mips.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/errno.h>
  12. #include <linux/err.h>
  13. #include <linux/kdebug.h>
  14. #include <linux/module.h>
  15. #include <linux/vmalloc.h>
  16. #include <linux/fs.h>
  17. #include <linux/bootmem.h>
  18. #include <asm/fpu.h>
  19. #include <asm/page.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/mmu_context.h>
  22. #include <asm/pgtable.h>
  23. #include <linux/kvm_host.h>
  24. #include "interrupt.h"
  25. #include "commpage.h"
  26. #define CREATE_TRACE_POINTS
  27. #include "trace.h"
  28. #ifndef VECTORSPACING
  29. #define VECTORSPACING 0x100 /* for EI/VI mode */
  30. #endif
  31. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  32. struct kvm_stats_debugfs_item debugfs_entries[] = {
  33. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  34. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  35. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  36. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  37. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  38. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  39. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  40. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  41. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  42. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  43. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  44. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  45. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  46. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  47. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  48. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  49. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  50. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  51. {NULL}
  52. };
  53. static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  54. {
  55. int i;
  56. for_each_possible_cpu(i) {
  57. vcpu->arch.guest_kernel_asid[i] = 0;
  58. vcpu->arch.guest_user_asid[i] = 0;
  59. }
  60. return 0;
  61. }
  62. /*
  63. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  64. * Config7, so we are "runnable" if interrupts are pending
  65. */
  66. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  67. {
  68. return !!(vcpu->arch.pending_exceptions);
  69. }
  70. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  71. {
  72. return 1;
  73. }
  74. int kvm_arch_hardware_enable(void)
  75. {
  76. return 0;
  77. }
  78. int kvm_arch_hardware_setup(void)
  79. {
  80. return 0;
  81. }
  82. void kvm_arch_check_processor_compat(void *rtn)
  83. {
  84. *(int *)rtn = 0;
  85. }
  86. static void kvm_mips_init_tlbs(struct kvm *kvm)
  87. {
  88. unsigned long wired;
  89. /*
  90. * Add a wired entry to the TLB, it is used to map the commpage to
  91. * the Guest kernel
  92. */
  93. wired = read_c0_wired();
  94. write_c0_wired(wired + 1);
  95. mtc0_tlbw_hazard();
  96. kvm->arch.commpage_tlb = wired;
  97. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  98. kvm->arch.commpage_tlb);
  99. }
  100. static void kvm_mips_init_vm_percpu(void *arg)
  101. {
  102. struct kvm *kvm = (struct kvm *)arg;
  103. kvm_mips_init_tlbs(kvm);
  104. kvm_mips_callbacks->vm_init(kvm);
  105. }
  106. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  107. {
  108. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  109. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  110. __func__);
  111. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  112. }
  113. return 0;
  114. }
  115. void kvm_mips_free_vcpus(struct kvm *kvm)
  116. {
  117. unsigned int i;
  118. struct kvm_vcpu *vcpu;
  119. /* Put the pages we reserved for the guest pmap */
  120. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  121. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  122. kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
