core.c 210 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/kasan.h>
  29. #include <linux/mm.h>
  30. #include <linux/module.h>
  31. #include <linux/nmi.h>
  32. #include <linux/init.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/highmem.h>
  35. #include <linux/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/context_tracking.h>
  74. #include <linux/compiler.h>
  75. #include <linux/frame.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. /*
  113. * Number of tasks to iterate in a single balance run.
  114. * Limited because this is done with IRQs disabled.
  115. */
  116. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  117. /*
  118. * period over which we average the RT time consumption, measured
  119. * in ms.
  120. *
  121. * default: 1s
  122. */
  123. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  124. /*
  125. * period over which we measure -rt task cpu usage in us.
  126. * default: 1s
  127. */
  128. unsigned int sysctl_sched_rt_period = 1000000;
  129. __read_mostly int scheduler_running;
  130. /*
  131. * part of the period that we allow rt tasks to run in us.
  132. * default: 0.95s
  133. */
  134. int sysctl_sched_rt_runtime = 950000;
  135. /* cpus with isolated domains */
  136. cpumask_var_t cpu_isolated_map;
  137. /*
  138. * this_rq_lock - lock this runqueue and disable interrupts.
  139. */
  140. static struct rq *this_rq_lock(void)
  141. __acquires(rq->lock)
  142. {
  143. struct rq *rq;
  144. local_irq_disable();
  145. rq = this_rq();
  146. raw_spin_lock(&rq->lock);
  147. return rq;
  148. }
  149. /*
  150. * __task_rq_lock - lock the rq @p resides on.
  151. */
  152. struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  153. __acquires(rq->lock)
  154. {
  155. struct rq *rq;
  156. lockdep_assert_held(&p->pi_lock);
  157. for (;;) {
  158. rq = task_rq(p);
  159. raw_spin_lock(&rq->lock);
  160. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  161. rf->cookie = lockdep_pin_lock(&rq->lock);
  162. return rq;
  163. }
  164. raw_spin_unlock(&rq->lock);
  165. while (unlikely(task_on_rq_migrating(p)))
  166. cpu_relax();
  167. }
  168. }
  169. /*
  170. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  171. */
  172. struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  173. __acquires(p->pi_lock)
  174. __acquires(rq->lock)
  175. {
  176. struct rq *rq;
  177. for (;;) {
  178. raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  179. rq = task_rq(p);
  180. raw_spin_lock(&rq->lock);
  181. /*
  182. * move_queued_task() task_rq_lock()
  183. *
  184. * ACQUIRE (rq->lock)
  185. * [S] ->on_rq = MIGRATING [L] rq = task_rq()
  186. * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
  187. * [S] ->cpu = new_cpu [L] task_rq()
  188. * [L] ->on_rq
  189. * RELEASE (rq->lock)
  190. *
  191. * If we observe the old cpu in task_rq_lock, the acquire of
  192. * the old rq->lock will fully serialize against the stores.
  193. *
  194. * If we observe the new cpu in task_rq_lock, the acquire will
  195. * pair with the WMB to ensure we must then also see migrating.
  196. */
  197. if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  198. rf->cookie = lockdep_pin_lock(&rq->lock);
  199. return rq;
  200. }
  201. raw_spin_unlock(&rq->lock);
  202. raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  203. while (unlikely(task_on_rq_migrating(p)))
  204. cpu_relax();
  205. }
  206. }
  207. #ifdef CONFIG_SCHED_HRTICK
  208. /*
  209. * Use HR-timers to deliver accurate preemption points.
  210. */
  211. static void hrtick_clear(struct rq *rq)
  212. {
  213. if (hrtimer_active(&rq->hrtick_timer))
  214. hrtimer_cancel(&rq->hrtick_timer);
  215. }
  216. /*
  217. * High-resolution timer tick.
  218. * Runs from hardirq context with interrupts disabled.
  219. */
  220. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  221. {
  222. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  223. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  224. raw_spin_lock(&rq->lock);
  225. update_rq_clock(rq);
  226. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  227. raw_spin_unlock(&rq->lock);
  228. return HRTIMER_NORESTART;
  229. }
  230. #ifdef CONFIG_SMP
  231. static void __hrtick_restart(struct rq *rq)
  232. {
  233. struct hrtimer *timer = &rq->hrtick_timer;
  234. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  235. }
  236. /*
  237. * called from hardirq (IPI) context
  238. */
  239. static void __hrtick_start(void *arg)
  240. {
  241. struct rq *rq = arg;
  242. raw_spin_lock(&rq->lock);
  243. __hrtick_restart(rq);
  244. rq->hrtick_csd_pending = 0;
  245. raw_spin_unlock(&rq->lock);
  246. }
  247. /*
  248. * Called to set the hrtick timer state.
  249. *
  250. * called with rq->lock held and irqs disabled
  251. */
  252. void hrtick_start(struct rq *rq, u64 delay)
  253. {
  254. struct hrtimer *timer = &rq->hrtick_timer;
  255. ktime_t time;
  256. s64 delta;
  257. /*
  258. * Don't schedule slices shorter than 10000ns, that just
  259. * doesn't make sense and can cause timer DoS.
  260. */
  261. delta = max_t(s64, delay, 10000LL);
  262. time = ktime_add_ns(timer->base->get_time(), delta);
  263. hrtimer_set_expires(timer, time);
  264. if (rq == this_rq()) {
  265. __hrtick_restart(rq);
  266. } else if (!rq->hrtick_csd_pending) {
  267. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  268. rq->hrtick_csd_pending = 1;
  269. }
  270. }
  271. #else
  272. /*
  273. * Called to set the hrtick timer state.
  274. *
  275. * called with rq->lock held and irqs disabled
  276. */
  277. void hrtick_start(struct rq *rq, u64 delay)
  278. {
  279. /*
  280. * Don't schedule slices shorter than 10000ns, that just
  281. * doesn't make sense. Rely on vruntime for fairness.
  282. */
  283. delay = max_t(u64, delay, 10000LL);
  284. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  285. HRTIMER_MODE_REL_PINNED);
  286. }
  287. #endif /* CONFIG_SMP */
  288. static void init_rq_hrtick(struct rq *rq)
  289. {
  290. #ifdef CONFIG_SMP
  291. rq->hrtick_csd_pending = 0;
  292. rq->hrtick_csd.flags = 0;
  293. rq->hrtick_csd.func = __hrtick_start;
  294. rq->hrtick_csd.info = rq;
  295. #endif
  296. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  297. rq->hrtick_timer.function = hrtick;
  298. }
  299. #else /* CONFIG_SCHED_HRTICK */
  300. static inline void hrtick_clear(struct rq *rq)
  301. {
  302. }
  303. static inline void init_rq_hrtick(struct rq *rq)
  304. {
  305. }
  306. #endif /* CONFIG_SCHED_HRTICK */
  307. /*
  308. * cmpxchg based fetch_or, macro so it works for different integer types
  309. */
  310. #define fetch_or(ptr, mask) \
  311. ({ \
  312. typeof(ptr) _ptr = (ptr); \
  313. typeof(mask) _mask = (mask); \
  314. typeof(*_ptr) _old, _val = *_ptr; \
  315. \
  316. for (;;) { \
  317. _old = cmpxchg(_ptr, _val, _val | _mask); \
  318. if (_old == _val) \
  319. break; \
  320. _val = _old; \
  321. } \
  322. _old; \
  323. })
  324. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  325. /*
  326. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  327. * this avoids any races wrt polling state changes and thereby avoids
  328. * spurious IPIs.
  329. */
  330. static bool set_nr_and_not_polling(struct task_struct *p)
  331. {
  332. struct thread_info *ti = task_thread_info(p);
  333. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  334. }
  335. /*
  336. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  337. *
  338. * If this returns true, then the idle task promises to call
  339. * sched_ttwu_pending() and reschedule soon.
  340. */
  341. static bool set_nr_if_polling(struct task_struct *p)
  342. {
  343. struct thread_info *ti = task_thread_info(p);
  344. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  345. for (;;) {
  346. if (!(val & _TIF_POLLING_NRFLAG))
  347. return false;
  348. if (val & _TIF_NEED_RESCHED)
  349. return true;
  350. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  351. if (old == val)
  352. break;
  353. val = old;
  354. }
  355. return true;
  356. }
  357. #else
  358. static bool set_nr_and_not_polling(struct task_struct *p)
  359. {
  360. set_tsk_need_resched(p);
  361. return true;
  362. }
  363. #ifdef CONFIG_SMP
  364. static bool set_nr_if_polling(struct task_struct *p)
  365. {
  366. return false;
  367. }
  368. #endif
  369. #endif
  370. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  371. {
  372. struct wake_q_node *node = &task->wake_q;
  373. /*
  374. * Atomically grab the task, if ->wake_q is !nil already it means
  375. * its already queued (either by us or someone else) and will get the
  376. * wakeup due to that.
  377. *
  378. * This cmpxchg() implies a full barrier, which pairs with the write
  379. * barrier implied by the wakeup in wake_up_q().
  380. */
  381. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  382. return;
  383. get_task_struct(task);
  384. /*
  385. * The head is context local, there can be no concurrency.
  386. */
  387. *head->lastp = node;
  388. head->lastp = &node->next;
  389. }
  390. void wake_up_q(struct wake_q_head *head)
  391. {
  392. struct wake_q_node *node = head->first;
  393. while (node != WAKE_Q_TAIL) {
  394. struct task_struct *task;
  395. task = container_of(node, struct task_struct, wake_q);
  396. BUG_ON(!task);
  397. /* task can safely be re-inserted now */
  398. node = node->next;
  399. task->wake_q.next = NULL;
  400. /*
  401. * wake_up_process() implies a wmb() to pair with the queueing
  402. * in wake_q_add() so as not to miss wakeups.
  403. */
  404. wake_up_process(task);
  405. put_task_struct(task);
  406. }
  407. }
  408. /*
  409. * resched_curr - mark rq's current task 'to be rescheduled now'.
  410. *
  411. * On UP this means the setting of the need_resched flag, on SMP it
  412. * might also involve a cross-CPU call to trigger the scheduler on
  413. * the target CPU.
  414. */
  415. void resched_curr(struct rq *rq)
  416. {
  417. struct task_struct *curr = rq->curr;
  418. int cpu;
  419. lockdep_assert_held(&rq->lock);
  420. if (test_tsk_need_resched(curr))
  421. return;
  422. cpu = cpu_of(rq);
  423. if (cpu == smp_processor_id()) {
  424. set_tsk_need_resched(curr);
  425. set_preempt_need_resched();
  426. return;
  427. }
  428. if (set_nr_and_not_polling(curr))
  429. smp_send_reschedule(cpu);
  430. else
  431. trace_sched_wake_idle_without_ipi(cpu);
  432. }
  433. void resched_cpu(int cpu)
  434. {
  435. struct rq *rq = cpu_rq(cpu);
  436. unsigned long flags;
  437. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  438. return;
  439. resched_curr(rq);
  440. raw_spin_unlock_irqrestore(&rq->lock, flags);
  441. }
  442. #ifdef CONFIG_SMP
  443. #ifdef CONFIG_NO_HZ_COMMON
  444. /*
  445. * In the semi idle case, use the nearest busy cpu for migrating timers
  446. * from an idle cpu. This is good for power-savings.
  447. *
  448. * We don't do similar optimization for completely idle system, as
  449. * selecting an idle cpu will add more delays to the timers than intended
  450. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  451. */
  452. int get_nohz_timer_target(void)
  453. {
  454. int i, cpu = smp_processor_id();
  455. struct sched_domain *sd;
  456. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  457. return cpu;
  458. rcu_read_lock();
  459. for_each_domain(cpu, sd) {
  460. for_each_cpu(i, sched_domain_span(sd)) {
  461. if (cpu == i)
  462. continue;
  463. if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
  464. cpu = i;
  465. goto unlock;
  466. }
  467. }
  468. }
  469. if (!is_housekeeping_cpu(cpu))
  470. cpu = housekeeping_any_cpu();
  471. unlock:
  472. rcu_read_unlock();
  473. return cpu;
  474. }
  475. /*
  476. * When add_timer_on() enqueues a timer into the timer wheel of an
  477. * idle CPU then this timer might expire before the next timer event
  478. * which is scheduled to wake up that CPU. In case of a completely
  479. * idle system the next event might even be infinite time into the
  480. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  481. * leaves the inner idle loop so the newly added timer is taken into
  482. * account when the CPU goes back to idle and evaluates the timer
  483. * wheel for the next timer event.
  484. */
  485. static void wake_up_idle_cpu(int cpu)
  486. {
  487. struct rq *rq = cpu_rq(cpu);
  488. if (cpu == smp_processor_id())
  489. return;
  490. if (set_nr_and_not_polling(rq->idle))
  491. smp_send_reschedule(cpu);
  492. else
  493. trace_sched_wake_idle_without_ipi(cpu);
  494. }
  495. static bool wake_up_full_nohz_cpu(int cpu)
  496. {
  497. /*
  498. * We just need the target to call irq_exit() and re-evaluate
  499. * the next tick. The nohz full kick at least implies that.
  500. * If needed we can still optimize that later with an
  501. * empty IRQ.
  502. */
  503. if (tick_nohz_full_cpu(cpu)) {
  504. if (cpu != smp_processor_id() ||
  505. tick_nohz_tick_stopped())
  506. tick_nohz_full_kick_cpu(cpu);
  507. return true;
  508. }
  509. return false;
  510. }
  511. void wake_up_nohz_cpu(int cpu)
  512. {
  513. if (!wake_up_full_nohz_cpu(cpu))
  514. wake_up_idle_cpu(cpu);
  515. }
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. int cpu = smp_processor_id();
  519. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  520. return false;
  521. if (idle_cpu(cpu) && !need_resched())
  522. return true;
  523. /*
  524. * We can't run Idle Load Balance on this CPU for this time so we
  525. * cancel it and clear NOHZ_BALANCE_KICK
  526. */
  527. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  528. return false;
  529. }
  530. #else /* CONFIG_NO_HZ_COMMON */
  531. static inline bool got_nohz_idle_kick(void)
  532. {
  533. return false;
  534. }
  535. #endif /* CONFIG_NO_HZ_COMMON */
  536. #ifdef CONFIG_NO_HZ_FULL
  537. bool sched_can_stop_tick(struct rq *rq)
  538. {
  539. int fifo_nr_running;
  540. /* Deadline tasks, even if single, need the tick */
  541. if (rq->dl.dl_nr_running)
  542. return false;
  543. /*
  544. * If there are more than one RR tasks, we need the tick to effect the
  545. * actual RR behaviour.
  546. */
  547. if (rq->rt.rr_nr_running) {
  548. if (rq->rt.rr_nr_running == 1)
  549. return true;
  550. else
  551. return false;
  552. }
  553. /*
  554. * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
  555. * forced preemption between FIFO tasks.
  556. */
  557. fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
  558. if (fifo_nr_running)
  559. return true;
  560. /*
  561. * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
  562. * if there's more than one we need the tick for involuntary
  563. * preemption.
  564. */
  565. if (rq->nr_running > 1)
  566. return false;
  567. return true;
  568. }
  569. #endif /* CONFIG_NO_HZ_FULL */
  570. void sched_avg_update(struct rq *rq)
  571. {
  572. s64 period = sched_avg_period();
  573. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  574. /*
  575. * Inline assembly required to prevent the compiler
  576. * optimising this loop into a divmod call.
  577. * See __iter_div_u64_rem() for another example of this.
  578. */
  579. asm("" : "+rm" (rq->age_stamp));
  580. rq->age_stamp += period;
  581. rq->rt_avg /= 2;
  582. }
  583. }
  584. #endif /* CONFIG_SMP */
  585. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  586. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  587. /*
  588. * Iterate task_group tree rooted at *from, calling @down when first entering a
  589. * node and @up when leaving it for the final time.
  590. *
  591. * Caller must hold rcu_lock or sufficient equivalent.
  592. */
  593. int walk_tg_tree_from(struct task_group *from,
  594. tg_visitor down, tg_visitor up, void *data)
  595. {
  596. struct task_group *parent, *child;
  597. int ret;
  598. parent = from;
  599. down:
  600. ret = (*down)(parent, data);
  601. if (ret)
  602. goto out;
  603. list_for_each_entry_rcu(child, &parent->children, siblings) {
  604. parent = child;
  605. goto down;
  606. up:
  607. continue;
  608. }
  609. ret = (*up)(parent, data);
  610. if (ret || parent == from)
  611. goto out;
  612. child = parent;
  613. parent = parent->parent;
  614. if (parent)
  615. goto up;
  616. out:
  617. return ret;
  618. }
  619. int tg_nop(struct task_group *tg, void *data)
  620. {
  621. return 0;
  622. }
  623. #endif
  624. static void set_load_weight(struct task_struct *p)
  625. {
  626. int prio = p->static_prio - MAX_RT_PRIO;
  627. struct load_weight *load = &p->se.load;
  628. /*
  629. * SCHED_IDLE tasks get minimal weight:
  630. */
  631. if (idle_policy(p->policy)) {
  632. load->weight = scale_load(WEIGHT_IDLEPRIO);
  633. load->inv_weight = WMULT_IDLEPRIO;
  634. return;
  635. }
  636. load->weight = scale_load(sched_prio_to_weight[prio]);
  637. load->inv_weight = sched_prio_to_wmult[prio];
  638. }
  639. static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  640. {
  641. update_rq_clock(rq);
  642. if (!(flags & ENQUEUE_RESTORE))
  643. sched_info_queued(rq, p);
  644. p->sched_class->enqueue_task(rq, p, flags);
  645. }
  646. static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  647. {
  648. update_rq_clock(rq);
  649. if (!(flags & DEQUEUE_SAVE))
  650. sched_info_dequeued(rq, p);
  651. p->sched_class->dequeue_task(rq, p, flags);
  652. }
  653. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible--;
  657. enqueue_task(rq, p, flags);
  658. }
  659. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  660. {
  661. if (task_contributes_to_load(p))
  662. rq->nr_uninterruptible++;
  663. dequeue_task(rq, p, flags);
  664. }
  665. static void update_rq_clock_task(struct rq *rq, s64 delta)
  666. {
  667. /*
  668. * In theory, the compile should just see 0 here, and optimize out the call
  669. * to sched_rt_avg_update. But I don't trust it...
  670. */
  671. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  672. s64 steal = 0, irq_delta = 0;
  673. #endif
  674. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  675. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  676. /*
  677. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  678. * this case when a previous update_rq_clock() happened inside a
  679. * {soft,}irq region.
  680. *
  681. * When this happens, we stop ->clock_task and only update the
  682. * prev_irq_time stamp to account for the part that fit, so that a next
  683. * update will consume the rest. This ensures ->clock_task is
  684. * monotonic.
  685. *
  686. * It does however cause some slight miss-attribution of {soft,}irq
  687. * time, a more accurate solution would be to update the irq_time using
  688. * the current rq->clock timestamp, except that would require using
  689. * atomic ops.
  690. */
  691. if (irq_delta > delta)
  692. irq_delta = delta;
  693. rq->prev_irq_time += irq_delta;
  694. delta -= irq_delta;
  695. #endif
  696. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  697. if (static_key_false((&paravirt_steal_rq_enabled))) {
  698. steal = paravirt_steal_clock(cpu_of(rq));
  699. steal -= rq->prev_steal_time_rq;
  700. if (unlikely(steal > delta))
  701. steal = delta;
  702. rq->prev_steal_time_rq += steal;
  703. delta -= steal;
  704. }
  705. #endif
  706. rq->clock_task += delta;
  707. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  708. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  709. sched_rt_avg_update(rq, irq_delta + steal);
  710. #endif
  711. }
  712. void sched_set_stop_task(int cpu, struct task_struct *stop)
  713. {
  714. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  715. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  716. if (stop) {
  717. /*
  718. * Make it appear like a SCHED_FIFO task, its something
  719. * userspace knows about and won't get confused about.
  720. *
  721. * Also, it will make PI more or less work without too
  722. * much confusion -- but then, stop work should not
  723. * rely on PI working anyway.
  724. */
  725. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  726. stop->sched_class = &stop_sched_class;
  727. }
  728. cpu_rq(cpu)->stop = stop;
  729. if (old_stop) {
  730. /*
  731. * Reset it back to a normal scheduling class so that
  732. * it can die in pieces.
  733. */
  734. old_stop->sched_class = &rt_sched_class;
  735. }
  736. }
  737. /*
  738. * __normal_prio - return the priority that is based on the static prio
  739. */
  740. static inline int __normal_prio(struct task_struct *p)
  741. {
  742. return p->static_prio;
  743. }
  744. /*
  745. * Calculate the expected normal priority: i.e. priority
  746. * without taking RT-inheritance into account. Might be
  747. * boosted by interactivity modifiers. Changes upon fork,
  748. * setprio syscalls, and whenever the interactivity
  749. * estimator recalculates.
  750. */
  751. static inline int normal_prio(struct task_struct *p)
  752. {
  753. int prio;
  754. if (task_has_dl_policy(p))
  755. prio = MAX_DL_PRIO-1;
  756. else if (task_has_rt_policy(p))
  757. prio = MAX_RT_PRIO-1 - p->rt_priority;
  758. else
  759. prio = __normal_prio(p);
  760. return prio;
  761. }
  762. /*
  763. * Calculate the current priority, i.e. the priority
  764. * taken into account by the scheduler. This value might
  765. * be boosted by RT tasks, or might be boosted by
  766. * interactivity modifiers. Will be RT if the task got
  767. * RT-boosted. If not then it returns p->normal_prio.
  768. */
  769. static int effective_prio(struct task_struct *p)
  770. {
  771. p->normal_prio = normal_prio(p);
  772. /*
  773. * If we are RT tasks or we were boosted to RT priority,
  774. * keep the priority unchanged. Otherwise, update priority
  775. * to the normal priority:
  776. */
  777. if (!rt_prio(p->prio))
  778. return p->normal_prio;
  779. return p->prio;
  780. }
  781. /**
  782. * task_curr - is this task currently executing on a CPU?
  783. * @p: the task in question.
  784. *
  785. * Return: 1 if the task is currently executing. 0 otherwise.
  786. */
  787. inline int task_curr(const struct task_struct *p)
  788. {
  789. return cpu_curr(task_cpu(p)) == p;
  790. }
  791. /*
  792. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  793. * use the balance_callback list if you want balancing.
  794. *
  795. * this means any call to check_class_changed() must be followed by a call to
  796. * balance_callback().
  797. */
  798. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  799. const struct sched_class *prev_class,
  800. int oldprio)
  801. {
  802. if (prev_class != p->sched_class) {
  803. if (prev_class->switched_from)
  804. prev_class->switched_from(rq, p);
  805. p->sched_class->switched_to(rq, p);
  806. } else if (oldprio != p->prio || dl_task(p))
  807. p->sched_class->prio_changed(rq, p, oldprio);
  808. }
  809. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  810. {
  811. const struct sched_class *class;
  812. if (p->sched_class == rq->curr->sched_class) {
  813. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  814. } else {
  815. for_each_class(class) {
  816. if (class == rq->curr->sched_class)
  817. break;
  818. if (class == p->sched_class) {
  819. resched_curr(rq);
  820. break;
  821. }
  822. }
  823. }
  824. /*
  825. * A queue event has occurred, and we're going to schedule. In
  826. * this case, we can save a useless back to back clock update.
  827. */
  828. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  829. rq_clock_skip_update(rq, true);
  830. }
  831. #ifdef CONFIG_SMP
  832. /*
  833. * This is how migration works:
  834. *
  835. * 1) we invoke migration_cpu_stop() on the target CPU using
  836. * stop_one_cpu().
  837. * 2) stopper starts to run (implicitly forcing the migrated thread
  838. * off the CPU)
  839. * 3) it checks whether the migrated task is still in the wrong runqueue.
  840. * 4) if it's in the wrong runqueue then the migration thread removes
  841. * it and puts it into the right queue.
  842. * 5) stopper completes and stop_one_cpu() returns and the migration
  843. * is done.
  844. */
  845. /*
  846. * move_queued_task - move a queued task to new rq.
  847. *
  848. * Returns (locked) new rq. Old rq's lock is released.
  849. */
  850. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  851. {
  852. lockdep_assert_held(&rq->lock);
  853. p->on_rq = TASK_ON_RQ_MIGRATING;
  854. dequeue_task(rq, p, 0);
  855. set_task_cpu(p, new_cpu);
  856. raw_spin_unlock(&rq->lock);
  857. rq = cpu_rq(new_cpu);
  858. raw_spin_lock(&rq->lock);
  859. BUG_ON(task_cpu(p) != new_cpu);
  860. enqueue_task(rq, p, 0);
  861. p->on_rq = TASK_ON_RQ_QUEUED;
  862. check_preempt_curr(rq, p, 0);
  863. return rq;
  864. }
  865. struct migration_arg {
  866. struct task_struct *task;
  867. int dest_cpu;
  868. };
  869. /*
  870. * Move (not current) task off this cpu, onto dest cpu. We're doing
  871. * this because either it can't run here any more (set_cpus_allowed()
  872. * away from this CPU, or CPU going down), or because we're
  873. * attempting to rebalance this task on exec (sched_exec).
  874. *
  875. * So we race with normal scheduler movements, but that's OK, as long
  876. * as the task is no longer on this CPU.
  877. */
  878. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  879. {
  880. if (unlikely(!cpu_active(dest_cpu)))
  881. return rq;
  882. /* Affinity changed (again). */
  883. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  884. return rq;
  885. rq = move_queued_task(rq, p, dest_cpu);
  886. return rq;
  887. }
  888. /*
  889. * migration_cpu_stop - this will be executed by a highprio stopper thread
  890. * and performs thread migration by bumping thread off CPU then
  891. * 'pushing' onto another runqueue.
  892. */
  893. static int migration_cpu_stop(void *data)
  894. {
  895. struct migration_arg *arg = data;
  896. struct task_struct *p = arg->task;
  897. struct rq *rq = this_rq();
  898. /*
  899. * The original target cpu might have gone down and we might
  900. * be on another cpu but it doesn't matter.
  901. */
  902. local_irq_disable();
  903. /*
  904. * We need to explicitly wake pending tasks before running
  905. * __migrate_task() such that we will not miss enforcing cpus_allowed
  906. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  907. */
  908. sched_ttwu_pending();
  909. raw_spin_lock(&p->pi_lock);
  910. raw_spin_lock(&rq->lock);
  911. /*
  912. * If task_rq(p) != rq, it cannot be migrated here, because we're
  913. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  914. * we're holding p->pi_lock.
  915. */
  916. if (task_rq(p) == rq && task_on_rq_queued(p))
  917. rq = __migrate_task(rq, p, arg->dest_cpu);
  918. raw_spin_unlock(&rq->lock);
  919. raw_spin_unlock(&p->pi_lock);
  920. local_irq_enable();
  921. return 0;
  922. }
  923. /*
  924. * sched_class::set_cpus_allowed must do the below, but is not required to
  925. * actually call this function.
  926. */
  927. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  928. {
  929. cpumask_copy(&p->cpus_allowed, new_mask);
  930. p->nr_cpus_allowed = cpumask_weight(new_mask);
  931. }
  932. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  933. {
  934. struct rq *rq = task_rq(p);
  935. bool queued, running;
  936. lockdep_assert_held(&p->pi_lock);
  937. queued = task_on_rq_queued(p);
  938. running = task_current(rq, p);
  939. if (queued) {
  940. /*
  941. * Because __kthread_bind() calls this on blocked tasks without
  942. * holding rq->lock.
  943. */
  944. lockdep_assert_held(&rq->lock);
  945. dequeue_task(rq, p, DEQUEUE_SAVE);
  946. }
  947. if (running)
  948. put_prev_task(rq, p);
  949. p->sched_class->set_cpus_allowed(p, new_mask);
  950. if (running)
  951. p->sched_class->set_curr_task(rq);
  952. if (queued)
  953. enqueue_task(rq, p, ENQUEUE_RESTORE);
  954. }
  955. /*
  956. * Change a given task's CPU affinity. Migrate the thread to a
  957. * proper CPU and schedule it away if the CPU it's executing on
  958. * is removed from the allowed bitmask.
  959. *
  960. * NOTE: the caller must have a valid reference to the task, the
  961. * task must not exit() & deallocate itself prematurely. The
  962. * call is not atomic; no spinlocks may be held.
  963. */
  964. static int __set_cpus_allowed_ptr(struct task_struct *p,
  965. const struct cpumask *new_mask, bool check)
  966. {
  967. const struct cpumask *cpu_valid_mask = cpu_active_mask;
  968. unsigned int dest_cpu;
  969. struct rq_flags rf;
  970. struct rq *rq;
  971. int ret = 0;
  972. rq = task_rq_lock(p, &rf);
  973. if (p->flags & PF_KTHREAD) {
  974. /*
  975. * Kernel threads are allowed on online && !active CPUs
  976. */
  977. cpu_valid_mask = cpu_online_mask;
  978. }
  979. /*
  980. * Must re-check here, to close a race against __kthread_bind(),
  981. * sched_setaffinity() is not guaranteed to observe the flag.
  982. */
  983. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  984. ret = -EINVAL;
  985. goto out;
  986. }
  987. if (cpumask_equal(&p->cpus_allowed, new_mask))
  988. goto out;
  989. if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
  990. ret = -EINVAL;
  991. goto out;
  992. }
  993. do_set_cpus_allowed(p, new_mask);
  994. if (p->flags & PF_KTHREAD) {
  995. /*
  996. * For kernel threads that do indeed end up on online &&
  997. * !active we want to ensure they are strict per-cpu threads.
  998. */
  999. WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
  1000. !cpumask_intersects(new_mask, cpu_active_mask) &&
  1001. p->nr_cpus_allowed != 1);
  1002. }
  1003. /* Can the task run on the task's current CPU? If so, we're done */
  1004. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1005. goto out;
  1006. dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
  1007. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1008. struct migration_arg arg = { p, dest_cpu };
  1009. /* Need help from migration thread: drop lock and wait. */
  1010. task_rq_unlock(rq, p, &rf);
  1011. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1012. tlb_migrate_finish(p->mm);
  1013. return 0;
  1014. } else if (task_on_rq_queued(p)) {
  1015. /*
  1016. * OK, since we're going to drop the lock immediately
  1017. * afterwards anyway.
  1018. */
  1019. lockdep_unpin_lock(&rq->lock, rf.cookie);
  1020. rq = move_queued_task(rq, p, dest_cpu);
  1021. lockdep_repin_lock(&rq->lock, rf.cookie);
  1022. }
  1023. out:
  1024. task_rq_unlock(rq, p, &rf);
  1025. return ret;
  1026. }
  1027. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  1028. {
  1029. return __set_cpus_allowed_ptr(p, new_mask, false);
  1030. }
  1031. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1032. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1033. {
  1034. #ifdef CONFIG_SCHED_DEBUG
  1035. /*
  1036. * We should never call set_task_cpu() on a blocked task,
  1037. * ttwu() will sort out the placement.
  1038. */
  1039. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1040. !p->on_rq);
  1041. /*
  1042. * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
  1043. * because schedstat_wait_{start,end} rebase migrating task's wait_start
  1044. * time relying on p->on_rq.
  1045. */
  1046. WARN_ON_ONCE(p->state == TASK_RUNNING &&
  1047. p->sched_class == &fair_sched_class &&
  1048. (p->on_rq && !task_on_rq_migrating(p)));
  1049. #ifdef CONFIG_LOCKDEP
  1050. /*
  1051. * The caller should hold either p->pi_lock or rq->lock, when changing
  1052. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1053. *
  1054. * sched_move_task() holds both and thus holding either pins the cgroup,
  1055. * see task_group().
