (entry->child)
  6362. sd_free_ctl_entry(&entry->child);
  6363. if (entry->proc_handler == NULL)
  6364. kfree(entry->procname);
  6365. }
  6366. kfree(*tablep);
  6367. *tablep = NULL;
  6368. }
  6369. static void
  6370. set_table_entry(struct ctl_table *entry,
  6371. const char *procname, void *data, int maxlen,
  6372. mode_t mode, proc_handler *proc_handler)
  6373. {
  6374. entry->procname = procname;
  6375. entry->data = data;
  6376. entry->maxlen = maxlen;
  6377. entry->mode = mode;
  6378. entry->proc_handler = proc_handler;
  6379. }
  6380. static struct ctl_table *
  6381. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6382. {
  6383. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6384. if (table == NULL)
  6385. return NULL;
  6386. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6387. sizeof(long), 0644, proc_doulongvec_minmax);
  6388. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6389. sizeof(long), 0644, proc_doulongvec_minmax);
  6390. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6391. sizeof(int), 0644, proc_dointvec_minmax);
  6392. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6393. sizeof(int), 0644, proc_dointvec_minmax);
  6394. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6395. sizeof(int), 0644, proc_dointvec_minmax);
  6396. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6397. sizeof(int), 0644, proc_dointvec_minmax);
  6398. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6399. sizeof(int), 0644, proc_dointvec_minmax);
  6400. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6401. sizeof(int), 0644, proc_dointvec_minmax);
  6402. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6403. sizeof(int), 0644, proc_dointvec_minmax);
  6404. set_table_entry(&table[9], "cache_nice_tries",
  6405. &sd->cache_nice_tries,
  6406. sizeof(int), 0644, proc_dointvec_minmax);
  6407. set_table_entry(&table[10], "flags", &sd->flags,
  6408. sizeof(int), 0644, proc_dointvec_minmax);
  6409. set_table_entry(&table[11], "name", sd->name,
  6410. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6411. /* &table[12] is terminator */
  6412. return table;
  6413. }
  6414. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6415. {
  6416. struct ctl_table *entry, *table;
  6417. struct sched_domain *sd;
  6418. int domain_num = 0, i;
  6419. char buf[32];
  6420. for_each_domain(cpu, sd)
  6421. domain_num++;
  6422. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6423. if (table == NULL)
  6424. return NULL;
  6425. i = 0;
  6426. for_each_domain(cpu, sd) {
  6427. snprintf(buf, 32, "domain%d", i);
  6428. entry->procname = kstrdup(buf, GFP_KERNEL);
  6429. entry->mode = 0555;
  6430. entry->child = sd_alloc_ctl_domain_table(sd);
  6431. entry++;
  6432. i++;
  6433. }
  6434. return table;
  6435. }
  6436. static struct ctl_table_header *sd_sysctl_header;
  6437. static void register_sched_domain_sysctl(void)
  6438. {
  6439. int i, cpu_num = num_possible_cpus();
  6440. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6441. char buf[32];
  6442. WARN_ON(sd_ctl_dir[0].child);
  6443. sd_ctl_dir[0].child = entry;
  6444. if (entry == NULL)
  6445. return;
  6446. for_each_possible_cpu(i) {
  6447. snprintf(buf, 32, "cpu%d", i);
  6448. entry->procname = kstrdup(buf, GFP_KERNEL);
  6449. entry->mode = 0555;
  6450. entry->child = sd_alloc_ctl_cpu_table(i);
  6451. entry++;
  6452. }
  6453. WARN_ON(sd_sysctl_header);
  6454. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6455. }
  6456. /* may be called multiple times per register */
  6457. static void unregister_sched_domain_sysctl(void)
  6458. {
  6459. if (sd_sysctl_header)
  6460. unregister_sysctl_table(sd_sysctl_header);
  6461. sd_sysctl_header = NULL;
  6462. if (sd_ctl_dir[0].child)
  6463. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6464. }
  6465. #else
  6466. static void register_sched_domain_sysctl(void)
  6467. {
  6468. }
  6469. static void unregister_sched_domain_sysctl(void)
  6470. {
  6471. }
  6472. #endif
  6473. static void set_rq_online(struct rq *rq)
  6474. {
  6475. if (!rq->online) {
  6476. const struct sched_class *class;
  6477. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6478. rq->online = 1;
  6479. for_each_class(class) {
  6480. if (class->rq_online)
  6481. class->rq_online(rq);
  6482. }
  6483. }
  6484. }
  6485. static void set_rq_offline(struct rq *rq)
  6486. {
  6487. if (rq->online) {
  6488. const struct sched_class *class;
  6489. for_each_class(class) {
  6490. if (class->rq_offline)
  6491. class->rq_offline(rq);
  6492. }
  6493. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6494. rq->online = 0;
  6495. }
  6496. }
  6497. /*
  6498. * migration_call - callback that gets triggered when a CPU is added.
  6499. * Here we can start up the necessary migration thread for the new CPU.
  6500. */
  6501. static int __cpuinit
  6502. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6503. {
  6504. struct task_struct *p;
  6505. int cpu = (long)hcpu;
  6506. unsigned long flags;
  6507. struct rq *rq;
  6508. switch (action) {
  6509. case CPU_UP_PREPARE:
  6510. case CPU_UP_PREPARE_FROZEN:
  6511. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6512. if (IS_ERR(p))
  6513. return NOTIFY_BAD;
  6514. kthread_bind(p, cpu);
  6515. /* Must be high prio: stop_machine expects to yield to it. */
  6516. rq = task_rq_lock(p, &flags);
  6517. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6518. task_rq_unlock(rq, &flags);
  6519. get_task_struct(p);
  6520. cpu_rq(cpu)->migration_thread = p;
  6521. rq->calc_load_update = calc_load_update;
  6522. break;
  6523. case CPU_ONLINE:
  6524. case CPU_ONLINE_FROZEN:
  6525. /* Strictly unnecessary, as first user will wake it. */
  6526. wake_up_process(cpu_rq(cpu)->migration_thread);
  6527. /* Update our root-domain */
  6528. rq = cpu_rq(cpu);
  6529. spin_lock_irqsave(&rq->lock, flags);
  6530. if (rq->rd) {
  6531. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6532. set_rq_online(rq);
  6533. }
  6534. spin_unlock_irqrestore(&rq->lock, flags);
  6535. break;
  6536. #ifdef CONFIG_HOTPLUG_CPU
  6537. case CPU_UP_CANCELED:
  6538. case CPU_UP_CANCELED_FROZEN:
  6539. if (!cpu_rq(cpu)->migration_thread)
  6540. break;
  6541. /* Unbind it from offline cpu so it can run. Fall thru. */
  6542. kthread_bind(cpu_rq(cpu)->migration_thread,
  6543. cpumask_any(cpu_online_mask));
  6544. kthread_stop(cpu_rq(cpu)->migration_thread);
  6545. put_task_struct(cpu_rq(cpu)->migration_thread);
  6546. cpu_rq(cpu)->migration_thread = NULL;
  6547. break;
  6548. case CPU_DEAD:
  6549. case CPU_DEAD_FROZEN:
  6550. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6551. migrate_live_tasks(cpu);
  6552. rq = cpu_rq(cpu);
  6553. kthread_stop(rq->migration_thread);
  6554. put_task_struct(rq->migration_thread);
  6555. rq->migration_thread = NULL;
  6556. /* Idle task back to normal (off runqueue, low prio) */
  6557. spin_lock_irq(&rq->lock);
  6558. update_rq_clock(rq);
  6559. deactivate_task(rq, rq->idle, 0);
  6560. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6561. rq->idle->sched_class = &idle_sched_class;
  6562. migrate_dead_tasks(cpu);
  6563. spin_unlock_irq(&rq->lock);
  6564. cpuset_unlock();
  6565. migrate_nr_uninterruptible(rq);
  6566. BUG_ON(rq->nr_running != 0);
  6567. calc_global_load_remove(rq);
  6568. /*
  6569. * No need to migrate the tasks: it was best-effort if
  6570. * they didn't take sched_hotcpu_mutex. Just wake up
  6571. * the requestors.
  6572. */
  6573. spin_lock_irq(&rq->lock);
  6574. while (!list_empty(&rq->migration_queue)) {
  6575. struct migration_req *req;
  6576. req = list_entry(rq->migration_queue.next,
  6577. struct migration_req, list);
  6578. list_del_init(&req->list);
  6579. spin_unlock_irq(&rq->lock);
  6580. complete(&req->done);
  6581. spin_lock_irq(&rq->lock);
  6582. }
  6583. spin_unlock_irq(&rq->lock);
  6584. break;
  6585. case CPU_DYING:
  6586. case CPU_DYING_FROZEN:
  6587. /* Update our root-domain */
  6588. rq = cpu_rq(cpu);
  6589. spin_lock_irqsave(&rq->lock, flags);
  6590. if (rq->rd) {
  6591. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6592. set_rq_offline(rq);
  6593. }
  6594. spin_unlock_irqrestore(&rq->lock, flags);
  6595. break;
  6596. #endif
  6597. }
  6598. return NOTIFY_OK;
  6599. }
  6600. /*
  6601. * Register at high priority so that task migration (migrate_all_tasks)
  6602. * happens before everything else. This has to be lower priority than
  6603. * the notifier in the perf_event subsystem, though.