  123. }
  124. kfree(kvm->arch.guest_pmap);
  125. kvm_for_each_vcpu(i, vcpu, kvm) {
  126. kvm_arch_vcpu_free(vcpu);
  127. }
  128. mutex_lock(&kvm->lock);
  129. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  130. kvm->vcpus[i] = NULL;
  131. atomic_set(&kvm->online_vcpus, 0);
  132. mutex_unlock(&kvm->lock);
  133. }
  134. static void kvm_mips_uninit_tlbs(void *arg)
  135. {
  136. /* Restore wired count */
  137. write_c0_wired(0);
  138. mtc0_tlbw_hazard();
  139. /* Clear out all the TLBs */
  140. kvm_local_flush_tlb_all();
  141. }
  142. void kvm_arch_destroy_vm(struct kvm *kvm)
  143. {
  144. kvm_mips_free_vcpus(kvm);
  145. /* If this is the last instance, restore wired count */
  146. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  147. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  148. __func__);
  149. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  150. }
  151. }
  152. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  153. unsigned long arg)
  154. {
  155. return -ENOIOCTLCMD;
  156. }
  157. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  158. unsigned long npages)
  159. {
  160. return 0;
  161. }
  162. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  163. struct kvm_memory_slot *memslot,
  164. struct kvm_userspace_memory_region *mem,
  165. enum kvm_mr_change change)
  166. {
  167. return 0;
  168. }
  169. void kvm_arch_commit_memory_region(struct kvm *kvm,
  170. struct kvm_userspace_memory_region *mem,
  171. const struct kvm_memory_slot *old,
  172. enum kvm_mr_change change)
  173. {
  174. unsigned long npages = 0;
  175. int i;
  176. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  177. __func__, kvm, mem->slot, mem->guest_phys_addr,
  178. mem->memory_size, mem->userspace_addr);
  179. /* Setup Guest PMAP table */
  180. if (!kvm->arch.guest_pmap) {
  181. if (mem->slot == 0)
  182. npages = mem->memory_size >> PAGE_SHIFT;
  183. if (npages) {
  184. kvm->arch.guest_pmap_npages = npages;
  185. kvm->arch.guest_pmap =
  186. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  187. if (!kvm->arch.guest_pmap) {
  188. kvm_err("Failed to allocate guest PMAP");
  189. return;
  190. }
  191. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  192. npages, kvm->arch.guest_pmap);
  193. /* Now setup the page table */
  194. for (i = 0; i < npages; i++)
  195. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  196. }
  197. }
  198. }
  199. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  200. {
  201. int err, size, offset;
  202. void *gebase;
  203. int i;
  204. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  205. if (!vcpu) {
  206. err = -ENOMEM;
  207. goto out;
  208. }
  209. err = kvm_vcpu_init(vcpu, kvm, id);
  210. if (err)
  211. goto out_free_cpu;
  212. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  213. /*
  214. * Allocate space for host mode exception handlers that handle
  215. * guest mode exits
  216. */
  217. if (cpu_has_veic || cpu_has_vint)
  218. size = 0x200 + VECTORSPACING * 64;
  219. else
  220. size = 0x4000;
  221. /* Save Linux EBASE */
  222. vcpu->arch.host_ebase = (void *)read_c0_ebase();
  223. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  224. if (!gebase) {
  225. err = -ENOMEM;
  226. goto out_free_cpu;
  227. }
  228. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  229. ALIGN(size, PAGE_SIZE), gebase);
  230. /* Save new ebase */
  231. vcpu->arch.guest_ebase = gebase;
  232. /* Copy L1 Guest Exception handler to correct offset */
  233. /* TLB Refill, EXL = 0 */
  234. memcpy(gebase, mips32_exception,
  235. mips32_exceptionEnd - mips32_exception);
  236. /* General Exception Entry point */
  237. memcpy(gebase + 0x180, mips32_exception,
  238. mips32_exceptionEnd - mips32_exception);
  239. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  240. for (i = 0; i < 8; i++) {
