i915_debugfs.c 147 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  42. {
  43. return to_i915(node->minor->dev);
  44. }
  45. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  46. * allocated we need to hook into the minor for release. */
  47. static int
  48. drm_add_fake_info_node(struct drm_minor *minor,
  49. struct dentry *ent,
  50. const void *key)
  51. {
  52. struct drm_info_node *node;
  53. node = kmalloc(sizeof(*node), GFP_KERNEL);
  54. if (node == NULL) {
  55. debugfs_remove(ent);
  56. return -ENOMEM;
  57. }
  58. node->minor = minor;
  59. node->dent = ent;
  60. node->info_ent = (void *)key;
  61. mutex_lock(&minor->debugfs_lock);
  62. list_add(&node->list, &minor->debugfs_list);
  63. mutex_unlock(&minor->debugfs_lock);
  64. return 0;
  65. }
  66. static int i915_capabilities(struct seq_file *m, void *data)
  67. {
  68. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  69. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  70. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  71. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  72. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  73. #define SEP_SEMICOLON ;
  74. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  75. #undef PRINT_FLAG
  76. #undef SEP_SEMICOLON
  77. return 0;
  78. }
  79. static char get_active_flag(struct drm_i915_gem_object *obj)
  80. {
  81. return i915_gem_object_is_active(obj) ? '*' : ' ';
  82. }
  83. static char get_pin_flag(struct drm_i915_gem_object *obj)
  84. {
  85. return obj->pin_display ? 'p' : ' ';
  86. }
  87. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  88. {
  89. switch (i915_gem_object_get_tiling(obj)) {
  90. default:
  91. case I915_TILING_NONE: return ' ';
  92. case I915_TILING_X: return 'X';
  93. case I915_TILING_Y: return 'Y';
  94. }
  95. }
  96. static char get_global_flag(struct drm_i915_gem_object *obj)
  97. {
  98. return i915_gem_object_to_ggtt(obj, NULL) ? 'g' : ' ';
  99. }
  100. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  101. {
  102. return obj->mapping ? 'M' : ' ';
  103. }
  104. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  105. {
  106. u64 size = 0;
  107. struct i915_vma *vma;
  108. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  109. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  110. size += vma->node.size;
  111. }
  112. return size;
  113. }
  114. static void
  115. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  116. {
  117. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  118. struct intel_engine_cs *engine;
  119. struct i915_vma *vma;
  120. unsigned int frontbuffer_bits;
  121. int pin_count = 0;
  122. enum intel_engine_id id;
  123. lockdep_assert_held(&obj->base.dev->struct_mutex);
  124. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
  125. &obj->base,
  126. get_active_flag(obj),
  127. get_pin_flag(obj),
  128. get_tiling_flag(obj),
  129. get_global_flag(obj),
  130. get_pin_mapped_flag(obj),
  131. obj->base.size / 1024,
  132. obj->base.read_domains,
  133. obj->base.write_domain);
  134. for_each_engine_id(engine, dev_priv, id)
  135. seq_printf(m, "%x ",
  136. i915_gem_active_get_seqno(&obj->last_read[id],
  137. &obj->base.dev->struct_mutex));
  138. seq_printf(m, "] %x %s%s%s",
  139. i915_gem_active_get_seqno(&obj->last_write,
  140. &obj->base.dev->struct_mutex),
  141. i915_cache_level_str(dev_priv, obj->cache_level),
  142. obj->dirty ? " dirty" : "",
  143. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  144. if (obj->base.name)
  145. seq_printf(m, " (name: %d)", obj->base.name);
  146. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  147. if (i915_vma_is_pinned(vma))
  148. pin_count++;
  149. }
  150. seq_printf(m, " (pinned x %d)", pin_count);
  151. if (obj->pin_display)
  152. seq_printf(m, " (display)");
  153. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  154. if (!drm_mm_node_allocated(&vma->node))
  155. continue;
  156. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  157. i915_vma_is_ggtt(vma) ? "g" : "pp",
  158. vma->node.start, vma->node.size);
  159. if (i915_vma_is_ggtt(vma))
  160. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  161. if (vma->fence)
  162. seq_printf(m, " , fence: %d%s",
  163. vma->fence->id,
  164. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  165. seq_puts(m, ")");
  166. }
  167. if (obj->stolen)
  168. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  169. if (obj->pin_display || obj->fault_mappable) {
  170. char s[3], *t = s;
  171. if (obj->pin_display)
  172. *t++ = 'p';
  173. if (obj->fault_mappable)
  174. *t++ = 'f';
  175. *t = '\0';
  176. seq_printf(m, " (%s mappable)", s);
  177. }
  178. engine = i915_gem_active_get_engine(&obj->last_write,
  179. &dev_priv->drm.struct_mutex);
  180. if (engine)
  181. seq_printf(m, " (%s)", engine->name);
  182. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  183. if (frontbuffer_bits)
  184. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  185. }
  186. static int obj_rank_by_stolen(void *priv,
  187. struct list_head *A, struct list_head *B)
  188. {
  189. struct drm_i915_gem_object *a =
  190. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  191. struct drm_i915_gem_object *b =
  192. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  193. if (a->stolen->start < b->stolen->start)
  194. return -1;
  195. if (a->stolen->start > b->stolen->start)
  196. return 1;
  197. return 0;
  198. }
  199. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  200. {
  201. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  202. struct drm_device *dev = &dev_priv->drm;
  203. struct drm_i915_gem_object *obj;
  204. u64 total_obj_size, total_gtt_size;
  205. LIST_HEAD(stolen);
  206. int count, ret;
  207. ret = mutex_lock_interruptible(&dev->struct_mutex);
  208. if (ret)
  209. return ret;
  210. total_obj_size = total_gtt_size = count = 0;
  211. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  212. if (obj->stolen == NULL)
  213. continue;
  214. list_add(&obj->obj_exec_link, &stolen);
  215. total_obj_size += obj->base.size;
  216. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  217. count++;
  218. }
  219. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  220. if (obj->stolen == NULL)
  221. continue;
  222. list_add(&obj->obj_exec_link, &stolen);
  223. total_obj_size += obj->base.size;
  224. count++;
  225. }
  226. list_sort(NULL, &stolen, obj_rank_by_stolen);
  227. seq_puts(m, "Stolen:\n");
  228. while (!list_empty(&stolen)) {
  229. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  230. seq_puts(m, " ");
  231. describe_obj(m, obj);
  232. seq_putc(m, '\n');
  233. list_del_init(&obj->obj_exec_link);
  234. }
  235. mutex_unlock(&dev->struct_mutex);
  236. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  237. count, total_obj_size, total_gtt_size);
  238. return 0;
  239. }
  240. struct file_stats {
  241. struct drm_i915_file_private *file_priv;
  242. unsigned long count;
  243. u64 total, unbound;
  244. u64 global, shared;
  245. u64 active, inactive;
  246. };
  247. static int per_file_stats(int id, void *ptr, void *data)
  248. {
  249. struct drm_i915_gem_object *obj = ptr;
  250. struct file_stats *stats = data;
  251. struct i915_vma *vma;
  252. stats->count++;
  253. stats->total += obj->base.size;
  254. if (!obj->bind_count)
  255. stats->unbound += obj->base.size;
  256. if (obj->base.name || obj->base.dma_buf)
  257. stats->shared += obj->base.size;
  258. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  259. if (!drm_mm_node_allocated(&vma->node))
  260. continue;
  261. if (i915_vma_is_ggtt(vma)) {
  262. stats->global += vma->node.size;
  263. } else {
  264. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  265. if (ppgtt->base.file != stats->file_priv)
  266. continue;
  267. }
  268. if (i915_vma_is_active(vma))
  269. stats->active += vma->node.size;
  270. else
  271. stats->inactive += vma->node.size;
  272. }
  273. return 0;
  274. }
  275. #define print_file_stats(m, name, stats) do { \
  276. if (stats.count) \
  277. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  278. name, \
  279. stats.count, \
  280. stats.total, \
  281. stats.active, \
  282. stats.inactive, \
  283. stats.global, \
  284. stats.shared, \
  285. stats.unbound); \
  286. } while (0)
  287. static void print_batch_pool_stats(struct seq_file *m,
  288. struct drm_i915_private *dev_priv)
  289. {
  290. struct drm_i915_gem_object *obj;
  291. struct file_stats stats;
  292. struct intel_engine_cs *engine;
  293. int j;
  294. memset(&stats, 0, sizeof(stats));
  295. for_each_engine(engine, dev_priv) {
  296. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  297. list_for_each_entry(obj,
  298. &engine->batch_pool.cache_list[j],
  299. batch_pool_link)
  300. per_file_stats(0, obj, &stats);
  301. }
  302. }
  303. print_file_stats(m, "[k]batch pool", stats);
  304. }
  305. static int per_file_ctx_stats(int id, void *ptr, void *data)
  306. {
  307. struct i915_gem_context *ctx = ptr;
  308. int n;
  309. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  310. if (ctx->engine[n].state)
  311. per_file_stats(0, ctx->engine[n].state->obj, data);
  312. if (ctx->engine[n].ring)
  313. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  314. }
  315. return 0;
  316. }
  317. static void print_context_stats(struct seq_file *m,
  318. struct drm_i915_private *dev_priv)
  319. {
  320. struct drm_device *dev = &dev_priv->drm;
  321. struct file_stats stats;
  322. struct drm_file *file;
  323. memset(&stats, 0, sizeof(stats));
  324. mutex_lock(&dev->struct_mutex);
  325. if (dev_priv->kernel_context)
  326. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  327. list_for_each_entry(file, &dev->filelist, lhead) {
  328. struct drm_i915_file_private *fpriv = file->driver_priv;
  329. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  330. }
  331. mutex_unlock(&dev->struct_mutex);
  332. print_file_stats(m, "[k]contexts", stats);
  333. }
  334. static int i915_gem_object_info(struct seq_file *m, void *data)
  335. {
  336. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  337. struct drm_device *dev = &dev_priv->drm;
  338. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  339. u32 count, mapped_count, purgeable_count, dpy_count;
  340. u64 size, mapped_size, purgeable_size, dpy_size;
  341. struct drm_i915_gem_object *obj;
  342. struct drm_file *file;
  343. int ret;
  344. ret = mutex_lock_interruptible(&dev->struct_mutex);
  345. if (ret)
  346. return ret;
  347. seq_printf(m, "%u objects, %zu bytes\n",
  348. dev_priv->mm.object_count,
  349. dev_priv->mm.object_memory);
  350. size = count = 0;
  351. mapped_size = mapped_count = 0;
  352. purgeable_size = purgeable_count = 0;
  353. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  354. size += obj->base.size;
  355. ++count;
  356. if (obj->madv == I915_MADV_DONTNEED) {
  357. purgeable_size += obj->base.size;
  358. ++purgeable_count;
  359. }
  360. if (obj->mapping) {
  361. mapped_count++;
  362. mapped_size += obj->base.size;
  363. }
  364. }
  365. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  366. size = count = dpy_size = dpy_count = 0;
  367. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  368. size += obj->base.size;
  369. ++count;
  370. if (obj->pin_display) {
  371. dpy_size += obj->base.size;
  372. ++dpy_count;
  373. }
  374. if (obj->madv == I915_MADV_DONTNEED) {
  375. purgeable_size += obj->base.size;
  376. ++purgeable_count;
  377. }
  378. if (obj->mapping) {
  379. mapped_count++;
  380. mapped_size += obj->base.size;
  381. }
  382. }
  383. seq_printf(m, "%u bound objects, %llu bytes\n",
  384. count, size);
  385. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  386. purgeable_count, purgeable_size);
  387. seq_printf(m, "%u mapped objects, %llu bytes\n",
  388. mapped_count, mapped_size);
  389. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  390. dpy_count, dpy_size);
  391. seq_printf(m, "%llu [%llu] gtt total\n",
  392. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  393. seq_putc(m, '\n');
  394. print_batch_pool_stats(m, dev_priv);
  395. mutex_unlock(&dev->struct_mutex);
  396. mutex_lock(&dev->filelist_mutex);
  397. print_context_stats(m, dev_priv);
  398. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  399. struct file_stats stats;
  400. struct drm_i915_file_private *file_priv = file->driver_priv;
  401. struct drm_i915_gem_request *request;
  402. struct task_struct *task;
  403. memset(&stats, 0, sizeof(stats));
  404. stats.file_priv = file->driver_priv;
  405. spin_lock(&file->table_lock);
  406. idr_for_each(&file->object_idr, per_file_stats, &stats);
  407. spin_unlock(&file->table_lock);
  408. /*
  409. * Although we have a valid reference on file->pid, that does
  410. * not guarantee that the task_struct who called get_pid() is
  411. * still alive (e.g. get_pid(current) => fork() => exit()).
  412. * Therefore, we need to protect this ->comm access using RCU.
  413. */
  414. mutex_lock(&dev->struct_mutex);
  415. request = list_first_entry_or_null(&file_priv->mm.request_list,
  416. struct drm_i915_gem_request,
  417. client_list);
  418. rcu_read_lock();
  419. task = pid_task(request && request->ctx->pid ?
  420. request->ctx->pid : file->pid,
  421. PIDTYPE_PID);
  422. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  423. rcu_read_unlock();
  424. mutex_unlock(&dev->struct_mutex);
  425. }
  426. mutex_unlock(&dev->filelist_mutex);
  427. return 0;
  428. }
  429. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  430. {
  431. struct drm_info_node *node = m->private;
  432. struct drm_i915_private *dev_priv = node_to_i915(node);
  433. struct drm_device *dev = &dev_priv->drm;
  434. bool show_pin_display_only = !!node->info_ent->data;
  435. struct drm_i915_gem_object *obj;
  436. u64 total_obj_size, total_gtt_size;
  437. int count, ret;
  438. ret = mutex_lock_interruptible(&dev->struct_mutex);
  439. if (ret)
  440. return ret;
  441. total_obj_size = total_gtt_size = count = 0;
  442. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  443. if (show_pin_display_only && !obj->pin_display)
  444. continue;
  445. seq_puts(m, " ");
  446. describe_obj(m, obj);
  447. seq_putc(m, '\n');
  448. total_obj_size += obj->base.size;
  449. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  450. count++;
  451. }
  452. mutex_unlock(&dev->struct_mutex);
  453. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  454. count, total_obj_size, total_gtt_size);
  455. return 0;
  456. }
  457. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  458. {
  459. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  460. struct drm_device *dev = &dev_priv->drm;
  461. struct intel_crtc *crtc;
  462. int ret;
  463. ret = mutex_lock_interruptible(&dev->struct_mutex);
  464. if (ret)
  465. return ret;
  466. for_each_intel_crtc(dev, crtc) {
  467. const char pipe = pipe_name(crtc->pipe);
  468. const char plane = plane_name(crtc->plane);
  469. struct intel_flip_work *work;
  470. spin_lock_irq(&dev->event_lock);
  471. work = crtc->flip_work;
  472. if (work == NULL) {
  473. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  474. pipe, plane);
  475. } else {
  476. u32 pending;
  477. u32 addr;
  478. pending = atomic_read(&work->pending);
  479. if (pending) {
  480. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  481. pipe, plane);
  482. } else {
  483. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  484. pipe, plane);
  485. }
  486. if (work->flip_queued_req) {
  487. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  488. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  489. engine->name,
  490. i915_gem_request_get_seqno(work->flip_queued_req),
  491. dev_priv->next_seqno,
  492. intel_engine_get_seqno(engine),
  493. i915_gem_request_completed(work->flip_queued_req));
  494. } else
  495. seq_printf(m, "Flip not associated with any ring\n");
  496. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  497. work->flip_queued_vblank,
  498. work->flip_ready_vblank,
  499. intel_crtc_get_vblank_counter(crtc));
  500. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  501. if (INTEL_GEN(dev_priv) >= 4)
  502. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  503. else
  504. addr = I915_READ(DSPADDR(crtc->plane));
  505. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  506. if (work->pending_flip_obj) {
  507. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  508. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  509. }
  510. }
  511. spin_unlock_irq(&dev->event_lock);
  512. }
  513. mutex_unlock(&dev->struct_mutex);
  514. return 0;
  515. }
  516. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  517. {
  518. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  519. struct drm_device *dev = &dev_priv->drm;
  520. struct drm_i915_gem_object *obj;
  521. struct intel_engine_cs *engine;
  522. int total = 0;
  523. int ret, j;
  524. ret = mutex_lock_interruptible(&dev->struct_mutex);
  525. if (ret)
  526. return ret;
  527. for_each_engine(engine, dev_priv) {
  528. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  529. int count;
  530. count = 0;
  531. list_for_each_entry(obj,
  532. &engine->batch_pool.cache_list[j],
  533. batch_pool_link)
  534. count++;
  535. seq_printf(m, "%s cache[%d]: %d objects\n",
  536. engine->name, j, count);
  537. list_for_each_entry(obj,
  538. &engine->batch_pool.cache_list[j],
  539. batch_pool_link) {
  540. seq_puts(m, " ");
  541. describe_obj(m, obj);
  542. seq_putc(m, '\n');
  543. }
  544. total += count;
  545. }
  546. }
  547. seq_printf(m, "total: %d\n", total);
  548. mutex_unlock(&dev->struct_mutex);
  549. return 0;
  550. }
  551. static int i915_gem_request_info(struct seq_file *m, void *data)
  552. {
  553. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  554. struct drm_device *dev = &dev_priv->drm;
  555. struct intel_engine_cs *engine;
  556. struct drm_i915_gem_request *req;
  557. int ret, any;
  558. ret = mutex_lock_interruptible(&dev->struct_mutex);
  559. if (ret)
  560. return ret;
  561. any = 0;
  562. for_each_engine(engine, dev_priv) {
  563. int count;
  564. count = 0;
  565. list_for_each_entry(req, &engine->request_list, link)
  566. count++;
  567. if (count == 0)
  568. continue;
  569. seq_printf(m, "%s requests: %d\n", engine->name, count);
  570. list_for_each_entry(req, &engine->request_list, link) {
  571. struct pid *pid = req->ctx->pid;
  572. struct task_struct *task;
  573. rcu_read_lock();
  574. task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
  575. seq_printf(m, " %x @ %d: %s [%d]\n",
  576. req->fence.seqno,
  577. (int) (jiffies - req->emitted_jiffies),
  578. task ? task->comm : "<unknown>",
  579. task ? task->pid : -1);
  580. rcu_read_unlock();
  581. }
  582. any++;
  583. }
  584. mutex_unlock(&dev->struct_mutex);
  585. if (any == 0)
  586. seq_puts(m, "No requests\n");
  587. return 0;
  588. }
  589. static void i915_ring_seqno_info(struct seq_file *m,
  590. struct intel_engine_cs *engine)
  591. {
  592. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  593. struct rb_node *rb;
  594. seq_printf(m, "Current sequence (%s): %x\n",
  595. engine->name, intel_engine_get_seqno(engine));
  596. spin_lock(&b->lock);
  597. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  598. struct intel_wait *w = container_of(rb, typeof(*w), node);
  599. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  600. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  601. }
  602. spin_unlock(&b->lock);
  603. }
  604. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  605. {
  606. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  607. struct intel_engine_cs *engine;
  608. for_each_engine(engine, dev_priv)
  609. i915_ring_seqno_info(m, engine);
  610. return 0;
  611. }
  612. static int i915_interrupt_info(struct seq_file *m, void *data)
  613. {
  614. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  615. struct intel_engine_cs *engine;
  616. int i, pipe;
  617. intel_runtime_pm_get(dev_priv);
  618. if (IS_CHERRYVIEW(dev_priv)) {
  619. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  620. I915_READ(GEN8_MASTER_IRQ));
  621. seq_printf(m, "Display IER:\t%08x\n",
  622. I915_READ(VLV_IER));
  623. seq_printf(m, "Display IIR:\t%08x\n",
  624. I915_READ(VLV_IIR));
  625. seq_printf(m, "Display IIR_RW:\t%08x\n",
  626. I915_READ(VLV_IIR_RW));
  627. seq_printf(m, "Display IMR:\t%08x\n",
  628. I915_READ(VLV_IMR));
  629. for_each_pipe(dev_priv, pipe)
  630. seq_printf(m, "Pipe %c stat:\t%08x\n",
  631. pipe_name(pipe),
  632. I915_READ(PIPESTAT(pipe)));
  633. seq_printf(m, "Port hotplug:\t%08x\n",
  634. I915_READ(PORT_HOTPLUG_EN));
  635. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  636. I915_READ(VLV_DPFLIPSTAT));
  637. seq_printf(m, "DPINVGTT:\t%08x\n",
  638. I915_READ(DPINVGTT));
  639. for (i = 0; i < 4; i++) {
  640. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  641. i, I915_READ(GEN8_GT_IMR(i)));
  642. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  643. i, I915_READ(GEN8_GT_IIR(i)));
  644. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  645. i, I915_READ(GEN8_GT_IER(i)));
  646. }
  647. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  648. I915_READ(GEN8_PCU_IMR));
  649. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  650. I915_READ(GEN8_PCU_IIR));
  651. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  652. I915_READ(GEN8_PCU_IER));
  653. } else if (INTEL_GEN(dev_priv) >= 8) {
  654. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  655. I915_READ(GEN8_MASTER_IRQ));
  656. for (i = 0; i < 4; i++) {
  657. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  658. i, I915_READ(GEN8_GT_IMR(i)));