  6604. */
  6605. static struct notifier_block __cpuinitdata migration_notifier = {
  6606. .notifier_call = migration_call,
  6607. .priority = 10
  6608. };
  6609. static int __init migration_init(void)
  6610. {
  6611. void *cpu = (void *)(long)smp_processor_id();
  6612. int err;
  6613. /* Start one for the boot CPU: */
  6614. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6615. BUG_ON(err == NOTIFY_BAD);
  6616. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6617. register_cpu_notifier(&migration_notifier);
  6618. return 0;
  6619. }
  6620. early_initcall(migration_init);
  6621. #endif
  6622. #ifdef CONFIG_SMP
  6623. #ifdef CONFIG_SCHED_DEBUG
  6624. static __read_mostly int sched_domain_debug_enabled;
  6625. static int __init sched_domain_debug_setup(char *str)
  6626. {
  6627. sched_domain_debug_enabled = 1;
  6628. return 0;
  6629. }
  6630. early_param("sched_debug", sched_domain_debug_setup);
  6631. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6632. struct cpumask *groupmask)
  6633. {
  6634. struct sched_group *group = sd->groups;
  6635. char str[256];
  6636. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6637. cpumask_clear(groupmask);
  6638. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6639. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6640. pr_cont("does not load-balance\n");
  6641. if (sd->parent)
  6642. pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
  6643. return -1;
  6644. }
  6645. pr_cont("span %s level %s\n", str, sd->name);
  6646. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6647. pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
  6648. }
  6649. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6650. pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
  6651. }
  6652. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6653. do {
  6654. if (!group) {
  6655. pr_cont("\n");
  6656. pr_err("ERROR: group is NULL\n");
  6657. break;
  6658. }
  6659. if (!group->cpu_power) {
  6660. pr_cont("\n");
  6661. pr_err("ERROR: domain->cpu_power not set\n");
  6662. break;
  6663. }
  6664. if (!cpumask_weight(sched_group_cpus(group))) {
  6665. pr_cont("\n");
  6666. pr_err("ERROR: empty group\n");
  6667. break;
  6668. }
  6669. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6670. pr_cont("\n");
  6671. pr_err("ERROR: repeated CPUs\n");
  6672. break;
  6673. }
  6674. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6675. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6676. pr_cont(" %s", str);
  6677. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6678. pr_cont(" (cpu_power = %d)", group->cpu_power);
  6679. }
  6680. group = group->next;
  6681. } while (group != sd->groups);
  6682. pr_cont("\n");
  6683. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6684. pr_err("ERROR: groups don't span domain->span\n");
  6685. if (sd->parent &&
  6686. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6687. pr_err("ERROR: parent span is not a superset of domain->span\n");
  6688. return 0;
  6689. }
  6690. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6691. {
  6692. cpumask_var_t groupmask;
  6693. int level = 0;
  6694. if (!sched_domain_debug_enabled)
  6695. return;
  6696. if (!sd) {
  6697. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6698. return;
  6699. }
  6700. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6701. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6702. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6703. return;
  6704. }
  6705. for (;;) {
  6706. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6707. break;
  6708. level++;
  6709. sd = sd->parent;
  6710. if (!sd)
  6711. break;
  6712. }
  6713. free_cpumask_var(groupmask);
  6714. }
  6715. #else /* !CONFIG_SCHED_DEBUG */
  6716. # define sched_domain_debug(sd, cpu) do { } while (0)
  6717. #endif /* CONFIG_SCHED_DEBUG */
  6718. static int sd_degenerate(struct sched_domain *sd)
  6719. {
  6720. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6721. return 1;
  6722. /* Following flags need at least 2 groups */
  6723. if (sd->flags & (SD_LOAD_BALANCE |
  6724. SD_BALANCE_NEWIDLE |
  6725. SD_BALANCE_FORK |
  6726. SD_BALANCE_EXEC |
  6727. SD_SHARE_CPUPOWER |
  6728. SD_SHARE_PKG_RESOURCES)) {
  6729. if (sd->groups != sd->groups->next)
  6730. return 0;
  6731. }
  6732. /* Following flags don't use groups */
  6733. if (sd->flags & (SD_WAKE_AFFINE))
  6734. return 0;
  6735. return 1;
  6736. }
  6737. static int
  6738. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6739. {
  6740. unsigned long cflags = sd->flags, pflags = parent->flags;
  6741. if (sd_degenerate(parent))
  6742. return 1;
  6743. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6744. return 0;
  6745. /* Flags needing groups don't count if only 1 group in parent */
  6746. if (parent->groups == parent->groups->next) {
  6747. pflags &= ~(SD_LOAD_BALANCE |
  6748. SD_BALANCE_NEWIDLE |
  6749. SD_BALANCE_FORK |
  6750. SD_BALANCE_EXEC |
  6751. SD_SHARE_CPUPOWER |
  6752. SD_SHARE_PKG_RESOURCES);
  6753. if (nr_node_ids == 1)
  6754. pflags &= ~SD_SERIALIZE;
  6755. }
  6756. if (~cflags & pflags)
  6757. return 0;
  6758. return 1;
  6759. }
  6760. static void free_rootdomain(struct root_domain *rd)
  6761. {
  6762. synchronize_sched();
  6763. cpupri_cleanup(&rd->cpupri);
  6764. free_cpumask_var(rd->rto_mask);
  6765. free_cpumask_var(rd->online);
  6766. free_cpumask_var(rd->span);
  6767. kfree(rd);
  6768. }
  6769. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6770. {
  6771. struct root_domain *old_rd = NULL;
  6772. unsigned long flags;
  6773. spin_lock_irqsave(&rq->lock, flags);
  6774. if (rq->rd) {
  6775. old_rd = rq->rd;
  6776. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6777. set_rq_offline(rq);
  6778. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6779. /*
  6780. * If we dont want to free the old_rt yet then
  6781. * set old_rd to NULL to skip the freeing later
  6782. * in this function:
  6783. */
  6784. if (!atomic_dec_and_test(&old_rd->refcount))
  6785. old_rd = NULL;
  6786. }
  6787. atomic_inc(&rd->refcount);
  6788. rq->rd = rd;
  6789. cpumask_set_cpu(rq->cpu, rd->span);
  6790. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6791. set_rq_online(rq);
  6792. spin_unlock_irqrestore(&rq->lock, flags);
  6793. if (old_rd)
  6794. free_rootdomain(old_rd);
  6795. }
  6796. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6797. {
  6798. gfp_t gfp = GFP_KERNEL;
  6799. memset(rd, 0, sizeof(*rd));
  6800. if (bootmem)
  6801. gfp = GFP_NOWAIT;
  6802. if (!alloc_cpumask_var(&rd->span, gfp))
  6803. goto out;
  6804. if (!alloc_cpumask_var(&rd->online, gfp))
  6805. goto free_span;
  6806. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6807. goto free_online;
  6808. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6809. goto free_rto_mask;
  6810. return 0;
  6811. free_rto_mask:
  6812. free_cpumask_var(rd->rto_mask);
  6813. free_online:
  6814. free_cpumask_var(rd->online);
  6815. free_span:
  6816. free_cpumask_var(rd->span);
  6817. out:
  6818. return -ENOMEM;
  6819. }
  6820. static void init_defrootdomain(void)
  6821. {
  6822. init_rootdomain(&def_root_domain, true);
  6823. atomic_set(&def_root_domain.refcount, 1);
  6824. }
  6825. static struct root_domain *alloc_rootdomain(void)
  6826. {
  6827. struct root_domain *rd;
  6828. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6829. if (!rd)
  6830. return NULL;
  6831. if (init_rootdomain(rd, false) != 0) {
  6832. kfree(rd);
  6833. return NULL;
  6834. }
  6835. return rd;
  6836. }
  6837. /*
  6838. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6839. * hold the hotplug lock.
  6840. */
  6841. static void
  6842. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6843. {
  6844. struct rq *rq = cpu_rq(cpu);
  6845. struct sched_domain *tmp;
  6846. /* Remove the sched domains which do not contribute to scheduling. */
  6847. for (tmp = sd; tmp; ) {
  6848. struct sched_domain *parent = tmp->parent;
  6849. if (!parent)
  6850. break;
  6851. if (sd_parent_degenerate(tmp, parent)) {
  6852. tmp->parent = parent->parent;
  6853. if (parent->parent)
  6854. parent->parent->child = tmp;
  6855. } else
  6856. tmp = tmp->parent;
  6857. }
  6858. if (sd && sd_degenerate(sd)) {
  6859. sd = sd->parent;
  6860. if (sd)
  6861. sd->child = NULL;
  6862. }
  6863. sched_domain_debug(sd, cpu);
  6864. rq_attach_root(rq, rd);
  6865. rcu_assign_pointer(rq->sd, sd);
  6866. }
  6867. /* cpus with isolated domains */
  6868. static cpumask_var_t cpu_isolated_map;
  6869. /* Setup the mask of cpus configured for isolated domains */
  6870. static int __init isolated_cpu_setup(char *str)
  6871. {
  6872. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6873. cpulist_parse(str, cpu_isolated_map);
  6874. return 1;
  6875. }
  6876. __setup("isolcpus=", isolated_cpu_setup);
  6877. /*
  6878. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6879. * to a function which identifies what group(along with sched group) a CPU
  6880. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6881. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6882. *
  6883. * init_sched_build_groups will build a circular linked list of the groups
  6884. * covered by the given span, and will set each group's ->cpumask correctly,
  6885. * and ->cpu_power to 0.
  6886. */
  6887. static void
  6888. init_sched_build_groups(const struct cpumask *span,
  6889. const struct cpumask *cpu_map,
  6890. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6891. struct sched_group **sg,
  6892. struct cpumask *tmpmask),
  6893. struct cpumask *covered, struct cpumask *tmpmask)
  6894. {
  6895. struct sched_group *first = NULL, *last = NULL;
  6896. int i;
  6897. cpumask_clear(covered);
  6898. for_each_cpu(i, span) {
  6899. struct sched_group *sg;
  6900. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6901. int j;
  6902. if (cpumask_test_cpu(i, covered))
  6903. continue;
  6904. cpumask_clear(sched_group_cpus(sg));
  6905. sg->cpu_power = 0;
  6906. for_each_cpu(j, span) {
  6907. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6908. continue;
  6909. cpumask_set_cpu(j, covered);
  6910. cpumask_set_cpu(j, sched_group_cpus(sg));
  6911. }
  6912. if (!first)
  6913. first = sg;
  6914. if (last)
  6915. last->next = sg;
  6916. last = sg;
  6917. }
  6918. last->next = first;
  6919. }
  6920. #define SD_NODES_PER_DOMAIN 16
  6921. #ifdef CONFIG_NUMA
  6922. /**
  6923. * find_next_best_node - find the next node to include in a sched_domain
  6924. * @node: node whose sched_domain we're building
  6925. * @used_nodes: nodes already in the sched_domain
  6926. *
  6927. * Find the next node to include in a given scheduling domain. Simply
  6928. * finds the closest node not already in the @used_nodes map.
  6929. *
  6930. * Should use nodemask_t.
  6931. */
  6932. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6933. {
  6934. int i, n, val, min_val, best_node = 0;
  6935. min_val = INT_MAX;
  6936. for (i = 0; i < nr_node_ids; i++) {
  6937. /* Start at @node */
  6938. n = (node + i) % nr_node_ids;
  6939. if (!nr_cpus_node(n))
  6940. continue;
  6941. /* Skip already used nodes */
  6942. if (node_isset(n, *used_nodes))
  6943. continue;
  6944. /* Simple min distance search */
  6945. val = node_distance(node, n);
  6946. if (val < min_val) {
  6947. min_val = val;
  6948. best_node = n;
  6949. }
  6950. }
  6951. node_set(best_node, *used_nodes);
  6952. return best_node;
  6953. }
  6954. /**
  6955. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6956. * @node: node whose cpumask we're constructing
  6957. * @span: resulting cpumask
  6958. *
  6959. * Given a node, construct a good cpumask for its sched_domain to span. It
  6960. * should be one that prevents unnecessary balancing, but also spreads tasks
  6961. * out optimally.
  6962. */
  6963. static void sched_domain_node_span(int node, struct cpumask *span)
  6964. {
  6965. nodemask_t used_nodes;
  6966. int i;
  6967. cpumask_clear(span);
  6968. nodes_clear(used_nodes);
  6969. cpumask_or(span, span, cpumask_of_node(node));
  6970. node_set(node, used_nodes);
  6971. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6972. int next_node = find_next_best_node(node, &used_nodes);
  6973. cpumask_or(span, span, cpumask_of_node(next_node));
  6974. }
  6975. }
  6976. #endif /* CONFIG_NUMA */
  6977. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6978. /*
  6979. * The cpus mask in sched_group and sched_domain hangs off the end.
  6980. *
  6981. * ( See the the comments in include/linux/sched.h:struct sched_group
  6982. * and struct sched_domain. )
  6983. */
  6984. struct static_sched_group {
  6985. struct sched_group sg;
  6986. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6987. };
  6988. struct static_sched_domain {
  6989. struct sched_domain sd;
  6990. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6991. };
  6992. struct s_data {
  6993. #ifdef CONFIG_NUMA
  6994. int sd_allnodes;
  6995. cpumask_var_t domainspan;
  6996. cpumask_var_t covered;
  6997. cpumask_var_t notcovered;
  6998. #endif
  6999. cpumask_var_t nodemask;
  7000. cpumask_var_t this_sibling_map;
  7001. cpumask_var_t this_core_map;
  7002. cpumask_var_t send_covered;
  7003. cpumask_var_t tmpmask;
  7004. struct sched_group **sched_group_nodes;
  7005. struct root_domain *rd;
  7006. };
  7007. enum s_alloc {
  7008. sa_sched_groups = 0,
  7009. sa_rootdomain,
  7010. sa_tmpmask,
  7011. sa_send_covered,
  7012. sa_this_core_map,
  7013. sa_this_sibling_map,
  7014. sa_nodemask,
  7015. sa_sched_group_nodes,
  7016. #ifdef CONFIG_NUMA
  7017. sa_notcovered,
  7018. sa_covered,
  7019. sa_domainspan,
  7020. #endif
  7021. sa_none,
  7022. };
  7023. /*
  7024. * SMT sched-domains:
  7025. */
  7026. #ifdef CONFIG_SCHED_SMT
  7027. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7028. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7029. static int
  7030. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7031. struct sched_group **sg, struct cpumask *unused)
  7032. {
  7033. if (sg)
  7034. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7035. return cpu;
  7036. }
  7037. #endif /* CONFIG_SCHED_SMT */
  7038. /*
  7039. * multi-core sched-domains:
  7040. */
  7041. #ifdef CONFIG_SCHED_MC
  7042. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7043. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7044. #endif /* CONFIG_SCHED_MC */
  7045. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7046. static int
  7047. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7048. struct sched_group **sg, struct cpumask *mask)
  7049. {
  7050. int group;
  7051. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7052. group = cpumask_first(mask);
  7053. if (sg)
  7054. *sg = &per_cpu(sched_group_core, group).sg;
  7055. return group;
  7056. }
  7057. #elif defined(CONFIG_SCHED_MC)
  7058. static int
  7059. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7060. struct sched_group **sg, struct cpumask *unused)
  7061. {
  7062. if (sg)
  7063. *sg = &per_cpu(sched_group_core, cpu).sg;
  7064. return cpu;
  7065. }
  7066. #endif
  7067. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7068. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7069. static int
  7070. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7071. struct sched_group **sg, struct cpumask *mask)
  7072. {
  7073. int group;
  7074. #ifdef CONFIG_SCHED_MC
  7075. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7076. group = cpumask_first(mask);
  7077. #elif defined(CONFIG_SCHED_SMT)
  7078. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7079. group = cpumask_first(mask);
  7080. #else
  7081. group = cpu;
  7082. #endif
  7083. if (sg)
  7084. *sg = &per_cpu(sched_group_phys, group).sg;
  7085. return group;
  7086. }
  7087. #ifdef CONFIG_NUMA
  7088. /*
  7089. * The init_sched_build_groups can't handle what we want to do with node
  7090. * groups, so roll our own. Now each node has its own list of groups which
  7091. * gets dynamically allocated.