  241. kvm_debug("L1 Vectored handler @ %p\n",
  242. gebase + 0x200 + (i * VECTORSPACING));
  243. memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
  244. mips32_exceptionEnd - mips32_exception);
  245. }
  246. /* General handler, relocate to unmapped space for sanity's sake */
  247. offset = 0x2000;
  248. kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
  249. gebase + offset,
  250. mips32_GuestExceptionEnd - mips32_GuestException);
  251. memcpy(gebase + offset, mips32_GuestException,
  252. mips32_GuestExceptionEnd - mips32_GuestException);
  253. /* Invalidate the icache for these ranges */
  254. local_flush_icache_range((unsigned long)gebase,
  255. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  256. /*
  257. * Allocate comm page for guest kernel, a TLB will be reserved for
  258. * mapping GVA @ 0xFFFF8000 to this page
  259. */
  260. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  261. if (!vcpu->arch.kseg0_commpage) {
  262. err = -ENOMEM;
  263. goto out_free_gebase;
  264. }
  265. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  266. kvm_mips_commpage_init(vcpu);
  267. /* Init */
  268. vcpu->arch.last_sched_cpu = -1;
  269. /* Start off the timer */
  270. kvm_mips_init_count(vcpu);
  271. return vcpu;
  272. out_free_gebase:
  273. kfree(gebase);
  274. out_free_cpu:
  275. kfree(vcpu);
  276. out:
  277. return ERR_PTR(err);
  278. }
  279. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  280. {
  281. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  282. kvm_vcpu_uninit(vcpu);
  283. kvm_mips_dump_stats(vcpu);
  284. kfree(vcpu->arch.guest_ebase);
  285. kfree(vcpu->arch.kseg0_commpage);
  286. kfree(vcpu);
  287. }
  288. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  289. {
  290. kvm_arch_vcpu_free(vcpu);
  291. }
  292. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  293. struct kvm_guest_debug *dbg)
  294. {
  295. return -ENOIOCTLCMD;
  296. }
  297. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  298. {
  299. int r = 0;
  300. sigset_t sigsaved;
  301. if (vcpu->sigset_active)
  302. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  303. if (vcpu->mmio_needed) {
  304. if (!vcpu->mmio_is_write)
  305. kvm_mips_complete_mmio_load(vcpu, run);
  306. vcpu->mmio_needed = 0;
  307. }
  308. lose_fpu(1);
  309. local_irq_disable();
  310. /* Check if we have any exceptions/interrupts pending */
  311. kvm_mips_deliver_interrupts(vcpu,
  312. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  313. kvm_guest_enter();
  314. /* Disable hardware page table walking while in guest */
  315. htw_stop();
  316. r = __kvm_mips_vcpu_run(run, vcpu);
  317. /* Re-enable HTW before enabling interrupts */
  318. htw_start();
  319. kvm_guest_exit();
  320. local_irq_enable();
  321. if (vcpu->sigset_active)
  322. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  323. return r;
  324. }
  325. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  326. struct kvm_mips_interrupt *irq)
  327. {
  328. int intr = (int)irq->irq;
  329. struct kvm_vcpu *dvcpu = NULL;
  330. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  331. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  332. (int)intr);
  333. if (irq->cpu == -1)
  334. dvcpu = vcpu;
  335. else
  336. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  337. if (intr == 2 || intr == 3 || intr == 4) {
  338. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  339. } else if (intr == -2 || intr == -3 || intr == -4) {
  340. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  341. } else {
  342. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  343. irq->cpu, irq->irq);
  344. return -EINVAL;
  345. }
  346. dvcpu->arch.wait = 0;
  347. if (waitqueue_active(&dvcpu->wq))
  348. wake_up_interruptible(&dvcpu->wq);
  349. return 0;
  350. }