  1056. *
  1057. * Furthermore, all task_rq users should acquire both locks, see
  1058. * task_rq_lock().
  1059. */
  1060. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1061. lockdep_is_held(&task_rq(p)->lock)));
  1062. #endif
  1063. #endif
  1064. trace_sched_migrate_task(p, new_cpu);
  1065. if (task_cpu(p) != new_cpu) {
  1066. if (p->sched_class->migrate_task_rq)
  1067. p->sched_class->migrate_task_rq(p);
  1068. p->se.nr_migrations++;
  1069. perf_event_task_migrate(p);
  1070. }
  1071. __set_task_cpu(p, new_cpu);
  1072. }
  1073. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1074. {
  1075. if (task_on_rq_queued(p)) {
  1076. struct rq *src_rq, *dst_rq;
  1077. src_rq = task_rq(p);
  1078. dst_rq = cpu_rq(cpu);
  1079. p->on_rq = TASK_ON_RQ_MIGRATING;
  1080. deactivate_task(src_rq, p, 0);
  1081. set_task_cpu(p, cpu);
  1082. activate_task(dst_rq, p, 0);
  1083. p->on_rq = TASK_ON_RQ_QUEUED;
  1084. check_preempt_curr(dst_rq, p, 0);
  1085. } else {
  1086. /*
  1087. * Task isn't running anymore; make it appear like we migrated
  1088. * it before it went to sleep. This means on wakeup we make the
  1089. * previous cpu our targer instead of where it really is.
  1090. */
  1091. p->wake_cpu = cpu;
  1092. }
  1093. }
  1094. struct migration_swap_arg {
  1095. struct task_struct *src_task, *dst_task;
  1096. int src_cpu, dst_cpu;
  1097. };
  1098. static int migrate_swap_stop(void *data)
  1099. {
  1100. struct migration_swap_arg *arg = data;
  1101. struct rq *src_rq, *dst_rq;
  1102. int ret = -EAGAIN;
  1103. if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
  1104. return -EAGAIN;
  1105. src_rq = cpu_rq(arg->src_cpu);
  1106. dst_rq = cpu_rq(arg->dst_cpu);
  1107. double_raw_lock(&arg->src_task->pi_lock,
  1108. &arg->dst_task->pi_lock);
  1109. double_rq_lock(src_rq, dst_rq);
  1110. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1111. goto unlock;
  1112. if (task_cpu(arg->src_task) != arg->src_cpu)
  1113. goto unlock;
  1114. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1115. goto unlock;
  1116. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1117. goto unlock;
  1118. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1119. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1120. ret = 0;
  1121. unlock:
  1122. double_rq_unlock(src_rq, dst_rq);
  1123. raw_spin_unlock(&arg->dst_task->pi_lock);
  1124. raw_spin_unlock(&arg->src_task->pi_lock);
  1125. return ret;
  1126. }
  1127. /*
  1128. * Cross migrate two tasks
  1129. */
  1130. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1131. {
  1132. struct migration_swap_arg arg;
  1133. int ret = -EINVAL;
  1134. arg = (struct migration_swap_arg){
  1135. .src_task = cur,
  1136. .src_cpu = task_cpu(cur),
  1137. .dst_task = p,
  1138. .dst_cpu = task_cpu(p),
  1139. };
  1140. if (arg.src_cpu == arg.dst_cpu)
  1141. goto out;
  1142. /*
  1143. * These three tests are all lockless; this is OK since all of them
  1144. * will be re-checked with proper locks held further down the line.
  1145. */
  1146. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1147. goto out;
  1148. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1149. goto out;
  1150. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1151. goto out;
  1152. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1153. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1154. out:
  1155. return ret;
  1156. }
  1157. /*
  1158. * wait_task_inactive - wait for a thread to unschedule.
  1159. *
  1160. * If @match_state is nonzero, it's the @p->state value just checked and
  1161. * not expected to change. If it changes, i.e. @p might have woken up,
  1162. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1163. * we return a positive number (its total switch count). If a second call
  1164. * a short while later returns the same number, the caller can be sure that
  1165. * @p has remained unscheduled the whole time.
  1166. *
  1167. * The caller must ensure that the task *will* unschedule sometime soon,
  1168. * else this function might spin for a *long* time. This function can't
  1169. * be called with interrupts off, or it may introduce deadlock with
  1170. * smp_call_function() if an IPI is sent by the same process we are
  1171. * waiting to become inactive.
  1172. */
  1173. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1174. {
  1175. int running, queued;
  1176. struct rq_flags rf;
  1177. unsigned long ncsw;
  1178. struct rq *rq;
  1179. for (;;) {
  1180. /*
  1181. * We do the initial early heuristics without holding
  1182. * any task-queue locks at all. We'll only try to get
  1183. * the runqueue lock when things look like they will
  1184. * work out!
  1185. */
  1186. rq = task_rq(p);
  1187. /*
  1188. * If the task is actively running on another CPU
  1189. * still, just relax and busy-wait without holding
  1190. * any locks.
  1191. *
  1192. * NOTE! Since we don't hold any locks, it's not
  1193. * even sure that "rq" stays as the right runqueue!
  1194. * But we don't care, since "task_running()" will
  1195. * return false if the runqueue has changed and p
  1196. * is actually now running somewhere else!
  1197. */
  1198. while (task_running(rq, p)) {
  1199. if (match_state && unlikely(p->state != match_state))
  1200. return 0;
  1201. cpu_relax();
  1202. }
  1203. /*
  1204. * Ok, time to look more closely! We need the rq
  1205. * lock now, to be *sure*. If we're wrong, we'll
  1206. * just go back and repeat.
  1207. */
  1208. rq = task_rq_lock(p, &rf);
  1209. trace_sched_wait_task(p);
  1210. running = task_running(rq, p);
  1211. queued = task_on_rq_queued(p);
  1212. ncsw = 0;
  1213. if (!match_state || p->state == match_state)
  1214. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1215. task_rq_unlock(rq, p, &rf);
  1216. /*
  1217. * If it changed from the expected state, bail out now.
  1218. */
  1219. if (unlikely(!ncsw))
  1220. break;
  1221. /*
  1222. * Was it really running after all now that we
  1223. * checked with the proper locks actually held?
  1224. *
  1225. * Oops. Go back and try again..
  1226. */
  1227. if (unlikely(running)) {
  1228. cpu_relax();
  1229. continue;
  1230. }
  1231. /*
  1232. * It's not enough that it's not actively running,
  1233. * it must be off the runqueue _entirely_, and not
  1234. * preempted!
  1235. *
  1236. * So if it was still runnable (but just not actively
  1237. * running right now), it's preempted, and we should
  1238. * yield - it could be a while.
  1239. */
  1240. if (unlikely(queued)) {
  1241. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1242. set_current_state(TASK_UNINTERRUPTIBLE);
  1243. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1244. continue;
  1245. }
  1246. /*
  1247. * Ahh, all good. It wasn't running, and it wasn't
  1248. * runnable, which means that it will never become
  1249. * running in the future either. We're all done!
  1250. */
  1251. break;
  1252. }
  1253. return ncsw;
  1254. }
  1255. /***
  1256. * kick_process - kick a running thread to enter/exit the kernel
  1257. * @p: the to-be-kicked thread
  1258. *
  1259. * Cause a process which is running on another CPU to enter
  1260. * kernel-mode, without any delay. (to get signals handled.)
  1261. *
  1262. * NOTE: this function doesn't have to take the runqueue lock,
  1263. * because all it wants to ensure is that the remote task enters
  1264. * the kernel. If the IPI races and the task has been migrated
  1265. * to another CPU then no harm is done and the purpose has been
  1266. * achieved as well.
  1267. */
  1268. void kick_process(struct task_struct *p)
  1269. {
  1270. int cpu;
  1271. preempt_disable();
  1272. cpu = task_cpu(p);
  1273. if ((cpu != smp_processor_id()) && task_curr(p))
  1274. smp_send_reschedule(cpu);
  1275. preempt_enable();
  1276. }
  1277. EXPORT_SYMBOL_GPL(kick_process);
  1278. /*
  1279. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1280. *
  1281. * A few notes on cpu_active vs cpu_online:
  1282. *
  1283. * - cpu_active must be a subset of cpu_online
  1284. *
  1285. * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
  1286. * see __set_cpus_allowed_ptr(). At this point the newly online
  1287. * cpu isn't yet part of the sched domains, and balancing will not
  1288. * see it.
  1289. *
  1290. * - on cpu-down we clear cpu_active() to mask the sched domains and
  1291. * avoid the load balancer to place new tasks on the to be removed
  1292. * cpu. Existing tasks will remain running there and will be taken
  1293. * off.
  1294. *
  1295. * This means that fallback selection must not select !active CPUs.
  1296. * And can assume that any active CPU must be online. Conversely
  1297. * select_task_rq() below may allow selection of !active CPUs in order
  1298. * to satisfy the above rules.
  1299. */
  1300. static int select_fallback_rq(int cpu, struct task_struct *p)
  1301. {
  1302. int nid = cpu_to_node(cpu);
  1303. const struct cpumask *nodemask = NULL;
  1304. enum { cpuset, possible, fail } state = cpuset;
  1305. int dest_cpu;
  1306. /*
  1307. * If the node that the cpu is on has been offlined, cpu_to_node()
  1308. * will return -1. There is no cpu on the node, and we should
  1309. * select the cpu on the other node.
  1310. */
  1311. if (nid != -1) {
  1312. nodemask = cpumask_of_node(nid);
  1313. /* Look for allowed, online CPU in same node. */
  1314. for_each_cpu(dest_cpu, nodemask) {
  1315. if (!cpu_active(dest_cpu))
  1316. continue;
  1317. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1318. return dest_cpu;
  1319. }
  1320. }
  1321. for (;;) {
  1322. /* Any allowed, online CPU? */
  1323. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1324. if (!cpu_active(dest_cpu))
  1325. continue;
  1326. goto out;
  1327. }
  1328. /* No more Mr. Nice Guy. */
  1329. switch (state) {
  1330. case cpuset:
  1331. if (IS_ENABLED(CONFIG_CPUSETS)) {
  1332. cpuset_cpus_allowed_fallback(p);
  1333. state = possible;
  1334. break;
  1335. }
  1336. /* fall-through */
  1337. case possible:
  1338. do_set_cpus_allowed(p, cpu_possible_mask);
  1339. state = fail;
  1340. break;
  1341. case fail:
  1342. BUG();
  1343. break;
  1344. }
  1345. }
  1346. out:
  1347. if (state != cpuset) {
  1348. /*
  1349. * Don't tell them about moving exiting tasks or
  1350. * kernel threads (both mm NULL), since they never
  1351. * leave kernel.
  1352. */
  1353. if (p->mm && printk_ratelimit()) {
  1354. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1355. task_pid_nr(p), p->comm, cpu);
  1356. }
  1357. }
  1358. return dest_cpu;
  1359. }
  1360. /*
  1361. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1362. */
  1363. static inline
  1364. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1365. {
  1366. lockdep_assert_held(&p->pi_lock);
  1367. if (tsk_nr_cpus_allowed(p) > 1)
  1368. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1369. else
  1370. cpu = cpumask_any(tsk_cpus_allowed(p));
  1371. /*
  1372. * In order not to call set_task_cpu() on a blocking task we need
  1373. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1374. * cpu.
  1375. *
  1376. * Since this is common to all placement strategies, this lives here.
  1377. *
  1378. * [ this allows ->select_task() to simply return task_cpu(p) and
  1379. * not worry about this generic constraint ]
  1380. */
  1381. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1382. !cpu_online(cpu)))
  1383. cpu = select_fallback_rq(task_cpu(p), p);
  1384. return cpu;
  1385. }
  1386. static void update_avg(u64 *avg, u64 sample)
  1387. {
  1388. s64 diff = sample - *avg;
  1389. *avg += diff >> 3;
  1390. }
  1391. #else
  1392. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1393. const struct cpumask *new_mask, bool check)
  1394. {
  1395. return set_cpus_allowed_ptr(p, new_mask);
  1396. }
  1397. #endif /* CONFIG_SMP */
  1398. static void
  1399. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1400. {
  1401. #ifdef CONFIG_SCHEDSTATS
  1402. struct rq *rq = this_rq();
  1403. #ifdef CONFIG_SMP
  1404. int this_cpu = smp_processor_id();
  1405. if (cpu == this_cpu) {
  1406. schedstat_inc(rq, ttwu_local);
  1407. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1408. } else {
  1409. struct sched_domain *sd;
  1410. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1411. rcu_read_lock();
  1412. for_each_domain(this_cpu, sd) {
  1413. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1414. schedstat_inc(sd, ttwu_wake_remote);
  1415. break;
  1416. }
  1417. }
  1418. rcu_read_unlock();
  1419. }
  1420. if (wake_flags & WF_MIGRATED)
  1421. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1422. #endif /* CONFIG_SMP */
  1423. schedstat_inc(rq, ttwu_count);
  1424. schedstat_inc(p, se.statistics.nr_wakeups);
  1425. if (wake_flags & WF_SYNC)
  1426. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1427. #endif /* CONFIG_SCHEDSTATS */
  1428. }
  1429. static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1430. {
  1431. activate_task(rq, p, en_flags);
  1432. p->on_rq = TASK_ON_RQ_QUEUED;
  1433. /* if a worker is waking up, notify workqueue */
  1434. if (p->flags & PF_WQ_WORKER)
  1435. wq_worker_waking_up(p, cpu_of(rq));
  1436. }
  1437. /*
  1438. * Mark the task runnable and perform wakeup-preemption.
  1439. */
  1440. static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
  1441. struct pin_cookie cookie)
  1442. {
  1443. check_preempt_curr(rq, p, wake_flags);
  1444. p->state = TASK_RUNNING;
  1445. trace_sched_wakeup(p);
  1446. #ifdef CONFIG_SMP
  1447. if (p->sched_class->task_woken) {
  1448. /*
  1449. * Our task @p is fully woken up and running; so its safe to
  1450. * drop the rq->lock, hereafter rq is only used for statistics.
  1451. */
  1452. lockdep_unpin_lock(&rq->lock, cookie);
  1453. p->sched_class->task_woken(rq, p);
  1454. lockdep_repin_lock(&rq->lock, cookie);
  1455. }
  1456. if (rq->idle_stamp) {
  1457. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1458. u64 max = 2*rq->max_idle_balance_cost;
  1459. update_avg(&rq->avg_idle, delta);
  1460. if (rq->avg_idle > max)
  1461. rq->avg_idle = max;
  1462. rq->idle_stamp = 0;
  1463. }
  1464. #endif
  1465. }
  1466. static void
  1467. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
  1468. struct pin_cookie cookie)
  1469. {
  1470. int en_flags = ENQUEUE_WAKEUP;
  1471. lockdep_assert_held(&rq->lock);
  1472. #ifdef CONFIG_SMP
  1473. if (p->sched_contributes_to_load)
  1474. rq->nr_uninterruptible--;
  1475. if (wake_flags & WF_MIGRATED)
  1476. en_flags |= ENQUEUE_MIGRATED;
  1477. #endif
  1478. ttwu_activate(rq, p, en_flags);
  1479. ttwu_do_wakeup(rq, p, wake_flags, cookie);
  1480. }
  1481. /*
  1482. * Called in case the task @p isn't fully descheduled from its runqueue,
  1483. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1484. * since all we need to do is flip p->state to TASK_RUNNING, since
  1485. * the task is still ->on_rq.
  1486. */
  1487. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1488. {
  1489. struct rq_flags rf;
  1490. struct rq *rq;
  1491. int ret = 0;
  1492. rq = __task_rq_lock(p, &rf);
  1493. if (task_on_rq_queued(p)) {
  1494. /* check_preempt_curr() may use rq clock */
  1495. update_rq_clock(rq);
  1496. ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
  1497. ret = 1;
  1498. }
  1499. __task_rq_unlock(rq, &rf);
  1500. return ret;
  1501. }
  1502. #ifdef CONFIG_SMP
  1503. void sched_ttwu_pending(void)
  1504. {
  1505. struct rq *rq = this_rq();
  1506. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1507. struct pin_cookie cookie;
  1508. struct task_struct *p;
  1509. unsigned long flags;
  1510. if (!llist)
  1511. return;
  1512. raw_spin_lock_irqsave(&rq->lock, flags);
  1513. cookie = lockdep_pin_lock(&rq->lock);
  1514. while (llist) {
  1515. int wake_flags = 0;
  1516. p = llist_entry(llist, struct task_struct, wake_entry);
  1517. llist = llist_next(llist);
  1518. if (p->sched_remote_wakeup)
  1519. wake_flags = WF_MIGRATED;
  1520. ttwu_do_activate(rq, p, wake_flags, cookie);
  1521. }
  1522. lockdep_unpin_lock(&rq->lock, cookie);
  1523. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1524. }
  1525. void scheduler_ipi(void)
  1526. {
  1527. /*
  1528. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1529. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1530. * this IPI.
  1531. */
  1532. preempt_fold_need_resched();
  1533. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1534. return;
  1535. /*
  1536. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1537. * traditionally all their work was done from the interrupt return
  1538. * path. Now that we actually do some work, we need to make sure
  1539. * we do call them.
  1540. *
  1541. * Some archs already do call them, luckily irq_enter/exit nest
  1542. * properly.
  1543. *
  1544. * Arguably we should visit all archs and update all handlers,
  1545. * however a fair share of IPIs are still resched only so this would
  1546. * somewhat pessimize the simple resched case.
  1547. */
  1548. irq_enter();
  1549. sched_ttwu_pending();
  1550. /*
  1551. * Check if someone kicked us for doing the nohz idle load balance.
  1552. */
  1553. if (unlikely(got_nohz_idle_kick())) {
  1554. this_rq()->idle_balance = 1;
  1555. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1556. }
  1557. irq_exit();
  1558. }
  1559. static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
  1560. {
  1561. struct rq *rq = cpu_rq(cpu);
  1562. p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
  1563. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1564. if (!set_nr_if_polling(rq->idle))
  1565. smp_send_reschedule(cpu);
  1566. else
  1567. trace_sched_wake_idle_without_ipi(cpu);
  1568. }
  1569. }
  1570. void wake_up_if_idle(int cpu)
  1571. {
  1572. struct rq *rq = cpu_rq(cpu);
  1573. unsigned long flags;
  1574. rcu_read_lock();
  1575. if (!is_idle_task(rcu_dereference(rq->curr)))
  1576. goto out;
  1577. if (set_nr_if_polling(rq->idle)) {
  1578. trace_sched_wake_idle_without_ipi(cpu);
  1579. } else {
  1580. raw_spin_lock_irqsave(&rq->lock, flags);
  1581. if (is_idle_task(rq->curr))
  1582. smp_send_reschedule(cpu);
  1583. /* Else cpu is not in idle, do nothing here */
  1584. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1585. }
  1586. out:
  1587. rcu_read_unlock();
  1588. }
  1589. bool cpus_share_cache(int this_cpu, int that_cpu)
  1590. {
  1591. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1592. }
  1593. #endif /* CONFIG_SMP */
  1594. static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
  1595. {
  1596. struct rq *rq = cpu_rq(cpu);
  1597. struct pin_cookie cookie;
  1598. #if defined(CONFIG_SMP)
  1599. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1600. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1601. ttwu_queue_remote(p, cpu, wake_flags);
  1602. return;
  1603. }
  1604. #endif
  1605. raw_spin_lock(&rq->lock);
  1606. cookie = lockdep_pin_lock(&rq->lock);
  1607. ttwu_do_activate(rq, p, wake_flags, cookie);
  1608. lockdep_unpin_lock(&rq->lock, cookie);
  1609. raw_spin_unlock(&rq->lock);
  1610. }
  1611. /*
  1612. * Notes on Program-Order guarantees on SMP systems.
  1613. *
  1614. * MIGRATION
  1615. *
  1616. * The basic program-order guarantee on SMP systems is that when a task [t]
  1617. * migrates, all its activity on its old cpu [c0] happens-before any subsequent
  1618. * execution on its new cpu [c1].
  1619. *
  1620. * For migration (of runnable tasks) this is provided by the following means:
  1621. *
  1622. * A) UNLOCK of the rq(c0)->lock scheduling out task t
  1623. * B) migration for t is required to synchronize *both* rq(c0)->lock and
  1624. * rq(c1)->lock (if not at the same time, then in that order).
  1625. * C) LOCK of the rq(c1)->lock scheduling in task
  1626. *
  1627. * Transitivity guarantees that B happens after A and C after B.
  1628. * Note: we only require RCpc transitivity.
  1629. * Note: the cpu doing B need not be c0 or c1
  1630. *
  1631. * Example:
  1632. *
  1633. * CPU0 CPU1 CPU2
  1634. *
  1635. * LOCK rq(0)->lock
  1636. * sched-out X
  1637. * sched-in Y
  1638. * UNLOCK rq(0)->lock
  1639. *
  1640. * LOCK rq(0)->lock // orders against CPU0
  1641. * dequeue X
  1642. * UNLOCK rq(0)->lock
  1643. *
  1644. * LOCK rq(1)->lock
  1645. * enqueue X
  1646. * UNLOCK rq(1)->lock
  1647. *
  1648. * LOCK rq(1)->lock // orders against CPU2
  1649. * sched-out Z
  1650. * sched-in X
  1651. * UNLOCK rq(1)->lock
  1652. *
  1653. *
  1654. * BLOCKING -- aka. SLEEP + WAKEUP
  1655. *
  1656. * For blocking we (obviously) need to provide the same guarantee as for
  1657. * migration. However the means are completely different as there is no lock
  1658. * chain to provide order. Instead we do:
  1659. *
  1660. * 1) smp_store_release(X->on_cpu, 0)
  1661. * 2) smp_cond_load_acquire(!X->on_cpu)
  1662. *
  1663. * Example:
  1664. *
  1665. * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
  1666. *
  1667. * LOCK rq(0)->lock LOCK X->pi_lock
  1668. * dequeue X
  1669. * sched-out X
  1670. * smp_store_release(X->on_cpu, 0);
  1671. *
  1672. * smp_cond_load_acquire(&X->on_cpu, !VAL);
  1673. * X->state = WAKING
  1674. * set_task_cpu(X,2)
  1675. *
  1676. * LOCK rq(2)->lock
  1677. * enqueue X
  1678. * X->state = RUNNING
  1679. * UNLOCK rq(2)->lock
  1680. *
  1681. * LOCK rq(2)->lock // orders against CPU1
  1682. * sched-out Z
  1683. * sched-in X
  1684. * UNLOCK rq(2)->lock
  1685. *
  1686. * UNLOCK X->pi_lock
  1687. * UNLOCK rq(0)->lock
  1688. *
  1689. *
  1690. * However; for wakeups there is a second guarantee we must provide, namely we
  1691. * must observe the state that lead to our wakeup. That is, not only must our
  1692. * task observe its own prior state, it must also observe the stores prior to
  1693. * its wakeup.
  1694. *
  1695. * This means that any means of doing remote wakeups must order the CPU doing
  1696. * the wakeup against the CPU the task is going to end up running on. This,
  1697. * however, is already required for the regular Program-Order guarantee above,
  1698. * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
  1699. *
  1700. */
  1701. /**
  1702. * try_to_wake_up - wake up a thread
  1703. * @p: the thread to be awakened
  1704. * @state: the mask of task states that can be woken
  1705. * @wake_flags: wake modifier flags (WF_*)
  1706. *
  1707. * Put it on the run-queue if it's not already there. The "current"
  1708. * thread is always on the run-queue (except when the actual
  1709. * re-schedule is in progress), and as such you're allowed to do
  1710. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1711. * runnable without the overhead of this.
  1712. *
  1713. * Return: %true if @p was woken up, %false if it was already running.
  1714. * or @state didn't match @p's state.
  1715. */
  1716. static int
  1717. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1718. {
  1719. unsigned long flags;
  1720. int cpu, success = 0;
  1721. /*
  1722. * If we are going to wake up a thread waiting for CONDITION we
  1723. * need to ensure that CONDITION=1 done by the caller can not be
  1724. * reordered with p->state check below. This pairs with mb() in
  1725. * set_current_state() the waiting thread does.
  1726. */
  1727. smp_mb__before_spinlock();
  1728. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1729. if (!(p->state & state))
  1730. goto out;
  1731. trace_sched_waking(p);
  1732. success = 1; /* we're going to change ->state */
  1733. cpu = task_cpu(p);
  1734. if (p->on_rq && ttwu_remote(p, wake_flags))
  1735. goto stat;
  1736. #ifdef CONFIG_SMP
  1737. /*
  1738. * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
  1739. * possible to, falsely, observe p->on_cpu == 0.
  1740. *
  1741. * One must be running (->on_cpu == 1) in order to remove oneself
  1742. * from the runqueue.
  1743. *
  1744. * [S] ->on_cpu = 1; [L] ->on_rq
  1745. * UNLOCK rq->lock
  1746. * RMB
  1747. * LOCK rq->lock
  1748. * [S] ->on_rq = 0; [L] ->on_cpu
  1749. *
  1750. * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
  1751. * from the consecutive calls to schedule(); the first switching to our
  1752. * task, the second putting it to sleep.
  1753. */
  1754. smp_rmb();
  1755. /*
  1756. * If the owning (remote) cpu is still in the middle of schedule() with
  1757. * this task as prev, wait until its done referencing the task.
  1758. *
  1759. * Pairs with the smp_store_release() in finish_lock_switch().
  1760. *
  1761. * This ensures that tasks getting woken will be fully ordered against
  1762. * their previous state and preserve Program Order.
  1763. */
  1764. smp_cond_load_acquire(&p->on_cpu, !VAL);
  1765. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1766. p->state = TASK_WAKING;
  1767. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1768. if (task_cpu(p) != cpu) {
  1769. wake_flags |= WF_MIGRATED;
  1770. set_task_cpu(p, cpu);
  1771. }
  1772. #endif /* CONFIG_SMP */
  1773. ttwu_queue(p, cpu, wake_flags);
  1774. stat:
  1775. if (schedstat_enabled())
  1776. ttwu_stat(p, cpu, wake_flags);
  1777. out:
  1778. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1779. return success;
  1780. }
  1781. /**
  1782. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1783. * @p: the thread to be awakened
  1784. *
  1785. * Put @p on the run-queue if it's not already there. The caller must
  1786. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1787. * the current task.
  1788. */
  1789. static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
  1790. {
  1791. struct rq *rq = task_rq(p);
  1792. if (WARN_ON_ONCE(rq != this_rq()) ||
  1793. WARN_ON_ONCE(p == current))
  1794. return;
  1795. lockdep_assert_held(&rq->lock);
  1796. if (!raw_spin_trylock(&p->pi_lock)) {
  1797. /*
  1798. * This is OK, because current is on_cpu, which avoids it being
  1799. * picked for load-balance and preemption/IRQs are still
  1800. * disabled avoiding further scheduler activity on it and we've
  1801. * not yet picked a replacement task.
  1802. */
  1803. lockdep_unpin_lock(&rq->lock, cookie);
  1804. raw_spin_unlock(&rq->lock);
  1805. raw_spin_lock(&p->pi_lock);
  1806. raw_spin_lock(&rq->lock);
  1807. lockdep_repin_lock(&rq->lock, cookie);
  1808. }
  1809. if (!(p->state & TASK_NORMAL))
  1810. goto out;
  1811. trace_sched_waking(p);
  1812. if (!task_on_rq_queued(p))
  1813. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1814. ttwu_do_wakeup(rq, p, 0, cookie);
  1815. if (schedstat_enabled())
  1816. ttwu_stat(p, smp_processor_id(), 0);
  1817. out:
  1818. raw_spin_unlock(&p->pi_lock);
  1819. }
  1820. /**
  1821. * wake_up_process - Wake up a specific process
  1822. * @p: The process to be woken up.
  1823. *
  1824. * Attempt to wake up the nominated process and move it to the set of runnable
  1825. * processes.
  1826. *
  1827. * Return: 1 if the process was woken up, 0 if it was already running.
  1828. *
  1829. * It may be assumed that this function implies a write memory barrier before
  1830. * changing the task state if and only if any tasks are woken up.
  1831. */
  1832. int wake_up_process(struct task_struct *p)
  1833. {
  1834. return try_to_wake_up(p, TASK_NORMAL, 0);
  1835. }
  1836. EXPORT_SYMBOL(wake_up_process);
  1837. int wake_up_state(struct task_struct *p, unsigned int state)
  1838. {
  1839. return try_to_wake_up(p, state, 0);
  1840. }
  1841. /*
  1842. * This function clears the sched_dl_entity static params.
  1843. */
  1844. void __dl_clear_params(struct task_struct *p)
  1845. {
  1846. struct sched_dl_entity *dl_se = &p->dl;
  1847. dl_se->dl_runtime = 0;
  1848. dl_se->dl_deadline = 0;
  1849. dl_se->dl_period = 0;
  1850. dl_se->flags = 0;
  1851. dl_se->dl_bw = 0;
  1852. dl_se->dl_throttled = 0;
  1853. dl_se->dl_yielded = 0;
  1854. }
  1855. /*
  1856. * Perform scheduler related setup for a newly forked process p.
  1857. * p is forked by current.
  1858. *
  1859. * __sched_fork() is basic setup used by init_idle() too:
  1860. */
  1861. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1862. {
  1863. p->on_rq = 0;
  1864. p->se.on_rq = 0;
  1865. p->se.exec_start = 0;
  1866. p->se.sum_exec_runtime = 0;
  1867. p->se.prev_sum_exec_runtime = 0;
  1868. p->se.nr_migrations = 0;
  1869. p->se.vruntime = 0;
  1870. INIT_LIST_HEAD(&p->se.group_node);
  1871. #ifdef CONFIG_FAIR_GROUP_SCHED
  1872. p->se.cfs_rq = NULL;
  1873. #endif
  1874. #ifdef CONFIG_SCHEDSTATS
  1875. /* Even if schedstat is disabled, there should not be garbage */
  1876. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1877. #endif
  1878. RB_CLEAR_NODE(&p->dl.rb_node);
  1879. init_dl_task_timer(&p->dl);
  1880. __dl_clear_params(p);
  1881. INIT_LIST_HEAD(&p->rt.run_list);
  1882. p->rt.timeout = 0;
  1883. p->rt.time_slice = sched_rr_timeslice;
  1884. p->rt.on_rq = 0;
  1885. p->rt.on_list = 0;
  1886. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1887. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1888. #endif
  1889. #ifdef CONFIG_NUMA_BALANCING
  1890. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1891. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1892. p->mm->numa_scan_seq = 0;
  1893. }
  1894. if (clone_flags & CLONE_VM)
  1895. p->numa_preferred_nid = current->numa_preferred_nid;
  1896. else
  1897. p->numa_preferred_nid = -1;
  1898. p->node_stamp = 0ULL;
  1899. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1900. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1901. p->numa_work.next = &p->numa_work;
  1902. p->numa_faults = NULL;
  1903. p->last_task_numa_placement = 0;
  1904. p->last_sum_exec_runtime = 0;
  1905. p->numa_group = NULL;
  1906. #endif /* CONFIG_NUMA_BALANCING */
  1907. }
  1908. DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
  1909. #ifdef CONFIG_NUMA_BALANCING
  1910. void set_numabalancing_state(bool enabled)
  1911. {
  1912. if (enabled)
  1913. static_branch_enable(&sched_numa_balancing);
  1914. else
  1915. static_branch_disable(&sched_numa_balancing);
  1916. }
  1917. #ifdef CONFIG_PROC_SYSCTL
  1918. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1919. void __user *buffer, size_t *lenp, loff_t *ppos)
  1920. {
  1921. struct ctl_table t;
  1922. int err;
  1923. int state = static_branch_likely(&sched_numa_balancing);
  1924. if (write && !capable(CAP_SYS_ADMIN))
  1925. return -EPERM;
  1926. t = *table;
  1927. t.data = &state;
  1928. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1929. if (err < 0)
  1930. return err;
  1931. if (write)
  1932. set_numabalancing_state(state);
  1933. return err;
  1934. }
  1935. #endif
  1936. #endif
  1937. #ifdef CONFIG_SCHEDSTATS
  1938. DEFINE_STATIC_KEY_FALSE(sched_schedstats);
  1939. static bool __initdata __sched_schedstats = false;
  1940. static void set_schedstats(bool enabled)
  1941. {
  1942. if (enabled)
  1943. static_branch_enable(&sched_schedstats);
  1944. else
  1945. static_branch_disable(&sched_schedstats);
  1946. }
  1947. void force_schedstat_enabled(void)
  1948. {
  1949. if (!schedstat_enabled()) {
  1950. pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
  1951. static_branch_enable(&sched_schedstats);
  1952. }
  1953. }
  1954. static int __init setup_schedstats(char *str)
  1955. {
  1956. int ret = 0;
  1957. if (!str)
  1958. goto out;
  1959. /*
  1960. * This code is called before jump labels have been set up, so we can't
  1961. * change the static branch directly just yet. Instead set a temporary
  1962. * variable so init_schedstats() can do it later.