  659. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  660. i, I915_READ(GEN8_GT_IIR(i)));
  661. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  662. i, I915_READ(GEN8_GT_IER(i)));
  663. }
  664. for_each_pipe(dev_priv, pipe) {
  665. enum intel_display_power_domain power_domain;
  666. power_domain = POWER_DOMAIN_PIPE(pipe);
  667. if (!intel_display_power_get_if_enabled(dev_priv,
  668. power_domain)) {
  669. seq_printf(m, "Pipe %c power disabled\n",
  670. pipe_name(pipe));
  671. continue;
  672. }
  673. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  674. pipe_name(pipe),
  675. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  676. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  677. pipe_name(pipe),
  678. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  679. seq_printf(m, "Pipe %c IER:\t%08x\n",
  680. pipe_name(pipe),
  681. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  682. intel_display_power_put(dev_priv, power_domain);
  683. }
  684. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  685. I915_READ(GEN8_DE_PORT_IMR));
  686. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  687. I915_READ(GEN8_DE_PORT_IIR));
  688. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  689. I915_READ(GEN8_DE_PORT_IER));
  690. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  691. I915_READ(GEN8_DE_MISC_IMR));
  692. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  693. I915_READ(GEN8_DE_MISC_IIR));
  694. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  695. I915_READ(GEN8_DE_MISC_IER));
  696. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  697. I915_READ(GEN8_PCU_IMR));
  698. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  699. I915_READ(GEN8_PCU_IIR));
  700. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  701. I915_READ(GEN8_PCU_IER));
  702. } else if (IS_VALLEYVIEW(dev_priv)) {
  703. seq_printf(m, "Display IER:\t%08x\n",
  704. I915_READ(VLV_IER));
  705. seq_printf(m, "Display IIR:\t%08x\n",
  706. I915_READ(VLV_IIR));
  707. seq_printf(m, "Display IIR_RW:\t%08x\n",
  708. I915_READ(VLV_IIR_RW));
  709. seq_printf(m, "Display IMR:\t%08x\n",
  710. I915_READ(VLV_IMR));
  711. for_each_pipe(dev_priv, pipe)
  712. seq_printf(m, "Pipe %c stat:\t%08x\n",
  713. pipe_name(pipe),
  714. I915_READ(PIPESTAT(pipe)));
  715. seq_printf(m, "Master IER:\t%08x\n",
  716. I915_READ(VLV_MASTER_IER));
  717. seq_printf(m, "Render IER:\t%08x\n",
  718. I915_READ(GTIER));
  719. seq_printf(m, "Render IIR:\t%08x\n",
  720. I915_READ(GTIIR));
  721. seq_printf(m, "Render IMR:\t%08x\n",
  722. I915_READ(GTIMR));
  723. seq_printf(m, "PM IER:\t\t%08x\n",
  724. I915_READ(GEN6_PMIER));
  725. seq_printf(m, "PM IIR:\t\t%08x\n",
  726. I915_READ(GEN6_PMIIR));
  727. seq_printf(m, "PM IMR:\t\t%08x\n",
  728. I915_READ(GEN6_PMIMR));
  729. seq_printf(m, "Port hotplug:\t%08x\n",
  730. I915_READ(PORT_HOTPLUG_EN));
  731. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  732. I915_READ(VLV_DPFLIPSTAT));
  733. seq_printf(m, "DPINVGTT:\t%08x\n",
  734. I915_READ(DPINVGTT));
  735. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  736. seq_printf(m, "Interrupt enable: %08x\n",
  737. I915_READ(IER));
  738. seq_printf(m, "Interrupt identity: %08x\n",
  739. I915_READ(IIR));
  740. seq_printf(m, "Interrupt mask: %08x\n",
  741. I915_READ(IMR));
  742. for_each_pipe(dev_priv, pipe)
  743. seq_printf(m, "Pipe %c stat: %08x\n",
  744. pipe_name(pipe),
  745. I915_READ(PIPESTAT(pipe)));
  746. } else {
  747. seq_printf(m, "North Display Interrupt enable: %08x\n",
  748. I915_READ(DEIER));
  749. seq_printf(m, "North Display Interrupt identity: %08x\n",
  750. I915_READ(DEIIR));
  751. seq_printf(m, "North Display Interrupt mask: %08x\n",
  752. I915_READ(DEIMR));
  753. seq_printf(m, "South Display Interrupt enable: %08x\n",
  754. I915_READ(SDEIER));
  755. seq_printf(m, "South Display Interrupt identity: %08x\n",
  756. I915_READ(SDEIIR));
  757. seq_printf(m, "South Display Interrupt mask: %08x\n",
  758. I915_READ(SDEIMR));
  759. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  760. I915_READ(GTIER));
  761. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  762. I915_READ(GTIIR));
  763. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  764. I915_READ(GTIMR));
  765. }
  766. for_each_engine(engine, dev_priv) {
  767. if (INTEL_GEN(dev_priv) >= 6) {
  768. seq_printf(m,
  769. "Graphics Interrupt mask (%s): %08x\n",
  770. engine->name, I915_READ_IMR(engine));
  771. }
  772. i915_ring_seqno_info(m, engine);
  773. }
  774. intel_runtime_pm_put(dev_priv);
  775. return 0;
  776. }
  777. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  778. {
  779. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  780. struct drm_device *dev = &dev_priv->drm;
  781. int i, ret;
  782. ret = mutex_lock_interruptible(&dev->struct_mutex);
  783. if (ret)
  784. return ret;
  785. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  786. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  787. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  788. seq_printf(m, "Fence %d, pin count = %d, object = ",
  789. i, dev_priv->fence_regs[i].pin_count);
  790. if (!vma)
  791. seq_puts(m, "unused");
  792. else
  793. describe_obj(m, vma->obj);
  794. seq_putc(m, '\n');
  795. }
  796. mutex_unlock(&dev->struct_mutex);
  797. return 0;
  798. }
  799. static int i915_hws_info(struct seq_file *m, void *data)
  800. {
  801. struct drm_info_node *node = m->private;
  802. struct drm_i915_private *dev_priv = node_to_i915(node);
  803. struct intel_engine_cs *engine;
  804. const u32 *hws;
  805. int i;
  806. engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
  807. hws = engine->status_page.page_addr;
  808. if (hws == NULL)
  809. return 0;
  810. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  811. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  812. i * 4,
  813. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  814. }
  815. return 0;
  816. }
  817. static ssize_t
  818. i915_error_state_write(struct file *filp,
  819. const char __user *ubuf,
  820. size_t cnt,
  821. loff_t *ppos)
  822. {
  823. struct i915_error_state_file_priv *error_priv = filp->private_data;
  824. DRM_DEBUG_DRIVER("Resetting error state\n");
  825. i915_destroy_error_state(error_priv->dev);
  826. return cnt;
  827. }
  828. static int i915_error_state_open(struct inode *inode, struct file *file)
  829. {
  830. struct drm_i915_private *dev_priv = inode->i_private;
  831. struct i915_error_state_file_priv *error_priv;
  832. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  833. if (!error_priv)
  834. return -ENOMEM;
  835. error_priv->dev = &dev_priv->drm;
  836. i915_error_state_get(&dev_priv->drm, error_priv);
  837. file->private_data = error_priv;
  838. return 0;
  839. }
  840. static int i915_error_state_release(struct inode *inode, struct file *file)
  841. {
  842. struct i915_error_state_file_priv *error_priv = file->private_data;
  843. i915_error_state_put(error_priv);
  844. kfree(error_priv);
  845. return 0;
  846. }
  847. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  848. size_t count, loff_t *pos)
  849. {
  850. struct i915_error_state_file_priv *error_priv = file->private_data;
  851. struct drm_i915_error_state_buf error_str;
  852. loff_t tmp_pos = 0;
  853. ssize_t ret_count = 0;
  854. int ret;
  855. ret = i915_error_state_buf_init(&error_str,
  856. to_i915(error_priv->dev), count, *pos);
  857. if (ret)
  858. return ret;
  859. ret = i915_error_state_to_str(&error_str, error_priv);
  860. if (ret)
  861. goto out;
  862. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  863. error_str.buf,
  864. error_str.bytes);
  865. if (ret_count < 0)
  866. ret = ret_count;
  867. else
  868. *pos = error_str.start + ret_count;
  869. out:
  870. i915_error_state_buf_release(&error_str);
  871. return ret ?: ret_count;
  872. }
  873. static const struct file_operations i915_error_state_fops = {
  874. .owner = THIS_MODULE,
  875. .open = i915_error_state_open,
  876. .read = i915_error_state_read,
  877. .write = i915_error_state_write,
  878. .llseek = default_llseek,
  879. .release = i915_error_state_release,
  880. };
  881. static int
  882. i915_next_seqno_get(void *data, u64 *val)
  883. {
  884. struct drm_i915_private *dev_priv = data;
  885. int ret;
  886. ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
  887. if (ret)
  888. return ret;
  889. *val = dev_priv->next_seqno;
  890. mutex_unlock(&dev_priv->drm.struct_mutex);
  891. return 0;
  892. }
  893. static int
  894. i915_next_seqno_set(void *data, u64 val)
  895. {
  896. struct drm_i915_private *dev_priv = data;
  897. struct drm_device *dev = &dev_priv->drm;
  898. int ret;
  899. ret = mutex_lock_interruptible(&dev->struct_mutex);
  900. if (ret)
  901. return ret;
  902. ret = i915_gem_set_seqno(dev, val);
  903. mutex_unlock(&dev->struct_mutex);
  904. return ret;
  905. }
  906. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  907. i915_next_seqno_get, i915_next_seqno_set,
  908. "0x%llx\n");
  909. static int i915_frequency_info(struct seq_file *m, void *unused)
  910. {
  911. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  912. struct drm_device *dev = &dev_priv->drm;
  913. int ret = 0;
  914. intel_runtime_pm_get(dev_priv);
  915. if (IS_GEN5(dev_priv)) {
  916. u16 rgvswctl = I915_READ16(MEMSWCTL);
  917. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  918. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  919. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  920. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  921. MEMSTAT_VID_SHIFT);
  922. seq_printf(m, "Current P-state: %d\n",
  923. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  924. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  925. u32 freq_sts;
  926. mutex_lock(&dev_priv->rps.hw_lock);
  927. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  928. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  929. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  930. seq_printf(m, "actual GPU freq: %d MHz\n",
  931. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  932. seq_printf(m, "current GPU freq: %d MHz\n",
  933. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  934. seq_printf(m, "max GPU freq: %d MHz\n",
  935. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  936. seq_printf(m, "min GPU freq: %d MHz\n",
  937. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  938. seq_printf(m, "idle GPU freq: %d MHz\n",
  939. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  940. seq_printf(m,
  941. "efficient (RPe) frequency: %d MHz\n",
  942. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  943. mutex_unlock(&dev_priv->rps.hw_lock);
  944. } else if (INTEL_GEN(dev_priv) >= 6) {
  945. u32 rp_state_limits;
  946. u32 gt_perf_status;
  947. u32 rp_state_cap;
  948. u32 rpmodectl, rpinclimit, rpdeclimit;
  949. u32 rpstat, cagf, reqf;
  950. u32 rpupei, rpcurup, rpprevup;
  951. u32 rpdownei, rpcurdown, rpprevdown;
  952. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  953. int max_freq;
  954. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  955. if (IS_BROXTON(dev_priv)) {
  956. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  957. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  958. } else {
  959. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  960. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  961. }
  962. /* RPSTAT1 is in the GT power well */
  963. ret = mutex_lock_interruptible(&dev->struct_mutex);
  964. if (ret)
  965. goto out;
  966. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  967. reqf = I915_READ(GEN6_RPNSWREQ);
  968. if (IS_GEN9(dev_priv))
  969. reqf >>= 23;
  970. else {
  971. reqf &= ~GEN6_TURBO_DISABLE;
  972. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  973. reqf >>= 24;
  974. else
  975. reqf >>= 25;
  976. }
  977. reqf = intel_gpu_freq(dev_priv, reqf);
  978. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  979. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  980. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  981. rpstat = I915_READ(GEN6_RPSTAT1);
  982. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  983. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  984. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  985. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  986. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  987. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  988. if (IS_GEN9(dev_priv))
  989. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  990. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  991. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  992. else
  993. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  994. cagf = intel_gpu_freq(dev_priv, cagf);
  995. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  996. mutex_unlock(&dev->struct_mutex);
  997. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  998. pm_ier = I915_READ(GEN6_PMIER);
  999. pm_imr = I915_READ(GEN6_PMIMR);
  1000. pm_isr = I915_READ(GEN6_PMISR);
  1001. pm_iir = I915_READ(GEN6_PMIIR);
  1002. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1003. } else {
  1004. pm_ier = I915_READ(GEN8_GT_IER(2));
  1005. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1006. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1007. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1008. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1009. }
  1010. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1011. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1012. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1013. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1014. seq_printf(m, "Render p-state ratio: %d\n",
  1015. (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
  1016. seq_printf(m, "Render p-state VID: %d\n",
  1017. gt_perf_status & 0xff);
  1018. seq_printf(m, "Render p-state limit: %d\n",
  1019. rp_state_limits & 0xff);
  1020. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1021. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1022. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1023. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1024. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1025. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1026. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1027. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1028. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1029. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1030. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1031. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1032. seq_printf(m, "Up threshold: %d%%\n",
  1033. dev_priv->rps.up_threshold);
  1034. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1035. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1036. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1037. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1038. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1039. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1040. seq_printf(m, "Down threshold: %d%%\n",
  1041. dev_priv->rps.down_threshold);
  1042. max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
  1043. rp_state_cap >> 16) & 0xff;
  1044. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1045. GEN9_FREQ_SCALER : 1);
  1046. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1047. intel_gpu_freq(dev_priv, max_freq));
  1048. max_freq = (rp_state_cap & 0xff00) >> 8;
  1049. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1050. GEN9_FREQ_SCALER : 1);
  1051. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1052. intel_gpu_freq(dev_priv, max_freq));
  1053. max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
  1054. rp_state_cap >> 0) & 0xff;
  1055. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1056. GEN9_FREQ_SCALER : 1);
  1057. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1058. intel_gpu_freq(dev_priv, max_freq));
  1059. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1060. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1061. seq_printf(m, "Current freq: %d MHz\n",
  1062. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1063. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1064. seq_printf(m, "Idle freq: %d MHz\n",
  1065. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1066. seq_printf(m, "Min freq: %d MHz\n",
  1067. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1068. seq_printf(m, "Boost freq: %d MHz\n",
  1069. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1070. seq_printf(m, "Max freq: %d MHz\n",
  1071. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1072. seq_printf(m,
  1073. "efficient (RPe) frequency: %d MHz\n",
  1074. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1075. } else {
  1076. seq_puts(m, "no P-state info available\n");
  1077. }
  1078. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1079. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1080. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1081. out:
  1082. intel_runtime_pm_put(dev_priv);
  1083. return ret;
  1084. }
  1085. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1086. {
  1087. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1088. struct intel_engine_cs *engine;
  1089. u64 acthd[I915_NUM_ENGINES];
  1090. u32 seqno[I915_NUM_ENGINES];
  1091. u32 instdone[I915_NUM_INSTDONE_REG];
  1092. enum intel_engine_id id;
  1093. int j;
  1094. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1095. seq_printf(m, "Wedged\n");
  1096. if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
  1097. seq_printf(m, "Reset in progress\n");
  1098. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1099. seq_printf(m, "Waiter holding struct mutex\n");
  1100. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1101. seq_printf(m, "struct_mutex blocked for reset\n");
  1102. if (!i915.enable_hangcheck) {
  1103. seq_printf(m, "Hangcheck disabled\n");
  1104. return 0;
  1105. }
  1106. intel_runtime_pm_get(dev_priv);
  1107. for_each_engine_id(engine, dev_priv, id) {
  1108. acthd[id] = intel_engine_get_active_head(engine);
  1109. seqno[id] = intel_engine_get_seqno(engine);
  1110. }
  1111. i915_get_extra_instdone(dev_priv, instdone);
  1112. intel_runtime_pm_put(dev_priv);
  1113. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1114. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1115. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1116. jiffies));
  1117. } else
  1118. seq_printf(m, "Hangcheck inactive\n");
  1119. for_each_engine_id(engine, dev_priv, id) {
  1120. seq_printf(m, "%s:\n", engine->name);
  1121. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1122. engine->hangcheck.seqno,
  1123. seqno[id],
  1124. engine->last_submitted_seqno);
  1125. seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
  1126. yesno(intel_engine_has_waiter(engine)),
  1127. yesno(test_bit(engine->id,
  1128. &dev_priv->gpu_error.missed_irq_rings)));
  1129. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1130. (long long)engine->hangcheck.acthd,
  1131. (long long)acthd[id]);
  1132. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1133. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1134. if (engine->id == RCS) {
  1135. seq_puts(m, "\tinstdone read =");
  1136. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1137. seq_printf(m, " 0x%08x", instdone[j]);
  1138. seq_puts(m, "\n\tinstdone accu =");
  1139. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1140. seq_printf(m, " 0x%08x",
  1141. engine->hangcheck.instdone[j]);
  1142. seq_puts(m, "\n");
  1143. }
  1144. }
  1145. return 0;
  1146. }
  1147. static int ironlake_drpc_info(struct seq_file *m)
  1148. {
  1149. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1150. struct drm_device *dev = &dev_priv->drm;
  1151. u32 rgvmodectl, rstdbyctl;
  1152. u16 crstandvid;
  1153. int ret;
  1154. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1155. if (ret)
  1156. return ret;
  1157. intel_runtime_pm_get(dev_priv);
  1158. rgvmodectl = I915_READ(MEMMODECTL);
  1159. rstdbyctl = I915_READ(RSTDBYCTL);
  1160. crstandvid = I915_READ16(CRSTANDVID);
  1161. intel_runtime_pm_put(dev_priv);
  1162. mutex_unlock(&dev->struct_mutex);
  1163. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1164. seq_printf(m, "Boost freq: %d\n",
  1165. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1166. MEMMODE_BOOST_FREQ_SHIFT);
  1167. seq_printf(m, "HW control enabled: %s\n",
  1168. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1169. seq_printf(m, "SW control enabled: %s\n",
  1170. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1171. seq_printf(m, "Gated voltage change: %s\n",
  1172. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1173. seq_printf(m, "Starting frequency: P%d\n",
  1174. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1175. seq_printf(m, "Max P-state: P%d\n",
  1176. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1177. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1178. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1179. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1180. seq_printf(m, "Render standby enabled: %s\n",
  1181. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1182. seq_puts(m, "Current RS state: ");
  1183. switch (rstdbyctl & RSX_STATUS_MASK) {
  1184. case RSX_STATUS_ON:
  1185. seq_puts(m, "on\n");
  1186. break;
  1187. case RSX_STATUS_RC1:
  1188. seq_puts(m, "RC1\n");
  1189. break;
  1190. case RSX_STATUS_RC1E:
  1191. seq_puts(m, "RC1E\n");
  1192. break;
  1193. case RSX_STATUS_RS1:
  1194. seq_puts(m, "RS1\n");
