smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750
  1. /*
  2. * SMP support for ppc.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
  5. * deal of code from the sparc and intel versions.
  6. *
  7. * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
  8. *
  9. * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10. * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #undef DEBUG
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/sched.h>
  21. #include <linux/smp.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/cache.h>
  27. #include <linux/err.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/cpu.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <asm/ptrace.h>
  33. #include <asm/atomic.h>
  34. #include <asm/irq.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/prom.h>
  38. #include <asm/smp.h>
  39. #include <asm/time.h>
  40. #include <asm/machdep.h>
  41. #include <asm/cputhreads.h>
  42. #include <asm/cputable.h>
  43. #include <asm/system.h>
  44. #include <asm/mpic.h>
  45. #include <asm/vdso_datapage.h>
  46. #ifdef CONFIG_PPC64
  47. #include <asm/paca.h>
  48. #endif
  49. #ifdef DEBUG
  50. #include <asm/udbg.h>
  51. #define DBG(fmt...) udbg_printf(fmt)
  52. #else
  53. #define DBG(fmt...)
  54. #endif
  55. /* Store all idle threads, this can be reused instead of creating
  56. * a new thread. Also avoids complicated thread destroy functionality
  57. * for idle threads.
  58. */
  59. #ifdef CONFIG_HOTPLUG_CPU
  60. /*
  61. * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is
  62. * removed after init for !CONFIG_HOTPLUG_CPU.
  63. */
  64. static DEFINE_PER_CPU(struct task_struct *, idle_thread_array);
  65. #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x))
  66. #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p))
  67. #else
  68. static struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
  69. #define get_idle_for_cpu(x) (idle_thread_array[(x)])
  70. #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p))
  71. #endif
  72. struct thread_info *secondary_ti;
  73. DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  74. DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  75. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  76. EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  77. /* SMP operations for this machine */
  78. struct smp_ops_t *smp_ops;
  79. /* Can't be static due to PowerMac hackery */
  80. volatile unsigned int cpu_callin_map[NR_CPUS];
  81. int smt_enabled_at_boot = 1;
  82. static void (*crash_ipi_function_ptr)(struct pt_regs *) = NULL;
  83. #ifdef CONFIG_PPC64
  84. int __devinit smp_generic_kick_cpu(int nr)
  85. {
  86. BUG_ON(nr < 0 || nr >= NR_CPUS);
  87. /*
  88. * The processor is currently spinning, waiting for the
  89. * cpu_start field to become non-zero After we set cpu_start,
  90. * the processor will continue on to secondary_start
  91. */
  92. paca[nr].cpu_start = 1;
  93. smp_mb();
  94. return 0;
  95. }
  96. #endif
  97. static irqreturn_t call_function_action(int irq, void *data)
  98. {
  99. generic_smp_call_function_interrupt();
  100. return IRQ_HANDLED;
  101. }
  102. static irqreturn_t reschedule_action(int irq, void *data)
  103. {
  104. /* we just need the return path side effect of checking need_resched */
  105. return IRQ_HANDLED;
  106. }
  107. static irqreturn_t call_function_single_action(int irq, void *data)
  108. {
  109. generic_smp_call_function_single_interrupt();
  110. return IRQ_HANDLED;
  111. }
  112. irqreturn_t debug_ipi_action(int irq, void *data)
  113. {
  114. if (crash_ipi_function_ptr) {
  115. crash_ipi_function_ptr(get_irq_regs());
  116. return IRQ_HANDLED;
  117. }
  118. #ifdef CONFIG_DEBUGGER
  119. debugger_ipi(get_irq_regs());
  120. #endif /* CONFIG_DEBUGGER */
  121. return IRQ_HANDLED;
  122. }
  123. static irq_handler_t smp_ipi_action[] = {
  124. [PPC_MSG_CALL_FUNCTION] = call_function_action,
  125. [PPC_MSG_RESCHEDULE] = reschedule_action,
  126. [PPC_MSG_CALL_FUNC_SINGLE] = call_function_single_action,
  127. [PPC_MSG_DEBUGGER_BREAK] = debug_ipi_action,
  128. };
  129. const char *smp_ipi_name[] = {
  130. [PPC_MSG_CALL_FUNCTION] = "ipi call function",
  131. [PPC_MSG_RESCHEDULE] = "ipi reschedule",
