mvpp2_main.c 143 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399
  1. /*
  2. * Driver for Marvell PPv2 network controller for Armada 375 SoC.
  3. *
  4. * Copyright (C) 2014 Marvell
  5. *
  6. * Marcin Wojtas <mw@semihalf.com>
  7. *
  8. * This file is licensed under the terms of the GNU General Public
  9. * License version 2. This program is licensed "as is" without any
  10. * warranty of any kind, whether express or implied.
  11. */
  12. #include <linux/acpi.h>
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/mfd/syscon.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/of.h>
  25. #include <linux/of_irq.h>
  26. #include <linux/of_mdio.h>
  27. #include <linux/of_net.h>
  28. #include <linux/of_address.h>
  29. #include <linux/of_device.h>
  30. #include <linux/phy.h>
  31. #include <linux/phylink.h>
  32. #include <linux/phy/phy.h>
  33. #include <linux/clk.h>
  34. #include <linux/hrtimer.h>
  35. #include <linux/ktime.h>
  36. #include <linux/regmap.h>
  37. #include <uapi/linux/ppp_defs.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tso.h>
  41. #include "mvpp2.h"
  42. #include "mvpp2_prs.h"
  43. #include "mvpp2_cls.h"
  44. enum mvpp2_bm_pool_log_num {
  45. MVPP2_BM_SHORT,
  46. MVPP2_BM_LONG,
  47. MVPP2_BM_JUMBO,
  48. MVPP2_BM_POOLS_NUM
  49. };
  50. static struct {
  51. int pkt_size;
  52. int buf_num;
  53. } mvpp2_pools[MVPP2_BM_POOLS_NUM];
  54. /* The prototype is added here to be used in start_dev when using ACPI. This
  55. * will be removed once phylink is used for all modes (dt+ACPI).
  56. */
  57. static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
  58. const struct phylink_link_state *state);
  59. /* Queue modes */
  60. #define MVPP2_QDIST_SINGLE_MODE 0
  61. #define MVPP2_QDIST_MULTI_MODE 1
  62. static int queue_mode = MVPP2_QDIST_MULTI_MODE;
  63. module_param(queue_mode, int, 0444);
  64. MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)");
  65. /* Utility/helper methods */
  66. void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
  67. {
  68. writel(data, priv->swth_base[0] + offset);
  69. }
  70. u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
  71. {
  72. return readl(priv->swth_base[0] + offset);
  73. }
  74. u32 mvpp2_read_relaxed(struct mvpp2 *priv, u32 offset)
  75. {
  76. return readl_relaxed(priv->swth_base[0] + offset);
  77. }
  78. /* These accessors should be used to access:
  79. *
  80. * - per-CPU registers, where each CPU has its own copy of the
  81. * register.
  82. *
  83. * MVPP2_BM_VIRT_ALLOC_REG
  84. * MVPP2_BM_ADDR_HIGH_ALLOC
  85. * MVPP22_BM_ADDR_HIGH_RLS_REG
  86. * MVPP2_BM_VIRT_RLS_REG
  87. * MVPP2_ISR_RX_TX_CAUSE_REG
  88. * MVPP2_ISR_RX_TX_MASK_REG
  89. * MVPP2_TXQ_NUM_REG
  90. * MVPP2_AGGR_TXQ_UPDATE_REG
  91. * MVPP2_TXQ_RSVD_REQ_REG
  92. * MVPP2_TXQ_RSVD_RSLT_REG
  93. * MVPP2_TXQ_SENT_REG
  94. * MVPP2_RXQ_NUM_REG
  95. *
  96. * - global registers that must be accessed through a specific CPU
  97. * window, because they are related to an access to a per-CPU
  98. * register
  99. *
  100. * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG)
  101. * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG)
  102. * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG)
  103. * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG)
  104. * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG)
  105. * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG)
  106. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  107. * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG)
  108. * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG)
  109. * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG)
  110. * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG)
  111. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  112. * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG)
  113. */
  114. void mvpp2_percpu_write(struct mvpp2 *priv, int cpu,
  115. u32 offset, u32 data)
  116. {
  117. writel(data, priv->swth_base[cpu] + offset);
  118. }
  119. u32 mvpp2_percpu_read(struct mvpp2 *priv, int cpu,
  120. u32 offset)
  121. {
  122. return readl(priv->swth_base[cpu] + offset);
  123. }
  124. void mvpp2_percpu_write_relaxed(struct mvpp2 *priv, int cpu,
  125. u32 offset, u32 data)
  126. {
  127. writel_relaxed(data, priv->swth_base[cpu] + offset);
  128. }
  129. static u32 mvpp2_percpu_read_relaxed(struct mvpp2 *priv, int cpu,
  130. u32 offset)
  131. {
  132. return readl_relaxed(priv->swth_base[cpu] + offset);
  133. }
  134. static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port,
  135. struct mvpp2_tx_desc *tx_desc)
  136. {
  137. if (port->priv->hw_version == MVPP21)
  138. return le32_to_cpu(tx_desc->pp21.buf_dma_addr);
  139. else
  140. return le64_to_cpu(tx_desc->pp22.buf_dma_addr_ptp) &
  141. MVPP2_DESC_DMA_MASK;
  142. }
  143. static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
  144. struct mvpp2_tx_desc *tx_desc,
  145. dma_addr_t dma_addr)
  146. {
  147. dma_addr_t addr, offset;
  148. addr = dma_addr & ~MVPP2_TX_DESC_ALIGN;
  149. offset = dma_addr & MVPP2_TX_DESC_ALIGN;
  150. if (port->priv->hw_version == MVPP21) {
  151. tx_desc->pp21.buf_dma_addr = cpu_to_le32(addr);
  152. tx_desc->pp21.packet_offset = offset;
  153. } else {
  154. __le64 val = cpu_to_le64(addr);
  155. tx_desc->pp22.buf_dma_addr_ptp &= ~cpu_to_le64(MVPP2_DESC_DMA_MASK);
  156. tx_desc->pp22.buf_dma_addr_ptp |= val;
  157. tx_desc->pp22.packet_offset = offset;
  158. }
  159. }
  160. static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port,
  161. struct mvpp2_tx_desc *tx_desc)
  162. {
  163. if (port->priv->hw_version == MVPP21)
  164. return le16_to_cpu(tx_desc->pp21.data_size);
  165. else
  166. return le16_to_cpu(tx_desc->pp22.data_size);
  167. }
  168. static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
  169. struct mvpp2_tx_desc *tx_desc,
  170. size_t size)
  171. {
  172. if (port->priv->hw_version == MVPP21)
  173. tx_desc->pp21.data_size = cpu_to_le16(size);
  174. else
  175. tx_desc->pp22.data_size = cpu_to_le16(size);
  176. }
  177. static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
  178. struct mvpp2_tx_desc *tx_desc,
  179. unsigned int txq)
  180. {
  181. if (port->priv->hw_version == MVPP21)
  182. tx_desc->pp21.phys_txq = txq;
  183. else
  184. tx_desc->pp22.phys_txq = txq;
  185. }
  186. static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
  187. struct mvpp2_tx_desc *tx_desc,
  188. unsigned int command)
  189. {
  190. if (port->priv->hw_version == MVPP21)
  191. tx_desc->pp21.command = cpu_to_le32(command);
  192. else
  193. tx_desc->pp22.command = cpu_to_le32(command);
  194. }
  195. static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port,
  196. struct mvpp2_tx_desc *tx_desc)
  197. {
  198. if (port->priv->hw_version == MVPP21)
  199. return tx_desc->pp21.packet_offset;
  200. else
  201. return tx_desc->pp22.packet_offset;
  202. }
  203. static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
  204. struct mvpp2_rx_desc *rx_desc)
  205. {
  206. if (port->priv->hw_version == MVPP21)
  207. return le32_to_cpu(rx_desc->pp21.buf_dma_addr);
  208. else
  209. return le64_to_cpu(rx_desc->pp22.buf_dma_addr_key_hash) &
  210. MVPP2_DESC_DMA_MASK;
  211. }
  212. static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
  213. struct mvpp2_rx_desc *rx_desc)
  214. {
  215. if (port->priv->hw_version == MVPP21)
  216. return le32_to_cpu(rx_desc->pp21.buf_cookie);
  217. else
  218. return le64_to_cpu(rx_desc->pp22.buf_cookie_misc) &
  219. MVPP2_DESC_DMA_MASK;
  220. }
  221. static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
  222. struct mvpp2_rx_desc *rx_desc)
  223. {
  224. if (port->priv->hw_version == MVPP21)
  225. return le16_to_cpu(rx_desc->pp21.data_size);
  226. else
  227. return le16_to_cpu(rx_desc->pp22.data_size);
  228. }
  229. static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
  230. struct mvpp2_rx_desc *rx_desc)
  231. {
  232. if (port->priv->hw_version == MVPP21)
  233. return le32_to_cpu(rx_desc->pp21.status);
  234. else
  235. return le32_to_cpu(rx_desc->pp22.status);
  236. }
  237. static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
  238. {
  239. txq_pcpu->txq_get_index++;
  240. if (txq_pcpu->txq_get_index == txq_pcpu->size)
  241. txq_pcpu->txq_get_index = 0;
  242. }
  243. static void mvpp2_txq_inc_put(struct mvpp2_port *port,
  244. struct mvpp2_txq_pcpu *txq_pcpu,
  245. struct sk_buff *skb,
  246. struct mvpp2_tx_desc *tx_desc)
  247. {
  248. struct mvpp2_txq_pcpu_buf *tx_buf =
  249. txq_pcpu->buffs + txq_pcpu->txq_put_index;
  250. tx_buf->skb = skb;
  251. tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc);
  252. tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) +
  253. mvpp2_txdesc_offset_get(port, tx_desc);
  254. txq_pcpu->txq_put_index++;
  255. if (txq_pcpu->txq_put_index == txq_pcpu->size)
  256. txq_pcpu->txq_put_index = 0;
  257. }
  258. /* Get number of physical egress port */
  259. static inline int mvpp2_egress_port(struct mvpp2_port *port)
  260. {
  261. return MVPP2_MAX_TCONT + port->id;
  262. }
  263. /* Get number of physical TXQ */
  264. static inline int mvpp2_txq_phys(int port, int txq)
  265. {
  266. return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
  267. }
  268. static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool)
  269. {
  270. if (likely(pool->frag_size <= PAGE_SIZE))
  271. return netdev_alloc_frag(pool->frag_size);
  272. else
  273. return kmalloc(pool->frag_size, GFP_ATOMIC);
  274. }
  275. static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, void *data)
  276. {
  277. if (likely(pool->frag_size <= PAGE_SIZE))
  278. skb_free_frag(data);
  279. else
  280. kfree(data);
  281. }
  282. /* Buffer Manager configuration routines */
  283. /* Create pool */
  284. static int mvpp2_bm_pool_create(struct platform_device *pdev,
  285. struct mvpp2 *priv,
  286. struct mvpp2_bm_pool *bm_pool, int size)
  287. {
  288. u32 val;
  289. /* Number of buffer pointers must be a multiple of 16, as per
  290. * hardware constraints
  291. */
  292. if (!IS_ALIGNED(size, 16))
  293. return -EINVAL;
  294. /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 needs 16
  295. * bytes per buffer pointer
  296. */
  297. if (priv->hw_version == MVPP21)
  298. bm_pool->size_bytes = 2 * sizeof(u32) * size;
  299. else
  300. bm_pool->size_bytes = 2 * sizeof(u64) * size;
  301. bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, bm_pool->size_bytes,
  302. &bm_pool->dma_addr,
  303. GFP_KERNEL);
  304. if (!bm_pool->virt_addr)
  305. return -ENOMEM;
  306. if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
  307. MVPP2_BM_POOL_PTR_ALIGN)) {
  308. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  309. bm_pool->virt_addr, bm_pool->dma_addr);
  310. dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
  311. bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
  312. return -ENOMEM;
  313. }
  314. mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
  315. lower_32_bits(bm_pool->dma_addr));
  316. mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
  317. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  318. val |= MVPP2_BM_START_MASK;
  319. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  320. bm_pool->size = size;
  321. bm_pool->pkt_size = 0;
  322. bm_pool->buf_num = 0;
  323. return 0;
  324. }
  325. /* Set pool buffer size */
  326. static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
  327. struct mvpp2_bm_pool *bm_pool,
  328. int buf_size)
  329. {
  330. u32 val;
  331. bm_pool->buf_size = buf_size;
  332. val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
  333. mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
  334. }
  335. static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv,
  336. struct mvpp2_bm_pool *bm_pool,
  337. dma_addr_t *dma_addr,
  338. phys_addr_t *phys_addr)
  339. {
  340. int cpu = get_cpu();
  341. *dma_addr = mvpp2_percpu_read(priv, cpu,
  342. MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
  343. *phys_addr = mvpp2_percpu_read(priv, cpu, MVPP2_BM_VIRT_ALLOC_REG);
  344. if (priv->hw_version == MVPP22) {
  345. u32 val;
  346. u32 dma_addr_highbits, phys_addr_highbits;
  347. val = mvpp2_percpu_read(priv, cpu, MVPP22_BM_ADDR_HIGH_ALLOC);
  348. dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK);
  349. phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >>
  350. MVPP22_BM_ADDR_HIGH_VIRT_SHIFT;
  351. if (sizeof(dma_addr_t) == 8)
  352. *dma_addr |= (u64)dma_addr_highbits << 32;
  353. if (sizeof(phys_addr_t) == 8)
  354. *phys_addr |= (u64)phys_addr_highbits << 32;
  355. }
  356. put_cpu();
  357. }
  358. /* Free all buffers from the pool */
  359. static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
  360. struct mvpp2_bm_pool *bm_pool, int buf_num)
  361. {
  362. int i;
  363. if (buf_num > bm_pool->buf_num) {
  364. WARN(1, "Pool does not have so many bufs pool(%d) bufs(%d)\n",
  365. bm_pool->id, buf_num);
  366. buf_num = bm_pool->buf_num;
  367. }
  368. for (i = 0; i < buf_num; i++) {
  369. dma_addr_t buf_dma_addr;
  370. phys_addr_t buf_phys_addr;
  371. void *data;
  372. mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool,
  373. &buf_dma_addr, &buf_phys_addr);
  374. dma_unmap_single(dev, buf_dma_addr,
  375. bm_pool->buf_size, DMA_FROM_DEVICE);
  376. data = (void *)phys_to_virt(buf_phys_addr);
  377. if (!data)
  378. break;
  379. mvpp2_frag_free(bm_pool, data);
  380. }
  381. /* Update BM driver with number of buffers removed from pool */
  382. bm_pool->buf_num -= i;
  383. }
  384. /* Check number of buffers in BM pool */
  385. static int mvpp2_check_hw_buf_num(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool)
  386. {
  387. int buf_num = 0;
  388. buf_num += mvpp2_read(priv, MVPP2_BM_POOL_PTRS_NUM_REG(bm_pool->id)) &
  389. MVPP22_BM_POOL_PTRS_NUM_MASK;
  390. buf_num += mvpp2_read(priv, MVPP2_BM_BPPI_PTRS_NUM_REG(bm_pool->id)) &
  391. MVPP2_BM_BPPI_PTR_NUM_MASK;
  392. /* HW has one buffer ready which is not reflected in the counters */
  393. if (buf_num)
  394. buf_num += 1;
  395. return buf_num;
  396. }
  397. /* Cleanup pool */
  398. static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
  399. struct mvpp2 *priv,
  400. struct mvpp2_bm_pool *bm_pool)
  401. {
  402. int buf_num;
  403. u32 val;
  404. buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
  405. mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool, buf_num);
  406. /* Check buffer counters after free */
  407. buf_num = mvpp2_check_hw_buf_num(priv, bm_pool);
  408. if (buf_num) {
  409. WARN(1, "cannot free all buffers in pool %d, buf_num left %d\n",
  410. bm_pool->id, bm_pool->buf_num);
  411. return 0;
  412. }
  413. val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
  414. val |= MVPP2_BM_STOP_MASK;
  415. mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
  416. dma_free_coherent(&pdev->dev, bm_pool->size_bytes,
  417. bm_pool->virt_addr,
  418. bm_pool->dma_addr);
  419. return 0;
  420. }
  421. static int mvpp2_bm_pools_init(struct platform_device *pdev,
  422. struct mvpp2 *priv)
  423. {
  424. int i, err, size;
  425. struct mvpp2_bm_pool *bm_pool;
  426. /* Create all pools with maximum size */
  427. size = MVPP2_BM_POOL_SIZE_MAX;
  428. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  429. bm_pool = &priv->bm_pools[i];
  430. bm_pool->id = i;
  431. err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
  432. if (err)
  433. goto err_unroll_pools;
  434. mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
  435. }
  436. return 0;
  437. err_unroll_pools:
  438. dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
  439. for (i = i - 1; i >= 0; i--)
  440. mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
  441. return err;
  442. }
  443. static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
  444. {
  445. int i, err;
  446. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  447. /* Mask BM all interrupts */
  448. mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
  449. /* Clear BM cause register */
  450. mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
  451. }
  452. /* Allocate and initialize BM pools */
  453. priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
  454. sizeof(*priv->bm_pools), GFP_KERNEL);
  455. if (!priv->bm_pools)
  456. return -ENOMEM;
  457. err = mvpp2_bm_pools_init(pdev, priv);
  458. if (err < 0)
  459. return err;
  460. return 0;
  461. }
  462. static void mvpp2_setup_bm_pool(void)
  463. {
  464. /* Short pool */
  465. mvpp2_pools[MVPP2_BM_SHORT].buf_num = MVPP2_BM_SHORT_BUF_NUM;
  466. mvpp2_pools[MVPP2_BM_SHORT].pkt_size = MVPP2_BM_SHORT_PKT_SIZE;
  467. /* Long pool */
  468. mvpp2_pools[MVPP2_BM_LONG].buf_num = MVPP2_BM_LONG_BUF_NUM;
  469. mvpp2_pools[MVPP2_BM_LONG].pkt_size = MVPP2_BM_LONG_PKT_SIZE;
  470. /* Jumbo pool */
  471. mvpp2_pools[MVPP2_BM_JUMBO].buf_num = MVPP2_BM_JUMBO_BUF_NUM;
  472. mvpp2_pools[MVPP2_BM_JUMBO].pkt_size = MVPP2_BM_JUMBO_PKT_SIZE;
  473. }
  474. /* Attach long pool to rxq */
  475. static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
  476. int lrxq, int long_pool)
  477. {
  478. u32 val, mask;
  479. int prxq;
  480. /* Get queue physical ID */
  481. prxq = port->rxqs[lrxq]->id;
  482. if (port->priv->hw_version == MVPP21)
  483. mask = MVPP21_RXQ_POOL_LONG_MASK;
  484. else
  485. mask = MVPP22_RXQ_POOL_LONG_MASK;
  486. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  487. val &= ~mask;
  488. val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
  489. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  490. }
  491. /* Attach short pool to rxq */
  492. static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
  493. int lrxq, int short_pool)
  494. {
  495. u32 val, mask;
  496. int prxq;
  497. /* Get queue physical ID */
  498. prxq = port->rxqs[lrxq]->id;
  499. if (port->priv->hw_version == MVPP21)
  500. mask = MVPP21_RXQ_POOL_SHORT_MASK;
  501. else
  502. mask = MVPP22_RXQ_POOL_SHORT_MASK;
  503. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  504. val &= ~mask;
  505. val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask;
  506. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  507. }
  508. static void *mvpp2_buf_alloc(struct mvpp2_port *port,
  509. struct mvpp2_bm_pool *bm_pool,
  510. dma_addr_t *buf_dma_addr,
  511. phys_addr_t *buf_phys_addr,
  512. gfp_t gfp_mask)
  513. {
  514. dma_addr_t dma_addr;
  515. void *data;
  516. data = mvpp2_frag_alloc(bm_pool);
  517. if (!data)
  518. return NULL;
  519. dma_addr = dma_map_single(port->dev->dev.parent, data,
  520. MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
  521. DMA_FROM_DEVICE);
  522. if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) {
  523. mvpp2_frag_free(bm_pool, data);
  524. return NULL;
  525. }
  526. *buf_dma_addr = dma_addr;
  527. *buf_phys_addr = virt_to_phys(data);
  528. return data;
  529. }
  530. /* Release buffer to BM */
  531. static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
  532. dma_addr_t buf_dma_addr,
  533. phys_addr_t buf_phys_addr)
  534. {
  535. int cpu = get_cpu();
  536. if (port->priv->hw_version == MVPP22) {
  537. u32 val = 0;
  538. if (sizeof(dma_addr_t) == 8)
  539. val |= upper_32_bits(buf_dma_addr) &
  540. MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
  541. if (sizeof(phys_addr_t) == 8)
  542. val |= (upper_32_bits(buf_phys_addr)
  543. << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
  544. MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
  545. mvpp2_percpu_write_relaxed(port->priv, cpu,
  546. MVPP22_BM_ADDR_HIGH_RLS_REG, val);
  547. }
  548. /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
  549. * returned in the "cookie" field of the RX
  550. * descriptor. Instead of storing the virtual address, we
  551. * store the physical address
  552. */
  553. mvpp2_percpu_write_relaxed(port->priv, cpu,
  554. MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
  555. mvpp2_percpu_write_relaxed(port->priv, cpu,
  556. MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
  557. put_cpu();
  558. }
  559. /* Allocate buffers for the pool */
  560. static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
  561. struct mvpp2_bm_pool *bm_pool, int buf_num)
  562. {
  563. int i, buf_size, total_size;
  564. dma_addr_t dma_addr;
  565. phys_addr_t phys_addr;
  566. void *buf;
  567. buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
  568. total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
  569. if (buf_num < 0 ||
  570. (buf_num + bm_pool->buf_num > bm_pool->size)) {
  571. netdev_err(port->dev,
  572. "cannot allocate %d buffers for pool %d\n",
  573. buf_num, bm_pool->id);
  574. return 0;
  575. }
  576. for (i = 0; i < buf_num; i++) {
  577. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr,
  578. &phys_addr, GFP_KERNEL);
  579. if (!buf)
  580. break;
  581. mvpp2_bm_pool_put(port, bm_pool->id, dma_addr,
  582. phys_addr);
  583. }
  584. /* Update BM driver with number of buffers added to pool */
  585. bm_pool->buf_num += i;
  586. netdev_dbg(port->dev,
  587. "pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
  588. bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
  589. netdev_dbg(port->dev,
  590. "pool %d: %d of %d buffers added\n",
  591. bm_pool->id, i, buf_num);
  592. return i;
  593. }
  594. /* Notify the driver that BM pool is being used as specific type and return the
  595. * pool pointer on success
  596. */
  597. static struct mvpp2_bm_pool *
  598. mvpp2_bm_pool_use(struct mvpp2_port *port, unsigned pool, int pkt_size)
  599. {
  600. struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
  601. int num;
  602. if (pool >= MVPP2_BM_POOLS_NUM) {
  603. netdev_err(port->dev, "Invalid pool %d\n", pool);
  604. return NULL;
  605. }
  606. /* Allocate buffers in case BM pool is used as long pool, but packet
  607. * size doesn't match MTU or BM pool hasn't being used yet
  608. */
  609. if (new_pool->pkt_size == 0) {
  610. int pkts_num;
  611. /* Set default buffer number or free all the buffers in case
  612. * the pool is not empty
  613. */
  614. pkts_num = new_pool->buf_num;
  615. if (pkts_num == 0)
  616. pkts_num = mvpp2_pools[pool].buf_num;
  617. else
  618. mvpp2_bm_bufs_free(port->dev->dev.parent,
  619. port->priv, new_pool, pkts_num);
  620. new_pool->pkt_size = pkt_size;
  621. new_pool->frag_size =
  622. SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) +
  623. MVPP2_SKB_SHINFO_SIZE;
  624. /* Allocate buffers for this pool */
  625. num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
  626. if (num != pkts_num) {
  627. WARN(1, "pool %d: %d of %d allocated\n",
  628. new_pool->id, num, pkts_num);
  629. return NULL;
  630. }
  631. }
  632. mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
  633. MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
  634. return new_pool;
  635. }
  636. /* Initialize pools for swf */
  637. static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
  638. {
  639. int rxq;
  640. enum mvpp2_bm_pool_log_num long_log_pool, short_log_pool;
  641. /* If port pkt_size is higher than 1518B:
  642. * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
  643. * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
  644. */
  645. if (port->pkt_size > MVPP2_BM_LONG_PKT_SIZE) {
  646. long_log_pool = MVPP2_BM_JUMBO;
  647. short_log_pool = MVPP2_BM_LONG;
  648. } else {
  649. long_log_pool = MVPP2_BM_LONG;
  650. short_log_pool = MVPP2_BM_SHORT;
  651. }
  652. if (!port->pool_long) {
  653. port->pool_long =
  654. mvpp2_bm_pool_use(port, long_log_pool,
  655. mvpp2_pools[long_log_pool].pkt_size);
  656. if (!port->pool_long)
  657. return -ENOMEM;
  658. port->pool_long->port_map |= BIT(port->id);
  659. for (rxq = 0; rxq < port->nrxqs; rxq++)
  660. mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
  661. }
  662. if (!port->pool_short) {
  663. port->pool_short =
  664. mvpp2_bm_pool_use(port, short_log_pool,
  665. mvpp2_pools[short_log_pool].pkt_size);
  666. if (!port->pool_short)
  667. return -ENOMEM;
  668. port->pool_short->port_map |= BIT(port->id);
  669. for (rxq = 0; rxq < port->nrxqs; rxq++)
  670. mvpp2_rxq_short_pool_set(port, rxq,
  671. port->pool_short->id);
  672. }
  673. return 0;
  674. }
  675. static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
  676. {
  677. struct mvpp2_port *port = netdev_priv(dev);
  678. enum mvpp2_bm_pool_log_num new_long_pool;
  679. int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  680. /* If port MTU is higher than 1518B:
  681. * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool
  682. * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool
  683. */
  684. if (pkt_size > MVPP2_BM_LONG_PKT_SIZE)
  685. new_long_pool = MVPP2_BM_JUMBO;
  686. else
  687. new_long_pool = MVPP2_BM_LONG;
  688. if (new_long_pool != port->pool_long->id) {
  689. /* Remove port from old short & long pool */
  690. port->pool_long = mvpp2_bm_pool_use(port, port->pool_long->id,
  691. port->pool_long->pkt_size);
  692. port->pool_long->port_map &= ~BIT(port->id);
  693. port->pool_long = NULL;
  694. port->pool_short = mvpp2_bm_pool_use(port, port->pool_short->id,
  695. port->pool_short->pkt_size);
  696. port->pool_short->port_map &= ~BIT(port->id);
  697. port->pool_short = NULL;
  698. port->pkt_size = pkt_size;
  699. /* Add port to new short & long pool */
  700. mvpp2_swf_bm_pool_init(port);
  701. /* Update L4 checksum when jumbo enable/disable on port */
  702. if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) {
  703. dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  704. dev->hw_features &= ~(NETIF_F_IP_CSUM |
  705. NETIF_F_IPV6_CSUM);
  706. } else {
  707. dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
  708. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
  709. }
  710. }
  711. dev->mtu = mtu;
  712. dev->wanted_features = dev->features;
  713. netdev_update_features(dev);
  714. return 0;
  715. }
  716. static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
  717. {
  718. int i, sw_thread_mask = 0;
  719. for (i = 0; i < port->nqvecs; i++)
  720. sw_thread_mask |= port->qvecs[i].sw_thread_mask;
  721. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  722. MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask));
  723. }
  724. static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
  725. {
  726. int i, sw_thread_mask = 0;
  727. for (i = 0; i < port->nqvecs; i++)
  728. sw_thread_mask |= port->qvecs[i].sw_thread_mask;
  729. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  730. MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask));
  731. }
  732. static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec)
  733. {
  734. struct mvpp2_port *port = qvec->port;
  735. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  736. MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask));
  737. }
  738. static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec)
  739. {
  740. struct mvpp2_port *port = qvec->port;
  741. mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
  742. MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask));
  743. }
  744. /* Mask the current CPU's Rx/Tx interrupts
  745. * Called by on_each_cpu(), guaranteed to run with migration disabled,
  746. * using smp_processor_id() is OK.
