inline.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA)
  21. return false;
  22. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. void *src_addr, *dst_addr;
  37. if (PageUptodate(page))
  38. return;
  39. f2fs_bug_on(F2FS_P_SB(page), page->index);
  40. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  41. /* Copy the whole inline data block */
  42. src_addr = inline_data_addr(ipage);
  43. dst_addr = kmap_atomic(page);
  44. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  45. flush_dcache_page(page);
  46. kunmap_atomic(dst_addr);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. }
  50. bool truncate_inline_inode(struct page *ipage, u64 from)
  51. {
  52. void *addr;
  53. if (from >= MAX_INLINE_DATA)
  54. return false;
  55. addr = inline_data_addr(ipage);
  56. f2fs_wait_on_page_writeback(ipage, NODE, true);
  57. memset(addr + from, 0, MAX_INLINE_DATA - from);
  58. set_page_dirty(ipage);
  59. return true;
  60. }
  61. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  62. {
  63. struct page *ipage;
  64. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  65. if (IS_ERR(ipage)) {
  66. unlock_page(page);
  67. return PTR_ERR(ipage);
  68. }
  69. if (!f2fs_has_inline_data(inode)) {
  70. f2fs_put_page(ipage, 1);
  71. return -EAGAIN;
  72. }
  73. if (page->index)
  74. zero_user_segment(page, 0, PAGE_SIZE);
  75. else
  76. read_inline_data(page, ipage);
  77. if (!PageUptodate(page))
  78. SetPageUptodate(page);
  79. f2fs_put_page(ipage, 1);
  80. unlock_page(page);
  81. return 0;
  82. }
  83. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  84. {
  85. struct f2fs_io_info fio = {
  86. .sbi = F2FS_I_SB(dn->inode),
  87. .type = DATA,
  88. .rw = WRITE_SYNC | REQ_PRIO,
  89. .page = page,
  90. .encrypted_page = NULL,
  91. };
  92. int dirty, err;
  93. if (!f2fs_exist_data(dn->inode))
  94. goto clear_out;
  95. err = f2fs_reserve_block(dn, 0);
  96. if (err)
  97. return err;
  98. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  99. read_inline_data(page, dn->inode_page);
  100. set_page_dirty(page);
  101. /* clear dirty state */
  102. dirty = clear_page_dirty_for_io(page);
  103. /* write data page to try to make data consistent */
  104. set_page_writeback(page);
  105. fio.old_blkaddr = dn->data_blkaddr;
  106. write_data_page(dn, &fio);
  107. f2fs_wait_on_page_writeback(page, DATA, true);
  108. if (dirty)
  109. inode_dec_dirty_pages(dn->inode);
  110. /* this converted inline_data should be recovered. */
  111. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  112. /* clear inline data and flag after data writeback */
  113. truncate_inline_inode(dn->inode_page, 0);
  114. clear_inline_node(dn->inode_page);
  115. clear_out:
  116. stat_dec_inline_inode(dn->inode);
  117. f2fs_clear_inline_inode(dn->inode);
  118. f2fs_put_dnode(dn);
  119. return 0;
  120. }
  121. int f2fs_convert_inline_inode(struct inode *inode)
  122. {
  123. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  124. struct dnode_of_data dn;
  125. struct page *ipage, *page;
  126. int err = 0;
  127. if (!f2fs_has_inline_data(inode))
  128. return 0;
  129. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  130. if (!page)
  131. return -ENOMEM;
  132. f2fs_lock_op(sbi);
  133. ipage = get_node_page(sbi, inode->i_ino);
  134. if (IS_ERR(ipage)) {
  135. err = PTR_ERR(ipage);
  136. goto out;
  137. }
  138. set_new_dnode(&dn, inode, ipage, ipage, 0);
  139. if (f2fs_has_inline_data(inode))
  140. err = f2fs_convert_inline_page(&dn, page);
  141. f2fs_put_dnode(&dn);
  142. out:
  143. f2fs_unlock_op(sbi);
  144. f2fs_put_page(page, 1);
  145. f2fs_balance_fs(sbi, dn.node_changed);
  146. return err;
  147. }
  148. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  149. {
  150. void *src_addr, *dst_addr;
  151. struct dnode_of_data dn;
  152. int err;
  153. set_new_dnode(&dn, inode, NULL, NULL, 0);
  154. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  155. if (err)
  156. return err;
  157. if (!f2fs_has_inline_data(inode)) {
  158. f2fs_put_dnode(&dn);
  159. return -EAGAIN;
  160. }
  161. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  162. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  163. src_addr = kmap_atomic(page);
  164. dst_addr = inline_data_addr(dn.inode_page);
  165. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  166. kunmap_atomic(src_addr);
  167. set_page_dirty(dn.inode_page);
  168. set_inode_flag(inode, FI_APPEND_WRITE);
  169. set_inode_flag(inode, FI_DATA_EXIST);
  170. clear_inline_node(dn.inode_page);
  171. f2fs_put_dnode(&dn);
  172. return 0;
  173. }
  174. bool recover_inline_data(struct inode *inode, struct page *npage)
  175. {
  176. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  177. struct f2fs_inode *ri = NULL;
  178. void *src_addr, *dst_addr;
  179. struct page *ipage;
  180. /*
  181. * The inline_data recovery policy is as follows.