  7092. */
  7093. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7094. static struct sched_group ***sched_group_nodes_bycpu;
  7095. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7096. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7097. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7098. struct sched_group **sg,
  7099. struct cpumask *nodemask)
  7100. {
  7101. int group;
  7102. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7103. group = cpumask_first(nodemask);
  7104. if (sg)
  7105. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7106. return group;
  7107. }
  7108. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7109. {
  7110. struct sched_group *sg = group_head;
  7111. int j;
  7112. if (!sg)
  7113. return;
  7114. do {
  7115. for_each_cpu(j, sched_group_cpus(sg)) {
  7116. struct sched_domain *sd;
  7117. sd = &per_cpu(phys_domains, j).sd;
  7118. if (j != group_first_cpu(sd->groups)) {
  7119. /*
  7120. * Only add "power" once for each
  7121. * physical package.
  7122. */
  7123. continue;
  7124. }
  7125. sg->cpu_power += sd->groups->cpu_power;
  7126. }
  7127. sg = sg->next;
  7128. } while (sg != group_head);
  7129. }
  7130. static int build_numa_sched_groups(struct s_data *d,
  7131. const struct cpumask *cpu_map, int num)
  7132. {
  7133. struct sched_domain *sd;
  7134. struct sched_group *sg, *prev;
  7135. int n, j;
  7136. cpumask_clear(d->covered);
  7137. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7138. if (cpumask_empty(d->nodemask)) {
  7139. d->sched_group_nodes[num] = NULL;
  7140. goto out;
  7141. }
  7142. sched_domain_node_span(num, d->domainspan);
  7143. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7144. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7145. GFP_KERNEL, num);
  7146. if (!sg) {
  7147. pr_warning("Can not alloc domain group for node %d\n", num);
  7148. return -ENOMEM;
  7149. }
  7150. d->sched_group_nodes[num] = sg;
  7151. for_each_cpu(j, d->nodemask) {
  7152. sd = &per_cpu(node_domains, j).sd;
  7153. sd->groups = sg;
  7154. }
  7155. sg->cpu_power = 0;
  7156. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7157. sg->next = sg;
  7158. cpumask_or(d->covered, d->covered, d->nodemask);
  7159. prev = sg;
  7160. for (j = 0; j < nr_node_ids; j++) {
  7161. n = (num + j) % nr_node_ids;
  7162. cpumask_complement(d->notcovered, d->covered);
  7163. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7164. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7165. if (cpumask_empty(d->tmpmask))
  7166. break;
  7167. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7168. if (cpumask_empty(d->tmpmask))
  7169. continue;
  7170. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7171. GFP_KERNEL, num);
  7172. if (!sg) {
  7173. pr_warning("Can not alloc domain group for node %d\n",
  7174. j);
  7175. return -ENOMEM;
  7176. }
  7177. sg->cpu_power = 0;
  7178. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7179. sg->next = prev->next;
  7180. cpumask_or(d->covered, d->covered, d->tmpmask);
  7181. prev->next = sg;
  7182. prev = sg;
  7183. }
  7184. out:
  7185. return 0;
  7186. }
  7187. #endif /* CONFIG_NUMA */
  7188. #ifdef CONFIG_NUMA
  7189. /* Free memory allocated for various sched_group structures */
  7190. static void free_sched_groups(const struct cpumask *cpu_map,
  7191. struct cpumask *nodemask)
  7192. {
  7193. int cpu, i;
  7194. for_each_cpu(cpu, cpu_map) {
  7195. struct sched_group **sched_group_nodes
  7196. = sched_group_nodes_bycpu[cpu];
  7197. if (!sched_group_nodes)
  7198. continue;
  7199. for (i = 0; i < nr_node_ids; i++) {
  7200. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7201. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7202. if (cpumask_empty(nodemask))
  7203. continue;
  7204. if (sg == NULL)
  7205. continue;
  7206. sg = sg->next;
  7207. next_sg:
  7208. oldsg = sg;
  7209. sg = sg->next;
  7210. kfree(oldsg);
  7211. if (oldsg != sched_group_nodes[i])
  7212. goto next_sg;
  7213. }
  7214. kfree(sched_group_nodes);
  7215. sched_group_nodes_bycpu[cpu] = NULL;
  7216. }
  7217. }
  7218. #else /* !CONFIG_NUMA */
  7219. static void free_sched_groups(const struct cpumask *cpu_map,
  7220. struct cpumask *nodemask)
  7221. {
  7222. }
  7223. #endif /* CONFIG_NUMA */
  7224. /*
  7225. * Initialize sched groups cpu_power.
  7226. *
  7227. * cpu_power indicates the capacity of sched group, which is used while
  7228. * distributing the load between different sched groups in a sched domain.
  7229. * Typically cpu_power for all the groups in a sched domain will be same unless
  7230. * there are asymmetries in the topology. If there are asymmetries, group
  7231. * having more cpu_power will pickup more load compared to the group having
  7232. * less cpu_power.
  7233. */
  7234. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7235. {
  7236. struct sched_domain *child;
  7237. struct sched_group *group;
  7238. long power;
  7239. int weight;
  7240. WARN_ON(!sd || !sd->groups);
  7241. if (cpu != group_first_cpu(sd->groups))
  7242. return;
  7243. child = sd->child;
  7244. sd->groups->cpu_power = 0;
  7245. if (!child) {
  7246. power = SCHED_LOAD_SCALE;
  7247. weight = cpumask_weight(sched_domain_span(sd));
  7248. /*
  7249. * SMT siblings share the power of a single core.
  7250. * Usually multiple threads get a better yield out of
  7251. * that one core than a single thread would have,
  7252. * reflect that in sd->smt_gain.
  7253. */
  7254. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7255. power *= sd->smt_gain;
  7256. power /= weight;
  7257. power >>= SCHED_LOAD_SHIFT;
  7258. }
  7259. sd->groups->cpu_power += power;
  7260. return;
  7261. }
  7262. /*
  7263. * Add cpu_power of each child group to this groups cpu_power.
  7264. */
  7265. group = child->groups;
  7266. do {
  7267. sd->groups->cpu_power += group->cpu_power;
  7268. group = group->next;
  7269. } while (group != child->groups);
  7270. }
  7271. /*
  7272. * Initializers for schedule domains
  7273. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7274. */
  7275. #ifdef CONFIG_SCHED_DEBUG
  7276. # define SD_INIT_NAME(sd, type) sd->name = #type
  7277. #else
  7278. # define SD_INIT_NAME(sd, type) do { } while (0)
  7279. #endif
  7280. #define SD_INIT(sd, type) sd_init_##type(sd)
  7281. #define SD_INIT_FUNC(type) \
  7282. static noinline void sd_init_##type(struct sched_domain *sd) \
  7283. { \
  7284. memset(sd, 0, sizeof(*sd)); \
  7285. *sd = SD_##type##_INIT; \
  7286. sd->level = SD_LV_##type; \
  7287. SD_INIT_NAME(sd, type); \
  7288. }
  7289. SD_INIT_FUNC(CPU)
  7290. #ifdef CONFIG_NUMA
  7291. SD_INIT_FUNC(ALLNODES)
  7292. SD_INIT_FUNC(NODE)
  7293. #endif
  7294. #ifdef CONFIG_SCHED_SMT
  7295. SD_INIT_FUNC(SIBLING)
  7296. #endif
  7297. #ifdef CONFIG_SCHED_MC
  7298. SD_INIT_FUNC(MC)
  7299. #endif
  7300. static int default_relax_domain_level = -1;
  7301. static int __init setup_relax_domain_level(char *str)
  7302. {
  7303. unsigned long val;
  7304. val = simple_strtoul(str, NULL, 0);
  7305. if (val < SD_LV_MAX)
  7306. default_relax_domain_level = val;
  7307. return 1;
  7308. }
  7309. __setup("relax_domain_level=", setup_relax_domain_level);
  7310. static void set_domain_attribute(struct sched_domain *sd,
  7311. struct sched_domain_attr *attr)
  7312. {
  7313. int request;
  7314. if (!attr || attr->relax_domain_level < 0) {
  7315. if (default_relax_domain_level < 0)
  7316. return;
  7317. else
  7318. request = default_relax_domain_level;
  7319. } else
  7320. request = attr->relax_domain_level;
  7321. if (request < sd->level) {
  7322. /* turn off idle balance on this domain */
  7323. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7324. } else {
  7325. /* turn on idle balance on this domain */
  7326. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7327. }
  7328. }
  7329. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7330. const struct cpumask *cpu_map)
  7331. {
  7332. switch (what) {
  7333. case sa_sched_groups:
  7334. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7335. d->sched_group_nodes = NULL;
  7336. case sa_rootdomain:
  7337. free_rootdomain(d->rd); /* fall through */
  7338. case sa_tmpmask:
  7339. free_cpumask_var(d->tmpmask); /* fall through */
  7340. case sa_send_covered:
  7341. free_cpumask_var(d->send_covered); /* fall through */
  7342. case sa_this_core_map:
  7343. free_cpumask_var(d->this_core_map); /* fall through */
  7344. case sa_this_sibling_map:
  7345. free_cpumask_var(d->this_sibling_map); /* fall through */
  7346. case sa_nodemask:
  7347. free_cpumask_var(d->nodemask); /* fall through */
  7348. case sa_sched_group_nodes:
  7349. #ifdef CONFIG_NUMA
  7350. kfree(d->sched_group_nodes); /* fall through */
  7351. case sa_notcovered:
  7352. free_cpumask_var(d->notcovered); /* fall through */
  7353. case sa_covered:
  7354. free_cpumask_var(d->covered); /* fall through */
  7355. case sa_domainspan:
  7356. free_cpumask_var(d->domainspan); /* fall through */
  7357. #endif
  7358. case sa_none:
  7359. break;
  7360. }
  7361. }
  7362. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7363. const struct cpumask *cpu_map)
  7364. {
  7365. #ifdef CONFIG_NUMA
  7366. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7367. return sa_none;
  7368. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7369. return sa_domainspan;
  7370. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7371. return sa_covered;
  7372. /* Allocate the per-node list of sched groups */
  7373. d->sched_group_nodes = kcalloc(nr_node_ids,
  7374. sizeof(struct sched_group *), GFP_KERNEL);
  7375. if (!d->sched_group_nodes) {
  7376. pr_warning("Can not alloc sched group node list\n");
  7377. return sa_notcovered;
  7378. }
  7379. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7380. #endif
  7381. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7382. return sa_sched_group_nodes;
  7383. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7384. return sa_nodemask;
  7385. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7386. return sa_this_sibling_map;
  7387. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7388. return sa_this_core_map;
  7389. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7390. return sa_send_covered;
  7391. d->rd = alloc_rootdomain();
  7392. if (!d->rd) {
  7393. pr_warning("Cannot alloc root domain\n");
  7394. return sa_tmpmask;
  7395. }
  7396. return sa_rootdomain;
  7397. }
  7398. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7399. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7400. {
  7401. struct sched_domain *sd = NULL;
  7402. #ifdef CONFIG_NUMA
  7403. struct sched_domain *parent;
  7404. d->sd_allnodes = 0;
  7405. if (cpumask_weight(cpu_map) >
  7406. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7407. sd = &per_cpu(allnodes_domains, i).sd;
  7408. SD_INIT(sd, ALLNODES);
  7409. set_domain_attribute(sd, attr);
  7410. cpumask_copy(sched_domain_span(sd), cpu_map);
  7411. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7412. d->sd_allnodes = 1;
  7413. }
  7414. parent = sd;
  7415. sd = &per_cpu(node_domains, i).sd;
  7416. SD_INIT(sd, NODE);
  7417. set_domain_attribute(sd, attr);
  7418. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7419. sd->parent = parent;
  7420. if (parent)
  7421. parent->child = sd;
  7422. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7423. #endif
  7424. return sd;
  7425. }
  7426. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7427. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7428. struct sched_domain *parent, int i)
  7429. {
  7430. struct sched_domain *sd;
  7431. sd = &per_cpu(phys_domains, i).sd;
  7432. SD_INIT(sd, CPU);
  7433. set_domain_attribute(sd, attr);
  7434. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7435. sd->parent = parent;
  7436. if (parent)
  7437. parent->child = sd;
  7438. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7439. return sd;
  7440. }
  7441. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7442. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7443. struct sched_domain *parent, int i)
  7444. {
  7445. struct sched_domain *sd = parent;
  7446. #ifdef CONFIG_SCHED_MC
  7447. sd = &per_cpu(core_domains, i).sd;
  7448. SD_INIT(sd, MC);
  7449. set_domain_attribute(sd, attr);
  7450. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7451. sd->parent = parent;
  7452. parent->child = sd;
  7453. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7454. #endif
  7455. return sd;
  7456. }
  7457. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7458. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7459. struct sched_domain *parent, int i)
  7460. {
  7461. struct sched_domain *sd = parent;
  7462. #ifdef CONFIG_SCHED_SMT
  7463. sd = &per_cpu(cpu_domains, i).sd;
  7464. SD_INIT(sd, SIBLING);
  7465. set_domain_attribute(sd, attr);
  7466. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7467. sd->parent = parent;
  7468. parent->child = sd;
  7469. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7470. #endif
  7471. return sd;
  7472. }
  7473. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7474. const struct cpumask *cpu_map, int cpu)
  7475. {
  7476. switch (l) {
  7477. #ifdef CONFIG_SCHED_SMT
  7478. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7479. cpumask_and(d->this_sibling_map, cpu_map,
  7480. topology_thread_cpumask(cpu));
  7481. if (cpu == cpumask_first(d->this_sibling_map))
  7482. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7483. &cpu_to_cpu_group,
  7484. d->send_covered, d->tmpmask);
  7485. break;
  7486. #endif
  7487. #ifdef CONFIG_SCHED_MC
  7488. case SD_LV_MC: /* set up multi-core groups */
  7489. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7490. if (cpu == cpumask_first(d->this_core_map))
  7491. init_sched_build_groups(d->this_core_map, cpu_map,
  7492. &cpu_to_core_group,
  7493. d->send_covered, d->tmpmask);
  7494. break;
  7495. #endif
  7496. case SD_LV_CPU: /* set up physical groups */
  7497. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7498. if (!cpumask_empty(d->nodemask))
  7499. init_sched_build_groups(d->nodemask, cpu_map,
  7500. &cpu_to_phys_group,
  7501. d->send_covered, d->tmpmask);
  7502. break;
  7503. #ifdef CONFIG_NUMA
  7504. case SD_LV_ALLNODES:
  7505. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7506. d->send_covered, d->tmpmask);
  7507. break;
  7508. #endif
  7509. default:
  7510. break;
  7511. }
  7512. }
  7513. /*
  7514. * Build sched domains for a given set of cpus and attach the sched domains
  7515. * to the individual cpus
  7516. */
  7517. static int __build_sched_domains(const struct cpumask *cpu_map,
  7518. struct sched_domain_attr *attr)
  7519. {
  7520. enum s_alloc alloc_state = sa_none;
  7521. struct s_data d;
  7522. struct sched_domain *sd;
  7523. int i;
  7524. #ifdef CONFIG_NUMA
  7525. d.sd_allnodes = 0;
  7526. #endif
  7527. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7528. if (alloc_state != sa_rootdomain)
  7529. goto error;
  7530. alloc_state = sa_sched_groups;
  7531. /*
  7532. * Set up domains for cpus specified by the cpu_map.