  747. */
  748. static void mvpp2_interrupts_mask(void *arg)
  749. {
  750. struct mvpp2_port *port = arg;
  751. mvpp2_percpu_write(port->priv, smp_processor_id(),
  752. MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
  753. }
  754. /* Unmask the current CPU's Rx/Tx interrupts.
  755. * Called by on_each_cpu(), guaranteed to run with migration disabled,
  756. * using smp_processor_id() is OK.
  757. */
  758. static void mvpp2_interrupts_unmask(void *arg)
  759. {
  760. struct mvpp2_port *port = arg;
  761. u32 val;
  762. val = MVPP2_CAUSE_MISC_SUM_MASK |
  763. MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  764. if (port->has_tx_irqs)
  765. val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
  766. mvpp2_percpu_write(port->priv, smp_processor_id(),
  767. MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
  768. }
  769. static void
  770. mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask)
  771. {
  772. u32 val;
  773. int i;
  774. if (port->priv->hw_version != MVPP22)
  775. return;
  776. if (mask)
  777. val = 0;
  778. else
  779. val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  780. for (i = 0; i < port->nqvecs; i++) {
  781. struct mvpp2_queue_vector *v = port->qvecs + i;
  782. if (v->type != MVPP2_QUEUE_VECTOR_SHARED)
  783. continue;
  784. mvpp2_percpu_write(port->priv, v->sw_thread_id,
  785. MVPP2_ISR_RX_TX_MASK_REG(port->id), val);
  786. }
  787. }
  788. /* Port configuration routines */
  789. static void mvpp22_gop_init_rgmii(struct mvpp2_port *port)
  790. {
  791. struct mvpp2 *priv = port->priv;
  792. u32 val;
  793. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  794. val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT;
  795. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  796. regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
  797. if (port->gop_id == 2)
  798. val |= GENCONF_CTRL0_PORT0_RGMII | GENCONF_CTRL0_PORT1_RGMII;
  799. else if (port->gop_id == 3)
  800. val |= GENCONF_CTRL0_PORT1_RGMII_MII;
  801. regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
  802. }
  803. static void mvpp22_gop_init_sgmii(struct mvpp2_port *port)
  804. {
  805. struct mvpp2 *priv = port->priv;
  806. u32 val;
  807. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  808. val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT |
  809. GENCONF_PORT_CTRL0_RX_DATA_SAMPLE;
  810. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  811. if (port->gop_id > 1) {
  812. regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val);
  813. if (port->gop_id == 2)
  814. val &= ~GENCONF_CTRL0_PORT0_RGMII;
  815. else if (port->gop_id == 3)
  816. val &= ~GENCONF_CTRL0_PORT1_RGMII_MII;
  817. regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val);
  818. }
  819. }
  820. static void mvpp22_gop_init_10gkr(struct mvpp2_port *port)
  821. {
  822. struct mvpp2 *priv = port->priv;
  823. void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id);
  824. void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id);
  825. u32 val;
  826. /* XPCS */
  827. val = readl(xpcs + MVPP22_XPCS_CFG0);
  828. val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) |
  829. MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3));
  830. val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2);
  831. writel(val, xpcs + MVPP22_XPCS_CFG0);
  832. /* MPCS */
  833. val = readl(mpcs + MVPP22_MPCS_CTRL);
  834. val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN;
  835. writel(val, mpcs + MVPP22_MPCS_CTRL);
  836. val = readl(mpcs + MVPP22_MPCS_CLK_RESET);
  837. val &= ~(MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7) | MAC_CLK_RESET_MAC |
  838. MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX);
  839. val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1);
  840. writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
  841. val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET;
  842. val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX;
  843. writel(val, mpcs + MVPP22_MPCS_CLK_RESET);
  844. }
  845. static int mvpp22_gop_init(struct mvpp2_port *port)
  846. {
  847. struct mvpp2 *priv = port->priv;
  848. u32 val;
  849. if (!priv->sysctrl_base)
  850. return 0;
  851. switch (port->phy_interface) {
  852. case PHY_INTERFACE_MODE_RGMII:
  853. case PHY_INTERFACE_MODE_RGMII_ID:
  854. case PHY_INTERFACE_MODE_RGMII_RXID:
  855. case PHY_INTERFACE_MODE_RGMII_TXID:
  856. if (port->gop_id == 0)
  857. goto invalid_conf;
  858. mvpp22_gop_init_rgmii(port);
  859. break;
  860. case PHY_INTERFACE_MODE_SGMII:
  861. case PHY_INTERFACE_MODE_1000BASEX:
  862. case PHY_INTERFACE_MODE_2500BASEX:
  863. mvpp22_gop_init_sgmii(port);
  864. break;
  865. case PHY_INTERFACE_MODE_10GKR:
  866. if (port->gop_id != 0)
  867. goto invalid_conf;
  868. mvpp22_gop_init_10gkr(port);
  869. break;
  870. default:
  871. goto unsupported_conf;
  872. }
  873. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val);
  874. val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) |
  875. GENCONF_PORT_CTRL1_EN(port->gop_id);
  876. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val);
  877. regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val);
  878. val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR;
  879. regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val);
  880. regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val);
  881. val |= GENCONF_SOFT_RESET1_GOP;
  882. regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val);
  883. unsupported_conf:
  884. return 0;
  885. invalid_conf:
  886. netdev_err(port->dev, "Invalid port configuration\n");
  887. return -EINVAL;
  888. }
  889. static void mvpp22_gop_unmask_irq(struct mvpp2_port *port)
  890. {
  891. u32 val;
  892. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  893. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  894. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  895. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  896. /* Enable the GMAC link status irq for this port */
  897. val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
  898. val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
  899. writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
  900. }
  901. if (port->gop_id == 0) {
  902. /* Enable the XLG/GIG irqs for this port */
  903. val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
  904. if (port->phy_interface == PHY_INTERFACE_MODE_10GKR)
  905. val |= MVPP22_XLG_EXT_INT_MASK_XLG;
  906. else
  907. val |= MVPP22_XLG_EXT_INT_MASK_GIG;
  908. writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
  909. }
  910. }
  911. static void mvpp22_gop_mask_irq(struct mvpp2_port *port)
  912. {
  913. u32 val;
  914. if (port->gop_id == 0) {
  915. val = readl(port->base + MVPP22_XLG_EXT_INT_MASK);
  916. val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG |
  917. MVPP22_XLG_EXT_INT_MASK_GIG);
  918. writel(val, port->base + MVPP22_XLG_EXT_INT_MASK);
  919. }
  920. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  921. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  922. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  923. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  924. val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK);
  925. val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT;
  926. writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK);
  927. }
  928. }
  929. static void mvpp22_gop_setup_irq(struct mvpp2_port *port)
  930. {
  931. u32 val;
  932. if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  933. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  934. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  935. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  936. val = readl(port->base + MVPP22_GMAC_INT_MASK);
  937. val |= MVPP22_GMAC_INT_MASK_LINK_STAT;
  938. writel(val, port->base + MVPP22_GMAC_INT_MASK);
  939. }
  940. if (port->gop_id == 0) {
  941. val = readl(port->base + MVPP22_XLG_INT_MASK);
  942. val |= MVPP22_XLG_INT_MASK_LINK;
  943. writel(val, port->base + MVPP22_XLG_INT_MASK);
  944. }
  945. mvpp22_gop_unmask_irq(port);
  946. }
  947. /* Sets the PHY mode of the COMPHY (which configures the serdes lanes).
  948. *
  949. * The PHY mode used by the PPv2 driver comes from the network subsystem, while
  950. * the one given to the COMPHY comes from the generic PHY subsystem. Hence they
  951. * differ.
  952. *
  953. * The COMPHY configures the serdes lanes regardless of the actual use of the
  954. * lanes by the physical layer. This is why configurations like
  955. * "PPv2 (2500BaseX) - COMPHY (2500SGMII)" are valid.
  956. */
  957. static int mvpp22_comphy_init(struct mvpp2_port *port)
  958. {
  959. enum phy_mode mode;
  960. int ret;
  961. if (!port->comphy)
  962. return 0;
  963. switch (port->phy_interface) {
  964. case PHY_INTERFACE_MODE_SGMII:
  965. case PHY_INTERFACE_MODE_1000BASEX:
  966. mode = PHY_MODE_SGMII;
  967. break;
  968. case PHY_INTERFACE_MODE_2500BASEX:
  969. mode = PHY_MODE_2500SGMII;
  970. break;
  971. case PHY_INTERFACE_MODE_10GKR:
  972. mode = PHY_MODE_10GKR;
  973. break;
  974. default:
  975. return -EINVAL;
  976. }
  977. ret = phy_set_mode(port->comphy, mode);
  978. if (ret)
  979. return ret;
  980. return phy_power_on(port->comphy);
  981. }
  982. static void mvpp2_port_enable(struct mvpp2_port *port)
  983. {
  984. u32 val;
  985. /* Only GOP port 0 has an XLG MAC */
  986. if (port->gop_id == 0 &&
  987. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  988. port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
  989. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  990. val |= MVPP22_XLG_CTRL0_PORT_EN |
  991. MVPP22_XLG_CTRL0_MAC_RESET_DIS;
  992. val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS;
  993. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  994. } else {
  995. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  996. val |= MVPP2_GMAC_PORT_EN_MASK;
  997. val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
  998. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  999. }
  1000. }
  1001. static void mvpp2_port_disable(struct mvpp2_port *port)
  1002. {
  1003. u32 val;
  1004. /* Only GOP port 0 has an XLG MAC */
  1005. if (port->gop_id == 0 &&
  1006. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  1007. port->phy_interface == PHY_INTERFACE_MODE_10GKR)) {
  1008. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  1009. val &= ~MVPP22_XLG_CTRL0_PORT_EN;
  1010. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  1011. /* Disable & reset should be done separately */
  1012. val &= ~MVPP22_XLG_CTRL0_MAC_RESET_DIS;
  1013. writel(val, port->base + MVPP22_XLG_CTRL0_REG);
  1014. } else {
  1015. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  1016. val &= ~(MVPP2_GMAC_PORT_EN_MASK);
  1017. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  1018. }
  1019. }
  1020. /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
  1021. static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
  1022. {
  1023. u32 val;
  1024. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
  1025. ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
  1026. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  1027. }
  1028. /* Configure loopback port */
  1029. static void mvpp2_port_loopback_set(struct mvpp2_port *port,
  1030. const struct phylink_link_state *state)
  1031. {
  1032. u32 val;
  1033. val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  1034. if (state->speed == 1000)
  1035. val |= MVPP2_GMAC_GMII_LB_EN_MASK;
  1036. else
  1037. val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
  1038. if (port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  1039. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  1040. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
  1041. val |= MVPP2_GMAC_PCS_LB_EN_MASK;
  1042. else
  1043. val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
  1044. writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
  1045. }
  1046. struct mvpp2_ethtool_counter {
  1047. unsigned int offset;
  1048. const char string[ETH_GSTRING_LEN];
  1049. bool reg_is_64b;
  1050. };
  1051. static u64 mvpp2_read_count(struct mvpp2_port *port,
  1052. const struct mvpp2_ethtool_counter *counter)
  1053. {
  1054. u64 val;
  1055. val = readl(port->stats_base + counter->offset);
  1056. if (counter->reg_is_64b)
  1057. val += (u64)readl(port->stats_base + counter->offset + 4) << 32;
  1058. return val;
  1059. }
  1060. /* Due to the fact that software statistics and hardware statistics are, by
  1061. * design, incremented at different moments in the chain of packet processing,
  1062. * it is very likely that incoming packets could have been dropped after being
  1063. * counted by hardware but before reaching software statistics (most probably
  1064. * multicast packets), and in the oppposite way, during transmission, FCS bytes
  1065. * are added in between as well as TSO skb will be split and header bytes added.
  1066. * Hence, statistics gathered from userspace with ifconfig (software) and
  1067. * ethtool (hardware) cannot be compared.
  1068. */
  1069. static const struct mvpp2_ethtool_counter mvpp2_ethtool_regs[] = {
  1070. { MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true },
  1071. { MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" },
  1072. { MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" },
  1073. { MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" },
  1074. { MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" },
  1075. { MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" },
  1076. { MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" },
  1077. { MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" },
  1078. { MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" },
  1079. { MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" },
  1080. { MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" },
  1081. { MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" },
  1082. { MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true },
  1083. { MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" },
  1084. { MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" },
  1085. { MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" },
  1086. { MVPP2_MIB_FC_SENT, "fc_sent" },
  1087. { MVPP2_MIB_FC_RCVD, "fc_received" },
  1088. { MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" },
  1089. { MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" },
  1090. { MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" },
  1091. { MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" },
  1092. { MVPP2_MIB_JABBER_RCVD, "jabber_received" },
  1093. { MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" },
  1094. { MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" },
  1095. { MVPP2_MIB_COLLISION, "collision" },
  1096. { MVPP2_MIB_LATE_COLLISION, "late_collision" },
  1097. };
  1098. static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset,
  1099. u8 *data)
  1100. {
  1101. if (sset == ETH_SS_STATS) {
  1102. int i;
  1103. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1104. memcpy(data + i * ETH_GSTRING_LEN,
  1105. &mvpp2_ethtool_regs[i].string, ETH_GSTRING_LEN);
  1106. }
  1107. }
  1108. static void mvpp2_gather_hw_statistics(struct work_struct *work)
  1109. {
  1110. struct delayed_work *del_work = to_delayed_work(work);
  1111. struct mvpp2_port *port = container_of(del_work, struct mvpp2_port,
  1112. stats_work);
  1113. u64 *pstats;
  1114. int i;
  1115. mutex_lock(&port->gather_stats_lock);
  1116. pstats = port->ethtool_stats;
  1117. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1118. *pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
  1119. /* No need to read again the counters right after this function if it
  1120. * was called asynchronously by the user (ie. use of ethtool).
  1121. */
  1122. cancel_delayed_work(&port->stats_work);
  1123. queue_delayed_work(port->priv->stats_queue, &port->stats_work,
  1124. MVPP2_MIB_COUNTERS_STATS_DELAY);
  1125. mutex_unlock(&port->gather_stats_lock);
  1126. }
  1127. static void mvpp2_ethtool_get_stats(struct net_device *dev,
  1128. struct ethtool_stats *stats, u64 *data)
  1129. {
  1130. struct mvpp2_port *port = netdev_priv(dev);
  1131. /* Update statistics for the given port, then take the lock to avoid
  1132. * concurrent accesses on the ethtool_stats structure during its copy.