  1963. */
  1964. if (!strcmp(str, "enable")) {
  1965. __sched_schedstats = true;
  1966. ret = 1;
  1967. } else if (!strcmp(str, "disable")) {
  1968. __sched_schedstats = false;
  1969. ret = 1;
  1970. }
  1971. out:
  1972. if (!ret)
  1973. pr_warn("Unable to parse schedstats=\n");
  1974. return ret;
  1975. }
  1976. __setup("schedstats=", setup_schedstats);
  1977. static void __init init_schedstats(void)
  1978. {
  1979. set_schedstats(__sched_schedstats);
  1980. }
  1981. #ifdef CONFIG_PROC_SYSCTL
  1982. int sysctl_schedstats(struct ctl_table *table, int write,
  1983. void __user *buffer, size_t *lenp, loff_t *ppos)
  1984. {
  1985. struct ctl_table t;
  1986. int err;
  1987. int state = static_branch_likely(&sched_schedstats);
  1988. if (write && !capable(CAP_SYS_ADMIN))
  1989. return -EPERM;
  1990. t = *table;
  1991. t.data = &state;
  1992. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1993. if (err < 0)
  1994. return err;
  1995. if (write)
  1996. set_schedstats(state);
  1997. return err;
  1998. }
  1999. #endif /* CONFIG_PROC_SYSCTL */
  2000. #else /* !CONFIG_SCHEDSTATS */
  2001. static inline void init_schedstats(void) {}
  2002. #endif /* CONFIG_SCHEDSTATS */
  2003. /*
  2004. * fork()/clone()-time setup:
  2005. */
  2006. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  2007. {
  2008. unsigned long flags;
  2009. int cpu = get_cpu();
  2010. __sched_fork(clone_flags, p);
  2011. /*
  2012. * We mark the process as running here. This guarantees that
  2013. * nobody will actually run it, and a signal or other external
  2014. * event cannot wake it up and insert it on the runqueue either.
  2015. */
  2016. p->state = TASK_RUNNING;
  2017. /*
  2018. * Make sure we do not leak PI boosting priority to the child.
  2019. */
  2020. p->prio = current->normal_prio;
  2021. /*
  2022. * Revert to default priority/policy on fork if requested.
  2023. */
  2024. if (unlikely(p->sched_reset_on_fork)) {
  2025. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2026. p->policy = SCHED_NORMAL;
  2027. p->static_prio = NICE_TO_PRIO(0);
  2028. p->rt_priority = 0;
  2029. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2030. p->static_prio = NICE_TO_PRIO(0);
  2031. p->prio = p->normal_prio = __normal_prio(p);
  2032. set_load_weight(p);
  2033. /*
  2034. * We don't need the reset flag anymore after the fork. It has
  2035. * fulfilled its duty:
  2036. */
  2037. p->sched_reset_on_fork = 0;
  2038. }
  2039. if (dl_prio(p->prio)) {
  2040. put_cpu();
  2041. return -EAGAIN;
  2042. } else if (rt_prio(p->prio)) {
  2043. p->sched_class = &rt_sched_class;
  2044. } else {
  2045. p->sched_class = &fair_sched_class;
  2046. }
  2047. if (p->sched_class->task_fork)
  2048. p->sched_class->task_fork(p);
  2049. /*
  2050. * The child is not yet in the pid-hash so no cgroup attach races,
  2051. * and the cgroup is pinned to this child due to cgroup_fork()
  2052. * is ran before sched_fork().
  2053. *
  2054. * Silence PROVE_RCU.
  2055. */
  2056. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2057. set_task_cpu(p, cpu);
  2058. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2059. #ifdef CONFIG_SCHED_INFO
  2060. if (likely(sched_info_on()))
  2061. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2062. #endif
  2063. #if defined(CONFIG_SMP)
  2064. p->on_cpu = 0;
  2065. #endif
  2066. init_task_preempt_count(p);
  2067. #ifdef CONFIG_SMP
  2068. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2069. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  2070. #endif
  2071. put_cpu();
  2072. return 0;
  2073. }
  2074. unsigned long to_ratio(u64 period, u64 runtime)
  2075. {
  2076. if (runtime == RUNTIME_INF)
  2077. return 1ULL << 20;
  2078. /*
  2079. * Doing this here saves a lot of checks in all
  2080. * the calling paths, and returning zero seems
  2081. * safe for them anyway.
  2082. */
  2083. if (period == 0)
  2084. return 0;
  2085. return div64_u64(runtime << 20, period);
  2086. }
  2087. #ifdef CONFIG_SMP
  2088. inline struct dl_bw *dl_bw_of(int i)
  2089. {
  2090. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2091. "sched RCU must be held");
  2092. return &cpu_rq(i)->rd->dl_bw;
  2093. }
  2094. static inline int dl_bw_cpus(int i)
  2095. {
  2096. struct root_domain *rd = cpu_rq(i)->rd;
  2097. int cpus = 0;
  2098. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2099. "sched RCU must be held");
  2100. for_each_cpu_and(i, rd->span, cpu_active_mask)
  2101. cpus++;
  2102. return cpus;
  2103. }
  2104. #else
  2105. inline struct dl_bw *dl_bw_of(int i)
  2106. {
  2107. return &cpu_rq(i)->dl.dl_bw;
  2108. }
  2109. static inline int dl_bw_cpus(int i)
  2110. {
  2111. return 1;
  2112. }
  2113. #endif
  2114. /*
  2115. * We must be sure that accepting a new task (or allowing changing the
  2116. * parameters of an existing one) is consistent with the bandwidth
  2117. * constraints. If yes, this function also accordingly updates the currently
  2118. * allocated bandwidth to reflect the new situation.
  2119. *
  2120. * This function is called while holding p's rq->lock.
  2121. *
  2122. * XXX we should delay bw change until the task's 0-lag point, see
  2123. * __setparam_dl().
  2124. */
  2125. static int dl_overflow(struct task_struct *p, int policy,
  2126. const struct sched_attr *attr)
  2127. {
  2128. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  2129. u64 period = attr->sched_period ?: attr->sched_deadline;
  2130. u64 runtime = attr->sched_runtime;
  2131. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  2132. int cpus, err = -1;
  2133. /* !deadline task may carry old deadline bandwidth */
  2134. if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
  2135. return 0;
  2136. /*
  2137. * Either if a task, enters, leave, or stays -deadline but changes
  2138. * its parameters, we may need to update accordingly the total
  2139. * allocated bandwidth of the container.
  2140. */
  2141. raw_spin_lock(&dl_b->lock);
  2142. cpus = dl_bw_cpus(task_cpu(p));
  2143. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  2144. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  2145. __dl_add(dl_b, new_bw);
  2146. err = 0;
  2147. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  2148. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  2149. __dl_clear(dl_b, p->dl.dl_bw);
  2150. __dl_add(dl_b, new_bw);
  2151. err = 0;
  2152. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  2153. __dl_clear(dl_b, p->dl.dl_bw);
  2154. err = 0;
  2155. }
  2156. raw_spin_unlock(&dl_b->lock);
  2157. return err;
  2158. }
  2159. extern void init_dl_bw(struct dl_bw *dl_b);
  2160. /*
  2161. * wake_up_new_task - wake up a newly created task for the first time.
  2162. *
  2163. * This function will do some initial scheduler statistics housekeeping
  2164. * that must be done for every newly created context, then puts the task
  2165. * on the runqueue and wakes it.
  2166. */
  2167. void wake_up_new_task(struct task_struct *p)
  2168. {
  2169. struct rq_flags rf;
  2170. struct rq *rq;
  2171. /* Initialize new task's runnable average */
  2172. init_entity_runnable_average(&p->se);
  2173. raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
  2174. #ifdef CONFIG_SMP
  2175. /*
  2176. * Fork balancing, do it here and not earlier because:
  2177. * - cpus_allowed can change in the fork path
  2178. * - any previously selected cpu might disappear through hotplug
  2179. */
  2180. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2181. #endif
  2182. /* Post initialize new task's util average when its cfs_rq is set */
  2183. post_init_entity_util_avg(&p->se);
  2184. rq = __task_rq_lock(p, &rf);
  2185. activate_task(rq, p, 0);
  2186. p->on_rq = TASK_ON_RQ_QUEUED;
  2187. trace_sched_wakeup_new(p);
  2188. check_preempt_curr(rq, p, WF_FORK);
  2189. #ifdef CONFIG_SMP
  2190. if (p->sched_class->task_woken) {
  2191. /*
  2192. * Nothing relies on rq->lock after this, so its fine to
  2193. * drop it.
  2194. */
  2195. lockdep_unpin_lock(&rq->lock, rf.cookie);
  2196. p->sched_class->task_woken(rq, p);
  2197. lockdep_repin_lock(&rq->lock, rf.cookie);
  2198. }
  2199. #endif
  2200. task_rq_unlock(rq, p, &rf);
  2201. }
  2202. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2203. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2204. void preempt_notifier_inc(void)
  2205. {
  2206. static_key_slow_inc(&preempt_notifier_key);
  2207. }
  2208. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2209. void preempt_notifier_dec(void)
  2210. {
  2211. static_key_slow_dec(&preempt_notifier_key);
  2212. }
  2213. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2214. /**
  2215. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2216. * @notifier: notifier struct to register
  2217. */
  2218. void preempt_notifier_register(struct preempt_notifier *notifier)
  2219. {
  2220. if (!static_key_false(&preempt_notifier_key))
  2221. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2222. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2223. }
  2224. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2225. /**
  2226. * preempt_notifier_unregister - no longer interested in preemption notifications
  2227. * @notifier: notifier struct to unregister
  2228. *
  2229. * This is *not* safe to call from within a preemption notifier.
  2230. */
  2231. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2232. {
  2233. hlist_del(&notifier->link);
  2234. }
  2235. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2236. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2237. {
  2238. struct preempt_notifier *notifier;
  2239. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2240. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2241. }
  2242. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2243. {
  2244. if (static_key_false(&preempt_notifier_key))
  2245. __fire_sched_in_preempt_notifiers(curr);
  2246. }
  2247. static void
  2248. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2249. struct task_struct *next)
  2250. {
  2251. struct preempt_notifier *notifier;
  2252. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2253. notifier->ops->sched_out(notifier, next);
  2254. }
  2255. static __always_inline void
  2256. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. if (static_key_false(&preempt_notifier_key))
  2260. __fire_sched_out_preempt_notifiers(curr, next);
  2261. }
  2262. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2263. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2264. {
  2265. }
  2266. static inline void
  2267. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2268. struct task_struct *next)
  2269. {
  2270. }
  2271. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2272. /**
  2273. * prepare_task_switch - prepare to switch tasks
  2274. * @rq: the runqueue preparing to switch
  2275. * @prev: the current task that is being switched out
  2276. * @next: the task we are going to switch to.
  2277. *
  2278. * This is called with the rq lock held and interrupts off. It must
  2279. * be paired with a subsequent finish_task_switch after the context
  2280. * switch.
  2281. *
  2282. * prepare_task_switch sets up locking and calls architecture specific
  2283. * hooks.
  2284. */
  2285. static inline void
  2286. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2287. struct task_struct *next)
  2288. {
  2289. sched_info_switch(rq, prev, next);
  2290. perf_event_task_sched_out(prev, next);
  2291. fire_sched_out_preempt_notifiers(prev, next);
  2292. prepare_lock_switch(rq, next);
  2293. prepare_arch_switch(next);
  2294. }
  2295. /**
  2296. * finish_task_switch - clean up after a task-switch
  2297. * @prev: the thread we just switched away from.
  2298. *
  2299. * finish_task_switch must be called after the context switch, paired
  2300. * with a prepare_task_switch call before the context switch.
  2301. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2302. * and do any other architecture-specific cleanup actions.
  2303. *
  2304. * Note that we may have delayed dropping an mm in context_switch(). If
  2305. * so, we finish that here outside of the runqueue lock. (Doing it
  2306. * with the lock held can cause deadlocks; see schedule() for
  2307. * details.)
  2308. *
  2309. * The context switch have flipped the stack from under us and restored the
  2310. * local variables which were saved when this task called schedule() in the
  2311. * past. prev == current is still correct but we need to recalculate this_rq
  2312. * because prev may have moved to another CPU.
  2313. */
  2314. static struct rq *finish_task_switch(struct task_struct *prev)
  2315. __releases(rq->lock)
  2316. {
  2317. struct rq *rq = this_rq();
  2318. struct mm_struct *mm = rq->prev_mm;
  2319. long prev_state;
  2320. /*
  2321. * The previous task will have left us with a preempt_count of 2
  2322. * because it left us after:
  2323. *
  2324. * schedule()
  2325. * preempt_disable(); // 1
  2326. * __schedule()
  2327. * raw_spin_lock_irq(&rq->lock) // 2
  2328. *
  2329. * Also, see FORK_PREEMPT_COUNT.
  2330. */
  2331. if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
  2332. "corrupted preempt_count: %s/%d/0x%x\n",
  2333. current->comm, current->pid, preempt_count()))
  2334. preempt_count_set(FORK_PREEMPT_COUNT);
  2335. rq->prev_mm = NULL;
  2336. /*
  2337. * A task struct has one reference for the use as "current".
  2338. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2339. * schedule one last time. The schedule call will never return, and
  2340. * the scheduled task must drop that reference.
  2341. *
  2342. * We must observe prev->state before clearing prev->on_cpu (in
  2343. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  2344. * running on another CPU and we could rave with its RUNNING -> DEAD
  2345. * transition, resulting in a double drop.
  2346. */
  2347. prev_state = prev->state;
  2348. vtime_task_switch(prev);
  2349. perf_event_task_sched_in(prev, current);
  2350. finish_lock_switch(rq, prev);
  2351. finish_arch_post_lock_switch();
  2352. fire_sched_in_preempt_notifiers(current);
  2353. if (mm)
  2354. mmdrop(mm);
  2355. if (unlikely(prev_state == TASK_DEAD)) {
  2356. if (prev->sched_class->task_dead)
  2357. prev->sched_class->task_dead(prev);
  2358. /*
  2359. * Remove function-return probe instances associated with this
  2360. * task and put them back on the free list.
  2361. */
  2362. kprobe_flush_task(prev);
  2363. put_task_struct(prev);
  2364. }
  2365. tick_nohz_task_switch();
  2366. return rq;
  2367. }
  2368. #ifdef CONFIG_SMP
  2369. /* rq->lock is NOT held, but preemption is disabled */
  2370. static void __balance_callback(struct rq *rq)
  2371. {
  2372. struct callback_head *head, *next;
  2373. void (*func)(struct rq *rq);
  2374. unsigned long flags;
  2375. raw_spin_lock_irqsave(&rq->lock, flags);
  2376. head = rq->balance_callback;
  2377. rq->balance_callback = NULL;
  2378. while (head) {
  2379. func = (void (*)(struct rq *))head->func;
  2380. next = head->next;
  2381. head->next = NULL;
  2382. head = next;
  2383. func(rq);
  2384. }
  2385. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2386. }
  2387. static inline void balance_callback(struct rq *rq)
  2388. {
  2389. if (unlikely(rq->balance_callback))
  2390. __balance_callback(rq);
  2391. }
  2392. #else
  2393. static inline void balance_callback(struct rq *rq)
  2394. {
  2395. }
  2396. #endif
  2397. /**
  2398. * schedule_tail - first thing a freshly forked thread must call.
  2399. * @prev: the thread we just switched away from.
  2400. */
  2401. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2402. __releases(rq->lock)
  2403. {
  2404. struct rq *rq;
  2405. /*
  2406. * New tasks start with FORK_PREEMPT_COUNT, see there and
  2407. * finish_task_switch() for details.
  2408. *
  2409. * finish_task_switch() will drop rq->lock() and lower preempt_count
  2410. * and the preempt_enable() will end up enabling preemption (on
  2411. * PREEMPT_COUNT kernels).
  2412. */
  2413. rq = finish_task_switch(prev);
  2414. balance_callback(rq);
  2415. preempt_enable();
  2416. if (current->set_child_tid)
  2417. put_user(task_pid_vnr(current), current->set_child_tid);
  2418. }
  2419. /*
  2420. * context_switch - switch to the new MM and the new thread's register state.
  2421. */
  2422. static __always_inline struct rq *
  2423. context_switch(struct rq *rq, struct task_struct *prev,
  2424. struct task_struct *next, struct pin_cookie cookie)
  2425. {
  2426. struct mm_struct *mm, *oldmm;
  2427. prepare_task_switch(rq, prev, next);
  2428. mm = next->mm;
  2429. oldmm = prev->active_mm;
  2430. /*
  2431. * For paravirt, this is coupled with an exit in switch_to to
  2432. * combine the page table reload and the switch backend into
  2433. * one hypercall.
  2434. */
  2435. arch_start_context_switch(prev);
  2436. if (!mm) {
  2437. next->active_mm = oldmm;
  2438. atomic_inc(&oldmm->mm_count);
  2439. enter_lazy_tlb(oldmm, next);
  2440. } else
  2441. switch_mm_irqs_off(oldmm, mm, next);
  2442. if (!prev->mm) {
  2443. prev->active_mm = NULL;
  2444. rq->prev_mm = oldmm;
  2445. }
  2446. /*
  2447. * Since the runqueue lock will be released by the next
  2448. * task (which is an invalid locking op but in the case
  2449. * of the scheduler it's an obvious special-case), so we
  2450. * do an early lockdep release here:
  2451. */
  2452. lockdep_unpin_lock(&rq->lock, cookie);
  2453. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2454. /* Here we just switch the register state and the stack. */
  2455. switch_to(prev, next, prev);
  2456. barrier();
  2457. return finish_task_switch(prev);
  2458. }
  2459. /*
  2460. * nr_running and nr_context_switches:
  2461. *
  2462. * externally visible scheduler statistics: current number of runnable
  2463. * threads, total number of context switches performed since bootup.
  2464. */
  2465. unsigned long nr_running(void)
  2466. {
  2467. unsigned long i, sum = 0;
  2468. for_each_online_cpu(i)
  2469. sum += cpu_rq(i)->nr_running;
  2470. return sum;
  2471. }
  2472. /*
  2473. * Check if only the current task is running on the cpu.
  2474. *
  2475. * Caution: this function does not check that the caller has disabled
  2476. * preemption, thus the result might have a time-of-check-to-time-of-use
  2477. * race. The caller is responsible to use it correctly, for example:
  2478. *
  2479. * - from a non-preemptable section (of course)
  2480. *
  2481. * - from a thread that is bound to a single CPU
  2482. *
  2483. * - in a loop with very short iterations (e.g. a polling loop)
  2484. */
  2485. bool single_task_running(void)
  2486. {
  2487. return raw_rq()->nr_running == 1;
  2488. }
  2489. EXPORT_SYMBOL(single_task_running);
  2490. unsigned long long nr_context_switches(void)
  2491. {
  2492. int i;
  2493. unsigned long long sum = 0;
  2494. for_each_possible_cpu(i)
  2495. sum += cpu_rq(i)->nr_switches;
  2496. return sum;
  2497. }
  2498. unsigned long nr_iowait(void)
  2499. {
  2500. unsigned long i, sum = 0;
  2501. for_each_possible_cpu(i)
  2502. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2503. return sum;
  2504. }
  2505. unsigned long nr_iowait_cpu(int cpu)
  2506. {
  2507. struct rq *this = cpu_rq(cpu);
  2508. return atomic_read(&this->nr_iowait);
  2509. }
  2510. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2511. {
  2512. struct rq *rq = this_rq();
  2513. *nr_waiters = atomic_read(&rq->nr_iowait);
  2514. *load = rq->load.weight;
  2515. }
  2516. #ifdef CONFIG_SMP
  2517. /*
  2518. * sched_exec - execve() is a valuable balancing opportunity, because at
  2519. * this point the task has the smallest effective memory and cache footprint.
  2520. */
  2521. void sched_exec(void)
  2522. {
  2523. struct task_struct *p = current;
  2524. unsigned long flags;
  2525. int dest_cpu;
  2526. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2527. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2528. if (dest_cpu == smp_processor_id())
  2529. goto unlock;
  2530. if (likely(cpu_active(dest_cpu))) {
  2531. struct migration_arg arg = { p, dest_cpu };
  2532. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2533. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2534. return;
  2535. }
  2536. unlock:
  2537. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2538. }
  2539. #endif
  2540. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2541. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2542. EXPORT_PER_CPU_SYMBOL(kstat);
  2543. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2544. /*
  2545. * Return accounted runtime for the task.
  2546. * In case the task is currently running, return the runtime plus current's
  2547. * pending runtime that have not been accounted yet.
  2548. */
  2549. unsigned long long task_sched_runtime(struct task_struct *p)
  2550. {
  2551. struct rq_flags rf;
  2552. struct rq *rq;
  2553. u64 ns;
  2554. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2555. /*
  2556. * 64-bit doesn't need locks to atomically read a 64bit value.
  2557. * So we have a optimization chance when the task's delta_exec is 0.
  2558. * Reading ->on_cpu is racy, but this is ok.
  2559. *
  2560. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2561. * If we race with it entering cpu, unaccounted time is 0. This is
  2562. * indistinguishable from the read occurring a few cycles earlier.
  2563. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2564. * been accounted, so we're correct here as well.
  2565. */
  2566. if (!p->on_cpu || !task_on_rq_queued(p))
  2567. return p->se.sum_exec_runtime;
  2568. #endif
  2569. rq = task_rq_lock(p, &rf);
  2570. /*
  2571. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2572. * project cycles that may never be accounted to this
  2573. * thread, breaking clock_gettime().
  2574. */
  2575. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2576. update_rq_clock(rq);
  2577. p->sched_class->update_curr(rq);
  2578. }
  2579. ns = p->se.sum_exec_runtime;
  2580. task_rq_unlock(rq, p, &rf);
  2581. return ns;
  2582. }
  2583. /*
  2584. * This function gets called by the timer code, with HZ frequency.
  2585. * We call it with interrupts disabled.
  2586. */
  2587. void scheduler_tick(void)
  2588. {
  2589. int cpu = smp_processor_id();
  2590. struct rq *rq = cpu_rq(cpu);
  2591. struct task_struct *curr = rq->curr;
  2592. sched_clock_tick();
  2593. raw_spin_lock(&rq->lock);
  2594. update_rq_clock(rq);
  2595. curr->sched_class->task_tick(rq, curr, 0);
  2596. cpu_load_update_active(rq);
  2597. calc_global_load_tick(rq);
  2598. raw_spin_unlock(&rq->lock);
  2599. perf_event_task_tick();
  2600. #ifdef CONFIG_SMP
  2601. rq->idle_balance = idle_cpu(cpu);
  2602. trigger_load_balance(rq);
  2603. #endif
  2604. rq_last_tick_reset(rq);
  2605. }
  2606. #ifdef CONFIG_NO_HZ_FULL
  2607. /**
  2608. * scheduler_tick_max_deferment
  2609. *
  2610. * Keep at least one tick per second when a single
  2611. * active task is running because the scheduler doesn't
  2612. * yet completely support full dynticks environment.
  2613. *
  2614. * This makes sure that uptime, CFS vruntime, load
  2615. * balancing, etc... continue to move forward, even
  2616. * with a very low granularity.
  2617. *
  2618. * Return: Maximum deferment in nanoseconds.
  2619. */
  2620. u64 scheduler_tick_max_deferment(void)
  2621. {
  2622. struct rq *rq = this_rq();
  2623. unsigned long next, now = READ_ONCE(jiffies);
  2624. next = rq->last_sched_tick + HZ;
  2625. if (time_before_eq(next, now))
  2626. return 0;
  2627. return jiffies_to_nsecs(next - now);
  2628. }
  2629. #endif
  2630. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2631. defined(CONFIG_PREEMPT_TRACER))
  2632. /*
  2633. * If the value passed in is equal to the current preempt count
  2634. * then we just disabled preemption. Start timing the latency.
  2635. */
  2636. static inline void preempt_latency_start(int val)
  2637. {
  2638. if (preempt_count() == val) {
  2639. unsigned long ip = get_lock_parent_ip();
  2640. #ifdef CONFIG_DEBUG_PREEMPT
  2641. current->preempt_disable_ip = ip;
  2642. #endif
  2643. trace_preempt_off(CALLER_ADDR0, ip);
  2644. }
  2645. }
  2646. void preempt_count_add(int val)
  2647. {
  2648. #ifdef CONFIG_DEBUG_PREEMPT
  2649. /*
  2650. * Underflow?
  2651. */
  2652. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2653. return;
  2654. #endif
  2655. __preempt_count_add(val);
  2656. #ifdef CONFIG_DEBUG_PREEMPT
  2657. /*
  2658. * Spinlock count overflowing soon?
  2659. */
  2660. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2661. PREEMPT_MASK - 10);
  2662. #endif
  2663. preempt_latency_start(val);
  2664. }
  2665. EXPORT_SYMBOL(preempt_count_add);
  2666. NOKPROBE_SYMBOL(preempt_count_add);
  2667. /*
  2668. * If the value passed in equals to the current preempt count
  2669. * then we just enabled preemption. Stop timing the latency.
  2670. */
  2671. static inline void preempt_latency_stop(int val)
  2672. {
  2673. if (preempt_count() == val)
  2674. trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
  2675. }
  2676. void preempt_count_sub(int val)
  2677. {
  2678. #ifdef CONFIG_DEBUG_PREEMPT
  2679. /*
  2680. * Underflow?
  2681. */
  2682. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2683. return;
  2684. /*
  2685. * Is the spinlock portion underflowing?
  2686. */
  2687. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2688. !(preempt_count() & PREEMPT_MASK)))
  2689. return;
  2690. #endif
  2691. preempt_latency_stop(val);
  2692. __preempt_count_sub(val);
  2693. }
  2694. EXPORT_SYMBOL(preempt_count_sub);
  2695. NOKPROBE_SYMBOL(preempt_count_sub);
  2696. #else
  2697. static inline void preempt_latency_start(int val) { }
  2698. static inline void preempt_latency_stop(int val) { }
  2699. #endif
  2700. /*
  2701. * Print scheduling while atomic bug:
  2702. */
  2703. static noinline void __schedule_bug(struct task_struct *prev)
  2704. {
  2705. if (oops_in_progress)
  2706. return;
  2707. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2708. prev->comm, prev->pid, preempt_count());
  2709. debug_show_held_locks(prev);
  2710. print_modules();
  2711. if (irqs_disabled())
  2712. print_irqtrace_events(prev);
  2713. #ifdef CONFIG_DEBUG_PREEMPT
  2714. if (in_atomic_preempt_off()) {
  2715. pr_err("Preemption disabled at:");
  2716. print_ip_sym(current->preempt_disable_ip);
  2717. pr_cont("\n");
  2718. }
  2719. #endif
  2720. dump_stack();
  2721. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2722. }
  2723. /*
  2724. * Various schedule()-time debugging checks and statistics:
  2725. */
  2726. static inline void schedule_debug(struct task_struct *prev)
  2727. {
  2728. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2729. if (task_stack_end_corrupted(prev))
  2730. panic("corrupted stack end detected inside scheduler\n");
  2731. #endif
  2732. if (unlikely(in_atomic_preempt_off())) {
  2733. __schedule_bug(prev);
  2734. preempt_count_set(PREEMPT_DISABLED);
  2735. }
  2736. rcu_sleep_check();
  2737. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2738. schedstat_inc(this_rq(), sched_count);
  2739. }
  2740. /*
  2741. * Pick up the highest-prio task:
  2742. */
  2743. static inline struct task_struct *
  2744. pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
  2745. {
  2746. const struct sched_class *class = &fair_sched_class;
  2747. struct task_struct *p;
  2748. /*
  2749. * Optimization: we know that if all tasks are in
  2750. * the fair class we can call that function directly:
  2751. */
  2752. if (likely(prev->sched_class == class &&
  2753. rq->nr_running == rq->cfs.h_nr_running)) {
  2754. p = fair_sched_class.pick_next_task(rq, prev, cookie);
  2755. if (unlikely(p == RETRY_TASK))
  2756. goto again;
  2757. /* assumes fair_sched_class->next == idle_sched_class */
  2758. if (unlikely(!p))
  2759. p = idle_sched_class.pick_next_task(rq, prev, cookie);
  2760. return p;
  2761. }
  2762. again:
  2763. for_each_class(class) {
  2764. p = class->pick_next_task(rq, prev, cookie);
  2765. if (p) {
  2766. if (unlikely(p == RETRY_TASK))
  2767. goto again;
  2768. return p;
  2769. }
  2770. }
  2771. BUG(); /* the idle class will always have a runnable task */
  2772. }
  2773. /*
  2774. * __schedule() is the main scheduler function.
  2775. *
  2776. * The main means of driving the scheduler and thus entering this function are:
  2777. *
  2778. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2779. *
  2780. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2781. * paths. For example, see arch/x86/entry_64.S.
  2782. *
  2783. * To drive preemption between tasks, the scheduler sets the flag in timer
  2784. * interrupt handler scheduler_tick().
  2785. *
  2786. * 3. Wakeups don't really cause entry into schedule(). They add a
  2787. * task to the run-queue and that's it.
  2788. *
  2789. * Now, if the new task added to the run-queue preempts the current
  2790. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2791. * called on the nearest possible occasion:
  2792. *
  2793. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2794. *
  2795. * - in syscall or exception context, at the next outmost
  2796. * preempt_enable(). (this might be as soon as the wake_up()'s
  2797. * spin_unlock()!)
  2798. *
  2799. * - in IRQ context, return from interrupt-handler to
  2800. * preemptible context
  2801. *
  2802. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2803. * then at the next:
  2804. *
  2805. * - cond_resched() call
  2806. * - explicit schedule() call
  2807. * - return from syscall or exception to user-space
  2808. * - return from interrupt-handler to user-space
  2809. *
  2810. * WARNING: must be called with preemption disabled!
  2811. */
  2812. static void __sched notrace __schedule(bool preempt)
  2813. {
  2814. struct task_struct *prev, *next;
  2815. unsigned long *switch_count;
  2816. struct pin_cookie cookie;
  2817. struct rq *rq;
  2818. int cpu;
  2819. cpu = smp_processor_id();
  2820. rq = cpu_rq(cpu);
  2821. prev = rq->curr;
  2822. /*
  2823. * do_exit() calls schedule() with preemption disabled as an exception;
  2824. * however we must fix that up, otherwise the next task will see an
  2825. * inconsistent (higher) preempt count.