  1195. break;
  1196. case RSX_STATUS_RS2:
  1197. seq_puts(m, "RS2 (RC6)\n");
  1198. break;
  1199. case RSX_STATUS_RS3:
  1200. seq_puts(m, "RC3 (RC6+)\n");
  1201. break;
  1202. default:
  1203. seq_puts(m, "unknown\n");
  1204. break;
  1205. }
  1206. return 0;
  1207. }
  1208. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1209. {
  1210. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1211. struct intel_uncore_forcewake_domain *fw_domain;
  1212. spin_lock_irq(&dev_priv->uncore.lock);
  1213. for_each_fw_domain(fw_domain, dev_priv) {
  1214. seq_printf(m, "%s.wake_count = %u\n",
  1215. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1216. fw_domain->wake_count);
  1217. }
  1218. spin_unlock_irq(&dev_priv->uncore.lock);
  1219. return 0;
  1220. }
  1221. static int vlv_drpc_info(struct seq_file *m)
  1222. {
  1223. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1224. u32 rpmodectl1, rcctl1, pw_status;
  1225. intel_runtime_pm_get(dev_priv);
  1226. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1227. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1228. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1229. intel_runtime_pm_put(dev_priv);
  1230. seq_printf(m, "Video Turbo Mode: %s\n",
  1231. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1232. seq_printf(m, "Turbo enabled: %s\n",
  1233. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1234. seq_printf(m, "HW control enabled: %s\n",
  1235. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1236. seq_printf(m, "SW control enabled: %s\n",
  1237. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1238. GEN6_RP_MEDIA_SW_MODE));
  1239. seq_printf(m, "RC6 Enabled: %s\n",
  1240. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1241. GEN6_RC_CTL_EI_MODE(1))));
  1242. seq_printf(m, "Render Power Well: %s\n",
  1243. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1244. seq_printf(m, "Media Power Well: %s\n",
  1245. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1246. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1247. I915_READ(VLV_GT_RENDER_RC6));
  1248. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1249. I915_READ(VLV_GT_MEDIA_RC6));
  1250. return i915_forcewake_domains(m, NULL);
  1251. }
  1252. static int gen6_drpc_info(struct seq_file *m)
  1253. {
  1254. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1255. struct drm_device *dev = &dev_priv->drm;
  1256. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1257. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1258. unsigned forcewake_count;
  1259. int count = 0, ret;
  1260. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1261. if (ret)
  1262. return ret;
  1263. intel_runtime_pm_get(dev_priv);
  1264. spin_lock_irq(&dev_priv->uncore.lock);
  1265. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1266. spin_unlock_irq(&dev_priv->uncore.lock);
  1267. if (forcewake_count) {
  1268. seq_puts(m, "RC information inaccurate because somebody "
  1269. "holds a forcewake reference \n");
  1270. } else {
  1271. /* NB: we cannot use forcewake, else we read the wrong values */
  1272. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1273. udelay(10);
  1274. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1275. }
  1276. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1277. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1278. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1279. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1280. if (INTEL_GEN(dev_priv) >= 9) {
  1281. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1282. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1283. }
  1284. mutex_unlock(&dev->struct_mutex);
  1285. mutex_lock(&dev_priv->rps.hw_lock);
  1286. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1287. mutex_unlock(&dev_priv->rps.hw_lock);
  1288. intel_runtime_pm_put(dev_priv);
  1289. seq_printf(m, "Video Turbo Mode: %s\n",
  1290. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1291. seq_printf(m, "HW control enabled: %s\n",
  1292. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1293. seq_printf(m, "SW control enabled: %s\n",
  1294. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1295. GEN6_RP_MEDIA_SW_MODE));
  1296. seq_printf(m, "RC1e Enabled: %s\n",
  1297. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1298. seq_printf(m, "RC6 Enabled: %s\n",
  1299. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1300. if (INTEL_GEN(dev_priv) >= 9) {
  1301. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1302. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1303. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1304. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1305. }
  1306. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1307. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1308. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1309. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1310. seq_puts(m, "Current RC state: ");
  1311. switch (gt_core_status & GEN6_RCn_MASK) {
  1312. case GEN6_RC0:
  1313. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1314. seq_puts(m, "Core Power Down\n");
  1315. else
  1316. seq_puts(m, "on\n");
  1317. break;
  1318. case GEN6_RC3:
  1319. seq_puts(m, "RC3\n");
  1320. break;
  1321. case GEN6_RC6:
  1322. seq_puts(m, "RC6\n");
  1323. break;
  1324. case GEN6_RC7:
  1325. seq_puts(m, "RC7\n");
  1326. break;
  1327. default:
  1328. seq_puts(m, "Unknown\n");
  1329. break;
  1330. }
  1331. seq_printf(m, "Core Power Down: %s\n",
  1332. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1333. if (INTEL_GEN(dev_priv) >= 9) {
  1334. seq_printf(m, "Render Power Well: %s\n",
  1335. (gen9_powergate_status &
  1336. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1337. seq_printf(m, "Media Power Well: %s\n",
  1338. (gen9_powergate_status &
  1339. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1340. }
  1341. /* Not exactly sure what this is */
  1342. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1343. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1344. seq_printf(m, "RC6 residency since boot: %u\n",
  1345. I915_READ(GEN6_GT_GFX_RC6));
  1346. seq_printf(m, "RC6+ residency since boot: %u\n",
  1347. I915_READ(GEN6_GT_GFX_RC6p));
  1348. seq_printf(m, "RC6++ residency since boot: %u\n",
  1349. I915_READ(GEN6_GT_GFX_RC6pp));
  1350. seq_printf(m, "RC6 voltage: %dmV\n",
  1351. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1352. seq_printf(m, "RC6+ voltage: %dmV\n",
  1353. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1354. seq_printf(m, "RC6++ voltage: %dmV\n",
  1355. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1356. return i915_forcewake_domains(m, NULL);
  1357. }
  1358. static int i915_drpc_info(struct seq_file *m, void *unused)
  1359. {
  1360. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1361. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1362. return vlv_drpc_info(m);
  1363. else if (INTEL_GEN(dev_priv) >= 6)
  1364. return gen6_drpc_info(m);
  1365. else
  1366. return ironlake_drpc_info(m);
  1367. }
  1368. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1369. {
  1370. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1371. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1372. dev_priv->fb_tracking.busy_bits);
  1373. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1374. dev_priv->fb_tracking.flip_bits);
  1375. return 0;
  1376. }
  1377. static int i915_fbc_status(struct seq_file *m, void *unused)
  1378. {
  1379. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1380. if (!HAS_FBC(dev_priv)) {
  1381. seq_puts(m, "FBC unsupported on this chipset\n");
  1382. return 0;
  1383. }
  1384. intel_runtime_pm_get(dev_priv);
  1385. mutex_lock(&dev_priv->fbc.lock);
  1386. if (intel_fbc_is_active(dev_priv))
  1387. seq_puts(m, "FBC enabled\n");
  1388. else
  1389. seq_printf(m, "FBC disabled: %s\n",
  1390. dev_priv->fbc.no_fbc_reason);
  1391. if (INTEL_GEN(dev_priv) >= 7)
  1392. seq_printf(m, "Compressing: %s\n",
  1393. yesno(I915_READ(FBC_STATUS2) &
  1394. FBC_COMPRESSION_MASK));
  1395. mutex_unlock(&dev_priv->fbc.lock);
  1396. intel_runtime_pm_put(dev_priv);
  1397. return 0;
  1398. }
  1399. static int i915_fbc_fc_get(void *data, u64 *val)
  1400. {
  1401. struct drm_i915_private *dev_priv = data;
  1402. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1403. return -ENODEV;
  1404. *val = dev_priv->fbc.false_color;
  1405. return 0;
  1406. }
  1407. static int i915_fbc_fc_set(void *data, u64 val)
  1408. {
  1409. struct drm_i915_private *dev_priv = data;
  1410. u32 reg;
  1411. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1412. return -ENODEV;
  1413. mutex_lock(&dev_priv->fbc.lock);
  1414. reg = I915_READ(ILK_DPFC_CONTROL);
  1415. dev_priv->fbc.false_color = val;
  1416. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1417. (reg | FBC_CTL_FALSE_COLOR) :
  1418. (reg & ~FBC_CTL_FALSE_COLOR));
  1419. mutex_unlock(&dev_priv->fbc.lock);
  1420. return 0;
  1421. }
  1422. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1423. i915_fbc_fc_get, i915_fbc_fc_set,
  1424. "%llu\n");
  1425. static int i915_ips_status(struct seq_file *m, void *unused)
  1426. {
  1427. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1428. if (!HAS_IPS(dev_priv)) {
  1429. seq_puts(m, "not supported\n");
  1430. return 0;
  1431. }
  1432. intel_runtime_pm_get(dev_priv);
  1433. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1434. yesno(i915.enable_ips));
  1435. if (INTEL_GEN(dev_priv) >= 8) {
  1436. seq_puts(m, "Currently: unknown\n");
  1437. } else {
  1438. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1439. seq_puts(m, "Currently: enabled\n");
  1440. else
  1441. seq_puts(m, "Currently: disabled\n");
  1442. }
  1443. intel_runtime_pm_put(dev_priv);
  1444. return 0;
  1445. }
  1446. static int i915_sr_status(struct seq_file *m, void *unused)
  1447. {
  1448. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1449. bool sr_enabled = false;
  1450. intel_runtime_pm_get(dev_priv);
  1451. if (HAS_PCH_SPLIT(dev_priv))
  1452. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1453. else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
  1454. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1455. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1456. else if (IS_I915GM(dev_priv))
  1457. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1458. else if (IS_PINEVIEW(dev_priv))
  1459. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1460. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1461. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1462. intel_runtime_pm_put(dev_priv);
  1463. seq_printf(m, "self-refresh: %s\n",
  1464. sr_enabled ? "enabled" : "disabled");
  1465. return 0;
  1466. }
  1467. static int i915_emon_status(struct seq_file *m, void *unused)
  1468. {
  1469. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1470. struct drm_device *dev = &dev_priv->drm;
  1471. unsigned long temp, chipset, gfx;
  1472. int ret;
  1473. if (!IS_GEN5(dev_priv))
  1474. return -ENODEV;
  1475. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1476. if (ret)
  1477. return ret;
  1478. temp = i915_mch_val(dev_priv);
  1479. chipset = i915_chipset_val(dev_priv);
  1480. gfx = i915_gfx_val(dev_priv);
  1481. mutex_unlock(&dev->struct_mutex);
  1482. seq_printf(m, "GMCH temp: %ld\n", temp);
  1483. seq_printf(m, "Chipset power: %ld\n", chipset);
  1484. seq_printf(m, "GFX power: %ld\n", gfx);
  1485. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1486. return 0;
  1487. }
  1488. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1489. {
  1490. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1491. int ret = 0;
  1492. int gpu_freq, ia_freq;
  1493. unsigned int max_gpu_freq, min_gpu_freq;
  1494. if (!HAS_LLC(dev_priv)) {
  1495. seq_puts(m, "unsupported on this chipset\n");
  1496. return 0;
  1497. }
  1498. intel_runtime_pm_get(dev_priv);
  1499. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1500. if (ret)
  1501. goto out;
  1502. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1503. /* Convert GT frequency to 50 HZ units */
  1504. min_gpu_freq =
  1505. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1506. max_gpu_freq =
  1507. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1508. } else {
  1509. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1510. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1511. }
  1512. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1513. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1514. ia_freq = gpu_freq;
  1515. sandybridge_pcode_read(dev_priv,
  1516. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1517. &ia_freq);
  1518. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1519. intel_gpu_freq(dev_priv, (gpu_freq *
  1520. (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1521. GEN9_FREQ_SCALER : 1))),
  1522. ((ia_freq >> 0) & 0xff) * 100,
  1523. ((ia_freq >> 8) & 0xff) * 100);
  1524. }
  1525. mutex_unlock(&dev_priv->rps.hw_lock);
  1526. out:
  1527. intel_runtime_pm_put(dev_priv);
  1528. return ret;
  1529. }
  1530. static int i915_opregion(struct seq_file *m, void *unused)
  1531. {
  1532. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1533. struct drm_device *dev = &dev_priv->drm;
  1534. struct intel_opregion *opregion = &dev_priv->opregion;
  1535. int ret;
  1536. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1537. if (ret)
  1538. goto out;
  1539. if (opregion->header)
  1540. seq_write(m, opregion->header, OPREGION_SIZE);
  1541. mutex_unlock(&dev->struct_mutex);
  1542. out:
  1543. return 0;
  1544. }
  1545. static int i915_vbt(struct seq_file *m, void *unused)
  1546. {
  1547. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1548. if (opregion->vbt)
  1549. seq_write(m, opregion->vbt, opregion->vbt_size);
  1550. return 0;
  1551. }
  1552. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1553. {
  1554. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1555. struct drm_device *dev = &dev_priv->drm;
  1556. struct intel_framebuffer *fbdev_fb = NULL;
  1557. struct drm_framebuffer *drm_fb;
  1558. int ret;
  1559. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1560. if (ret)
  1561. return ret;
  1562. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1563. if (dev_priv->fbdev) {
  1564. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1565. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1566. fbdev_fb->base.width,
  1567. fbdev_fb->base.height,
  1568. fbdev_fb->base.depth,
  1569. fbdev_fb->base.bits_per_pixel,
  1570. fbdev_fb->base.modifier[0],
  1571. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1572. describe_obj(m, fbdev_fb->obj);
  1573. seq_putc(m, '\n');
  1574. }
  1575. #endif
  1576. mutex_lock(&dev->mode_config.fb_lock);
  1577. drm_for_each_fb(drm_fb, dev) {
  1578. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1579. if (fb == fbdev_fb)
  1580. continue;
  1581. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1582. fb->base.width,
  1583. fb->base.height,
  1584. fb->base.depth,
  1585. fb->base.bits_per_pixel,
  1586. fb->base.modifier[0],
  1587. drm_framebuffer_read_refcount(&fb->base));
  1588. describe_obj(m, fb->obj);
  1589. seq_putc(m, '\n');
  1590. }
  1591. mutex_unlock(&dev->mode_config.fb_lock);
  1592. mutex_unlock(&dev->struct_mutex);
  1593. return 0;
  1594. }
  1595. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1596. {
  1597. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1598. ring->space, ring->head, ring->tail,
  1599. ring->last_retired_head);
  1600. }
  1601. static int i915_context_status(struct seq_file *m, void *unused)
  1602. {
  1603. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1604. struct drm_device *dev = &dev_priv->drm;
  1605. struct intel_engine_cs *engine;
  1606. struct i915_gem_context *ctx;
  1607. int ret;
  1608. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1609. if (ret)
  1610. return ret;
  1611. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1612. seq_printf(m, "HW context %u ", ctx->hw_id);
  1613. if (ctx->pid) {
  1614. struct task_struct *task;
  1615. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1616. if (task) {
  1617. seq_printf(m, "(%s [%d]) ",
  1618. task->comm, task->pid);
  1619. put_task_struct(task);
  1620. }
  1621. } else if (IS_ERR(ctx->file_priv)) {
  1622. seq_puts(m, "(deleted) ");
  1623. } else {
  1624. seq_puts(m, "(kernel) ");
  1625. }
  1626. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1627. seq_putc(m, '\n');
  1628. for_each_engine(engine, dev_priv) {
  1629. struct intel_context *ce = &ctx->engine[engine->id];
  1630. seq_printf(m, "%s: ", engine->name);
  1631. seq_putc(m, ce->initialised ? 'I' : 'i');
  1632. if (ce->state)
  1633. describe_obj(m, ce->state->obj);
  1634. if (ce->ring)
  1635. describe_ctx_ring(m, ce->ring);
  1636. seq_putc(m, '\n');
  1637. }
  1638. seq_putc(m, '\n');
  1639. }
  1640. mutex_unlock(&dev->struct_mutex);
  1641. return 0;
  1642. }
  1643. static void i915_dump_lrc_obj(struct seq_file *m,
  1644. struct i915_gem_context *ctx,
  1645. struct intel_engine_cs *engine)
  1646. {
  1647. struct i915_vma *vma = ctx->engine[engine->id].state;
  1648. struct page *page;
  1649. int j;
  1650. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1651. if (!vma) {
  1652. seq_puts(m, "\tFake context\n");
  1653. return;
  1654. }
  1655. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1656. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1657. i915_ggtt_offset(vma));
  1658. if (i915_gem_object_get_pages(vma->obj)) {
  1659. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1660. return;
  1661. }
  1662. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1663. if (page) {
  1664. u32 *reg_state = kmap_atomic(page);
  1665. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1666. seq_printf(m,
  1667. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1668. j * 4,
  1669. reg_state[j], reg_state[j + 1],
  1670. reg_state[j + 2], reg_state[j + 3]);
  1671. }
  1672. kunmap_atomic(reg_state);
  1673. }
  1674. seq_putc(m, '\n');
  1675. }
  1676. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1677. {
  1678. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1679. struct drm_device *dev = &dev_priv->drm;
  1680. struct intel_engine_cs *engine;
  1681. struct i915_gem_context *ctx;
  1682. int ret;
  1683. if (!i915.enable_execlists) {
  1684. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1685. return 0;
  1686. }
  1687. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1688. if (ret)
  1689. return ret;
  1690. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1691. for_each_engine(engine, dev_priv)
  1692. i915_dump_lrc_obj(m, ctx, engine);
  1693. mutex_unlock(&dev->struct_mutex);
  1694. return 0;
  1695. }
  1696. static int i915_execlists(struct seq_file *m, void *data)
  1697. {
  1698. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1699. struct drm_device *dev = &dev_priv->drm;
  1700. struct intel_engine_cs *engine;
  1701. u32 status_pointer;
  1702. u8 read_pointer;
  1703. u8 write_pointer;
  1704. u32 status;
  1705. u32 ctx_id;
  1706. struct list_head *cursor;
  1707. int i, ret;
  1708. if (!i915.enable_execlists) {
  1709. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1710. return 0;
  1711. }
  1712. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1713. if (ret)
  1714. return ret;
  1715. intel_runtime_pm_get(dev_priv);
  1716. for_each_engine(engine, dev_priv) {
  1717. struct drm_i915_gem_request *head_req = NULL;
  1718. int count = 0;
  1719. seq_printf(m, "%s\n", engine->name);
  1720. status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
  1721. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
  1722. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1723. status, ctx_id);
  1724. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  1725. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1726. read_pointer = GEN8_CSB_READ_PTR(status_pointer);
  1727. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1728. if (read_pointer > write_pointer)
  1729. write_pointer += GEN8_CSB_ENTRIES;
  1730. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1731. read_pointer, write_pointer);
  1732. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1733. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
  1734. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
  1735. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1736. i, status, ctx_id);
  1737. }
  1738. spin_lock_bh(&engine->execlist_lock);
  1739. list_for_each(cursor, &engine->execlist_queue)
  1740. count++;
  1741. head_req = list_first_entry_or_null(&engine->execlist_queue,
  1742. struct drm_i915_gem_request,
  1743. execlist_link);
  1744. spin_unlock_bh(&engine->execlist_lock);
  1745. seq_printf(m, "\t%d requests in queue\n", count);
  1746. if (head_req) {
  1747. seq_printf(m, "\tHead request context: %u\n",
  1748. head_req->ctx->hw_id);
  1749. seq_printf(m, "\tHead request tail: %u\n",
  1750. head_req->tail);
  1751. }
  1752. seq_putc(m, '\n');
  1753. }
  1754. intel_runtime_pm_put(dev_priv);
  1755. mutex_unlock(&dev->struct_mutex);
  1756. return 0;
  1757. }
  1758. static const char *swizzle_string(unsigned swizzle)
  1759. {
  1760. switch (swizzle) {
  1761. case I915_BIT_6_SWIZZLE_NONE:
  1762. return "none";
  1763. case I915_BIT_6_SWIZZLE_9:
  1764. return "bit9";
  1765. case I915_BIT_6_SWIZZLE_9_10:
  1766. return "bit9/bit10";
  1767. case I915_BIT_6_SWIZZLE_9_11:
  1768. return "bit9/bit11";
  1769. case I915_BIT_6_SWIZZLE_9_10_11:
  1770. return "bit9/bit10/bit11";
  1771. case I915_BIT_6_SWIZZLE_9_17:
  1772. return "bit9/bit17";
  1773. case I915_BIT_6_SWIZZLE_9_10_17:
  1774. return "bit9/bit10/bit17";
  1775. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1776. return "unknown";
  1777. }
  1778. return "bug";
  1779. }
  1780. static int i915_swizzle_info(struct seq_file *m, void *data)
  1781. {
  1782. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1783. struct drm_device *dev = &dev_priv->drm;
  1784. int ret;
  1785. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1786. if (ret)
  1787. return ret;
  1788. intel_runtime_pm_get(dev_priv);
  1789. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1790. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1791. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1792. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1793. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1794. seq_printf(m, "DDC = 0x%08x\n",
  1795. I915_READ(DCC));
  1796. seq_printf(m, "DDC2 = 0x%08x\n",
  1797. I915_READ(DCC2));
  1798. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1799. I915_READ16(C0DRB3));
  1800. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1801. I915_READ16(C1DRB3));
  1802. } else if (INTEL_GEN(dev_priv) >= 6) {
  1803. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1804. I915_READ(MAD_DIMM_C0));
  1805. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1806. I915_READ(MAD_DIMM_C1));
  1807. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1808. I915_READ(MAD_DIMM_C2));
  1809. seq_printf(m, "TILECTL = 0x%08x\n",
  1810. I915_READ(TILECTL));
  1811. if (INTEL_GEN(dev_priv) >= 8)
  1812. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1813. I915_READ(GAMTARBMODE));
  1814. else
  1815. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1816. I915_READ(ARB_MODE));
  1817. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1818. I915_READ(DISP_ARB_CTL));
  1819. }
  1820. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1821. seq_puts(m, "L-shaped memory detected\n");
  1822. intel_runtime_pm_put(dev_priv);
  1823. mutex_unlock(&dev->struct_mutex);
  1824. return 0;
  1825. }
  1826. static int per_file_ctx(int id, void *ptr, void *data)
  1827. {
  1828. struct i915_gem_context *ctx = ptr;
  1829. struct seq_file *m = data;
  1830. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1831. if (!ppgtt) {
  1832. seq_printf(m, " no ppgtt for context %d\n",
  1833. ctx->user_handle);
  1834. return 0;
  1835. }
  1836. if (i915_gem_context_is_default(ctx))
  1837. seq_puts(m, " default context:\n");
  1838. else
  1839. seq_printf(m, " context %d:\n", ctx->user_handle);
  1840. ppgtt->debug_dump(ppgtt, m);
  1841. return 0;
  1842. }
  1843. static void gen8_ppgtt_info(struct seq_file *m,
  1844. struct drm_i915_private *dev_priv)
  1845. {
  1846. struct intel_engine_cs *engine;
  1847. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1848. int i;
  1849. if (!ppgtt)
  1850. return;
  1851. for_each_engine(engine, dev_priv) {
  1852. seq_printf(m, "%s\n", engine->name);
  1853. for (i = 0; i < 4; i++) {
  1854. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1855. pdp <<= 32;
  1856. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1857. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1858. }
  1859. }
  1860. }
  1861. static void gen6_ppgtt_info(struct seq_file *m,
  1862. struct drm_i915_private *dev_priv)
  1863. {
  1864. struct intel_engine_cs *engine;
  1865. if (IS_GEN6(dev_priv))
  1866. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1867. for_each_engine(engine, dev_priv) {
  1868. seq_printf(m, "%s\n", engine->name);
  1869. if (IS_GEN7(dev_priv))
  1870. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1871. I915_READ(RING_MODE_GEN7(engine)));
  1872. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1873. I915_READ(RING_PP_DIR_BASE(engine)));
  1874. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1875. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1876. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1877. I915_READ(RING_PP_DIR_DCLV(engine)));
  1878. }
  1879. if (dev_priv->mm.aliasing_ppgtt) {
  1880. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1881. seq_puts(m, "aliasing PPGTT:\n");
  1882. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1883. ppgtt->debug_dump(ppgtt, m);
  1884. }
  1885. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1886. }
  1887. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1888. {
  1889. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1890. struct drm_device *dev = &dev_priv->drm;
  1891. struct drm_file *file;
  1892. int ret;
  1893. mutex_lock(&dev->filelist_mutex);
  1894. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1895. if (ret)
  1896. goto out_unlock;
  1897. intel_runtime_pm_get(dev_priv);
  1898. if (INTEL_GEN(dev_priv) >= 8)
  1899. gen8_ppgtt_info(m, dev_priv);
  1900. else if (INTEL_GEN(dev_priv) >= 6)
  1901. gen6_ppgtt_info(m, dev_priv);
  1902. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1903. struct drm_i915_file_private *file_priv = file->driver_priv;
  1904. struct task_struct *task;
  1905. task = get_pid_task(file->pid, PIDTYPE_PID);
  1906. if (!task) {
  1907. ret = -ESRCH;
  1908. goto out_rpm;
  1909. }
  1910. seq_printf(m, "\nproc: %s\n", task->comm);
  1911. put_task_struct(task);
  1912. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1913. (void *)(unsigned long)m);
  1914. }
  1915. out_rpm:
  1916. intel_runtime_pm_put(dev_priv);
  1917. mutex_unlock(&dev->struct_mutex);
  1918. out_unlock:
  1919. mutex_unlock(&dev->filelist_mutex);
  1920. return ret;
  1921. }
  1922. static int count_irq_waiters(struct drm_i915_private *i915)
  1923. {
  1924. struct intel_engine_cs *engine;
  1925. int count = 0;
  1926. for_each_engine(engine, i915)
  1927. count += intel_engine_has_waiter(engine);
  1928. return count;
  1929. }
  1930. static const char *rps_power_to_str(unsigned int power)
  1931. {
  1932. static const char * const strings[] = {
  1933. [LOW_POWER] = "low power",
  1934. [BETWEEN] = "mixed",
  1935. [HIGH_POWER] = "high power",
  1936. };
  1937. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1938. return "unknown";
  1939. return strings[power];
  1940. }
  1941. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1942. {
  1943. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1944. struct drm_device *dev = &dev_priv->drm;
  1945. struct drm_file *file;
  1946. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1947. seq_printf(m, "GPU busy? %s [%x]\n",
  1948. yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
  1949. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1950. seq_printf(m, "Frequency requested %d\n",
  1951. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1952. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1953. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1954. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1955. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1956. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1957. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1958. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1959. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1960. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1961. mutex_lock(&dev->filelist_mutex);
  1962. spin_lock(&dev_priv->rps.client_lock);
  1963. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1964. struct drm_i915_file_private *file_priv = file->driver_priv;
  1965. struct task_struct *task;
  1966. rcu_read_lock();
  1967. task = pid_task(file->pid, PIDTYPE_PID);
  1968. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1969. task ? task->comm : "<unknown>",
  1970. task ? task->pid : -1,
  1971. file_priv->rps.boosts,
  1972. list_empty(&file_priv->rps.link) ? "" : ", active");
  1973. rcu_read_unlock();
  1974. }
  1975. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  1976. spin_unlock(&dev_priv->rps.client_lock);
  1977. mutex_unlock(&dev->filelist_mutex);
  1978. if (INTEL_GEN(dev_priv) >= 6 &&
  1979. dev_priv->rps.enabled &&
  1980. dev_priv->gt.active_engines) {
  1981. u32 rpup, rpupei;
  1982. u32 rpdown, rpdownei;
  1983. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1984. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1985. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1986. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1987. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1988. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1989. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1990. rps_power_to_str(dev_priv->rps.power));
  1991. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1992. 100 * rpup / rpupei,
  1993. dev_priv->rps.up_threshold);
  1994. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1995. 100 * rpdown / rpdownei,
  1996. dev_priv->rps.down_threshold);
  1997. } else {
  1998. seq_puts(m, "\nRPS Autotuning inactive\n");
  1999. }
  2000. return 0;
  2001. }
  2002. static int i915_llc(struct seq_file *m, void *data)
  2003. {
  2004. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2005. const bool edram = INTEL_GEN(dev_priv) > 8;
  2006. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  2007. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  2008. intel_uncore_edram_size(dev_priv)/1024/1024);
  2009. return 0;
  2010. }
  2011. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2012. {
  2013. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2014. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2015. u32 tmp, i;
  2016. if (!HAS_GUC_UCODE(dev_priv))
  2017. return 0;
  2018. seq_printf(m, "GuC firmware status:\n");
  2019. seq_printf(m, "\tpath: %s\n",
  2020. guc_fw->guc_fw_path);
  2021. seq_printf(m, "\tfetch: %s\n",
  2022. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2023. seq_printf(m, "\tload: %s\n",
  2024. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2025. seq_printf(m, "\tversion wanted: %d.%d\n",
  2026. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2027. seq_printf(m, "\tversion found: %d.%d\n",
  2028. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2029. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2030. guc_fw->header_offset, guc_fw->header_size);
  2031. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2032. guc_fw->ucode_offset, guc_fw->ucode_size);
  2033. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2034. guc_fw->rsa_offset, guc_fw->rsa_size);
  2035. tmp = I915_READ(GUC_STATUS);
  2036. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2037. seq_printf(m, "\tBootrom status = 0x%x\n",
  2038. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2039. seq_printf(m, "\tuKernel status = 0x%x\n",
  2040. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2041. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2042. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2043. seq_puts(m, "\nScratch registers:\n");
  2044. for (i = 0; i < 16; i++)
  2045. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2046. return 0;
  2047. }
  2048. static void i915_guc_client_info(struct seq_file *m,
  2049. struct drm_i915_private *dev_priv,
  2050. struct i915_guc_client *client)
  2051. {
  2052. struct intel_engine_cs *engine;
  2053. enum intel_engine_id id;
  2054. uint64_t tot = 0;
  2055. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2056. client->priority, client->ctx_index, client->proc_desc_offset);
  2057. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2058. client->doorbell_id, client->doorbell_offset, client->cookie);
  2059. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2060. client->wq_size, client->wq_offset, client->wq_tail);
  2061. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2062. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2063. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2064. for_each_engine_id(engine, dev_priv, id) {
  2065. u64 submissions = client->submissions[id];
  2066. tot += submissions;
  2067. seq_printf(m, "\tSubmissions: %llu %s\n",
  2068. submissions, engine->name);
  2069. }
  2070. seq_printf(m, "\tTotal: %llu\n", tot);
  2071. }
  2072. static int i915_guc_info(struct seq_file *m, void *data)
  2073. {
  2074. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2075. struct drm_device *dev = &dev_priv->drm;
  2076. struct intel_guc guc;
  2077. struct i915_guc_client client = {};
  2078. struct intel_engine_cs *engine;
  2079. enum intel_engine_id id;
  2080. u64 total = 0;
  2081. if (!HAS_GUC_SCHED(dev_priv))
  2082. return 0;
  2083. if (mutex_lock_interruptible(&dev->struct_mutex))
  2084. return 0;
  2085. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2086. guc = dev_priv->guc;
  2087. if (guc.execbuf_client)
  2088. client = *guc.execbuf_client;
  2089. mutex_unlock(&dev->struct_mutex);
  2090. seq_printf(m, "Doorbell map:\n");
  2091. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
  2092. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
  2093. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2094. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2095. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2096. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2097. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2098. seq_printf(m, "\nGuC submissions:\n");
  2099. for_each_engine_id(engine, dev_priv, id) {
  2100. u64 submissions = guc.submissions[id];
  2101. total += submissions;
  2102. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2103. engine->name, submissions, guc.last_seqno[id]);
  2104. }
  2105. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2106. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2107. i915_guc_client_info(m, dev_priv, &client);
  2108. /* Add more as required ... */
  2109. return 0;
  2110. }
  2111. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2112. {
  2113. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2114. struct drm_i915_gem_object *obj;
  2115. int i = 0, pg;
  2116. if (!dev_priv->guc.log_vma)
  2117. return 0;
  2118. obj = dev_priv->guc.log_vma->obj;
  2119. for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
  2120. u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
  2121. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2122. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2123. *(log + i), *(log + i + 1),
  2124. *(log + i + 2), *(log + i + 3));
  2125. kunmap_atomic(log);
  2126. }
  2127. seq_putc(m, '\n');
  2128. return 0;
  2129. }
  2130. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2131. {
  2132. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2133. u32 psrperf = 0;
  2134. u32 stat[3];
  2135. enum pipe pipe;
  2136. bool enabled = false;
  2137. if (!HAS_PSR(dev_priv)) {
  2138. seq_puts(m, "PSR not supported\n");
  2139. return 0;
  2140. }
  2141. intel_runtime_pm_get(dev_priv);
  2142. mutex_lock(&dev_priv->psr.lock);
  2143. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2144. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2145. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2146. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2147. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2148. dev_priv->psr.busy_frontbuffer_bits);
  2149. seq_printf(m, "Re-enable work scheduled: %s\n",
  2150. yesno(work_busy(&dev_priv->psr.work.work)));
  2151. if (HAS_DDI(dev_priv))
  2152. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2153. else {
  2154. for_each_pipe(dev_priv, pipe) {
  2155. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2156. VLV_EDP_PSR_CURR_STATE_MASK;
  2157. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2158. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2159. enabled = true;
  2160. }
  2161. }
  2162. seq_printf(m, "Main link in standby mode: %s\n",
  2163. yesno(dev_priv->psr.link_standby));
  2164. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2165. if (!HAS_DDI(dev_priv))
  2166. for_each_pipe(dev_priv, pipe) {
  2167. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2168. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2169. seq_printf(m, " pipe %c", pipe_name(pipe));
  2170. }
  2171. seq_puts(m, "\n");
  2172. /*
  2173. * VLV/CHV PSR has no kind of performance counter
  2174. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2175. */
  2176. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2177. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2178. EDP_PSR_PERF_CNT_MASK;
  2179. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2180. }
  2181. mutex_unlock(&dev_priv->psr.lock);
  2182. intel_runtime_pm_put(dev_priv);
  2183. return 0;
  2184. }
  2185. static int i915_sink_crc(struct seq_file *m, void *data)
  2186. {
  2187. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2188. struct drm_device *dev = &dev_priv->drm;
  2189. struct intel_connector *connector;
  2190. struct intel_dp *intel_dp = NULL;
  2191. int ret;
  2192. u8 crc[6];
  2193. drm_modeset_lock_all(dev);
  2194. for_each_intel_connector(dev, connector) {
  2195. struct drm_crtc *crtc;
  2196. if (!connector->base.state->best_encoder)
  2197. continue;
  2198. crtc = connector->base.state->crtc;
  2199. if (!crtc->state->active)
  2200. continue;
  2201. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2202. continue;
  2203. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2204. ret = intel_dp_sink_crc(intel_dp, crc);
  2205. if (ret)
  2206. goto out;
  2207. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2208. crc[0], crc[1], crc[2],
  2209. crc[3], crc[4], crc[5]);
  2210. goto out;
  2211. }
  2212. ret = -ENODEV;
  2213. out:
  2214. drm_modeset_unlock_all(dev);
  2215. return ret;
  2216. }
  2217. static int i915_energy_uJ(struct seq_file *m, void *data)
  2218. {
  2219. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2220. u64 power;
  2221. u32 units;
  2222. if (INTEL_GEN(dev_priv) < 6)
  2223. return -ENODEV;
  2224. intel_runtime_pm_get(dev_priv);
  2225. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2226. power = (power & 0x1f00) >> 8;
  2227. units = 1000000 / (1 << power); /* convert to uJ */
  2228. power = I915_READ(MCH_SECP_NRG_STTS);
  2229. power *= units;
  2230. intel_runtime_pm_put(dev_priv);
  2231. seq_printf(m, "%llu", (long long unsigned)power);
  2232. return 0;
  2233. }
  2234. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2235. {
  2236. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2237. struct pci_dev *pdev = dev_priv->drm.pdev;
  2238. if (!HAS_RUNTIME_PM(dev_priv))
  2239. seq_puts(m, "Runtime power management not supported\n");
  2240. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2241. seq_printf(m, "IRQs disabled: %s\n",
  2242. yesno(!intel_irqs_enabled(dev_priv)));
  2243. #ifdef CONFIG_PM
  2244. seq_printf(m, "Usage count: %d\n",
  2245. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2246. #else
  2247. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2248. #endif
  2249. seq_printf(m, "PCI device power state: %s [%d]\n",
  2250. pci_power_name(pdev->current_state),
  2251. pdev->current_state);
  2252. return 0;
  2253. }
  2254. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2255. {
  2256. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2257. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2258. int i;
  2259. mutex_lock(&power_domains->lock);
  2260. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2261. for (i = 0; i < power_domains->power_well_count; i++) {
  2262. struct i915_power_well *power_well;
  2263. enum intel_display_power_domain power_domain;
  2264. power_well = &power_domains->power_wells[i];
  2265. seq_printf(m, "%-25s %d\n", power_well->name,
  2266. power_well->count);
  2267. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2268. power_domain++) {
  2269. if (!(BIT(power_domain) & power_well->domains))
  2270. continue;
  2271. seq_printf(m, " %-23s %d\n",
  2272. intel_display_power_domain_str(power_domain),
  2273. power_domains->domain_use_count[power_domain]);
  2274. }
  2275. }
  2276. mutex_unlock(&power_domains->lock);
  2277. return 0;
  2278. }
  2279. static int i915_dmc_info(struct seq_file *m, void *unused)
  2280. {
  2281. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2282. struct intel_csr *csr;
  2283. if (!HAS_CSR(dev_priv)) {
  2284. seq_puts(m, "not supported\n");
  2285. return 0;
  2286. }
  2287. csr = &dev_priv->csr;
  2288. intel_runtime_pm_get(dev_priv);
  2289. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2290. seq_printf(m, "path: %s\n", csr->fw_path);
  2291. if (!csr->dmc_payload)
  2292. goto out;
  2293. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2294. CSR_VERSION_MINOR(csr->version));
  2295. if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
  2296. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2297. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2298. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2299. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2300. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2301. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2302. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2303. }
  2304. out:
  2305. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2306. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2307. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2308. intel_runtime_pm_put(dev_priv);
  2309. return 0;
  2310. }
  2311. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2312. struct drm_display_mode *mode)
  2313. {
  2314. int i;
  2315. for (i = 0; i < tabs; i++)
  2316. seq_putc(m, '\t');
  2317. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2318. mode->base.id, mode->name,
  2319. mode->vrefresh, mode->clock,
  2320. mode->hdisplay, mode->hsync_start,
  2321. mode->hsync_end, mode->htotal,
  2322. mode->vdisplay, mode->vsync_start,
  2323. mode->vsync_end, mode->vtotal,