  351. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  352. struct kvm_mp_state *mp_state)
  353. {
  354. return -ENOIOCTLCMD;
  355. }
  356. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  357. struct kvm_mp_state *mp_state)
  358. {
  359. return -ENOIOCTLCMD;
  360. }
  361. static u64 kvm_mips_get_one_regs[] = {
  362. KVM_REG_MIPS_R0,
  363. KVM_REG_MIPS_R1,
  364. KVM_REG_MIPS_R2,
  365. KVM_REG_MIPS_R3,
  366. KVM_REG_MIPS_R4,
  367. KVM_REG_MIPS_R5,
  368. KVM_REG_MIPS_R6,
  369. KVM_REG_MIPS_R7,
  370. KVM_REG_MIPS_R8,
  371. KVM_REG_MIPS_R9,
  372. KVM_REG_MIPS_R10,
  373. KVM_REG_MIPS_R11,
  374. KVM_REG_MIPS_R12,
  375. KVM_REG_MIPS_R13,
  376. KVM_REG_MIPS_R14,
  377. KVM_REG_MIPS_R15,
  378. KVM_REG_MIPS_R16,
  379. KVM_REG_MIPS_R17,
  380. KVM_REG_MIPS_R18,
  381. KVM_REG_MIPS_R19,
  382. KVM_REG_MIPS_R20,
  383. KVM_REG_MIPS_R21,
  384. KVM_REG_MIPS_R22,
  385. KVM_REG_MIPS_R23,
  386. KVM_REG_MIPS_R24,
  387. KVM_REG_MIPS_R25,
  388. KVM_REG_MIPS_R26,
  389. KVM_REG_MIPS_R27,
  390. KVM_REG_MIPS_R28,
  391. KVM_REG_MIPS_R29,
  392. KVM_REG_MIPS_R30,
  393. KVM_REG_MIPS_R31,
  394. KVM_REG_MIPS_HI,
  395. KVM_REG_MIPS_LO,
  396. KVM_REG_MIPS_PC,
  397. KVM_REG_MIPS_CP0_INDEX,
  398. KVM_REG_MIPS_CP0_CONTEXT,
  399. KVM_REG_MIPS_CP0_USERLOCAL,
  400. KVM_REG_MIPS_CP0_PAGEMASK,
  401. KVM_REG_MIPS_CP0_WIRED,
  402. KVM_REG_MIPS_CP0_HWRENA,
  403. KVM_REG_MIPS_CP0_BADVADDR,
  404. KVM_REG_MIPS_CP0_COUNT,
  405. KVM_REG_MIPS_CP0_ENTRYHI,
  406. KVM_REG_MIPS_CP0_COMPARE,
  407. KVM_REG_MIPS_CP0_STATUS,
  408. KVM_REG_MIPS_CP0_CAUSE,
  409. KVM_REG_MIPS_CP0_EPC,
  410. KVM_REG_MIPS_CP0_PRID,
  411. KVM_REG_MIPS_CP0_CONFIG,
  412. KVM_REG_MIPS_CP0_CONFIG1,
  413. KVM_REG_MIPS_CP0_CONFIG2,
  414. KVM_REG_MIPS_CP0_CONFIG3,
  415. KVM_REG_MIPS_CP0_CONFIG4,
  416. KVM_REG_MIPS_CP0_CONFIG5,
  417. KVM_REG_MIPS_CP0_CONFIG7,
  418. KVM_REG_MIPS_CP0_ERROREPC,
  419. KVM_REG_MIPS_COUNT_CTL,
  420. KVM_REG_MIPS_COUNT_RESUME,
  421. KVM_REG_MIPS_COUNT_HZ,
  422. };
  423. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  424. const struct kvm_one_reg *reg)
  425. {
  426. struct mips_coproc *cop0 = vcpu->arch.cop0;
  427. int ret;
  428. s64 v;
  429. switch (reg->id) {
  430. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  431. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  432. break;
  433. case KVM_REG_MIPS_HI:
  434. v = (long)vcpu->arch.hi;
  435. break;
  436. case KVM_REG_MIPS_LO:
  437. v = (long)vcpu->arch.lo;
  438. break;
  439. case KVM_REG_MIPS_PC:
  440. v = (long)vcpu->arch.pc;
  441. break;
  442. case KVM_REG_MIPS_CP0_INDEX:
  443. v = (long)kvm_read_c0_guest_index(cop0);
  444. break;
  445. case KVM_REG_MIPS_CP0_CONTEXT:
  446. v = (long)kvm_read_c0_guest_context(cop0);
  447. break;
  448. case KVM_REG_MIPS_CP0_USERLOCAL:
  449. v = (long)kvm_read_c0_guest_userlocal(cop0);
  450. break;
  451. case KVM_REG_MIPS_CP0_PAGEMASK:
  452. v = (long)kvm_read_c0_guest_pagemask(cop0);
  453. break;
  454. case KVM_REG_MIPS_CP0_WIRED:
  455. v = (long)kvm_read_c0_guest_wired(cop0);
  456. break;
  457. case KVM_REG_MIPS_CP0_HWRENA:
  458. v = (long)kvm_read_c0_guest_hwrena(cop0);
  459. break;
  460. case KVM_REG_MIPS_CP0_BADVADDR:
  461. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  462. break;
  463. case KVM_REG_MIPS_CP0_ENTRYHI:
  464. v = (long)kvm_read_c0_guest_entryhi(cop0);
  465. break;
  466. case KVM_REG_MIPS_CP0_COMPARE:
  467. v = (long)kvm_read_c0_guest_compare(cop0);
  468. break;
  469. case KVM_REG_MIPS_CP0_STATUS:
  470. v = (long)kvm_read_c0_guest_status(cop0);
  471. break;
  472. case KVM_REG_MIPS_CP0_CAUSE:
  473. v = (long)kvm_read_c0_guest_cause(cop0);
  474. break;
  475. case KVM_REG_MIPS_CP0_EPC:
  476. v = (long)kvm_read_c0_guest_epc(cop0);
  477. break;
  478. case KVM_REG_MIPS_CP0_PRID:
  479. v = (long)kvm_read_c0_guest_prid(cop0);
  480. break;