  182. * [prev.] [next] of inline_data flag
  183. * o o -> recover inline_data
  184. * o x -> remove inline_data, and then recover data blocks
  185. * x o -> remove inline_data, and then recover inline_data
  186. * x x -> recover data blocks
  187. */
  188. if (IS_INODE(npage))
  189. ri = F2FS_INODE(npage);
  190. if (f2fs_has_inline_data(inode) &&
  191. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  192. process_inline:
  193. ipage = get_node_page(sbi, inode->i_ino);
  194. f2fs_bug_on(sbi, IS_ERR(ipage));
  195. f2fs_wait_on_page_writeback(ipage, NODE, true);
  196. src_addr = inline_data_addr(npage);
  197. dst_addr = inline_data_addr(ipage);
  198. memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
  199. set_inode_flag(inode, FI_INLINE_DATA);
  200. set_inode_flag(inode, FI_DATA_EXIST);
  201. set_page_dirty(ipage);
  202. f2fs_put_page(ipage, 1);
  203. return true;
  204. }
  205. if (f2fs_has_inline_data(inode)) {
  206. ipage = get_node_page(sbi, inode->i_ino);
  207. f2fs_bug_on(sbi, IS_ERR(ipage));
  208. if (!truncate_inline_inode(ipage, 0))
  209. return false;
  210. f2fs_clear_inline_inode(inode);
  211. f2fs_put_page(ipage, 1);
  212. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  213. if (truncate_blocks(inode, 0, false))
  214. return false;
  215. goto process_inline;
  216. }
  217. return false;
  218. }
  219. struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
  220. struct fscrypt_name *fname, struct page **res_page)
  221. {
  222. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  223. struct f2fs_inline_dentry *inline_dentry;
  224. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  225. struct f2fs_dir_entry *de;
  226. struct f2fs_dentry_ptr d;
  227. struct page *ipage;
  228. f2fs_hash_t namehash;
  229. ipage = get_node_page(sbi, dir->i_ino);
  230. if (IS_ERR(ipage)) {
  231. *res_page = ipage;
  232. return NULL;
  233. }
  234. namehash = f2fs_dentry_hash(&name);
  235. inline_dentry = inline_data_addr(ipage);
  236. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  237. de = find_target_dentry(fname, namehash, NULL, &d);
  238. unlock_page(ipage);
  239. if (de)
  240. *res_page = ipage;
  241. else
  242. f2fs_put_page(ipage, 0);
  243. return de;
  244. }
  245. int make_empty_inline_dir(struct inode *inode, struct inode *parent,
  246. struct page *ipage)
  247. {
  248. struct f2fs_inline_dentry *dentry_blk;
  249. struct f2fs_dentry_ptr d;
  250. dentry_blk = inline_data_addr(ipage);
  251. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  252. do_make_empty_dir(inode, parent, &d);
  253. set_page_dirty(ipage);
  254. /* update i_size to MAX_INLINE_DATA */
  255. if (i_size_read(inode) < MAX_INLINE_DATA)
  256. f2fs_i_size_write(inode, MAX_INLINE_DATA);
  257. return 0;
  258. }
  259. /*
  260. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  261. * release ipage in this function.
  262. */
  263. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  264. struct f2fs_inline_dentry *inline_dentry)
  265. {
  266. struct page *page;
  267. struct dnode_of_data dn;
  268. struct f2fs_dentry_block *dentry_blk;
  269. int err;
  270. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  271. if (!page) {
  272. f2fs_put_page(ipage, 1);
  273. return -ENOMEM;
  274. }
  275. set_new_dnode(&dn, dir, ipage, NULL, 0);
  276. err = f2fs_reserve_block(&dn, 0);
  277. if (err)
  278. goto out;
  279. f2fs_wait_on_page_writeback(page, DATA, true);
  280. zero_user_segment(page, MAX_INLINE_DATA, PAGE_SIZE);
  281. dentry_blk = kmap_atomic(page);
  282. /* copy data from inline dentry block to new dentry block */
  283. memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
  284. INLINE_DENTRY_BITMAP_SIZE);
  285. memset(dentry_blk->dentry_bitmap + INLINE_DENTRY_BITMAP_SIZE, 0,
  286. SIZE_OF_DENTRY_BITMAP - INLINE_DENTRY_BITMAP_SIZE);
  287. /*
  288. * we do not need to zero out remainder part of dentry and filename
  289. * field, since we have used bitmap for marking the usage status of
  290. * them, besides, we can also ignore copying/zeroing reserved space
  291. * of dentry block, because them haven't been used so far.