  2324. mode->type, mode->flags);
  2325. }
  2326. static void intel_encoder_info(struct seq_file *m,
  2327. struct intel_crtc *intel_crtc,
  2328. struct intel_encoder *intel_encoder)
  2329. {
  2330. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2331. struct drm_device *dev = &dev_priv->drm;
  2332. struct drm_crtc *crtc = &intel_crtc->base;
  2333. struct intel_connector *intel_connector;
  2334. struct drm_encoder *encoder;
  2335. encoder = &intel_encoder->base;
  2336. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2337. encoder->base.id, encoder->name);
  2338. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2339. struct drm_connector *connector = &intel_connector->base;
  2340. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2341. connector->base.id,
  2342. connector->name,
  2343. drm_get_connector_status_name(connector->status));
  2344. if (connector->status == connector_status_connected) {
  2345. struct drm_display_mode *mode = &crtc->mode;
  2346. seq_printf(m, ", mode:\n");
  2347. intel_seq_print_mode(m, 2, mode);
  2348. } else {
  2349. seq_putc(m, '\n');
  2350. }
  2351. }
  2352. }
  2353. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2354. {
  2355. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2356. struct drm_device *dev = &dev_priv->drm;
  2357. struct drm_crtc *crtc = &intel_crtc->base;
  2358. struct intel_encoder *intel_encoder;
  2359. struct drm_plane_state *plane_state = crtc->primary->state;
  2360. struct drm_framebuffer *fb = plane_state->fb;
  2361. if (fb)
  2362. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2363. fb->base.id, plane_state->src_x >> 16,
  2364. plane_state->src_y >> 16, fb->width, fb->height);
  2365. else
  2366. seq_puts(m, "\tprimary plane disabled\n");
  2367. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2368. intel_encoder_info(m, intel_crtc, intel_encoder);
  2369. }
  2370. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2371. {
  2372. struct drm_display_mode *mode = panel->fixed_mode;
  2373. seq_printf(m, "\tfixed mode:\n");
  2374. intel_seq_print_mode(m, 2, mode);
  2375. }
  2376. static void intel_dp_info(struct seq_file *m,
  2377. struct intel_connector *intel_connector)
  2378. {
  2379. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2380. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2381. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2382. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2383. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2384. intel_panel_info(m, &intel_connector->panel);
  2385. }
  2386. static void intel_hdmi_info(struct seq_file *m,
  2387. struct intel_connector *intel_connector)
  2388. {
  2389. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2390. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2391. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2392. }
  2393. static void intel_lvds_info(struct seq_file *m,
  2394. struct intel_connector *intel_connector)
  2395. {
  2396. intel_panel_info(m, &intel_connector->panel);
  2397. }
  2398. static void intel_connector_info(struct seq_file *m,
  2399. struct drm_connector *connector)
  2400. {
  2401. struct intel_connector *intel_connector = to_intel_connector(connector);
  2402. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2403. struct drm_display_mode *mode;
  2404. seq_printf(m, "connector %d: type %s, status: %s\n",
  2405. connector->base.id, connector->name,
  2406. drm_get_connector_status_name(connector->status));
  2407. if (connector->status == connector_status_connected) {
  2408. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2409. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2410. connector->display_info.width_mm,
  2411. connector->display_info.height_mm);
  2412. seq_printf(m, "\tsubpixel order: %s\n",
  2413. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2414. seq_printf(m, "\tCEA rev: %d\n",
  2415. connector->display_info.cea_rev);
  2416. }
  2417. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2418. return;
  2419. switch (connector->connector_type) {
  2420. case DRM_MODE_CONNECTOR_DisplayPort:
  2421. case DRM_MODE_CONNECTOR_eDP:
  2422. intel_dp_info(m, intel_connector);
  2423. break;
  2424. case DRM_MODE_CONNECTOR_LVDS:
  2425. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2426. intel_lvds_info(m, intel_connector);
  2427. break;
  2428. case DRM_MODE_CONNECTOR_HDMIA:
  2429. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2430. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2431. intel_hdmi_info(m, intel_connector);
  2432. break;
  2433. default:
  2434. break;
  2435. }
  2436. seq_printf(m, "\tmodes:\n");
  2437. list_for_each_entry(mode, &connector->modes, head)
  2438. intel_seq_print_mode(m, 2, mode);
  2439. }
  2440. static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
  2441. {
  2442. u32 state;
  2443. if (IS_845G(dev_priv) || IS_I865G(dev_priv))
  2444. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2445. else
  2446. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2447. return state;
  2448. }
  2449. static bool cursor_position(struct drm_i915_private *dev_priv,
  2450. int pipe, int *x, int *y)
  2451. {
  2452. u32 pos;
  2453. pos = I915_READ(CURPOS(pipe));
  2454. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2455. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2456. *x = -*x;
  2457. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2458. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2459. *y = -*y;
  2460. return cursor_active(dev_priv, pipe);
  2461. }
  2462. static const char *plane_type(enum drm_plane_type type)
  2463. {
  2464. switch (type) {
  2465. case DRM_PLANE_TYPE_OVERLAY:
  2466. return "OVL";
  2467. case DRM_PLANE_TYPE_PRIMARY:
  2468. return "PRI";
  2469. case DRM_PLANE_TYPE_CURSOR:
  2470. return "CUR";
  2471. /*
  2472. * Deliberately omitting default: to generate compiler warnings
  2473. * when a new drm_plane_type gets added.
  2474. */
  2475. }
  2476. return "unknown";
  2477. }
  2478. static const char *plane_rotation(unsigned int rotation)
  2479. {
  2480. static char buf[48];
  2481. /*
  2482. * According to doc only one DRM_ROTATE_ is allowed but this
  2483. * will print them all to visualize if the values are misused
  2484. */
  2485. snprintf(buf, sizeof(buf),
  2486. "%s%s%s%s%s%s(0x%08x)",
  2487. (rotation & DRM_ROTATE_0) ? "0 " : "",
  2488. (rotation & DRM_ROTATE_90) ? "90 " : "",
  2489. (rotation & DRM_ROTATE_180) ? "180 " : "",
  2490. (rotation & DRM_ROTATE_270) ? "270 " : "",
  2491. (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
  2492. (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
  2493. rotation);
  2494. return buf;
  2495. }
  2496. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2497. {
  2498. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2499. struct drm_device *dev = &dev_priv->drm;
  2500. struct intel_plane *intel_plane;
  2501. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2502. struct drm_plane_state *state;
  2503. struct drm_plane *plane = &intel_plane->base;
  2504. if (!plane->state) {
  2505. seq_puts(m, "plane->state is NULL!\n");
  2506. continue;
  2507. }
  2508. state = plane->state;
  2509. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2510. plane->base.id,
  2511. plane_type(intel_plane->base.type),
  2512. state->crtc_x, state->crtc_y,
  2513. state->crtc_w, state->crtc_h,
  2514. (state->src_x >> 16),
  2515. ((state->src_x & 0xffff) * 15625) >> 10,
  2516. (state->src_y >> 16),
  2517. ((state->src_y & 0xffff) * 15625) >> 10,
  2518. (state->src_w >> 16),
  2519. ((state->src_w & 0xffff) * 15625) >> 10,
  2520. (state->src_h >> 16),
  2521. ((state->src_h & 0xffff) * 15625) >> 10,
  2522. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2523. plane_rotation(state->rotation));
  2524. }
  2525. }
  2526. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2527. {
  2528. struct intel_crtc_state *pipe_config;
  2529. int num_scalers = intel_crtc->num_scalers;
  2530. int i;
  2531. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2532. /* Not all platformas have a scaler */
  2533. if (num_scalers) {
  2534. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2535. num_scalers,
  2536. pipe_config->scaler_state.scaler_users,
  2537. pipe_config->scaler_state.scaler_id);
  2538. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2539. struct intel_scaler *sc =
  2540. &pipe_config->scaler_state.scalers[i];
  2541. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2542. i, yesno(sc->in_use), sc->mode);
  2543. }
  2544. seq_puts(m, "\n");
  2545. } else {
  2546. seq_puts(m, "\tNo scalers available on this platform\n");
  2547. }
  2548. }
  2549. static int i915_display_info(struct seq_file *m, void *unused)
  2550. {
  2551. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2552. struct drm_device *dev = &dev_priv->drm;
  2553. struct intel_crtc *crtc;
  2554. struct drm_connector *connector;
  2555. intel_runtime_pm_get(dev_priv);
  2556. drm_modeset_lock_all(dev);
  2557. seq_printf(m, "CRTC info\n");
  2558. seq_printf(m, "---------\n");
  2559. for_each_intel_crtc(dev, crtc) {
  2560. bool active;
  2561. struct intel_crtc_state *pipe_config;
  2562. int x, y;
  2563. pipe_config = to_intel_crtc_state(crtc->base.state);
  2564. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2565. crtc->base.base.id, pipe_name(crtc->pipe),
  2566. yesno(pipe_config->base.active),
  2567. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2568. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2569. if (pipe_config->base.active) {
  2570. intel_crtc_info(m, crtc);
  2571. active = cursor_position(dev_priv, crtc->pipe, &x, &y);
  2572. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2573. yesno(crtc->cursor_base),
  2574. x, y, crtc->base.cursor->state->crtc_w,
  2575. crtc->base.cursor->state->crtc_h,
  2576. crtc->cursor_addr, yesno(active));
  2577. intel_scaler_info(m, crtc);
  2578. intel_plane_info(m, crtc);
  2579. }
  2580. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2581. yesno(!crtc->cpu_fifo_underrun_disabled),
  2582. yesno(!crtc->pch_fifo_underrun_disabled));
  2583. }
  2584. seq_printf(m, "\n");
  2585. seq_printf(m, "Connector info\n");
  2586. seq_printf(m, "--------------\n");
  2587. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2588. intel_connector_info(m, connector);
  2589. }
  2590. drm_modeset_unlock_all(dev);
  2591. intel_runtime_pm_put(dev_priv);
  2592. return 0;
  2593. }
  2594. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2595. {
  2596. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2597. struct drm_device *dev = &dev_priv->drm;
  2598. struct intel_engine_cs *engine;
  2599. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2600. enum intel_engine_id id;
  2601. int j, ret;
  2602. if (!i915.semaphores) {
  2603. seq_puts(m, "Semaphores are disabled\n");
  2604. return 0;
  2605. }
  2606. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2607. if (ret)
  2608. return ret;
  2609. intel_runtime_pm_get(dev_priv);
  2610. if (IS_BROADWELL(dev_priv)) {
  2611. struct page *page;
  2612. uint64_t *seqno;
  2613. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2614. seqno = (uint64_t *)kmap_atomic(page);
  2615. for_each_engine_id(engine, dev_priv, id) {
  2616. uint64_t offset;
  2617. seq_printf(m, "%s\n", engine->name);
  2618. seq_puts(m, " Last signal:");
  2619. for (j = 0; j < num_rings; j++) {
  2620. offset = id * I915_NUM_ENGINES + j;
  2621. seq_printf(m, "0x%08llx (0x%02llx) ",
  2622. seqno[offset], offset * 8);
  2623. }
  2624. seq_putc(m, '\n');
  2625. seq_puts(m, " Last wait: ");
  2626. for (j = 0; j < num_rings; j++) {
  2627. offset = id + (j * I915_NUM_ENGINES);
  2628. seq_printf(m, "0x%08llx (0x%02llx) ",
  2629. seqno[offset], offset * 8);
  2630. }
  2631. seq_putc(m, '\n');
  2632. }
  2633. kunmap_atomic(seqno);
  2634. } else {
  2635. seq_puts(m, " Last signal:");
  2636. for_each_engine(engine, dev_priv)
  2637. for (j = 0; j < num_rings; j++)
  2638. seq_printf(m, "0x%08x\n",
  2639. I915_READ(engine->semaphore.mbox.signal[j]));
  2640. seq_putc(m, '\n');
  2641. }
  2642. seq_puts(m, "\nSync seqno:\n");
  2643. for_each_engine(engine, dev_priv) {
  2644. for (j = 0; j < num_rings; j++)
  2645. seq_printf(m, " 0x%08x ",
  2646. engine->semaphore.sync_seqno[j]);
  2647. seq_putc(m, '\n');
  2648. }
  2649. seq_putc(m, '\n');
  2650. intel_runtime_pm_put(dev_priv);
  2651. mutex_unlock(&dev->struct_mutex);
  2652. return 0;
  2653. }
  2654. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2655. {
  2656. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2657. struct drm_device *dev = &dev_priv->drm;
  2658. int i;
  2659. drm_modeset_lock_all(dev);
  2660. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2661. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2662. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2663. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2664. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2665. seq_printf(m, " tracked hardware state:\n");
  2666. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2667. seq_printf(m, " dpll_md: 0x%08x\n",
  2668. pll->config.hw_state.dpll_md);
  2669. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2670. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2671. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2672. }
  2673. drm_modeset_unlock_all(dev);
  2674. return 0;
  2675. }
  2676. static int i915_wa_registers(struct seq_file *m, void *unused)
  2677. {
  2678. int i;
  2679. int ret;
  2680. struct intel_engine_cs *engine;
  2681. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2682. struct drm_device *dev = &dev_priv->drm;
  2683. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2684. enum intel_engine_id id;
  2685. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2686. if (ret)
  2687. return ret;
  2688. intel_runtime_pm_get(dev_priv);
  2689. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2690. for_each_engine_id(engine, dev_priv, id)
  2691. seq_printf(m, "HW whitelist count for %s: %d\n",
  2692. engine->name, workarounds->hw_whitelist_count[id]);
  2693. for (i = 0; i < workarounds->count; ++i) {
  2694. i915_reg_t addr;
  2695. u32 mask, value, read;
  2696. bool ok;
  2697. addr = workarounds->reg[i].addr;
  2698. mask = workarounds->reg[i].mask;
  2699. value = workarounds->reg[i].value;
  2700. read = I915_READ(addr);
  2701. ok = (value & mask) == (read & mask);
  2702. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2703. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2704. }
  2705. intel_runtime_pm_put(dev_priv);
  2706. mutex_unlock(&dev->struct_mutex);
  2707. return 0;
  2708. }
  2709. static int i915_ddb_info(struct seq_file *m, void *unused)
  2710. {
  2711. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2712. struct drm_device *dev = &dev_priv->drm;
  2713. struct skl_ddb_allocation *ddb;
  2714. struct skl_ddb_entry *entry;
  2715. enum pipe pipe;
  2716. int plane;
  2717. if (INTEL_GEN(dev_priv) < 9)
  2718. return 0;
  2719. drm_modeset_lock_all(dev);
  2720. ddb = &dev_priv->wm.skl_hw.ddb;
  2721. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2722. for_each_pipe(dev_priv, pipe) {
  2723. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2724. for_each_plane(dev_priv, pipe, plane) {
  2725. entry = &ddb->plane[pipe][plane];
  2726. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2727. entry->start, entry->end,
  2728. skl_ddb_entry_size(entry));
  2729. }
  2730. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2731. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2732. entry->end, skl_ddb_entry_size(entry));
  2733. }
  2734. drm_modeset_unlock_all(dev);
  2735. return 0;
  2736. }
  2737. static void drrs_status_per_crtc(struct seq_file *m,
  2738. struct drm_device *dev,
  2739. struct intel_crtc *intel_crtc)
  2740. {
  2741. struct drm_i915_private *dev_priv = to_i915(dev);
  2742. struct i915_drrs *drrs = &dev_priv->drrs;
  2743. int vrefresh = 0;
  2744. struct drm_connector *connector;
  2745. drm_for_each_connector(connector, dev) {
  2746. if (connector->state->crtc != &intel_crtc->base)
  2747. continue;
  2748. seq_printf(m, "%s:\n", connector->name);
  2749. }
  2750. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2751. seq_puts(m, "\tVBT: DRRS_type: Static");
  2752. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2753. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2754. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2755. seq_puts(m, "\tVBT: DRRS_type: None");
  2756. else
  2757. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2758. seq_puts(m, "\n\n");
  2759. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2760. struct intel_panel *panel;
  2761. mutex_lock(&drrs->mutex);
  2762. /* DRRS Supported */
  2763. seq_puts(m, "\tDRRS Supported: Yes\n");
  2764. /* disable_drrs() will make drrs->dp NULL */
  2765. if (!drrs->dp) {
  2766. seq_puts(m, "Idleness DRRS: Disabled");
  2767. mutex_unlock(&drrs->mutex);
  2768. return;
  2769. }
  2770. panel = &drrs->dp->attached_connector->panel;
  2771. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2772. drrs->busy_frontbuffer_bits);
  2773. seq_puts(m, "\n\t\t");
  2774. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2775. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2776. vrefresh = panel->fixed_mode->vrefresh;
  2777. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2778. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2779. vrefresh = panel->downclock_mode->vrefresh;
  2780. } else {
  2781. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2782. drrs->refresh_rate_type);
  2783. mutex_unlock(&drrs->mutex);
  2784. return;
  2785. }
  2786. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2787. seq_puts(m, "\n\t\t");
  2788. mutex_unlock(&drrs->mutex);
  2789. } else {
  2790. /* DRRS not supported. Print the VBT parameter*/
  2791. seq_puts(m, "\tDRRS Supported : No");
  2792. }
  2793. seq_puts(m, "\n");
  2794. }
  2795. static int i915_drrs_status(struct seq_file *m, void *unused)
  2796. {
  2797. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2798. struct drm_device *dev = &dev_priv->drm;
  2799. struct intel_crtc *intel_crtc;
  2800. int active_crtc_cnt = 0;
  2801. drm_modeset_lock_all(dev);
  2802. for_each_intel_crtc(dev, intel_crtc) {
  2803. if (intel_crtc->base.state->active) {
  2804. active_crtc_cnt++;
  2805. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2806. drrs_status_per_crtc(m, dev, intel_crtc);
  2807. }
  2808. }
  2809. drm_modeset_unlock_all(dev);
  2810. if (!active_crtc_cnt)
  2811. seq_puts(m, "No active crtc found\n");
  2812. return 0;
  2813. }
  2814. struct pipe_crc_info {
  2815. const char *name;
  2816. struct drm_i915_private *dev_priv;
  2817. enum pipe pipe;
  2818. };
  2819. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2820. {
  2821. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2822. struct drm_device *dev = &dev_priv->drm;
  2823. struct intel_encoder *intel_encoder;
  2824. struct intel_digital_port *intel_dig_port;
  2825. struct drm_connector *connector;
  2826. drm_modeset_lock_all(dev);
  2827. drm_for_each_connector(connector, dev) {
  2828. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2829. continue;
  2830. intel_encoder = intel_attached_encoder(connector);
  2831. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2832. continue;
  2833. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2834. if (!intel_dig_port->dp.can_mst)
  2835. continue;
  2836. seq_printf(m, "MST Source Port %c\n",
  2837. port_name(intel_dig_port->port));
  2838. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2839. }
  2840. drm_modeset_unlock_all(dev);
  2841. return 0;
  2842. }
  2843. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2844. {
  2845. struct pipe_crc_info *info = inode->i_private;
  2846. struct drm_i915_private *dev_priv = info->dev_priv;
  2847. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2848. if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
  2849. return -ENODEV;
  2850. spin_lock_irq(&pipe_crc->lock);
  2851. if (pipe_crc->opened) {
  2852. spin_unlock_irq(&pipe_crc->lock);
  2853. return -EBUSY; /* already open */
  2854. }
  2855. pipe_crc->opened = true;
  2856. filep->private_data = inode->i_private;
  2857. spin_unlock_irq(&pipe_crc->lock);
  2858. return 0;
  2859. }
  2860. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2861. {
  2862. struct pipe_crc_info *info = inode->i_private;
  2863. struct drm_i915_private *dev_priv = info->dev_priv;
  2864. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2865. spin_lock_irq(&pipe_crc->lock);
  2866. pipe_crc->opened = false;
  2867. spin_unlock_irq(&pipe_crc->lock);
  2868. return 0;
  2869. }
  2870. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2871. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2872. /* account for \'0' */
  2873. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2874. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2875. {
  2876. assert_spin_locked(&pipe_crc->lock);
  2877. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2878. INTEL_PIPE_CRC_ENTRIES_NR);
  2879. }
  2880. static ssize_t
  2881. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2882. loff_t *pos)
  2883. {
  2884. struct pipe_crc_info *info = filep->private_data;
  2885. struct drm_i915_private *dev_priv = info->dev_priv;
  2886. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2887. char buf[PIPE_CRC_BUFFER_LEN];
  2888. int n_entries;
  2889. ssize_t bytes_read;
  2890. /*
  2891. * Don't allow user space to provide buffers not big enough to hold
  2892. * a line of data.