  481. case KVM_REG_MIPS_CP0_CONFIG:
  482. v = (long)kvm_read_c0_guest_config(cop0);
  483. break;
  484. case KVM_REG_MIPS_CP0_CONFIG1:
  485. v = (long)kvm_read_c0_guest_config1(cop0);
  486. break;
  487. case KVM_REG_MIPS_CP0_CONFIG2:
  488. v = (long)kvm_read_c0_guest_config2(cop0);
  489. break;
  490. case KVM_REG_MIPS_CP0_CONFIG3:
  491. v = (long)kvm_read_c0_guest_config3(cop0);
  492. break;
  493. case KVM_REG_MIPS_CP0_CONFIG4:
  494. v = (long)kvm_read_c0_guest_config4(cop0);
  495. break;
  496. case KVM_REG_MIPS_CP0_CONFIG5:
  497. v = (long)kvm_read_c0_guest_config5(cop0);
  498. break;
  499. case KVM_REG_MIPS_CP0_CONFIG7:
  500. v = (long)kvm_read_c0_guest_config7(cop0);
  501. break;
  502. case KVM_REG_MIPS_CP0_ERROREPC:
  503. v = (long)kvm_read_c0_guest_errorepc(cop0);
  504. break;
  505. /* registers to be handled specially */
  506. case KVM_REG_MIPS_CP0_COUNT:
  507. case KVM_REG_MIPS_COUNT_CTL:
  508. case KVM_REG_MIPS_COUNT_RESUME:
  509. case KVM_REG_MIPS_COUNT_HZ:
  510. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  511. if (ret)
  512. return ret;
  513. break;
  514. default:
  515. return -EINVAL;
  516. }
  517. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  518. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  519. return put_user(v, uaddr64);
  520. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  521. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  522. u32 v32 = (u32)v;
  523. return put_user(v32, uaddr32);
  524. } else {
  525. return -EINVAL;
  526. }
  527. }
  528. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  529. const struct kvm_one_reg *reg)
  530. {
  531. struct mips_coproc *cop0 = vcpu->arch.cop0;
  532. u64 v;
  533. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  534. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  535. if (get_user(v, uaddr64) != 0)
  536. return -EFAULT;
  537. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  538. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  539. s32 v32;
  540. if (get_user(v32, uaddr32) != 0)
  541. return -EFAULT;
  542. v = (s64)v32;
  543. } else {
  544. return -EINVAL;
  545. }
  546. switch (reg->id) {
  547. case KVM_REG_MIPS_R0:
  548. /* Silently ignore requests to set $0 */
  549. break;
  550. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  551. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  552. break;
  553. case KVM_REG_MIPS_HI:
  554. vcpu->arch.hi = v;
  555. break;
  556. case KVM_REG_MIPS_LO:
  557. vcpu->arch.lo = v;
  558. break;
  559. case KVM_REG_MIPS_PC:
  560. vcpu->arch.pc = v;
  561. break;
  562. case KVM_REG_MIPS_CP0_INDEX:
  563. kvm_write_c0_guest_index(cop0, v);
  564. break;
  565. case KVM_REG_MIPS_CP0_CONTEXT:
  566. kvm_write_c0_guest_context(cop0, v);
  567. break;
  568. case KVM_REG_MIPS_CP0_USERLOCAL:
  569. kvm_write_c0_guest_userlocal(cop0, v);
  570. break;
  571. case KVM_REG_MIPS_CP0_PAGEMASK:
  572. kvm_write_c0_guest_pagemask(cop0, v);
  573. break;
  574. case KVM_REG_MIPS_CP0_WIRED:
  575. kvm_write_c0_guest_wired(cop0, v);
  576. break;
  577. case KVM_REG_MIPS_CP0_HWRENA:
  578. kvm_write_c0_guest_hwrena(cop0, v);
  579. break;
  580. case KVM_REG_MIPS_CP0_BADVADDR:
  581. kvm_write_c0_guest_badvaddr(cop0, v);
  582. break;
  583. case KVM_REG_MIPS_CP0_ENTRYHI:
  584. kvm_write_c0_guest_entryhi(cop0, v);
  585. break;
  586. case KVM_REG_MIPS_CP0_STATUS:
  587. kvm_write_c0_guest_status(cop0, v);
  588. break;
  589. case KVM_REG_MIPS_CP0_EPC:
  590. kvm_write_c0_guest_epc(cop0, v);
  591. break;
  592. case KVM_REG_MIPS_CP0_PRID:
  593. kvm_write_c0_guest_prid(cop0, v);
  594. break;
  595. case KVM_REG_MIPS_CP0_ERROREPC:
  596. kvm_write_c0_guest_errorepc(cop0, v);
  597. break;
  598. /* registers to be handled specially */
  599. case KVM_REG_MIPS_CP0_COUNT:
  600. case KVM_REG_MIPS_CP0_COMPARE:
  601. case KVM_REG_MIPS_CP0_CAUSE:
  602. case KVM_REG_MIPS_CP0_CONFIG:
  603. case KVM_REG_MIPS_CP0_CONFIG1:
  604. case KVM_REG_MIPS_CP0_CONFIG2:
  605. case KVM_REG_MIPS_CP0_CONFIG3:
  606. case KVM_REG_MIPS_CP0_CONFIG4:
  607. case KVM_REG_MIPS_CP0_CONFIG5:
  608. case KVM_REG_MIPS_COUNT_CTL:
  609. case KVM_REG_MIPS_COUNT_RESUME:
  610. case KVM_REG_MIPS_COUNT_HZ:
  611. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  612. default:
  613. return -EINVAL;
  614. }
  615. return 0;
  616. }
  617. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  618. unsigned long arg)
  619. {
  620. struct kvm_vcpu *vcpu = filp->private_data;
  621. void __user *argp = (void __user *)arg;
  622. long r;
  623. switch (ioctl) {
  624. case KVM_SET_ONE_REG:
  625. case KVM_GET_ONE_REG: {
  626. struct kvm_one_reg reg;
  627. if (copy_from_user(&reg, argp, sizeof(reg)))
  628. return -EFAULT;
  629. if (ioctl == KVM_SET_ONE_REG)
  630. return kvm_mips_set_reg(vcpu, &reg);
  631. else
  632. return kvm_mips_get_reg(vcpu, &reg);
  633. }
  634. case KVM_GET_REG_LIST: {
  635. struct kvm_reg_list __user *user_list = argp;
  636. u64 __user *reg_dest;
  637. struct kvm_reg_list reg_list;
  638. unsigned n;
  639. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  640. return -EFAULT;
  641. n = reg_list.n;
  642. reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
  643. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  644. return -EFAULT;
  645. if (n < reg_list.n)
  646. return -E2BIG;
  647. reg_dest = user_list->reg;
  648. if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
  649. sizeof(kvm_mips_get_one_regs)))
  650. return -EFAULT;
  651. return 0;
  652. }
  653. case KVM_NMI:
  654. /* Treat the NMI as a CPU reset */
  655. r = kvm_mips_reset_vcpu(vcpu);
  656. break;
  657. case KVM_INTERRUPT:
  658. {
  659. struct kvm_mips_interrupt irq;
  660. r = -EFAULT;
  661. if (copy_from_user(&irq, argp, sizeof(irq)))
  662. goto out;
  663. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  664. irq.irq);
  665. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  666. break;
  667. }
  668. default:
  669. r = -ENOIOCTLCMD;
  670. }
  671. out:
  672. return r;
  673. }
  674. /* Get (and clear) the dirty memory log for a memory slot. */
  675. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  676. {
  677. struct kvm_memory_slot *memslot;
  678. unsigned long ga, ga_end;
  679. int is_dirty = 0;
  680. int r;
  681. unsigned long n;
  682. mutex_lock(&kvm->slots_lock);
  683. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  684. if (r)
  685. goto out;
  686. /* If nothing is dirty, don't bother messing with page tables. */
  687. if (is_dirty) {
  688. memslot = &kvm->memslots->memslots[log->slot];
  689. ga = memslot->base_gfn << PAGE_SHIFT;
  690. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  691. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  692. ga_end);
  693. n = kvm_dirty_bitmap_bytes(memslot);
  694. memset(memslot->dirty_bitmap, 0, n);
  695. }
  696. r = 0;
  697. out:
  698. mutex_unlock(&kvm->slots_lock);
  699. return r;
  700. }
  701. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  702. {
  703. long r;
  704. switch (ioctl) {
  705. default:
  706. r = -ENOIOCTLCMD;
  707. }
  708. return r;
  709. }
  710. int kvm_arch_init(void *opaque)
  711. {
  712. if (kvm_mips_callbacks) {
  713. kvm_err("kvm: module already exists\n");
  714. return -EEXIST;
  715. }
  716. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  717. }
  718. void kvm_arch_exit(void)
  719. {
  720. kvm_mips_callbacks = NULL;
  721. }
  722. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  723. struct kvm_sregs *sregs)
  724. {
  725. return -ENOIOCTLCMD;
  726. }
  727. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  728. struct kvm_sregs *sregs)
  729. {
  730. return -ENOIOCTLCMD;