  132. [PPC_MSG_CALL_FUNC_SINGLE] = "ipi call function single",
  133. [PPC_MSG_DEBUGGER_BREAK] = "ipi debugger",
  134. };
  135. /* optional function to request ipi, for controllers with >= 4 ipis */
  136. int smp_request_message_ipi(int virq, int msg)
  137. {
  138. int err;
  139. if (msg < 0 || msg > PPC_MSG_DEBUGGER_BREAK) {
  140. return -EINVAL;
  141. }
  142. #if !defined(CONFIG_DEBUGGER) && !defined(CONFIG_KEXEC)
  143. if (msg == PPC_MSG_DEBUGGER_BREAK) {
  144. return 1;
  145. }
  146. #endif
  147. err = request_irq(virq, smp_ipi_action[msg], IRQF_DISABLED|IRQF_PERCPU,
  148. smp_ipi_name[msg], 0);
  149. WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
  150. virq, smp_ipi_name[msg], err);
  151. return err;
  152. }
  153. struct cpu_messages {
  154. unsigned long messages; /* current messages bits */
  155. unsigned long data; /* data for cause ipi */
  156. };
  157. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
  158. void smp_muxed_ipi_set_data(int cpu, unsigned long data)
  159. {
  160. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  161. info->data = data;
  162. }
  163. void smp_muxed_ipi_message_pass(int cpu, int msg)
  164. {
  165. struct cpu_messages *info = &per_cpu(ipi_message, cpu);
  166. unsigned long *tgt = &info->messages;
  167. set_bit(msg, tgt);
  168. mb();
  169. smp_ops->cause_ipi(cpu, info->data);
  170. }
  171. void smp_muxed_ipi_resend(void)
  172. {
  173. struct cpu_messages *info = &__get_cpu_var(ipi_message);
  174. unsigned long *tgt = &info->messages;
  175. if (*tgt)
  176. smp_ops->cause_ipi(smp_processor_id(), info->data);
  177. }
  178. irqreturn_t smp_ipi_demux(void)
  179. {
  180. struct cpu_messages *info = &__get_cpu_var(ipi_message);
  181. unsigned long *tgt = &info->messages;
  182. mb(); /* order any irq clear */
  183. while (*tgt) {
  184. if (test_and_clear_bit(PPC_MSG_CALL_FUNCTION, tgt))
  185. generic_smp_call_function_interrupt();
  186. if (test_and_clear_bit(PPC_MSG_RESCHEDULE, tgt))
  187. reschedule_action(0, NULL); /* upcoming sched hook */
  188. if (test_and_clear_bit(PPC_MSG_CALL_FUNC_SINGLE, tgt))
  189. generic_smp_call_function_single_interrupt();
  190. #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  191. if (test_and_clear_bit(PPC_MSG_DEBUGGER_BREAK, tgt))
  192. debug_ipi_action(0, NULL);
  193. #endif
  194. }
  195. return IRQ_HANDLED;
  196. }
  197. void smp_send_reschedule(int cpu)
  198. {
  199. if (likely(smp_ops))
  200. smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);
  201. }
  202. void arch_send_call_function_single_ipi(int cpu)
  203. {
  204. smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNC_SINGLE);
  205. }
  206. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  207. {
  208. unsigned int cpu;
  209. for_each_cpu(cpu, mask)
  210. smp_ops->message_pass(cpu, PPC_MSG_CALL_FUNCTION);
  211. }
  212. #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
  213. void smp_send_debugger_break(void)
  214. {
  215. int cpu;
  216. int me = raw_smp_processor_id();
  217. if (unlikely(!smp_ops))
  218. return;
  219. for_each_online_cpu(cpu)
  220. if (cpu != me)
  221. smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);
  222. }
  223. #endif
  224. #ifdef CONFIG_KEXEC
  225. void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
  226. {
  227. crash_ipi_function_ptr = crash_ipi_callback;
  228. if (crash_ipi_callback) {
  229. mb();
  230. smp_send_debugger_break();
  231. }
  232. }
  233. #endif
  234. static void stop_this_cpu(void *dummy)
  235. {
  236. /* Remove this CPU */
  237. set_cpu_online(smp_processor_id(), false);
  238. local_irq_disable();
  239. while (1)
  240. ;
  241. }
  242. void smp_send_stop(void)
  243. {
  244. smp_call_function(stop_this_cpu, NULL, 0);
  245. }
  246. struct thread_info *current_set[NR_CPUS];
  247. static void __devinit smp_store_cpu_info(int id)
  248. {
  249. per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
  250. }
  251. void __init smp_prepare_cpus(unsigned int max_cpus)
  252. {
  253. unsigned int cpu;
  254. DBG("smp_prepare_cpus\n");
  255. /*
  256. * setup_cpu may need to be called on the boot cpu. We havent
  257. * spun any cpus up but lets be paranoid.