  2893. */
  2894. if (count < PIPE_CRC_LINE_LEN)
  2895. return -EINVAL;
  2896. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2897. return 0;
  2898. /* nothing to read */
  2899. spin_lock_irq(&pipe_crc->lock);
  2900. while (pipe_crc_data_count(pipe_crc) == 0) {
  2901. int ret;
  2902. if (filep->f_flags & O_NONBLOCK) {
  2903. spin_unlock_irq(&pipe_crc->lock);
  2904. return -EAGAIN;
  2905. }
  2906. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2907. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2908. if (ret) {
  2909. spin_unlock_irq(&pipe_crc->lock);
  2910. return ret;
  2911. }
  2912. }
  2913. /* We now have one or more entries to read */
  2914. n_entries = count / PIPE_CRC_LINE_LEN;
  2915. bytes_read = 0;
  2916. while (n_entries > 0) {
  2917. struct intel_pipe_crc_entry *entry =
  2918. &pipe_crc->entries[pipe_crc->tail];
  2919. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2920. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2921. break;
  2922. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2923. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2924. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2925. "%8u %8x %8x %8x %8x %8x\n",
  2926. entry->frame, entry->crc[0],
  2927. entry->crc[1], entry->crc[2],
  2928. entry->crc[3], entry->crc[4]);
  2929. spin_unlock_irq(&pipe_crc->lock);
  2930. if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
  2931. return -EFAULT;
  2932. user_buf += PIPE_CRC_LINE_LEN;
  2933. n_entries--;
  2934. spin_lock_irq(&pipe_crc->lock);
  2935. }
  2936. spin_unlock_irq(&pipe_crc->lock);
  2937. return bytes_read;
  2938. }
  2939. static const struct file_operations i915_pipe_crc_fops = {
  2940. .owner = THIS_MODULE,
  2941. .open = i915_pipe_crc_open,
  2942. .read = i915_pipe_crc_read,
  2943. .release = i915_pipe_crc_release,
  2944. };
  2945. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2946. {
  2947. .name = "i915_pipe_A_crc",
  2948. .pipe = PIPE_A,
  2949. },
  2950. {
  2951. .name = "i915_pipe_B_crc",
  2952. .pipe = PIPE_B,
  2953. },
  2954. {
  2955. .name = "i915_pipe_C_crc",
  2956. .pipe = PIPE_C,
  2957. },
  2958. };
  2959. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2960. enum pipe pipe)
  2961. {
  2962. struct drm_i915_private *dev_priv = to_i915(minor->dev);
  2963. struct dentry *ent;
  2964. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2965. info->dev_priv = dev_priv;
  2966. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2967. &i915_pipe_crc_fops);
  2968. if (!ent)
  2969. return -ENOMEM;
  2970. return drm_add_fake_info_node(minor, ent, info);
  2971. }
  2972. static const char * const pipe_crc_sources[] = {
  2973. "none",
  2974. "plane1",
  2975. "plane2",
  2976. "pf",
  2977. "pipe",
  2978. "TV",
  2979. "DP-B",
  2980. "DP-C",
  2981. "DP-D",
  2982. "auto",
  2983. };
  2984. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2985. {
  2986. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2987. return pipe_crc_sources[source];
  2988. }
  2989. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2990. {
  2991. struct drm_i915_private *dev_priv = m->private;
  2992. int i;
  2993. for (i = 0; i < I915_MAX_PIPES; i++)
  2994. seq_printf(m, "%c %s\n", pipe_name(i),
  2995. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2996. return 0;
  2997. }
  2998. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2999. {
  3000. return single_open(file, display_crc_ctl_show, inode->i_private);
  3001. }
  3002. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3003. uint32_t *val)
  3004. {
  3005. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3006. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3007. switch (*source) {
  3008. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3009. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3010. break;
  3011. case INTEL_PIPE_CRC_SOURCE_NONE:
  3012. *val = 0;
  3013. break;
  3014. default:
  3015. return -EINVAL;
  3016. }
  3017. return 0;
  3018. }
  3019. static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
  3020. enum pipe pipe,
  3021. enum intel_pipe_crc_source *source)
  3022. {
  3023. struct drm_device *dev = &dev_priv->drm;
  3024. struct intel_encoder *encoder;
  3025. struct intel_crtc *crtc;
  3026. struct intel_digital_port *dig_port;
  3027. int ret = 0;
  3028. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3029. drm_modeset_lock_all(dev);
  3030. for_each_intel_encoder(dev, encoder) {
  3031. if (!encoder->base.crtc)
  3032. continue;
  3033. crtc = to_intel_crtc(encoder->base.crtc);
  3034. if (crtc->pipe != pipe)
  3035. continue;
  3036. switch (encoder->type) {
  3037. case INTEL_OUTPUT_TVOUT:
  3038. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3039. break;
  3040. case INTEL_OUTPUT_DP:
  3041. case INTEL_OUTPUT_EDP:
  3042. dig_port = enc_to_dig_port(&encoder->base);
  3043. switch (dig_port->port) {
  3044. case PORT_B:
  3045. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3046. break;
  3047. case PORT_C:
  3048. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3049. break;
  3050. case PORT_D:
  3051. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3052. break;
  3053. default:
  3054. WARN(1, "nonexisting DP port %c\n",
  3055. port_name(dig_port->port));
  3056. break;
  3057. }
  3058. break;
  3059. default:
  3060. break;
  3061. }
  3062. }
  3063. drm_modeset_unlock_all(dev);
  3064. return ret;
  3065. }
  3066. static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3067. enum pipe pipe,
  3068. enum intel_pipe_crc_source *source,
  3069. uint32_t *val)
  3070. {
  3071. bool need_stable_symbols = false;
  3072. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3073. int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
  3074. if (ret)
  3075. return ret;
  3076. }
  3077. switch (*source) {
  3078. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3079. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3080. break;
  3081. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3082. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3083. need_stable_symbols = true;
  3084. break;
  3085. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3086. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3087. need_stable_symbols = true;
  3088. break;
  3089. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3090. if (!IS_CHERRYVIEW(dev_priv))
  3091. return -EINVAL;
  3092. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3093. need_stable_symbols = true;
  3094. break;
  3095. case INTEL_PIPE_CRC_SOURCE_NONE:
  3096. *val = 0;
  3097. break;
  3098. default:
  3099. return -EINVAL;
  3100. }
  3101. /*
  3102. * When the pipe CRC tap point is after the transcoders we need
  3103. * to tweak symbol-level features to produce a deterministic series of
  3104. * symbols for a given frame. We need to reset those features only once
  3105. * a frame (instead of every nth symbol):
  3106. * - DC-balance: used to ensure a better clock recovery from the data
  3107. * link (SDVO)
  3108. * - DisplayPort scrambling: used for EMI reduction
  3109. */
  3110. if (need_stable_symbols) {
  3111. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3112. tmp |= DC_BALANCE_RESET_VLV;
  3113. switch (pipe) {
  3114. case PIPE_A:
  3115. tmp |= PIPE_A_SCRAMBLE_RESET;
  3116. break;
  3117. case PIPE_B:
  3118. tmp |= PIPE_B_SCRAMBLE_RESET;
  3119. break;
  3120. case PIPE_C:
  3121. tmp |= PIPE_C_SCRAMBLE_RESET;
  3122. break;
  3123. default:
  3124. return -EINVAL;
  3125. }
  3126. I915_WRITE(PORT_DFT2_G4X, tmp);
  3127. }
  3128. return 0;
  3129. }
  3130. static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3131. enum pipe pipe,
  3132. enum intel_pipe_crc_source *source,
  3133. uint32_t *val)
  3134. {
  3135. bool need_stable_symbols = false;
  3136. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3137. int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
  3138. if (ret)
  3139. return ret;
  3140. }
  3141. switch (*source) {
  3142. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3143. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3144. break;
  3145. case INTEL_PIPE_CRC_SOURCE_TV:
  3146. if (!SUPPORTS_TV(dev_priv))
  3147. return -EINVAL;
  3148. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3149. break;
  3150. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3151. if (!IS_G4X(dev_priv))
  3152. return -EINVAL;
  3153. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3154. need_stable_symbols = true;
  3155. break;
  3156. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3157. if (!IS_G4X(dev_priv))
  3158. return -EINVAL;
  3159. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3160. need_stable_symbols = true;
  3161. break;
  3162. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3163. if (!IS_G4X(dev_priv))
  3164. return -EINVAL;
  3165. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3166. need_stable_symbols = true;
  3167. break;
  3168. case INTEL_PIPE_CRC_SOURCE_NONE:
  3169. *val = 0;
  3170. break;
  3171. default:
  3172. return -EINVAL;
  3173. }
  3174. /*
  3175. * When the pipe CRC tap point is after the transcoders we need
  3176. * to tweak symbol-level features to produce a deterministic series of
  3177. * symbols for a given frame. We need to reset those features only once
  3178. * a frame (instead of every nth symbol):
  3179. * - DC-balance: used to ensure a better clock recovery from the data
  3180. * link (SDVO)
  3181. * - DisplayPort scrambling: used for EMI reduction
  3182. */
  3183. if (need_stable_symbols) {
  3184. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3185. WARN_ON(!IS_G4X(dev_priv));
  3186. I915_WRITE(PORT_DFT_I9XX,
  3187. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3188. if (pipe == PIPE_A)
  3189. tmp |= PIPE_A_SCRAMBLE_RESET;
  3190. else
  3191. tmp |= PIPE_B_SCRAMBLE_RESET;
  3192. I915_WRITE(PORT_DFT2_G4X, tmp);
  3193. }
  3194. return 0;
  3195. }
  3196. static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
  3197. enum pipe pipe)
  3198. {
  3199. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3200. switch (pipe) {
  3201. case PIPE_A:
  3202. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3203. break;
  3204. case PIPE_B:
  3205. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3206. break;
  3207. case PIPE_C:
  3208. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3209. break;
  3210. default:
  3211. return;
  3212. }
  3213. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3214. tmp &= ~DC_BALANCE_RESET_VLV;
  3215. I915_WRITE(PORT_DFT2_G4X, tmp);
  3216. }
  3217. static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
  3218. enum pipe pipe)
  3219. {
  3220. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3221. if (pipe == PIPE_A)
  3222. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3223. else
  3224. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3225. I915_WRITE(PORT_DFT2_G4X, tmp);
  3226. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3227. I915_WRITE(PORT_DFT_I9XX,
  3228. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3229. }
  3230. }
  3231. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3232. uint32_t *val)
  3233. {
  3234. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3235. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3236. switch (*source) {
  3237. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3238. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3239. break;
  3240. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3241. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3242. break;
  3243. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3244. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3245. break;
  3246. case INTEL_PIPE_CRC_SOURCE_NONE:
  3247. *val = 0;
  3248. break;
  3249. default:
  3250. return -EINVAL;
  3251. }
  3252. return 0;
  3253. }
  3254. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
  3255. bool enable)
  3256. {
  3257. struct drm_device *dev = &dev_priv->drm;
  3258. struct intel_crtc *crtc =
  3259. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3260. struct intel_crtc_state *pipe_config;
  3261. struct drm_atomic_state *state;
  3262. int ret = 0;
  3263. drm_modeset_lock_all(dev);
  3264. state = drm_atomic_state_alloc(dev);
  3265. if (!state) {
  3266. ret = -ENOMEM;
  3267. goto out;
  3268. }
  3269. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3270. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3271. if (IS_ERR(pipe_config)) {
  3272. ret = PTR_ERR(pipe_config);
  3273. goto out;
  3274. }
  3275. pipe_config->pch_pfit.force_thru = enable;
  3276. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3277. pipe_config->pch_pfit.enabled != enable)
  3278. pipe_config->base.connectors_changed = true;
  3279. ret = drm_atomic_commit(state);
  3280. out:
  3281. drm_modeset_unlock_all(dev);
  3282. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3283. if (ret)
  3284. drm_atomic_state_free(state);
  3285. }
  3286. static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3287. enum pipe pipe,
  3288. enum intel_pipe_crc_source *source,
  3289. uint32_t *val)
  3290. {
  3291. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3292. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3293. switch (*source) {
  3294. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3295. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3296. break;
  3297. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3298. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3299. break;
  3300. case INTEL_PIPE_CRC_SOURCE_PF:
  3301. if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
  3302. hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
  3303. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3304. break;
  3305. case INTEL_PIPE_CRC_SOURCE_NONE:
  3306. *val = 0;
  3307. break;
  3308. default:
  3309. return -EINVAL;
  3310. }
  3311. return 0;
  3312. }
  3313. static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
  3314. enum pipe pipe,
  3315. enum intel_pipe_crc_source source)
  3316. {
  3317. struct drm_device *dev = &dev_priv->drm;
  3318. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3319. struct intel_crtc *crtc =
  3320. to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  3321. enum intel_display_power_domain power_domain;
  3322. u32 val = 0; /* shut up gcc */
  3323. int ret;
  3324. if (pipe_crc->source == source)
  3325. return 0;
  3326. /* forbid changing the source without going back to 'none' */
  3327. if (pipe_crc->source && source)
  3328. return -EINVAL;
  3329. power_domain = POWER_DOMAIN_PIPE(pipe);
  3330. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3331. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3332. return -EIO;
  3333. }
  3334. if (IS_GEN2(dev_priv))
  3335. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3336. else if (INTEL_GEN(dev_priv) < 5)
  3337. ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3338. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3339. ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3340. else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
  3341. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3342. else
  3343. ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3344. if (ret != 0)
  3345. goto out;
  3346. /* none -> real source transition */
  3347. if (source) {
  3348. struct intel_pipe_crc_entry *entries;
  3349. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3350. pipe_name(pipe), pipe_crc_source_name(source));
  3351. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3352. sizeof(pipe_crc->entries[0]),
  3353. GFP_KERNEL);
  3354. if (!entries) {
  3355. ret = -ENOMEM;
  3356. goto out;
  3357. }
  3358. /*
  3359. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3360. * enabled and disabled dynamically based on package C states,
  3361. * user space can't make reliable use of the CRCs, so let's just
  3362. * completely disable it.