  7533. */
  7534. for_each_cpu(i, cpu_map) {
  7535. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7536. cpu_map);
  7537. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7538. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7539. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7540. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7541. }
  7542. for_each_cpu(i, cpu_map) {
  7543. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7544. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7545. }
  7546. /* Set up physical groups */
  7547. for (i = 0; i < nr_node_ids; i++)
  7548. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7549. #ifdef CONFIG_NUMA
  7550. /* Set up node groups */
  7551. if (d.sd_allnodes)
  7552. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7553. for (i = 0; i < nr_node_ids; i++)
  7554. if (build_numa_sched_groups(&d, cpu_map, i))
  7555. goto error;
  7556. #endif
  7557. /* Calculate CPU power for physical packages and nodes */
  7558. #ifdef CONFIG_SCHED_SMT
  7559. for_each_cpu(i, cpu_map) {
  7560. sd = &per_cpu(cpu_domains, i).sd;
  7561. init_sched_groups_power(i, sd);
  7562. }
  7563. #endif
  7564. #ifdef CONFIG_SCHED_MC
  7565. for_each_cpu(i, cpu_map) {
  7566. sd = &per_cpu(core_domains, i).sd;
  7567. init_sched_groups_power(i, sd);
  7568. }
  7569. #endif
  7570. for_each_cpu(i, cpu_map) {
  7571. sd = &per_cpu(phys_domains, i).sd;
  7572. init_sched_groups_power(i, sd);
  7573. }
  7574. #ifdef CONFIG_NUMA
  7575. for (i = 0; i < nr_node_ids; i++)
  7576. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7577. if (d.sd_allnodes) {
  7578. struct sched_group *sg;
  7579. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7580. d.tmpmask);
  7581. init_numa_sched_groups_power(sg);
  7582. }
  7583. #endif
  7584. /* Attach the domains */
  7585. for_each_cpu(i, cpu_map) {
  7586. #ifdef CONFIG_SCHED_SMT
  7587. sd = &per_cpu(cpu_domains, i).sd;
  7588. #elif defined(CONFIG_SCHED_MC)
  7589. sd = &per_cpu(core_domains, i).sd;
  7590. #else
  7591. sd = &per_cpu(phys_domains, i).sd;
  7592. #endif
  7593. cpu_attach_domain(sd, d.rd, i);
  7594. }
  7595. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7596. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7597. return 0;
  7598. error:
  7599. __free_domain_allocs(&d, alloc_state, cpu_map);
  7600. return -ENOMEM;
  7601. }
  7602. static int build_sched_domains(const struct cpumask *cpu_map)
  7603. {
  7604. return __build_sched_domains(cpu_map, NULL);
  7605. }
  7606. static cpumask_var_t *doms_cur; /* current sched domains */
  7607. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7608. static struct sched_domain_attr *dattr_cur;
  7609. /* attribues of custom domains in 'doms_cur' */
  7610. /*
  7611. * Special case: If a kmalloc of a doms_cur partition (array of
  7612. * cpumask) fails, then fallback to a single sched domain,
  7613. * as determined by the single cpumask fallback_doms.
  7614. */
  7615. static cpumask_var_t fallback_doms;
  7616. /*
  7617. * arch_update_cpu_topology lets virtualized architectures update the
  7618. * cpu core maps. It is supposed to return 1 if the topology changed
  7619. * or 0 if it stayed the same.
  7620. */
  7621. int __attribute__((weak)) arch_update_cpu_topology(void)
  7622. {
  7623. return 0;
  7624. }
  7625. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7626. {
  7627. int i;
  7628. cpumask_var_t *doms;
  7629. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7630. if (!doms)
  7631. return NULL;
  7632. for (i = 0; i < ndoms; i++) {
  7633. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7634. free_sched_domains(doms, i);
  7635. return NULL;
  7636. }
  7637. }
  7638. return doms;
  7639. }
  7640. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7641. {
  7642. unsigned int i;
  7643. for (i = 0; i < ndoms; i++)
  7644. free_cpumask_var(doms[i]);
  7645. kfree(doms);
  7646. }
  7647. /*
  7648. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7649. * For now this just excludes isolated cpus, but could be used to
  7650. * exclude other special cases in the future.
  7651. */
  7652. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7653. {
  7654. int err;
  7655. arch_update_cpu_topology();
  7656. ndoms_cur = 1;
  7657. doms_cur = alloc_sched_domains(ndoms_cur);
  7658. if (!doms_cur)
  7659. doms_cur = &fallback_doms;
  7660. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7661. dattr_cur = NULL;
  7662. err = build_sched_domains(doms_cur[0]);
  7663. register_sched_domain_sysctl();
  7664. return err;
  7665. }
  7666. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7667. struct cpumask *tmpmask)
  7668. {
  7669. free_sched_groups(cpu_map, tmpmask);
  7670. }
  7671. /*
  7672. * Detach sched domains from a group of cpus specified in cpu_map
  7673. * These cpus will now be attached to the NULL domain
  7674. */
  7675. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7676. {
  7677. /* Save because hotplug lock held. */
  7678. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7679. int i;
  7680. for_each_cpu(i, cpu_map)
  7681. cpu_attach_domain(NULL, &def_root_domain, i);
  7682. synchronize_sched();
  7683. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7684. }
  7685. /* handle null as "default" */
  7686. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7687. struct sched_domain_attr *new, int idx_new)
  7688. {
  7689. struct sched_domain_attr tmp;
  7690. /* fast path */
  7691. if (!new && !cur)
  7692. return 1;
  7693. tmp = SD_ATTR_INIT;
  7694. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7695. new ? (new + idx_new) : &tmp,
  7696. sizeof(struct sched_domain_attr));
  7697. }
  7698. /*
  7699. * Partition sched domains as specified by the 'ndoms_new'
  7700. * cpumasks in the array doms_new[] of cpumasks. This compares
  7701. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7702. * It destroys each deleted domain and builds each new domain.
  7703. *
  7704. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7705. * The masks don't intersect (don't overlap.) We should setup one
  7706. * sched domain for each mask. CPUs not in any of the cpumasks will
  7707. * not be load balanced. If the same cpumask appears both in the
  7708. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7709. * it as it is.
  7710. *
  7711. * The passed in 'doms_new' should be allocated using
  7712. * alloc_sched_domains. This routine takes ownership of it and will
  7713. * free_sched_domains it when done with it. If the caller failed the
  7714. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7715. * and partition_sched_domains() will fallback to the single partition
  7716. * 'fallback_doms', it also forces the domains to be rebuilt.
  7717. *
  7718. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7719. * ndoms_new == 0 is a special case for destroying existing domains,
  7720. * and it will not create the default domain.
  7721. *
  7722. * Call with hotplug lock held
  7723. */
  7724. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7725. struct sched_domain_attr *dattr_new)
  7726. {
  7727. int i, j, n;
  7728. int new_topology;
  7729. mutex_lock(&sched_domains_mutex);
  7730. /* always unregister in case we don't destroy any domains */
  7731. unregister_sched_domain_sysctl();
  7732. /* Let architecture update cpu core mappings. */
  7733. new_topology = arch_update_cpu_topology();
  7734. n = doms_new ? ndoms_new : 0;
  7735. /* Destroy deleted domains */
  7736. for (i = 0; i < ndoms_cur; i++) {
  7737. for (j = 0; j < n && !new_topology; j++) {
  7738. if (cpumask_equal(doms_cur[i], doms_new[j])
  7739. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7740. goto match1;
  7741. }
  7742. /* no match - a current sched domain not in new doms_new[] */
  7743. detach_destroy_domains(doms_cur[i]);
  7744. match1:
  7745. ;
  7746. }
  7747. if (doms_new == NULL) {
  7748. ndoms_cur = 0;
  7749. doms_new = &fallback_doms;
  7750. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7751. WARN_ON_ONCE(dattr_new);
  7752. }
  7753. /* Build new domains */
  7754. for (i = 0; i < ndoms_new; i++) {
  7755. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7756. if (cpumask_equal(doms_new[i], doms_cur[j])
  7757. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7758. goto match2;
  7759. }
  7760. /* no match - add a new doms_new */
  7761. __build_sched_domains(doms_new[i],
  7762. dattr_new ? dattr_new + i : NULL);
  7763. match2:
  7764. ;
  7765. }
  7766. /* Remember the new sched domains */
  7767. if (doms_cur != &fallback_doms)
  7768. free_sched_domains(doms_cur, ndoms_cur);
  7769. kfree(dattr_cur); /* kfree(NULL) is safe */
  7770. doms_cur = doms_new;
  7771. dattr_cur = dattr_new;
  7772. ndoms_cur = ndoms_new;
  7773. register_sched_domain_sysctl();
  7774. mutex_unlock(&sched_domains_mutex);
  7775. }
  7776. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7777. static void arch_reinit_sched_domains(void)
  7778. {
  7779. get_online_cpus();
  7780. /* Destroy domains first to force the rebuild */
  7781. partition_sched_domains(0, NULL, NULL);
  7782. rebuild_sched_domains();
  7783. put_online_cpus();
  7784. }
  7785. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7786. {
  7787. unsigned int level = 0;
  7788. if (sscanf(buf, "%u", &level) != 1)
  7789. return -EINVAL;
  7790. /*
  7791. * level is always be positive so don't check for
  7792. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7793. * What happens on 0 or 1 byte write,
  7794. * need to check for count as well?
  7795. */
  7796. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7797. return -EINVAL;
  7798. if (smt)
  7799. sched_smt_power_savings = level;
  7800. else
  7801. sched_mc_power_savings = level;
  7802. arch_reinit_sched_domains();
  7803. return count;
  7804. }
  7805. #ifdef CONFIG_SCHED_MC
  7806. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7807. char *page)
  7808. {
  7809. return sprintf(page, "%u\n", sched_mc_power_savings);
  7810. }
  7811. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7812. const char *buf, size_t count)
  7813. {
  7814. return sched_power_savings_store(buf, count, 0);
  7815. }
  7816. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7817. sched_mc_power_savings_show,
  7818. sched_mc_power_savings_store);
  7819. #endif
  7820. #ifdef CONFIG_SCHED_SMT
  7821. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7822. char *page)
  7823. {
  7824. return sprintf(page, "%u\n", sched_smt_power_savings);
  7825. }
  7826. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7827. const char *buf, size_t count)
  7828. {
  7829. return sched_power_savings_store(buf, count, 1);
  7830. }
  7831. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7832. sched_smt_power_savings_show,
  7833. sched_smt_power_savings_store);
  7834. #endif
  7835. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7836. {
  7837. int err = 0;
  7838. #ifdef CONFIG_SCHED_SMT
  7839. if (smt_capable())
  7840. err = sysfs_create_file(&cls->kset.kobj,
  7841. &attr_sched_smt_power_savings.attr);
  7842. #endif
  7843. #ifdef CONFIG_SCHED_MC
  7844. if (!err && mc_capable())
  7845. err = sysfs_create_file(&cls->kset.kobj,
  7846. &attr_sched_mc_power_savings.attr);
  7847. #endif
  7848. return err;
  7849. }
  7850. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7851. #ifndef CONFIG_CPUSETS
  7852. /*
  7853. * Add online and remove offline CPUs from the scheduler domains.