  2826. *
  2827. * It also avoids the below schedule_debug() test from complaining
  2828. * about this.
  2829. */
  2830. if (unlikely(prev->state == TASK_DEAD))
  2831. preempt_enable_no_resched_notrace();
  2832. schedule_debug(prev);
  2833. if (sched_feat(HRTICK))
  2834. hrtick_clear(rq);
  2835. local_irq_disable();
  2836. rcu_note_context_switch();
  2837. /*
  2838. * Make sure that signal_pending_state()->signal_pending() below
  2839. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2840. * done by the caller to avoid the race with signal_wake_up().
  2841. */
  2842. smp_mb__before_spinlock();
  2843. raw_spin_lock(&rq->lock);
  2844. cookie = lockdep_pin_lock(&rq->lock);
  2845. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2846. switch_count = &prev->nivcsw;
  2847. if (!preempt && prev->state) {
  2848. if (unlikely(signal_pending_state(prev->state, prev))) {
  2849. prev->state = TASK_RUNNING;
  2850. } else {
  2851. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2852. prev->on_rq = 0;
  2853. /*
  2854. * If a worker went to sleep, notify and ask workqueue
  2855. * whether it wants to wake up a task to maintain
  2856. * concurrency.
  2857. */
  2858. if (prev->flags & PF_WQ_WORKER) {
  2859. struct task_struct *to_wakeup;
  2860. to_wakeup = wq_worker_sleeping(prev);
  2861. if (to_wakeup)
  2862. try_to_wake_up_local(to_wakeup, cookie);
  2863. }
  2864. }
  2865. switch_count = &prev->nvcsw;
  2866. }
  2867. if (task_on_rq_queued(prev))
  2868. update_rq_clock(rq);
  2869. next = pick_next_task(rq, prev, cookie);
  2870. clear_tsk_need_resched(prev);
  2871. clear_preempt_need_resched();
  2872. rq->clock_skip_update = 0;
  2873. if (likely(prev != next)) {
  2874. rq->nr_switches++;
  2875. rq->curr = next;
  2876. ++*switch_count;
  2877. trace_sched_switch(preempt, prev, next);
  2878. rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
  2879. } else {
  2880. lockdep_unpin_lock(&rq->lock, cookie);
  2881. raw_spin_unlock_irq(&rq->lock);
  2882. }
  2883. balance_callback(rq);
  2884. }
  2885. STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
  2886. static inline void sched_submit_work(struct task_struct *tsk)
  2887. {
  2888. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2889. return;
  2890. /*
  2891. * If we are going to sleep and we have plugged IO queued,
  2892. * make sure to submit it to avoid deadlocks.
  2893. */
  2894. if (blk_needs_flush_plug(tsk))
  2895. blk_schedule_flush_plug(tsk);
  2896. }
  2897. asmlinkage __visible void __sched schedule(void)
  2898. {
  2899. struct task_struct *tsk = current;
  2900. sched_submit_work(tsk);
  2901. do {
  2902. preempt_disable();
  2903. __schedule(false);
  2904. sched_preempt_enable_no_resched();
  2905. } while (need_resched());
  2906. }
  2907. EXPORT_SYMBOL(schedule);
  2908. #ifdef CONFIG_CONTEXT_TRACKING
  2909. asmlinkage __visible void __sched schedule_user(void)
  2910. {
  2911. /*
  2912. * If we come here after a random call to set_need_resched(),
  2913. * or we have been woken up remotely but the IPI has not yet arrived,
  2914. * we haven't yet exited the RCU idle mode. Do it here manually until
  2915. * we find a better solution.
  2916. *
  2917. * NB: There are buggy callers of this function. Ideally we
  2918. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2919. * too frequently to make sense yet.
  2920. */
  2921. enum ctx_state prev_state = exception_enter();
  2922. schedule();
  2923. exception_exit(prev_state);
  2924. }
  2925. #endif
  2926. /**
  2927. * schedule_preempt_disabled - called with preemption disabled
  2928. *
  2929. * Returns with preemption disabled. Note: preempt_count must be 1
  2930. */
  2931. void __sched schedule_preempt_disabled(void)
  2932. {
  2933. sched_preempt_enable_no_resched();
  2934. schedule();
  2935. preempt_disable();
  2936. }
  2937. static void __sched notrace preempt_schedule_common(void)
  2938. {
  2939. do {
  2940. /*
  2941. * Because the function tracer can trace preempt_count_sub()
  2942. * and it also uses preempt_enable/disable_notrace(), if
  2943. * NEED_RESCHED is set, the preempt_enable_notrace() called
  2944. * by the function tracer will call this function again and
  2945. * cause infinite recursion.
  2946. *
  2947. * Preemption must be disabled here before the function
  2948. * tracer can trace. Break up preempt_disable() into two
  2949. * calls. One to disable preemption without fear of being
  2950. * traced. The other to still record the preemption latency,
  2951. * which can also be traced by the function tracer.
  2952. */
  2953. preempt_disable_notrace();
  2954. preempt_latency_start(1);
  2955. __schedule(true);
  2956. preempt_latency_stop(1);
  2957. preempt_enable_no_resched_notrace();
  2958. /*
  2959. * Check again in case we missed a preemption opportunity
  2960. * between schedule and now.
  2961. */
  2962. } while (need_resched());
  2963. }
  2964. #ifdef CONFIG_PREEMPT
  2965. /*
  2966. * this is the entry point to schedule() from in-kernel preemption
  2967. * off of preempt_enable. Kernel preemptions off return from interrupt
  2968. * occur there and call schedule directly.
  2969. */
  2970. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2971. {
  2972. /*
  2973. * If there is a non-zero preempt_count or interrupts are disabled,
  2974. * we do not want to preempt the current task. Just return..
  2975. */
  2976. if (likely(!preemptible()))
  2977. return;
  2978. preempt_schedule_common();
  2979. }
  2980. NOKPROBE_SYMBOL(preempt_schedule);
  2981. EXPORT_SYMBOL(preempt_schedule);
  2982. /**
  2983. * preempt_schedule_notrace - preempt_schedule called by tracing
  2984. *
  2985. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2986. * recursion and tracing preempt enabling caused by the tracing
  2987. * infrastructure itself. But as tracing can happen in areas coming
  2988. * from userspace or just about to enter userspace, a preempt enable
  2989. * can occur before user_exit() is called. This will cause the scheduler
  2990. * to be called when the system is still in usermode.
  2991. *
  2992. * To prevent this, the preempt_enable_notrace will use this function
  2993. * instead of preempt_schedule() to exit user context if needed before
  2994. * calling the scheduler.
  2995. */
  2996. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2997. {
  2998. enum ctx_state prev_ctx;
  2999. if (likely(!preemptible()))
  3000. return;
  3001. do {
  3002. /*
  3003. * Because the function tracer can trace preempt_count_sub()
  3004. * and it also uses preempt_enable/disable_notrace(), if
  3005. * NEED_RESCHED is set, the preempt_enable_notrace() called
  3006. * by the function tracer will call this function again and
  3007. * cause infinite recursion.
  3008. *
  3009. * Preemption must be disabled here before the function
  3010. * tracer can trace. Break up preempt_disable() into two
  3011. * calls. One to disable preemption without fear of being
  3012. * traced. The other to still record the preemption latency,
  3013. * which can also be traced by the function tracer.
  3014. */
  3015. preempt_disable_notrace();
  3016. preempt_latency_start(1);
  3017. /*
  3018. * Needs preempt disabled in case user_exit() is traced
  3019. * and the tracer calls preempt_enable_notrace() causing
  3020. * an infinite recursion.
  3021. */
  3022. prev_ctx = exception_enter();
  3023. __schedule(true);
  3024. exception_exit(prev_ctx);
  3025. preempt_latency_stop(1);
  3026. preempt_enable_no_resched_notrace();
  3027. } while (need_resched());
  3028. }
  3029. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  3030. #endif /* CONFIG_PREEMPT */
  3031. /*
  3032. * this is the entry point to schedule() from kernel preemption
  3033. * off of irq context.
  3034. * Note, that this is called and return with irqs disabled. This will
  3035. * protect us against recursive calling from irq.
  3036. */
  3037. asmlinkage __visible void __sched preempt_schedule_irq(void)
  3038. {
  3039. enum ctx_state prev_state;
  3040. /* Catch callers which need to be fixed */
  3041. BUG_ON(preempt_count() || !irqs_disabled());
  3042. prev_state = exception_enter();
  3043. do {
  3044. preempt_disable();
  3045. local_irq_enable();
  3046. __schedule(true);
  3047. local_irq_disable();
  3048. sched_preempt_enable_no_resched();
  3049. } while (need_resched());
  3050. exception_exit(prev_state);
  3051. }
  3052. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3053. void *key)
  3054. {
  3055. return try_to_wake_up(curr->private, mode, wake_flags);
  3056. }
  3057. EXPORT_SYMBOL(default_wake_function);
  3058. #ifdef CONFIG_RT_MUTEXES
  3059. /*
  3060. * rt_mutex_setprio - set the current priority of a task
  3061. * @p: task
  3062. * @prio: prio value (kernel-internal form)
  3063. *
  3064. * This function changes the 'effective' priority of a task. It does
  3065. * not touch ->normal_prio like __setscheduler().
  3066. *
  3067. * Used by the rt_mutex code to implement priority inheritance
  3068. * logic. Call site only calls if the priority of the task changed.
  3069. */
  3070. void rt_mutex_setprio(struct task_struct *p, int prio)
  3071. {
  3072. int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
  3073. const struct sched_class *prev_class;
  3074. struct rq_flags rf;
  3075. struct rq *rq;
  3076. BUG_ON(prio > MAX_PRIO);
  3077. rq = __task_rq_lock(p, &rf);
  3078. /*
  3079. * Idle task boosting is a nono in general. There is one
  3080. * exception, when PREEMPT_RT and NOHZ is active:
  3081. *
  3082. * The idle task calls get_next_timer_interrupt() and holds
  3083. * the timer wheel base->lock on the CPU and another CPU wants
  3084. * to access the timer (probably to cancel it). We can safely
  3085. * ignore the boosting request, as the idle CPU runs this code
  3086. * with interrupts disabled and will complete the lock
  3087. * protected section without being interrupted. So there is no
  3088. * real need to boost.
  3089. */
  3090. if (unlikely(p == rq->idle)) {
  3091. WARN_ON(p != rq->curr);
  3092. WARN_ON(p->pi_blocked_on);
  3093. goto out_unlock;
  3094. }
  3095. trace_sched_pi_setprio(p, prio);
  3096. oldprio = p->prio;
  3097. if (oldprio == prio)
  3098. queue_flag &= ~DEQUEUE_MOVE;
  3099. prev_class = p->sched_class;
  3100. queued = task_on_rq_queued(p);
  3101. running = task_current(rq, p);
  3102. if (queued)
  3103. dequeue_task(rq, p, queue_flag);
  3104. if (running)
  3105. put_prev_task(rq, p);
  3106. /*
  3107. * Boosting condition are:
  3108. * 1. -rt task is running and holds mutex A
  3109. * --> -dl task blocks on mutex A
  3110. *
  3111. * 2. -dl task is running and holds mutex A
  3112. * --> -dl task blocks on mutex A and could preempt the
  3113. * running task
  3114. */
  3115. if (dl_prio(prio)) {
  3116. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  3117. if (!dl_prio(p->normal_prio) ||
  3118. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  3119. p->dl.dl_boosted = 1;
  3120. queue_flag |= ENQUEUE_REPLENISH;
  3121. } else
  3122. p->dl.dl_boosted = 0;
  3123. p->sched_class = &dl_sched_class;
  3124. } else if (rt_prio(prio)) {
  3125. if (dl_prio(oldprio))
  3126. p->dl.dl_boosted = 0;
  3127. if (oldprio < prio)
  3128. queue_flag |= ENQUEUE_HEAD;
  3129. p->sched_class = &rt_sched_class;
  3130. } else {
  3131. if (dl_prio(oldprio))
  3132. p->dl.dl_boosted = 0;
  3133. if (rt_prio(oldprio))
  3134. p->rt.timeout = 0;
  3135. p->sched_class = &fair_sched_class;
  3136. }
  3137. p->prio = prio;
  3138. if (running)
  3139. p->sched_class->set_curr_task(rq);
  3140. if (queued)
  3141. enqueue_task(rq, p, queue_flag);
  3142. check_class_changed(rq, p, prev_class, oldprio);
  3143. out_unlock:
  3144. preempt_disable(); /* avoid rq from going away on us */
  3145. __task_rq_unlock(rq, &rf);
  3146. balance_callback(rq);
  3147. preempt_enable();
  3148. }
  3149. #endif
  3150. void set_user_nice(struct task_struct *p, long nice)
  3151. {
  3152. int old_prio, delta, queued;
  3153. struct rq_flags rf;
  3154. struct rq *rq;
  3155. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  3156. return;
  3157. /*
  3158. * We have to be careful, if called from sys_setpriority(),
  3159. * the task might be in the middle of scheduling on another CPU.
  3160. */
  3161. rq = task_rq_lock(p, &rf);
  3162. /*
  3163. * The RT priorities are set via sched_setscheduler(), but we still
  3164. * allow the 'normal' nice value to be set - but as expected
  3165. * it wont have any effect on scheduling until the task is
  3166. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  3167. */
  3168. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  3169. p->static_prio = NICE_TO_PRIO(nice);
  3170. goto out_unlock;
  3171. }
  3172. queued = task_on_rq_queued(p);
  3173. if (queued)
  3174. dequeue_task(rq, p, DEQUEUE_SAVE);
  3175. p->static_prio = NICE_TO_PRIO(nice);
  3176. set_load_weight(p);
  3177. old_prio = p->prio;
  3178. p->prio = effective_prio(p);
  3179. delta = p->prio - old_prio;
  3180. if (queued) {
  3181. enqueue_task(rq, p, ENQUEUE_RESTORE);
  3182. /*
  3183. * If the task increased its priority or is running and
  3184. * lowered its priority, then reschedule its CPU:
  3185. */
  3186. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3187. resched_curr(rq);
  3188. }
  3189. out_unlock:
  3190. task_rq_unlock(rq, p, &rf);
  3191. }
  3192. EXPORT_SYMBOL(set_user_nice);
  3193. /*
  3194. * can_nice - check if a task can reduce its nice value
  3195. * @p: task
  3196. * @nice: nice value
  3197. */
  3198. int can_nice(const struct task_struct *p, const int nice)
  3199. {
  3200. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3201. int nice_rlim = nice_to_rlimit(nice);
  3202. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3203. capable(CAP_SYS_NICE));
  3204. }
  3205. #ifdef __ARCH_WANT_SYS_NICE
  3206. /*
  3207. * sys_nice - change the priority of the current process.
  3208. * @increment: priority increment
  3209. *
  3210. * sys_setpriority is a more generic, but much slower function that
  3211. * does similar things.
  3212. */
  3213. SYSCALL_DEFINE1(nice, int, increment)
  3214. {
  3215. long nice, retval;
  3216. /*
  3217. * Setpriority might change our priority at the same moment.
  3218. * We don't have to worry. Conceptually one call occurs first
  3219. * and we have a single winner.
  3220. */
  3221. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  3222. nice = task_nice(current) + increment;
  3223. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  3224. if (increment < 0 && !can_nice(current, nice))
  3225. return -EPERM;
  3226. retval = security_task_setnice(current, nice);
  3227. if (retval)
  3228. return retval;
  3229. set_user_nice(current, nice);
  3230. return 0;
  3231. }
  3232. #endif
  3233. /**
  3234. * task_prio - return the priority value of a given task.
  3235. * @p: the task in question.
  3236. *
  3237. * Return: The priority value as seen by users in /proc.
  3238. * RT tasks are offset by -200. Normal tasks are centered
  3239. * around 0, value goes from -16 to +15.
  3240. */
  3241. int task_prio(const struct task_struct *p)
  3242. {
  3243. return p->prio - MAX_RT_PRIO;
  3244. }
  3245. /**
  3246. * idle_cpu - is a given cpu idle currently?
  3247. * @cpu: the processor in question.
  3248. *
  3249. * Return: 1 if the CPU is currently idle. 0 otherwise.
  3250. */
  3251. int idle_cpu(int cpu)
  3252. {
  3253. struct rq *rq = cpu_rq(cpu);
  3254. if (rq->curr != rq->idle)
  3255. return 0;
  3256. if (rq->nr_running)
  3257. return 0;
  3258. #ifdef CONFIG_SMP
  3259. if (!llist_empty(&rq->wake_list))
  3260. return 0;
  3261. #endif
  3262. return 1;
  3263. }
  3264. /**
  3265. * idle_task - return the idle task for a given cpu.
  3266. * @cpu: the processor in question.
  3267. *
  3268. * Return: The idle task for the cpu @cpu.
  3269. */
  3270. struct task_struct *idle_task(int cpu)
  3271. {
  3272. return cpu_rq(cpu)->idle;
  3273. }
  3274. /**
  3275. * find_process_by_pid - find a process with a matching PID value.
  3276. * @pid: the pid in question.
  3277. *
  3278. * The task of @pid, if found. %NULL otherwise.
  3279. */
  3280. static struct task_struct *find_process_by_pid(pid_t pid)
  3281. {
  3282. return pid ? find_task_by_vpid(pid) : current;
  3283. }
  3284. /*
  3285. * This function initializes the sched_dl_entity of a newly becoming
  3286. * SCHED_DEADLINE task.
  3287. *
  3288. * Only the static values are considered here, the actual runtime and the
  3289. * absolute deadline will be properly calculated when the task is enqueued
  3290. * for the first time with its new policy.
  3291. */
  3292. static void
  3293. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3294. {
  3295. struct sched_dl_entity *dl_se = &p->dl;
  3296. dl_se->dl_runtime = attr->sched_runtime;
  3297. dl_se->dl_deadline = attr->sched_deadline;
  3298. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3299. dl_se->flags = attr->sched_flags;
  3300. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3301. /*
  3302. * Changing the parameters of a task is 'tricky' and we're not doing
  3303. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3304. *
  3305. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3306. * point. This would include retaining the task_struct until that time
  3307. * and change dl_overflow() to not immediately decrement the current
  3308. * amount.
  3309. *
  3310. * Instead we retain the current runtime/deadline and let the new
  3311. * parameters take effect after the current reservation period lapses.
  3312. * This is safe (albeit pessimistic) because the 0-lag point is always
  3313. * before the current scheduling deadline.
  3314. *
  3315. * We can still have temporary overloads because we do not delay the
  3316. * change in bandwidth until that time; so admission control is
  3317. * not on the safe side. It does however guarantee tasks will never
  3318. * consume more than promised.
  3319. */
  3320. }
  3321. /*
  3322. * sched_setparam() passes in -1 for its policy, to let the functions
  3323. * it calls know not to change it.
  3324. */
  3325. #define SETPARAM_POLICY -1
  3326. static void __setscheduler_params(struct task_struct *p,
  3327. const struct sched_attr *attr)
  3328. {
  3329. int policy = attr->sched_policy;
  3330. if (policy == SETPARAM_POLICY)
  3331. policy = p->policy;
  3332. p->policy = policy;
  3333. if (dl_policy(policy))
  3334. __setparam_dl(p, attr);
  3335. else if (fair_policy(policy))
  3336. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3337. /*
  3338. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3339. * !rt_policy. Always setting this ensures that things like
  3340. * getparam()/getattr() don't report silly values for !rt tasks.
  3341. */
  3342. p->rt_priority = attr->sched_priority;
  3343. p->normal_prio = normal_prio(p);
  3344. set_load_weight(p);
  3345. }
  3346. /* Actually do priority change: must hold pi & rq lock. */
  3347. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3348. const struct sched_attr *attr, bool keep_boost)
  3349. {
  3350. __setscheduler_params(p, attr);
  3351. /*
  3352. * Keep a potential priority boosting if called from
  3353. * sched_setscheduler().
  3354. */
  3355. if (keep_boost)
  3356. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3357. else
  3358. p->prio = normal_prio(p);
  3359. if (dl_prio(p->prio))
  3360. p->sched_class = &dl_sched_class;
  3361. else if (rt_prio(p->prio))
  3362. p->sched_class = &rt_sched_class;
  3363. else
  3364. p->sched_class = &fair_sched_class;
  3365. }
  3366. static void
  3367. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3368. {
  3369. struct sched_dl_entity *dl_se = &p->dl;
  3370. attr->sched_priority = p->rt_priority;
  3371. attr->sched_runtime = dl_se->dl_runtime;
  3372. attr->sched_deadline = dl_se->dl_deadline;
  3373. attr->sched_period = dl_se->dl_period;
  3374. attr->sched_flags = dl_se->flags;
  3375. }
  3376. /*
  3377. * This function validates the new parameters of a -deadline task.
  3378. * We ask for the deadline not being zero, and greater or equal
  3379. * than the runtime, as well as the period of being zero or
  3380. * greater than deadline. Furthermore, we have to be sure that
  3381. * user parameters are above the internal resolution of 1us (we
  3382. * check sched_runtime only since it is always the smaller one) and
  3383. * below 2^63 ns (we have to check both sched_deadline and
  3384. * sched_period, as the latter can be zero).
  3385. */
  3386. static bool
  3387. __checkparam_dl(const struct sched_attr *attr)
  3388. {
  3389. /* deadline != 0 */
  3390. if (attr->sched_deadline == 0)
  3391. return false;
  3392. /*
  3393. * Since we truncate DL_SCALE bits, make sure we're at least
  3394. * that big.
  3395. */
  3396. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3397. return false;
  3398. /*
  3399. * Since we use the MSB for wrap-around and sign issues, make
  3400. * sure it's not set (mind that period can be equal to zero).
  3401. */
  3402. if (attr->sched_deadline & (1ULL << 63) ||
  3403. attr->sched_period & (1ULL << 63))
  3404. return false;
  3405. /* runtime <= deadline <= period (if period != 0) */
  3406. if ((attr->sched_period != 0 &&
  3407. attr->sched_period < attr->sched_deadline) ||
  3408. attr->sched_deadline < attr->sched_runtime)
  3409. return false;
  3410. return true;
  3411. }
  3412. /*
  3413. * check the target process has a UID that matches the current process's
  3414. */
  3415. static bool check_same_owner(struct task_struct *p)
  3416. {
  3417. const struct cred *cred = current_cred(), *pcred;
  3418. bool match;
  3419. rcu_read_lock();
  3420. pcred = __task_cred(p);
  3421. match = (uid_eq(cred->euid, pcred->euid) ||
  3422. uid_eq(cred->euid, pcred->uid));
  3423. rcu_read_unlock();
  3424. return match;
  3425. }
  3426. static bool dl_param_changed(struct task_struct *p,
  3427. const struct sched_attr *attr)
  3428. {
  3429. struct sched_dl_entity *dl_se = &p->dl;
  3430. if (dl_se->dl_runtime != attr->sched_runtime ||
  3431. dl_se->dl_deadline != attr->sched_deadline ||
  3432. dl_se->dl_period != attr->sched_period ||
  3433. dl_se->flags != attr->sched_flags)
  3434. return true;
  3435. return false;
  3436. }
  3437. static int __sched_setscheduler(struct task_struct *p,
  3438. const struct sched_attr *attr,
  3439. bool user, bool pi)
  3440. {
  3441. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3442. MAX_RT_PRIO - 1 - attr->sched_priority;
  3443. int retval, oldprio, oldpolicy = -1, queued, running;
  3444. int new_effective_prio, policy = attr->sched_policy;
  3445. const struct sched_class *prev_class;
  3446. struct rq_flags rf;
  3447. int reset_on_fork;
  3448. int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
  3449. struct rq *rq;
  3450. /* may grab non-irq protected spin_locks */
  3451. BUG_ON(in_interrupt());
  3452. recheck:
  3453. /* double check policy once rq lock held */
  3454. if (policy < 0) {
  3455. reset_on_fork = p->sched_reset_on_fork;
  3456. policy = oldpolicy = p->policy;
  3457. } else {
  3458. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3459. if (!valid_policy(policy))
  3460. return -EINVAL;
  3461. }
  3462. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3463. return -EINVAL;
  3464. /*
  3465. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3466. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3467. * SCHED_BATCH and SCHED_IDLE is 0.
  3468. */
  3469. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3470. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3471. return -EINVAL;
  3472. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3473. (rt_policy(policy) != (attr->sched_priority != 0)))
  3474. return -EINVAL;
  3475. /*
  3476. * Allow unprivileged RT tasks to decrease priority:
  3477. */
  3478. if (user && !capable(CAP_SYS_NICE)) {
  3479. if (fair_policy(policy)) {
  3480. if (attr->sched_nice < task_nice(p) &&
  3481. !can_nice(p, attr->sched_nice))
  3482. return -EPERM;
  3483. }
  3484. if (rt_policy(policy)) {
  3485. unsigned long rlim_rtprio =
  3486. task_rlimit(p, RLIMIT_RTPRIO);
  3487. /* can't set/change the rt policy */
  3488. if (policy != p->policy && !rlim_rtprio)
  3489. return -EPERM;
  3490. /* can't increase priority */
  3491. if (attr->sched_priority > p->rt_priority &&
  3492. attr->sched_priority > rlim_rtprio)
  3493. return -EPERM;
  3494. }
  3495. /*
  3496. * Can't set/change SCHED_DEADLINE policy at all for now
  3497. * (safest behavior); in the future we would like to allow
  3498. * unprivileged DL tasks to increase their relative deadline
  3499. * or reduce their runtime (both ways reducing utilization)
  3500. */
  3501. if (dl_policy(policy))
  3502. return -EPERM;
  3503. /*
  3504. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3505. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3506. */
  3507. if (idle_policy(p->policy) && !idle_policy(policy)) {
  3508. if (!can_nice(p, task_nice(p)))
  3509. return -EPERM;
  3510. }
  3511. /* can't change other user's priorities */
  3512. if (!check_same_owner(p))
  3513. return -EPERM;
  3514. /* Normal users shall not reset the sched_reset_on_fork flag */
  3515. if (p->sched_reset_on_fork && !reset_on_fork)
  3516. return -EPERM;
  3517. }
  3518. if (user) {
  3519. retval = security_task_setscheduler(p);
  3520. if (retval)
  3521. return retval;
  3522. }
  3523. /*
  3524. * make sure no PI-waiters arrive (or leave) while we are
  3525. * changing the priority of the task:
  3526. *
  3527. * To be able to change p->policy safely, the appropriate
  3528. * runqueue lock must be held.
  3529. */
  3530. rq = task_rq_lock(p, &rf);
  3531. /*
  3532. * Changing the policy of the stop threads its a very bad idea
  3533. */
  3534. if (p == rq->stop) {
  3535. task_rq_unlock(rq, p, &rf);
  3536. return -EINVAL;
  3537. }
  3538. /*
  3539. * If not changing anything there's no need to proceed further,
  3540. * but store a possible modification of reset_on_fork.
  3541. */
  3542. if (unlikely(policy == p->policy)) {
  3543. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3544. goto change;
  3545. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3546. goto change;
  3547. if (dl_policy(policy) && dl_param_changed(p, attr))
  3548. goto change;
  3549. p->sched_reset_on_fork = reset_on_fork;
  3550. task_rq_unlock(rq, p, &rf);
  3551. return 0;
  3552. }
  3553. change:
  3554. if (user) {
  3555. #ifdef CONFIG_RT_GROUP_SCHED
  3556. /*
  3557. * Do not allow realtime tasks into groups that have no runtime
  3558. * assigned.
  3559. */
  3560. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3561. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3562. !task_group_is_autogroup(task_group(p))) {
  3563. task_rq_unlock(rq, p, &rf);
  3564. return -EPERM;
  3565. }
  3566. #endif
  3567. #ifdef CONFIG_SMP
  3568. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3569. cpumask_t *span = rq->rd->span;
  3570. /*
  3571. * Don't allow tasks with an affinity mask smaller than
  3572. * the entire root_domain to become SCHED_DEADLINE. We
  3573. * will also fail if there's no bandwidth available.
  3574. */
  3575. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3576. rq->rd->dl_bw.bw == 0) {
  3577. task_rq_unlock(rq, p, &rf);
  3578. return -EPERM;
  3579. }
  3580. }
  3581. #endif
  3582. }
  3583. /* recheck policy now with rq lock held */
  3584. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3585. policy = oldpolicy = -1;
  3586. task_rq_unlock(rq, p, &rf);
  3587. goto recheck;
  3588. }
  3589. /*
  3590. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3591. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3592. * is available.
  3593. */
  3594. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3595. task_rq_unlock(rq, p, &rf);
  3596. return -EBUSY;
  3597. }
  3598. p->sched_reset_on_fork = reset_on_fork;
  3599. oldprio = p->prio;
  3600. if (pi) {
  3601. /*
  3602. * Take priority boosted tasks into account. If the new
  3603. * effective priority is unchanged, we just store the new
  3604. * normal parameters and do not touch the scheduler class and
  3605. * the runqueue. This will be done when the task deboost
  3606. * itself.
  3607. */
  3608. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3609. if (new_effective_prio == oldprio)
  3610. queue_flags &= ~DEQUEUE_MOVE;
  3611. }
  3612. queued = task_on_rq_queued(p);
  3613. running = task_current(rq, p);
  3614. if (queued)
  3615. dequeue_task(rq, p, queue_flags);
  3616. if (running)
  3617. put_prev_task(rq, p);
  3618. prev_class = p->sched_class;
  3619. __setscheduler(rq, p, attr, pi);
  3620. if (running)
  3621. p->sched_class->set_curr_task(rq);
  3622. if (queued) {
  3623. /*
  3624. * We enqueue to tail when the priority of a task is
  3625. * increased (user space view).
  3626. */
  3627. if (oldprio < p->prio)
  3628. queue_flags |= ENQUEUE_HEAD;
  3629. enqueue_task(rq, p, queue_flags);
  3630. }
  3631. check_class_changed(rq, p, prev_class, oldprio);
  3632. preempt_disable(); /* avoid rq from going away on us */
  3633. task_rq_unlock(rq, p, &rf);
  3634. if (pi)
  3635. rt_mutex_adjust_pi(p);
  3636. /*
  3637. * Run balance callbacks after we've adjusted the PI chain.
  3638. */
  3639. balance_callback(rq);
  3640. preempt_enable();
  3641. return 0;
  3642. }
  3643. static int _sched_setscheduler(struct task_struct *p, int policy,
  3644. const struct sched_param *param, bool check)
  3645. {
  3646. struct sched_attr attr = {
  3647. .sched_policy = policy,
  3648. .sched_priority = param->sched_priority,
  3649. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3650. };
  3651. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3652. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3653. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3654. policy &= ~SCHED_RESET_ON_FORK;
  3655. attr.sched_policy = policy;
  3656. }
  3657. return __sched_setscheduler(p, &attr, check, true);
  3658. }
  3659. /**
  3660. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3661. * @p: the task in question.
  3662. * @policy: new policy.
  3663. * @param: structure containing the new RT priority.
  3664. *
  3665. * Return: 0 on success. An error code otherwise.
  3666. *
  3667. * NOTE that the task may be already dead.
  3668. */
  3669. int sched_setscheduler(struct task_struct *p, int policy,
  3670. const struct sched_param *param)
  3671. {
  3672. return _sched_setscheduler(p, policy, param, true);
  3673. }
  3674. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3675. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3676. {
  3677. return __sched_setscheduler(p, attr, true, true);
  3678. }
  3679. EXPORT_SYMBOL_GPL(sched_setattr);
  3680. /**
  3681. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3682. * @p: the task in question.