  3363. */
  3364. hsw_disable_ips(crtc);
  3365. spin_lock_irq(&pipe_crc->lock);
  3366. kfree(pipe_crc->entries);
  3367. pipe_crc->entries = entries;
  3368. pipe_crc->head = 0;
  3369. pipe_crc->tail = 0;
  3370. spin_unlock_irq(&pipe_crc->lock);
  3371. }
  3372. pipe_crc->source = source;
  3373. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3374. POSTING_READ(PIPE_CRC_CTL(pipe));
  3375. /* real source -> none transition */
  3376. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3377. struct intel_pipe_crc_entry *entries;
  3378. struct intel_crtc *crtc =
  3379. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3380. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3381. pipe_name(pipe));
  3382. drm_modeset_lock(&crtc->base.mutex, NULL);
  3383. if (crtc->base.state->active)
  3384. intel_wait_for_vblank(dev, pipe);
  3385. drm_modeset_unlock(&crtc->base.mutex);
  3386. spin_lock_irq(&pipe_crc->lock);
  3387. entries = pipe_crc->entries;
  3388. pipe_crc->entries = NULL;
  3389. pipe_crc->head = 0;
  3390. pipe_crc->tail = 0;
  3391. spin_unlock_irq(&pipe_crc->lock);
  3392. kfree(entries);
  3393. if (IS_G4X(dev_priv))
  3394. g4x_undo_pipe_scramble_reset(dev_priv, pipe);
  3395. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3396. vlv_undo_pipe_scramble_reset(dev_priv, pipe);
  3397. else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
  3398. hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
  3399. hsw_enable_ips(crtc);
  3400. }
  3401. ret = 0;
  3402. out:
  3403. intel_display_power_put(dev_priv, power_domain);
  3404. return ret;
  3405. }
  3406. /*
  3407. * Parse pipe CRC command strings:
  3408. * command: wsp* object wsp+ name wsp+ source wsp*
  3409. * object: 'pipe'
  3410. * name: (A | B | C)
  3411. * source: (none | plane1 | plane2 | pf)
  3412. * wsp: (#0x20 | #0x9 | #0xA)+
  3413. *
  3414. * eg.:
  3415. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3416. * "pipe A none" -> Stop CRC
  3417. */
  3418. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3419. {
  3420. int n_words = 0;
  3421. while (*buf) {
  3422. char *end;
  3423. /* skip leading white space */
  3424. buf = skip_spaces(buf);
  3425. if (!*buf)
  3426. break; /* end of buffer */
  3427. /* find end of word */
  3428. for (end = buf; *end && !isspace(*end); end++)
  3429. ;
  3430. if (n_words == max_words) {
  3431. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3432. max_words);
  3433. return -EINVAL; /* ran out of words[] before bytes */
  3434. }
  3435. if (*end)
  3436. *end++ = '\0';
  3437. words[n_words++] = buf;
  3438. buf = end;
  3439. }
  3440. return n_words;
  3441. }
  3442. enum intel_pipe_crc_object {
  3443. PIPE_CRC_OBJECT_PIPE,
  3444. };
  3445. static const char * const pipe_crc_objects[] = {
  3446. "pipe",
  3447. };
  3448. static int
  3449. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3450. {
  3451. int i;
  3452. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3453. if (!strcmp(buf, pipe_crc_objects[i])) {
  3454. *o = i;
  3455. return 0;
  3456. }
  3457. return -EINVAL;
  3458. }
  3459. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3460. {
  3461. const char name = buf[0];
  3462. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3463. return -EINVAL;
  3464. *pipe = name - 'A';
  3465. return 0;
  3466. }
  3467. static int
  3468. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3469. {
  3470. int i;
  3471. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3472. if (!strcmp(buf, pipe_crc_sources[i])) {
  3473. *s = i;
  3474. return 0;
  3475. }
  3476. return -EINVAL;
  3477. }
  3478. static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
  3479. char *buf, size_t len)
  3480. {
  3481. #define N_WORDS 3
  3482. int n_words;
  3483. char *words[N_WORDS];
  3484. enum pipe pipe;
  3485. enum intel_pipe_crc_object object;
  3486. enum intel_pipe_crc_source source;
  3487. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3488. if (n_words != N_WORDS) {
  3489. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3490. N_WORDS);
  3491. return -EINVAL;
  3492. }
  3493. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3494. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3495. return -EINVAL;
  3496. }
  3497. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3498. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3499. return -EINVAL;
  3500. }
  3501. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3502. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3503. return -EINVAL;
  3504. }
  3505. return pipe_crc_set_source(dev_priv, pipe, source);
  3506. }
  3507. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3508. size_t len, loff_t *offp)
  3509. {
  3510. struct seq_file *m = file->private_data;
  3511. struct drm_i915_private *dev_priv = m->private;
  3512. char *tmpbuf;
  3513. int ret;
  3514. if (len == 0)
  3515. return 0;
  3516. if (len > PAGE_SIZE - 1) {
  3517. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3518. PAGE_SIZE);
  3519. return -E2BIG;
  3520. }
  3521. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3522. if (!tmpbuf)
  3523. return -ENOMEM;
  3524. if (copy_from_user(tmpbuf, ubuf, len)) {
  3525. ret = -EFAULT;
  3526. goto out;
  3527. }
  3528. tmpbuf[len] = '\0';
  3529. ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
  3530. out:
  3531. kfree(tmpbuf);
  3532. if (ret < 0)
  3533. return ret;
  3534. *offp += len;
  3535. return len;
  3536. }
  3537. static const struct file_operations i915_display_crc_ctl_fops = {
  3538. .owner = THIS_MODULE,
  3539. .open = display_crc_ctl_open,
  3540. .read = seq_read,
  3541. .llseek = seq_lseek,
  3542. .release = single_release,
  3543. .write = display_crc_ctl_write
  3544. };
  3545. static ssize_t i915_displayport_test_active_write(struct file *file,
  3546. const char __user *ubuf,
  3547. size_t len, loff_t *offp)
  3548. {
  3549. char *input_buffer;
  3550. int status = 0;
  3551. struct drm_device *dev;
  3552. struct drm_connector *connector;
  3553. struct list_head *connector_list;
  3554. struct intel_dp *intel_dp;
  3555. int val = 0;
  3556. dev = ((struct seq_file *)file->private_data)->private;
  3557. connector_list = &dev->mode_config.connector_list;
  3558. if (len == 0)
  3559. return 0;
  3560. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3561. if (!input_buffer)
  3562. return -ENOMEM;
  3563. if (copy_from_user(input_buffer, ubuf, len)) {
  3564. status = -EFAULT;
  3565. goto out;
  3566. }
  3567. input_buffer[len] = '\0';
  3568. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3569. list_for_each_entry(connector, connector_list, head) {
  3570. if (connector->connector_type !=
  3571. DRM_MODE_CONNECTOR_DisplayPort)
  3572. continue;
  3573. if (connector->status == connector_status_connected &&
  3574. connector->encoder != NULL) {
  3575. intel_dp = enc_to_intel_dp(connector->encoder);
  3576. status = kstrtoint(input_buffer, 10, &val);
  3577. if (status < 0)
  3578. goto out;
  3579. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3580. /* To prevent erroneous activation of the compliance
  3581. * testing code, only accept an actual value of 1 here
  3582. */
  3583. if (val == 1)
  3584. intel_dp->compliance_test_active = 1;
  3585. else
  3586. intel_dp->compliance_test_active = 0;
  3587. }
  3588. }
  3589. out:
  3590. kfree(input_buffer);
  3591. if (status < 0)
  3592. return status;
  3593. *offp += len;
  3594. return len;
  3595. }
  3596. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3597. {
  3598. struct drm_device *dev = m->private;
  3599. struct drm_connector *connector;
  3600. struct list_head *connector_list = &dev->mode_config.connector_list;
  3601. struct intel_dp *intel_dp;
  3602. list_for_each_entry(connector, connector_list, head) {
  3603. if (connector->connector_type !=
  3604. DRM_MODE_CONNECTOR_DisplayPort)
  3605. continue;
  3606. if (connector->status == connector_status_connected &&
  3607. connector->encoder != NULL) {
  3608. intel_dp = enc_to_intel_dp(connector->encoder);
  3609. if (intel_dp->compliance_test_active)
  3610. seq_puts(m, "1");
  3611. else
  3612. seq_puts(m, "0");
  3613. } else
  3614. seq_puts(m, "0");
  3615. }
  3616. return 0;
  3617. }
  3618. static int i915_displayport_test_active_open(struct inode *inode,
  3619. struct file *file)
  3620. {
  3621. struct drm_i915_private *dev_priv = inode->i_private;
  3622. return single_open(file, i915_displayport_test_active_show,
  3623. &dev_priv->drm);
  3624. }
  3625. static const struct file_operations i915_displayport_test_active_fops = {
  3626. .owner = THIS_MODULE,
  3627. .open = i915_displayport_test_active_open,
  3628. .read = seq_read,
  3629. .llseek = seq_lseek,
  3630. .release = single_release,
  3631. .write = i915_displayport_test_active_write
  3632. };
  3633. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3634. {
  3635. struct drm_device *dev = m->private;
  3636. struct drm_connector *connector;
  3637. struct list_head *connector_list = &dev->mode_config.connector_list;
  3638. struct intel_dp *intel_dp;
  3639. list_for_each_entry(connector, connector_list, head) {
  3640. if (connector->connector_type !=
  3641. DRM_MODE_CONNECTOR_DisplayPort)
  3642. continue;
  3643. if (connector->status == connector_status_connected &&
  3644. connector->encoder != NULL) {
  3645. intel_dp = enc_to_intel_dp(connector->encoder);
  3646. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3647. } else
  3648. seq_puts(m, "0");
  3649. }
  3650. return 0;
  3651. }
  3652. static int i915_displayport_test_data_open(struct inode *inode,
  3653. struct file *file)
  3654. {
  3655. struct drm_i915_private *dev_priv = inode->i_private;
  3656. return single_open(file, i915_displayport_test_data_show,
  3657. &dev_priv->drm);
  3658. }
  3659. static const struct file_operations i915_displayport_test_data_fops = {
  3660. .owner = THIS_MODULE,
  3661. .open = i915_displayport_test_data_open,
  3662. .read = seq_read,
  3663. .llseek = seq_lseek,
  3664. .release = single_release
  3665. };
  3666. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3667. {
  3668. struct drm_device *dev = m->private;
  3669. struct drm_connector *connector;
  3670. struct list_head *connector_list = &dev->mode_config.connector_list;
  3671. struct intel_dp *intel_dp;
  3672. list_for_each_entry(connector, connector_list, head) {
  3673. if (connector->connector_type !=
  3674. DRM_MODE_CONNECTOR_DisplayPort)
  3675. continue;
  3676. if (connector->status == connector_status_connected &&
  3677. connector->encoder != NULL) {
  3678. intel_dp = enc_to_intel_dp(connector->encoder);
  3679. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3680. } else
  3681. seq_puts(m, "0");
  3682. }
  3683. return 0;
  3684. }
  3685. static int i915_displayport_test_type_open(struct inode *inode,
  3686. struct file *file)
  3687. {
  3688. struct drm_i915_private *dev_priv = inode->i_private;
  3689. return single_open(file, i915_displayport_test_type_show,
  3690. &dev_priv->drm);
  3691. }
  3692. static const struct file_operations i915_displayport_test_type_fops = {
  3693. .owner = THIS_MODULE,
  3694. .open = i915_displayport_test_type_open,
  3695. .read = seq_read,
  3696. .llseek = seq_lseek,
  3697. .release = single_release
  3698. };
  3699. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3700. {
  3701. struct drm_i915_private *dev_priv = m->private;
  3702. struct drm_device *dev = &dev_priv->drm;
  3703. int level;
  3704. int num_levels;
  3705. if (IS_CHERRYVIEW(dev_priv))
  3706. num_levels = 3;
  3707. else if (IS_VALLEYVIEW(dev_priv))
  3708. num_levels = 1;
  3709. else
  3710. num_levels = ilk_wm_max_level(dev) + 1;
  3711. drm_modeset_lock_all(dev);
  3712. for (level = 0; level < num_levels; level++) {
  3713. unsigned int latency = wm[level];
  3714. /*
  3715. * - WM1+ latency values in 0.5us units
  3716. * - latencies are in us on gen9/vlv/chv
  3717. */
  3718. if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
  3719. IS_CHERRYVIEW(dev_priv))
  3720. latency *= 10;
  3721. else if (level > 0)
  3722. latency *= 5;
  3723. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3724. level, wm[level], latency / 10, latency % 10);
  3725. }
  3726. drm_modeset_unlock_all(dev);
  3727. }
  3728. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3729. {
  3730. struct drm_i915_private *dev_priv = m->private;
  3731. const uint16_t *latencies;
  3732. if (INTEL_GEN(dev_priv) >= 9)
  3733. latencies = dev_priv->wm.skl_latency;
  3734. else
  3735. latencies = dev_priv->wm.pri_latency;
  3736. wm_latency_show(m, latencies);
  3737. return 0;
  3738. }
  3739. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3740. {
  3741. struct drm_i915_private *dev_priv = m->private;
  3742. const uint16_t *latencies;
  3743. if (INTEL_GEN(dev_priv) >= 9)
  3744. latencies = dev_priv->wm.skl_latency;
  3745. else
  3746. latencies = dev_priv->wm.spr_latency;
  3747. wm_latency_show(m, latencies);
  3748. return 0;
  3749. }
  3750. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3751. {
  3752. struct drm_i915_private *dev_priv = m->private;
  3753. const uint16_t *latencies;
  3754. if (INTEL_GEN(dev_priv) >= 9)
  3755. latencies = dev_priv->wm.skl_latency;
  3756. else
  3757. latencies = dev_priv->wm.cur_latency;
  3758. wm_latency_show(m, latencies);
  3759. return 0;
  3760. }
  3761. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3762. {
  3763. struct drm_i915_private *dev_priv = inode->i_private;
  3764. if (INTEL_GEN(dev_priv) < 5)
  3765. return -ENODEV;
  3766. return single_open(file, pri_wm_latency_show, dev_priv);
  3767. }
  3768. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3769. {
  3770. struct drm_i915_private *dev_priv = inode->i_private;
  3771. if (HAS_GMCH_DISPLAY(dev_priv))
  3772. return -ENODEV;
  3773. return single_open(file, spr_wm_latency_show, dev_priv);
  3774. }
  3775. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3776. {
  3777. struct drm_i915_private *dev_priv = inode->i_private;
  3778. if (HAS_GMCH_DISPLAY(dev_priv))
  3779. return -ENODEV;
  3780. return single_open(file, cur_wm_latency_show, dev_priv);
  3781. }
  3782. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3783. size_t len, loff_t *offp, uint16_t wm[8])
  3784. {
  3785. struct seq_file *m = file->private_data;
  3786. struct drm_i915_private *dev_priv = m->private;
  3787. struct drm_device *dev = &dev_priv->drm;
  3788. uint16_t new[8] = { 0 };
  3789. int num_levels;
  3790. int level;
  3791. int ret;
  3792. char tmp[32];
  3793. if (IS_CHERRYVIEW(dev_priv))
  3794. num_levels = 3;
  3795. else if (IS_VALLEYVIEW(dev_priv))
  3796. num_levels = 1;
  3797. else
  3798. num_levels = ilk_wm_max_level(dev) + 1;
  3799. if (len >= sizeof(tmp))
  3800. return -EINVAL;
  3801. if (copy_from_user(tmp, ubuf, len))
  3802. return -EFAULT;
  3803. tmp[len] = '\0';
  3804. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3805. &new[0], &new[1], &new[2], &new[3],
  3806. &new[4], &new[5], &new[6], &new[7]);
  3807. if (ret != num_levels)
  3808. return -EINVAL;
  3809. drm_modeset_lock_all(dev);
  3810. for (level = 0; level < num_levels; level++)
  3811. wm[level] = new[level];
  3812. drm_modeset_unlock_all(dev);
  3813. return len;
  3814. }
  3815. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3816. size_t len, loff_t *offp)
  3817. {
  3818. struct seq_file *m = file->private_data;
  3819. struct drm_i915_private *dev_priv = m->private;
  3820. uint16_t *latencies;
  3821. if (INTEL_GEN(dev_priv) >= 9)
  3822. latencies = dev_priv->wm.skl_latency;
  3823. else
  3824. latencies = dev_priv->wm.pri_latency;
  3825. return wm_latency_write(file, ubuf, len, offp, latencies);
  3826. }
  3827. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3828. size_t len, loff_t *offp)
  3829. {
  3830. struct seq_file *m = file->private_data;
  3831. struct drm_i915_private *dev_priv = m->private;
  3832. uint16_t *latencies;
  3833. if (INTEL_GEN(dev_priv) >= 9)
  3834. latencies = dev_priv->wm.skl_latency;
  3835. else
  3836. latencies = dev_priv->wm.spr_latency;
  3837. return wm_latency_write(file, ubuf, len, offp, latencies);
  3838. }
  3839. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3840. size_t len, loff_t *offp)
  3841. {
  3842. struct seq_file *m = file->private_data;
  3843. struct drm_i915_private *dev_priv = m->private;
  3844. uint16_t *latencies;
  3845. if (INTEL_GEN(dev_priv) >= 9)
  3846. latencies = dev_priv->wm.skl_latency;
  3847. else
  3848. latencies = dev_priv->wm.cur_latency;
  3849. return wm_latency_write(file, ubuf, len, offp, latencies);
  3850. }
  3851. static const struct file_operations i915_pri_wm_latency_fops = {
  3852. .owner = THIS_MODULE,
  3853. .open = pri_wm_latency_open,
  3854. .read = seq_read,
  3855. .llseek = seq_lseek,
  3856. .release = single_release,
  3857. .write = pri_wm_latency_write
  3858. };
  3859. static const struct file_operations i915_spr_wm_latency_fops = {
  3860. .owner = THIS_MODULE,
  3861. .open = spr_wm_latency_open,
  3862. .read = seq_read,
  3863. .llseek = seq_lseek,
  3864. .release = single_release,
  3865. .write = spr_wm_latency_write
  3866. };
  3867. static const struct file_operations i915_cur_wm_latency_fops = {
  3868. .owner = THIS_MODULE,
  3869. .open = cur_wm_latency_open,
  3870. .read = seq_read,
  3871. .llseek = seq_lseek,
  3872. .release = single_release,
  3873. .write = cur_wm_latency_write
  3874. };
  3875. static int
  3876. i915_wedged_get(void *data, u64 *val)
  3877. {
  3878. struct drm_i915_private *dev_priv = data;
  3879. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3880. return 0;
  3881. }
  3882. static int
  3883. i915_wedged_set(void *data, u64 val)
  3884. {
  3885. struct drm_i915_private *dev_priv = data;
  3886. /*
  3887. * There is no safeguard against this debugfs entry colliding
  3888. * with the hangcheck calling same i915_handle_error() in
  3889. * parallel, causing an explosion. For now we assume that the
  3890. * test harness is responsible enough not to inject gpu hangs
  3891. * while it is writing to 'i915_wedged'
  3892. */
  3893. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3894. return -EAGAIN;
  3895. intel_runtime_pm_get(dev_priv);
  3896. i915_handle_error(dev_priv, val,
  3897. "Manually setting wedged to %llu", val);
  3898. intel_runtime_pm_put(dev_priv);
  3899. return 0;
  3900. }
  3901. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3902. i915_wedged_get, i915_wedged_set,
  3903. "%llu\n");
  3904. static int
  3905. i915_ring_missed_irq_get(void *data, u64 *val)
  3906. {
  3907. struct drm_i915_private *dev_priv = data;
  3908. *val = dev_priv->gpu_error.missed_irq_rings;
  3909. return 0;
  3910. }
  3911. static int
  3912. i915_ring_missed_irq_set(void *data, u64 val)
  3913. {
  3914. struct drm_i915_private *dev_priv = data;
  3915. struct drm_device *dev = &dev_priv->drm;
  3916. int ret;
  3917. /* Lock against concurrent debugfs callers */
  3918. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3919. if (ret)
  3920. return ret;
  3921. dev_priv->gpu_error.missed_irq_rings = val;
  3922. mutex_unlock(&dev->struct_mutex);
  3923. return 0;
  3924. }
  3925. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3926. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3927. "0x%08llx\n");
  3928. static int
  3929. i915_ring_test_irq_get(void *data, u64 *val)
  3930. {
  3931. struct drm_i915_private *dev_priv = data;
  3932. *val = dev_priv->gpu_error.test_irq_rings;
  3933. return 0;
  3934. }
  3935. static int
  3936. i915_ring_test_irq_set(void *data, u64 val)
  3937. {
  3938. struct drm_i915_private *dev_priv = data;
  3939. val &= INTEL_INFO(dev_priv)->ring_mask;
  3940. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3941. dev_priv->gpu_error.test_irq_rings = val;
  3942. return 0;
  3943. }
  3944. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3945. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3946. "0x%08llx\n");
  3947. #define DROP_UNBOUND 0x1
  3948. #define DROP_BOUND 0x2
  3949. #define DROP_RETIRE 0x4
  3950. #define DROP_ACTIVE 0x8
  3951. #define DROP_ALL (DROP_UNBOUND | \
  3952. DROP_BOUND | \
  3953. DROP_RETIRE | \
  3954. DROP_ACTIVE)
  3955. static int
  3956. i915_drop_caches_get(void *data, u64 *val)
  3957. {
  3958. *val = DROP_ALL;
  3959. return 0;
  3960. }
  3961. static int
  3962. i915_drop_caches_set(void *data, u64 val)
  3963. {
  3964. struct drm_i915_private *dev_priv = data;
  3965. struct drm_device *dev = &dev_priv->drm;
  3966. int ret;
  3967. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3968. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3969. * on ioctls on -EAGAIN. */
  3970. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3971. if (ret)
  3972. return ret;
  3973. if (val & DROP_ACTIVE) {
  3974. ret = i915_gem_wait_for_idle(dev_priv,
  3975. I915_WAIT_INTERRUPTIBLE |
  3976. I915_WAIT_LOCKED);
  3977. if (ret)
  3978. goto unlock;
  3979. }
  3980. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3981. i915_gem_retire_requests(dev_priv);
  3982. if (val & DROP_BOUND)
  3983. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3984. if (val & DROP_UNBOUND)
  3985. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3986. unlock:
  3987. mutex_unlock(&dev->struct_mutex);
  3988. return ret;
  3989. }
  3990. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3991. i915_drop_caches_get, i915_drop_caches_set,
  3992. "0x%08llx\n");
  3993. static int
  3994. i915_max_freq_get(void *data, u64 *val)
  3995. {
  3996. struct drm_i915_private *dev_priv = data;
  3997. if (INTEL_GEN(dev_priv) < 6)
  3998. return -ENODEV;
  3999. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4000. return 0;
  4001. }
  4002. static int
  4003. i915_max_freq_set(void *data, u64 val)
  4004. {
  4005. struct drm_i915_private *dev_priv = data;
  4006. u32 hw_max, hw_min;
  4007. int ret;
  4008. if (INTEL_GEN(dev_priv) < 6)
  4009. return -ENODEV;
  4010. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4011. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4012. if (ret)
  4013. return ret;
  4014. /*
  4015. * Turbo will still be enabled, but won't go above the set value.