  1133. */
  1134. mvpp2_gather_hw_statistics(&port->stats_work.work);
  1135. mutex_lock(&port->gather_stats_lock);
  1136. memcpy(data, port->ethtool_stats,
  1137. sizeof(u64) * ARRAY_SIZE(mvpp2_ethtool_regs));
  1138. mutex_unlock(&port->gather_stats_lock);
  1139. }
  1140. static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset)
  1141. {
  1142. if (sset == ETH_SS_STATS)
  1143. return ARRAY_SIZE(mvpp2_ethtool_regs);
  1144. return -EOPNOTSUPP;
  1145. }
  1146. static void mvpp2_port_reset(struct mvpp2_port *port)
  1147. {
  1148. u32 val;
  1149. unsigned int i;
  1150. /* Read the GOP statistics to reset the hardware counters */
  1151. for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_regs); i++)
  1152. mvpp2_read_count(port, &mvpp2_ethtool_regs[i]);
  1153. val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  1154. ~MVPP2_GMAC_PORT_RESET_MASK;
  1155. writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
  1156. while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
  1157. MVPP2_GMAC_PORT_RESET_MASK)
  1158. continue;
  1159. }
  1160. /* Change maximum receive size of the port */
  1161. static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
  1162. {
  1163. u32 val;
  1164. val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  1165. val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
  1166. val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
  1167. MVPP2_GMAC_MAX_RX_SIZE_OFFS);
  1168. writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
  1169. }
  1170. /* Change maximum receive size of the port */
  1171. static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port)
  1172. {
  1173. u32 val;
  1174. val = readl(port->base + MVPP22_XLG_CTRL1_REG);
  1175. val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK;
  1176. val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
  1177. MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS;
  1178. writel(val, port->base + MVPP22_XLG_CTRL1_REG);
  1179. }
  1180. /* Set defaults to the MVPP2 port */
  1181. static void mvpp2_defaults_set(struct mvpp2_port *port)
  1182. {
  1183. int tx_port_num, val, queue, ptxq, lrxq;
  1184. if (port->priv->hw_version == MVPP21) {
  1185. /* Update TX FIFO MIN Threshold */
  1186. val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  1187. val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
  1188. /* Min. TX threshold must be less than minimal packet length */
  1189. val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
  1190. writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
  1191. }
  1192. /* Disable Legacy WRR, Disable EJP, Release from reset */
  1193. tx_port_num = mvpp2_egress_port(port);
  1194. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
  1195. tx_port_num);
  1196. mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
  1197. /* Close bandwidth for all queues */
  1198. for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
  1199. ptxq = mvpp2_txq_phys(port->id, queue);
  1200. mvpp2_write(port->priv,
  1201. MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
  1202. }
  1203. /* Set refill period to 1 usec, refill tokens
  1204. * and bucket size to maximum
  1205. */
  1206. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
  1207. port->priv->tclk / USEC_PER_SEC);
  1208. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
  1209. val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
  1210. val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
  1211. val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
  1212. mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
  1213. val = MVPP2_TXP_TOKEN_SIZE_MAX;
  1214. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  1215. /* Set MaximumLowLatencyPacketSize value to 256 */
  1216. mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
  1217. MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
  1218. MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
  1219. /* Enable Rx cache snoop */
  1220. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1221. queue = port->rxqs[lrxq]->id;
  1222. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1223. val |= MVPP2_SNOOP_PKT_SIZE_MASK |
  1224. MVPP2_SNOOP_BUF_HDR_MASK;
  1225. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1226. }
  1227. /* At default, mask all interrupts to all present cpus */
  1228. mvpp2_interrupts_disable(port);
  1229. }
  1230. /* Enable/disable receiving packets */
  1231. static void mvpp2_ingress_enable(struct mvpp2_port *port)
  1232. {
  1233. u32 val;
  1234. int lrxq, queue;
  1235. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1236. queue = port->rxqs[lrxq]->id;
  1237. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1238. val &= ~MVPP2_RXQ_DISABLE_MASK;
  1239. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1240. }
  1241. }
  1242. static void mvpp2_ingress_disable(struct mvpp2_port *port)
  1243. {
  1244. u32 val;
  1245. int lrxq, queue;
  1246. for (lrxq = 0; lrxq < port->nrxqs; lrxq++) {
  1247. queue = port->rxqs[lrxq]->id;
  1248. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
  1249. val |= MVPP2_RXQ_DISABLE_MASK;
  1250. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
  1251. }
  1252. }
  1253. /* Enable transmit via physical egress queue
  1254. * - HW starts take descriptors from DRAM
  1255. */
  1256. static void mvpp2_egress_enable(struct mvpp2_port *port)
  1257. {
  1258. u32 qmap;
  1259. int queue;
  1260. int tx_port_num = mvpp2_egress_port(port);
  1261. /* Enable all initialized TXs. */
  1262. qmap = 0;
  1263. for (queue = 0; queue < port->ntxqs; queue++) {
  1264. struct mvpp2_tx_queue *txq = port->txqs[queue];
  1265. if (txq->descs)
  1266. qmap |= (1 << queue);
  1267. }
  1268. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1269. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
  1270. }
  1271. /* Disable transmit via physical egress queue
  1272. * - HW doesn't take descriptors from DRAM
  1273. */
  1274. static void mvpp2_egress_disable(struct mvpp2_port *port)
  1275. {
  1276. u32 reg_data;
  1277. int delay;
  1278. int tx_port_num = mvpp2_egress_port(port);
  1279. /* Issue stop command for active channels only */
  1280. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1281. reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
  1282. MVPP2_TXP_SCHED_ENQ_MASK;
  1283. if (reg_data != 0)
  1284. mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
  1285. (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
  1286. /* Wait for all Tx activity to terminate. */
  1287. delay = 0;
  1288. do {
  1289. if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
  1290. netdev_warn(port->dev,
  1291. "Tx stop timed out, status=0x%08x\n",
  1292. reg_data);
  1293. break;
  1294. }
  1295. mdelay(1);
  1296. delay++;
  1297. /* Check port TX Command register that all
  1298. * Tx queues are stopped
  1299. */
  1300. reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
  1301. } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
  1302. }
  1303. /* Rx descriptors helper methods */
  1304. /* Get number of Rx descriptors occupied by received packets */
  1305. static inline int
  1306. mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
  1307. {
  1308. u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
  1309. return val & MVPP2_RXQ_OCCUPIED_MASK;
  1310. }
  1311. /* Update Rx queue status with the number of occupied and available
  1312. * Rx descriptor slots.
  1313. */
  1314. static inline void
  1315. mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
  1316. int used_count, int free_count)
  1317. {
  1318. /* Decrement the number of used descriptors and increment count
  1319. * increment the number of free descriptors.
  1320. */
  1321. u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
  1322. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
  1323. }
  1324. /* Get pointer to next RX descriptor to be processed by SW */
  1325. static inline struct mvpp2_rx_desc *
  1326. mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
  1327. {
  1328. int rx_desc = rxq->next_desc_to_proc;
  1329. rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
  1330. prefetch(rxq->descs + rxq->next_desc_to_proc);
  1331. return rxq->descs + rx_desc;
  1332. }
  1333. /* Set rx queue offset */
  1334. static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
  1335. int prxq, int offset)
  1336. {
  1337. u32 val;
  1338. /* Convert offset from bytes to units of 32 bytes */
  1339. offset = offset >> 5;
  1340. val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
  1341. val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
  1342. /* Offset is in */
  1343. val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
  1344. MVPP2_RXQ_PACKET_OFFSET_MASK);
  1345. mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
  1346. }
  1347. /* Tx descriptors helper methods */
  1348. /* Get pointer to next Tx descriptor to be processed (send) by HW */
  1349. static struct mvpp2_tx_desc *
  1350. mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
  1351. {
  1352. int tx_desc = txq->next_desc_to_proc;
  1353. txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
  1354. return txq->descs + tx_desc;
  1355. }
  1356. /* Update HW with number of aggregated Tx descriptors to be sent
  1357. *
  1358. * Called only from mvpp2_tx(), so migration is disabled, using
  1359. * smp_processor_id() is OK.
  1360. */
  1361. static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
  1362. {
  1363. /* aggregated access - relevant TXQ number is written in TX desc */
  1364. mvpp2_percpu_write(port->priv, smp_processor_id(),
  1365. MVPP2_AGGR_TXQ_UPDATE_REG, pending);
  1366. }
  1367. /* Check if there are enough free descriptors in aggregated txq.
  1368. * If not, update the number of occupied descriptors and repeat the check.
  1369. *
  1370. * Called only from mvpp2_tx(), so migration is disabled, using
  1371. * smp_processor_id() is OK.
  1372. */
  1373. static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
  1374. struct mvpp2_tx_queue *aggr_txq, int num)
  1375. {
  1376. if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) {
  1377. /* Update number of occupied aggregated Tx descriptors */
  1378. int cpu = smp_processor_id();
  1379. u32 val = mvpp2_read_relaxed(priv,
  1380. MVPP2_AGGR_TXQ_STATUS_REG(cpu));
  1381. aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
  1382. if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE)
  1383. return -ENOMEM;
  1384. }
  1385. return 0;
  1386. }
  1387. /* Reserved Tx descriptors allocation request
  1388. *
  1389. * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called
  1390. * only by mvpp2_tx(), so migration is disabled, using
  1391. * smp_processor_id() is OK.
  1392. */
  1393. static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
  1394. struct mvpp2_tx_queue *txq, int num)
  1395. {
  1396. u32 val;
  1397. int cpu = smp_processor_id();
  1398. val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
  1399. mvpp2_percpu_write_relaxed(priv, cpu, MVPP2_TXQ_RSVD_REQ_REG, val);
  1400. val = mvpp2_percpu_read_relaxed(priv, cpu, MVPP2_TXQ_RSVD_RSLT_REG);
  1401. return val & MVPP2_TXQ_RSVD_RSLT_MASK;
  1402. }
  1403. /* Check if there are enough reserved descriptors for transmission.
  1404. * If not, request chunk of reserved descriptors and check again.
  1405. */
  1406. static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
  1407. struct mvpp2_tx_queue *txq,
  1408. struct mvpp2_txq_pcpu *txq_pcpu,
  1409. int num)
  1410. {
  1411. int req, cpu, desc_count;
  1412. if (txq_pcpu->reserved_num >= num)
  1413. return 0;
  1414. /* Not enough descriptors reserved! Update the reserved descriptor
  1415. * count and check again.
  1416. */
  1417. desc_count = 0;
  1418. /* Compute total of used descriptors */
  1419. for_each_present_cpu(cpu) {
  1420. struct mvpp2_txq_pcpu *txq_pcpu_aux;
  1421. txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
  1422. desc_count += txq_pcpu_aux->count;
  1423. desc_count += txq_pcpu_aux->reserved_num;
  1424. }
  1425. req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
  1426. desc_count += req;
  1427. if (desc_count >
  1428. (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
  1429. return -ENOMEM;
  1430. txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
  1431. /* OK, the descriptor could have been updated: check again. */
  1432. if (txq_pcpu->reserved_num < num)
  1433. return -ENOMEM;
  1434. return 0;
  1435. }
  1436. /* Release the last allocated Tx descriptor. Useful to handle DMA
  1437. * mapping failures in the Tx path.
  1438. */
  1439. static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
  1440. {
  1441. if (txq->next_desc_to_proc == 0)
  1442. txq->next_desc_to_proc = txq->last_desc - 1;
  1443. else
  1444. txq->next_desc_to_proc--;
  1445. }
  1446. /* Set Tx descriptors fields relevant for CSUM calculation */
  1447. static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
  1448. int ip_hdr_len, int l4_proto)
  1449. {
  1450. u32 command;
  1451. /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  1452. * G_L4_chk, L4_type required only for checksum calculation
  1453. */
  1454. command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
  1455. command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
  1456. command |= MVPP2_TXD_IP_CSUM_DISABLE;
  1457. if (l3_proto == htons(ETH_P_IP)) {
  1458. command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
  1459. command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
  1460. } else {
  1461. command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
  1462. }
  1463. if (l4_proto == IPPROTO_TCP) {
  1464. command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
  1465. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  1466. } else if (l4_proto == IPPROTO_UDP) {
  1467. command |= MVPP2_TXD_L4_UDP; /* enable UDP */
  1468. command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
  1469. } else {
  1470. command |= MVPP2_TXD_L4_CSUM_NOT;
  1471. }
  1472. return command;
  1473. }
  1474. /* Get number of sent descriptors and decrement counter.
  1475. * The number of sent descriptors is returned.
  1476. * Per-CPU access
  1477. *
  1478. * Called only from mvpp2_txq_done(), called from mvpp2_tx()
  1479. * (migration disabled) and from the TX completion tasklet (migration
  1480. * disabled) so using smp_processor_id() is OK.
  1481. */
  1482. static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
  1483. struct mvpp2_tx_queue *txq)
  1484. {
  1485. u32 val;
  1486. /* Reading status reg resets transmitted descriptor counter */
  1487. val = mvpp2_percpu_read_relaxed(port->priv, smp_processor_id(),
  1488. MVPP2_TXQ_SENT_REG(txq->id));
  1489. return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
  1490. MVPP2_TRANSMITTED_COUNT_OFFSET;
  1491. }
  1492. /* Called through on_each_cpu(), so runs on all CPUs, with migration
  1493. * disabled, therefore using smp_processor_id() is OK.
  1494. */
  1495. static void mvpp2_txq_sent_counter_clear(void *arg)
  1496. {
  1497. struct mvpp2_port *port = arg;
  1498. int queue;
  1499. for (queue = 0; queue < port->ntxqs; queue++) {
  1500. int id = port->txqs[queue]->id;
  1501. mvpp2_percpu_read(port->priv, smp_processor_id(),
  1502. MVPP2_TXQ_SENT_REG(id));
  1503. }
  1504. }
  1505. /* Set max sizes for Tx queues */
  1506. static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
  1507. {
  1508. u32 val, size, mtu;
  1509. int txq, tx_port_num;
  1510. mtu = port->pkt_size * 8;
  1511. if (mtu > MVPP2_TXP_MTU_MAX)
  1512. mtu = MVPP2_TXP_MTU_MAX;
  1513. /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
  1514. mtu = 3 * mtu;
  1515. /* Indirect access to registers */
  1516. tx_port_num = mvpp2_egress_port(port);
  1517. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1518. /* Set MTU */
  1519. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
  1520. val &= ~MVPP2_TXP_MTU_MAX;
  1521. val |= mtu;
  1522. mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
  1523. /* TXP token size and all TXQs token size must be larger that MTU */
  1524. val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
  1525. size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
  1526. if (size < mtu) {
  1527. size = mtu;
  1528. val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
  1529. val |= size;
  1530. mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
  1531. }
  1532. for (txq = 0; txq < port->ntxqs; txq++) {
  1533. val = mvpp2_read(port->priv,
  1534. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
  1535. size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
  1536. if (size < mtu) {
  1537. size = mtu;
  1538. val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
  1539. val |= size;
  1540. mvpp2_write(port->priv,
  1541. MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
  1542. val);
  1543. }
  1544. }
  1545. }
  1546. /* Set the number of packets that will be received before Rx interrupt
  1547. * will be generated by HW.
  1548. */
  1549. static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
  1550. struct mvpp2_rx_queue *rxq)
  1551. {
  1552. int cpu = get_cpu();
  1553. if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK)
  1554. rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK;
  1555. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1556. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_THRESH_REG,
  1557. rxq->pkts_coal);
  1558. put_cpu();
  1559. }
  1560. /* For some reason in the LSP this is done on each CPU. Why ? */
  1561. static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port,
  1562. struct mvpp2_tx_queue *txq)
  1563. {
  1564. int cpu = get_cpu();
  1565. u32 val;
  1566. if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK)
  1567. txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK;
  1568. val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET);
  1569. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1570. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_THRESH_REG, val);
  1571. put_cpu();
  1572. }
  1573. static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz)
  1574. {
  1575. u64 tmp = (u64)clk_hz * usec;
  1576. do_div(tmp, USEC_PER_SEC);
  1577. return tmp > U32_MAX ? U32_MAX : tmp;
  1578. }
  1579. static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz)
  1580. {
  1581. u64 tmp = (u64)cycles * USEC_PER_SEC;
  1582. do_div(tmp, clk_hz);
  1583. return tmp > U32_MAX ? U32_MAX : tmp;
  1584. }
  1585. /* Set the time delay in usec before Rx interrupt */
  1586. static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
  1587. struct mvpp2_rx_queue *rxq)
  1588. {
  1589. unsigned long freq = port->priv->tclk;
  1590. u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  1591. if (val > MVPP2_MAX_ISR_RX_THRESHOLD) {
  1592. rxq->time_coal =
  1593. mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq);
  1594. /* re-evaluate to get actual register value */
  1595. val = mvpp2_usec_to_cycles(rxq->time_coal, freq);
  1596. }
  1597. mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
  1598. }
  1599. static void mvpp2_tx_time_coal_set(struct mvpp2_port *port)
  1600. {
  1601. unsigned long freq = port->priv->tclk;
  1602. u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
  1603. if (val > MVPP2_MAX_ISR_TX_THRESHOLD) {
  1604. port->tx_time_coal =
  1605. mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq);
  1606. /* re-evaluate to get actual register value */
  1607. val = mvpp2_usec_to_cycles(port->tx_time_coal, freq);
  1608. }
  1609. mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val);
  1610. }
  1611. /* Free Tx queue skbuffs */
  1612. static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
  1613. struct mvpp2_tx_queue *txq,
  1614. struct mvpp2_txq_pcpu *txq_pcpu, int num)
  1615. {
  1616. int i;
  1617. for (i = 0; i < num; i++) {
  1618. struct mvpp2_txq_pcpu_buf *tx_buf =
  1619. txq_pcpu->buffs + txq_pcpu->txq_get_index;
  1620. if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma))
  1621. dma_unmap_single(port->dev->dev.parent, tx_buf->dma,
  1622. tx_buf->size, DMA_TO_DEVICE);
  1623. if (tx_buf->skb)
  1624. dev_kfree_skb_any(tx_buf->skb);
  1625. mvpp2_txq_inc_get(txq_pcpu);
  1626. }
  1627. }
  1628. static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
  1629. u32 cause)
  1630. {
  1631. int queue = fls(cause) - 1;
  1632. return port->rxqs[queue];
  1633. }
  1634. static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
  1635. u32 cause)
  1636. {
  1637. int queue = fls(cause) - 1;
  1638. return port->txqs[queue];
  1639. }
  1640. /* Handle end of transmission */
  1641. static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  1642. struct mvpp2_txq_pcpu *txq_pcpu)
  1643. {
  1644. struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
  1645. int tx_done;
  1646. if (txq_pcpu->cpu != smp_processor_id())
  1647. netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
  1648. tx_done = mvpp2_txq_sent_desc_proc(port, txq);
  1649. if (!tx_done)
  1650. return;
  1651. mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
  1652. txq_pcpu->count -= tx_done;
  1653. if (netif_tx_queue_stopped(nq))
  1654. if (txq_pcpu->count <= txq_pcpu->wake_threshold)
  1655. netif_tx_wake_queue(nq);
  1656. }
  1657. static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause,
  1658. int cpu)
  1659. {
  1660. struct mvpp2_tx_queue *txq;
  1661. struct mvpp2_txq_pcpu *txq_pcpu;
  1662. unsigned int tx_todo = 0;
  1663. while (cause) {
  1664. txq = mvpp2_get_tx_queue(port, cause);
  1665. if (!txq)
  1666. break;
  1667. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1668. if (txq_pcpu->count) {
  1669. mvpp2_txq_done(port, txq, txq_pcpu);
  1670. tx_todo += txq_pcpu->count;
  1671. }
  1672. cause &= ~(1 << txq->log_id);
  1673. }
  1674. return tx_todo;
  1675. }
  1676. /* Rx/Tx queue initialization/cleanup methods */
  1677. /* Allocate and initialize descriptors for aggr TXQ */
  1678. static int mvpp2_aggr_txq_init(struct platform_device *pdev,
  1679. struct mvpp2_tx_queue *aggr_txq, int cpu,
  1680. struct mvpp2 *priv)
  1681. {
  1682. u32 txq_dma;
  1683. /* Allocate memory for TX descriptors */
  1684. aggr_txq->descs = dma_zalloc_coherent(&pdev->dev,
  1685. MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
  1686. &aggr_txq->descs_dma, GFP_KERNEL);
  1687. if (!aggr_txq->descs)
  1688. return -ENOMEM;
  1689. aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1;
  1690. /* Aggr TXQ no reset WA */
  1691. aggr_txq->next_desc_to_proc = mvpp2_read(priv,
  1692. MVPP2_AGGR_TXQ_INDEX_REG(cpu));
  1693. /* Set Tx descriptors queue starting address indirect
  1694. * access
  1695. */
  1696. if (priv->hw_version == MVPP21)
  1697. txq_dma = aggr_txq->descs_dma;
  1698. else
  1699. txq_dma = aggr_txq->descs_dma >>
  1700. MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
  1701. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
  1702. mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu),
  1703. MVPP2_AGGR_TXQ_SIZE);
  1704. return 0;
  1705. }
  1706. /* Create a specified Rx queue */
  1707. static int mvpp2_rxq_init(struct mvpp2_port *port,
  1708. struct mvpp2_rx_queue *rxq)
  1709. {
  1710. u32 rxq_dma;
  1711. int cpu;
  1712. rxq->size = port->rx_ring_size;
  1713. /* Allocate memory for RX descriptors */
  1714. rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
  1715. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  1716. &rxq->descs_dma, GFP_KERNEL);
  1717. if (!rxq->descs)
  1718. return -ENOMEM;
  1719. rxq->last_desc = rxq->size - 1;
  1720. /* Zero occupied and non-occupied counters - direct access */
  1721. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  1722. /* Set Rx descriptors queue starting address - indirect access */
  1723. cpu = get_cpu();
  1724. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1725. if (port->priv->hw_version == MVPP21)
  1726. rxq_dma = rxq->descs_dma;
  1727. else
  1728. rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
  1729. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
  1730. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
  1731. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_INDEX_REG, 0);
  1732. put_cpu();
  1733. /* Set Offset */
  1734. mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
  1735. /* Set coalescing pkts and time */
  1736. mvpp2_rx_pkts_coal_set(port, rxq);
  1737. mvpp2_rx_time_coal_set(port, rxq);
  1738. /* Add number of descriptors ready for receiving packets */
  1739. mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
  1740. return 0;
  1741. }
  1742. /* Push packets received by the RXQ to BM pool */
  1743. static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
  1744. struct mvpp2_rx_queue *rxq)
  1745. {
  1746. int rx_received, i;
  1747. rx_received = mvpp2_rxq_received(port, rxq->id);
  1748. if (!rx_received)
  1749. return;
  1750. for (i = 0; i < rx_received; i++) {
  1751. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  1752. u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
  1753. int pool;
  1754. pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >>
  1755. MVPP2_RXD_BM_POOL_ID_OFFS;
  1756. mvpp2_bm_pool_put(port, pool,
  1757. mvpp2_rxdesc_dma_addr_get(port, rx_desc),
  1758. mvpp2_rxdesc_cookie_get(port, rx_desc));
  1759. }
  1760. mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
  1761. }
  1762. /* Cleanup Rx queue */
  1763. static void mvpp2_rxq_deinit(struct mvpp2_port *port,
  1764. struct mvpp2_rx_queue *rxq)
  1765. {
  1766. int cpu;
  1767. mvpp2_rxq_drop_pkts(port, rxq);
  1768. if (rxq->descs)
  1769. dma_free_coherent(port->dev->dev.parent,
  1770. rxq->size * MVPP2_DESC_ALIGNED_SIZE,
  1771. rxq->descs,
  1772. rxq->descs_dma);
  1773. rxq->descs = NULL;
  1774. rxq->last_desc = 0;
  1775. rxq->next_desc_to_proc = 0;
  1776. rxq->descs_dma = 0;
  1777. /* Clear Rx descriptors queue starting address and size;
  1778. * free descriptor number
  1779. */
  1780. mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
  1781. cpu = get_cpu();
  1782. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_NUM_REG, rxq->id);
  1783. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_ADDR_REG, 0);
  1784. mvpp2_percpu_write(port->priv, cpu, MVPP2_RXQ_DESC_SIZE_REG, 0);
  1785. put_cpu();
  1786. }
  1787. /* Create and initialize a Tx queue */
  1788. static int mvpp2_txq_init(struct mvpp2_port *port,
  1789. struct mvpp2_tx_queue *txq)
  1790. {
  1791. u32 val;
  1792. int cpu, desc, desc_per_txq, tx_port_num;
  1793. struct mvpp2_txq_pcpu *txq_pcpu;
  1794. txq->size = port->tx_ring_size;
  1795. /* Allocate memory for Tx descriptors */
  1796. txq->descs = dma_alloc_coherent(port->dev->dev.parent,
  1797. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  1798. &txq->descs_dma, GFP_KERNEL);
  1799. if (!txq->descs)
  1800. return -ENOMEM;
  1801. txq->last_desc = txq->size - 1;
  1802. /* Set Tx descriptors queue starting address - indirect access */
  1803. cpu = get_cpu();
  1804. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1805. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG,
  1806. txq->descs_dma);
  1807. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG,
  1808. txq->size & MVPP2_TXQ_DESC_SIZE_MASK);
  1809. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_INDEX_REG, 0);
  1810. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_RSVD_CLR_REG,
  1811. txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
  1812. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PENDING_REG);
  1813. val &= ~MVPP2_TXQ_PENDING_MASK;
  1814. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PENDING_REG, val);
  1815. /* Calculate base address in prefetch buffer. We reserve 16 descriptors
  1816. * for each existing TXQ.