  3683. * @policy: new policy.
  3684. * @param: structure containing the new RT priority.
  3685. *
  3686. * Just like sched_setscheduler, only don't bother checking if the
  3687. * current context has permission. For example, this is needed in
  3688. * stop_machine(): we create temporary high priority worker threads,
  3689. * but our caller might not have that capability.
  3690. *
  3691. * Return: 0 on success. An error code otherwise.
  3692. */
  3693. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3694. const struct sched_param *param)
  3695. {
  3696. return _sched_setscheduler(p, policy, param, false);
  3697. }
  3698. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3699. static int
  3700. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3701. {
  3702. struct sched_param lparam;
  3703. struct task_struct *p;
  3704. int retval;
  3705. if (!param || pid < 0)
  3706. return -EINVAL;
  3707. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3708. return -EFAULT;
  3709. rcu_read_lock();
  3710. retval = -ESRCH;
  3711. p = find_process_by_pid(pid);
  3712. if (p != NULL)
  3713. retval = sched_setscheduler(p, policy, &lparam);
  3714. rcu_read_unlock();
  3715. return retval;
  3716. }
  3717. /*
  3718. * Mimics kernel/events/core.c perf_copy_attr().
  3719. */
  3720. static int sched_copy_attr(struct sched_attr __user *uattr,
  3721. struct sched_attr *attr)
  3722. {
  3723. u32 size;
  3724. int ret;
  3725. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3726. return -EFAULT;
  3727. /*
  3728. * zero the full structure, so that a short copy will be nice.
  3729. */
  3730. memset(attr, 0, sizeof(*attr));
  3731. ret = get_user(size, &uattr->size);
  3732. if (ret)
  3733. return ret;
  3734. if (size > PAGE_SIZE) /* silly large */
  3735. goto err_size;
  3736. if (!size) /* abi compat */
  3737. size = SCHED_ATTR_SIZE_VER0;
  3738. if (size < SCHED_ATTR_SIZE_VER0)
  3739. goto err_size;
  3740. /*
  3741. * If we're handed a bigger struct than we know of,
  3742. * ensure all the unknown bits are 0 - i.e. new
  3743. * user-space does not rely on any kernel feature
  3744. * extensions we dont know about yet.
  3745. */
  3746. if (size > sizeof(*attr)) {
  3747. unsigned char __user *addr;
  3748. unsigned char __user *end;
  3749. unsigned char val;
  3750. addr = (void __user *)uattr + sizeof(*attr);
  3751. end = (void __user *)uattr + size;
  3752. for (; addr < end; addr++) {
  3753. ret = get_user(val, addr);
  3754. if (ret)
  3755. return ret;
  3756. if (val)
  3757. goto err_size;
  3758. }
  3759. size = sizeof(*attr);
  3760. }
  3761. ret = copy_from_user(attr, uattr, size);
  3762. if (ret)
  3763. return -EFAULT;
  3764. /*
  3765. * XXX: do we want to be lenient like existing syscalls; or do we want
  3766. * to be strict and return an error on out-of-bounds values?
  3767. */
  3768. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3769. return 0;
  3770. err_size:
  3771. put_user(sizeof(*attr), &uattr->size);
  3772. return -E2BIG;
  3773. }
  3774. /**
  3775. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3776. * @pid: the pid in question.
  3777. * @policy: new policy.
  3778. * @param: structure containing the new RT priority.
  3779. *
  3780. * Return: 0 on success. An error code otherwise.
  3781. */
  3782. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3783. struct sched_param __user *, param)
  3784. {
  3785. /* negative values for policy are not valid */
  3786. if (policy < 0)
  3787. return -EINVAL;
  3788. return do_sched_setscheduler(pid, policy, param);
  3789. }
  3790. /**
  3791. * sys_sched_setparam - set/change the RT priority of a thread
  3792. * @pid: the pid in question.
  3793. * @param: structure containing the new RT priority.
  3794. *
  3795. * Return: 0 on success. An error code otherwise.
  3796. */
  3797. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3798. {
  3799. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3800. }
  3801. /**
  3802. * sys_sched_setattr - same as above, but with extended sched_attr
  3803. * @pid: the pid in question.
  3804. * @uattr: structure containing the extended parameters.
  3805. * @flags: for future extension.
  3806. */
  3807. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3808. unsigned int, flags)
  3809. {
  3810. struct sched_attr attr;
  3811. struct task_struct *p;
  3812. int retval;
  3813. if (!uattr || pid < 0 || flags)
  3814. return -EINVAL;
  3815. retval = sched_copy_attr(uattr, &attr);
  3816. if (retval)
  3817. return retval;
  3818. if ((int)attr.sched_policy < 0)
  3819. return -EINVAL;
  3820. rcu_read_lock();
  3821. retval = -ESRCH;
  3822. p = find_process_by_pid(pid);
  3823. if (p != NULL)
  3824. retval = sched_setattr(p, &attr);
  3825. rcu_read_unlock();
  3826. return retval;
  3827. }
  3828. /**
  3829. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3830. * @pid: the pid in question.
  3831. *
  3832. * Return: On success, the policy of the thread. Otherwise, a negative error
  3833. * code.
  3834. */
  3835. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3836. {
  3837. struct task_struct *p;
  3838. int retval;
  3839. if (pid < 0)
  3840. return -EINVAL;
  3841. retval = -ESRCH;
  3842. rcu_read_lock();
  3843. p = find_process_by_pid(pid);
  3844. if (p) {
  3845. retval = security_task_getscheduler(p);
  3846. if (!retval)
  3847. retval = p->policy
  3848. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3849. }
  3850. rcu_read_unlock();
  3851. return retval;
  3852. }
  3853. /**
  3854. * sys_sched_getparam - get the RT priority of a thread
  3855. * @pid: the pid in question.
  3856. * @param: structure containing the RT priority.
  3857. *
  3858. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3859. * code.
  3860. */
  3861. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3862. {
  3863. struct sched_param lp = { .sched_priority = 0 };
  3864. struct task_struct *p;
  3865. int retval;
  3866. if (!param || pid < 0)
  3867. return -EINVAL;
  3868. rcu_read_lock();
  3869. p = find_process_by_pid(pid);
  3870. retval = -ESRCH;
  3871. if (!p)
  3872. goto out_unlock;
  3873. retval = security_task_getscheduler(p);
  3874. if (retval)
  3875. goto out_unlock;
  3876. if (task_has_rt_policy(p))
  3877. lp.sched_priority = p->rt_priority;
  3878. rcu_read_unlock();
  3879. /*
  3880. * This one might sleep, we cannot do it with a spinlock held ...
  3881. */
  3882. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3883. return retval;
  3884. out_unlock:
  3885. rcu_read_unlock();
  3886. return retval;
  3887. }
  3888. static int sched_read_attr(struct sched_attr __user *uattr,
  3889. struct sched_attr *attr,
  3890. unsigned int usize)
  3891. {
  3892. int ret;
  3893. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3894. return -EFAULT;
  3895. /*
  3896. * If we're handed a smaller struct than we know of,
  3897. * ensure all the unknown bits are 0 - i.e. old
  3898. * user-space does not get uncomplete information.
  3899. */
  3900. if (usize < sizeof(*attr)) {
  3901. unsigned char *addr;
  3902. unsigned char *end;
  3903. addr = (void *)attr + usize;
  3904. end = (void *)attr + sizeof(*attr);
  3905. for (; addr < end; addr++) {
  3906. if (*addr)
  3907. return -EFBIG;
  3908. }
  3909. attr->size = usize;
  3910. }
  3911. ret = copy_to_user(uattr, attr, attr->size);
  3912. if (ret)
  3913. return -EFAULT;
  3914. return 0;
  3915. }
  3916. /**
  3917. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3918. * @pid: the pid in question.
  3919. * @uattr: structure containing the extended parameters.
  3920. * @size: sizeof(attr) for fwd/bwd comp.
  3921. * @flags: for future extension.
  3922. */
  3923. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3924. unsigned int, size, unsigned int, flags)
  3925. {
  3926. struct sched_attr attr = {
  3927. .size = sizeof(struct sched_attr),
  3928. };
  3929. struct task_struct *p;
  3930. int retval;
  3931. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3932. size < SCHED_ATTR_SIZE_VER0 || flags)
  3933. return -EINVAL;
  3934. rcu_read_lock();
  3935. p = find_process_by_pid(pid);
  3936. retval = -ESRCH;
  3937. if (!p)
  3938. goto out_unlock;
  3939. retval = security_task_getscheduler(p);
  3940. if (retval)
  3941. goto out_unlock;
  3942. attr.sched_policy = p->policy;
  3943. if (p->sched_reset_on_fork)
  3944. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3945. if (task_has_dl_policy(p))
  3946. __getparam_dl(p, &attr);
  3947. else if (task_has_rt_policy(p))
  3948. attr.sched_priority = p->rt_priority;
  3949. else
  3950. attr.sched_nice = task_nice(p);
  3951. rcu_read_unlock();
  3952. retval = sched_read_attr(uattr, &attr, size);
  3953. return retval;
  3954. out_unlock:
  3955. rcu_read_unlock();
  3956. return retval;
  3957. }
  3958. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3959. {
  3960. cpumask_var_t cpus_allowed, new_mask;
  3961. struct task_struct *p;
  3962. int retval;
  3963. rcu_read_lock();
  3964. p = find_process_by_pid(pid);
  3965. if (!p) {
  3966. rcu_read_unlock();
  3967. return -ESRCH;
  3968. }
  3969. /* Prevent p going away */
  3970. get_task_struct(p);
  3971. rcu_read_unlock();
  3972. if (p->flags & PF_NO_SETAFFINITY) {
  3973. retval = -EINVAL;
  3974. goto out_put_task;
  3975. }
  3976. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3977. retval = -ENOMEM;
  3978. goto out_put_task;
  3979. }
  3980. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3981. retval = -ENOMEM;
  3982. goto out_free_cpus_allowed;
  3983. }
  3984. retval = -EPERM;
  3985. if (!check_same_owner(p)) {
  3986. rcu_read_lock();
  3987. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3988. rcu_read_unlock();
  3989. goto out_free_new_mask;
  3990. }
  3991. rcu_read_unlock();
  3992. }
  3993. retval = security_task_setscheduler(p);
  3994. if (retval)
  3995. goto out_free_new_mask;
  3996. cpuset_cpus_allowed(p, cpus_allowed);
  3997. cpumask_and(new_mask, in_mask, cpus_allowed);
  3998. /*
  3999. * Since bandwidth control happens on root_domain basis,
  4000. * if admission test is enabled, we only admit -deadline
  4001. * tasks allowed to run on all the CPUs in the task's
  4002. * root_domain.
  4003. */
  4004. #ifdef CONFIG_SMP
  4005. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  4006. rcu_read_lock();
  4007. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  4008. retval = -EBUSY;
  4009. rcu_read_unlock();
  4010. goto out_free_new_mask;
  4011. }
  4012. rcu_read_unlock();
  4013. }
  4014. #endif
  4015. again:
  4016. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  4017. if (!retval) {
  4018. cpuset_cpus_allowed(p, cpus_allowed);
  4019. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4020. /*
  4021. * We must have raced with a concurrent cpuset
  4022. * update. Just reset the cpus_allowed to the
  4023. * cpuset's cpus_allowed
  4024. */
  4025. cpumask_copy(new_mask, cpus_allowed);
  4026. goto again;
  4027. }
  4028. }
  4029. out_free_new_mask:
  4030. free_cpumask_var(new_mask);
  4031. out_free_cpus_allowed:
  4032. free_cpumask_var(cpus_allowed);
  4033. out_put_task:
  4034. put_task_struct(p);
  4035. return retval;
  4036. }
  4037. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4038. struct cpumask *new_mask)
  4039. {
  4040. if (len < cpumask_size())
  4041. cpumask_clear(new_mask);
  4042. else if (len > cpumask_size())
  4043. len = cpumask_size();
  4044. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4045. }
  4046. /**
  4047. * sys_sched_setaffinity - set the cpu affinity of a process
  4048. * @pid: pid of the process
  4049. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4050. * @user_mask_ptr: user-space pointer to the new cpu mask
  4051. *
  4052. * Return: 0 on success. An error code otherwise.
  4053. */
  4054. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4055. unsigned long __user *, user_mask_ptr)
  4056. {
  4057. cpumask_var_t new_mask;
  4058. int retval;
  4059. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4060. return -ENOMEM;
  4061. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4062. if (retval == 0)
  4063. retval = sched_setaffinity(pid, new_mask);
  4064. free_cpumask_var(new_mask);
  4065. return retval;
  4066. }
  4067. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4068. {
  4069. struct task_struct *p;
  4070. unsigned long flags;
  4071. int retval;
  4072. rcu_read_lock();
  4073. retval = -ESRCH;
  4074. p = find_process_by_pid(pid);
  4075. if (!p)
  4076. goto out_unlock;
  4077. retval = security_task_getscheduler(p);
  4078. if (retval)
  4079. goto out_unlock;
  4080. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4081. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  4082. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4083. out_unlock:
  4084. rcu_read_unlock();
  4085. return retval;
  4086. }
  4087. /**
  4088. * sys_sched_getaffinity - get the cpu affinity of a process
  4089. * @pid: pid of the process
  4090. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4091. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4092. *
  4093. * Return: 0 on success. An error code otherwise.
  4094. */
  4095. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4096. unsigned long __user *, user_mask_ptr)
  4097. {
  4098. int ret;
  4099. cpumask_var_t mask;
  4100. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4101. return -EINVAL;
  4102. if (len & (sizeof(unsigned long)-1))
  4103. return -EINVAL;
  4104. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4105. return -ENOMEM;
  4106. ret = sched_getaffinity(pid, mask);
  4107. if (ret == 0) {
  4108. size_t retlen = min_t(size_t, len, cpumask_size());
  4109. if (copy_to_user(user_mask_ptr, mask, retlen))
  4110. ret = -EFAULT;
  4111. else
  4112. ret = retlen;
  4113. }
  4114. free_cpumask_var(mask);
  4115. return ret;
  4116. }
  4117. /**
  4118. * sys_sched_yield - yield the current processor to other threads.
  4119. *
  4120. * This function yields the current CPU to other tasks. If there are no
  4121. * other threads running on this CPU then this function will return.
  4122. *
  4123. * Return: 0.
  4124. */
  4125. SYSCALL_DEFINE0(sched_yield)
  4126. {
  4127. struct rq *rq = this_rq_lock();
  4128. schedstat_inc(rq, yld_count);
  4129. current->sched_class->yield_task(rq);
  4130. /*
  4131. * Since we are going to call schedule() anyway, there's
  4132. * no need to preempt or enable interrupts:
  4133. */
  4134. __release(rq->lock);
  4135. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4136. do_raw_spin_unlock(&rq->lock);
  4137. sched_preempt_enable_no_resched();
  4138. schedule();
  4139. return 0;
  4140. }
  4141. int __sched _cond_resched(void)
  4142. {
  4143. if (should_resched(0)) {
  4144. preempt_schedule_common();
  4145. return 1;
  4146. }
  4147. return 0;
  4148. }
  4149. EXPORT_SYMBOL(_cond_resched);
  4150. /*
  4151. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4152. * call schedule, and on return reacquire the lock.
  4153. *
  4154. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4155. * operations here to prevent schedule() from being called twice (once via
  4156. * spin_unlock(), once by hand).
  4157. */
  4158. int __cond_resched_lock(spinlock_t *lock)
  4159. {
  4160. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  4161. int ret = 0;
  4162. lockdep_assert_held(lock);
  4163. if (spin_needbreak(lock) || resched) {
  4164. spin_unlock(lock);
  4165. if (resched)
  4166. preempt_schedule_common();
  4167. else
  4168. cpu_relax();
  4169. ret = 1;
  4170. spin_lock(lock);
  4171. }
  4172. return ret;
  4173. }
  4174. EXPORT_SYMBOL(__cond_resched_lock);
  4175. int __sched __cond_resched_softirq(void)
  4176. {
  4177. BUG_ON(!in_softirq());
  4178. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  4179. local_bh_enable();
  4180. preempt_schedule_common();
  4181. local_bh_disable();
  4182. return 1;
  4183. }
  4184. return 0;
  4185. }
  4186. EXPORT_SYMBOL(__cond_resched_softirq);
  4187. /**
  4188. * yield - yield the current processor to other threads.
  4189. *
  4190. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4191. *
  4192. * The scheduler is at all times free to pick the calling task as the most
  4193. * eligible task to run, if removing the yield() call from your code breaks
  4194. * it, its already broken.
  4195. *
  4196. * Typical broken usage is:
  4197. *
  4198. * while (!event)
  4199. * yield();
  4200. *
  4201. * where one assumes that yield() will let 'the other' process run that will
  4202. * make event true. If the current task is a SCHED_FIFO task that will never
  4203. * happen. Never use yield() as a progress guarantee!!
  4204. *
  4205. * If you want to use yield() to wait for something, use wait_event().
  4206. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4207. * If you still want to use yield(), do not!
  4208. */
  4209. void __sched yield(void)
  4210. {
  4211. set_current_state(TASK_RUNNING);
  4212. sys_sched_yield();
  4213. }
  4214. EXPORT_SYMBOL(yield);
  4215. /**
  4216. * yield_to - yield the current processor to another thread in
  4217. * your thread group, or accelerate that thread toward the
  4218. * processor it's on.
  4219. * @p: target task
  4220. * @preempt: whether task preemption is allowed or not
  4221. *
  4222. * It's the caller's job to ensure that the target task struct
  4223. * can't go away on us before we can do any checks.
  4224. *
  4225. * Return:
  4226. * true (>0) if we indeed boosted the target task.
  4227. * false (0) if we failed to boost the target.
  4228. * -ESRCH if there's no task to yield to.
  4229. */
  4230. int __sched yield_to(struct task_struct *p, bool preempt)
  4231. {
  4232. struct task_struct *curr = current;
  4233. struct rq *rq, *p_rq;
  4234. unsigned long flags;
  4235. int yielded = 0;
  4236. local_irq_save(flags);
  4237. rq = this_rq();
  4238. again:
  4239. p_rq = task_rq(p);
  4240. /*
  4241. * If we're the only runnable task on the rq and target rq also
  4242. * has only one task, there's absolutely no point in yielding.
  4243. */
  4244. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  4245. yielded = -ESRCH;
  4246. goto out_irq;
  4247. }
  4248. double_rq_lock(rq, p_rq);
  4249. if (task_rq(p) != p_rq) {
  4250. double_rq_unlock(rq, p_rq);
  4251. goto again;
  4252. }
  4253. if (!curr->sched_class->yield_to_task)
  4254. goto out_unlock;
  4255. if (curr->sched_class != p->sched_class)
  4256. goto out_unlock;
  4257. if (task_running(p_rq, p) || p->state)
  4258. goto out_unlock;
  4259. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4260. if (yielded) {
  4261. schedstat_inc(rq, yld_count);
  4262. /*
  4263. * Make p's CPU reschedule; pick_next_entity takes care of
  4264. * fairness.
  4265. */
  4266. if (preempt && rq != p_rq)
  4267. resched_curr(p_rq);
  4268. }
  4269. out_unlock:
  4270. double_rq_unlock(rq, p_rq);
  4271. out_irq:
  4272. local_irq_restore(flags);
  4273. if (yielded > 0)
  4274. schedule();
  4275. return yielded;
  4276. }
  4277. EXPORT_SYMBOL_GPL(yield_to);
  4278. /*
  4279. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4280. * that process accounting knows that this is a task in IO wait state.
  4281. */
  4282. long __sched io_schedule_timeout(long timeout)
  4283. {
  4284. int old_iowait = current->in_iowait;
  4285. struct rq *rq;
  4286. long ret;
  4287. current->in_iowait = 1;
  4288. blk_schedule_flush_plug(current);
  4289. delayacct_blkio_start();
  4290. rq = raw_rq();
  4291. atomic_inc(&rq->nr_iowait);
  4292. ret = schedule_timeout(timeout);
  4293. current->in_iowait = old_iowait;
  4294. atomic_dec(&rq->nr_iowait);
  4295. delayacct_blkio_end();
  4296. return ret;
  4297. }
  4298. EXPORT_SYMBOL(io_schedule_timeout);
  4299. /**
  4300. * sys_sched_get_priority_max - return maximum RT priority.
  4301. * @policy: scheduling class.
  4302. *
  4303. * Return: On success, this syscall returns the maximum
  4304. * rt_priority that can be used by a given scheduling class.
  4305. * On failure, a negative error code is returned.
  4306. */
  4307. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4308. {
  4309. int ret = -EINVAL;
  4310. switch (policy) {
  4311. case SCHED_FIFO:
  4312. case SCHED_RR:
  4313. ret = MAX_USER_RT_PRIO-1;
  4314. break;
  4315. case SCHED_DEADLINE:
  4316. case SCHED_NORMAL:
  4317. case SCHED_BATCH:
  4318. case SCHED_IDLE:
  4319. ret = 0;
  4320. break;
  4321. }
  4322. return ret;
  4323. }
  4324. /**
  4325. * sys_sched_get_priority_min - return minimum RT priority.
  4326. * @policy: scheduling class.
  4327. *
  4328. * Return: On success, this syscall returns the minimum
  4329. * rt_priority that can be used by a given scheduling class.
  4330. * On failure, a negative error code is returned.
  4331. */
  4332. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4333. {
  4334. int ret = -EINVAL;
  4335. switch (policy) {
  4336. case SCHED_FIFO:
  4337. case SCHED_RR:
  4338. ret = 1;
  4339. break;
  4340. case SCHED_DEADLINE:
  4341. case SCHED_NORMAL:
  4342. case SCHED_BATCH:
  4343. case SCHED_IDLE:
  4344. ret = 0;
  4345. }
  4346. return ret;
  4347. }
  4348. /**
  4349. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4350. * @pid: pid of the process.
  4351. * @interval: userspace pointer to the timeslice value.
  4352. *
  4353. * this syscall writes the default timeslice value of a given process
  4354. * into the user-space timespec buffer. A value of '0' means infinity.
  4355. *
  4356. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4357. * an error code.
  4358. */
  4359. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4360. struct timespec __user *, interval)
  4361. {
  4362. struct task_struct *p;
  4363. unsigned int time_slice;
  4364. struct rq_flags rf;
  4365. struct timespec t;
  4366. struct rq *rq;
  4367. int retval;
  4368. if (pid < 0)
  4369. return -EINVAL;
  4370. retval = -ESRCH;
  4371. rcu_read_lock();
  4372. p = find_process_by_pid(pid);
  4373. if (!p)
  4374. goto out_unlock;
  4375. retval = security_task_getscheduler(p);
  4376. if (retval)
  4377. goto out_unlock;
  4378. rq = task_rq_lock(p, &rf);
  4379. time_slice = 0;
  4380. if (p->sched_class->get_rr_interval)
  4381. time_slice = p->sched_class->get_rr_interval(rq, p);
  4382. task_rq_unlock(rq, p, &rf);
  4383. rcu_read_unlock();
  4384. jiffies_to_timespec(time_slice, &t);
  4385. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4386. return retval;
  4387. out_unlock:
  4388. rcu_read_unlock();
  4389. return retval;
  4390. }
  4391. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4392. void sched_show_task(struct task_struct *p)
  4393. {
  4394. unsigned long free = 0;
  4395. int ppid;
  4396. unsigned long state = p->state;
  4397. if (state)
  4398. state = __ffs(state) + 1;
  4399. printk(KERN_INFO "%-15.15s %c", p->comm,
  4400. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4401. #if BITS_PER_LONG == 32
  4402. if (state == TASK_RUNNING)
  4403. printk(KERN_CONT " running ");
  4404. else
  4405. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4406. #else
  4407. if (state == TASK_RUNNING)
  4408. printk(KERN_CONT " running task ");
  4409. else
  4410. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4411. #endif
  4412. #ifdef CONFIG_DEBUG_STACK_USAGE
  4413. free = stack_not_used(p);
  4414. #endif
  4415. ppid = 0;
  4416. rcu_read_lock();
  4417. if (pid_alive(p))
  4418. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4419. rcu_read_unlock();
  4420. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4421. task_pid_nr(p), ppid,
  4422. (unsigned long)task_thread_info(p)->flags);
  4423. print_worker_info(KERN_INFO, p);
  4424. show_stack(p, NULL);
  4425. }
  4426. void show_state_filter(unsigned long state_filter)
  4427. {
  4428. struct task_struct *g, *p;
  4429. #if BITS_PER_LONG == 32
  4430. printk(KERN_INFO
  4431. " task PC stack pid father\n");
  4432. #else
  4433. printk(KERN_INFO
  4434. " task PC stack pid father\n");
  4435. #endif
  4436. rcu_read_lock();
  4437. for_each_process_thread(g, p) {
  4438. /*
  4439. * reset the NMI-timeout, listing all files on a slow
  4440. * console might take a lot of time:
  4441. */
  4442. touch_nmi_watchdog();
  4443. if (!state_filter || (p->state & state_filter))
  4444. sched_show_task(p);
  4445. }
  4446. touch_all_softlockup_watchdogs();
  4447. #ifdef CONFIG_SCHED_DEBUG
  4448. if (!state_filter)
  4449. sysrq_sched_debug_show();
  4450. #endif
  4451. rcu_read_unlock();
  4452. /*
  4453. * Only show locks if all tasks are dumped:
  4454. */
  4455. if (!state_filter)
  4456. debug_show_all_locks();
  4457. }
  4458. void init_idle_bootup_task(struct task_struct *idle)
  4459. {
  4460. idle->sched_class = &idle_sched_class;
  4461. }
  4462. /**
  4463. * init_idle - set up an idle thread for a given CPU
  4464. * @idle: task in question
  4465. * @cpu: cpu the idle task belongs to
  4466. *
  4467. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4468. * flag, to make booting more robust.
  4469. */
  4470. void init_idle(struct task_struct *idle, int cpu)
  4471. {
  4472. struct rq *rq = cpu_rq(cpu);
  4473. unsigned long flags;
  4474. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4475. raw_spin_lock(&rq->lock);
  4476. __sched_fork(0, idle);
  4477. idle->state = TASK_RUNNING;
  4478. idle->se.exec_start = sched_clock();
  4479. kasan_unpoison_task_stack(idle);
  4480. #ifdef CONFIG_SMP
  4481. /*
  4482. * Its possible that init_idle() gets called multiple times on a task,
  4483. * in that case do_set_cpus_allowed() will not do the right thing.
  4484. *
  4485. * And since this is boot we can forgo the serialization.
  4486. */
  4487. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4488. #endif
  4489. /*
  4490. * We're having a chicken and egg problem, even though we are
  4491. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4492. * lockdep check in task_group() will fail.
  4493. *
  4494. * Similar case to sched_fork(). / Alternatively we could
  4495. * use task_rq_lock() here and obtain the other rq->lock.
  4496. *
  4497. * Silence PROVE_RCU
  4498. */
  4499. rcu_read_lock();
  4500. __set_task_cpu(idle, cpu);
  4501. rcu_read_unlock();
  4502. rq->curr = rq->idle = idle;
  4503. idle->on_rq = TASK_ON_RQ_QUEUED;
  4504. #ifdef CONFIG_SMP
  4505. idle->on_cpu = 1;
  4506. #endif
  4507. raw_spin_unlock(&rq->lock);
  4508. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4509. /* Set the preempt count _outside_ the spinlocks! */
  4510. init_idle_preempt_count(idle, cpu);
  4511. /*
  4512. * The idle tasks have their own, simple scheduling class:
  4513. */
  4514. idle->sched_class = &idle_sched_class;
  4515. ftrace_graph_init_idle_task(idle, cpu);
  4516. vtime_init_idle(idle, cpu);
  4517. #ifdef CONFIG_SMP
  4518. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4519. #endif
  4520. }
  4521. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4522. const struct cpumask *trial)
  4523. {
  4524. int ret = 1, trial_cpus;
  4525. struct dl_bw *cur_dl_b;
  4526. unsigned long flags;
  4527. if (!cpumask_weight(cur))
  4528. return ret;
  4529. rcu_read_lock_sched();
  4530. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4531. trial_cpus = cpumask_weight(trial);
  4532. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4533. if (cur_dl_b->bw != -1 &&
  4534. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4535. ret = 0;
  4536. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4537. rcu_read_unlock_sched();
  4538. return ret;
  4539. }
  4540. int task_can_attach(struct task_struct *p,
  4541. const struct cpumask *cs_cpus_allowed)
  4542. {
  4543. int ret = 0;
  4544. /*
  4545. * Kthreads which disallow setaffinity shouldn't be moved
  4546. * to a new cpuset; we don't want to change their cpu
  4547. * affinity and isolating such threads by their set of
  4548. * allowed nodes is unnecessary. Thus, cpusets are not
  4549. * applicable for such threads. This prevents checking for
  4550. * success of set_cpus_allowed_ptr() on all attached tasks
  4551. * before cpus_allowed may be changed.
  4552. */
  4553. if (p->flags & PF_NO_SETAFFINITY) {
  4554. ret = -EINVAL;
  4555. goto out;
  4556. }
  4557. #ifdef CONFIG_SMP
  4558. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4559. cs_cpus_allowed)) {
  4560. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4561. cs_cpus_allowed);
  4562. struct dl_bw *dl_b;
  4563. bool overflow;
  4564. int cpus;
  4565. unsigned long flags;
  4566. rcu_read_lock_sched();
  4567. dl_b = dl_bw_of(dest_cpu);
  4568. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4569. cpus = dl_bw_cpus(dest_cpu);
  4570. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4571. if (overflow)
  4572. ret = -EBUSY;
  4573. else {
  4574. /*
  4575. * We reserve space for this task in the destination
  4576. * root_domain, as we can't fail after this point.
  4577. * We will free resources in the source root_domain
  4578. * later on (see set_cpus_allowed_dl()).
  4579. */
  4580. __dl_add(dl_b, p->dl.dl_bw);
  4581. }
  4582. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4583. rcu_read_unlock_sched();
  4584. }
  4585. #endif
  4586. out:
  4587. return ret;
  4588. }
  4589. #ifdef CONFIG_SMP
  4590. static bool sched_smp_initialized __read_mostly;
  4591. #ifdef CONFIG_NUMA_BALANCING
  4592. /* Migrate current task p to target_cpu */
  4593. int migrate_task_to(struct task_struct *p, int target_cpu)
  4594. {
  4595. struct migration_arg arg = { p, target_cpu };
  4596. int curr_cpu = task_cpu(p);
  4597. if (curr_cpu == target_cpu)
  4598. return 0;
  4599. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4600. return -EINVAL;
  4601. /* TODO: This is not properly updating schedstats */
  4602. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4603. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4604. }
  4605. /*
  4606. * Requeue a task on a given node and accurately track the number of NUMA
  4607. * tasks on the runqueues
  4608. */
  4609. void sched_setnuma(struct task_struct *p, int nid)
  4610. {
  4611. bool queued, running;
  4612. struct rq_flags rf;
  4613. struct rq *rq;
  4614. rq = task_rq_lock(p, &rf);
  4615. queued = task_on_rq_queued(p);
  4616. running = task_current(rq, p);
  4617. if (queued)
  4618. dequeue_task(rq, p, DEQUEUE_SAVE);
  4619. if (running)
  4620. put_prev_task(rq, p);
  4621. p->numa_preferred_nid = nid;
  4622. if (running)
  4623. p->sched_class->set_curr_task(rq);
  4624. if (queued)
  4625. enqueue_task(rq, p, ENQUEUE_RESTORE);
  4626. task_rq_unlock(rq, p, &rf);
  4627. }
  4628. #endif /* CONFIG_NUMA_BALANCING */
  4629. #ifdef CONFIG_HOTPLUG_CPU
  4630. /*
  4631. * Ensures that the idle task is using init_mm right before its cpu goes
  4632. * offline.