  731. }
  732. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  733. {
  734. }
  735. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  736. {
  737. return -ENOIOCTLCMD;
  738. }
  739. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  740. {
  741. return -ENOIOCTLCMD;
  742. }
  743. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  744. {
  745. return VM_FAULT_SIGBUS;
  746. }
  747. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  748. {
  749. int r;
  750. switch (ext) {
  751. case KVM_CAP_ONE_REG:
  752. r = 1;
  753. break;
  754. case KVM_CAP_COALESCED_MMIO:
  755. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  756. break;
  757. default:
  758. r = 0;
  759. break;
  760. }
  761. return r;
  762. }
  763. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  764. {
  765. return kvm_mips_pending_timer(vcpu);
  766. }
  767. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  768. {
  769. int i;
  770. struct mips_coproc *cop0;
  771. if (!vcpu)
  772. return -1;
  773. kvm_debug("VCPU Register Dump:\n");
  774. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  775. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  776. for (i = 0; i < 32; i += 4) {
  777. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  778. vcpu->arch.gprs[i],
  779. vcpu->arch.gprs[i + 1],
  780. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  781. }
  782. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  783. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  784. cop0 = vcpu->arch.cop0;
  785. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  786. kvm_read_c0_guest_status(cop0),
  787. kvm_read_c0_guest_cause(cop0));
  788. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  789. return 0;
  790. }
  791. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  792. {
  793. int i;
  794. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  795. vcpu->arch.gprs[i] = regs->gpr[i];
  796. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  797. vcpu->arch.hi = regs->hi;
  798. vcpu->arch.lo = regs->lo;
  799. vcpu->arch.pc = regs->pc;
  800. return 0;
  801. }
  802. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  803. {
  804. int i;
  805. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  806. regs->gpr[i] = vcpu->arch.gprs[i];
  807. regs->hi = vcpu->arch.hi;
  808. regs->lo = vcpu->arch.lo;
  809. regs->pc = vcpu->arch.pc;
  810. return 0;
  811. }
  812. static void kvm_mips_comparecount_func(unsigned long data)
  813. {
  814. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  815. kvm_mips_callbacks->queue_timer_int(vcpu);
  816. vcpu->arch.wait = 0;
  817. if (waitqueue_active(&vcpu->wq))
  818. wake_up_interruptible(&vcpu->wq);
  819. }
  820. /* low level hrtimer wake routine */
  821. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  822. {
  823. struct kvm_vcpu *vcpu;
  824. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  825. kvm_mips_comparecount_func((unsigned long) vcpu);
  826. return kvm_mips_count_timeout(vcpu);
  827. }
  828. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  829. {
  830. kvm_mips_callbacks->vcpu_init(vcpu);
  831. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  832. HRTIMER_MODE_REL);
  833. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  834. return 0;
  835. }
  836. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  837. struct kvm_translation *tr)
  838. {
  839. return 0;
  840. }
  841. /* Initial guest state */
  842. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  843. {
  844. return kvm_mips_callbacks->vcpu_setup(vcpu);
  845. }
  846. static void kvm_mips_set_c0_status(void)
  847. {
  848. uint32_t status = read_c0_status();
  849. if (cpu_has_dsp)
  850. status |= (ST0_MX);
  851. write_c0_status(status);
  852. ehb();
  853. }
  854. /*