  258. */
  259. BUG_ON(boot_cpuid != smp_processor_id());
  260. /* Fixup boot cpu */
  261. smp_store_cpu_info(boot_cpuid);
  262. cpu_callin_map[boot_cpuid] = 1;
  263. for_each_possible_cpu(cpu) {
  264. zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
  265. GFP_KERNEL, cpu_to_node(cpu));
  266. zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
  267. GFP_KERNEL, cpu_to_node(cpu));
  268. }
  269. cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
  270. cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
  271. if (smp_ops)
  272. if (smp_ops->probe)
  273. max_cpus = smp_ops->probe();
  274. else
  275. max_cpus = NR_CPUS;
  276. else
  277. max_cpus = 1;
  278. }
  279. void __devinit smp_prepare_boot_cpu(void)
  280. {
  281. BUG_ON(smp_processor_id() != boot_cpuid);
  282. #ifdef CONFIG_PPC64
  283. paca[boot_cpuid].__current = current;
  284. #endif
  285. current_set[boot_cpuid] = task_thread_info(current);
  286. }
  287. #ifdef CONFIG_HOTPLUG_CPU
  288. /* State of each CPU during hotplug phases */
  289. static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  290. int generic_cpu_disable(void)
  291. {
  292. unsigned int cpu = smp_processor_id();
  293. if (cpu == boot_cpuid)
  294. return -EBUSY;
  295. set_cpu_online(cpu, false);
  296. #ifdef CONFIG_PPC64
  297. vdso_data->processorCount--;
  298. #endif
  299. migrate_irqs();
  300. return 0;
  301. }
  302. void generic_cpu_die(unsigned int cpu)
  303. {
  304. int i;
  305. for (i = 0; i < 100; i++) {
  306. smp_rmb();
  307. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  308. return;
  309. msleep(100);
  310. }
  311. printk(KERN_ERR "CPU%d didn't die...\n", cpu);
  312. }
  313. void generic_mach_cpu_die(void)
  314. {
  315. unsigned int cpu;
  316. local_irq_disable();
  317. idle_task_exit();
  318. cpu = smp_processor_id();
  319. printk(KERN_DEBUG "CPU%d offline\n", cpu);
  320. __get_cpu_var(cpu_state) = CPU_DEAD;
  321. smp_wmb();
  322. while (__get_cpu_var(cpu_state) != CPU_UP_PREPARE)
  323. cpu_relax();
  324. }
  325. void generic_set_cpu_dead(unsigned int cpu)
  326. {
  327. per_cpu(cpu_state, cpu) = CPU_DEAD;
  328. }
  329. #endif
  330. struct create_idle {
  331. struct work_struct work;
  332. struct task_struct *idle;
  333. struct completion done;
  334. int cpu;
  335. };
  336. static void __cpuinit do_fork_idle(struct work_struct *work)
  337. {
  338. struct create_idle *c_idle =
  339. container_of(work, struct create_idle, work);
  340. c_idle->idle = fork_idle(c_idle->cpu);
  341. complete(&c_idle->done);
  342. }
  343. static int __cpuinit create_idle(unsigned int cpu)
  344. {
  345. struct thread_info *ti;
  346. struct create_idle c_idle = {
  347. .cpu = cpu,
  348. .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
  349. };
  350. INIT_WORK_ONSTACK(&c_idle.work, do_fork_idle);
  351. c_idle.idle = get_idle_for_cpu(cpu);
  352. /* We can't use kernel_thread since we must avoid to
  353. * reschedule the child. We use a workqueue because
  354. * we want to fork from a kernel thread, not whatever
  355. * userspace process happens to be trying to online us.
  356. */
  357. if (!c_idle.idle) {
  358. schedule_work(&c_idle.work);
  359. wait_for_completion(&c_idle.done);
  360. } else
  361. init_idle(c_idle.idle, cpu);
  362. if (IS_ERR(c_idle.idle)) {
  363. pr_err("Failed fork for CPU %u: %li", cpu, PTR_ERR(c_idle.idle));
  364. return PTR_ERR(c_idle.idle);
  365. }
  366. ti = task_thread_info(c_idle.idle);
  367. #ifdef CONFIG_PPC64
  368. paca[cpu].__current = c_idle.idle;
  369. paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
  370. #endif
  371. ti->cpu = cpu;
  372. current_set[cpu] = ti;
  373. return 0;
  374. }
  375. int __cpuinit __cpu_up(unsigned int cpu)
  376. {
  377. int rc, c;
  378. secondary_ti = current_set[cpu];
  379. if (smp_ops == NULL ||
  380. (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
  381. return -EINVAL;
  382. /* Make sure we have an idle thread */
  383. rc = create_idle(cpu);
  384. if (rc)
  385. return rc;
  386. /* Make sure callin-map entry is 0 (can be leftover a CPU
  387. * hotplug
  388. */
  389. cpu_callin_map[cpu] = 0;
  390. /* The information for processor bringup must
  391. * be written out to main store before we release
  392. * the processor.