  4633. */
  4634. void idle_task_exit(void)
  4635. {
  4636. struct mm_struct *mm = current->active_mm;
  4637. BUG_ON(cpu_online(smp_processor_id()));
  4638. if (mm != &init_mm) {
  4639. switch_mm_irqs_off(mm, &init_mm, current);
  4640. finish_arch_post_lock_switch();
  4641. }
  4642. mmdrop(mm);
  4643. }
  4644. /*
  4645. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4646. * we might have. Assumes we're called after migrate_tasks() so that the
  4647. * nr_active count is stable.
  4648. *
  4649. * Also see the comment "Global load-average calculations".
  4650. */
  4651. static void calc_load_migrate(struct rq *rq)
  4652. {
  4653. long delta = calc_load_fold_active(rq);
  4654. if (delta)
  4655. atomic_long_add(delta, &calc_load_tasks);
  4656. }
  4657. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4658. {
  4659. }
  4660. static const struct sched_class fake_sched_class = {
  4661. .put_prev_task = put_prev_task_fake,
  4662. };
  4663. static struct task_struct fake_task = {
  4664. /*
  4665. * Avoid pull_{rt,dl}_task()
  4666. */
  4667. .prio = MAX_PRIO + 1,
  4668. .sched_class = &fake_sched_class,
  4669. };
  4670. /*
  4671. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4672. * try_to_wake_up()->select_task_rq().
  4673. *
  4674. * Called with rq->lock held even though we'er in stop_machine() and
  4675. * there's no concurrency possible, we hold the required locks anyway
  4676. * because of lock validation efforts.
  4677. */
  4678. static void migrate_tasks(struct rq *dead_rq)
  4679. {
  4680. struct rq *rq = dead_rq;
  4681. struct task_struct *next, *stop = rq->stop;
  4682. struct pin_cookie cookie;
  4683. int dest_cpu;
  4684. /*
  4685. * Fudge the rq selection such that the below task selection loop
  4686. * doesn't get stuck on the currently eligible stop task.
  4687. *
  4688. * We're currently inside stop_machine() and the rq is either stuck
  4689. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4690. * either way we should never end up calling schedule() until we're
  4691. * done here.
  4692. */
  4693. rq->stop = NULL;
  4694. /*
  4695. * put_prev_task() and pick_next_task() sched
  4696. * class method both need to have an up-to-date
  4697. * value of rq->clock[_task]
  4698. */
  4699. update_rq_clock(rq);
  4700. for (;;) {
  4701. /*
  4702. * There's this thread running, bail when that's the only
  4703. * remaining thread.
  4704. */
  4705. if (rq->nr_running == 1)
  4706. break;
  4707. /*
  4708. * pick_next_task assumes pinned rq->lock.
  4709. */
  4710. cookie = lockdep_pin_lock(&rq->lock);
  4711. next = pick_next_task(rq, &fake_task, cookie);
  4712. BUG_ON(!next);
  4713. next->sched_class->put_prev_task(rq, next);
  4714. /*
  4715. * Rules for changing task_struct::cpus_allowed are holding
  4716. * both pi_lock and rq->lock, such that holding either
  4717. * stabilizes the mask.
  4718. *
  4719. * Drop rq->lock is not quite as disastrous as it usually is
  4720. * because !cpu_active at this point, which means load-balance
  4721. * will not interfere. Also, stop-machine.
  4722. */
  4723. lockdep_unpin_lock(&rq->lock, cookie);
  4724. raw_spin_unlock(&rq->lock);
  4725. raw_spin_lock(&next->pi_lock);
  4726. raw_spin_lock(&rq->lock);
  4727. /*
  4728. * Since we're inside stop-machine, _nothing_ should have
  4729. * changed the task, WARN if weird stuff happened, because in
  4730. * that case the above rq->lock drop is a fail too.
  4731. */
  4732. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4733. raw_spin_unlock(&next->pi_lock);
  4734. continue;
  4735. }
  4736. /* Find suitable destination for @next, with force if needed. */
  4737. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4738. rq = __migrate_task(rq, next, dest_cpu);
  4739. if (rq != dead_rq) {
  4740. raw_spin_unlock(&rq->lock);
  4741. rq = dead_rq;
  4742. raw_spin_lock(&rq->lock);
  4743. }
  4744. raw_spin_unlock(&next->pi_lock);
  4745. }
  4746. rq->stop = stop;
  4747. }
  4748. #endif /* CONFIG_HOTPLUG_CPU */
  4749. static void set_rq_online(struct rq *rq)
  4750. {
  4751. if (!rq->online) {
  4752. const struct sched_class *class;
  4753. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4754. rq->online = 1;
  4755. for_each_class(class) {
  4756. if (class->rq_online)
  4757. class->rq_online(rq);
  4758. }
  4759. }
  4760. }
  4761. static void set_rq_offline(struct rq *rq)
  4762. {
  4763. if (rq->online) {
  4764. const struct sched_class *class;
  4765. for_each_class(class) {
  4766. if (class->rq_offline)
  4767. class->rq_offline(rq);
  4768. }
  4769. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4770. rq->online = 0;
  4771. }
  4772. }
  4773. static void set_cpu_rq_start_time(unsigned int cpu)
  4774. {
  4775. struct rq *rq = cpu_rq(cpu);
  4776. rq->age_stamp = sched_clock_cpu(cpu);
  4777. }
  4778. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4779. #ifdef CONFIG_SCHED_DEBUG
  4780. static __read_mostly int sched_debug_enabled;
  4781. static int __init sched_debug_setup(char *str)
  4782. {
  4783. sched_debug_enabled = 1;
  4784. return 0;
  4785. }
  4786. early_param("sched_debug", sched_debug_setup);
  4787. static inline bool sched_debug(void)
  4788. {
  4789. return sched_debug_enabled;
  4790. }
  4791. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4792. struct cpumask *groupmask)
  4793. {
  4794. struct sched_group *group = sd->groups;
  4795. cpumask_clear(groupmask);
  4796. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4797. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4798. printk("does not load-balance\n");
  4799. if (sd->parent)
  4800. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4801. " has parent");
  4802. return -1;
  4803. }
  4804. printk(KERN_CONT "span %*pbl level %s\n",
  4805. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4806. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4807. printk(KERN_ERR "ERROR: domain->span does not contain "
  4808. "CPU%d\n", cpu);
  4809. }
  4810. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4811. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4812. " CPU%d\n", cpu);
  4813. }
  4814. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4815. do {
  4816. if (!group) {
  4817. printk("\n");
  4818. printk(KERN_ERR "ERROR: group is NULL\n");
  4819. break;
  4820. }
  4821. if (!cpumask_weight(sched_group_cpus(group))) {
  4822. printk(KERN_CONT "\n");
  4823. printk(KERN_ERR "ERROR: empty group\n");
  4824. break;
  4825. }
  4826. if (!(sd->flags & SD_OVERLAP) &&
  4827. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4828. printk(KERN_CONT "\n");
  4829. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4830. break;
  4831. }
  4832. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4833. printk(KERN_CONT " %*pbl",
  4834. cpumask_pr_args(sched_group_cpus(group)));
  4835. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4836. printk(KERN_CONT " (cpu_capacity = %d)",
  4837. group->sgc->capacity);
  4838. }
  4839. group = group->next;
  4840. } while (group != sd->groups);
  4841. printk(KERN_CONT "\n");
  4842. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4843. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4844. if (sd->parent &&
  4845. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4846. printk(KERN_ERR "ERROR: parent span is not a superset "
  4847. "of domain->span\n");
  4848. return 0;
  4849. }
  4850. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4851. {
  4852. int level = 0;
  4853. if (!sched_debug_enabled)
  4854. return;
  4855. if (!sd) {
  4856. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4857. return;
  4858. }
  4859. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4860. for (;;) {
  4861. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4862. break;
  4863. level++;
  4864. sd = sd->parent;
  4865. if (!sd)
  4866. break;
  4867. }
  4868. }
  4869. #else /* !CONFIG_SCHED_DEBUG */
  4870. # define sched_domain_debug(sd, cpu) do { } while (0)
  4871. static inline bool sched_debug(void)
  4872. {
  4873. return false;
  4874. }
  4875. #endif /* CONFIG_SCHED_DEBUG */
  4876. static int sd_degenerate(struct sched_domain *sd)
  4877. {
  4878. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4879. return 1;
  4880. /* Following flags need at least 2 groups */
  4881. if (sd->flags & (SD_LOAD_BALANCE |
  4882. SD_BALANCE_NEWIDLE |
  4883. SD_BALANCE_FORK |
  4884. SD_BALANCE_EXEC |
  4885. SD_SHARE_CPUCAPACITY |
  4886. SD_SHARE_PKG_RESOURCES |
  4887. SD_SHARE_POWERDOMAIN)) {
  4888. if (sd->groups != sd->groups->next)
  4889. return 0;
  4890. }
  4891. /* Following flags don't use groups */
  4892. if (sd->flags & (SD_WAKE_AFFINE))
  4893. return 0;
  4894. return 1;
  4895. }
  4896. static int
  4897. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4898. {
  4899. unsigned long cflags = sd->flags, pflags = parent->flags;
  4900. if (sd_degenerate(parent))
  4901. return 1;
  4902. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4903. return 0;
  4904. /* Flags needing groups don't count if only 1 group in parent */
  4905. if (parent->groups == parent->groups->next) {
  4906. pflags &= ~(SD_LOAD_BALANCE |
  4907. SD_BALANCE_NEWIDLE |
  4908. SD_BALANCE_FORK |
  4909. SD_BALANCE_EXEC |
  4910. SD_SHARE_CPUCAPACITY |
  4911. SD_SHARE_PKG_RESOURCES |
  4912. SD_PREFER_SIBLING |
  4913. SD_SHARE_POWERDOMAIN);
  4914. if (nr_node_ids == 1)
  4915. pflags &= ~SD_SERIALIZE;
  4916. }
  4917. if (~cflags & pflags)
  4918. return 0;
  4919. return 1;
  4920. }
  4921. static void free_rootdomain(struct rcu_head *rcu)
  4922. {
  4923. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4924. cpupri_cleanup(&rd->cpupri);
  4925. cpudl_cleanup(&rd->cpudl);
  4926. free_cpumask_var(rd->dlo_mask);
  4927. free_cpumask_var(rd->rto_mask);
  4928. free_cpumask_var(rd->online);
  4929. free_cpumask_var(rd->span);
  4930. kfree(rd);
  4931. }
  4932. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4933. {
  4934. struct root_domain *old_rd = NULL;
  4935. unsigned long flags;
  4936. raw_spin_lock_irqsave(&rq->lock, flags);
  4937. if (rq->rd) {
  4938. old_rd = rq->rd;
  4939. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4940. set_rq_offline(rq);
  4941. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4942. /*
  4943. * If we dont want to free the old_rd yet then
  4944. * set old_rd to NULL to skip the freeing later
  4945. * in this function:
  4946. */
  4947. if (!atomic_dec_and_test(&old_rd->refcount))
  4948. old_rd = NULL;
  4949. }
  4950. atomic_inc(&rd->refcount);
  4951. rq->rd = rd;
  4952. cpumask_set_cpu(rq->cpu, rd->span);
  4953. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4954. set_rq_online(rq);
  4955. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4956. if (old_rd)
  4957. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4958. }
  4959. static int init_rootdomain(struct root_domain *rd)
  4960. {
  4961. memset(rd, 0, sizeof(*rd));
  4962. if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
  4963. goto out;
  4964. if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
  4965. goto free_span;
  4966. if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4967. goto free_online;
  4968. if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4969. goto free_dlo_mask;
  4970. init_dl_bw(&rd->dl_bw);
  4971. if (cpudl_init(&rd->cpudl) != 0)
  4972. goto free_dlo_mask;
  4973. if (cpupri_init(&rd->cpupri) != 0)
  4974. goto free_rto_mask;
  4975. return 0;
  4976. free_rto_mask:
  4977. free_cpumask_var(rd->rto_mask);
  4978. free_dlo_mask:
  4979. free_cpumask_var(rd->dlo_mask);
  4980. free_online:
  4981. free_cpumask_var(rd->online);
  4982. free_span:
  4983. free_cpumask_var(rd->span);
  4984. out:
  4985. return -ENOMEM;
  4986. }
  4987. /*
  4988. * By default the system creates a single root-domain with all cpus as
  4989. * members (mimicking the global state we have today).
  4990. */
  4991. struct root_domain def_root_domain;
  4992. static void init_defrootdomain(void)
  4993. {
  4994. init_rootdomain(&def_root_domain);
  4995. atomic_set(&def_root_domain.refcount, 1);
  4996. }
  4997. static struct root_domain *alloc_rootdomain(void)
  4998. {
  4999. struct root_domain *rd;
  5000. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5001. if (!rd)
  5002. return NULL;
  5003. if (init_rootdomain(rd) != 0) {
  5004. kfree(rd);
  5005. return NULL;
  5006. }
  5007. return rd;
  5008. }
  5009. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5010. {
  5011. struct sched_group *tmp, *first;
  5012. if (!sg)
  5013. return;
  5014. first = sg;
  5015. do {
  5016. tmp = sg->next;
  5017. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5018. kfree(sg->sgc);
  5019. kfree(sg);
  5020. sg = tmp;
  5021. } while (sg != first);
  5022. }
  5023. static void free_sched_domain(struct rcu_head *rcu)
  5024. {
  5025. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5026. /*
  5027. * If its an overlapping domain it has private groups, iterate and
  5028. * nuke them all.
  5029. */
  5030. if (sd->flags & SD_OVERLAP) {
  5031. free_sched_groups(sd->groups, 1);
  5032. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5033. kfree(sd->groups->sgc);
  5034. kfree(sd->groups);
  5035. }
  5036. kfree(sd);
  5037. }
  5038. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5039. {
  5040. call_rcu(&sd->rcu, free_sched_domain);
  5041. }
  5042. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5043. {
  5044. for (; sd; sd = sd->parent)
  5045. destroy_sched_domain(sd, cpu);
  5046. }
  5047. /*
  5048. * Keep a special pointer to the highest sched_domain that has
  5049. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5050. * allows us to avoid some pointer chasing select_idle_sibling().
  5051. *
  5052. * Also keep a unique ID per domain (we use the first cpu number in
  5053. * the cpumask of the domain), this allows us to quickly tell if
  5054. * two cpus are in the same cache domain, see cpus_share_cache().
  5055. */
  5056. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5057. DEFINE_PER_CPU(int, sd_llc_size);
  5058. DEFINE_PER_CPU(int, sd_llc_id);
  5059. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5060. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5061. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5062. static void update_top_cache_domain(int cpu)
  5063. {
  5064. struct sched_domain *sd;
  5065. struct sched_domain *busy_sd = NULL;
  5066. int id = cpu;
  5067. int size = 1;
  5068. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5069. if (sd) {
  5070. id = cpumask_first(sched_domain_span(sd));
  5071. size = cpumask_weight(sched_domain_span(sd));
  5072. busy_sd = sd->parent; /* sd_busy */
  5073. }
  5074. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5075. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5076. per_cpu(sd_llc_size, cpu) = size;
  5077. per_cpu(sd_llc_id, cpu) = id;
  5078. sd = lowest_flag_domain(cpu, SD_NUMA);
  5079. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5080. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5081. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5082. }
  5083. /*
  5084. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5085. * hold the hotplug lock.
  5086. */
  5087. static void
  5088. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5089. {
  5090. struct rq *rq = cpu_rq(cpu);
  5091. struct sched_domain *tmp;
  5092. /* Remove the sched domains which do not contribute to scheduling. */
  5093. for (tmp = sd; tmp; ) {
  5094. struct sched_domain *parent = tmp->parent;
  5095. if (!parent)
  5096. break;
  5097. if (sd_parent_degenerate(tmp, parent)) {
  5098. tmp->parent = parent->parent;
  5099. if (parent->parent)
  5100. parent->parent->child = tmp;
  5101. /*
  5102. * Transfer SD_PREFER_SIBLING down in case of a
  5103. * degenerate parent; the spans match for this
  5104. * so the property transfers.
  5105. */
  5106. if (parent->flags & SD_PREFER_SIBLING)
  5107. tmp->flags |= SD_PREFER_SIBLING;
  5108. destroy_sched_domain(parent, cpu);
  5109. } else
  5110. tmp = tmp->parent;
  5111. }
  5112. if (sd && sd_degenerate(sd)) {
  5113. tmp = sd;
  5114. sd = sd->parent;
  5115. destroy_sched_domain(tmp, cpu);
  5116. if (sd)
  5117. sd->child = NULL;
  5118. }
  5119. sched_domain_debug(sd, cpu);
  5120. rq_attach_root(rq, rd);
  5121. tmp = rq->sd;
  5122. rcu_assign_pointer(rq->sd, sd);
  5123. destroy_sched_domains(tmp, cpu);
  5124. update_top_cache_domain(cpu);
  5125. }
  5126. /* Setup the mask of cpus configured for isolated domains */
  5127. static int __init isolated_cpu_setup(char *str)
  5128. {
  5129. int ret;
  5130. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5131. ret = cpulist_parse(str, cpu_isolated_map);
  5132. if (ret) {
  5133. pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
  5134. return 0;
  5135. }
  5136. return 1;
  5137. }
  5138. __setup("isolcpus=", isolated_cpu_setup);
  5139. struct s_data {
  5140. struct sched_domain ** __percpu sd;
  5141. struct root_domain *rd;
  5142. };
  5143. enum s_alloc {
  5144. sa_rootdomain,
  5145. sa_sd,
  5146. sa_sd_storage,
  5147. sa_none,
  5148. };
  5149. /*
  5150. * Build an iteration mask that can exclude certain CPUs from the upwards
  5151. * domain traversal.
  5152. *
  5153. * Asymmetric node setups can result in situations where the domain tree is of
  5154. * unequal depth, make sure to skip domains that already cover the entire
  5155. * range.
  5156. *
  5157. * In that case build_sched_domains() will have terminated the iteration early
  5158. * and our sibling sd spans will be empty. Domains should always include the
  5159. * cpu they're built on, so check that.
  5160. *
  5161. */
  5162. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5163. {
  5164. const struct cpumask *span = sched_domain_span(sd);
  5165. struct sd_data *sdd = sd->private;
  5166. struct sched_domain *sibling;
  5167. int i;
  5168. for_each_cpu(i, span) {
  5169. sibling = *per_cpu_ptr(sdd->sd, i);
  5170. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5171. continue;
  5172. cpumask_set_cpu(i, sched_group_mask(sg));
  5173. }
  5174. }
  5175. /*
  5176. * Return the canonical balance cpu for this group, this is the first cpu
  5177. * of this group that's also in the iteration mask.
  5178. */
  5179. int group_balance_cpu(struct sched_group *sg)
  5180. {
  5181. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5182. }
  5183. static int
  5184. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5185. {
  5186. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5187. const struct cpumask *span = sched_domain_span(sd);
  5188. struct cpumask *covered = sched_domains_tmpmask;
  5189. struct sd_data *sdd = sd->private;
  5190. struct sched_domain *sibling;
  5191. int i;
  5192. cpumask_clear(covered);
  5193. for_each_cpu(i, span) {
  5194. struct cpumask *sg_span;
  5195. if (cpumask_test_cpu(i, covered))
  5196. continue;
  5197. sibling = *per_cpu_ptr(sdd->sd, i);
  5198. /* See the comment near build_group_mask(). */
  5199. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5200. continue;
  5201. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5202. GFP_KERNEL, cpu_to_node(cpu));
  5203. if (!sg)
  5204. goto fail;
  5205. sg_span = sched_group_cpus(sg);
  5206. if (sibling->child)
  5207. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5208. else
  5209. cpumask_set_cpu(i, sg_span);
  5210. cpumask_or(covered, covered, sg_span);
  5211. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5212. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5213. build_group_mask(sd, sg);
  5214. /*
  5215. * Initialize sgc->capacity such that even if we mess up the
  5216. * domains and no possible iteration will get us here, we won't
  5217. * die on a /0 trap.
  5218. */
  5219. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5220. /*
  5221. * Make sure the first group of this domain contains the
  5222. * canonical balance cpu. Otherwise the sched_domain iteration
  5223. * breaks. See update_sg_lb_stats().
  5224. */
  5225. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5226. group_balance_cpu(sg) == cpu)
  5227. groups = sg;
  5228. if (!first)
  5229. first = sg;
  5230. if (last)
  5231. last->next = sg;
  5232. last = sg;
  5233. last->next = first;
  5234. }
  5235. sd->groups = groups;
  5236. return 0;
  5237. fail:
  5238. free_sched_groups(first, 0);
  5239. return -ENOMEM;
  5240. }
  5241. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5242. {
  5243. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5244. struct sched_domain *child = sd->child;
  5245. if (child)
  5246. cpu = cpumask_first(sched_domain_span(child));
  5247. if (sg) {
  5248. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5249. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5250. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5251. }
  5252. return cpu;
  5253. }
  5254. /*
  5255. * build_sched_groups will build a circular linked list of the groups
  5256. * covered by the given span, and will set each group's ->cpumask correctly,
  5257. * and ->cpu_capacity to 0.
  5258. *
  5259. * Assumes the sched_domain tree is fully constructed
  5260. */
  5261. static int
  5262. build_sched_groups(struct sched_domain *sd, int cpu)
  5263. {
  5264. struct sched_group *first = NULL, *last = NULL;
  5265. struct sd_data *sdd = sd->private;
  5266. const struct cpumask *span = sched_domain_span(sd);
  5267. struct cpumask *covered;
  5268. int i;
  5269. get_group(cpu, sdd, &sd->groups);
  5270. atomic_inc(&sd->groups->ref);
  5271. if (cpu != cpumask_first(span))
  5272. return 0;
  5273. lockdep_assert_held(&sched_domains_mutex);
  5274. covered = sched_domains_tmpmask;
  5275. cpumask_clear(covered);
  5276. for_each_cpu(i, span) {
  5277. struct sched_group *sg;
  5278. int group, j;
  5279. if (cpumask_test_cpu(i, covered))
  5280. continue;
  5281. group = get_group(i, sdd, &sg);
  5282. cpumask_setall(sched_group_mask(sg));
  5283. for_each_cpu(j, span) {
  5284. if (get_group(j, sdd, NULL) != group)
  5285. continue;
  5286. cpumask_set_cpu(j, covered);
  5287. cpumask_set_cpu(j, sched_group_cpus(sg));
  5288. }
  5289. if (!first)
  5290. first = sg;
  5291. if (last)
  5292. last->next = sg;
  5293. last = sg;
  5294. }
  5295. last->next = first;
  5296. return 0;
  5297. }
  5298. /*
  5299. * Initialize sched groups cpu_capacity.
  5300. *
  5301. * cpu_capacity indicates the capacity of sched group, which is used while
  5302. * distributing the load between different sched groups in a sched domain.
  5303. * Typically cpu_capacity for all the groups in a sched domain will be same
  5304. * unless there are asymmetries in the topology. If there are asymmetries,
  5305. * group having more cpu_capacity will pickup more load compared to the
  5306. * group having less cpu_capacity.
  5307. */
  5308. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5309. {
  5310. struct sched_group *sg = sd->groups;
  5311. WARN_ON(!sg);
  5312. do {
  5313. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5314. sg = sg->next;
  5315. } while (sg != sd->groups);
  5316. if (cpu != group_balance_cpu(sg))
  5317. return;
  5318. update_group_capacity(sd, cpu);
  5319. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5320. }
  5321. /*
  5322. * Initializers for schedule domains
  5323. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5324. */
  5325. static int default_relax_domain_level = -1;
  5326. int sched_domain_level_max;
  5327. static int __init setup_relax_domain_level(char *str)
  5328. {
  5329. if (kstrtoint(str, 0, &default_relax_domain_level))
  5330. pr_warn("Unable to set relax_domain_level\n");
  5331. return 1;
  5332. }
  5333. __setup("relax_domain_level=", setup_relax_domain_level);
  5334. static void set_domain_attribute(struct sched_domain *sd,
  5335. struct sched_domain_attr *attr)
  5336. {
  5337. int request;
  5338. if (!attr || attr->relax_domain_level < 0) {
  5339. if (default_relax_domain_level < 0)
  5340. return;
  5341. else
  5342. request = default_relax_domain_level;
  5343. } else
  5344. request = attr->relax_domain_level;
  5345. if (request < sd->level) {
  5346. /* turn off idle balance on this domain */
  5347. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5348. } else {
  5349. /* turn on idle balance on this domain */
  5350. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5351. }
  5352. }
  5353. static void __sdt_free(const struct cpumask *cpu_map);
  5354. static int __sdt_alloc(const struct cpumask *cpu_map);
  5355. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5356. const struct cpumask *cpu_map)
  5357. {
  5358. switch (what) {
  5359. case sa_rootdomain:
  5360. if (!atomic_read(&d->rd->refcount))
  5361. free_rootdomain(&d->rd->rcu); /* fall through */
  5362. case sa_sd:
  5363. free_percpu(d->sd); /* fall through */
  5364. case sa_sd_storage:
  5365. __sdt_free(cpu_map); /* fall through */
  5366. case sa_none:
  5367. break;
  5368. }
  5369. }
  5370. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5371. const struct cpumask *cpu_map)
  5372. {
  5373. memset(d, 0, sizeof(*d));
  5374. if (__sdt_alloc(cpu_map))
  5375. return sa_sd_storage;
  5376. d->sd = alloc_percpu(struct sched_domain *);
  5377. if (!d->sd)
  5378. return sa_sd_storage;
  5379. d->rd = alloc_rootdomain();
  5380. if (!d->rd)
  5381. return sa_sd;
  5382. return sa_rootdomain;
  5383. }
  5384. /*
  5385. * NULL the sd_data elements we've used to build the sched_domain and
  5386. * sched_group structure so that the subsequent __free_domain_allocs()
  5387. * will not free the data we're using.
  5388. */
  5389. static void claim_allocations(int cpu, struct sched_domain *sd)
  5390. {
  5391. struct sd_data *sdd = sd->private;
  5392. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5393. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5394. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5395. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5396. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5397. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5398. }
  5399. #ifdef CONFIG_NUMA
  5400. static int sched_domains_numa_levels;
  5401. enum numa_topology_type sched_numa_topology_type;
  5402. static int *sched_domains_numa_distance;
  5403. int sched_max_numa_distance;
  5404. static struct cpumask ***sched_domains_numa_masks;
  5405. static int sched_domains_curr_level;
  5406. #endif
  5407. /*
  5408. * SD_flags allowed in topology descriptions.
  5409. *
  5410. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5411. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5412. * SD_NUMA - describes NUMA topologies
  5413. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5414. *
  5415. * Odd one out:
  5416. * SD_ASYM_PACKING - describes SMT quirks
  5417. */
  5418. #define TOPOLOGY_SD_FLAGS \
  5419. (SD_SHARE_CPUCAPACITY | \
  5420. SD_SHARE_PKG_RESOURCES | \
  5421. SD_NUMA | \
  5422. SD_ASYM_PACKING | \
  5423. SD_SHARE_POWERDOMAIN)
  5424. static struct sched_domain *
  5425. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5426. {
  5427. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5428. int sd_weight, sd_flags = 0;
  5429. #ifdef CONFIG_NUMA
  5430. /*
  5431. * Ugly hack to pass state to sd_numa_mask()...
  5432. */
  5433. sched_domains_curr_level = tl->numa_level;
  5434. #endif
  5435. sd_weight = cpumask_weight(tl->mask(cpu));
  5436. if (tl->sd_flags)
  5437. sd_flags = (*tl->sd_flags)();
  5438. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5439. "wrong sd_flags in topology description\n"))
  5440. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5441. *sd = (struct sched_domain){
  5442. .min_interval = sd_weight,
  5443. .max_interval = 2*sd_weight,
  5444. .busy_factor = 32,
  5445. .imbalance_pct = 125,
  5446. .cache_nice_tries = 0,
  5447. .busy_idx = 0,
  5448. .idle_idx = 0,
  5449. .newidle_idx = 0,
  5450. .wake_idx = 0,
  5451. .forkexec_idx = 0,
  5452. .flags = 1*SD_LOAD_BALANCE
  5453. | 1*SD_BALANCE_NEWIDLE
  5454. | 1*SD_BALANCE_EXEC
  5455. | 1*SD_BALANCE_FORK
  5456. | 0*SD_BALANCE_WAKE
  5457. | 1*SD_WAKE_AFFINE
  5458. | 0*SD_SHARE_CPUCAPACITY
  5459. | 0*SD_SHARE_PKG_RESOURCES
  5460. | 0*SD_SERIALIZE
  5461. | 0*SD_PREFER_SIBLING
  5462. | 0*SD_NUMA
  5463. | sd_flags
  5464. ,
  5465. .last_balance = jiffies,
  5466. .balance_interval = sd_weight,
  5467. .smt_gain = 0,
  5468. .max_newidle_lb_cost = 0,
  5469. .next_decay_max_lb_cost = jiffies,
  5470. #ifdef CONFIG_SCHED_DEBUG
  5471. .name = tl->name,
  5472. #endif
  5473. };
  5474. /*
  5475. * Convert topological properties into behaviour.
  5476. */
  5477. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5478. sd->flags |= SD_PREFER_SIBLING;
  5479. sd->imbalance_pct = 110;
  5480. sd->smt_gain = 1178; /* ~15% */
  5481. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5482. sd->imbalance_pct = 117;
  5483. sd->cache_nice_tries = 1;
  5484. sd->busy_idx = 2;
  5485. #ifdef CONFIG_NUMA
  5486. } else if (sd->flags & SD_NUMA) {
  5487. sd->cache_nice_tries = 2;
  5488. sd->busy_idx = 3;
  5489. sd->idle_idx = 2;
  5490. sd->flags |= SD_SERIALIZE;
  5491. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5492. sd->flags &= ~(SD_BALANCE_EXEC |
  5493. SD_BALANCE_FORK |
  5494. SD_WAKE_AFFINE);
  5495. }
  5496. #endif
  5497. } else {
  5498. sd->flags |= SD_PREFER_SIBLING;
  5499. sd->cache_nice_tries = 1;
  5500. sd->busy_idx = 2;
  5501. sd->idle_idx = 1;
  5502. }
  5503. sd->private = &tl->data;
  5504. return sd;
  5505. }
  5506. /*
  5507. * Topology list, bottom-up.