  7854. * When cpusets are enabled they take over this function.
  7855. */
  7856. static int update_sched_domains(struct notifier_block *nfb,
  7857. unsigned long action, void *hcpu)
  7858. {
  7859. switch (action) {
  7860. case CPU_ONLINE:
  7861. case CPU_ONLINE_FROZEN:
  7862. case CPU_DOWN_PREPARE:
  7863. case CPU_DOWN_PREPARE_FROZEN:
  7864. case CPU_DOWN_FAILED:
  7865. case CPU_DOWN_FAILED_FROZEN:
  7866. partition_sched_domains(1, NULL, NULL);
  7867. return NOTIFY_OK;
  7868. default:
  7869. return NOTIFY_DONE;
  7870. }
  7871. }
  7872. #endif
  7873. static int update_runtime(struct notifier_block *nfb,
  7874. unsigned long action, void *hcpu)
  7875. {
  7876. int cpu = (int)(long)hcpu;
  7877. switch (action) {
  7878. case CPU_DOWN_PREPARE:
  7879. case CPU_DOWN_PREPARE_FROZEN:
  7880. disable_runtime(cpu_rq(cpu));
  7881. return NOTIFY_OK;
  7882. case CPU_DOWN_FAILED:
  7883. case CPU_DOWN_FAILED_FROZEN:
  7884. case CPU_ONLINE:
  7885. case CPU_ONLINE_FROZEN:
  7886. enable_runtime(cpu_rq(cpu));
  7887. return NOTIFY_OK;
  7888. default:
  7889. return NOTIFY_DONE;
  7890. }
  7891. }
  7892. void __init sched_init_smp(void)
  7893. {
  7894. cpumask_var_t non_isolated_cpus;
  7895. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7896. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7897. #if defined(CONFIG_NUMA)
  7898. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7899. GFP_KERNEL);
  7900. BUG_ON(sched_group_nodes_bycpu == NULL);
  7901. #endif
  7902. get_online_cpus();
  7903. mutex_lock(&sched_domains_mutex);
  7904. arch_init_sched_domains(cpu_active_mask);
  7905. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7906. if (cpumask_empty(non_isolated_cpus))
  7907. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7908. mutex_unlock(&sched_domains_mutex);
  7909. put_online_cpus();
  7910. #ifndef CONFIG_CPUSETS
  7911. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7912. hotcpu_notifier(update_sched_domains, 0);
  7913. #endif
  7914. /* RT runtime code needs to handle some hotplug events */
  7915. hotcpu_notifier(update_runtime, 0);
  7916. init_hrtick();
  7917. /* Move init over to a non-isolated CPU */
  7918. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7919. BUG();
  7920. sched_init_granularity();
  7921. free_cpumask_var(non_isolated_cpus);
  7922. init_sched_rt_class();
  7923. }
  7924. #else
  7925. void __init sched_init_smp(void)
  7926. {
  7927. sched_init_granularity();
  7928. }
  7929. #endif /* CONFIG_SMP */
  7930. const_debug unsigned int sysctl_timer_migration = 1;
  7931. int in_sched_functions(unsigned long addr)
  7932. {
  7933. return in_lock_functions(addr) ||
  7934. (addr >= (unsigned long)__sched_text_start
  7935. && addr < (unsigned long)__sched_text_end);
  7936. }
  7937. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7938. {
  7939. cfs_rq->tasks_timeline = RB_ROOT;
  7940. INIT_LIST_HEAD(&cfs_rq->tasks);
  7941. #ifdef CONFIG_FAIR_GROUP_SCHED
  7942. cfs_rq->rq = rq;
  7943. #endif
  7944. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7945. }
  7946. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7947. {
  7948. struct rt_prio_array *array;
  7949. int i;
  7950. array = &rt_rq->active;
  7951. for (i = 0; i < MAX_RT_PRIO; i++) {
  7952. INIT_LIST_HEAD(array->queue + i);
  7953. __clear_bit(i, array->bitmap);
  7954. }
  7955. /* delimiter for bitsearch: */
  7956. __set_bit(MAX_RT_PRIO, array->bitmap);
  7957. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7958. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7959. #ifdef CONFIG_SMP
  7960. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7961. #endif
  7962. #endif
  7963. #ifdef CONFIG_SMP
  7964. rt_rq->rt_nr_migratory = 0;
  7965. rt_rq->overloaded = 0;
  7966. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7967. #endif
  7968. rt_rq->rt_time = 0;
  7969. rt_rq->rt_throttled = 0;
  7970. rt_rq->rt_runtime = 0;
  7971. spin_lock_init(&rt_rq->rt_runtime_lock);
  7972. #ifdef CONFIG_RT_GROUP_SCHED
  7973. rt_rq->rt_nr_boosted = 0;
  7974. rt_rq->rq = rq;
  7975. #endif
  7976. }
  7977. #ifdef CONFIG_FAIR_GROUP_SCHED
  7978. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7979. struct sched_entity *se, int cpu, int add,
  7980. struct sched_entity *parent)
  7981. {
  7982. struct rq *rq = cpu_rq(cpu);
  7983. tg->cfs_rq[cpu] = cfs_rq;
  7984. init_cfs_rq(cfs_rq, rq);
  7985. cfs_rq->tg = tg;
  7986. if (add)
  7987. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7988. tg->se[cpu] = se;
  7989. /* se could be NULL for init_task_group */
  7990. if (!se)
  7991. return;
  7992. if (!parent)
  7993. se->cfs_rq = &rq->cfs;
  7994. else
  7995. se->cfs_rq = parent->my_q;
  7996. se->my_q = cfs_rq;
  7997. se->load.weight = tg->shares;
  7998. se->load.inv_weight = 0;
  7999. se->parent = parent;
  8000. }
  8001. #endif
  8002. #ifdef CONFIG_RT_GROUP_SCHED
  8003. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8004. struct sched_rt_entity *rt_se, int cpu, int add,
  8005. struct sched_rt_entity *parent)
  8006. {
  8007. struct rq *rq = cpu_rq(cpu);
  8008. tg->rt_rq[cpu] = rt_rq;
  8009. init_rt_rq(rt_rq, rq);
  8010. rt_rq->tg = tg;
  8011. rt_rq->rt_se = rt_se;
  8012. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8013. if (add)
  8014. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8015. tg->rt_se[cpu] = rt_se;
  8016. if (!rt_se)
  8017. return;
  8018. if (!parent)
  8019. rt_se->rt_rq = &rq->rt;
  8020. else
  8021. rt_se->rt_rq = parent->my_q;
  8022. rt_se->my_q = rt_rq;
  8023. rt_se->parent = parent;
  8024. INIT_LIST_HEAD(&rt_se->run_list);
  8025. }
  8026. #endif
  8027. void __init sched_init(void)
  8028. {
  8029. int i, j;
  8030. unsigned long alloc_size = 0, ptr;
  8031. #ifdef CONFIG_FAIR_GROUP_SCHED
  8032. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8033. #endif
  8034. #ifdef CONFIG_RT_GROUP_SCHED
  8035. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8036. #endif
  8037. #ifdef CONFIG_USER_SCHED
  8038. alloc_size *= 2;
  8039. #endif
  8040. #ifdef CONFIG_CPUMASK_OFFSTACK
  8041. alloc_size += num_possible_cpus() * cpumask_size();
  8042. #endif
  8043. if (alloc_size) {
  8044. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8045. #ifdef CONFIG_FAIR_GROUP_SCHED
  8046. init_task_group.se = (struct sched_entity **)ptr;
  8047. ptr += nr_cpu_ids * sizeof(void **);
  8048. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8049. ptr += nr_cpu_ids * sizeof(void **);
  8050. #ifdef CONFIG_USER_SCHED
  8051. root_task_group.se = (struct sched_entity **)ptr;
  8052. ptr += nr_cpu_ids * sizeof(void **);
  8053. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8054. ptr += nr_cpu_ids * sizeof(void **);
  8055. #endif /* CONFIG_USER_SCHED */
  8056. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8057. #ifdef CONFIG_RT_GROUP_SCHED
  8058. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8059. ptr += nr_cpu_ids * sizeof(void **);
  8060. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8061. ptr += nr_cpu_ids * sizeof(void **);
  8062. #ifdef CONFIG_USER_SCHED
  8063. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8064. ptr += nr_cpu_ids * sizeof(void **);
  8065. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8066. ptr += nr_cpu_ids * sizeof(void **);
  8067. #endif /* CONFIG_USER_SCHED */
  8068. #endif /* CONFIG_RT_GROUP_SCHED */
  8069. #ifdef CONFIG_CPUMASK_OFFSTACK
  8070. for_each_possible_cpu(i) {
  8071. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8072. ptr += cpumask_size();
  8073. }
  8074. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8075. }
  8076. #ifdef CONFIG_SMP
  8077. init_defrootdomain();
  8078. #endif
  8079. init_rt_bandwidth(&def_rt_bandwidth,
  8080. global_rt_period(), global_rt_runtime());
  8081. #ifdef CONFIG_RT_GROUP_SCHED
  8082. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8083. global_rt_period(), global_rt_runtime());
  8084. #ifdef CONFIG_USER_SCHED
  8085. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8086. global_rt_period(), RUNTIME_INF);
  8087. #endif /* CONFIG_USER_SCHED */
  8088. #endif /* CONFIG_RT_GROUP_SCHED */
  8089. #ifdef CONFIG_GROUP_SCHED
  8090. list_add(&init_task_group.list, &task_groups);
  8091. INIT_LIST_HEAD(&init_task_group.children);
  8092. #ifdef CONFIG_USER_SCHED
  8093. INIT_LIST_HEAD(&root_task_group.children);
  8094. init_task_group.parent = &root_task_group;
  8095. list_add(&init_task_group.siblings, &root_task_group.children);
  8096. #endif /* CONFIG_USER_SCHED */
  8097. #endif /* CONFIG_GROUP_SCHED */
  8098. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8099. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8100. __alignof__(unsigned long));
  8101. #endif
  8102. for_each_possible_cpu(i) {
  8103. struct rq *rq;
  8104. rq = cpu_rq(i);
  8105. spin_lock_init(&rq->lock);
  8106. rq->nr_running = 0;
  8107. rq->calc_load_active = 0;
  8108. rq->calc_load_update = jiffies + LOAD_FREQ;
  8109. init_cfs_rq(&rq->cfs, rq);
  8110. init_rt_rq(&rq->rt, rq);
  8111. #ifdef CONFIG_FAIR_GROUP_SCHED
  8112. init_task_group.shares = init_task_group_load;
  8113. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8114. #ifdef CONFIG_CGROUP_SCHED
  8115. /*
  8116. * How much cpu bandwidth does init_task_group get?
  8117. *
  8118. * In case of task-groups formed thr' the cgroup filesystem, it
  8119. * gets 100% of the cpu resources in the system. This overall
  8120. * system cpu resource is divided among the tasks of
  8121. * init_task_group and its child task-groups in a fair manner,
  8122. * based on each entity's (task or task-group's) weight
  8123. * (se->load.weight).
  8124. *
  8125. * In other words, if init_task_group has 10 tasks of weight
  8126. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8127. * then A0's share of the cpu resource is:
  8128. *
  8129. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8130. *
  8131. * We achieve this by letting init_task_group's tasks sit
  8132. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8133. */
  8134. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8135. #elif defined CONFIG_USER_SCHED
  8136. root_task_group.shares = NICE_0_LOAD;
  8137. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8138. /*
  8139. * In case of task-groups formed thr' the user id of tasks,
  8140. * init_task_group represents tasks belonging to root user.
  8141. * Hence it forms a sibling of all subsequent groups formed.