  1817. * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
  1818. * GBE ports assumed to be continuous from 0 to MVPP2_MAX_PORTS
  1819. */
  1820. desc_per_txq = 16;
  1821. desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
  1822. (txq->log_id * desc_per_txq);
  1823. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG,
  1824. MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
  1825. MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
  1826. put_cpu();
  1827. /* WRR / EJP configuration - indirect access */
  1828. tx_port_num = mvpp2_egress_port(port);
  1829. mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
  1830. val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
  1831. val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
  1832. val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
  1833. val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
  1834. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
  1835. val = MVPP2_TXQ_TOKEN_SIZE_MAX;
  1836. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
  1837. val);
  1838. for_each_present_cpu(cpu) {
  1839. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1840. txq_pcpu->size = txq->size;
  1841. txq_pcpu->buffs = kmalloc_array(txq_pcpu->size,
  1842. sizeof(*txq_pcpu->buffs),
  1843. GFP_KERNEL);
  1844. if (!txq_pcpu->buffs)
  1845. return -ENOMEM;
  1846. txq_pcpu->count = 0;
  1847. txq_pcpu->reserved_num = 0;
  1848. txq_pcpu->txq_put_index = 0;
  1849. txq_pcpu->txq_get_index = 0;
  1850. txq_pcpu->tso_headers = NULL;
  1851. txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS;
  1852. txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2;
  1853. txq_pcpu->tso_headers =
  1854. dma_alloc_coherent(port->dev->dev.parent,
  1855. txq_pcpu->size * TSO_HEADER_SIZE,
  1856. &txq_pcpu->tso_headers_dma,
  1857. GFP_KERNEL);
  1858. if (!txq_pcpu->tso_headers)
  1859. return -ENOMEM;
  1860. }
  1861. return 0;
  1862. }
  1863. /* Free allocated TXQ resources */
  1864. static void mvpp2_txq_deinit(struct mvpp2_port *port,
  1865. struct mvpp2_tx_queue *txq)
  1866. {
  1867. struct mvpp2_txq_pcpu *txq_pcpu;
  1868. int cpu;
  1869. for_each_present_cpu(cpu) {
  1870. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1871. kfree(txq_pcpu->buffs);
  1872. if (txq_pcpu->tso_headers)
  1873. dma_free_coherent(port->dev->dev.parent,
  1874. txq_pcpu->size * TSO_HEADER_SIZE,
  1875. txq_pcpu->tso_headers,
  1876. txq_pcpu->tso_headers_dma);
  1877. txq_pcpu->tso_headers = NULL;
  1878. }
  1879. if (txq->descs)
  1880. dma_free_coherent(port->dev->dev.parent,
  1881. txq->size * MVPP2_DESC_ALIGNED_SIZE,
  1882. txq->descs, txq->descs_dma);
  1883. txq->descs = NULL;
  1884. txq->last_desc = 0;
  1885. txq->next_desc_to_proc = 0;
  1886. txq->descs_dma = 0;
  1887. /* Set minimum bandwidth for disabled TXQs */
  1888. mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
  1889. /* Set Tx descriptors queue starting address and size */
  1890. cpu = get_cpu();
  1891. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1892. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_ADDR_REG, 0);
  1893. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_DESC_SIZE_REG, 0);
  1894. put_cpu();
  1895. }
  1896. /* Cleanup Tx ports */
  1897. static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
  1898. {
  1899. struct mvpp2_txq_pcpu *txq_pcpu;
  1900. int delay, pending, cpu;
  1901. u32 val;
  1902. cpu = get_cpu();
  1903. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_NUM_REG, txq->id);
  1904. val = mvpp2_percpu_read(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG);
  1905. val |= MVPP2_TXQ_DRAIN_EN_MASK;
  1906. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  1907. /* The napi queue has been stopped so wait for all packets
  1908. * to be transmitted.
  1909. */
  1910. delay = 0;
  1911. do {
  1912. if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
  1913. netdev_warn(port->dev,
  1914. "port %d: cleaning queue %d timed out\n",
  1915. port->id, txq->log_id);
  1916. break;
  1917. }
  1918. mdelay(1);
  1919. delay++;
  1920. pending = mvpp2_percpu_read(port->priv, cpu,
  1921. MVPP2_TXQ_PENDING_REG);
  1922. pending &= MVPP2_TXQ_PENDING_MASK;
  1923. } while (pending);
  1924. val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
  1925. mvpp2_percpu_write(port->priv, cpu, MVPP2_TXQ_PREF_BUF_REG, val);
  1926. put_cpu();
  1927. for_each_present_cpu(cpu) {
  1928. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  1929. /* Release all packets */
  1930. mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
  1931. /* Reset queue */
  1932. txq_pcpu->count = 0;
  1933. txq_pcpu->txq_put_index = 0;
  1934. txq_pcpu->txq_get_index = 0;
  1935. }
  1936. }
  1937. /* Cleanup all Tx queues */
  1938. static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
  1939. {
  1940. struct mvpp2_tx_queue *txq;
  1941. int queue;
  1942. u32 val;
  1943. val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
  1944. /* Reset Tx ports and delete Tx queues */
  1945. val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
  1946. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  1947. for (queue = 0; queue < port->ntxqs; queue++) {
  1948. txq = port->txqs[queue];
  1949. mvpp2_txq_clean(port, txq);
  1950. mvpp2_txq_deinit(port, txq);
  1951. }
  1952. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  1953. val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
  1954. mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
  1955. }
  1956. /* Cleanup all Rx queues */
  1957. static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
  1958. {
  1959. int queue;
  1960. for (queue = 0; queue < port->nrxqs; queue++)
  1961. mvpp2_rxq_deinit(port, port->rxqs[queue]);
  1962. }
  1963. /* Init all Rx queues for port */
  1964. static int mvpp2_setup_rxqs(struct mvpp2_port *port)
  1965. {
  1966. int queue, err;
  1967. for (queue = 0; queue < port->nrxqs; queue++) {
  1968. err = mvpp2_rxq_init(port, port->rxqs[queue]);
  1969. if (err)
  1970. goto err_cleanup;
  1971. }
  1972. return 0;
  1973. err_cleanup:
  1974. mvpp2_cleanup_rxqs(port);
  1975. return err;
  1976. }
  1977. /* Init all tx queues for port */
  1978. static int mvpp2_setup_txqs(struct mvpp2_port *port)
  1979. {
  1980. struct mvpp2_tx_queue *txq;
  1981. int queue, err;
  1982. for (queue = 0; queue < port->ntxqs; queue++) {
  1983. txq = port->txqs[queue];
  1984. err = mvpp2_txq_init(port, txq);
  1985. if (err)
  1986. goto err_cleanup;
  1987. }
  1988. if (port->has_tx_irqs) {
  1989. mvpp2_tx_time_coal_set(port);
  1990. for (queue = 0; queue < port->ntxqs; queue++) {
  1991. txq = port->txqs[queue];
  1992. mvpp2_tx_pkts_coal_set(port, txq);
  1993. }
  1994. }
  1995. on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
  1996. return 0;
  1997. err_cleanup:
  1998. mvpp2_cleanup_txqs(port);
  1999. return err;
  2000. }
  2001. /* The callback for per-port interrupt */
  2002. static irqreturn_t mvpp2_isr(int irq, void *dev_id)
  2003. {
  2004. struct mvpp2_queue_vector *qv = dev_id;
  2005. mvpp2_qvec_interrupt_disable(qv);
  2006. napi_schedule(&qv->napi);
  2007. return IRQ_HANDLED;
  2008. }
  2009. /* Per-port interrupt for link status changes */
  2010. static irqreturn_t mvpp2_link_status_isr(int irq, void *dev_id)
  2011. {
  2012. struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
  2013. struct net_device *dev = port->dev;
  2014. bool event = false, link = false;
  2015. u32 val;
  2016. mvpp22_gop_mask_irq(port);
  2017. if (port->gop_id == 0 &&
  2018. port->phy_interface == PHY_INTERFACE_MODE_10GKR) {
  2019. val = readl(port->base + MVPP22_XLG_INT_STAT);
  2020. if (val & MVPP22_XLG_INT_STAT_LINK) {
  2021. event = true;
  2022. val = readl(port->base + MVPP22_XLG_STATUS);
  2023. if (val & MVPP22_XLG_STATUS_LINK_UP)
  2024. link = true;
  2025. }
  2026. } else if (phy_interface_mode_is_rgmii(port->phy_interface) ||
  2027. port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
  2028. port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
  2029. port->phy_interface == PHY_INTERFACE_MODE_2500BASEX) {
  2030. val = readl(port->base + MVPP22_GMAC_INT_STAT);
  2031. if (val & MVPP22_GMAC_INT_STAT_LINK) {
  2032. event = true;
  2033. val = readl(port->base + MVPP2_GMAC_STATUS0);
  2034. if (val & MVPP2_GMAC_STATUS0_LINK_UP)
  2035. link = true;
  2036. }
  2037. }
  2038. if (port->phylink) {
  2039. phylink_mac_change(port->phylink, link);
  2040. goto handled;
  2041. }
  2042. if (!netif_running(dev) || !event)
  2043. goto handled;
  2044. if (link) {
  2045. mvpp2_interrupts_enable(port);
  2046. mvpp2_egress_enable(port);
  2047. mvpp2_ingress_enable(port);
  2048. netif_carrier_on(dev);
  2049. netif_tx_wake_all_queues(dev);
  2050. } else {
  2051. netif_tx_stop_all_queues(dev);
  2052. netif_carrier_off(dev);
  2053. mvpp2_ingress_disable(port);
  2054. mvpp2_egress_disable(port);
  2055. mvpp2_interrupts_disable(port);
  2056. }
  2057. handled:
  2058. mvpp22_gop_unmask_irq(port);
  2059. return IRQ_HANDLED;
  2060. }
  2061. static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
  2062. {
  2063. ktime_t interval;
  2064. if (!port_pcpu->timer_scheduled) {
  2065. port_pcpu->timer_scheduled = true;
  2066. interval = MVPP2_TXDONE_HRTIMER_PERIOD_NS;
  2067. hrtimer_start(&port_pcpu->tx_done_timer, interval,
  2068. HRTIMER_MODE_REL_PINNED);
  2069. }
  2070. }
  2071. static void mvpp2_tx_proc_cb(unsigned long data)
  2072. {
  2073. struct net_device *dev = (struct net_device *)data;
  2074. struct mvpp2_port *port = netdev_priv(dev);
  2075. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  2076. unsigned int tx_todo, cause;
  2077. if (!netif_running(dev))
  2078. return;
  2079. port_pcpu->timer_scheduled = false;
  2080. /* Process all the Tx queues */
  2081. cause = (1 << port->ntxqs) - 1;
  2082. tx_todo = mvpp2_tx_done(port, cause, smp_processor_id());
  2083. /* Set the timer in case not all the packets were processed */
  2084. if (tx_todo)
  2085. mvpp2_timer_set(port_pcpu);
  2086. }
  2087. static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
  2088. {
  2089. struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
  2090. struct mvpp2_port_pcpu,
  2091. tx_done_timer);
  2092. tasklet_schedule(&port_pcpu->tx_done_tasklet);
  2093. return HRTIMER_NORESTART;
  2094. }
  2095. /* Main RX/TX processing routines */
  2096. /* Display more error info */
  2097. static void mvpp2_rx_error(struct mvpp2_port *port,
  2098. struct mvpp2_rx_desc *rx_desc)
  2099. {
  2100. u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
  2101. size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
  2102. char *err_str = NULL;
  2103. switch (status & MVPP2_RXD_ERR_CODE_MASK) {
  2104. case MVPP2_RXD_ERR_CRC:
  2105. err_str = "crc";
  2106. break;
  2107. case MVPP2_RXD_ERR_OVERRUN:
  2108. err_str = "overrun";
  2109. break;
  2110. case MVPP2_RXD_ERR_RESOURCE:
  2111. err_str = "resource";
  2112. break;
  2113. }
  2114. if (err_str && net_ratelimit())
  2115. netdev_err(port->dev,
  2116. "bad rx status %08x (%s error), size=%zu\n",
  2117. status, err_str, sz);
  2118. }
  2119. /* Handle RX checksum offload */
  2120. static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
  2121. struct sk_buff *skb)
  2122. {
  2123. if (((status & MVPP2_RXD_L3_IP4) &&
  2124. !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
  2125. (status & MVPP2_RXD_L3_IP6))
  2126. if (((status & MVPP2_RXD_L4_UDP) ||
  2127. (status & MVPP2_RXD_L4_TCP)) &&
  2128. (status & MVPP2_RXD_L4_CSUM_OK)) {
  2129. skb->csum = 0;
  2130. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2131. return;
  2132. }
  2133. skb->ip_summed = CHECKSUM_NONE;
  2134. }
  2135. /* Reuse skb if possible, or allocate a new skb and add it to BM pool */
  2136. static int mvpp2_rx_refill(struct mvpp2_port *port,
  2137. struct mvpp2_bm_pool *bm_pool, int pool)
  2138. {
  2139. dma_addr_t dma_addr;
  2140. phys_addr_t phys_addr;
  2141. void *buf;
  2142. /* No recycle or too many buffers are in use, so allocate a new skb */
  2143. buf = mvpp2_buf_alloc(port, bm_pool, &dma_addr, &phys_addr,
  2144. GFP_ATOMIC);
  2145. if (!buf)
  2146. return -ENOMEM;
  2147. mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
  2148. return 0;
  2149. }
  2150. /* Handle tx checksum */
  2151. static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
  2152. {
  2153. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2154. int ip_hdr_len = 0;
  2155. u8 l4_proto;
  2156. if (skb->protocol == htons(ETH_P_IP)) {
  2157. struct iphdr *ip4h = ip_hdr(skb);
  2158. /* Calculate IPv4 checksum and L4 checksum */
  2159. ip_hdr_len = ip4h->ihl;
  2160. l4_proto = ip4h->protocol;
  2161. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2162. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  2163. /* Read l4_protocol from one of IPv6 extra headers */
  2164. if (skb_network_header_len(skb) > 0)
  2165. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  2166. l4_proto = ip6h->nexthdr;
  2167. } else {
  2168. return MVPP2_TXD_L4_CSUM_NOT;
  2169. }
  2170. return mvpp2_txq_desc_csum(skb_network_offset(skb),
  2171. skb->protocol, ip_hdr_len, l4_proto);
  2172. }
  2173. return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
  2174. }
  2175. /* Main rx processing */
  2176. static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi,
  2177. int rx_todo, struct mvpp2_rx_queue *rxq)
  2178. {
  2179. struct net_device *dev = port->dev;
  2180. int rx_received;
  2181. int rx_done = 0;
  2182. u32 rcvd_pkts = 0;
  2183. u32 rcvd_bytes = 0;
  2184. /* Get number of received packets and clamp the to-do */
  2185. rx_received = mvpp2_rxq_received(port, rxq->id);
  2186. if (rx_todo > rx_received)
  2187. rx_todo = rx_received;
  2188. while (rx_done < rx_todo) {
  2189. struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
  2190. struct mvpp2_bm_pool *bm_pool;
  2191. struct sk_buff *skb;
  2192. unsigned int frag_size;
  2193. dma_addr_t dma_addr;
  2194. phys_addr_t phys_addr;
  2195. u32 rx_status;
  2196. int pool, rx_bytes, err;
  2197. void *data;
  2198. rx_done++;
  2199. rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
  2200. rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
  2201. rx_bytes -= MVPP2_MH_SIZE;
  2202. dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
  2203. phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc);
  2204. data = (void *)phys_to_virt(phys_addr);
  2205. pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
  2206. MVPP2_RXD_BM_POOL_ID_OFFS;
  2207. bm_pool = &port->priv->bm_pools[pool];
  2208. /* In case of an error, release the requested buffer pointer
  2209. * to the Buffer Manager. This request process is controlled
  2210. * by the hardware, and the information about the buffer is
  2211. * comprised by the RX descriptor.
  2212. */
  2213. if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
  2214. err_drop_frame:
  2215. dev->stats.rx_errors++;
  2216. mvpp2_rx_error(port, rx_desc);
  2217. /* Return the buffer to the pool */
  2218. mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
  2219. continue;
  2220. }
  2221. if (bm_pool->frag_size > PAGE_SIZE)
  2222. frag_size = 0;
  2223. else
  2224. frag_size = bm_pool->frag_size;
  2225. skb = build_skb(data, frag_size);
  2226. if (!skb) {
  2227. netdev_warn(port->dev, "skb build failed\n");
  2228. goto err_drop_frame;
  2229. }
  2230. err = mvpp2_rx_refill(port, bm_pool, pool);
  2231. if (err) {
  2232. netdev_err(port->dev, "failed to refill BM pools\n");
  2233. goto err_drop_frame;
  2234. }
  2235. dma_unmap_single(dev->dev.parent, dma_addr,
  2236. bm_pool->buf_size, DMA_FROM_DEVICE);
  2237. rcvd_pkts++;
  2238. rcvd_bytes += rx_bytes;
  2239. skb_reserve(skb, MVPP2_MH_SIZE + NET_SKB_PAD);
  2240. skb_put(skb, rx_bytes);
  2241. skb->protocol = eth_type_trans(skb, dev);
  2242. mvpp2_rx_csum(port, rx_status, skb);
  2243. napi_gro_receive(napi, skb);
  2244. }
  2245. if (rcvd_pkts) {
  2246. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  2247. u64_stats_update_begin(&stats->syncp);
  2248. stats->rx_packets += rcvd_pkts;
  2249. stats->rx_bytes += rcvd_bytes;
  2250. u64_stats_update_end(&stats->syncp);
  2251. }
  2252. /* Update Rx queue management counters */
  2253. wmb();
  2254. mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
  2255. return rx_todo;
  2256. }
  2257. static inline void
  2258. tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
  2259. struct mvpp2_tx_desc *desc)
  2260. {
  2261. struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
  2262. dma_addr_t buf_dma_addr =
  2263. mvpp2_txdesc_dma_addr_get(port, desc);
  2264. size_t buf_sz =
  2265. mvpp2_txdesc_size_get(port, desc);
  2266. if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr))
  2267. dma_unmap_single(port->dev->dev.parent, buf_dma_addr,
  2268. buf_sz, DMA_TO_DEVICE);
  2269. mvpp2_txq_desc_put(txq);
  2270. }
  2271. /* Handle tx fragmentation processing */
  2272. static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
  2273. struct mvpp2_tx_queue *aggr_txq,
  2274. struct mvpp2_tx_queue *txq)
  2275. {
  2276. struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
  2277. struct mvpp2_tx_desc *tx_desc;
  2278. int i;
  2279. dma_addr_t buf_dma_addr;
  2280. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2281. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2282. void *addr = page_address(frag->page.p) + frag->page_offset;
  2283. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2284. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2285. mvpp2_txdesc_size_set(port, tx_desc, frag->size);
  2286. buf_dma_addr = dma_map_single(port->dev->dev.parent, addr,
  2287. frag->size, DMA_TO_DEVICE);
  2288. if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) {
  2289. mvpp2_txq_desc_put(txq);
  2290. goto cleanup;
  2291. }
  2292. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2293. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  2294. /* Last descriptor */
  2295. mvpp2_txdesc_cmd_set(port, tx_desc,
  2296. MVPP2_TXD_L_DESC);
  2297. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2298. } else {
  2299. /* Descriptor in the middle: Not First, Not Last */
  2300. mvpp2_txdesc_cmd_set(port, tx_desc, 0);
  2301. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2302. }
  2303. }
  2304. return 0;
  2305. cleanup:
  2306. /* Release all descriptors that were used to map fragments of
  2307. * this packet, as well as the corresponding DMA mappings
  2308. */
  2309. for (i = i - 1; i >= 0; i--) {
  2310. tx_desc = txq->descs + i;
  2311. tx_desc_unmap_put(port, txq, tx_desc);
  2312. }
  2313. return -ENOMEM;
  2314. }
  2315. static inline void mvpp2_tso_put_hdr(struct sk_buff *skb,
  2316. struct net_device *dev,
  2317. struct mvpp2_tx_queue *txq,
  2318. struct mvpp2_tx_queue *aggr_txq,
  2319. struct mvpp2_txq_pcpu *txq_pcpu,
  2320. int hdr_sz)
  2321. {
  2322. struct mvpp2_port *port = netdev_priv(dev);
  2323. struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2324. dma_addr_t addr;
  2325. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2326. mvpp2_txdesc_size_set(port, tx_desc, hdr_sz);
  2327. addr = txq_pcpu->tso_headers_dma +
  2328. txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
  2329. mvpp2_txdesc_dma_addr_set(port, tx_desc, addr);
  2330. mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) |
  2331. MVPP2_TXD_F_DESC |
  2332. MVPP2_TXD_PADDING_DISABLE);
  2333. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2334. }
  2335. static inline int mvpp2_tso_put_data(struct sk_buff *skb,
  2336. struct net_device *dev, struct tso_t *tso,
  2337. struct mvpp2_tx_queue *txq,
  2338. struct mvpp2_tx_queue *aggr_txq,
  2339. struct mvpp2_txq_pcpu *txq_pcpu,
  2340. int sz, bool left, bool last)
  2341. {
  2342. struct mvpp2_port *port = netdev_priv(dev);
  2343. struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2344. dma_addr_t buf_dma_addr;
  2345. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2346. mvpp2_txdesc_size_set(port, tx_desc, sz);
  2347. buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz,
  2348. DMA_TO_DEVICE);
  2349. if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
  2350. mvpp2_txq_desc_put(txq);
  2351. return -ENOMEM;
  2352. }
  2353. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2354. if (!left) {
  2355. mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC);
  2356. if (last) {
  2357. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2358. return 0;
  2359. }
  2360. } else {
  2361. mvpp2_txdesc_cmd_set(port, tx_desc, 0);
  2362. }
  2363. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2364. return 0;
  2365. }
  2366. static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev,
  2367. struct mvpp2_tx_queue *txq,
  2368. struct mvpp2_tx_queue *aggr_txq,
  2369. struct mvpp2_txq_pcpu *txq_pcpu)
  2370. {
  2371. struct mvpp2_port *port = netdev_priv(dev);
  2372. struct tso_t tso;
  2373. int hdr_sz = skb_transport_offset(skb) + tcp_hdrlen(skb);
  2374. int i, len, descs = 0;
  2375. /* Check number of available descriptors */
  2376. if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq,
  2377. tso_count_descs(skb)) ||
  2378. mvpp2_txq_reserved_desc_num_proc(port->priv, txq, txq_pcpu,
  2379. tso_count_descs(skb)))
  2380. return 0;
  2381. tso_start(skb, &tso);
  2382. len = skb->len - hdr_sz;
  2383. while (len > 0) {
  2384. int left = min_t(int, skb_shinfo(skb)->gso_size, len);
  2385. char *hdr = txq_pcpu->tso_headers +
  2386. txq_pcpu->txq_put_index * TSO_HEADER_SIZE;
  2387. len -= left;
  2388. descs++;
  2389. tso_build_hdr(skb, hdr, &tso, left, len == 0);
  2390. mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz);
  2391. while (left > 0) {
  2392. int sz = min_t(int, tso.size, left);
  2393. left -= sz;
  2394. descs++;
  2395. if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq,
  2396. txq_pcpu, sz, left, len == 0))
  2397. goto release;
  2398. tso_build_data(skb, &tso, sz);
  2399. }
  2400. }
  2401. return descs;
  2402. release:
  2403. for (i = descs - 1; i >= 0; i--) {
  2404. struct mvpp2_tx_desc *tx_desc = txq->descs + i;
  2405. tx_desc_unmap_put(port, txq, tx_desc);
  2406. }
  2407. return 0;
  2408. }
  2409. /* Main tx processing */
  2410. static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
  2411. {
  2412. struct mvpp2_port *port = netdev_priv(dev);
  2413. struct mvpp2_tx_queue *txq, *aggr_txq;
  2414. struct mvpp2_txq_pcpu *txq_pcpu;
  2415. struct mvpp2_tx_desc *tx_desc;
  2416. dma_addr_t buf_dma_addr;
  2417. int frags = 0;
  2418. u16 txq_id;
  2419. u32 tx_cmd;
  2420. txq_id = skb_get_queue_mapping(skb);
  2421. txq = port->txqs[txq_id];
  2422. txq_pcpu = this_cpu_ptr(txq->pcpu);
  2423. aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
  2424. if (skb_is_gso(skb)) {
  2425. frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu);
  2426. goto out;
  2427. }
  2428. frags = skb_shinfo(skb)->nr_frags + 1;
  2429. /* Check number of available descriptors */
  2430. if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
  2431. mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
  2432. txq_pcpu, frags)) {
  2433. frags = 0;
  2434. goto out;
  2435. }
  2436. /* Get a descriptor for the first part of the packet */
  2437. tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
  2438. mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
  2439. mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb));
  2440. buf_dma_addr = dma_map_single(dev->dev.parent, skb->data,
  2441. skb_headlen(skb), DMA_TO_DEVICE);
  2442. if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) {
  2443. mvpp2_txq_desc_put(txq);
  2444. frags = 0;
  2445. goto out;
  2446. }
  2447. mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr);
  2448. tx_cmd = mvpp2_skb_tx_csum(port, skb);
  2449. if (frags == 1) {
  2450. /* First and Last descriptor */
  2451. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
  2452. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  2453. mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc);
  2454. } else {
  2455. /* First but not Last */
  2456. tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
  2457. mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd);
  2458. mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc);
  2459. /* Continue with other skb fragments */
  2460. if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
  2461. tx_desc_unmap_put(port, txq, tx_desc);
  2462. frags = 0;
  2463. }
  2464. }
  2465. out:
  2466. if (frags > 0) {
  2467. struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
  2468. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  2469. txq_pcpu->reserved_num -= frags;
  2470. txq_pcpu->count += frags;
  2471. aggr_txq->count += frags;
  2472. /* Enable transmit */
  2473. wmb();
  2474. mvpp2_aggr_txq_pend_desc_add(port, frags);
  2475. if (txq_pcpu->count >= txq_pcpu->stop_threshold)
  2476. netif_tx_stop_queue(nq);
  2477. u64_stats_update_begin(&stats->syncp);
  2478. stats->tx_packets++;
  2479. stats->tx_bytes += skb->len;
  2480. u64_stats_update_end(&stats->syncp);
  2481. } else {
  2482. dev->stats.tx_dropped++;
  2483. dev_kfree_skb_any(skb);
  2484. }
  2485. /* Finalize TX processing */
  2486. if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal)
  2487. mvpp2_txq_done(port, txq, txq_pcpu);
  2488. /* Set the timer in case not all frags were processed */
  2489. if (!port->has_tx_irqs && txq_pcpu->count <= frags &&
  2490. txq_pcpu->count > 0) {
  2491. struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
  2492. mvpp2_timer_set(port_pcpu);
  2493. }
  2494. return NETDEV_TX_OK;
  2495. }
  2496. static inline void mvpp2_cause_error(struct net_device *dev, int cause)
  2497. {
  2498. if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
  2499. netdev_err(dev, "FCS error\n");
  2500. if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
  2501. netdev_err(dev, "rx fifo overrun error\n");
  2502. if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
  2503. netdev_err(dev, "tx fifo underrun error\n");
  2504. }
  2505. static int mvpp2_poll(struct napi_struct *napi, int budget)
  2506. {
  2507. u32 cause_rx_tx, cause_rx, cause_tx, cause_misc;
  2508. int rx_done = 0;
  2509. struct mvpp2_port *port = netdev_priv(napi->dev);
  2510. struct mvpp2_queue_vector *qv;
  2511. int cpu = smp_processor_id();
  2512. qv = container_of(napi, struct mvpp2_queue_vector, napi);
  2513. /* Rx/Tx cause register
  2514. *
  2515. * Bits 0-15: each bit indicates received packets on the Rx queue
  2516. * (bit 0 is for Rx queue 0).