  5508. */
  5509. static struct sched_domain_topology_level default_topology[] = {
  5510. #ifdef CONFIG_SCHED_SMT
  5511. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5512. #endif
  5513. #ifdef CONFIG_SCHED_MC
  5514. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5515. #endif
  5516. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5517. { NULL, },
  5518. };
  5519. static struct sched_domain_topology_level *sched_domain_topology =
  5520. default_topology;
  5521. #define for_each_sd_topology(tl) \
  5522. for (tl = sched_domain_topology; tl->mask; tl++)
  5523. void set_sched_topology(struct sched_domain_topology_level *tl)
  5524. {
  5525. sched_domain_topology = tl;
  5526. }
  5527. #ifdef CONFIG_NUMA
  5528. static const struct cpumask *sd_numa_mask(int cpu)
  5529. {
  5530. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5531. }
  5532. static void sched_numa_warn(const char *str)
  5533. {
  5534. static int done = false;
  5535. int i,j;
  5536. if (done)
  5537. return;
  5538. done = true;
  5539. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5540. for (i = 0; i < nr_node_ids; i++) {
  5541. printk(KERN_WARNING " ");
  5542. for (j = 0; j < nr_node_ids; j++)
  5543. printk(KERN_CONT "%02d ", node_distance(i,j));
  5544. printk(KERN_CONT "\n");
  5545. }
  5546. printk(KERN_WARNING "\n");
  5547. }
  5548. bool find_numa_distance(int distance)
  5549. {
  5550. int i;
  5551. if (distance == node_distance(0, 0))
  5552. return true;
  5553. for (i = 0; i < sched_domains_numa_levels; i++) {
  5554. if (sched_domains_numa_distance[i] == distance)
  5555. return true;
  5556. }
  5557. return false;
  5558. }
  5559. /*
  5560. * A system can have three types of NUMA topology:
  5561. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5562. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5563. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5564. *
  5565. * The difference between a glueless mesh topology and a backplane
  5566. * topology lies in whether communication between not directly
  5567. * connected nodes goes through intermediary nodes (where programs
  5568. * could run), or through backplane controllers. This affects
  5569. * placement of programs.
  5570. *
  5571. * The type of topology can be discerned with the following tests:
  5572. * - If the maximum distance between any nodes is 1 hop, the system
  5573. * is directly connected.
  5574. * - If for two nodes A and B, located N > 1 hops away from each other,
  5575. * there is an intermediary node C, which is < N hops away from both
  5576. * nodes A and B, the system is a glueless mesh.
  5577. */
  5578. static void init_numa_topology_type(void)
  5579. {
  5580. int a, b, c, n;
  5581. n = sched_max_numa_distance;
  5582. if (sched_domains_numa_levels <= 1) {
  5583. sched_numa_topology_type = NUMA_DIRECT;
  5584. return;
  5585. }
  5586. for_each_online_node(a) {
  5587. for_each_online_node(b) {
  5588. /* Find two nodes furthest removed from each other. */
  5589. if (node_distance(a, b) < n)
  5590. continue;
  5591. /* Is there an intermediary node between a and b? */
  5592. for_each_online_node(c) {
  5593. if (node_distance(a, c) < n &&
  5594. node_distance(b, c) < n) {
  5595. sched_numa_topology_type =
  5596. NUMA_GLUELESS_MESH;
  5597. return;
  5598. }
  5599. }
  5600. sched_numa_topology_type = NUMA_BACKPLANE;
  5601. return;
  5602. }
  5603. }
  5604. }
  5605. static void sched_init_numa(void)
  5606. {
  5607. int next_distance, curr_distance = node_distance(0, 0);
  5608. struct sched_domain_topology_level *tl;
  5609. int level = 0;
  5610. int i, j, k;
  5611. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5612. if (!sched_domains_numa_distance)
  5613. return;
  5614. /*
  5615. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5616. * unique distances in the node_distance() table.
  5617. *
  5618. * Assumes node_distance(0,j) includes all distances in
  5619. * node_distance(i,j) in order to avoid cubic time.
  5620. */
  5621. next_distance = curr_distance;
  5622. for (i = 0; i < nr_node_ids; i++) {
  5623. for (j = 0; j < nr_node_ids; j++) {
  5624. for (k = 0; k < nr_node_ids; k++) {
  5625. int distance = node_distance(i, k);
  5626. if (distance > curr_distance &&
  5627. (distance < next_distance ||
  5628. next_distance == curr_distance))
  5629. next_distance = distance;
  5630. /*
  5631. * While not a strong assumption it would be nice to know
  5632. * about cases where if node A is connected to B, B is not
  5633. * equally connected to A.
  5634. */
  5635. if (sched_debug() && node_distance(k, i) != distance)
  5636. sched_numa_warn("Node-distance not symmetric");
  5637. if (sched_debug() && i && !find_numa_distance(distance))
  5638. sched_numa_warn("Node-0 not representative");
  5639. }
  5640. if (next_distance != curr_distance) {
  5641. sched_domains_numa_distance[level++] = next_distance;
  5642. sched_domains_numa_levels = level;
  5643. curr_distance = next_distance;
  5644. } else break;
  5645. }
  5646. /*
  5647. * In case of sched_debug() we verify the above assumption.
  5648. */
  5649. if (!sched_debug())
  5650. break;
  5651. }
  5652. if (!level)
  5653. return;
  5654. /*
  5655. * 'level' contains the number of unique distances, excluding the
  5656. * identity distance node_distance(i,i).
  5657. *
  5658. * The sched_domains_numa_distance[] array includes the actual distance
  5659. * numbers.
  5660. */
  5661. /*
  5662. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5663. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5664. * the array will contain less then 'level' members. This could be
  5665. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5666. * in other functions.
  5667. *
  5668. * We reset it to 'level' at the end of this function.
  5669. */
  5670. sched_domains_numa_levels = 0;
  5671. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5672. if (!sched_domains_numa_masks)
  5673. return;
  5674. /*
  5675. * Now for each level, construct a mask per node which contains all
  5676. * cpus of nodes that are that many hops away from us.
  5677. */
  5678. for (i = 0; i < level; i++) {
  5679. sched_domains_numa_masks[i] =
  5680. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5681. if (!sched_domains_numa_masks[i])
  5682. return;
  5683. for (j = 0; j < nr_node_ids; j++) {
  5684. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5685. if (!mask)
  5686. return;
  5687. sched_domains_numa_masks[i][j] = mask;
  5688. for_each_node(k) {
  5689. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5690. continue;
  5691. cpumask_or(mask, mask, cpumask_of_node(k));
  5692. }
  5693. }
  5694. }
  5695. /* Compute default topology size */
  5696. for (i = 0; sched_domain_topology[i].mask; i++);
  5697. tl = kzalloc((i + level + 1) *
  5698. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5699. if (!tl)
  5700. return;
  5701. /*
  5702. * Copy the default topology bits..
  5703. */
  5704. for (i = 0; sched_domain_topology[i].mask; i++)
  5705. tl[i] = sched_domain_topology[i];
  5706. /*
  5707. * .. and append 'j' levels of NUMA goodness.
  5708. */
  5709. for (j = 0; j < level; i++, j++) {
  5710. tl[i] = (struct sched_domain_topology_level){
  5711. .mask = sd_numa_mask,
  5712. .sd_flags = cpu_numa_flags,
  5713. .flags = SDTL_OVERLAP,
  5714. .numa_level = j,
  5715. SD_INIT_NAME(NUMA)
  5716. };
  5717. }
  5718. sched_domain_topology = tl;
  5719. sched_domains_numa_levels = level;
  5720. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5721. init_numa_topology_type();
  5722. }
  5723. static void sched_domains_numa_masks_set(unsigned int cpu)
  5724. {
  5725. int node = cpu_to_node(cpu);
  5726. int i, j;
  5727. for (i = 0; i < sched_domains_numa_levels; i++) {
  5728. for (j = 0; j < nr_node_ids; j++) {
  5729. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5730. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5731. }
  5732. }
  5733. }
  5734. static void sched_domains_numa_masks_clear(unsigned int cpu)
  5735. {
  5736. int i, j;
  5737. for (i = 0; i < sched_domains_numa_levels; i++) {
  5738. for (j = 0; j < nr_node_ids; j++)
  5739. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5740. }
  5741. }
  5742. #else
  5743. static inline void sched_init_numa(void) { }
  5744. static void sched_domains_numa_masks_set(unsigned int cpu) { }
  5745. static void sched_domains_numa_masks_clear(unsigned int cpu) { }
  5746. #endif /* CONFIG_NUMA */
  5747. static int __sdt_alloc(const struct cpumask *cpu_map)
  5748. {
  5749. struct sched_domain_topology_level *tl;
  5750. int j;
  5751. for_each_sd_topology(tl) {
  5752. struct sd_data *sdd = &tl->data;
  5753. sdd->sd = alloc_percpu(struct sched_domain *);
  5754. if (!sdd->sd)
  5755. return -ENOMEM;
  5756. sdd->sg = alloc_percpu(struct sched_group *);
  5757. if (!sdd->sg)
  5758. return -ENOMEM;
  5759. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5760. if (!sdd->sgc)
  5761. return -ENOMEM;
  5762. for_each_cpu(j, cpu_map) {
  5763. struct sched_domain *sd;
  5764. struct sched_group *sg;
  5765. struct sched_group_capacity *sgc;
  5766. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5767. GFP_KERNEL, cpu_to_node(j));
  5768. if (!sd)
  5769. return -ENOMEM;
  5770. *per_cpu_ptr(sdd->sd, j) = sd;
  5771. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5772. GFP_KERNEL, cpu_to_node(j));
  5773. if (!sg)
  5774. return -ENOMEM;
  5775. sg->next = sg;
  5776. *per_cpu_ptr(sdd->sg, j) = sg;
  5777. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5778. GFP_KERNEL, cpu_to_node(j));
  5779. if (!sgc)
  5780. return -ENOMEM;
  5781. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5782. }
  5783. }
  5784. return 0;
  5785. }
  5786. static void __sdt_free(const struct cpumask *cpu_map)
  5787. {
  5788. struct sched_domain_topology_level *tl;
  5789. int j;
  5790. for_each_sd_topology(tl) {
  5791. struct sd_data *sdd = &tl->data;
  5792. for_each_cpu(j, cpu_map) {
  5793. struct sched_domain *sd;
  5794. if (sdd->sd) {
  5795. sd = *per_cpu_ptr(sdd->sd, j);
  5796. if (sd && (sd->flags & SD_OVERLAP))
  5797. free_sched_groups(sd->groups, 0);
  5798. kfree(*per_cpu_ptr(sdd->sd, j));
  5799. }
  5800. if (sdd->sg)
  5801. kfree(*per_cpu_ptr(sdd->sg, j));
  5802. if (sdd->sgc)
  5803. kfree(*per_cpu_ptr(sdd->sgc, j));
  5804. }
  5805. free_percpu(sdd->sd);
  5806. sdd->sd = NULL;
  5807. free_percpu(sdd->sg);
  5808. sdd->sg = NULL;
  5809. free_percpu(sdd->sgc);
  5810. sdd->sgc = NULL;
  5811. }
  5812. }
  5813. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5814. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5815. struct sched_domain *child, int cpu)
  5816. {
  5817. struct sched_domain *sd = sd_init(tl, cpu);
  5818. if (!sd)
  5819. return child;
  5820. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5821. if (child) {
  5822. sd->level = child->level + 1;
  5823. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5824. child->parent = sd;
  5825. sd->child = child;
  5826. if (!cpumask_subset(sched_domain_span(child),
  5827. sched_domain_span(sd))) {
  5828. pr_err("BUG: arch topology borken\n");
  5829. #ifdef CONFIG_SCHED_DEBUG
  5830. pr_err(" the %s domain not a subset of the %s domain\n",
  5831. child->name, sd->name);
  5832. #endif
  5833. /* Fixup, ensure @sd has at least @child cpus. */
  5834. cpumask_or(sched_domain_span(sd),
  5835. sched_domain_span(sd),
  5836. sched_domain_span(child));
  5837. }
  5838. }
  5839. set_domain_attribute(sd, attr);
  5840. return sd;
  5841. }
  5842. /*
  5843. * Build sched domains for a given set of cpus and attach the sched domains
  5844. * to the individual cpus
  5845. */
  5846. static int build_sched_domains(const struct cpumask *cpu_map,
  5847. struct sched_domain_attr *attr)
  5848. {
  5849. enum s_alloc alloc_state;
  5850. struct sched_domain *sd;
  5851. struct s_data d;
  5852. int i, ret = -ENOMEM;
  5853. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5854. if (alloc_state != sa_rootdomain)
  5855. goto error;
  5856. /* Set up domains for cpus specified by the cpu_map. */
  5857. for_each_cpu(i, cpu_map) {
  5858. struct sched_domain_topology_level *tl;
  5859. sd = NULL;
  5860. for_each_sd_topology(tl) {
  5861. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5862. if (tl == sched_domain_topology)
  5863. *per_cpu_ptr(d.sd, i) = sd;
  5864. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5865. sd->flags |= SD_OVERLAP;
  5866. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5867. break;
  5868. }
  5869. }
  5870. /* Build the groups for the domains */
  5871. for_each_cpu(i, cpu_map) {
  5872. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5873. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5874. if (sd->flags & SD_OVERLAP) {
  5875. if (build_overlap_sched_groups(sd, i))
  5876. goto error;
  5877. } else {
  5878. if (build_sched_groups(sd, i))
  5879. goto error;
  5880. }
  5881. }
  5882. }
  5883. /* Calculate CPU capacity for physical packages and nodes */
  5884. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5885. if (!cpumask_test_cpu(i, cpu_map))
  5886. continue;
  5887. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5888. claim_allocations(i, sd);
  5889. init_sched_groups_capacity(i, sd);
  5890. }
  5891. }
  5892. /* Attach the domains */
  5893. rcu_read_lock();
  5894. for_each_cpu(i, cpu_map) {
  5895. sd = *per_cpu_ptr(d.sd, i);
  5896. cpu_attach_domain(sd, d.rd, i);
  5897. }
  5898. rcu_read_unlock();
  5899. ret = 0;
  5900. error:
  5901. __free_domain_allocs(&d, alloc_state, cpu_map);
  5902. return ret;
  5903. }
  5904. static cpumask_var_t *doms_cur; /* current sched domains */
  5905. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5906. static struct sched_domain_attr *dattr_cur;
  5907. /* attribues of custom domains in 'doms_cur' */
  5908. /*
  5909. * Special case: If a kmalloc of a doms_cur partition (array of
  5910. * cpumask) fails, then fallback to a single sched domain,
  5911. * as determined by the single cpumask fallback_doms.
  5912. */
  5913. static cpumask_var_t fallback_doms;
  5914. /*
  5915. * arch_update_cpu_topology lets virtualized architectures update the
  5916. * cpu core maps. It is supposed to return 1 if the topology changed
  5917. * or 0 if it stayed the same.
  5918. */
  5919. int __weak arch_update_cpu_topology(void)
  5920. {
  5921. return 0;
  5922. }
  5923. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5924. {
  5925. int i;
  5926. cpumask_var_t *doms;
  5927. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5928. if (!doms)
  5929. return NULL;
  5930. for (i = 0; i < ndoms; i++) {
  5931. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5932. free_sched_domains(doms, i);
  5933. return NULL;
  5934. }
  5935. }
  5936. return doms;
  5937. }
  5938. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5939. {
  5940. unsigned int i;
  5941. for (i = 0; i < ndoms; i++)
  5942. free_cpumask_var(doms[i]);
  5943. kfree(doms);
  5944. }
  5945. /*
  5946. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5947. * For now this just excludes isolated cpus, but could be used to
  5948. * exclude other special cases in the future.
  5949. */
  5950. static int init_sched_domains(const struct cpumask *cpu_map)
  5951. {
  5952. int err;
  5953. arch_update_cpu_topology();
  5954. ndoms_cur = 1;
  5955. doms_cur = alloc_sched_domains(ndoms_cur);
  5956. if (!doms_cur)
  5957. doms_cur = &fallback_doms;
  5958. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5959. err = build_sched_domains(doms_cur[0], NULL);
  5960. register_sched_domain_sysctl();
  5961. return err;
  5962. }
  5963. /*
  5964. * Detach sched domains from a group of cpus specified in cpu_map
  5965. * These cpus will now be attached to the NULL domain
  5966. */
  5967. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5968. {
  5969. int i;
  5970. rcu_read_lock();
  5971. for_each_cpu(i, cpu_map)
  5972. cpu_attach_domain(NULL, &def_root_domain, i);
  5973. rcu_read_unlock();
  5974. }
  5975. /* handle null as "default" */
  5976. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5977. struct sched_domain_attr *new, int idx_new)
  5978. {
  5979. struct sched_domain_attr tmp;
  5980. /* fast path */
  5981. if (!new && !cur)
  5982. return 1;
  5983. tmp = SD_ATTR_INIT;
  5984. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5985. new ? (new + idx_new) : &tmp,
  5986. sizeof(struct sched_domain_attr));
  5987. }
  5988. /*
  5989. * Partition sched domains as specified by the 'ndoms_new'
  5990. * cpumasks in the array doms_new[] of cpumasks. This compares
  5991. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5992. * It destroys each deleted domain and builds each new domain.
  5993. *
  5994. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5995. * The masks don't intersect (don't overlap.) We should setup one
  5996. * sched domain for each mask. CPUs not in any of the cpumasks will
  5997. * not be load balanced. If the same cpumask appears both in the
  5998. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5999. * it as it is.
  6000. *
  6001. * The passed in 'doms_new' should be allocated using
  6002. * alloc_sched_domains. This routine takes ownership of it and will
  6003. * free_sched_domains it when done with it. If the caller failed the
  6004. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6005. * and partition_sched_domains() will fallback to the single partition
  6006. * 'fallback_doms', it also forces the domains to be rebuilt.
  6007. *
  6008. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6009. * ndoms_new == 0 is a special case for destroying existing domains,
  6010. * and it will not create the default domain.
  6011. *
  6012. * Call with hotplug lock held
  6013. */
  6014. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6015. struct sched_domain_attr *dattr_new)
  6016. {
  6017. int i, j, n;
  6018. int new_topology;
  6019. mutex_lock(&sched_domains_mutex);
  6020. /* always unregister in case we don't destroy any domains */
  6021. unregister_sched_domain_sysctl();
  6022. /* Let architecture update cpu core mappings. */
  6023. new_topology = arch_update_cpu_topology();
  6024. n = doms_new ? ndoms_new : 0;
  6025. /* Destroy deleted domains */
  6026. for (i = 0; i < ndoms_cur; i++) {
  6027. for (j = 0; j < n && !new_topology; j++) {
  6028. if (cpumask_equal(doms_cur[i], doms_new[j])
  6029. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6030. goto match1;
  6031. }
  6032. /* no match - a current sched domain not in new doms_new[] */
  6033. detach_destroy_domains(doms_cur[i]);
  6034. match1:
  6035. ;
  6036. }
  6037. n = ndoms_cur;
  6038. if (doms_new == NULL) {
  6039. n = 0;
  6040. doms_new = &fallback_doms;
  6041. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6042. WARN_ON_ONCE(dattr_new);
  6043. }
  6044. /* Build new domains */
  6045. for (i = 0; i < ndoms_new; i++) {
  6046. for (j = 0; j < n && !new_topology; j++) {
  6047. if (cpumask_equal(doms_new[i], doms_cur[j])
  6048. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6049. goto match2;
  6050. }
  6051. /* no match - add a new doms_new */
  6052. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6053. match2:
  6054. ;
  6055. }
  6056. /* Remember the new sched domains */
  6057. if (doms_cur != &fallback_doms)
  6058. free_sched_domains(doms_cur, ndoms_cur);
  6059. kfree(dattr_cur); /* kfree(NULL) is safe */
  6060. doms_cur = doms_new;
  6061. dattr_cur = dattr_new;
  6062. ndoms_cur = ndoms_new;
  6063. register_sched_domain_sysctl();
  6064. mutex_unlock(&sched_domains_mutex);
  6065. }
  6066. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6067. /*
  6068. * Update cpusets according to cpu_active mask. If cpusets are
  6069. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6070. * around partition_sched_domains().
  6071. *
  6072. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6073. * want to restore it back to its original state upon resume anyway.
  6074. */
  6075. static void cpuset_cpu_active(void)
  6076. {
  6077. if (cpuhp_tasks_frozen) {
  6078. /*
  6079. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6080. * resume sequence. As long as this is not the last online
  6081. * operation in the resume sequence, just build a single sched
  6082. * domain, ignoring cpusets.
  6083. */
  6084. num_cpus_frozen--;
  6085. if (likely(num_cpus_frozen)) {
  6086. partition_sched_domains(1, NULL, NULL);
  6087. return;
  6088. }
  6089. /*
  6090. * This is the last CPU online operation. So fall through and
  6091. * restore the original sched domains by considering the
  6092. * cpuset configurations.
  6093. */
  6094. }
  6095. cpuset_update_active_cpus(true);
  6096. }
  6097. static int cpuset_cpu_inactive(unsigned int cpu)
  6098. {
  6099. unsigned long flags;
  6100. struct dl_bw *dl_b;
  6101. bool overflow;
  6102. int cpus;
  6103. if (!cpuhp_tasks_frozen) {
  6104. rcu_read_lock_sched();
  6105. dl_b = dl_bw_of(cpu);
  6106. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6107. cpus = dl_bw_cpus(cpu);
  6108. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6109. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6110. rcu_read_unlock_sched();
  6111. if (overflow)
  6112. return -EBUSY;
  6113. cpuset_update_active_cpus(false);
  6114. } else {
  6115. num_cpus_frozen++;
  6116. partition_sched_domains(1, NULL, NULL);
  6117. }
  6118. return 0;
  6119. }
  6120. int sched_cpu_activate(unsigned int cpu)
  6121. {
  6122. struct rq *rq = cpu_rq(cpu);
  6123. unsigned long flags;
  6124. set_cpu_active(cpu, true);
  6125. if (sched_smp_initialized) {
  6126. sched_domains_numa_masks_set(cpu);
  6127. cpuset_cpu_active();
  6128. }
  6129. /*
  6130. * Put the rq online, if not already. This happens:
  6131. *
  6132. * 1) In the early boot process, because we build the real domains
  6133. * after all cpus have been brought up.
  6134. *
  6135. * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
  6136. * domains.
  6137. */
  6138. raw_spin_lock_irqsave(&rq->lock, flags);
  6139. if (rq->rd) {
  6140. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6141. set_rq_online(rq);
  6142. }
  6143. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6144. update_max_interval();
  6145. return 0;
  6146. }
  6147. int sched_cpu_deactivate(unsigned int cpu)
  6148. {
  6149. int ret;
  6150. set_cpu_active(cpu, false);
  6151. /*
  6152. * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
  6153. * users of this state to go away such that all new such users will
  6154. * observe it.
  6155. *
  6156. * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
  6157. * not imply sync_sched(), so wait for both.
  6158. *
  6159. * Do sync before park smpboot threads to take care the rcu boost case.
  6160. */
  6161. if (IS_ENABLED(CONFIG_PREEMPT))
  6162. synchronize_rcu_mult(call_rcu, call_rcu_sched);
  6163. else
  6164. synchronize_rcu();
  6165. if (!sched_smp_initialized)
  6166. return 0;
  6167. ret = cpuset_cpu_inactive(cpu);
  6168. if (ret) {
  6169. set_cpu_active(cpu, true);
  6170. return ret;
  6171. }
  6172. sched_domains_numa_masks_clear(cpu);
  6173. return 0;
  6174. }
  6175. static void sched_rq_cpu_starting(unsigned int cpu)
  6176. {
  6177. struct rq *rq = cpu_rq(cpu);
  6178. rq->calc_load_update = calc_load_update;
  6179. account_reset_rq(rq);
  6180. update_max_interval();
  6181. }
  6182. int sched_cpu_starting(unsigned int cpu)
  6183. {
  6184. set_cpu_rq_start_time(cpu);
  6185. sched_rq_cpu_starting(cpu);
  6186. return 0;
  6187. }
  6188. #ifdef CONFIG_HOTPLUG_CPU
  6189. int sched_cpu_dying(unsigned int cpu)
  6190. {
  6191. struct rq *rq = cpu_rq(cpu);
  6192. unsigned long flags;
  6193. /* Handle pending wakeups and then migrate everything off */
  6194. sched_ttwu_pending();
  6195. raw_spin_lock_irqsave(&rq->lock, flags);
  6196. if (rq->rd) {
  6197. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6198. set_rq_offline(rq);
  6199. }
  6200. migrate_tasks(rq);
  6201. BUG_ON(rq->nr_running != 1);
  6202. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6203. calc_load_migrate(rq);
  6204. update_max_interval();
  6205. nohz_balance_exit_idle(cpu);
  6206. hrtick_clear(rq);
  6207. return 0;
  6208. }
  6209. #endif
  6210. void __init sched_init_smp(void)
  6211. {
  6212. cpumask_var_t non_isolated_cpus;
  6213. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6214. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6215. sched_init_numa();
  6216. /*
  6217. * There's no userspace yet to cause hotplug operations; hence all the
  6218. * cpu masks are stable and all blatant races in the below code cannot
  6219. * happen.
  6220. */
  6221. mutex_lock(&sched_domains_mutex);
  6222. init_sched_domains(cpu_active_mask);
  6223. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6224. if (cpumask_empty(non_isolated_cpus))
  6225. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6226. mutex_unlock(&sched_domains_mutex);
  6227. /* Move init over to a non-isolated CPU */
  6228. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6229. BUG();
  6230. sched_init_granularity();
  6231. free_cpumask_var(non_isolated_cpus);
  6232. init_sched_rt_class();
  6233. init_sched_dl_class();
  6234. sched_smp_initialized = true;
  6235. }
  6236. static int __init migration_init(void)
  6237. {
  6238. sched_rq_cpu_starting(smp_processor_id());
  6239. return 0;
  6240. }
  6241. early_initcall(migration_init);
  6242. #else
  6243. void __init sched_init_smp(void)
  6244. {
  6245. sched_init_granularity();
  6246. }
  6247. #endif /* CONFIG_SMP */
  6248. int in_sched_functions(unsigned long addr)
  6249. {
  6250. return in_lock_functions(addr) ||
  6251. (addr >= (unsigned long)__sched_text_start
  6252. && addr < (unsigned long)__sched_text_end);
  6253. }
  6254. #ifdef CONFIG_CGROUP_SCHED
  6255. /*
  6256. * Default task group.
  6257. * Every task in system belongs to this group at bootup.
  6258. */
  6259. struct task_group root_task_group;
  6260. LIST_HEAD(task_groups);
  6261. /* Cacheline aligned slab cache for task_group */
  6262. static struct kmem_cache *task_group_cache __read_mostly;
  6263. #endif
  6264. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6265. void __init sched_init(void)
  6266. {
  6267. int i, j;
  6268. unsigned long alloc_size = 0, ptr;
  6269. #ifdef CONFIG_FAIR_GROUP_SCHED
  6270. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6271. #endif
  6272. #ifdef CONFIG_RT_GROUP_SCHED
  6273. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6274. #endif
  6275. if (alloc_size) {
  6276. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6277. #ifdef CONFIG_FAIR_GROUP_SCHED
  6278. root_task_group.se = (struct sched_entity **)ptr;
  6279. ptr += nr_cpu_ids * sizeof(void **);
  6280. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6281. ptr += nr_cpu_ids * sizeof(void **);
  6282. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6283. #ifdef CONFIG_RT_GROUP_SCHED
  6284. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6285. ptr += nr_cpu_ids * sizeof(void **);
  6286. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6287. ptr += nr_cpu_ids * sizeof(void **);
  6288. #endif /* CONFIG_RT_GROUP_SCHED */
  6289. }
  6290. #ifdef CONFIG_CPUMASK_OFFSTACK
  6291. for_each_possible_cpu(i) {
  6292. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6293. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6294. }
  6295. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6296. init_rt_bandwidth(&def_rt_bandwidth,
  6297. global_rt_period(), global_rt_runtime());
  6298. init_dl_bandwidth(&def_dl_bandwidth,
  6299. global_rt_period(), global_rt_runtime());
  6300. #ifdef CONFIG_SMP
  6301. init_defrootdomain();
  6302. #endif
  6303. #ifdef CONFIG_RT_GROUP_SCHED
  6304. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6305. global_rt_period(), global_rt_runtime());
  6306. #endif /* CONFIG_RT_GROUP_SCHED */
  6307. #ifdef CONFIG_CGROUP_SCHED
  6308. task_group_cache = KMEM_CACHE(task_group, 0);
  6309. list_add(&root_task_group.list, &task_groups);
  6310. INIT_LIST_HEAD(&root_task_group.children);
  6311. INIT_LIST_HEAD(&root_task_group.siblings);
  6312. autogroup_init(&init_task);
  6313. #endif /* CONFIG_CGROUP_SCHED */
  6314. for_each_possible_cpu(i) {
  6315. struct rq *rq;
  6316. rq = cpu_rq(i);
  6317. raw_spin_lock_init(&rq->lock);
  6318. rq->nr_running = 0;
  6319. rq->calc_load_active = 0;
  6320. rq->calc_load_update = jiffies + LOAD_FREQ;
  6321. init_cfs_rq(&rq->cfs);
  6322. init_rt_rq(&rq->rt);
  6323. init_dl_rq(&rq->dl);
  6324. #ifdef CONFIG_FAIR_GROUP_SCHED
  6325. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6326. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6327. /*
  6328. * How much cpu bandwidth does root_task_group get?
  6329. *
  6330. * In case of task-groups formed thr' the cgroup filesystem, it
  6331. * gets 100% of the cpu resources in the system. This overall
  6332. * system cpu resource is divided among the tasks of
  6333. * root_task_group and its child task-groups in a fair manner,
  6334. * based on each entity's (task or task-group's) weight
  6335. * (se->load.weight).
  6336. *
  6337. * In other words, if root_task_group has 10 tasks of weight
  6338. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6339. * then A0's share of the cpu resource is:
  6340. *
  6341. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6342. *
  6343. * We achieve this by letting root_task_group's tasks sit
  6344. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6345. */
  6346. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6347. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6348. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6349. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6350. #ifdef CONFIG_RT_GROUP_SCHED
  6351. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6352. #endif
  6353. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6354. rq->cpu_load[j] = 0;
  6355. #ifdef CONFIG_SMP
  6356. rq->sd = NULL;
  6357. rq->rd = NULL;
  6358. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6359. rq->balance_callback = NULL;
  6360. rq->active_balance = 0;
  6361. rq->next_balance = jiffies;
  6362. rq->push_cpu = 0;
  6363. rq->cpu = i;
  6364. rq->online = 0;
  6365. rq->idle_stamp = 0;
  6366. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6367. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6368. INIT_LIST_HEAD(&rq->cfs_tasks);
  6369. rq_attach_root(rq, &def_root_domain);
  6370. #ifdef CONFIG_NO_HZ_COMMON
  6371. rq->last_load_update_tick = jiffies;
  6372. rq->nohz_flags = 0;
  6373. #endif
  6374. #ifdef CONFIG_NO_HZ_FULL
  6375. rq->last_sched_tick = 0;
  6376. #endif
  6377. #endif /* CONFIG_SMP */
  6378. init_rq_hrtick(rq);
  6379. atomic_set(&rq->nr_iowait, 0);
  6380. }
  6381. set_load_weight(&init_task);
  6382. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6383. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6384. #endif
  6385. /*
  6386. * The boot idle thread does lazy MMU switching as well:
  6387. */
  6388. atomic_inc(&init_mm.mm_count);
  6389. enter_lazy_tlb(&init_mm, current);
  6390. /*
  6391. * During early bootup we pretend to be a normal task:
  6392. */
  6393. current->sched_class = &fair_sched_class;
  6394. /*
  6395. * Make us the idle thread. Technically, schedule() should not be
  6396. * called from this thread, however somewhere below it might be,
  6397. * but because we are the idle thread, we just pick up running again
  6398. * when this runqueue becomes "idle".