  8142. * In this case, init_task_group gets only a fraction of overall
  8143. * system cpu resource, based on the weight assigned to root
  8144. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8145. * by letting tasks of init_task_group sit in a separate cfs_rq
  8146. * (init_tg_cfs_rq) and having one entity represent this group of
  8147. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8148. */
  8149. init_tg_cfs_entry(&init_task_group,
  8150. &per_cpu(init_tg_cfs_rq, i),
  8151. &per_cpu(init_sched_entity, i), i, 1,
  8152. root_task_group.se[i]);
  8153. #endif
  8154. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8155. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8156. #ifdef CONFIG_RT_GROUP_SCHED
  8157. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8158. #ifdef CONFIG_CGROUP_SCHED
  8159. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8160. #elif defined CONFIG_USER_SCHED
  8161. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8162. init_tg_rt_entry(&init_task_group,
  8163. &per_cpu(init_rt_rq, i),
  8164. &per_cpu(init_sched_rt_entity, i), i, 1,
  8165. root_task_group.rt_se[i]);
  8166. #endif
  8167. #endif
  8168. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8169. rq->cpu_load[j] = 0;
  8170. #ifdef CONFIG_SMP
  8171. rq->sd = NULL;
  8172. rq->rd = NULL;
  8173. rq->post_schedule = 0;
  8174. rq->active_balance = 0;
  8175. rq->next_balance = jiffies;
  8176. rq->push_cpu = 0;
  8177. rq->cpu = i;
  8178. rq->online = 0;
  8179. rq->migration_thread = NULL;
  8180. rq->idle_stamp = 0;
  8181. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8182. INIT_LIST_HEAD(&rq->migration_queue);
  8183. rq_attach_root(rq, &def_root_domain);
  8184. #endif
  8185. init_rq_hrtick(rq);
  8186. atomic_set(&rq->nr_iowait, 0);
  8187. }
  8188. set_load_weight(&init_task);
  8189. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8190. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8191. #endif
  8192. #ifdef CONFIG_SMP
  8193. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8194. #endif
  8195. #ifdef CONFIG_RT_MUTEXES
  8196. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8197. #endif
  8198. /*
  8199. * The boot idle thread does lazy MMU switching as well:
  8200. */
  8201. atomic_inc(&init_mm.mm_count);
  8202. enter_lazy_tlb(&init_mm, current);
  8203. /*
  8204. * Make us the idle thread. Technically, schedule() should not be
  8205. * called from this thread, however somewhere below it might be,
  8206. * but because we are the idle thread, we just pick up running again
  8207. * when this runqueue becomes "idle".
  8208. */
  8209. init_idle(current, smp_processor_id());
  8210. calc_load_update = jiffies + LOAD_FREQ;
  8211. /*
  8212. * During early bootup we pretend to be a normal task:
  8213. */
  8214. current->sched_class = &fair_sched_class;
  8215. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8216. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8217. #ifdef CONFIG_SMP
  8218. #ifdef CONFIG_NO_HZ
  8219. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8220. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8221. #endif
  8222. /* May be allocated at isolcpus cmdline parse time */
  8223. if (cpu_isolated_map == NULL)
  8224. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8225. #endif /* SMP */
  8226. perf_event_init();
  8227. scheduler_running = 1;
  8228. }
  8229. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8230. static inline int preempt_count_equals(int preempt_offset)
  8231. {
  8232. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8233. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8234. }
  8235. void __might_sleep(char *file, int line, int preempt_offset)
  8236. {
  8237. #ifdef in_atomic
  8238. static unsigned long prev_jiffy; /* ratelimiting */
  8239. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8240. system_state != SYSTEM_RUNNING || oops_in_progress)
  8241. return;
  8242. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8243. return;
  8244. prev_jiffy = jiffies;
  8245. pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
  8246. file, line);
  8247. pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8248. in_atomic(), irqs_disabled(),
  8249. current->pid, current->comm);
  8250. debug_show_held_locks(current);
  8251. if (irqs_disabled())
  8252. print_irqtrace_events(current);
  8253. dump_stack();
  8254. #endif
  8255. }
  8256. EXPORT_SYMBOL(__might_sleep);
  8257. #endif
  8258. #ifdef CONFIG_MAGIC_SYSRQ
  8259. static void normalize_task(struct rq *rq, struct task_struct *p)
  8260. {
  8261. int on_rq;
  8262. update_rq_clock(rq);
  8263. on_rq = p->se.on_rq;
  8264. if (on_rq)
  8265. deactivate_task(rq, p, 0);
  8266. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8267. if (on_rq) {
  8268. activate_task(rq, p, 0);
  8269. resched_task(rq->curr);
  8270. }
  8271. }
  8272. void normalize_rt_tasks(void)
  8273. {
  8274. struct task_struct *g, *p;
  8275. unsigned long flags;
  8276. struct rq *rq;
  8277. read_lock_irqsave(&tasklist_lock, flags);
  8278. do_each_thread(g, p) {
  8279. /*
  8280. * Only normalize user tasks:
  8281. */
  8282. if (!p->mm)
  8283. continue;
  8284. p->se.exec_start = 0;
  8285. #ifdef CONFIG_SCHEDSTATS
  8286. p->se.wait_start = 0;
  8287. p->se.sleep_start = 0;
  8288. p->se.block_start = 0;
  8289. #endif
  8290. if (!rt_task(p)) {
  8291. /*
  8292. * Renice negative nice level userspace
  8293. * tasks back to 0:
  8294. */
  8295. if (TASK_NICE(p) < 0 && p->mm)
  8296. set_user_nice(p, 0);
  8297. continue;
  8298. }
  8299. spin_lock(&p->pi_lock);
  8300. rq = __task_rq_lock(p);
  8301. normalize_task(rq, p);
  8302. __task_rq_unlock(rq);
  8303. spin_unlock(&p->pi_lock);
  8304. } while_each_thread(g, p);
  8305. read_unlock_irqrestore(&tasklist_lock, flags);
  8306. }
  8307. #endif /* CONFIG_MAGIC_SYSRQ */
  8308. #ifdef CONFIG_IA64
  8309. /*
  8310. * These functions are only useful for the IA64 MCA handling.
  8311. *
  8312. * They can only be called when the whole system has been
  8313. * stopped - every CPU needs to be quiescent, and no scheduling
  8314. * activity can take place. Using them for anything else would
  8315. * be a serious bug, and as a result, they aren't even visible
  8316. * under any other configuration.
  8317. */
  8318. /**
  8319. * curr_task - return the current task for a given cpu.
  8320. * @cpu: the processor in question.
  8321. *
  8322. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8323. */
  8324. struct task_struct *curr_task(int cpu)
  8325. {
  8326. return cpu_curr(cpu);
  8327. }
  8328. /**
  8329. * set_curr_task - set the current task for a given cpu.
  8330. * @cpu: the processor in question.
  8331. * @p: the task pointer to set.
  8332. *
  8333. * Description: This function must only be used when non-maskable interrupts
  8334. * are serviced on a separate stack. It allows the architecture to switch the
  8335. * notion of the current task on a cpu in a non-blocking manner. This function
  8336. * must be called with all CPU's synchronized, and interrupts disabled, the
  8337. * and caller must save the original value of the current task (see
  8338. * curr_task() above) and restore that value before reenabling interrupts and
  8339. * re-starting the system.
  8340. *
  8341. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8342. */
  8343. void set_curr_task(int cpu, struct task_struct *p)
  8344. {
  8345. cpu_curr(cpu) = p;
  8346. }
  8347. #endif
  8348. #ifdef CONFIG_FAIR_GROUP_SCHED
  8349. static void free_fair_sched_group(struct task_group *tg)
  8350. {
  8351. int i;
  8352. for_each_possible_cpu(i) {
  8353. if (tg->cfs_rq)
  8354. kfree(tg->cfs_rq[i]);
  8355. if (tg->se)
  8356. kfree(tg->se[i]);
  8357. }
  8358. kfree(tg->cfs_rq);
  8359. kfree(tg->se);
  8360. }
  8361. static
  8362. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8363. {
  8364. struct cfs_rq *cfs_rq;
  8365. struct sched_entity *se;
  8366. struct rq *rq;
  8367. int i;
  8368. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8369. if (!tg->cfs_rq)
  8370. goto err;
  8371. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8372. if (!tg->se)
  8373. goto err;
  8374. tg->shares = NICE_0_LOAD;
  8375. for_each_possible_cpu(i) {
  8376. rq = cpu_rq(i);
  8377. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8378. GFP_KERNEL, cpu_to_node(i));
  8379. if (!cfs_rq)
  8380. goto err;
  8381. se = kzalloc_node(sizeof(struct sched_entity),
  8382. GFP_KERNEL, cpu_to_node(i));
  8383. if (!se)
  8384. goto err_free_rq;
  8385. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8386. }
  8387. return 1;
  8388. err_free_rq:
  8389. kfree(cfs_rq);
  8390. err:
  8391. return 0;
  8392. }
  8393. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8394. {
  8395. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8396. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8397. }
  8398. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8399. {
  8400. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8401. }
  8402. #else /* !CONFG_FAIR_GROUP_SCHED */
  8403. static inline void free_fair_sched_group(struct task_group *tg)
  8404. {
  8405. }
  8406. static inline
  8407. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8408. {
  8409. return 1;
  8410. }
  8411. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8412. {
  8413. }
  8414. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8415. {
  8416. }
  8417. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8418. #ifdef CONFIG_RT_GROUP_SCHED
  8419. static void free_rt_sched_group(struct task_group *tg)
  8420. {
  8421. int i;
  8422. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8423. for_each_possible_cpu(i) {
  8424. if (tg->rt_rq)
  8425. kfree(tg->rt_rq[i]);
  8426. if (tg->rt_se)
  8427. kfree(tg->rt_se[i]);
  8428. }
  8429. kfree(tg->rt_rq);
  8430. kfree(tg->rt_se);
  8431. }
  8432. static
  8433. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8434. {
  8435. struct rt_rq *rt_rq;
  8436. struct sched_rt_entity *rt_se;
  8437. struct rq *rq;
  8438. int i;
  8439. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8440. if (!tg->rt_rq)
  8441. goto err;
  8442. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8443. if (!tg->rt_se)
  8444. goto err;
  8445. init_rt_bandwidth(&tg->rt_bandwidth,
  8446. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8447. for_each_possible_cpu(i) {
  8448. rq = cpu_rq(i);
  8449. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8450. GFP_KERNEL, cpu_to_node(i));
  8451. if (!rt_rq)
  8452. goto err;
  8453. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8454. GFP_KERNEL, cpu_to_node(i));
  8455. if (!rt_se)
  8456. goto err_free_rq;
  8457. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8458. }
  8459. return 1;
  8460. err_free_rq:
  8461. kfree(rt_rq);
  8462. err:
  8463. return 0;
  8464. }
  8465. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8466. {
  8467. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8468. &cpu_rq(cpu)->leaf_rt_rq_list);
  8469. }
  8470. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8471. {
  8472. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8473. }
  8474. #else /* !CONFIG_RT_GROUP_SCHED */
  8475. static inline void free_rt_sched_group(struct task_group *tg)
  8476. {
  8477. }
  8478. static inline
  8479. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8480. {
  8481. return 1;
  8482. }
  8483. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8484. {
  8485. }
  8486. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8487. {
  8488. }
  8489. #endif /* CONFIG_RT_GROUP_SCHED */
  8490. #ifdef CONFIG_GROUP_SCHED
  8491. static void free_sched_group(struct task_group *tg)
  8492. {
  8493. free_fair_sched_group(tg);
  8494. free_rt_sched_group(tg);
  8495. kfree(tg);
  8496. }
  8497. /* allocate runqueue etc for a new task group */
  8498. struct task_group *sched_create_group(struct task_group *parent)
  8499. {
  8500. struct task_group *tg;
  8501. unsigned long flags;
  8502. int i;
  8503. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8504. if (!tg)
  8505. return ERR_PTR(-ENOMEM);
  8506. if (!alloc_fair_sched_group(tg, parent))
  8507. goto err;
  8508. if (!alloc_rt_sched_group(tg, parent))
  8509. goto err;
  8510. spin_lock_irqsave(&task_group_lock, flags);
  8511. for_each_possible_cpu(i) {
  8512. register_fair_sched_group(tg, i);
  8513. register_rt_sched_group(tg, i);
  8514. }
  8515. list_add_rcu(&tg->list, &task_groups);
  8516. WARN_ON(!parent); /* root should already exist */
  8517. tg->parent = parent;
  8518. INIT_LIST_HEAD(&tg->children);
  8519. list_add_rcu(&tg->siblings, &parent->children);
  8520. spin_unlock_irqrestore(&task_group_lock, flags);
  8521. return tg;
  8522. err:
  8523. free_sched_group(tg);
  8524. return ERR_PTR(-ENOMEM);
  8525. }
  8526. /* rcu callback to free various structures associated with a task group */
  8527. static void free_sched_group_rcu(struct rcu_head *rhp)
  8528. {
  8529. /* now it should be safe to free those cfs_rqs */
  8530. free_sched_group(container_of(rhp, struct task_group, rcu));
  8531. }
  8532. /* Destroy runqueue etc associated with a task group */
  8533. void sched_destroy_group(struct task_group *tg)
  8534. {
  8535. unsigned long flags;
  8536. int i;
  8537. spin_lock_irqsave(&task_group_lock, flags);
  8538. for_each_possible_cpu(i) {
  8539. unregister_fair_sched_group(tg, i);
  8540. unregister_rt_sched_group(tg, i);
  8541. }
  8542. list_del_rcu(&tg->list);
  8543. list_del_rcu(&tg->siblings);
  8544. spin_unlock_irqrestore(&task_group_lock, flags);
  8545. /* wait for possible concurrent references to cfs_rqs complete */
  8546. call_rcu(&tg->rcu, free_sched_group_rcu);
  8547. }
  8548. /* change task's runqueue when it moves between groups.