  2517. *
  2518. * Bits 16-23: each bit indicates transmitted packets on the Tx queue
  2519. * (bit 16 is for Tx queue 0).
  2520. *
  2521. * Each CPU has its own Rx/Tx cause register
  2522. */
  2523. cause_rx_tx = mvpp2_percpu_read_relaxed(port->priv, qv->sw_thread_id,
  2524. MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
  2525. cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
  2526. if (cause_misc) {
  2527. mvpp2_cause_error(port->dev, cause_misc);
  2528. /* Clear the cause register */
  2529. mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
  2530. mvpp2_percpu_write(port->priv, cpu,
  2531. MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
  2532. cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
  2533. }
  2534. cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
  2535. if (cause_tx) {
  2536. cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET;
  2537. mvpp2_tx_done(port, cause_tx, qv->sw_thread_id);
  2538. }
  2539. /* Process RX packets */
  2540. cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
  2541. cause_rx <<= qv->first_rxq;
  2542. cause_rx |= qv->pending_cause_rx;
  2543. while (cause_rx && budget > 0) {
  2544. int count;
  2545. struct mvpp2_rx_queue *rxq;
  2546. rxq = mvpp2_get_rx_queue(port, cause_rx);
  2547. if (!rxq)
  2548. break;
  2549. count = mvpp2_rx(port, napi, budget, rxq);
  2550. rx_done += count;
  2551. budget -= count;
  2552. if (budget > 0) {
  2553. /* Clear the bit associated to this Rx queue
  2554. * so that next iteration will continue from
  2555. * the next Rx queue.
  2556. */
  2557. cause_rx &= ~(1 << rxq->logic_rxq);
  2558. }
  2559. }
  2560. if (budget > 0) {
  2561. cause_rx = 0;
  2562. napi_complete_done(napi, rx_done);
  2563. mvpp2_qvec_interrupt_enable(qv);
  2564. }
  2565. qv->pending_cause_rx = cause_rx;
  2566. return rx_done;
  2567. }
  2568. static void mvpp22_mode_reconfigure(struct mvpp2_port *port)
  2569. {
  2570. u32 ctrl3;
  2571. /* comphy reconfiguration */
  2572. mvpp22_comphy_init(port);
  2573. /* gop reconfiguration */
  2574. mvpp22_gop_init(port);
  2575. /* Only GOP port 0 has an XLG MAC */
  2576. if (port->gop_id == 0) {
  2577. ctrl3 = readl(port->base + MVPP22_XLG_CTRL3_REG);
  2578. ctrl3 &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
  2579. if (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  2580. port->phy_interface == PHY_INTERFACE_MODE_10GKR)
  2581. ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_10G;
  2582. else
  2583. ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
  2584. writel(ctrl3, port->base + MVPP22_XLG_CTRL3_REG);
  2585. }
  2586. if (port->gop_id == 0 &&
  2587. (port->phy_interface == PHY_INTERFACE_MODE_XAUI ||
  2588. port->phy_interface == PHY_INTERFACE_MODE_10GKR))
  2589. mvpp2_xlg_max_rx_size_set(port);
  2590. else
  2591. mvpp2_gmac_max_rx_size_set(port);
  2592. }
  2593. /* Set hw internals when starting port */
  2594. static void mvpp2_start_dev(struct mvpp2_port *port)
  2595. {
  2596. int i;
  2597. mvpp2_txp_max_tx_size_set(port);
  2598. for (i = 0; i < port->nqvecs; i++)
  2599. napi_enable(&port->qvecs[i].napi);
  2600. /* Enable interrupts on all CPUs */
  2601. mvpp2_interrupts_enable(port);
  2602. if (port->priv->hw_version == MVPP22)
  2603. mvpp22_mode_reconfigure(port);
  2604. if (port->phylink) {
  2605. phylink_start(port->phylink);
  2606. } else {
  2607. /* Phylink isn't used as of now for ACPI, so the MAC has to be
  2608. * configured manually when the interface is started. This will
  2609. * be removed as soon as the phylink ACPI support lands in.
  2610. */
  2611. struct phylink_link_state state = {
  2612. .interface = port->phy_interface,
  2613. .link = 1,
  2614. };
  2615. mvpp2_mac_config(port->dev, MLO_AN_INBAND, &state);
  2616. }
  2617. netif_tx_start_all_queues(port->dev);
  2618. }
  2619. /* Set hw internals when stopping port */
  2620. static void mvpp2_stop_dev(struct mvpp2_port *port)
  2621. {
  2622. int i;
  2623. /* Disable interrupts on all CPUs */
  2624. mvpp2_interrupts_disable(port);
  2625. for (i = 0; i < port->nqvecs; i++)
  2626. napi_disable(&port->qvecs[i].napi);
  2627. if (port->phylink)
  2628. phylink_stop(port->phylink);
  2629. phy_power_off(port->comphy);
  2630. }
  2631. static int mvpp2_check_ringparam_valid(struct net_device *dev,
  2632. struct ethtool_ringparam *ring)
  2633. {
  2634. u16 new_rx_pending = ring->rx_pending;
  2635. u16 new_tx_pending = ring->tx_pending;
  2636. if (ring->rx_pending == 0 || ring->tx_pending == 0)
  2637. return -EINVAL;
  2638. if (ring->rx_pending > MVPP2_MAX_RXD_MAX)
  2639. new_rx_pending = MVPP2_MAX_RXD_MAX;
  2640. else if (!IS_ALIGNED(ring->rx_pending, 16))
  2641. new_rx_pending = ALIGN(ring->rx_pending, 16);
  2642. if (ring->tx_pending > MVPP2_MAX_TXD_MAX)
  2643. new_tx_pending = MVPP2_MAX_TXD_MAX;
  2644. else if (!IS_ALIGNED(ring->tx_pending, 32))
  2645. new_tx_pending = ALIGN(ring->tx_pending, 32);
  2646. /* The Tx ring size cannot be smaller than the minimum number of
  2647. * descriptors needed for TSO.
  2648. */
  2649. if (new_tx_pending < MVPP2_MAX_SKB_DESCS)
  2650. new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32);
  2651. if (ring->rx_pending != new_rx_pending) {
  2652. netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
  2653. ring->rx_pending, new_rx_pending);
  2654. ring->rx_pending = new_rx_pending;
  2655. }
  2656. if (ring->tx_pending != new_tx_pending) {
  2657. netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
  2658. ring->tx_pending, new_tx_pending);
  2659. ring->tx_pending = new_tx_pending;
  2660. }
  2661. return 0;
  2662. }
  2663. static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
  2664. {
  2665. u32 mac_addr_l, mac_addr_m, mac_addr_h;
  2666. mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
  2667. mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
  2668. mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
  2669. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2670. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2671. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2672. addr[3] = mac_addr_h & 0xFF;
  2673. addr[4] = mac_addr_m & 0xFF;
  2674. addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
  2675. }
  2676. static int mvpp2_irqs_init(struct mvpp2_port *port)
  2677. {
  2678. int err, i;
  2679. for (i = 0; i < port->nqvecs; i++) {
  2680. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2681. if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
  2682. irq_set_status_flags(qv->irq, IRQ_NO_BALANCING);
  2683. err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv);
  2684. if (err)
  2685. goto err;
  2686. if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE)
  2687. irq_set_affinity_hint(qv->irq,
  2688. cpumask_of(qv->sw_thread_id));
  2689. }
  2690. return 0;
  2691. err:
  2692. for (i = 0; i < port->nqvecs; i++) {
  2693. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2694. irq_set_affinity_hint(qv->irq, NULL);
  2695. free_irq(qv->irq, qv);
  2696. }
  2697. return err;
  2698. }
  2699. static void mvpp2_irqs_deinit(struct mvpp2_port *port)
  2700. {
  2701. int i;
  2702. for (i = 0; i < port->nqvecs; i++) {
  2703. struct mvpp2_queue_vector *qv = port->qvecs + i;
  2704. irq_set_affinity_hint(qv->irq, NULL);
  2705. irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING);
  2706. free_irq(qv->irq, qv);
  2707. }
  2708. }
  2709. static bool mvpp22_rss_is_supported(void)
  2710. {
  2711. return queue_mode == MVPP2_QDIST_MULTI_MODE;
  2712. }
  2713. static int mvpp2_open(struct net_device *dev)
  2714. {
  2715. struct mvpp2_port *port = netdev_priv(dev);
  2716. struct mvpp2 *priv = port->priv;
  2717. unsigned char mac_bcast[ETH_ALEN] = {
  2718. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  2719. bool valid = false;
  2720. int err;
  2721. err = mvpp2_prs_mac_da_accept(port, mac_bcast, true);
  2722. if (err) {
  2723. netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
  2724. return err;
  2725. }
  2726. err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, true);
  2727. if (err) {
  2728. netdev_err(dev, "mvpp2_prs_mac_da_accept own addr failed\n");
  2729. return err;
  2730. }
  2731. err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
  2732. if (err) {
  2733. netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
  2734. return err;
  2735. }
  2736. err = mvpp2_prs_def_flow(port);
  2737. if (err) {
  2738. netdev_err(dev, "mvpp2_prs_def_flow failed\n");
  2739. return err;
  2740. }
  2741. /* Allocate the Rx/Tx queues */
  2742. err = mvpp2_setup_rxqs(port);
  2743. if (err) {
  2744. netdev_err(port->dev, "cannot allocate Rx queues\n");
  2745. return err;
  2746. }
  2747. err = mvpp2_setup_txqs(port);
  2748. if (err) {
  2749. netdev_err(port->dev, "cannot allocate Tx queues\n");
  2750. goto err_cleanup_rxqs;
  2751. }
  2752. err = mvpp2_irqs_init(port);
  2753. if (err) {
  2754. netdev_err(port->dev, "cannot init IRQs\n");
  2755. goto err_cleanup_txqs;
  2756. }
  2757. /* Phylink isn't supported yet in ACPI mode */
  2758. if (port->of_node) {
  2759. err = phylink_of_phy_connect(port->phylink, port->of_node, 0);
  2760. if (err) {
  2761. netdev_err(port->dev, "could not attach PHY (%d)\n",
  2762. err);
  2763. goto err_free_irq;
  2764. }
  2765. valid = true;
  2766. }
  2767. if (priv->hw_version == MVPP22 && port->link_irq && !port->phylink) {
  2768. err = request_irq(port->link_irq, mvpp2_link_status_isr, 0,
  2769. dev->name, port);
  2770. if (err) {
  2771. netdev_err(port->dev, "cannot request link IRQ %d\n",
  2772. port->link_irq);
  2773. goto err_free_irq;
  2774. }
  2775. mvpp22_gop_setup_irq(port);
  2776. /* In default link is down */
  2777. netif_carrier_off(port->dev);
  2778. valid = true;
  2779. } else {
  2780. port->link_irq = 0;
  2781. }
  2782. if (!valid) {
  2783. netdev_err(port->dev,
  2784. "invalid configuration: no dt or link IRQ");
  2785. goto err_free_irq;
  2786. }
  2787. /* Unmask interrupts on all CPUs */
  2788. on_each_cpu(mvpp2_interrupts_unmask, port, 1);
  2789. mvpp2_shared_interrupt_mask_unmask(port, false);
  2790. mvpp2_start_dev(port);
  2791. /* Start hardware statistics gathering */
  2792. queue_delayed_work(priv->stats_queue, &port->stats_work,
  2793. MVPP2_MIB_COUNTERS_STATS_DELAY);
  2794. return 0;
  2795. err_free_irq:
  2796. mvpp2_irqs_deinit(port);
  2797. err_cleanup_txqs:
  2798. mvpp2_cleanup_txqs(port);
  2799. err_cleanup_rxqs:
  2800. mvpp2_cleanup_rxqs(port);
  2801. return err;
  2802. }
  2803. static int mvpp2_stop(struct net_device *dev)
  2804. {
  2805. struct mvpp2_port *port = netdev_priv(dev);
  2806. struct mvpp2_port_pcpu *port_pcpu;
  2807. int cpu;
  2808. mvpp2_stop_dev(port);
  2809. /* Mask interrupts on all CPUs */
  2810. on_each_cpu(mvpp2_interrupts_mask, port, 1);
  2811. mvpp2_shared_interrupt_mask_unmask(port, true);
  2812. if (port->phylink)
  2813. phylink_disconnect_phy(port->phylink);
  2814. if (port->link_irq)
  2815. free_irq(port->link_irq, port);
  2816. mvpp2_irqs_deinit(port);
  2817. if (!port->has_tx_irqs) {
  2818. for_each_present_cpu(cpu) {
  2819. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  2820. hrtimer_cancel(&port_pcpu->tx_done_timer);
  2821. port_pcpu->timer_scheduled = false;
  2822. tasklet_kill(&port_pcpu->tx_done_tasklet);
  2823. }
  2824. }
  2825. mvpp2_cleanup_rxqs(port);
  2826. mvpp2_cleanup_txqs(port);
  2827. cancel_delayed_work_sync(&port->stats_work);
  2828. return 0;
  2829. }
  2830. static int mvpp2_prs_mac_da_accept_list(struct mvpp2_port *port,
  2831. struct netdev_hw_addr_list *list)
  2832. {
  2833. struct netdev_hw_addr *ha;
  2834. int ret;
  2835. netdev_hw_addr_list_for_each(ha, list) {
  2836. ret = mvpp2_prs_mac_da_accept(port, ha->addr, true);
  2837. if (ret)
  2838. return ret;
  2839. }
  2840. return 0;
  2841. }
  2842. static void mvpp2_set_rx_promisc(struct mvpp2_port *port, bool enable)
  2843. {
  2844. if (!enable && (port->dev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
  2845. mvpp2_prs_vid_enable_filtering(port);
  2846. else
  2847. mvpp2_prs_vid_disable_filtering(port);
  2848. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2849. MVPP2_PRS_L2_UNI_CAST, enable);
  2850. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2851. MVPP2_PRS_L2_MULTI_CAST, enable);
  2852. }
  2853. static void mvpp2_set_rx_mode(struct net_device *dev)
  2854. {
  2855. struct mvpp2_port *port = netdev_priv(dev);
  2856. /* Clear the whole UC and MC list */
  2857. mvpp2_prs_mac_del_all(port);
  2858. if (dev->flags & IFF_PROMISC) {
  2859. mvpp2_set_rx_promisc(port, true);
  2860. return;
  2861. }
  2862. mvpp2_set_rx_promisc(port, false);
  2863. if (netdev_uc_count(dev) > MVPP2_PRS_MAC_UC_FILT_MAX ||
  2864. mvpp2_prs_mac_da_accept_list(port, &dev->uc))
  2865. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2866. MVPP2_PRS_L2_UNI_CAST, true);
  2867. if (dev->flags & IFF_ALLMULTI) {
  2868. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2869. MVPP2_PRS_L2_MULTI_CAST, true);
  2870. return;
  2871. }
  2872. if (netdev_mc_count(dev) > MVPP2_PRS_MAC_MC_FILT_MAX ||
  2873. mvpp2_prs_mac_da_accept_list(port, &dev->mc))
  2874. mvpp2_prs_mac_promisc_set(port->priv, port->id,
  2875. MVPP2_PRS_L2_MULTI_CAST, true);
  2876. }
  2877. static int mvpp2_set_mac_address(struct net_device *dev, void *p)
  2878. {
  2879. const struct sockaddr *addr = p;
  2880. int err;
  2881. if (!is_valid_ether_addr(addr->sa_data))
  2882. return -EADDRNOTAVAIL;
  2883. err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
  2884. if (err) {
  2885. /* Reconfigure parser accept the original MAC address */
  2886. mvpp2_prs_update_mac_da(dev, dev->dev_addr);
  2887. netdev_err(dev, "failed to change MAC address\n");
  2888. }
  2889. return err;
  2890. }
  2891. static int mvpp2_change_mtu(struct net_device *dev, int mtu)
  2892. {
  2893. struct mvpp2_port *port = netdev_priv(dev);
  2894. int err;
  2895. if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
  2896. netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
  2897. ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
  2898. mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
  2899. }
  2900. if (!netif_running(dev)) {
  2901. err = mvpp2_bm_update_mtu(dev, mtu);
  2902. if (!err) {
  2903. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  2904. return 0;
  2905. }
  2906. /* Reconfigure BM to the original MTU */
  2907. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  2908. if (err)
  2909. goto log_error;
  2910. }
  2911. mvpp2_stop_dev(port);
  2912. err = mvpp2_bm_update_mtu(dev, mtu);
  2913. if (!err) {
  2914. port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
  2915. goto out_start;
  2916. }
  2917. /* Reconfigure BM to the original MTU */
  2918. err = mvpp2_bm_update_mtu(dev, dev->mtu);
  2919. if (err)
  2920. goto log_error;
  2921. out_start:
  2922. mvpp2_start_dev(port);
  2923. mvpp2_egress_enable(port);
  2924. mvpp2_ingress_enable(port);
  2925. return 0;
  2926. log_error:
  2927. netdev_err(dev, "failed to change MTU\n");
  2928. return err;
  2929. }
  2930. static void
  2931. mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  2932. {
  2933. struct mvpp2_port *port = netdev_priv(dev);
  2934. unsigned int start;
  2935. int cpu;
  2936. for_each_possible_cpu(cpu) {
  2937. struct mvpp2_pcpu_stats *cpu_stats;
  2938. u64 rx_packets;
  2939. u64 rx_bytes;
  2940. u64 tx_packets;
  2941. u64 tx_bytes;
  2942. cpu_stats = per_cpu_ptr(port->stats, cpu);
  2943. do {
  2944. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  2945. rx_packets = cpu_stats->rx_packets;
  2946. rx_bytes = cpu_stats->rx_bytes;
  2947. tx_packets = cpu_stats->tx_packets;
  2948. tx_bytes = cpu_stats->tx_bytes;
  2949. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  2950. stats->rx_packets += rx_packets;
  2951. stats->rx_bytes += rx_bytes;
  2952. stats->tx_packets += tx_packets;
  2953. stats->tx_bytes += tx_bytes;
  2954. }
  2955. stats->rx_errors = dev->stats.rx_errors;
  2956. stats->rx_dropped = dev->stats.rx_dropped;
  2957. stats->tx_dropped = dev->stats.tx_dropped;
  2958. }
  2959. static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2960. {
  2961. struct mvpp2_port *port = netdev_priv(dev);
  2962. if (!port->phylink)
  2963. return -ENOTSUPP;
  2964. return phylink_mii_ioctl(port->phylink, ifr, cmd);
  2965. }
  2966. static int mvpp2_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
  2967. {
  2968. struct mvpp2_port *port = netdev_priv(dev);
  2969. int ret;
  2970. ret = mvpp2_prs_vid_entry_add(port, vid);
  2971. if (ret)
  2972. netdev_err(dev, "rx-vlan-filter offloading cannot accept more than %d VIDs per port\n",
  2973. MVPP2_PRS_VLAN_FILT_MAX - 1);
  2974. return ret;
  2975. }
  2976. static int mvpp2_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
  2977. {
  2978. struct mvpp2_port *port = netdev_priv(dev);
  2979. mvpp2_prs_vid_entry_remove(port, vid);
  2980. return 0;
  2981. }
  2982. static int mvpp2_set_features(struct net_device *dev,
  2983. netdev_features_t features)
  2984. {
  2985. netdev_features_t changed = dev->features ^ features;
  2986. struct mvpp2_port *port = netdev_priv(dev);