  393. */
  394. smp_mb();
  395. /* wake up cpus */
  396. DBG("smp: kicking cpu %d\n", cpu);
  397. rc = smp_ops->kick_cpu(cpu);
  398. if (rc) {
  399. pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
  400. return rc;
  401. }
  402. /*
  403. * wait to see if the cpu made a callin (is actually up).
  404. * use this value that I found through experimentation.
  405. * -- Cort
  406. */
  407. if (system_state < SYSTEM_RUNNING)
  408. for (c = 50000; c && !cpu_callin_map[cpu]; c--)
  409. udelay(100);
  410. #ifdef CONFIG_HOTPLUG_CPU
  411. else
  412. /*
  413. * CPUs can take much longer to come up in the
  414. * hotplug case. Wait five seconds.
  415. */
  416. for (c = 5000; c && !cpu_callin_map[cpu]; c--)
  417. msleep(1);
  418. #endif
  419. if (!cpu_callin_map[cpu]) {
  420. printk(KERN_ERR "Processor %u is stuck.\n", cpu);
  421. return -ENOENT;
  422. }
  423. DBG("Processor %u found.\n", cpu);
  424. if (smp_ops->give_timebase)
  425. smp_ops->give_timebase();
  426. /* Wait until cpu puts itself in the online map */
  427. while (!cpu_online(cpu))
  428. cpu_relax();
  429. return 0;
  430. }
  431. /* Return the value of the reg property corresponding to the given
  432. * logical cpu.
  433. */
  434. int cpu_to_core_id(int cpu)
  435. {
  436. struct device_node *np;
  437. const int *reg;
  438. int id = -1;
  439. np = of_get_cpu_node(cpu, NULL);
  440. if (!np)
  441. goto out;
  442. reg = of_get_property(np, "reg", NULL);
  443. if (!reg)
  444. goto out;
  445. id = *reg;
  446. out:
  447. of_node_put(np);
  448. return id;
  449. }
  450. /* Helper routines for cpu to core mapping */
  451. int cpu_core_index_of_thread(int cpu)
  452. {
  453. return cpu >> threads_shift;
  454. }
  455. EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
  456. int cpu_first_thread_of_core(int core)
  457. {
  458. return core << threads_shift;
  459. }
  460. EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
  461. /* Must be called when no change can occur to cpu_present_mask,
  462. * i.e. during cpu online or offline.
  463. */
  464. static struct device_node *cpu_to_l2cache(int cpu)
  465. {
  466. struct device_node *np;
  467. struct device_node *cache;
  468. if (!cpu_present(cpu))
  469. return NULL;
  470. np = of_get_cpu_node(cpu, NULL);
  471. if (np == NULL)
  472. return NULL;
  473. cache = of_find_next_cache_node(np);
  474. of_node_put(np);
  475. return cache;
  476. }
  477. /* Activate a secondary processor. */
  478. void __devinit start_secondary(void *unused)
  479. {
  480. unsigned int cpu = smp_processor_id();
  481. struct device_node *l2_cache;
  482. int i, base;
  483. atomic_inc(&init_mm.mm_count);
  484. current->active_mm = &init_mm;
  485. smp_store_cpu_info(cpu);
  486. set_dec(tb_ticks_per_jiffy);
  487. preempt_disable();
  488. cpu_callin_map[cpu] = 1;
  489. if (smp_ops->setup_cpu)
  490. smp_ops->setup_cpu(cpu);
  491. if (smp_ops->take_timebase)
  492. smp_ops->take_timebase();
  493. secondary_cpu_time_init();
  494. #ifdef CONFIG_PPC64
  495. if (system_state == SYSTEM_RUNNING)
  496. vdso_data->processorCount++;
  497. #endif
  498. ipi_call_lock();
  499. notify_cpu_starting(cpu);
  500. set_cpu_online(cpu, true);
  501. /* Update sibling maps */
  502. base = cpu_first_thread_sibling(cpu);
  503. for (i = 0; i < threads_per_core; i++) {
  504. if (cpu_is_offline(base + i))
  505. continue;
  506. cpumask_set_cpu(cpu, cpu_sibling_mask(base + i));
  507. cpumask_set_cpu(base + i, cpu_sibling_mask(cpu));
  508. /* cpu_core_map should be a superset of
  509. * cpu_sibling_map even if we don't have cache
  510. * information, so update the former here, too.