  8549. * The caller of this function should have put the task in its new group
  8550. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8551. * reflect its new group.
  8552. */
  8553. void sched_move_task(struct task_struct *tsk)
  8554. {
  8555. int on_rq, running;
  8556. unsigned long flags;
  8557. struct rq *rq;
  8558. rq = task_rq_lock(tsk, &flags);
  8559. update_rq_clock(rq);
  8560. running = task_current(rq, tsk);
  8561. on_rq = tsk->se.on_rq;
  8562. if (on_rq)
  8563. dequeue_task(rq, tsk, 0);
  8564. if (unlikely(running))
  8565. tsk->sched_class->put_prev_task(rq, tsk);
  8566. set_task_rq(tsk, task_cpu(tsk));
  8567. #ifdef CONFIG_FAIR_GROUP_SCHED
  8568. if (tsk->sched_class->moved_group)
  8569. tsk->sched_class->moved_group(tsk);
  8570. #endif
  8571. if (unlikely(running))
  8572. tsk->sched_class->set_curr_task(rq);
  8573. if (on_rq)
  8574. enqueue_task(rq, tsk, 0);
  8575. task_rq_unlock(rq, &flags);
  8576. }
  8577. #endif /* CONFIG_GROUP_SCHED */
  8578. #ifdef CONFIG_FAIR_GROUP_SCHED
  8579. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8580. {
  8581. struct cfs_rq *cfs_rq = se->cfs_rq;
  8582. int on_rq;
  8583. on_rq = se->on_rq;
  8584. if (on_rq)
  8585. dequeue_entity(cfs_rq, se, 0);
  8586. se->load.weight = shares;
  8587. se->load.inv_weight = 0;
  8588. if (on_rq)
  8589. enqueue_entity(cfs_rq, se, 0);
  8590. }
  8591. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8592. {
  8593. struct cfs_rq *cfs_rq = se->cfs_rq;
  8594. struct rq *rq = cfs_rq->rq;
  8595. unsigned long flags;
  8596. spin_lock_irqsave(&rq->lock, flags);
  8597. __set_se_shares(se, shares);
  8598. spin_unlock_irqrestore(&rq->lock, flags);
  8599. }
  8600. static DEFINE_MUTEX(shares_mutex);
  8601. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8602. {
  8603. int i;
  8604. unsigned long flags;
  8605. /*
  8606. * We can't change the weight of the root cgroup.
  8607. */
  8608. if (!tg->se[0])
  8609. return -EINVAL;
  8610. if (shares < MIN_SHARES)
  8611. shares = MIN_SHARES;
  8612. else if (shares > MAX_SHARES)
  8613. shares = MAX_SHARES;
  8614. mutex_lock(&shares_mutex);
  8615. if (tg->shares == shares)
  8616. goto done;
  8617. spin_lock_irqsave(&task_group_lock, flags);
  8618. for_each_possible_cpu(i)
  8619. unregister_fair_sched_group(tg, i);
  8620. list_del_rcu(&tg->siblings);
  8621. spin_unlock_irqrestore(&task_group_lock, flags);
  8622. /* wait for any ongoing reference to this group to finish */
  8623. synchronize_sched();
  8624. /*
  8625. * Now we are free to modify the group's share on each cpu
  8626. * w/o tripping rebalance_share or load_balance_fair.
  8627. */
  8628. tg->shares = shares;
  8629. for_each_possible_cpu(i) {
  8630. /*
  8631. * force a rebalance
  8632. */
  8633. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8634. set_se_shares(tg->se[i], shares);
  8635. }
  8636. /*
  8637. * Enable load balance activity on this group, by inserting it back on
  8638. * each cpu's rq->leaf_cfs_rq_list.
  8639. */
  8640. spin_lock_irqsave(&task_group_lock, flags);
  8641. for_each_possible_cpu(i)
  8642. register_fair_sched_group(tg, i);
  8643. list_add_rcu(&tg->siblings, &tg->parent->children);
  8644. spin_unlock_irqrestore(&task_group_lock, flags);
  8645. done:
  8646. mutex_unlock(&shares_mutex);
  8647. return 0;
  8648. }
  8649. unsigned long sched_group_shares(struct task_group *tg)
  8650. {
  8651. return tg->shares;
  8652. }
  8653. #endif
  8654. #ifdef CONFIG_RT_GROUP_SCHED
  8655. /*
  8656. * Ensure that the real time constraints are schedulable.
  8657. */
  8658. static DEFINE_MUTEX(rt_constraints_mutex);
  8659. static unsigned long to_ratio(u64 period, u64 runtime)
  8660. {
  8661. if (runtime == RUNTIME_INF)
  8662. return 1ULL << 20;
  8663. return div64_u64(runtime << 20, period);
  8664. }
  8665. /* Must be called with tasklist_lock held */
  8666. static inline int tg_has_rt_tasks(struct task_group *tg)
  8667. {
  8668. struct task_struct *g, *p;
  8669. do_each_thread(g, p) {
  8670. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8671. return 1;
  8672. } while_each_thread(g, p);
  8673. return 0;
  8674. }
  8675. struct rt_schedulable_data {
  8676. struct task_group *tg;
  8677. u64 rt_period;
  8678. u64 rt_runtime;
  8679. };
  8680. static int tg_schedulable(struct task_group *tg, void *data)
  8681. {
  8682. struct rt_schedulable_data *d = data;
  8683. struct task_group *child;
  8684. unsigned long total, sum = 0;
  8685. u64 period, runtime;
  8686. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8687. runtime = tg->rt_bandwidth.rt_runtime;
  8688. if (tg == d->tg) {
  8689. period = d->rt_period;
  8690. runtime = d->rt_runtime;
  8691. }
  8692. #ifdef CONFIG_USER_SCHED
  8693. if (tg == &root_task_group) {
  8694. period = global_rt_period();
  8695. runtime = global_rt_runtime();
  8696. }
  8697. #endif
  8698. /*
  8699. * Cannot have more runtime than the period.
  8700. */
  8701. if (runtime > period && runtime != RUNTIME_INF)
  8702. return -EINVAL;
  8703. /*
  8704. * Ensure we don't starve existing RT tasks.
  8705. */
  8706. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8707. return -EBUSY;
  8708. total = to_ratio(period, runtime);
  8709. /*
  8710. * Nobody can have more than the global setting allows.
  8711. */
  8712. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8713. return -EINVAL;
  8714. /*
  8715. * The sum of our children's runtime should not exceed our own.
  8716. */
  8717. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8718. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8719. runtime = child->rt_bandwidth.rt_runtime;
  8720. if (child == d->tg) {
  8721. period = d->rt_period;
  8722. runtime = d->rt_runtime;
  8723. }
  8724. sum += to_ratio(period, runtime);
  8725. }
  8726. if (sum > total)
  8727. return -EINVAL;
  8728. return 0;
  8729. }
  8730. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8731. {
  8732. struct rt_schedulable_data data = {
  8733. .tg = tg,
  8734. .rt_period = period,
  8735. .rt_runtime = runtime,
  8736. };
  8737. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8738. }
  8739. static int tg_set_bandwidth(struct task_group *tg,
  8740. u64 rt_period, u64 rt_runtime)
  8741. {
  8742. int i, err = 0;
  8743. mutex_lock(&rt_constraints_mutex);
  8744. read_lock(&tasklist_lock);
  8745. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8746. if (err)
  8747. goto unlock;
  8748. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8749. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8750. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8751. for_each_possible_cpu(i) {
  8752. struct rt_rq *rt_rq = tg->rt_rq[i];
  8753. spin_lock(&rt_rq->rt_runtime_lock);
  8754. rt_rq->rt_runtime = rt_runtime;
  8755. spin_unlock(&rt_rq->rt_runtime_lock);
  8756. }
  8757. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8758. unlock:
  8759. read_unlock(&tasklist_lock);
  8760. mutex_unlock(&rt_constraints_mutex);
  8761. return err;
  8762. }
  8763. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8764. {
  8765. u64 rt_runtime, rt_period;
  8766. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8767. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8768. if (rt_runtime_us < 0)
  8769. rt_runtime = RUNTIME_INF;
  8770. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8771. }
  8772. long sched_group_rt_runtime(struct task_group *tg)
  8773. {
  8774. u64 rt_runtime_us;
  8775. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8776. return -1;
  8777. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8778. do_div(rt_runtime_us, NSEC_PER_USEC);
  8779. return rt_runtime_us;
  8780. }
  8781. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8782. {
  8783. u64 rt_runtime, rt_period;
  8784. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8785. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8786. if (rt_period == 0)
  8787. return -EINVAL;
  8788. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8789. }
  8790. long sched_group_rt_period(struct task_group *tg)
  8791. {
  8792. u64 rt_period_us;
  8793. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8794. do_div(rt_period_us, NSEC_PER_USEC);
  8795. return rt_period_us;
  8796. }
  8797. static int sched_rt_global_constraints(void)
  8798. {
  8799. u64 runtime, period;
  8800. int ret = 0;
  8801. if (sysctl_sched_rt_period <= 0)
  8802. return -EINVAL;
  8803. runtime = global_rt_runtime();
  8804. period = global_rt_period();
  8805. /*
  8806. * Sanity check on the sysctl variables.
  8807. */
  8808. if (runtime > period && runtime != RUNTIME_INF)
  8809. return -EINVAL;
  8810. mutex_lock(&rt_constraints_mutex);
  8811. read_lock(&tasklist_lock);
  8812. ret = __rt_schedulable(NULL, 0, 0);
  8813. read_unlock(&tasklist_lock);
  8814. mutex_unlock(&rt_constraints_mutex);
  8815. return ret;
  8816. }
  8817. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8818. {
  8819. /* Don't accept realtime tasks when there is no way for them to run */
  8820. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8821. return 0;
  8822. return 1;
  8823. }
  8824. #else /* !CONFIG_RT_GROUP_SCHED */
  8825. static int sched_rt_global_constraints(void)
  8826. {
  8827. unsigned long flags;
  8828. int i;
  8829. if (sysctl_sched_rt_period <= 0)
  8830. return -EINVAL;
  8831. /*
  8832. * There's always some RT tasks in the root group
  8833. * -- migration, kstopmachine etc..