  2987. if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
  2988. if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
  2989. mvpp2_prs_vid_enable_filtering(port);
  2990. } else {
  2991. /* Invalidate all registered VID filters for this
  2992. * port
  2993. */
  2994. mvpp2_prs_vid_remove_all(port);
  2995. mvpp2_prs_vid_disable_filtering(port);
  2996. }
  2997. }
  2998. if (changed & NETIF_F_RXHASH) {
  2999. if (features & NETIF_F_RXHASH)
  3000. mvpp22_rss_enable(port);
  3001. else
  3002. mvpp22_rss_disable(port);
  3003. }
  3004. return 0;
  3005. }
  3006. /* Ethtool methods */
  3007. static int mvpp2_ethtool_nway_reset(struct net_device *dev)
  3008. {
  3009. struct mvpp2_port *port = netdev_priv(dev);
  3010. if (!port->phylink)
  3011. return -ENOTSUPP;
  3012. return phylink_ethtool_nway_reset(port->phylink);
  3013. }
  3014. /* Set interrupt coalescing for ethtools */
  3015. static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
  3016. struct ethtool_coalesce *c)
  3017. {
  3018. struct mvpp2_port *port = netdev_priv(dev);
  3019. int queue;
  3020. for (queue = 0; queue < port->nrxqs; queue++) {
  3021. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  3022. rxq->time_coal = c->rx_coalesce_usecs;
  3023. rxq->pkts_coal = c->rx_max_coalesced_frames;
  3024. mvpp2_rx_pkts_coal_set(port, rxq);
  3025. mvpp2_rx_time_coal_set(port, rxq);
  3026. }
  3027. if (port->has_tx_irqs) {
  3028. port->tx_time_coal = c->tx_coalesce_usecs;
  3029. mvpp2_tx_time_coal_set(port);
  3030. }
  3031. for (queue = 0; queue < port->ntxqs; queue++) {
  3032. struct mvpp2_tx_queue *txq = port->txqs[queue];
  3033. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  3034. if (port->has_tx_irqs)
  3035. mvpp2_tx_pkts_coal_set(port, txq);
  3036. }
  3037. return 0;
  3038. }
  3039. /* get coalescing for ethtools */
  3040. static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
  3041. struct ethtool_coalesce *c)
  3042. {
  3043. struct mvpp2_port *port = netdev_priv(dev);
  3044. c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
  3045. c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
  3046. c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
  3047. c->tx_coalesce_usecs = port->tx_time_coal;
  3048. return 0;
  3049. }
  3050. static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
  3051. struct ethtool_drvinfo *drvinfo)
  3052. {
  3053. strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
  3054. sizeof(drvinfo->driver));
  3055. strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
  3056. sizeof(drvinfo->version));
  3057. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  3058. sizeof(drvinfo->bus_info));
  3059. }
  3060. static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
  3061. struct ethtool_ringparam *ring)
  3062. {
  3063. struct mvpp2_port *port = netdev_priv(dev);
  3064. ring->rx_max_pending = MVPP2_MAX_RXD_MAX;
  3065. ring->tx_max_pending = MVPP2_MAX_TXD_MAX;
  3066. ring->rx_pending = port->rx_ring_size;
  3067. ring->tx_pending = port->tx_ring_size;
  3068. }
  3069. static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
  3070. struct ethtool_ringparam *ring)
  3071. {
  3072. struct mvpp2_port *port = netdev_priv(dev);
  3073. u16 prev_rx_ring_size = port->rx_ring_size;
  3074. u16 prev_tx_ring_size = port->tx_ring_size;
  3075. int err;
  3076. err = mvpp2_check_ringparam_valid(dev, ring);
  3077. if (err)
  3078. return err;
  3079. if (!netif_running(dev)) {
  3080. port->rx_ring_size = ring->rx_pending;
  3081. port->tx_ring_size = ring->tx_pending;
  3082. return 0;
  3083. }
  3084. /* The interface is running, so we have to force a
  3085. * reallocation of the queues
  3086. */
  3087. mvpp2_stop_dev(port);
  3088. mvpp2_cleanup_rxqs(port);
  3089. mvpp2_cleanup_txqs(port);
  3090. port->rx_ring_size = ring->rx_pending;
  3091. port->tx_ring_size = ring->tx_pending;
  3092. err = mvpp2_setup_rxqs(port);
  3093. if (err) {
  3094. /* Reallocate Rx queues with the original ring size */
  3095. port->rx_ring_size = prev_rx_ring_size;
  3096. ring->rx_pending = prev_rx_ring_size;
  3097. err = mvpp2_setup_rxqs(port);
  3098. if (err)
  3099. goto err_out;
  3100. }
  3101. err = mvpp2_setup_txqs(port);
  3102. if (err) {
  3103. /* Reallocate Tx queues with the original ring size */
  3104. port->tx_ring_size = prev_tx_ring_size;
  3105. ring->tx_pending = prev_tx_ring_size;
  3106. err = mvpp2_setup_txqs(port);
  3107. if (err)
  3108. goto err_clean_rxqs;
  3109. }
  3110. mvpp2_start_dev(port);
  3111. mvpp2_egress_enable(port);
  3112. mvpp2_ingress_enable(port);
  3113. return 0;
  3114. err_clean_rxqs:
  3115. mvpp2_cleanup_rxqs(port);
  3116. err_out:
  3117. netdev_err(dev, "failed to change ring parameters");
  3118. return err;
  3119. }
  3120. static void mvpp2_ethtool_get_pause_param(struct net_device *dev,
  3121. struct ethtool_pauseparam *pause)
  3122. {
  3123. struct mvpp2_port *port = netdev_priv(dev);
  3124. if (!port->phylink)
  3125. return;
  3126. phylink_ethtool_get_pauseparam(port->phylink, pause);
  3127. }
  3128. static int mvpp2_ethtool_set_pause_param(struct net_device *dev,
  3129. struct ethtool_pauseparam *pause)
  3130. {
  3131. struct mvpp2_port *port = netdev_priv(dev);
  3132. if (!port->phylink)
  3133. return -ENOTSUPP;
  3134. return phylink_ethtool_set_pauseparam(port->phylink, pause);
  3135. }
  3136. static int mvpp2_ethtool_get_link_ksettings(struct net_device *dev,
  3137. struct ethtool_link_ksettings *cmd)
  3138. {
  3139. struct mvpp2_port *port = netdev_priv(dev);
  3140. if (!port->phylink)
  3141. return -ENOTSUPP;
  3142. return phylink_ethtool_ksettings_get(port->phylink, cmd);
  3143. }
  3144. static int mvpp2_ethtool_set_link_ksettings(struct net_device *dev,
  3145. const struct ethtool_link_ksettings *cmd)
  3146. {
  3147. struct mvpp2_port *port = netdev_priv(dev);
  3148. if (!port->phylink)
  3149. return -ENOTSUPP;
  3150. return phylink_ethtool_ksettings_set(port->phylink, cmd);
  3151. }
  3152. static int mvpp2_ethtool_get_rxnfc(struct net_device *dev,
  3153. struct ethtool_rxnfc *info, u32 *rules)
  3154. {
  3155. struct mvpp2_port *port = netdev_priv(dev);
  3156. int ret = 0;
  3157. if (!mvpp22_rss_is_supported())
  3158. return -EOPNOTSUPP;
  3159. switch (info->cmd) {
  3160. case ETHTOOL_GRXFH:
  3161. ret = mvpp2_ethtool_rxfh_get(port, info);
  3162. break;
  3163. case ETHTOOL_GRXRINGS:
  3164. info->data = port->nrxqs;
  3165. break;
  3166. default:
  3167. return -ENOTSUPP;
  3168. }
  3169. return ret;
  3170. }
  3171. static int mvpp2_ethtool_set_rxnfc(struct net_device *dev,
  3172. struct ethtool_rxnfc *info)
  3173. {
  3174. struct mvpp2_port *port = netdev_priv(dev);
  3175. int ret = 0;
  3176. if (!mvpp22_rss_is_supported())
  3177. return -EOPNOTSUPP;
  3178. switch (info->cmd) {
  3179. case ETHTOOL_SRXFH:
  3180. ret = mvpp2_ethtool_rxfh_set(port, info);
  3181. break;
  3182. default:
  3183. return -EOPNOTSUPP;
  3184. }
  3185. return ret;
  3186. }
  3187. static u32 mvpp2_ethtool_get_rxfh_indir_size(struct net_device *dev)
  3188. {
  3189. return mvpp22_rss_is_supported() ? MVPP22_RSS_TABLE_ENTRIES : 0;
  3190. }
  3191. static int mvpp2_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
  3192. u8 *hfunc)
  3193. {
  3194. struct mvpp2_port *port = netdev_priv(dev);
  3195. if (!mvpp22_rss_is_supported())
  3196. return -EOPNOTSUPP;
  3197. if (indir)
  3198. memcpy(indir, port->indir,
  3199. ARRAY_SIZE(port->indir) * sizeof(port->indir[0]));
  3200. if (hfunc)
  3201. *hfunc = ETH_RSS_HASH_CRC32;
  3202. return 0;
  3203. }
  3204. static int mvpp2_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
  3205. const u8 *key, const u8 hfunc)
  3206. {
  3207. struct mvpp2_port *port = netdev_priv(dev);
  3208. if (!mvpp22_rss_is_supported())
  3209. return -EOPNOTSUPP;
  3210. if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_CRC32)
  3211. return -EOPNOTSUPP;
  3212. if (key)
  3213. return -EOPNOTSUPP;
  3214. if (indir) {
  3215. memcpy(port->indir, indir,
  3216. ARRAY_SIZE(port->indir) * sizeof(port->indir[0]));
  3217. mvpp22_rss_fill_table(port, port->id);
  3218. }
  3219. return 0;
  3220. }
  3221. /* Device ops */
  3222. static const struct net_device_ops mvpp2_netdev_ops = {
  3223. .ndo_open = mvpp2_open,
  3224. .ndo_stop = mvpp2_stop,
  3225. .ndo_start_xmit = mvpp2_tx,
  3226. .ndo_set_rx_mode = mvpp2_set_rx_mode,
  3227. .ndo_set_mac_address = mvpp2_set_mac_address,
  3228. .ndo_change_mtu = mvpp2_change_mtu,
  3229. .ndo_get_stats64 = mvpp2_get_stats64,
  3230. .ndo_do_ioctl = mvpp2_ioctl,
  3231. .ndo_vlan_rx_add_vid = mvpp2_vlan_rx_add_vid,
  3232. .ndo_vlan_rx_kill_vid = mvpp2_vlan_rx_kill_vid,
  3233. .ndo_set_features = mvpp2_set_features,
  3234. };
  3235. static const struct ethtool_ops mvpp2_eth_tool_ops = {
  3236. .nway_reset = mvpp2_ethtool_nway_reset,
  3237. .get_link = ethtool_op_get_link,
  3238. .set_coalesce = mvpp2_ethtool_set_coalesce,
  3239. .get_coalesce = mvpp2_ethtool_get_coalesce,
  3240. .get_drvinfo = mvpp2_ethtool_get_drvinfo,
  3241. .get_ringparam = mvpp2_ethtool_get_ringparam,
  3242. .set_ringparam = mvpp2_ethtool_set_ringparam,
  3243. .get_strings = mvpp2_ethtool_get_strings,
  3244. .get_ethtool_stats = mvpp2_ethtool_get_stats,
  3245. .get_sset_count = mvpp2_ethtool_get_sset_count,
  3246. .get_pauseparam = mvpp2_ethtool_get_pause_param,
  3247. .set_pauseparam = mvpp2_ethtool_set_pause_param,
  3248. .get_link_ksettings = mvpp2_ethtool_get_link_ksettings,
  3249. .set_link_ksettings = mvpp2_ethtool_set_link_ksettings,
  3250. .get_rxnfc = mvpp2_ethtool_get_rxnfc,
  3251. .set_rxnfc = mvpp2_ethtool_set_rxnfc,
  3252. .get_rxfh_indir_size = mvpp2_ethtool_get_rxfh_indir_size,
  3253. .get_rxfh = mvpp2_ethtool_get_rxfh,
  3254. .set_rxfh = mvpp2_ethtool_set_rxfh,
  3255. };
  3256. /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that
  3257. * had a single IRQ defined per-port.
  3258. */
  3259. static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port,
  3260. struct device_node *port_node)
  3261. {
  3262. struct mvpp2_queue_vector *v = &port->qvecs[0];
  3263. v->first_rxq = 0;
  3264. v->nrxqs = port->nrxqs;
  3265. v->type = MVPP2_QUEUE_VECTOR_SHARED;
  3266. v->sw_thread_id = 0;
  3267. v->sw_thread_mask = *cpumask_bits(cpu_online_mask);
  3268. v->port = port;
  3269. v->irq = irq_of_parse_and_map(port_node, 0);
  3270. if (v->irq <= 0)
  3271. return -EINVAL;
  3272. netif_napi_add(port->dev, &v->napi, mvpp2_poll,
  3273. NAPI_POLL_WEIGHT);
  3274. port->nqvecs = 1;
  3275. return 0;
  3276. }
  3277. static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port,
  3278. struct device_node *port_node)
  3279. {
  3280. struct mvpp2_queue_vector *v;
  3281. int i, ret;
  3282. port->nqvecs = num_possible_cpus();
  3283. if (queue_mode == MVPP2_QDIST_SINGLE_MODE)
  3284. port->nqvecs += 1;
  3285. for (i = 0; i < port->nqvecs; i++) {
  3286. char irqname[16];
  3287. v = port->qvecs + i;
  3288. v->port = port;
  3289. v->type = MVPP2_QUEUE_VECTOR_PRIVATE;
  3290. v->sw_thread_id = i;
  3291. v->sw_thread_mask = BIT(i);
  3292. snprintf(irqname, sizeof(irqname), "tx-cpu%d", i);
  3293. if (queue_mode == MVPP2_QDIST_MULTI_MODE) {
  3294. v->first_rxq = i * MVPP2_DEFAULT_RXQ;
  3295. v->nrxqs = MVPP2_DEFAULT_RXQ;
  3296. } else if (queue_mode == MVPP2_QDIST_SINGLE_MODE &&
  3297. i == (port->nqvecs - 1)) {
  3298. v->first_rxq = 0;
  3299. v->nrxqs = port->nrxqs;
  3300. v->type = MVPP2_QUEUE_VECTOR_SHARED;
  3301. strncpy(irqname, "rx-shared", sizeof(irqname));
  3302. }
  3303. if (port_node)
  3304. v->irq = of_irq_get_byname(port_node, irqname);
  3305. else
  3306. v->irq = fwnode_irq_get(port->fwnode, i);
  3307. if (v->irq <= 0) {
  3308. ret = -EINVAL;
  3309. goto err;
  3310. }
  3311. netif_napi_add(port->dev, &v->napi, mvpp2_poll,
  3312. NAPI_POLL_WEIGHT);
  3313. }
  3314. return 0;
  3315. err:
  3316. for (i = 0; i < port->nqvecs; i++)
  3317. irq_dispose_mapping(port->qvecs[i].irq);
  3318. return ret;
  3319. }
  3320. static int mvpp2_queue_vectors_init(struct mvpp2_port *port,
  3321. struct device_node *port_node)
  3322. {
  3323. if (port->has_tx_irqs)
  3324. return mvpp2_multi_queue_vectors_init(port, port_node);
  3325. else
  3326. return mvpp2_simple_queue_vectors_init(port, port_node);
  3327. }
  3328. static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port)
  3329. {
  3330. int i;
  3331. for (i = 0; i < port->nqvecs; i++)
  3332. irq_dispose_mapping(port->qvecs[i].irq);
  3333. }
  3334. /* Configure Rx queue group interrupt for this port */
  3335. static void mvpp2_rx_irqs_setup(struct mvpp2_port *port)
  3336. {
  3337. struct mvpp2 *priv = port->priv;
  3338. u32 val;
  3339. int i;
  3340. if (priv->hw_version == MVPP21) {
  3341. mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id),
  3342. port->nrxqs);
  3343. return;
  3344. }
  3345. /* Handle the more complicated PPv2.2 case */
  3346. for (i = 0; i < port->nqvecs; i++) {
  3347. struct mvpp2_queue_vector *qv = port->qvecs + i;
  3348. if (!qv->nrxqs)
  3349. continue;
  3350. val = qv->sw_thread_id;
  3351. val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET;
  3352. mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val);
  3353. val = qv->first_rxq;
  3354. val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET;
  3355. mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val);
  3356. }
  3357. }
  3358. /* Initialize port HW */
  3359. static int mvpp2_port_init(struct mvpp2_port *port)
  3360. {
  3361. struct device *dev = port->dev->dev.parent;
  3362. struct mvpp2 *priv = port->priv;
  3363. struct mvpp2_txq_pcpu *txq_pcpu;
  3364. int queue, cpu, err;
  3365. /* Checks for hardware constraints */
  3366. if (port->first_rxq + port->nrxqs >
  3367. MVPP2_MAX_PORTS * priv->max_port_rxqs)
  3368. return -EINVAL;
  3369. if (port->nrxqs % MVPP2_DEFAULT_RXQ ||
  3370. port->nrxqs > priv->max_port_rxqs || port->ntxqs > MVPP2_MAX_TXQ)
  3371. return -EINVAL;
  3372. /* Disable port */
  3373. mvpp2_egress_disable(port);
  3374. mvpp2_port_disable(port);
  3375. port->tx_time_coal = MVPP2_TXDONE_COAL_USEC;
  3376. port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs),
  3377. GFP_KERNEL);
  3378. if (!port->txqs)
  3379. return -ENOMEM;
  3380. /* Associate physical Tx queues to this port and initialize.
  3381. * The mapping is predefined.
  3382. */
  3383. for (queue = 0; queue < port->ntxqs; queue++) {
  3384. int queue_phy_id = mvpp2_txq_phys(port->id, queue);
  3385. struct mvpp2_tx_queue *txq;
  3386. txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
  3387. if (!txq) {
  3388. err = -ENOMEM;
  3389. goto err_free_percpu;
  3390. }
  3391. txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
  3392. if (!txq->pcpu) {
  3393. err = -ENOMEM;
  3394. goto err_free_percpu;
  3395. }
  3396. txq->id = queue_phy_id;
  3397. txq->log_id = queue;
  3398. txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
  3399. for_each_present_cpu(cpu) {
  3400. txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
  3401. txq_pcpu->cpu = cpu;
  3402. }
  3403. port->txqs[queue] = txq;
  3404. }
  3405. port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs),
  3406. GFP_KERNEL);
  3407. if (!port->rxqs) {
  3408. err = -ENOMEM;
  3409. goto err_free_percpu;
  3410. }
  3411. /* Allocate and initialize Rx queue for this port */
  3412. for (queue = 0; queue < port->nrxqs; queue++) {
  3413. struct mvpp2_rx_queue *rxq;
  3414. /* Map physical Rx queue to port's logical Rx queue */
  3415. rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
  3416. if (!rxq) {
  3417. err = -ENOMEM;
  3418. goto err_free_percpu;
  3419. }
  3420. /* Map this Rx queue to a physical queue */
  3421. rxq->id = port->first_rxq + queue;
  3422. rxq->port = port->id;
  3423. rxq->logic_rxq = queue;
  3424. port->rxqs[queue] = rxq;
  3425. }
  3426. mvpp2_rx_irqs_setup(port);
  3427. /* Create Rx descriptor rings */
  3428. for (queue = 0; queue < port->nrxqs; queue++) {
  3429. struct mvpp2_rx_queue *rxq = port->rxqs[queue];
  3430. rxq->size = port->rx_ring_size;
  3431. rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
  3432. rxq->time_coal = MVPP2_RX_COAL_USEC;
  3433. }
  3434. mvpp2_ingress_disable(port);
  3435. /* Port default configuration */
  3436. mvpp2_defaults_set(port);
  3437. /* Port's classifier configuration */
  3438. mvpp2_cls_oversize_rxq_set(port);
  3439. mvpp2_cls_port_config(port);
  3440. if (mvpp22_rss_is_supported())
  3441. mvpp22_rss_port_init(port);
  3442. /* Provide an initial Rx packet size */
  3443. port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
  3444. /* Initialize pools for swf */
  3445. err = mvpp2_swf_bm_pool_init(port);
  3446. if (err)
  3447. goto err_free_percpu;
  3448. return 0;
  3449. err_free_percpu:
  3450. for (queue = 0; queue < port->ntxqs; queue++) {
  3451. if (!port->txqs[queue])
  3452. continue;
  3453. free_percpu(port->txqs[queue]->pcpu);
  3454. }
  3455. return err;
  3456. }
  3457. /* Checks if the port DT description has the TX interrupts
  3458. * described. On PPv2.1, there are no such interrupts. On PPv2.2,
  3459. * there are available, but we need to keep support for old DTs.