  292. */
  293. memcpy(dentry_blk->dentry, inline_dentry->dentry,
  294. sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
  295. memcpy(dentry_blk->filename, inline_dentry->filename,
  296. NR_INLINE_DENTRY * F2FS_SLOT_LEN);
  297. kunmap_atomic(dentry_blk);
  298. if (!PageUptodate(page))
  299. SetPageUptodate(page);
  300. set_page_dirty(page);
  301. /* clear inline dir and flag after data writeback */
  302. truncate_inline_inode(ipage, 0);
  303. stat_dec_inline_dir(dir);
  304. clear_inode_flag(dir, FI_INLINE_DENTRY);
  305. f2fs_i_depth_write(dir, 1);
  306. if (i_size_read(dir) < PAGE_SIZE)
  307. f2fs_i_size_write(dir, PAGE_SIZE);
  308. out:
  309. f2fs_put_page(page, 1);
  310. return err;
  311. }
  312. static int f2fs_add_inline_entries(struct inode *dir,
  313. struct f2fs_inline_dentry *inline_dentry)
  314. {
  315. struct f2fs_dentry_ptr d;
  316. unsigned long bit_pos = 0;
  317. int err = 0;
  318. make_dentry_ptr(NULL, &d, (void *)inline_dentry, 2);
  319. while (bit_pos < d.max) {
  320. struct f2fs_dir_entry *de;
  321. struct qstr new_name;
  322. nid_t ino;
  323. umode_t fake_mode;
  324. if (!test_bit_le(bit_pos, d.bitmap)) {
  325. bit_pos++;
  326. continue;
  327. }
  328. de = &d.dentry[bit_pos];
  329. if (unlikely(!de->name_len)) {
  330. bit_pos++;
  331. continue;
  332. }
  333. new_name.name = d.filename[bit_pos];
  334. new_name.len = de->name_len;
  335. ino = le32_to_cpu(de->ino);
  336. fake_mode = get_de_type(de) << S_SHIFT;
  337. err = f2fs_add_regular_entry(dir, &new_name, NULL,
  338. ino, fake_mode);
  339. if (err)
  340. goto punch_dentry_pages;
  341. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  342. }
  343. return 0;
  344. punch_dentry_pages:
  345. truncate_inode_pages(&dir->i_data, 0);
  346. truncate_blocks(dir, 0, false);
  347. remove_dirty_inode(dir);
  348. return err;
  349. }
  350. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  351. struct f2fs_inline_dentry *inline_dentry)
  352. {
  353. struct f2fs_inline_dentry *backup_dentry;
  354. int err;
  355. backup_dentry = f2fs_kmalloc(sizeof(struct f2fs_inline_dentry),
  356. GFP_F2FS_ZERO);
  357. if (!backup_dentry) {
  358. f2fs_put_page(ipage, 1);
  359. return -ENOMEM;
  360. }
  361. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA);
  362. truncate_inline_inode(ipage, 0);
  363. unlock_page(ipage);
  364. err = f2fs_add_inline_entries(dir, backup_dentry);
  365. if (err)
  366. goto recover;
  367. lock_page(ipage);
  368. stat_dec_inline_dir(dir);
  369. clear_inode_flag(dir, FI_INLINE_DENTRY);
  370. kfree(backup_dentry);
  371. return 0;
  372. recover:
  373. lock_page(ipage);
  374. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA);
  375. f2fs_i_depth_write(dir, 0);
  376. f2fs_i_size_write(dir, MAX_INLINE_DATA);
  377. set_page_dirty(ipage);
  378. f2fs_put_page(ipage, 1);
  379. kfree(backup_dentry);
  380. return err;
  381. }
  382. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  383. struct f2fs_inline_dentry *inline_dentry)
  384. {
  385. if (!F2FS_I(dir)->i_dir_level)
  386. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  387. else
  388. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  389. }
  390. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
  391. struct inode *inode, nid_t ino, umode_t mode)
  392. {
  393. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  394. struct page *ipage;
  395. unsigned int bit_pos;
  396. f2fs_hash_t name_hash;
  397. size_t namelen = name->len;
  398. struct f2fs_inline_dentry *dentry_blk = NULL;
  399. struct f2fs_dentry_ptr d;
  400. int slots = GET_DENTRY_SLOTS(namelen);
  401. struct page *page = NULL;
  402. int err = 0;
  403. ipage = get_node_page(sbi, dir->i_ino);
  404. if (IS_ERR(ipage))
  405. return PTR_ERR(ipage);
  406. dentry_blk = inline_data_addr(ipage);
  407. bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
  408. slots, NR_INLINE_DENTRY);
  409. if (bit_pos >= NR_INLINE_DENTRY) {