  511. */
  512. cpumask_set_cpu(cpu, cpu_core_mask(base + i));
  513. cpumask_set_cpu(base + i, cpu_core_mask(cpu));
  514. }
  515. l2_cache = cpu_to_l2cache(cpu);
  516. for_each_online_cpu(i) {
  517. struct device_node *np = cpu_to_l2cache(i);
  518. if (!np)
  519. continue;
  520. if (np == l2_cache) {
  521. cpumask_set_cpu(cpu, cpu_core_mask(i));
  522. cpumask_set_cpu(i, cpu_core_mask(cpu));
  523. }
  524. of_node_put(np);
  525. }
  526. of_node_put(l2_cache);
  527. ipi_call_unlock();
  528. local_irq_enable();
  529. cpu_idle();
  530. BUG();
  531. }
  532. int setup_profiling_timer(unsigned int multiplier)
  533. {
  534. return 0;
  535. }
  536. void __init smp_cpus_done(unsigned int max_cpus)
  537. {
  538. cpumask_var_t old_mask;
  539. /* We want the setup_cpu() here to be called from CPU 0, but our
  540. * init thread may have been "borrowed" by another CPU in the meantime
  541. * se we pin us down to CPU 0 for a short while
  542. */
  543. alloc_cpumask_var(&old_mask, GFP_NOWAIT);
  544. cpumask_copy(old_mask, tsk_cpus_allowed(current));
  545. set_cpus_allowed_ptr(current, cpumask_of(boot_cpuid));
  546. if (smp_ops && smp_ops->setup_cpu)
  547. smp_ops->setup_cpu(boot_cpuid);
  548. set_cpus_allowed_ptr(current, old_mask);
  549. free_cpumask_var(old_mask);
  550. if (smp_ops && smp_ops->bringup_done)
  551. smp_ops->bringup_done();
  552. dump_numa_cpu_topology();
  553. }
  554. int arch_sd_sibling_asym_packing(void)
  555. {
  556. if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
  557. printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
  558. return SD_ASYM_PACKING;
  559. }
  560. return 0;
  561. }
  562. #ifdef CONFIG_HOTPLUG_CPU
  563. int __cpu_disable(void)
  564. {
  565. struct device_node *l2_cache;
  566. int cpu = smp_processor_id();
  567. int base, i;
  568. int err;
  569. if (!smp_ops->cpu_disable)
  570. return -ENOSYS;
  571. err = smp_ops->cpu_disable();
  572. if (err)
  573. return err;
  574. /* Update sibling maps */
  575. base = cpu_first_thread_sibling(cpu);
  576. for (i = 0; i < threads_per_core; i++) {
  577. cpumask_clear_cpu(cpu, cpu_sibling_mask(base + i));
  578. cpumask_clear_cpu(base + i, cpu_sibling_mask(cpu));
  579. cpumask_clear_cpu(cpu, cpu_core_mask(base + i));
  580. cpumask_clear_cpu(base + i, cpu_core_mask(cpu));
  581. }
  582. l2_cache = cpu_to_l2cache(cpu);
  583. for_each_present_cpu(i) {
  584. struct device_node *np = cpu_to_l2cache(i);
  585. if (!np)
  586. continue;
  587. if (np == l2_cache) {
  588. cpumask_clear_cpu(cpu, cpu_core_mask(i));
  589. cpumask_clear_cpu(i, cpu_core_mask(cpu));
  590. }
  591. of_node_put(np);
  592. }
  593. of_node_put(l2_cache);
  594. return 0;
  595. }
  596. void __cpu_die(unsigned int cpu)
  597. {
  598. if (smp_ops->cpu_die)
  599. smp_ops->cpu_die(cpu);
  600. }
  601. static DEFINE_MUTEX(powerpc_cpu_hotplug_driver_mutex);
  602. void cpu_hotplug_driver_lock()
  603. {
  604. mutex_lock(&powerpc_cpu_hotplug_driver_mutex);
  605. }
  606. void cpu_hotplug_driver_unlock()
  607. {
  608. mutex_unlock(&powerpc_cpu_hotplug_driver_mutex);
  609. }
  610. void cpu_die(void)
  611. {
  612. if (ppc_md.cpu_die)
  613. ppc_md.cpu_die();
  614. /* If we return, we re-enter start_secondary */
  615. start_secondary_resume();
  616. }
  617. #endif