  3460. */
  3461. static bool mvpp2_port_has_tx_irqs(struct mvpp2 *priv,
  3462. struct device_node *port_node)
  3463. {
  3464. char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1",
  3465. "tx-cpu2", "tx-cpu3" };
  3466. int ret, i;
  3467. if (priv->hw_version == MVPP21)
  3468. return false;
  3469. for (i = 0; i < 5; i++) {
  3470. ret = of_property_match_string(port_node, "interrupt-names",
  3471. irqs[i]);
  3472. if (ret < 0)
  3473. return false;
  3474. }
  3475. return true;
  3476. }
  3477. static void mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv,
  3478. struct fwnode_handle *fwnode,
  3479. char **mac_from)
  3480. {
  3481. struct mvpp2_port *port = netdev_priv(dev);
  3482. char hw_mac_addr[ETH_ALEN] = {0};
  3483. char fw_mac_addr[ETH_ALEN];
  3484. if (fwnode_get_mac_address(fwnode, fw_mac_addr, ETH_ALEN)) {
  3485. *mac_from = "firmware node";
  3486. ether_addr_copy(dev->dev_addr, fw_mac_addr);
  3487. return;
  3488. }
  3489. if (priv->hw_version == MVPP21) {
  3490. mvpp21_get_mac_address(port, hw_mac_addr);
  3491. if (is_valid_ether_addr(hw_mac_addr)) {
  3492. *mac_from = "hardware";
  3493. ether_addr_copy(dev->dev_addr, hw_mac_addr);
  3494. return;
  3495. }
  3496. }
  3497. *mac_from = "random";
  3498. eth_hw_addr_random(dev);
  3499. }
  3500. static void mvpp2_phylink_validate(struct net_device *dev,
  3501. unsigned long *supported,
  3502. struct phylink_link_state *state)
  3503. {
  3504. __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
  3505. phylink_set(mask, Autoneg);
  3506. phylink_set_port_modes(mask);
  3507. phylink_set(mask, Pause);
  3508. phylink_set(mask, Asym_Pause);
  3509. switch (state->interface) {
  3510. case PHY_INTERFACE_MODE_10GKR:
  3511. phylink_set(mask, 10000baseCR_Full);
  3512. phylink_set(mask, 10000baseSR_Full);
  3513. phylink_set(mask, 10000baseLR_Full);
  3514. phylink_set(mask, 10000baseLRM_Full);
  3515. phylink_set(mask, 10000baseER_Full);
  3516. phylink_set(mask, 10000baseKR_Full);
  3517. /* Fall-through */
  3518. default:
  3519. phylink_set(mask, 10baseT_Half);
  3520. phylink_set(mask, 10baseT_Full);
  3521. phylink_set(mask, 100baseT_Half);
  3522. phylink_set(mask, 100baseT_Full);
  3523. phylink_set(mask, 10000baseT_Full);
  3524. /* Fall-through */
  3525. case PHY_INTERFACE_MODE_1000BASEX:
  3526. case PHY_INTERFACE_MODE_2500BASEX:
  3527. phylink_set(mask, 1000baseT_Full);
  3528. phylink_set(mask, 1000baseX_Full);
  3529. phylink_set(mask, 2500baseX_Full);
  3530. }
  3531. bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
  3532. bitmap_and(state->advertising, state->advertising, mask,
  3533. __ETHTOOL_LINK_MODE_MASK_NBITS);
  3534. }
  3535. static void mvpp22_xlg_link_state(struct mvpp2_port *port,
  3536. struct phylink_link_state *state)
  3537. {
  3538. u32 val;
  3539. state->speed = SPEED_10000;
  3540. state->duplex = 1;
  3541. state->an_complete = 1;
  3542. val = readl(port->base + MVPP22_XLG_STATUS);
  3543. state->link = !!(val & MVPP22_XLG_STATUS_LINK_UP);
  3544. state->pause = 0;
  3545. val = readl(port->base + MVPP22_XLG_CTRL0_REG);
  3546. if (val & MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN)
  3547. state->pause |= MLO_PAUSE_TX;
  3548. if (val & MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN)
  3549. state->pause |= MLO_PAUSE_RX;
  3550. }
  3551. static void mvpp2_gmac_link_state(struct mvpp2_port *port,
  3552. struct phylink_link_state *state)
  3553. {
  3554. u32 val;
  3555. val = readl(port->base + MVPP2_GMAC_STATUS0);
  3556. state->an_complete = !!(val & MVPP2_GMAC_STATUS0_AN_COMPLETE);
  3557. state->link = !!(val & MVPP2_GMAC_STATUS0_LINK_UP);
  3558. state->duplex = !!(val & MVPP2_GMAC_STATUS0_FULL_DUPLEX);
  3559. switch (port->phy_interface) {
  3560. case PHY_INTERFACE_MODE_1000BASEX:
  3561. state->speed = SPEED_1000;
  3562. break;
  3563. case PHY_INTERFACE_MODE_2500BASEX:
  3564. state->speed = SPEED_2500;
  3565. break;
  3566. default:
  3567. if (val & MVPP2_GMAC_STATUS0_GMII_SPEED)
  3568. state->speed = SPEED_1000;
  3569. else if (val & MVPP2_GMAC_STATUS0_MII_SPEED)
  3570. state->speed = SPEED_100;
  3571. else
  3572. state->speed = SPEED_10;
  3573. }
  3574. state->pause = 0;
  3575. if (val & MVPP2_GMAC_STATUS0_RX_PAUSE)
  3576. state->pause |= MLO_PAUSE_RX;
  3577. if (val & MVPP2_GMAC_STATUS0_TX_PAUSE)
  3578. state->pause |= MLO_PAUSE_TX;
  3579. }
  3580. static int mvpp2_phylink_mac_link_state(struct net_device *dev,
  3581. struct phylink_link_state *state)
  3582. {
  3583. struct mvpp2_port *port = netdev_priv(dev);
  3584. if (port->priv->hw_version == MVPP22 && port->gop_id == 0) {
  3585. u32 mode = readl(port->base + MVPP22_XLG_CTRL3_REG);
  3586. mode &= MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
  3587. if (mode == MVPP22_XLG_CTRL3_MACMODESELECT_10G) {
  3588. mvpp22_xlg_link_state(port, state);
  3589. return 1;
  3590. }
  3591. }
  3592. mvpp2_gmac_link_state(port, state);
  3593. return 1;
  3594. }
  3595. static void mvpp2_mac_an_restart(struct net_device *dev)
  3596. {
  3597. struct mvpp2_port *port = netdev_priv(dev);
  3598. u32 val;
  3599. if (port->phy_interface != PHY_INTERFACE_MODE_SGMII)
  3600. return;
  3601. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3602. /* The RESTART_AN bit is cleared by the h/w after restarting the AN
  3603. * process.
  3604. */
  3605. val |= MVPP2_GMAC_IN_BAND_RESTART_AN | MVPP2_GMAC_IN_BAND_AUTONEG;
  3606. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3607. }
  3608. static void mvpp2_xlg_config(struct mvpp2_port *port, unsigned int mode,
  3609. const struct phylink_link_state *state)
  3610. {
  3611. u32 ctrl0, ctrl4;
  3612. ctrl0 = readl(port->base + MVPP22_XLG_CTRL0_REG);
  3613. ctrl4 = readl(port->base + MVPP22_XLG_CTRL4_REG);
  3614. if (state->pause & MLO_PAUSE_TX)
  3615. ctrl0 |= MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN;
  3616. if (state->pause & MLO_PAUSE_RX)
  3617. ctrl0 |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN;
  3618. ctrl4 &= ~MVPP22_XLG_CTRL4_MACMODSELECT_GMAC;
  3619. ctrl4 |= MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC |
  3620. MVPP22_XLG_CTRL4_EN_IDLE_CHECK;
  3621. writel(ctrl0, port->base + MVPP22_XLG_CTRL0_REG);
  3622. writel(ctrl4, port->base + MVPP22_XLG_CTRL4_REG);
  3623. }
  3624. static void mvpp2_gmac_config(struct mvpp2_port *port, unsigned int mode,
  3625. const struct phylink_link_state *state)
  3626. {
  3627. u32 an, ctrl0, ctrl2, ctrl4;
  3628. an = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3629. ctrl0 = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
  3630. ctrl2 = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
  3631. ctrl4 = readl(port->base + MVPP22_GMAC_CTRL_4_REG);
  3632. /* Force link down */
  3633. an &= ~MVPP2_GMAC_FORCE_LINK_PASS;
  3634. an |= MVPP2_GMAC_FORCE_LINK_DOWN;
  3635. writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3636. /* Set the GMAC in a reset state */
  3637. ctrl2 |= MVPP2_GMAC_PORT_RESET_MASK;
  3638. writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
  3639. an &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED |
  3640. MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FC_ADV_EN |
  3641. MVPP2_GMAC_FC_ADV_ASM_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG |
  3642. MVPP2_GMAC_CONFIG_FULL_DUPLEX | MVPP2_GMAC_AN_DUPLEX_EN |
  3643. MVPP2_GMAC_FORCE_LINK_DOWN);
  3644. ctrl0 &= ~MVPP2_GMAC_PORT_TYPE_MASK;
  3645. ctrl2 &= ~(MVPP2_GMAC_PORT_RESET_MASK | MVPP2_GMAC_PCS_ENABLE_MASK);
  3646. if (state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3647. state->interface == PHY_INTERFACE_MODE_2500BASEX) {
  3648. /* 1000BaseX and 2500BaseX ports cannot negotiate speed nor can
  3649. * they negotiate duplex: they are always operating with a fixed
  3650. * speed of 1000/2500Mbps in full duplex, so force 1000/2500
  3651. * speed and full duplex here.
  3652. */
  3653. ctrl0 |= MVPP2_GMAC_PORT_TYPE_MASK;
  3654. an |= MVPP2_GMAC_CONFIG_GMII_SPEED |
  3655. MVPP2_GMAC_CONFIG_FULL_DUPLEX;
  3656. } else if (!phy_interface_mode_is_rgmii(state->interface)) {
  3657. an |= MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG;
  3658. }
  3659. if (state->duplex)
  3660. an |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
  3661. if (phylink_test(state->advertising, Pause))
  3662. an |= MVPP2_GMAC_FC_ADV_EN;
  3663. if (phylink_test(state->advertising, Asym_Pause))
  3664. an |= MVPP2_GMAC_FC_ADV_ASM_EN;
  3665. if (state->interface == PHY_INTERFACE_MODE_SGMII ||
  3666. state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3667. state->interface == PHY_INTERFACE_MODE_2500BASEX) {
  3668. an |= MVPP2_GMAC_IN_BAND_AUTONEG;
  3669. ctrl2 |= MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK;
  3670. ctrl4 &= ~(MVPP22_CTRL4_EXT_PIN_GMII_SEL |
  3671. MVPP22_CTRL4_RX_FC_EN | MVPP22_CTRL4_TX_FC_EN);
  3672. ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS |
  3673. MVPP22_CTRL4_DP_CLK_SEL |
  3674. MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
  3675. if (state->pause & MLO_PAUSE_TX)
  3676. ctrl4 |= MVPP22_CTRL4_TX_FC_EN;
  3677. if (state->pause & MLO_PAUSE_RX)
  3678. ctrl4 |= MVPP22_CTRL4_RX_FC_EN;
  3679. } else if (phy_interface_mode_is_rgmii(state->interface)) {
  3680. an |= MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS;
  3681. if (state->speed == SPEED_1000)
  3682. an |= MVPP2_GMAC_CONFIG_GMII_SPEED;
  3683. else if (state->speed == SPEED_100)
  3684. an |= MVPP2_GMAC_CONFIG_MII_SPEED;
  3685. ctrl4 &= ~MVPP22_CTRL4_DP_CLK_SEL;
  3686. ctrl4 |= MVPP22_CTRL4_EXT_PIN_GMII_SEL |
  3687. MVPP22_CTRL4_SYNC_BYPASS_DIS |
  3688. MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE;
  3689. }
  3690. writel(ctrl0, port->base + MVPP2_GMAC_CTRL_0_REG);
  3691. writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG);
  3692. writel(ctrl4, port->base + MVPP22_GMAC_CTRL_4_REG);
  3693. writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3694. }
  3695. static void mvpp2_mac_config(struct net_device *dev, unsigned int mode,
  3696. const struct phylink_link_state *state)
  3697. {
  3698. struct mvpp2_port *port = netdev_priv(dev);
  3699. /* Check for invalid configuration */
  3700. if (state->interface == PHY_INTERFACE_MODE_10GKR && port->gop_id != 0) {
  3701. netdev_err(dev, "Invalid mode on %s\n", dev->name);
  3702. return;
  3703. }
  3704. netif_tx_stop_all_queues(port->dev);
  3705. if (!port->has_phy)
  3706. netif_carrier_off(port->dev);
  3707. /* Make sure the port is disabled when reconfiguring the mode */
  3708. mvpp2_port_disable(port);
  3709. if (port->priv->hw_version == MVPP22 &&
  3710. port->phy_interface != state->interface) {
  3711. port->phy_interface = state->interface;
  3712. /* Reconfigure the serdes lanes */
  3713. phy_power_off(port->comphy);
  3714. mvpp22_mode_reconfigure(port);
  3715. }
  3716. /* mac (re)configuration */
  3717. if (state->interface == PHY_INTERFACE_MODE_10GKR)
  3718. mvpp2_xlg_config(port, mode, state);
  3719. else if (phy_interface_mode_is_rgmii(state->interface) ||
  3720. state->interface == PHY_INTERFACE_MODE_SGMII ||
  3721. state->interface == PHY_INTERFACE_MODE_1000BASEX ||
  3722. state->interface == PHY_INTERFACE_MODE_2500BASEX)
  3723. mvpp2_gmac_config(port, mode, state);
  3724. if (port->priv->hw_version == MVPP21 && port->flags & MVPP2_F_LOOPBACK)
  3725. mvpp2_port_loopback_set(port, state);
  3726. /* If the port already was up, make sure it's still in the same state */
  3727. if (state->link || !port->has_phy) {
  3728. mvpp2_port_enable(port);
  3729. mvpp2_egress_enable(port);
  3730. mvpp2_ingress_enable(port);
  3731. if (!port->has_phy)
  3732. netif_carrier_on(dev);
  3733. netif_tx_wake_all_queues(dev);
  3734. }
  3735. }
  3736. static void mvpp2_mac_link_up(struct net_device *dev, unsigned int mode,
  3737. phy_interface_t interface, struct phy_device *phy)
  3738. {
  3739. struct mvpp2_port *port = netdev_priv(dev);
  3740. u32 val;
  3741. if (!phylink_autoneg_inband(mode) &&
  3742. interface != PHY_INTERFACE_MODE_10GKR) {
  3743. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3744. val &= ~MVPP2_GMAC_FORCE_LINK_DOWN;
  3745. if (phy_interface_mode_is_rgmii(interface))
  3746. val |= MVPP2_GMAC_FORCE_LINK_PASS;
  3747. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3748. }
  3749. mvpp2_port_enable(port);
  3750. mvpp2_egress_enable(port);
  3751. mvpp2_ingress_enable(port);
  3752. netif_tx_wake_all_queues(dev);
  3753. }
  3754. static void mvpp2_mac_link_down(struct net_device *dev, unsigned int mode,
  3755. phy_interface_t interface)
  3756. {
  3757. struct mvpp2_port *port = netdev_priv(dev);
  3758. u32 val;
  3759. if (!phylink_autoneg_inband(mode) &&
  3760. interface != PHY_INTERFACE_MODE_10GKR) {
  3761. val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3762. val &= ~MVPP2_GMAC_FORCE_LINK_PASS;
  3763. val |= MVPP2_GMAC_FORCE_LINK_DOWN;
  3764. writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
  3765. }
  3766. netif_tx_stop_all_queues(dev);
  3767. mvpp2_egress_disable(port);
  3768. mvpp2_ingress_disable(port);
  3769. /* When using link interrupts to notify phylink of a MAC state change,
  3770. * we do not want the port to be disabled (we want to receive further
  3771. * interrupts, to be notified when the port will have a link later).