  410. err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
  411. if (err)
  412. return err;
  413. err = -EAGAIN;
  414. goto out;
  415. }
  416. if (inode) {
  417. down_write(&F2FS_I(inode)->i_sem);
  418. page = init_inode_metadata(inode, dir, name, ipage);
  419. if (IS_ERR(page)) {
  420. err = PTR_ERR(page);
  421. goto fail;
  422. }
  423. }
  424. f2fs_wait_on_page_writeback(ipage, NODE, true);
  425. name_hash = f2fs_dentry_hash(name);
  426. make_dentry_ptr(NULL, &d, (void *)dentry_blk, 2);
  427. f2fs_update_dentry(ino, mode, &d, name, name_hash, bit_pos);
  428. set_page_dirty(ipage);
  429. /* we don't need to mark_inode_dirty now */
  430. if (inode) {
  431. f2fs_i_pino_write(inode, dir->i_ino);
  432. f2fs_put_page(page, 1);
  433. }
  434. update_parent_metadata(dir, inode, 0);
  435. fail:
  436. if (inode)
  437. up_write(&F2FS_I(inode)->i_sem);
  438. out:
  439. f2fs_put_page(ipage, 1);
  440. return err;
  441. }
  442. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  443. struct inode *dir, struct inode *inode)
  444. {
  445. struct f2fs_inline_dentry *inline_dentry;
  446. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  447. unsigned int bit_pos;
  448. int i;
  449. lock_page(page);
  450. f2fs_wait_on_page_writeback(page, NODE, true);
  451. inline_dentry = inline_data_addr(page);
  452. bit_pos = dentry - inline_dentry->dentry;
  453. for (i = 0; i < slots; i++)
  454. test_and_clear_bit_le(bit_pos + i,
  455. &inline_dentry->dentry_bitmap);
  456. set_page_dirty(page);
  457. f2fs_put_page(page, 1);
  458. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  459. mark_inode_dirty_sync(dir);
  460. if (inode)
  461. f2fs_drop_nlink(dir, inode);
  462. }
  463. bool f2fs_empty_inline_dir(struct inode *dir)
  464. {
  465. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  466. struct page *ipage;
  467. unsigned int bit_pos = 2;
  468. struct f2fs_inline_dentry *dentry_blk;
  469. ipage = get_node_page(sbi, dir->i_ino);
  470. if (IS_ERR(ipage))
  471. return false;
  472. dentry_blk = inline_data_addr(ipage);
  473. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  474. NR_INLINE_DENTRY,
  475. bit_pos);
  476. f2fs_put_page(ipage, 1);
  477. if (bit_pos < NR_INLINE_DENTRY)
  478. return false;
  479. return true;
  480. }
  481. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  482. struct fscrypt_str *fstr)
  483. {
  484. struct inode *inode = file_inode(file);
  485. struct f2fs_inline_dentry *inline_dentry = NULL;
  486. struct page *ipage = NULL;
  487. struct f2fs_dentry_ptr d;
  488. if (ctx->pos == NR_INLINE_DENTRY)
  489. return 0;
  490. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  491. if (IS_ERR(ipage))
  492. return PTR_ERR(ipage);
  493. inline_dentry = inline_data_addr(ipage);
  494. make_dentry_ptr(inode, &d, (void *)inline_dentry, 2);
  495. if (!f2fs_fill_dentries(ctx, &d, 0, fstr))
  496. ctx->pos = NR_INLINE_DENTRY;
  497. f2fs_put_page(ipage, 1);
  498. return 0;
  499. }
  500. int f2fs_inline_data_fiemap(struct inode *inode,
  501. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  502. {
  503. __u64 byteaddr, ilen;
  504. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  505. FIEMAP_EXTENT_LAST;
  506. struct node_info ni;
  507. struct page *ipage;
  508. int err = 0;
  509. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  510. if (IS_ERR(ipage))
  511. return PTR_ERR(ipage);
  512. if (!f2fs_has_inline_data(inode)) {
  513. err = -EAGAIN;
  514. goto out;
  515. }
  516. ilen = min_t(size_t, MAX_INLINE_DATA, i_size_read(inode));
  517. if (start >= ilen)
  518. goto out;
  519. if (start + len < ilen)
  520. ilen = start + len;
  521. ilen -= start;
  522. get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  523. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  524. byteaddr += (char *)inline_data_addr(ipage) - (char *)F2FS_INODE(ipage);
  525. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  526. out:
  527. f2fs_put_page(ipage, 1);
  528. return err;
  529. }