  4016. */
  4017. val = intel_freq_opcode(dev_priv, val);
  4018. hw_max = dev_priv->rps.max_freq;
  4019. hw_min = dev_priv->rps.min_freq;
  4020. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4021. mutex_unlock(&dev_priv->rps.hw_lock);
  4022. return -EINVAL;
  4023. }
  4024. dev_priv->rps.max_freq_softlimit = val;
  4025. intel_set_rps(dev_priv, val);
  4026. mutex_unlock(&dev_priv->rps.hw_lock);
  4027. return 0;
  4028. }
  4029. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4030. i915_max_freq_get, i915_max_freq_set,
  4031. "%llu\n");
  4032. static int
  4033. i915_min_freq_get(void *data, u64 *val)
  4034. {
  4035. struct drm_i915_private *dev_priv = data;
  4036. if (INTEL_GEN(dev_priv) < 6)
  4037. return -ENODEV;
  4038. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4039. return 0;
  4040. }
  4041. static int
  4042. i915_min_freq_set(void *data, u64 val)
  4043. {
  4044. struct drm_i915_private *dev_priv = data;
  4045. u32 hw_max, hw_min;
  4046. int ret;
  4047. if (INTEL_GEN(dev_priv) < 6)
  4048. return -ENODEV;
  4049. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4050. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4051. if (ret)
  4052. return ret;
  4053. /*
  4054. * Turbo will still be enabled, but won't go below the set value.
  4055. */
  4056. val = intel_freq_opcode(dev_priv, val);
  4057. hw_max = dev_priv->rps.max_freq;
  4058. hw_min = dev_priv->rps.min_freq;
  4059. if (val < hw_min ||
  4060. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4061. mutex_unlock(&dev_priv->rps.hw_lock);
  4062. return -EINVAL;
  4063. }
  4064. dev_priv->rps.min_freq_softlimit = val;
  4065. intel_set_rps(dev_priv, val);
  4066. mutex_unlock(&dev_priv->rps.hw_lock);
  4067. return 0;
  4068. }
  4069. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4070. i915_min_freq_get, i915_min_freq_set,
  4071. "%llu\n");
  4072. static int
  4073. i915_cache_sharing_get(void *data, u64 *val)
  4074. {
  4075. struct drm_i915_private *dev_priv = data;
  4076. struct drm_device *dev = &dev_priv->drm;
  4077. u32 snpcr;
  4078. int ret;
  4079. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  4080. return -ENODEV;
  4081. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4082. if (ret)
  4083. return ret;
  4084. intel_runtime_pm_get(dev_priv);
  4085. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4086. intel_runtime_pm_put(dev_priv);
  4087. mutex_unlock(&dev->struct_mutex);
  4088. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4089. return 0;
  4090. }
  4091. static int
  4092. i915_cache_sharing_set(void *data, u64 val)
  4093. {
  4094. struct drm_i915_private *dev_priv = data;
  4095. u32 snpcr;
  4096. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  4097. return -ENODEV;
  4098. if (val > 3)
  4099. return -EINVAL;
  4100. intel_runtime_pm_get(dev_priv);
  4101. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4102. /* Update the cache sharing policy here as well */
  4103. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4104. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4105. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4106. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4107. intel_runtime_pm_put(dev_priv);
  4108. return 0;
  4109. }
  4110. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4111. i915_cache_sharing_get, i915_cache_sharing_set,
  4112. "%llu\n");
  4113. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  4114. struct sseu_dev_info *sseu)
  4115. {
  4116. int ss_max = 2;
  4117. int ss;
  4118. u32 sig1[ss_max], sig2[ss_max];
  4119. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4120. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4121. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4122. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4123. for (ss = 0; ss < ss_max; ss++) {
  4124. unsigned int eu_cnt;
  4125. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4126. /* skip disabled subslice */
  4127. continue;
  4128. sseu->slice_mask = BIT(0);
  4129. sseu->subslice_mask |= BIT(ss);
  4130. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4131. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4132. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4133. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4134. sseu->eu_total += eu_cnt;
  4135. sseu->eu_per_subslice = max_t(unsigned int,
  4136. sseu->eu_per_subslice, eu_cnt);
  4137. }
  4138. }
  4139. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  4140. struct sseu_dev_info *sseu)
  4141. {
  4142. int s_max = 3, ss_max = 4;
  4143. int s, ss;
  4144. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4145. /* BXT has a single slice and at most 3 subslices. */
  4146. if (IS_BROXTON(dev_priv)) {
  4147. s_max = 1;
  4148. ss_max = 3;
  4149. }
  4150. for (s = 0; s < s_max; s++) {
  4151. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4152. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4153. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4154. }
  4155. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4156. GEN9_PGCTL_SSA_EU19_ACK |
  4157. GEN9_PGCTL_SSA_EU210_ACK |
  4158. GEN9_PGCTL_SSA_EU311_ACK;
  4159. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4160. GEN9_PGCTL_SSB_EU19_ACK |
  4161. GEN9_PGCTL_SSB_EU210_ACK |
  4162. GEN9_PGCTL_SSB_EU311_ACK;
  4163. for (s = 0; s < s_max; s++) {
  4164. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4165. /* skip disabled slice */
  4166. continue;
  4167. sseu->slice_mask |= BIT(s);
  4168. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  4169. sseu->subslice_mask =
  4170. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  4171. for (ss = 0; ss < ss_max; ss++) {
  4172. unsigned int eu_cnt;
  4173. if (IS_BROXTON(dev_priv)) {
  4174. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4175. /* skip disabled subslice */
  4176. continue;
  4177. sseu->subslice_mask |= BIT(ss);
  4178. }
  4179. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4180. eu_mask[ss%2]);
  4181. sseu->eu_total += eu_cnt;
  4182. sseu->eu_per_subslice = max_t(unsigned int,
  4183. sseu->eu_per_subslice,
  4184. eu_cnt);
  4185. }
  4186. }
  4187. }
  4188. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  4189. struct sseu_dev_info *sseu)
  4190. {
  4191. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4192. int s;
  4193. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  4194. if (sseu->slice_mask) {
  4195. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  4196. sseu->eu_per_subslice =
  4197. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  4198. sseu->eu_total = sseu->eu_per_subslice *
  4199. sseu_subslice_total(sseu);
  4200. /* subtract fused off EU(s) from enabled slice(s) */
  4201. for (s = 0; s < fls(sseu->slice_mask); s++) {
  4202. u8 subslice_7eu =
  4203. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  4204. sseu->eu_total -= hweight8(subslice_7eu);
  4205. }
  4206. }
  4207. }
  4208. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  4209. const struct sseu_dev_info *sseu)
  4210. {
  4211. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  4212. const char *type = is_available_info ? "Available" : "Enabled";
  4213. seq_printf(m, " %s Slice Mask: %04x\n", type,
  4214. sseu->slice_mask);
  4215. seq_printf(m, " %s Slice Total: %u\n", type,
  4216. hweight8(sseu->slice_mask));
  4217. seq_printf(m, " %s Subslice Total: %u\n", type,
  4218. sseu_subslice_total(sseu));
  4219. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  4220. sseu->subslice_mask);
  4221. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  4222. hweight8(sseu->subslice_mask));
  4223. seq_printf(m, " %s EU Total: %u\n", type,
  4224. sseu->eu_total);
  4225. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  4226. sseu->eu_per_subslice);
  4227. if (!is_available_info)
  4228. return;
  4229. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  4230. if (HAS_POOLED_EU(dev_priv))
  4231. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  4232. seq_printf(m, " Has Slice Power Gating: %s\n",
  4233. yesno(sseu->has_slice_pg));
  4234. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4235. yesno(sseu->has_subslice_pg));
  4236. seq_printf(m, " Has EU Power Gating: %s\n",
  4237. yesno(sseu->has_eu_pg));
  4238. }
  4239. static int i915_sseu_status(struct seq_file *m, void *unused)
  4240. {
  4241. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  4242. struct sseu_dev_info sseu;
  4243. if (INTEL_GEN(dev_priv) < 8)
  4244. return -ENODEV;
  4245. seq_puts(m, "SSEU Device Info\n");
  4246. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  4247. seq_puts(m, "SSEU Device Status\n");
  4248. memset(&sseu, 0, sizeof(sseu));
  4249. intel_runtime_pm_get(dev_priv);
  4250. if (IS_CHERRYVIEW(dev_priv)) {
  4251. cherryview_sseu_device_status(dev_priv, &sseu);
  4252. } else if (IS_BROADWELL(dev_priv)) {
  4253. broadwell_sseu_device_status(dev_priv, &sseu);
  4254. } else if (INTEL_GEN(dev_priv) >= 9) {
  4255. gen9_sseu_device_status(dev_priv, &sseu);
  4256. }
  4257. intel_runtime_pm_put(dev_priv);
  4258. i915_print_sseu_info(m, false, &sseu);
  4259. return 0;
  4260. }
  4261. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4262. {
  4263. struct drm_i915_private *dev_priv = inode->i_private;
  4264. if (INTEL_GEN(dev_priv) < 6)
  4265. return 0;
  4266. intel_runtime_pm_get(dev_priv);
  4267. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4268. return 0;
  4269. }
  4270. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4271. {
  4272. struct drm_i915_private *dev_priv = inode->i_private;
  4273. if (INTEL_GEN(dev_priv) < 6)
  4274. return 0;
  4275. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4276. intel_runtime_pm_put(dev_priv);
  4277. return 0;
  4278. }
  4279. static const struct file_operations i915_forcewake_fops = {
  4280. .owner = THIS_MODULE,
  4281. .open = i915_forcewake_open,
  4282. .release = i915_forcewake_release,
  4283. };
  4284. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4285. {
  4286. struct dentry *ent;
  4287. ent = debugfs_create_file("i915_forcewake_user",
  4288. S_IRUSR,
  4289. root, to_i915(minor->dev),
  4290. &i915_forcewake_fops);
  4291. if (!ent)
  4292. return -ENOMEM;
  4293. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4294. }
  4295. static int i915_debugfs_create(struct dentry *root,
  4296. struct drm_minor *minor,
  4297. const char *name,
  4298. const struct file_operations *fops)
  4299. {
  4300. struct dentry *ent;
  4301. ent = debugfs_create_file(name,
  4302. S_IRUGO | S_IWUSR,
  4303. root, to_i915(minor->dev),
  4304. fops);
  4305. if (!ent)
  4306. return -ENOMEM;
  4307. return drm_add_fake_info_node(minor, ent, fops);
  4308. }
  4309. static const struct drm_info_list i915_debugfs_list[] = {
  4310. {"i915_capabilities", i915_capabilities, 0},
  4311. {"i915_gem_objects", i915_gem_object_info, 0},
  4312. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4313. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  4314. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4315. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4316. {"i915_gem_request", i915_gem_request_info, 0},
  4317. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4318. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4319. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4320. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4321. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4322. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4323. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4324. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4325. {"i915_guc_info", i915_guc_info, 0},
  4326. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4327. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4328. {"i915_frequency_info", i915_frequency_info, 0},
  4329. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4330. {"i915_drpc_info", i915_drpc_info, 0},
  4331. {"i915_emon_status", i915_emon_status, 0},
  4332. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4333. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4334. {"i915_fbc_status", i915_fbc_status, 0},
  4335. {"i915_ips_status", i915_ips_status, 0},
  4336. {"i915_sr_status", i915_sr_status, 0},
  4337. {"i915_opregion", i915_opregion, 0},
  4338. {"i915_vbt", i915_vbt, 0},
  4339. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4340. {"i915_context_status", i915_context_status, 0},
  4341. {"i915_dump_lrc", i915_dump_lrc, 0},
  4342. {"i915_execlists", i915_execlists, 0},
  4343. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4344. {"i915_swizzle_info", i915_swizzle_info, 0},
  4345. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4346. {"i915_llc", i915_llc, 0},
  4347. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4348. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4349. {"i915_energy_uJ", i915_energy_uJ, 0},
  4350. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4351. {"i915_power_domain_info", i915_power_domain_info, 0},
  4352. {"i915_dmc_info", i915_dmc_info, 0},
  4353. {"i915_display_info", i915_display_info, 0},
  4354. {"i915_semaphore_status", i915_semaphore_status, 0},
  4355. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4356. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4357. {"i915_wa_registers", i915_wa_registers, 0},
  4358. {"i915_ddb_info", i915_ddb_info, 0},
  4359. {"i915_sseu_status", i915_sseu_status, 0},
  4360. {"i915_drrs_status", i915_drrs_status, 0},
  4361. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4362. };
  4363. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4364. static const struct i915_debugfs_files {
  4365. const char *name;
  4366. const struct file_operations *fops;
  4367. } i915_debugfs_files[] = {
  4368. {"i915_wedged", &i915_wedged_fops},
  4369. {"i915_max_freq", &i915_max_freq_fops},
  4370. {"i915_min_freq", &i915_min_freq_fops},
  4371. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4372. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4373. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4374. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4375. {"i915_error_state", &i915_error_state_fops},
  4376. {"i915_next_seqno", &i915_next_seqno_fops},
  4377. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4378. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4379. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4380. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4381. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4382. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4383. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4384. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4385. };
  4386. void intel_display_crc_init(struct drm_i915_private *dev_priv)
  4387. {
  4388. enum pipe pipe;
  4389. for_each_pipe(dev_priv, pipe) {
  4390. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4391. pipe_crc->opened = false;
  4392. spin_lock_init(&pipe_crc->lock);
  4393. init_waitqueue_head(&pipe_crc->wq);
  4394. }
  4395. }
  4396. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4397. {
  4398. struct drm_minor *minor = dev_priv->drm.primary;
  4399. int ret, i;
  4400. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4401. if (ret)
  4402. return ret;
  4403. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4404. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4405. if (ret)
  4406. return ret;
  4407. }
  4408. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4409. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4410. i915_debugfs_files[i].name,
  4411. i915_debugfs_files[i].fops);
  4412. if (ret)
  4413. return ret;
  4414. }
  4415. return drm_debugfs_create_files(i915_debugfs_list,
  4416. I915_DEBUGFS_ENTRIES,
  4417. minor->debugfs_root, minor);
  4418. }
  4419. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  4420. {
  4421. struct drm_minor *minor = dev_priv->drm.primary;
  4422. int i;
  4423. drm_debugfs_remove_files(i915_debugfs_list,
  4424. I915_DEBUGFS_ENTRIES, minor);
  4425. drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
  4426. 1, minor);
  4427. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4428. struct drm_info_list *info_list =
  4429. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4430. drm_debugfs_remove_files(info_list, 1, minor);
  4431. }
  4432. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4433. struct drm_info_list *info_list =
  4434. (struct drm_info_list *)i915_debugfs_files[i].fops;
  4435. drm_debugfs_remove_files(info_list, 1, minor);
  4436. }
  4437. }
  4438. struct dpcd_block {
  4439. /* DPCD dump start address. */
  4440. unsigned int offset;
  4441. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4442. unsigned int end;
  4443. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4444. size_t size;
  4445. /* Only valid for eDP. */
  4446. bool edp;
  4447. };
  4448. static const struct dpcd_block i915_dpcd_debug[] = {
  4449. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4450. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4451. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4452. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4453. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4454. { .offset = DP_SET_POWER },
  4455. { .offset = DP_EDP_DPCD_REV },
  4456. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4457. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4458. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4459. };
  4460. static int i915_dpcd_show(struct seq_file *m, void *data)
  4461. {
  4462. struct drm_connector *connector = m->private;
  4463. struct intel_dp *intel_dp =
  4464. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4465. uint8_t buf[16];
  4466. ssize_t err;
  4467. int i;
  4468. if (connector->status != connector_status_connected)
  4469. return -ENODEV;
  4470. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4471. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4472. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4473. if (b->edp &&
  4474. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4475. continue;
  4476. /* low tech for now */
  4477. if (WARN_ON(size > sizeof(buf)))
  4478. continue;
  4479. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4480. if (err <= 0) {
  4481. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4482. size, b->offset, err);
  4483. continue;
  4484. }
  4485. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4486. }
  4487. return 0;
  4488. }
  4489. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4490. {
  4491. return single_open(file, i915_dpcd_show, inode->i_private);
  4492. }
  4493. static const struct file_operations i915_dpcd_fops = {
  4494. .owner = THIS_MODULE,
  4495. .open = i915_dpcd_open,
  4496. .read = seq_read,
  4497. .llseek = seq_lseek,
  4498. .release = single_release,
  4499. };
  4500. static int i915_panel_show(struct seq_file *m, void *data)
  4501. {
  4502. struct drm_connector *connector = m->private;
  4503. struct intel_dp *intel_dp =
  4504. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4505. if (connector->status != connector_status_connected)
  4506. return -ENODEV;
  4507. seq_printf(m, "Panel power up delay: %d\n",
  4508. intel_dp->panel_power_up_delay);
  4509. seq_printf(m, "Panel power down delay: %d\n",
  4510. intel_dp->panel_power_down_delay);
  4511. seq_printf(m, "Backlight on delay: %d\n",
  4512. intel_dp->backlight_on_delay);
  4513. seq_printf(m, "Backlight off delay: %d\n",
  4514. intel_dp->backlight_off_delay);
  4515. return 0;
  4516. }
  4517. static int i915_panel_open(struct inode *inode, struct file *file)
  4518. {
  4519. return single_open(file, i915_panel_show, inode->i_private);
  4520. }
  4521. static const struct file_operations i915_panel_fops = {
  4522. .owner = THIS_MODULE,
  4523. .open = i915_panel_open,
  4524. .read = seq_read,
  4525. .llseek = seq_lseek,
  4526. .release = single_release,
  4527. };
  4528. /**
  4529. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4530. * @connector: pointer to a registered drm_connector
  4531. *
  4532. * Cleanup will be done by drm_connector_unregister() through a call to
  4533. * drm_debugfs_connector_remove().
  4534. *
  4535. * Returns 0 on success, negative error codes on error.
  4536. */
  4537. int i915_debugfs_connector_add(struct drm_connector *connector)
  4538. {
  4539. struct dentry *root = connector->debugfs_entry;
  4540. /* The connector must have been registered beforehands. */
  4541. if (!root)
  4542. return -ENODEV;
  4543. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4544. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4545. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4546. connector, &i915_dpcd_fops);
  4547. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4548. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4549. connector, &i915_panel_fops);
  4550. return 0;
  4551. }