  3772. */
  3773. if (!port->has_phy)
  3774. return;
  3775. mvpp2_port_disable(port);
  3776. }
  3777. static const struct phylink_mac_ops mvpp2_phylink_ops = {
  3778. .validate = mvpp2_phylink_validate,
  3779. .mac_link_state = mvpp2_phylink_mac_link_state,
  3780. .mac_an_restart = mvpp2_mac_an_restart,
  3781. .mac_config = mvpp2_mac_config,
  3782. .mac_link_up = mvpp2_mac_link_up,
  3783. .mac_link_down = mvpp2_mac_link_down,
  3784. };
  3785. /* Ports initialization */
  3786. static int mvpp2_port_probe(struct platform_device *pdev,
  3787. struct fwnode_handle *port_fwnode,
  3788. struct mvpp2 *priv)
  3789. {
  3790. struct phy *comphy = NULL;
  3791. struct mvpp2_port *port;
  3792. struct mvpp2_port_pcpu *port_pcpu;
  3793. struct device_node *port_node = to_of_node(port_fwnode);
  3794. struct net_device *dev;
  3795. struct resource *res;
  3796. struct phylink *phylink;
  3797. char *mac_from = "";
  3798. unsigned int ntxqs, nrxqs;
  3799. bool has_tx_irqs;
  3800. u32 id;
  3801. int features;
  3802. int phy_mode;
  3803. int err, i, cpu;
  3804. if (port_node) {
  3805. has_tx_irqs = mvpp2_port_has_tx_irqs(priv, port_node);
  3806. } else {
  3807. has_tx_irqs = true;
  3808. queue_mode = MVPP2_QDIST_MULTI_MODE;
  3809. }
  3810. if (!has_tx_irqs)
  3811. queue_mode = MVPP2_QDIST_SINGLE_MODE;
  3812. ntxqs = MVPP2_MAX_TXQ;
  3813. if (priv->hw_version == MVPP22 && queue_mode == MVPP2_QDIST_MULTI_MODE)
  3814. nrxqs = MVPP2_DEFAULT_RXQ * num_possible_cpus();
  3815. else
  3816. nrxqs = MVPP2_DEFAULT_RXQ;
  3817. dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs);
  3818. if (!dev)
  3819. return -ENOMEM;
  3820. phy_mode = fwnode_get_phy_mode(port_fwnode);
  3821. if (phy_mode < 0) {
  3822. dev_err(&pdev->dev, "incorrect phy mode\n");
  3823. err = phy_mode;
  3824. goto err_free_netdev;
  3825. }
  3826. if (port_node) {
  3827. comphy = devm_of_phy_get(&pdev->dev, port_node, NULL);
  3828. if (IS_ERR(comphy)) {
  3829. if (PTR_ERR(comphy) == -EPROBE_DEFER) {
  3830. err = -EPROBE_DEFER;
  3831. goto err_free_netdev;
  3832. }
  3833. comphy = NULL;
  3834. }
  3835. }
  3836. if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) {
  3837. err = -EINVAL;
  3838. dev_err(&pdev->dev, "missing port-id value\n");
  3839. goto err_free_netdev;
  3840. }
  3841. dev->tx_queue_len = MVPP2_MAX_TXD_MAX;
  3842. dev->watchdog_timeo = 5 * HZ;
  3843. dev->netdev_ops = &mvpp2_netdev_ops;
  3844. dev->ethtool_ops = &mvpp2_eth_tool_ops;
  3845. port = netdev_priv(dev);
  3846. port->dev = dev;
  3847. port->fwnode = port_fwnode;
  3848. port->has_phy = !!of_find_property(port_node, "phy", NULL);
  3849. port->ntxqs = ntxqs;
  3850. port->nrxqs = nrxqs;
  3851. port->priv = priv;
  3852. port->has_tx_irqs = has_tx_irqs;
  3853. err = mvpp2_queue_vectors_init(port, port_node);
  3854. if (err)
  3855. goto err_free_netdev;
  3856. if (port_node)
  3857. port->link_irq = of_irq_get_byname(port_node, "link");
  3858. else
  3859. port->link_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1);
  3860. if (port->link_irq == -EPROBE_DEFER) {
  3861. err = -EPROBE_DEFER;
  3862. goto err_deinit_qvecs;
  3863. }
  3864. if (port->link_irq <= 0)
  3865. /* the link irq is optional */
  3866. port->link_irq = 0;
  3867. if (fwnode_property_read_bool(port_fwnode, "marvell,loopback"))
  3868. port->flags |= MVPP2_F_LOOPBACK;
  3869. port->id = id;
  3870. if (priv->hw_version == MVPP21)
  3871. port->first_rxq = port->id * port->nrxqs;
  3872. else
  3873. port->first_rxq = port->id * priv->max_port_rxqs;
  3874. port->of_node = port_node;
  3875. port->phy_interface = phy_mode;
  3876. port->comphy = comphy;
  3877. if (priv->hw_version == MVPP21) {
  3878. res = platform_get_resource(pdev, IORESOURCE_MEM, 2 + id);
  3879. port->base = devm_ioremap_resource(&pdev->dev, res);
  3880. if (IS_ERR(port->base)) {
  3881. err = PTR_ERR(port->base);
  3882. goto err_free_irq;
  3883. }
  3884. port->stats_base = port->priv->lms_base +
  3885. MVPP21_MIB_COUNTERS_OFFSET +
  3886. port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ;
  3887. } else {
  3888. if (fwnode_property_read_u32(port_fwnode, "gop-port-id",
  3889. &port->gop_id)) {
  3890. err = -EINVAL;
  3891. dev_err(&pdev->dev, "missing gop-port-id value\n");
  3892. goto err_deinit_qvecs;
  3893. }
  3894. port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id);
  3895. port->stats_base = port->priv->iface_base +
  3896. MVPP22_MIB_COUNTERS_OFFSET +
  3897. port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ;
  3898. }
  3899. /* Alloc per-cpu and ethtool stats */
  3900. port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
  3901. if (!port->stats) {
  3902. err = -ENOMEM;
  3903. goto err_free_irq;
  3904. }
  3905. port->ethtool_stats = devm_kcalloc(&pdev->dev,
  3906. ARRAY_SIZE(mvpp2_ethtool_regs),
  3907. sizeof(u64), GFP_KERNEL);
  3908. if (!port->ethtool_stats) {
  3909. err = -ENOMEM;
  3910. goto err_free_stats;
  3911. }
  3912. mutex_init(&port->gather_stats_lock);
  3913. INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics);
  3914. mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from);
  3915. port->tx_ring_size = MVPP2_MAX_TXD_DFLT;
  3916. port->rx_ring_size = MVPP2_MAX_RXD_DFLT;
  3917. SET_NETDEV_DEV(dev, &pdev->dev);
  3918. err = mvpp2_port_init(port);
  3919. if (err < 0) {
  3920. dev_err(&pdev->dev, "failed to init port %d\n", id);
  3921. goto err_free_stats;
  3922. }
  3923. mvpp2_port_periodic_xon_disable(port);
  3924. mvpp2_port_reset(port);
  3925. port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
  3926. if (!port->pcpu) {
  3927. err = -ENOMEM;
  3928. goto err_free_txq_pcpu;
  3929. }
  3930. if (!port->has_tx_irqs) {
  3931. for_each_present_cpu(cpu) {
  3932. port_pcpu = per_cpu_ptr(port->pcpu, cpu);
  3933. hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
  3934. HRTIMER_MODE_REL_PINNED);
  3935. port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
  3936. port_pcpu->timer_scheduled = false;
  3937. tasklet_init(&port_pcpu->tx_done_tasklet,
  3938. mvpp2_tx_proc_cb,
  3939. (unsigned long)dev);
  3940. }
  3941. }
  3942. features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  3943. NETIF_F_TSO;
  3944. dev->features = features | NETIF_F_RXCSUM;
  3945. dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO |
  3946. NETIF_F_HW_VLAN_CTAG_FILTER;
  3947. if (mvpp22_rss_is_supported())
  3948. dev->hw_features |= NETIF_F_RXHASH;
  3949. if (port->pool_long->id == MVPP2_BM_JUMBO && port->id != 0) {
  3950. dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  3951. dev->hw_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
  3952. }
  3953. dev->vlan_features |= features;
  3954. dev->gso_max_segs = MVPP2_MAX_TSO_SEGS;
  3955. dev->priv_flags |= IFF_UNICAST_FLT;
  3956. /* MTU range: 68 - 9704 */
  3957. dev->min_mtu = ETH_MIN_MTU;
  3958. /* 9704 == 9728 - 20 and rounding to 8 */
  3959. dev->max_mtu = MVPP2_BM_JUMBO_PKT_SIZE;
  3960. /* Phylink isn't used w/ ACPI as of now */
  3961. if (port_node) {
  3962. phylink = phylink_create(dev, port_fwnode, phy_mode,
  3963. &mvpp2_phylink_ops);
  3964. if (IS_ERR(phylink)) {
  3965. err = PTR_ERR(phylink);
  3966. goto err_free_port_pcpu;
  3967. }
  3968. port->phylink = phylink;
  3969. } else {
  3970. port->phylink = NULL;
  3971. }
  3972. err = register_netdev(dev);
  3973. if (err < 0) {
  3974. dev_err(&pdev->dev, "failed to register netdev\n");
  3975. goto err_phylink;
  3976. }
  3977. netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
  3978. priv->port_list[priv->port_count++] = port;
  3979. return 0;
  3980. err_phylink:
  3981. if (port->phylink)
  3982. phylink_destroy(port->phylink);
  3983. err_free_port_pcpu:
  3984. free_percpu(port->pcpu);
  3985. err_free_txq_pcpu:
  3986. for (i = 0; i < port->ntxqs; i++)
  3987. free_percpu(port->txqs[i]->pcpu);
  3988. err_free_stats:
  3989. free_percpu(port->stats);
  3990. err_free_irq:
  3991. if (port->link_irq)
  3992. irq_dispose_mapping(port->link_irq);
  3993. err_deinit_qvecs:
  3994. mvpp2_queue_vectors_deinit(port);
  3995. err_free_netdev:
  3996. free_netdev(dev);
  3997. return err;
  3998. }
  3999. /* Ports removal routine */
  4000. static void mvpp2_port_remove(struct mvpp2_port *port)
  4001. {
  4002. int i;
  4003. unregister_netdev(port->dev);
  4004. if (port->phylink)
  4005. phylink_destroy(port->phylink);
  4006. free_percpu(port->pcpu);
  4007. free_percpu(port->stats);
  4008. for (i = 0; i < port->ntxqs; i++)
  4009. free_percpu(port->txqs[i]->pcpu);
  4010. mvpp2_queue_vectors_deinit(port);
  4011. if (port->link_irq)
  4012. irq_dispose_mapping(port->link_irq);
  4013. free_netdev(port->dev);
  4014. }
  4015. /* Initialize decoding windows */
  4016. static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
  4017. struct mvpp2 *priv)
  4018. {
  4019. u32 win_enable;
  4020. int i;
  4021. for (i = 0; i < 6; i++) {
  4022. mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
  4023. mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
  4024. if (i < 4)
  4025. mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
  4026. }
  4027. win_enable = 0;
  4028. for (i = 0; i < dram->num_cs; i++) {
  4029. const struct mbus_dram_window *cs = dram->cs + i;
  4030. mvpp2_write(priv, MVPP2_WIN_BASE(i),
  4031. (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
  4032. dram->mbus_dram_target_id);
  4033. mvpp2_write(priv, MVPP2_WIN_SIZE(i),
  4034. (cs->size - 1) & 0xffff0000);
  4035. win_enable |= (1 << i);
  4036. }
  4037. mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
  4038. }
  4039. /* Initialize Rx FIFO's */
  4040. static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
  4041. {
  4042. int port;
  4043. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  4044. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
  4045. MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
  4046. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
  4047. MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
  4048. }
  4049. mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
  4050. MVPP2_RX_FIFO_PORT_MIN_PKT);
  4051. mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
  4052. }
  4053. static void mvpp22_rx_fifo_init(struct mvpp2 *priv)
  4054. {
  4055. int port;
  4056. /* The FIFO size parameters are set depending on the maximum speed a
  4057. * given port can handle:
  4058. * - Port 0: 10Gbps
  4059. * - Port 1: 2.5Gbps
  4060. * - Ports 2 and 3: 1Gbps
  4061. */
  4062. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(0),
  4063. MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB);
  4064. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(0),
  4065. MVPP2_RX_FIFO_PORT_ATTR_SIZE_32KB);
  4066. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(1),
  4067. MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB);
  4068. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(1),
  4069. MVPP2_RX_FIFO_PORT_ATTR_SIZE_8KB);
  4070. for (port = 2; port < MVPP2_MAX_PORTS; port++) {
  4071. mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
  4072. MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB);
  4073. mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
  4074. MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB);
  4075. }
  4076. mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
  4077. MVPP2_RX_FIFO_PORT_MIN_PKT);
  4078. mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
  4079. }
  4080. /* Initialize Tx FIFO's: the total FIFO size is 19kB on PPv2.2 and 10G
  4081. * interfaces must have a Tx FIFO size of 10kB. As only port 0 can do 10G,
  4082. * configure its Tx FIFO size to 10kB and the others ports Tx FIFO size to 3kB.
  4083. */
  4084. static void mvpp22_tx_fifo_init(struct mvpp2 *priv)
  4085. {
  4086. int port, size, thrs;
  4087. for (port = 0; port < MVPP2_MAX_PORTS; port++) {
  4088. if (port == 0) {
  4089. size = MVPP22_TX_FIFO_DATA_SIZE_10KB;
  4090. thrs = MVPP2_TX_FIFO_THRESHOLD_10KB;
  4091. } else {
  4092. size = MVPP22_TX_FIFO_DATA_SIZE_3KB;
  4093. thrs = MVPP2_TX_FIFO_THRESHOLD_3KB;
  4094. }
  4095. mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), size);
  4096. mvpp2_write(priv, MVPP22_TX_FIFO_THRESH_REG(port), thrs);
  4097. }
  4098. }
  4099. static void mvpp2_axi_init(struct mvpp2 *priv)
  4100. {
  4101. u32 val, rdval, wrval;
  4102. mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
  4103. /* AXI Bridge Configuration */
  4104. rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
  4105. << MVPP22_AXI_ATTR_CACHE_OFFS;
  4106. rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4107. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  4108. wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
  4109. << MVPP22_AXI_ATTR_CACHE_OFFS;
  4110. wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4111. << MVPP22_AXI_ATTR_DOMAIN_OFFS;
  4112. /* BM */
  4113. mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
  4114. mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
  4115. /* Descriptors */
  4116. mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
  4117. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
  4118. mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
  4119. mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
  4120. /* Buffer Data */
  4121. mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
  4122. mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
  4123. val = MVPP22_AXI_CODE_CACHE_NON_CACHE
  4124. << MVPP22_AXI_CODE_CACHE_OFFS;
  4125. val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
  4126. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4127. mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
  4128. mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
  4129. val = MVPP22_AXI_CODE_CACHE_RD_CACHE
  4130. << MVPP22_AXI_CODE_CACHE_OFFS;
  4131. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4132. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4133. mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
  4134. val = MVPP22_AXI_CODE_CACHE_WR_CACHE
  4135. << MVPP22_AXI_CODE_CACHE_OFFS;
  4136. val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
  4137. << MVPP22_AXI_CODE_DOMAIN_OFFS;
  4138. mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
  4139. }
  4140. /* Initialize network controller common part HW */
  4141. static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
  4142. {
  4143. const struct mbus_dram_target_info *dram_target_info;
  4144. int err, i;
  4145. u32 val;
  4146. /* MBUS windows configuration */
  4147. dram_target_info = mv_mbus_dram_info();
  4148. if (dram_target_info)
  4149. mvpp2_conf_mbus_windows(dram_target_info, priv);
  4150. if (priv->hw_version == MVPP22)
  4151. mvpp2_axi_init(priv);
  4152. /* Disable HW PHY polling */
  4153. if (priv->hw_version == MVPP21) {
  4154. val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  4155. val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
  4156. writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
  4157. } else {
  4158. val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  4159. val &= ~MVPP22_SMI_POLLING_EN;
  4160. writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
  4161. }
  4162. /* Allocate and initialize aggregated TXQs */
  4163. priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
  4164. sizeof(*priv->aggr_txqs),
  4165. GFP_KERNEL);
  4166. if (!priv->aggr_txqs)
  4167. return -ENOMEM;
  4168. for_each_present_cpu(i) {
  4169. priv->aggr_txqs[i].id = i;
  4170. priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
  4171. err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv);
  4172. if (err < 0)
  4173. return err;
  4174. }
  4175. /* Fifo Init */
  4176. if (priv->hw_version == MVPP21) {
  4177. mvpp2_rx_fifo_init(priv);
  4178. } else {
  4179. mvpp22_rx_fifo_init(priv);
  4180. mvpp22_tx_fifo_init(priv);
  4181. }
  4182. if (priv->hw_version == MVPP21)
  4183. writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
  4184. priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
  4185. /* Allow cache snoop when transmiting packets */
  4186. mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
  4187. /* Buffer Manager initialization */
  4188. err = mvpp2_bm_init(pdev, priv);
  4189. if (err < 0)
  4190. return err;
  4191. /* Parser default initialization */
  4192. err = mvpp2_prs_default_init(pdev, priv);
  4193. if (err < 0)
  4194. return err;
  4195. /* Classifier default initialization */
  4196. mvpp2_cls_init(priv);
  4197. return 0;
  4198. }
  4199. static int mvpp2_probe(struct platform_device *pdev)
  4200. {
  4201. const struct acpi_device_id *acpi_id;
  4202. struct fwnode_handle *fwnode = pdev->dev.fwnode;
  4203. struct fwnode_handle *port_fwnode;
  4204. struct mvpp2 *priv;
  4205. struct resource *res;
  4206. void __iomem *base;
  4207. int i;
  4208. int err;
  4209. priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
  4210. if (!priv)
  4211. return -ENOMEM;
  4212. if (has_acpi_companion(&pdev->dev)) {
  4213. acpi_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
  4214. &pdev->dev);
  4215. priv->hw_version = (unsigned long)acpi_id->driver_data;
  4216. } else {
  4217. priv->hw_version =
  4218. (unsigned long)of_device_get_match_data(&pdev->dev);
  4219. }
  4220. /* multi queue mode isn't supported on PPV2.1, fallback to single
  4221. * mode
  4222. */
  4223. if (priv->hw_version == MVPP21)
  4224. queue_mode = MVPP2_QDIST_SINGLE_MODE;
  4225. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  4226. base = devm_ioremap_resource(&pdev->dev, res);
  4227. if (IS_ERR(base))
  4228. return PTR_ERR(base);
  4229. if (priv->hw_version == MVPP21) {
  4230. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  4231. priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
  4232. if (IS_ERR(priv->lms_base))
  4233. return PTR_ERR(priv->lms_base);
  4234. } else {
  4235. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  4236. if (has_acpi_companion(&pdev->dev)) {
  4237. /* In case the MDIO memory region is declared in
  4238. * the ACPI, it can already appear as 'in-use'
  4239. * in the OS. Because it is overlapped by second
  4240. * region of the network controller, make
  4241. * sure it is released, before requesting it again.
  4242. * The care is taken by mvpp2 driver to avoid
  4243. * concurrent access to this memory region.
  4244. */
  4245. release_resource(res);
  4246. }
  4247. priv->iface_base = devm_ioremap_resource(&pdev->dev, res);
  4248. if (IS_ERR(priv->iface_base))
  4249. return PTR_ERR(priv->iface_base);
  4250. }
  4251. if (priv->hw_version == MVPP22 && dev_of_node(&pdev->dev)) {
  4252. priv->sysctrl_base =
  4253. syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
  4254. "marvell,system-controller");
  4255. if (IS_ERR(priv->sysctrl_base))
  4256. /* The system controller regmap is optional for dt
  4257. * compatibility reasons. When not provided, the
  4258. * configuration of the GoP relies on the
  4259. * firmware/bootloader.
  4260. */
  4261. priv->sysctrl_base = NULL;
  4262. }
  4263. mvpp2_setup_bm_pool();
  4264. for (i = 0; i < MVPP2_MAX_THREADS; i++) {
  4265. u32 addr_space_sz;
  4266. addr_space_sz = (priv->hw_version == MVPP21 ?
  4267. MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ);
  4268. priv->swth_base[i] = base + i * addr_space_sz;
  4269. }
  4270. if (priv->hw_version == MVPP21)
  4271. priv->max_port_rxqs = 8;
  4272. else
  4273. priv->max_port_rxqs = 32;
  4274. if (dev_of_node(&pdev->dev)) {
  4275. priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
  4276. if (IS_ERR(priv->pp_clk))
  4277. return PTR_ERR(priv->pp_clk);
  4278. err = clk_prepare_enable(priv->pp_clk);
  4279. if (err < 0)
  4280. return err;
  4281. priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
  4282. if (IS_ERR(priv->gop_clk)) {
  4283. err = PTR_ERR(priv->gop_clk);
  4284. goto err_pp_clk;
  4285. }
  4286. err = clk_prepare_enable(priv->gop_clk);
  4287. if (err < 0)
  4288. goto err_pp_clk;
  4289. if (priv->hw_version == MVPP22) {
  4290. priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk");
  4291. if (IS_ERR(priv->mg_clk)) {
  4292. err = PTR_ERR(priv->mg_clk);
  4293. goto err_gop_clk;
  4294. }
  4295. err = clk_prepare_enable(priv->mg_clk);
  4296. if (err < 0)
  4297. goto err_gop_clk;
  4298. priv->mg_core_clk = devm_clk_get(&pdev->dev, "mg_core_clk");
  4299. if (IS_ERR(priv->mg_core_clk)) {
  4300. priv->mg_core_clk = NULL;
  4301. } else {
  4302. err = clk_prepare_enable(priv->mg_core_clk);
  4303. if (err < 0)
  4304. goto err_mg_clk;
  4305. }
  4306. }
  4307. priv->axi_clk = devm_clk_get(&pdev->dev, "axi_clk");
  4308. if (IS_ERR(priv->axi_clk)) {
  4309. err = PTR_ERR(priv->axi_clk);
  4310. if (err == -EPROBE_DEFER)
  4311. goto err_mg_core_clk;
  4312. priv->axi_clk = NULL;
  4313. } else {
  4314. err = clk_prepare_enable(priv->axi_clk);
  4315. if (err < 0)
  4316. goto err_mg_core_clk;
  4317. }
  4318. /* Get system's tclk rate */
  4319. priv->tclk = clk_get_rate(priv->pp_clk);
  4320. } else if (device_property_read_u32(&pdev->dev, "clock-frequency",
  4321. &priv->tclk)) {
  4322. dev_err(&pdev->dev, "missing clock-frequency value\n");
  4323. return -EINVAL;
  4324. }
  4325. if (priv->hw_version == MVPP22) {
  4326. err = dma_set_mask(&pdev->dev, MVPP2_DESC_DMA_MASK);
  4327. if (err)
  4328. goto err_axi_clk;
  4329. /* Sadly, the BM pools all share the same register to
  4330. * store the high 32 bits of their address. So they
  4331. * must all have the same high 32 bits, which forces
  4332. * us to restrict coherent memory to DMA_BIT_MASK(32).
  4333. */
  4334. err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  4335. if (err)
  4336. goto err_axi_clk;
  4337. }
  4338. /* Initialize network controller */
  4339. err = mvpp2_init(pdev, priv);
  4340. if (err < 0) {
  4341. dev_err(&pdev->dev, "failed to initialize controller\n");
  4342. goto err_axi_clk;
  4343. }
  4344. /* Initialize ports */
  4345. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4346. err = mvpp2_port_probe(pdev, port_fwnode, priv);
  4347. if (err < 0)
  4348. goto err_port_probe;
  4349. }
  4350. if (priv->port_count == 0) {
  4351. dev_err(&pdev->dev, "no ports enabled\n");
  4352. err = -ENODEV;
  4353. goto err_axi_clk;
  4354. }
  4355. /* Statistics must be gathered regularly because some of them (like
  4356. * packets counters) are 32-bit registers and could overflow quite
  4357. * quickly. For instance, a 10Gb link used at full bandwidth with the
  4358. * smallest packets (64B) will overflow a 32-bit counter in less than
  4359. * 30 seconds. Then, use a workqueue to fill 64-bit counters.
  4360. */
  4361. snprintf(priv->queue_name, sizeof(priv->queue_name),
  4362. "stats-wq-%s%s", netdev_name(priv->port_list[0]->dev),
  4363. priv->port_count > 1 ? "+" : "");
  4364. priv->stats_queue = create_singlethread_workqueue(priv->queue_name);
  4365. if (!priv->stats_queue) {
  4366. err = -ENOMEM;
  4367. goto err_port_probe;
  4368. }
  4369. platform_set_drvdata(pdev, priv);
  4370. return 0;
  4371. err_port_probe:
  4372. i = 0;
  4373. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4374. if (priv->port_list[i])
  4375. mvpp2_port_remove(priv->port_list[i]);
  4376. i++;
  4377. }
  4378. err_axi_clk:
  4379. clk_disable_unprepare(priv->axi_clk);
  4380. err_mg_core_clk:
  4381. if (priv->hw_version == MVPP22)
  4382. clk_disable_unprepare(priv->mg_core_clk);
  4383. err_mg_clk:
  4384. if (priv->hw_version == MVPP22)
  4385. clk_disable_unprepare(priv->mg_clk);
  4386. err_gop_clk:
  4387. clk_disable_unprepare(priv->gop_clk);
  4388. err_pp_clk:
  4389. clk_disable_unprepare(priv->pp_clk);
  4390. return err;
  4391. }
  4392. static int mvpp2_remove(struct platform_device *pdev)
  4393. {
  4394. struct mvpp2 *priv = platform_get_drvdata(pdev);
  4395. struct fwnode_handle *fwnode = pdev->dev.fwnode;
  4396. struct fwnode_handle *port_fwnode;
  4397. int i = 0;
  4398. flush_workqueue(priv->stats_queue);
  4399. destroy_workqueue(priv->stats_queue);
  4400. fwnode_for_each_available_child_node(fwnode, port_fwnode) {
  4401. if (priv->port_list[i]) {
  4402. mutex_destroy(&priv->port_list[i]->gather_stats_lock);
  4403. mvpp2_port_remove(priv->port_list[i]);
  4404. }
  4405. i++;
  4406. }
  4407. for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
  4408. struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
  4409. mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
  4410. }
  4411. for_each_present_cpu(i) {
  4412. struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
  4413. dma_free_coherent(&pdev->dev,
  4414. MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
  4415. aggr_txq->descs,
  4416. aggr_txq->descs_dma);
  4417. }
  4418. if (is_acpi_node(port_fwnode))
  4419. return 0;
  4420. clk_disable_unprepare(priv->axi_clk);
  4421. clk_disable_unprepare(priv->mg_core_clk);
  4422. clk_disable_unprepare(priv->mg_clk);
  4423. clk_disable_unprepare(priv->pp_clk);
  4424. clk_disable_unprepare(priv->gop_clk);
  4425. return 0;
  4426. }
  4427. static const struct of_device_id mvpp2_match[] = {
  4428. {
  4429. .compatible = "marvell,armada-375-pp2",
  4430. .data = (void *)MVPP21,
  4431. },
  4432. {
  4433. .compatible = "marvell,armada-7k-pp22",
  4434. .data = (void *)MVPP22,
  4435. },
  4436. { }
  4437. };
  4438. MODULE_DEVICE_TABLE(of, mvpp2_match);
  4439. static const struct acpi_device_id mvpp2_acpi_match[] = {
  4440. { "MRVL0110", MVPP22 },
  4441. { },
  4442. };
  4443. MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match);
  4444. static struct platform_driver mvpp2_driver = {
  4445. .probe = mvpp2_probe,
  4446. .remove = mvpp2_remove,
  4447. .driver = {
  4448. .name = MVPP2_DRIVER_NAME,
  4449. .of_match_table = mvpp2_match,
  4450. .acpi_match_table = ACPI_PTR(mvpp2_acpi_match),
  4451. },
  4452. };
  4453. module_platform_driver(mvpp2_driver);
  4454. MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
  4455. MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
  4456. MODULE_LICENSE("GPL v2");