  6399. */
  6400. init_idle(current, smp_processor_id());
  6401. calc_load_update = jiffies + LOAD_FREQ;
  6402. #ifdef CONFIG_SMP
  6403. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6404. /* May be allocated at isolcpus cmdline parse time */
  6405. if (cpu_isolated_map == NULL)
  6406. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6407. idle_thread_set_boot_cpu();
  6408. set_cpu_rq_start_time(smp_processor_id());
  6409. #endif
  6410. init_sched_fair_class();
  6411. init_schedstats();
  6412. scheduler_running = 1;
  6413. }
  6414. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6415. static inline int preempt_count_equals(int preempt_offset)
  6416. {
  6417. int nested = preempt_count() + rcu_preempt_depth();
  6418. return (nested == preempt_offset);
  6419. }
  6420. void __might_sleep(const char *file, int line, int preempt_offset)
  6421. {
  6422. /*
  6423. * Blocking primitives will set (and therefore destroy) current->state,
  6424. * since we will exit with TASK_RUNNING make sure we enter with it,
  6425. * otherwise we will destroy state.
  6426. */
  6427. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6428. "do not call blocking ops when !TASK_RUNNING; "
  6429. "state=%lx set at [<%p>] %pS\n",
  6430. current->state,
  6431. (void *)current->task_state_change,
  6432. (void *)current->task_state_change);
  6433. ___might_sleep(file, line, preempt_offset);
  6434. }
  6435. EXPORT_SYMBOL(__might_sleep);
  6436. void ___might_sleep(const char *file, int line, int preempt_offset)
  6437. {
  6438. static unsigned long prev_jiffy; /* ratelimiting */
  6439. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6440. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6441. !is_idle_task(current)) ||
  6442. system_state != SYSTEM_RUNNING || oops_in_progress)
  6443. return;
  6444. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6445. return;
  6446. prev_jiffy = jiffies;
  6447. printk(KERN_ERR
  6448. "BUG: sleeping function called from invalid context at %s:%d\n",
  6449. file, line);
  6450. printk(KERN_ERR
  6451. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6452. in_atomic(), irqs_disabled(),
  6453. current->pid, current->comm);
  6454. if (task_stack_end_corrupted(current))
  6455. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6456. debug_show_held_locks(current);
  6457. if (irqs_disabled())
  6458. print_irqtrace_events(current);
  6459. #ifdef CONFIG_DEBUG_PREEMPT
  6460. if (!preempt_count_equals(preempt_offset)) {
  6461. pr_err("Preemption disabled at:");
  6462. print_ip_sym(current->preempt_disable_ip);
  6463. pr_cont("\n");
  6464. }
  6465. #endif
  6466. dump_stack();
  6467. }
  6468. EXPORT_SYMBOL(___might_sleep);
  6469. #endif
  6470. #ifdef CONFIG_MAGIC_SYSRQ
  6471. void normalize_rt_tasks(void)
  6472. {
  6473. struct task_struct *g, *p;
  6474. struct sched_attr attr = {
  6475. .sched_policy = SCHED_NORMAL,
  6476. };
  6477. read_lock(&tasklist_lock);
  6478. for_each_process_thread(g, p) {
  6479. /*
  6480. * Only normalize user tasks:
  6481. */
  6482. if (p->flags & PF_KTHREAD)
  6483. continue;
  6484. p->se.exec_start = 0;
  6485. #ifdef CONFIG_SCHEDSTATS
  6486. p->se.statistics.wait_start = 0;
  6487. p->se.statistics.sleep_start = 0;
  6488. p->se.statistics.block_start = 0;
  6489. #endif
  6490. if (!dl_task(p) && !rt_task(p)) {
  6491. /*
  6492. * Renice negative nice level userspace
  6493. * tasks back to 0:
  6494. */
  6495. if (task_nice(p) < 0)
  6496. set_user_nice(p, 0);
  6497. continue;
  6498. }
  6499. __sched_setscheduler(p, &attr, false, false);
  6500. }
  6501. read_unlock(&tasklist_lock);
  6502. }
  6503. #endif /* CONFIG_MAGIC_SYSRQ */
  6504. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6505. /*
  6506. * These functions are only useful for the IA64 MCA handling, or kdb.
  6507. *
  6508. * They can only be called when the whole system has been
  6509. * stopped - every CPU needs to be quiescent, and no scheduling
  6510. * activity can take place. Using them for anything else would
  6511. * be a serious bug, and as a result, they aren't even visible
  6512. * under any other configuration.
  6513. */
  6514. /**
  6515. * curr_task - return the current task for a given cpu.
  6516. * @cpu: the processor in question.
  6517. *
  6518. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6519. *
  6520. * Return: The current task for @cpu.
  6521. */
  6522. struct task_struct *curr_task(int cpu)
  6523. {
  6524. return cpu_curr(cpu);
  6525. }
  6526. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6527. #ifdef CONFIG_IA64
  6528. /**
  6529. * set_curr_task - set the current task for a given cpu.
  6530. * @cpu: the processor in question.
  6531. * @p: the task pointer to set.
  6532. *
  6533. * Description: This function must only be used when non-maskable interrupts
  6534. * are serviced on a separate stack. It allows the architecture to switch the
  6535. * notion of the current task on a cpu in a non-blocking manner. This function
  6536. * must be called with all CPU's synchronized, and interrupts disabled, the
  6537. * and caller must save the original value of the current task (see
  6538. * curr_task() above) and restore that value before reenabling interrupts and
  6539. * re-starting the system.
  6540. *
  6541. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6542. */
  6543. void set_curr_task(int cpu, struct task_struct *p)
  6544. {
  6545. cpu_curr(cpu) = p;
  6546. }
  6547. #endif
  6548. #ifdef CONFIG_CGROUP_SCHED
  6549. /* task_group_lock serializes the addition/removal of task groups */
  6550. static DEFINE_SPINLOCK(task_group_lock);
  6551. static void sched_free_group(struct task_group *tg)
  6552. {
  6553. free_fair_sched_group(tg);
  6554. free_rt_sched_group(tg);
  6555. autogroup_free(tg);
  6556. kmem_cache_free(task_group_cache, tg);
  6557. }
  6558. /* allocate runqueue etc for a new task group */
  6559. struct task_group *sched_create_group(struct task_group *parent)
  6560. {
  6561. struct task_group *tg;
  6562. tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
  6563. if (!tg)
  6564. return ERR_PTR(-ENOMEM);
  6565. if (!alloc_fair_sched_group(tg, parent))
  6566. goto err;
  6567. if (!alloc_rt_sched_group(tg, parent))
  6568. goto err;
  6569. return tg;
  6570. err:
  6571. sched_free_group(tg);
  6572. return ERR_PTR(-ENOMEM);
  6573. }
  6574. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6575. {
  6576. unsigned long flags;
  6577. spin_lock_irqsave(&task_group_lock, flags);
  6578. list_add_rcu(&tg->list, &task_groups);
  6579. WARN_ON(!parent); /* root should already exist */
  6580. tg->parent = parent;
  6581. INIT_LIST_HEAD(&tg->children);
  6582. list_add_rcu(&tg->siblings, &parent->children);
  6583. spin_unlock_irqrestore(&task_group_lock, flags);
  6584. }
  6585. /* rcu callback to free various structures associated with a task group */
  6586. static void sched_free_group_rcu(struct rcu_head *rhp)
  6587. {
  6588. /* now it should be safe to free those cfs_rqs */
  6589. sched_free_group(container_of(rhp, struct task_group, rcu));
  6590. }
  6591. void sched_destroy_group(struct task_group *tg)
  6592. {
  6593. /* wait for possible concurrent references to cfs_rqs complete */
  6594. call_rcu(&tg->rcu, sched_free_group_rcu);
  6595. }
  6596. void sched_offline_group(struct task_group *tg)
  6597. {
  6598. unsigned long flags;
  6599. /* end participation in shares distribution */
  6600. unregister_fair_sched_group(tg);
  6601. spin_lock_irqsave(&task_group_lock, flags);
  6602. list_del_rcu(&tg->list);
  6603. list_del_rcu(&tg->siblings);
  6604. spin_unlock_irqrestore(&task_group_lock, flags);
  6605. }
  6606. /* change task's runqueue when it moves between groups.
  6607. * The caller of this function should have put the task in its new group
  6608. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6609. * reflect its new group.
  6610. */
  6611. void sched_move_task(struct task_struct *tsk)
  6612. {
  6613. struct task_group *tg;
  6614. int queued, running;
  6615. struct rq_flags rf;
  6616. struct rq *rq;
  6617. rq = task_rq_lock(tsk, &rf);
  6618. running = task_current(rq, tsk);
  6619. queued = task_on_rq_queued(tsk);
  6620. if (queued)
  6621. dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
  6622. if (unlikely(running))
  6623. put_prev_task(rq, tsk);
  6624. /*
  6625. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6626. * which is pointless here. Thus, we pass "true" to task_css_check()
  6627. * to prevent lockdep warnings.
  6628. */
  6629. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6630. struct task_group, css);
  6631. tg = autogroup_task_group(tsk, tg);
  6632. tsk->sched_task_group = tg;
  6633. #ifdef CONFIG_FAIR_GROUP_SCHED
  6634. if (tsk->sched_class->task_move_group)
  6635. tsk->sched_class->task_move_group(tsk);
  6636. else
  6637. #endif
  6638. set_task_rq(tsk, task_cpu(tsk));
  6639. if (unlikely(running))
  6640. tsk->sched_class->set_curr_task(rq);
  6641. if (queued)
  6642. enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
  6643. task_rq_unlock(rq, tsk, &rf);
  6644. }
  6645. #endif /* CONFIG_CGROUP_SCHED */
  6646. #ifdef CONFIG_RT_GROUP_SCHED
  6647. /*
  6648. * Ensure that the real time constraints are schedulable.
  6649. */
  6650. static DEFINE_MUTEX(rt_constraints_mutex);
  6651. /* Must be called with tasklist_lock held */
  6652. static inline int tg_has_rt_tasks(struct task_group *tg)
  6653. {
  6654. struct task_struct *g, *p;
  6655. /*
  6656. * Autogroups do not have RT tasks; see autogroup_create().
  6657. */
  6658. if (task_group_is_autogroup(tg))
  6659. return 0;
  6660. for_each_process_thread(g, p) {
  6661. if (rt_task(p) && task_group(p) == tg)
  6662. return 1;
  6663. }
  6664. return 0;
  6665. }
  6666. struct rt_schedulable_data {
  6667. struct task_group *tg;
  6668. u64 rt_period;
  6669. u64 rt_runtime;
  6670. };
  6671. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6672. {
  6673. struct rt_schedulable_data *d = data;
  6674. struct task_group *child;
  6675. unsigned long total, sum = 0;
  6676. u64 period, runtime;
  6677. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6678. runtime = tg->rt_bandwidth.rt_runtime;
  6679. if (tg == d->tg) {
  6680. period = d->rt_period;
  6681. runtime = d->rt_runtime;
  6682. }
  6683. /*
  6684. * Cannot have more runtime than the period.
  6685. */
  6686. if (runtime > period && runtime != RUNTIME_INF)
  6687. return -EINVAL;
  6688. /*
  6689. * Ensure we don't starve existing RT tasks.
  6690. */
  6691. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6692. return -EBUSY;
  6693. total = to_ratio(period, runtime);
  6694. /*
  6695. * Nobody can have more than the global setting allows.
  6696. */
  6697. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6698. return -EINVAL;
  6699. /*
  6700. * The sum of our children's runtime should not exceed our own.
  6701. */
  6702. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6703. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6704. runtime = child->rt_bandwidth.rt_runtime;
  6705. if (child == d->tg) {
  6706. period = d->rt_period;
  6707. runtime = d->rt_runtime;
  6708. }
  6709. sum += to_ratio(period, runtime);
  6710. }
  6711. if (sum > total)
  6712. return -EINVAL;
  6713. return 0;
  6714. }
  6715. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6716. {
  6717. int ret;
  6718. struct rt_schedulable_data data = {
  6719. .tg = tg,
  6720. .rt_period = period,
  6721. .rt_runtime = runtime,
  6722. };
  6723. rcu_read_lock();
  6724. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6725. rcu_read_unlock();
  6726. return ret;
  6727. }
  6728. static int tg_set_rt_bandwidth(struct task_group *tg,
  6729. u64 rt_period, u64 rt_runtime)
  6730. {
  6731. int i, err = 0;
  6732. /*
  6733. * Disallowing the root group RT runtime is BAD, it would disallow the
  6734. * kernel creating (and or operating) RT threads.
  6735. */
  6736. if (tg == &root_task_group && rt_runtime == 0)
  6737. return -EINVAL;
  6738. /* No period doesn't make any sense. */
  6739. if (rt_period == 0)
  6740. return -EINVAL;
  6741. mutex_lock(&rt_constraints_mutex);
  6742. read_lock(&tasklist_lock);
  6743. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6744. if (err)
  6745. goto unlock;
  6746. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6747. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6748. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6749. for_each_possible_cpu(i) {
  6750. struct rt_rq *rt_rq = tg->rt_rq[i];
  6751. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6752. rt_rq->rt_runtime = rt_runtime;
  6753. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6754. }
  6755. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6756. unlock:
  6757. read_unlock(&tasklist_lock);
  6758. mutex_unlock(&rt_constraints_mutex);
  6759. return err;
  6760. }
  6761. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6762. {
  6763. u64 rt_runtime, rt_period;
  6764. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6765. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6766. if (rt_runtime_us < 0)
  6767. rt_runtime = RUNTIME_INF;
  6768. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6769. }
  6770. static long sched_group_rt_runtime(struct task_group *tg)
  6771. {
  6772. u64 rt_runtime_us;
  6773. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6774. return -1;
  6775. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6776. do_div(rt_runtime_us, NSEC_PER_USEC);
  6777. return rt_runtime_us;
  6778. }
  6779. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6780. {
  6781. u64 rt_runtime, rt_period;
  6782. rt_period = rt_period_us * NSEC_PER_USEC;
  6783. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6784. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6785. }
  6786. static long sched_group_rt_period(struct task_group *tg)
  6787. {
  6788. u64 rt_period_us;
  6789. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6790. do_div(rt_period_us, NSEC_PER_USEC);
  6791. return rt_period_us;
  6792. }
  6793. #endif /* CONFIG_RT_GROUP_SCHED */
  6794. #ifdef CONFIG_RT_GROUP_SCHED
  6795. static int sched_rt_global_constraints(void)
  6796. {
  6797. int ret = 0;
  6798. mutex_lock(&rt_constraints_mutex);
  6799. read_lock(&tasklist_lock);
  6800. ret = __rt_schedulable(NULL, 0, 0);
  6801. read_unlock(&tasklist_lock);
  6802. mutex_unlock(&rt_constraints_mutex);
  6803. return ret;
  6804. }
  6805. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6806. {
  6807. /* Don't accept realtime tasks when there is no way for them to run */
  6808. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6809. return 0;
  6810. return 1;
  6811. }
  6812. #else /* !CONFIG_RT_GROUP_SCHED */
  6813. static int sched_rt_global_constraints(void)
  6814. {
  6815. unsigned long flags;
  6816. int i;
  6817. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6818. for_each_possible_cpu(i) {
  6819. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6820. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6821. rt_rq->rt_runtime = global_rt_runtime();
  6822. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6823. }
  6824. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6825. return 0;
  6826. }
  6827. #endif /* CONFIG_RT_GROUP_SCHED */
  6828. static int sched_dl_global_validate(void)
  6829. {
  6830. u64 runtime = global_rt_runtime();
  6831. u64 period = global_rt_period();
  6832. u64 new_bw = to_ratio(period, runtime);
  6833. struct dl_bw *dl_b;
  6834. int cpu, ret = 0;
  6835. unsigned long flags;
  6836. /*
  6837. * Here we want to check the bandwidth not being set to some
  6838. * value smaller than the currently allocated bandwidth in
  6839. * any of the root_domains.
  6840. *
  6841. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6842. * cycling on root_domains... Discussion on different/better
  6843. * solutions is welcome!
  6844. */
  6845. for_each_possible_cpu(cpu) {
  6846. rcu_read_lock_sched();
  6847. dl_b = dl_bw_of(cpu);
  6848. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6849. if (new_bw < dl_b->total_bw)
  6850. ret = -EBUSY;
  6851. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6852. rcu_read_unlock_sched();
  6853. if (ret)
  6854. break;
  6855. }
  6856. return ret;
  6857. }
  6858. static void sched_dl_do_global(void)
  6859. {
  6860. u64 new_bw = -1;
  6861. struct dl_bw *dl_b;
  6862. int cpu;
  6863. unsigned long flags;
  6864. def_dl_bandwidth.dl_period = global_rt_period();
  6865. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6866. if (global_rt_runtime() != RUNTIME_INF)
  6867. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6868. /*
  6869. * FIXME: As above...
  6870. */
  6871. for_each_possible_cpu(cpu) {
  6872. rcu_read_lock_sched();
  6873. dl_b = dl_bw_of(cpu);
  6874. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6875. dl_b->bw = new_bw;
  6876. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6877. rcu_read_unlock_sched();
  6878. }
  6879. }
  6880. static int sched_rt_global_validate(void)
  6881. {
  6882. if (sysctl_sched_rt_period <= 0)
  6883. return -EINVAL;
  6884. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6885. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6886. return -EINVAL;
  6887. return 0;
  6888. }
  6889. static void sched_rt_do_global(void)
  6890. {
  6891. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6892. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6893. }
  6894. int sched_rt_handler(struct ctl_table *table, int write,
  6895. void __user *buffer, size_t *lenp,
  6896. loff_t *ppos)
  6897. {
  6898. int old_period, old_runtime;
  6899. static DEFINE_MUTEX(mutex);
  6900. int ret;
  6901. mutex_lock(&mutex);
  6902. old_period = sysctl_sched_rt_period;
  6903. old_runtime = sysctl_sched_rt_runtime;
  6904. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6905. if (!ret && write) {
  6906. ret = sched_rt_global_validate();
  6907. if (ret)
  6908. goto undo;
  6909. ret = sched_dl_global_validate();
  6910. if (ret)
  6911. goto undo;
  6912. ret = sched_rt_global_constraints();
  6913. if (ret)
  6914. goto undo;
  6915. sched_rt_do_global();
  6916. sched_dl_do_global();
  6917. }
  6918. if (0) {
  6919. undo:
  6920. sysctl_sched_rt_period = old_period;
  6921. sysctl_sched_rt_runtime = old_runtime;
  6922. }
  6923. mutex_unlock(&mutex);
  6924. return ret;
  6925. }
  6926. int sched_rr_handler(struct ctl_table *table, int write,
  6927. void __user *buffer, size_t *lenp,
  6928. loff_t *ppos)
  6929. {
  6930. int ret;
  6931. static DEFINE_MUTEX(mutex);
  6932. mutex_lock(&mutex);
  6933. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6934. /* make sure that internally we keep jiffies */
  6935. /* also, writing zero resets timeslice to default */
  6936. if (!ret && write) {
  6937. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6938. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6939. }
  6940. mutex_unlock(&mutex);
  6941. return ret;
  6942. }
  6943. #ifdef CONFIG_CGROUP_SCHED
  6944. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6945. {
  6946. return css ? container_of(css, struct task_group, css) : NULL;
  6947. }
  6948. static struct cgroup_subsys_state *
  6949. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6950. {
  6951. struct task_group *parent = css_tg(parent_css);
  6952. struct task_group *tg;
  6953. if (!parent) {
  6954. /* This is early initialization for the top cgroup */
  6955. return &root_task_group.css;
  6956. }
  6957. tg = sched_create_group(parent);
  6958. if (IS_ERR(tg))
  6959. return ERR_PTR(-ENOMEM);
  6960. sched_online_group(tg, parent);
  6961. return &tg->css;
  6962. }
  6963. static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
  6964. {
  6965. struct task_group *tg = css_tg(css);
  6966. sched_offline_group(tg);
  6967. }
  6968. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6969. {
  6970. struct task_group *tg = css_tg(css);
  6971. /*
  6972. * Relies on the RCU grace period between css_released() and this.
  6973. */
  6974. sched_free_group(tg);
  6975. }
  6976. static void cpu_cgroup_fork(struct task_struct *task)
  6977. {
  6978. sched_move_task(task);
  6979. }
  6980. static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
  6981. {
  6982. struct task_struct *task;
  6983. struct cgroup_subsys_state *css;
  6984. cgroup_taskset_for_each(task, css, tset) {
  6985. #ifdef CONFIG_RT_GROUP_SCHED
  6986. if (!sched_rt_can_attach(css_tg(css), task))
  6987. return -EINVAL;
  6988. #else
  6989. /* We don't support RT-tasks being in separate groups */
  6990. if (task->sched_class != &fair_sched_class)
  6991. return -EINVAL;
  6992. #endif
  6993. }
  6994. return 0;
  6995. }
  6996. static void cpu_cgroup_attach(struct cgroup_taskset *tset)
  6997. {
  6998. struct task_struct *task;
  6999. struct cgroup_subsys_state *css;
  7000. cgroup_taskset_for_each(task, css, tset)
  7001. sched_move_task(task);
  7002. }
  7003. #ifdef CONFIG_FAIR_GROUP_SCHED
  7004. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  7005. struct cftype *cftype, u64 shareval)
  7006. {
  7007. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  7008. }
  7009. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  7010. struct cftype *cft)
  7011. {
  7012. struct task_group *tg = css_tg(css);
  7013. return (u64) scale_load_down(tg->shares);
  7014. }
  7015. #ifdef CONFIG_CFS_BANDWIDTH
  7016. static DEFINE_MUTEX(cfs_constraints_mutex);
  7017. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7018. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7019. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7020. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7021. {
  7022. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  7023. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7024. if (tg == &root_task_group)
  7025. return -EINVAL;
  7026. /*
  7027. * Ensure we have at some amount of bandwidth every period. This is
  7028. * to prevent reaching a state of large arrears when throttled via
  7029. * entity_tick() resulting in prolonged exit starvation.
  7030. */
  7031. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7032. return -EINVAL;
  7033. /*
  7034. * Likewise, bound things on the otherside by preventing insane quota
  7035. * periods. This also allows us to normalize in computing quota
  7036. * feasibility.
  7037. */
  7038. if (period > max_cfs_quota_period)
  7039. return -EINVAL;
  7040. /*
  7041. * Prevent race between setting of cfs_rq->runtime_enabled and
  7042. * unthrottle_offline_cfs_rqs().
  7043. */
  7044. get_online_cpus();
  7045. mutex_lock(&cfs_constraints_mutex);
  7046. ret = __cfs_schedulable(tg, period, quota);
  7047. if (ret)
  7048. goto out_unlock;
  7049. runtime_enabled = quota != RUNTIME_INF;
  7050. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7051. /*
  7052. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7053. * before making related changes, and on->off must occur afterwards
  7054. */
  7055. if (runtime_enabled && !runtime_was_enabled)
  7056. cfs_bandwidth_usage_inc();
  7057. raw_spin_lock_irq(&cfs_b->lock);
  7058. cfs_b->period = ns_to_ktime(period);
  7059. cfs_b->quota = quota;
  7060. __refill_cfs_bandwidth_runtime(cfs_b);
  7061. /* restart the period timer (if active) to handle new period expiry */
  7062. if (runtime_enabled)
  7063. start_cfs_bandwidth(cfs_b);
  7064. raw_spin_unlock_irq(&cfs_b->lock);
  7065. for_each_online_cpu(i) {
  7066. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7067. struct rq *rq = cfs_rq->rq;
  7068. raw_spin_lock_irq(&rq->lock);
  7069. cfs_rq->runtime_enabled = runtime_enabled;
  7070. cfs_rq->runtime_remaining = 0;
  7071. if (cfs_rq->throttled)
  7072. unthrottle_cfs_rq(cfs_rq);
  7073. raw_spin_unlock_irq(&rq->lock);
  7074. }
  7075. if (runtime_was_enabled && !runtime_enabled)
  7076. cfs_bandwidth_usage_dec();
  7077. out_unlock:
  7078. mutex_unlock(&cfs_constraints_mutex);
  7079. put_online_cpus();
  7080. return ret;
  7081. }
  7082. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7083. {
  7084. u64 quota, period;
  7085. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7086. if (cfs_quota_us < 0)
  7087. quota = RUNTIME_INF;
  7088. else
  7089. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7090. return tg_set_cfs_bandwidth(tg, period, quota);
  7091. }
  7092. long tg_get_cfs_quota(struct task_group *tg)
  7093. {
  7094. u64 quota_us;
  7095. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7096. return -1;
  7097. quota_us = tg->cfs_bandwidth.quota;
  7098. do_div(quota_us, NSEC_PER_USEC);
  7099. return quota_us;
  7100. }
  7101. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7102. {
  7103. u64 quota, period;
  7104. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7105. quota = tg->cfs_bandwidth.quota;
  7106. return tg_set_cfs_bandwidth(tg, period, quota);
  7107. }
  7108. long tg_get_cfs_period(struct task_group *tg)
  7109. {
  7110. u64 cfs_period_us;
  7111. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7112. do_div(cfs_period_us, NSEC_PER_USEC);
  7113. return cfs_period_us;
  7114. }
  7115. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7116. struct cftype *cft)
  7117. {
  7118. return tg_get_cfs_quota(css_tg(css));
  7119. }
  7120. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7121. struct cftype *cftype, s64 cfs_quota_us)
  7122. {
  7123. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7124. }
  7125. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7126. struct cftype *cft)
  7127. {
  7128. return tg_get_cfs_period(css_tg(css));
  7129. }
  7130. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7131. struct cftype *cftype, u64 cfs_period_us)
  7132. {
  7133. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7134. }
  7135. struct cfs_schedulable_data {
  7136. struct task_group *tg;
  7137. u64 period, quota;
  7138. };
  7139. /*
  7140. * normalize group quota/period to be quota/max_period
  7141. * note: units are usecs
  7142. */
  7143. static u64 normalize_cfs_quota(struct task_group *tg,
  7144. struct cfs_schedulable_data *d)
  7145. {
  7146. u64 quota, period;
  7147. if (tg == d->tg) {
  7148. period = d->period;
  7149. quota = d->quota;
  7150. } else {
  7151. period = tg_get_cfs_period(tg);
  7152. quota = tg_get_cfs_quota(tg);
  7153. }
  7154. /* note: these should typically be equivalent */
  7155. if (quota == RUNTIME_INF || quota == -1)
  7156. return RUNTIME_INF;
  7157. return to_ratio(period, quota);
  7158. }
  7159. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7160. {
  7161. struct cfs_schedulable_data *d = data;
  7162. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7163. s64 quota = 0, parent_quota = -1;
  7164. if (!tg->parent) {
  7165. quota = RUNTIME_INF;
  7166. } else {
  7167. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7168. quota = normalize_cfs_quota(tg, d);
  7169. parent_quota = parent_b->hierarchical_quota;
  7170. /*
  7171. * ensure max(child_quota) <= parent_quota, inherit when no
  7172. * limit is set
  7173. */
  7174. if (quota == RUNTIME_INF)
  7175. quota = parent_quota;
  7176. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7177. return -EINVAL;
  7178. }
  7179. cfs_b->hierarchical_quota = quota;
  7180. return 0;
  7181. }
  7182. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7183. {
  7184. int ret;
  7185. struct cfs_schedulable_data data = {
  7186. .tg = tg,
  7187. .period = period,
  7188. .quota = quota,
  7189. };
  7190. if (quota != RUNTIME_INF) {
  7191. do_div(data.period, NSEC_PER_USEC);
  7192. do_div(data.quota, NSEC_PER_USEC);
  7193. }
  7194. rcu_read_lock();
  7195. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7196. rcu_read_unlock();
  7197. return ret;
  7198. }
  7199. static int cpu_stats_show(struct seq_file *sf, void *v)
  7200. {
  7201. struct task_group *tg = css_tg(seq_css(sf));
  7202. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7203. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7204. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7205. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7206. return 0;
  7207. }
  7208. #endif /* CONFIG_CFS_BANDWIDTH */
  7209. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7210. #ifdef CONFIG_RT_GROUP_SCHED
  7211. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7212. struct cftype *cft, s64 val)
  7213. {
  7214. return sched_group_set_rt_runtime(css_tg(css), val);
  7215. }
  7216. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7217. struct cftype *cft)
  7218. {
  7219. return sched_group_rt_runtime(css_tg(css));
  7220. }
  7221. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7222. struct cftype *cftype, u64 rt_period_us)
  7223. {
  7224. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7225. }
  7226. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7227. struct cftype *cft)
  7228. {
  7229. return sched_group_rt_period(css_tg(css));
  7230. }
  7231. #endif /* CONFIG_RT_GROUP_SCHED */
  7232. static struct cftype cpu_files[] = {
  7233. #ifdef CONFIG_FAIR_GROUP_SCHED
  7234. {
  7235. .name = "shares",
  7236. .read_u64 = cpu_shares_read_u64,
  7237. .write_u64 = cpu_shares_write_u64,
  7238. },
  7239. #endif
  7240. #ifdef CONFIG_CFS_BANDWIDTH
  7241. {
  7242. .name = "cfs_quota_us",
  7243. .read_s64 = cpu_cfs_quota_read_s64,
  7244. .write_s64 = cpu_cfs_quota_write_s64,
  7245. },
  7246. {
  7247. .name = "cfs_period_us",
  7248. .read_u64 = cpu_cfs_period_read_u64,
  7249. .write_u64 = cpu_cfs_period_write_u64,
  7250. },
  7251. {
  7252. .name = "stat",
  7253. .seq_show = cpu_stats_show,
  7254. },
  7255. #endif
  7256. #ifdef CONFIG_RT_GROUP_SCHED
  7257. {
  7258. .name = "rt_runtime_us",
  7259. .read_s64 = cpu_rt_runtime_read,
  7260. .write_s64 = cpu_rt_runtime_write,
  7261. },
  7262. {
  7263. .name = "rt_period_us",
  7264. .read_u64 = cpu_rt_period_read_uint,
  7265. .write_u64 = cpu_rt_period_write_uint,
  7266. },
  7267. #endif
  7268. { } /* terminate */
  7269. };
  7270. struct cgroup_subsys cpu_cgrp_subsys = {
  7271. .css_alloc = cpu_cgroup_css_alloc,
  7272. .css_released = cpu_cgroup_css_released,
  7273. .css_free = cpu_cgroup_css_free,
  7274. .fork = cpu_cgroup_fork,
  7275. .can_attach = cpu_cgroup_can_attach,
  7276. .attach = cpu_cgroup_attach,
  7277. .legacy_cftypes = cpu_files,
  7278. .early_init = true,
  7279. };
  7280. #endif /* CONFIG_CGROUP_SCHED */
  7281. void dump_cpu_task(int cpu)
  7282. {
  7283. pr_info("Task dump for CPU %d:\n", cpu);
  7284. sched_show_task(cpu_curr(cpu));
  7285. }
  7286. /*
  7287. * Nice levels are multiplicative, with a gentle 10% change for every
  7288. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  7289. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  7290. * that remained on nice 0.
  7291. *
  7292. * The "10% effect" is relative and cumulative: from _any_ nice level,
  7293. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  7294. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  7295. * If a task goes up by ~10% and another task goes down by ~10% then
  7296. * the relative distance between them is ~25%.)
  7297. */
  7298. const int sched_prio_to_weight[40] = {
  7299. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  7300. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  7301. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  7302. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  7303. /* 0 */ 1024, 820, 655, 526, 423,
  7304. /* 5 */ 335, 272, 215, 172, 137,
  7305. /* 10 */ 110, 87, 70, 56, 45,
  7306. /* 15 */ 36, 29, 23, 18, 15,
  7307. };
  7308. /*
  7309. * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
  7310. *
  7311. * In cases where the weight does not change often, we can use the
  7312. * precalculated inverse to speed up arithmetics by turning divisions
  7313. * into multiplications:
  7314. */
  7315. const u32 sched_prio_to_wmult[40] = {
  7316. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  7317. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  7318. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  7319. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  7320. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  7321. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  7322. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  7323. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  7324. };