  8834. */
  8835. if (sysctl_sched_rt_runtime == 0)
  8836. return -EBUSY;
  8837. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8838. for_each_possible_cpu(i) {
  8839. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8840. spin_lock(&rt_rq->rt_runtime_lock);
  8841. rt_rq->rt_runtime = global_rt_runtime();
  8842. spin_unlock(&rt_rq->rt_runtime_lock);
  8843. }
  8844. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8845. return 0;
  8846. }
  8847. #endif /* CONFIG_RT_GROUP_SCHED */
  8848. int sched_rt_handler(struct ctl_table *table, int write,
  8849. void __user *buffer, size_t *lenp,
  8850. loff_t *ppos)
  8851. {
  8852. int ret;
  8853. int old_period, old_runtime;
  8854. static DEFINE_MUTEX(mutex);
  8855. mutex_lock(&mutex);
  8856. old_period = sysctl_sched_rt_period;
  8857. old_runtime = sysctl_sched_rt_runtime;
  8858. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8859. if (!ret && write) {
  8860. ret = sched_rt_global_constraints();
  8861. if (ret) {
  8862. sysctl_sched_rt_period = old_period;
  8863. sysctl_sched_rt_runtime = old_runtime;
  8864. } else {
  8865. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8866. def_rt_bandwidth.rt_period =
  8867. ns_to_ktime(global_rt_period());
  8868. }
  8869. }
  8870. mutex_unlock(&mutex);
  8871. return ret;
  8872. }
  8873. #ifdef CONFIG_CGROUP_SCHED
  8874. /* return corresponding task_group object of a cgroup */
  8875. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8876. {
  8877. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8878. struct task_group, css);
  8879. }
  8880. static struct cgroup_subsys_state *
  8881. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8882. {
  8883. struct task_group *tg, *parent;
  8884. if (!cgrp->parent) {
  8885. /* This is early initialization for the top cgroup */
  8886. return &init_task_group.css;
  8887. }
  8888. parent = cgroup_tg(cgrp->parent);
  8889. tg = sched_create_group(parent);
  8890. if (IS_ERR(tg))
  8891. return ERR_PTR(-ENOMEM);
  8892. return &tg->css;
  8893. }
  8894. static void
  8895. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8896. {
  8897. struct task_group *tg = cgroup_tg(cgrp);
  8898. sched_destroy_group(tg);
  8899. }
  8900. static int
  8901. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8902. {
  8903. #ifdef CONFIG_RT_GROUP_SCHED
  8904. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8905. return -EINVAL;
  8906. #else
  8907. /* We don't support RT-tasks being in separate groups */
  8908. if (tsk->sched_class != &fair_sched_class)
  8909. return -EINVAL;
  8910. #endif
  8911. return 0;
  8912. }
  8913. static int
  8914. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8915. struct task_struct *tsk, bool threadgroup)
  8916. {
  8917. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8918. if (retval)
  8919. return retval;
  8920. if (threadgroup) {
  8921. struct task_struct *c;
  8922. rcu_read_lock();
  8923. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8924. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8925. if (retval) {
  8926. rcu_read_unlock();
  8927. return retval;
  8928. }
  8929. }
  8930. rcu_read_unlock();
  8931. }
  8932. return 0;
  8933. }
  8934. static void
  8935. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8936. struct cgroup *old_cont, struct task_struct *tsk,
  8937. bool threadgroup)
  8938. {
  8939. sched_move_task(tsk);
  8940. if (threadgroup) {
  8941. struct task_struct *c;
  8942. rcu_read_lock();
  8943. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8944. sched_move_task(c);
  8945. }
  8946. rcu_read_unlock();
  8947. }
  8948. }
  8949. #ifdef CONFIG_FAIR_GROUP_SCHED
  8950. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8951. u64 shareval)
  8952. {
  8953. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8954. }
  8955. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8956. {
  8957. struct task_group *tg = cgroup_tg(cgrp);
  8958. return (u64) tg->shares;
  8959. }
  8960. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8961. #ifdef CONFIG_RT_GROUP_SCHED
  8962. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8963. s64 val)
  8964. {
  8965. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8966. }
  8967. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8968. {
  8969. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8970. }
  8971. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8972. u64 rt_period_us)
  8973. {
  8974. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8975. }
  8976. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8977. {
  8978. return sched_group_rt_period(cgroup_tg(cgrp));
  8979. }
  8980. #endif /* CONFIG_RT_GROUP_SCHED */
  8981. static struct cftype cpu_files[] = {
  8982. #ifdef CONFIG_FAIR_GROUP_SCHED
  8983. {
  8984. .name = "shares",
  8985. .read_u64 = cpu_shares_read_u64,
  8986. .write_u64 = cpu_shares_write_u64,
  8987. },
  8988. #endif
  8989. #ifdef CONFIG_RT_GROUP_SCHED
  8990. {
  8991. .name = "rt_runtime_us",
  8992. .read_s64 = cpu_rt_runtime_read,
  8993. .write_s64 = cpu_rt_runtime_write,
  8994. },
  8995. {
  8996. .name = "rt_period_us",
  8997. .read_u64 = cpu_rt_period_read_uint,
  8998. .write_u64 = cpu_rt_period_write_uint,
  8999. },
  9000. #endif
  9001. };
  9002. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9003. {
  9004. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9005. }
  9006. struct cgroup_subsys cpu_cgroup_subsys = {
  9007. .name = "cpu",
  9008. .create = cpu_cgroup_create,
  9009. .destroy = cpu_cgroup_destroy,
  9010. .can_attach = cpu_cgroup_can_attach,
  9011. .attach = cpu_cgroup_attach,
  9012. .populate = cpu_cgroup_populate,
  9013. .subsys_id = cpu_cgroup_subsys_id,
  9014. .early_init = 1,
  9015. };
  9016. #endif /* CONFIG_CGROUP_SCHED */
  9017. #ifdef CONFIG_CGROUP_CPUACCT
  9018. /*
  9019. * CPU accounting code for task groups.
  9020. *
  9021. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9022. * (balbir@in.ibm.com).
  9023. */
  9024. /* track cpu usage of a group of tasks and its child groups */
  9025. struct cpuacct {
  9026. struct cgroup_subsys_state css;
  9027. /* cpuusage holds pointer to a u64-type object on every cpu */
  9028. u64 *cpuusage;
  9029. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9030. struct cpuacct *parent;
  9031. };
  9032. struct cgroup_subsys cpuacct_subsys;
  9033. /* return cpu accounting group corresponding to this container */
  9034. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9035. {
  9036. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9037. struct cpuacct, css);
  9038. }
  9039. /* return cpu accounting group to which this task belongs */
  9040. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9041. {
  9042. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9043. struct cpuacct, css);
  9044. }
  9045. /* create a new cpu accounting group */
  9046. static struct cgroup_subsys_state *cpuacct_create(
  9047. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9048. {
  9049. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9050. int i;
  9051. if (!ca)
  9052. goto out;
  9053. ca->cpuusage = alloc_percpu(u64);
  9054. if (!ca->cpuusage)
  9055. goto out_free_ca;
  9056. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9057. if (percpu_counter_init(&ca->cpustat[i], 0))
  9058. goto out_free_counters;
  9059. if (cgrp->parent)
  9060. ca->parent = cgroup_ca(cgrp->parent);
  9061. return &ca->css;
  9062. out_free_counters:
  9063. while (--i >= 0)
  9064. percpu_counter_destroy(&ca->cpustat[i]);
  9065. free_percpu(ca->cpuusage);
  9066. out_free_ca:
  9067. kfree(ca);
  9068. out:
  9069. return ERR_PTR(-ENOMEM);
  9070. }
  9071. /* destroy an existing cpu accounting group */
  9072. static void
  9073. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9074. {
  9075. struct cpuacct *ca = cgroup_ca(cgrp);
  9076. int i;
  9077. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9078. percpu_counter_destroy(&ca->cpustat[i]);
  9079. free_percpu(ca->cpuusage);
  9080. kfree(ca);
  9081. }
  9082. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9083. {
  9084. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9085. u64 data;
  9086. #ifndef CONFIG_64BIT
  9087. /*
  9088. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9089. */
  9090. spin_lock_irq(&cpu_rq(cpu)->lock);
  9091. data = *cpuusage;
  9092. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9093. #else
  9094. data = *cpuusage;
  9095. #endif
  9096. return data;
  9097. }
  9098. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9099. {
  9100. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9101. #ifndef CONFIG_64BIT
  9102. /*
  9103. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9104. */
  9105. spin_lock_irq(&cpu_rq(cpu)->lock);
  9106. *cpuusage = val;
  9107. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9108. #else
  9109. *cpuusage = val;
  9110. #endif
  9111. }
  9112. /* return total cpu usage (in nanoseconds) of a group */
  9113. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9114. {
  9115. struct cpuacct *ca = cgroup_ca(cgrp);
  9116. u64 totalcpuusage = 0;
  9117. int i;
  9118. for_each_present_cpu(i)
  9119. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9120. return totalcpuusage;
  9121. }
  9122. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9123. u64 reset)
  9124. {
  9125. struct cpuacct *ca = cgroup_ca(cgrp);
  9126. int err = 0;
  9127. int i;
  9128. if (reset) {
  9129. err = -EINVAL;
  9130. goto out;
  9131. }
  9132. for_each_present_cpu(i)
  9133. cpuacct_cpuusage_write(ca, i, 0);
  9134. out:
  9135. return err;
  9136. }
  9137. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9138. struct seq_file *m)
  9139. {
  9140. struct cpuacct *ca = cgroup_ca(cgroup);
  9141. u64 percpu;
  9142. int i;
  9143. for_each_present_cpu(i) {
  9144. percpu = cpuacct_cpuusage_read(ca, i);
  9145. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9146. }
  9147. seq_printf(m, "\n");
  9148. return 0;
  9149. }
  9150. static const char *cpuacct_stat_desc[] = {
  9151. [CPUACCT_STAT_USER] = "user",
  9152. [CPUACCT_STAT_SYSTEM] = "system",
  9153. };
  9154. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9155. struct cgroup_map_cb *cb)
  9156. {
  9157. struct cpuacct *ca = cgroup_ca(cgrp);
  9158. int i;
  9159. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9160. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9161. val = cputime64_to_clock_t(val);
  9162. cb->fill(cb, cpuacct_stat_desc[i], val);
  9163. }
  9164. return 0;
  9165. }
  9166. static struct cftype files[] = {
  9167. {
  9168. .name = "usage",
  9169. .read_u64 = cpuusage_read,
  9170. .write_u64 = cpuusage_write,
  9171. },
  9172. {
  9173. .name = "usage_percpu",
  9174. .read_seq_string = cpuacct_percpu_seq_read,
  9175. },
  9176. {
  9177. .name = "stat",
  9178. .read_map = cpuacct_stats_show,
  9179. },
  9180. };
  9181. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9182. {
  9183. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9184. }
  9185. /*
  9186. * charge this task's execution time to its accounting group.
  9187. *
  9188. * called with rq->lock held.
  9189. */
  9190. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9191. {
  9192. struct cpuacct *ca;
  9193. int cpu;
  9194. if (unlikely(!cpuacct_subsys.active))
  9195. return;
  9196. cpu = task_cpu(tsk);
  9197. rcu_read_lock();
  9198. ca = task_ca(tsk);
  9199. for (; ca; ca = ca->parent) {
  9200. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9201. *cpuusage += cputime;
  9202. }
  9203. rcu_read_unlock();
  9204. }
  9205. /*
  9206. * Charge the system/user time to the task's accounting group.
  9207. */
  9208. static void cpuacct_update_stats(struct task_struct *tsk,
  9209. enum cpuacct_stat_index idx, cputime_t val)
  9210. {
  9211. struct cpuacct *ca;
  9212. if (unlikely(!cpuacct_subsys.active))
  9213. return;
  9214. rcu_read_lock();
  9215. ca = task_ca(tsk);
  9216. do {
  9217. percpu_counter_add(&ca->cpustat[idx], val);
  9218. ca = ca->parent;
  9219. } while (ca);
  9220. rcu_read_unlock();
  9221. }
  9222. struct cgroup_subsys cpuacct_subsys = {
  9223. .name = "cpuacct",
  9224. .create = cpuacct_create,
  9225. .destroy = cpuacct_destroy,
  9226. .populate = cpuacct_populate,
  9227. .subsys_id = cpuacct_subsys_id,
  9228. };
  9229. #endif /* CONFIG_CGROUP_CPUACCT */
  9230. #ifndef CONFIG_SMP
  9231. int rcu_expedited_torture_stats(char *page)
  9232. {
  9233. return 0;
  9234. }
  9235. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9236. void synchronize_sched_expedited(void)
  9237. {
  9238. }
  9239. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9240. #else /* #ifndef CONFIG_SMP */
  9241. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9242. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9243. #define RCU_EXPEDITED_STATE_POST -2
  9244. #define RCU_EXPEDITED_STATE_IDLE -1
  9245. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9246. int rcu_expedited_torture_stats(char *page)
  9247. {
  9248. int cnt = 0;
  9249. int cpu;
  9250. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9251. for_each_online_cpu(cpu) {
  9252. cnt += sprintf(&page[cnt], " %d:%d",
  9253. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9254. }
  9255. cnt += sprintf(&page[cnt], "\n");
  9256. return cnt;
  9257. }
  9258. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9259. static long synchronize_sched_expedited_count;
  9260. /*
  9261. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9262. * approach to force grace period to end quickly. This consumes
  9263. * significant time on all CPUs, and is thus not recommended for
  9264. * any sort of common-case code.
  9265. *
  9266. * Note that it is illegal to call this function while holding any
  9267. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9268. * observe this restriction will result in deadlock.
  9269. */
  9270. void synchronize_sched_expedited(void)
  9271. {
  9272. int cpu;
  9273. unsigned long flags;
  9274. bool need_full_sync = 0;
  9275. struct rq *rq;
  9276. struct migration_req *req;
  9277. long snap;
  9278. int trycount = 0;
  9279. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9280. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9281. get_online_cpus();
  9282. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9283. put_online_cpus();
  9284. if (trycount++ < 10)
  9285. udelay(trycount * num_online_cpus());
  9286. else {
  9287. synchronize_sched();
  9288. return;
  9289. }
  9290. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9291. smp_mb(); /* ensure test happens before caller kfree */
  9292. return;
  9293. }
  9294. get_online_cpus();
  9295. }
  9296. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9297. for_each_online_cpu(cpu) {
  9298. rq = cpu_rq(cpu);
  9299. req = &per_cpu(rcu_migration_req, cpu);
  9300. init_completion(&req->done);
  9301. req->task = NULL;
  9302. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9303. spin_lock_irqsave(&rq->lock, flags);
  9304. list_add(&req->list, &rq->migration_queue);
  9305. spin_unlock_irqrestore(&rq->lock, flags);
  9306. wake_up_process(rq->migration_thread);
  9307. }
  9308. for_each_online_cpu(cpu) {
  9309. rcu_expedited_state = cpu;
  9310. req = &per_cpu(rcu_migration_req, cpu);
  9311. rq = cpu_rq(cpu);
  9312. wait_for_completion(&req->done);
  9313. spin_lock_irqsave(&rq->lock, flags);
  9314. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9315. need_full_sync = 1;
  9316. req->dest_cpu = RCU_MIGRATION_IDLE;
  9317. spin_unlock_irqrestore(&rq->lock, flags);
  9318. }
  9319. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9320. synchronize_sched_expedited_count++;
  9321. mutex_unlock(&rcu_sched_expedited_mutex);
  9322. put_online_cpus();
  9323. if (need_full_sync)
  9324. synchronize_sched();
  9325. }
  9326. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9327. #endif /* #else #ifndef CONFIG_SMP */