  855. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  856. */
  857. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  858. {
  859. uint32_t cause = vcpu->arch.host_cp0_cause;
  860. uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  861. uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
  862. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  863. enum emulation_result er = EMULATE_DONE;
  864. int ret = RESUME_GUEST;
  865. /* re-enable HTW before enabling interrupts */
  866. htw_start();
  867. /* Set a default exit reason */
  868. run->exit_reason = KVM_EXIT_UNKNOWN;
  869. run->ready_for_interrupt_injection = 1;
  870. /*
  871. * Set the appropriate status bits based on host CPU features,
  872. * before we hit the scheduler
  873. */
  874. kvm_mips_set_c0_status();
  875. local_irq_enable();
  876. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  877. cause, opc, run, vcpu);
  878. /*
  879. * Do a privilege check, if in UM most of these exit conditions end up
  880. * causing an exception to be delivered to the Guest Kernel
  881. */
  882. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  883. if (er == EMULATE_PRIV_FAIL) {
  884. goto skip_emul;
  885. } else if (er == EMULATE_FAIL) {
  886. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  887. ret = RESUME_HOST;
  888. goto skip_emul;
  889. }
  890. switch (exccode) {
  891. case T_INT:
  892. kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
  893. ++vcpu->stat.int_exits;
  894. trace_kvm_exit(vcpu, INT_EXITS);
  895. if (need_resched())
  896. cond_resched();
  897. ret = RESUME_GUEST;
  898. break;
  899. case T_COP_UNUSABLE:
  900. kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
  901. ++vcpu->stat.cop_unusable_exits;
  902. trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
  903. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  904. /* XXXKYMA: Might need to return to user space */
  905. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  906. ret = RESUME_HOST;
  907. break;
  908. case T_TLB_MOD:
  909. ++vcpu->stat.tlbmod_exits;
  910. trace_kvm_exit(vcpu, TLBMOD_EXITS);
  911. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  912. break;
  913. case T_TLB_ST_MISS:
  914. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  915. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  916. badvaddr);
  917. ++vcpu->stat.tlbmiss_st_exits;
  918. trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
  919. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  920. break;
  921. case T_TLB_LD_MISS:
  922. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  923. cause, opc, badvaddr);
  924. ++vcpu->stat.tlbmiss_ld_exits;
  925. trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
  926. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  927. break;
  928. case T_ADDR_ERR_ST:
  929. ++vcpu->stat.addrerr_st_exits;
  930. trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
  931. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  932. break;
  933. case T_ADDR_ERR_LD:
  934. ++vcpu->stat.addrerr_ld_exits;
  935. trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
  936. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  937. break;
  938. case T_SYSCALL:
  939. ++vcpu->stat.syscall_exits;
  940. trace_kvm_exit(vcpu, SYSCALL_EXITS);
  941. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  942. break;
  943. case T_RES_INST:
  944. ++vcpu->stat.resvd_inst_exits;
  945. trace_kvm_exit(vcpu, RESVD_INST_EXITS);
  946. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  947. break;
  948. case T_BREAK:
  949. ++vcpu->stat.break_inst_exits;
  950. trace_kvm_exit(vcpu, BREAK_INST_EXITS);
  951. ret = kvm_mips_callbacks->handle_break(vcpu);
  952. break;
  953. case T_TRAP:
  954. ++vcpu->stat.trap_inst_exits;
  955. trace_kvm_exit(vcpu, TRAP_INST_EXITS);
  956. ret = kvm_mips_callbacks->handle_trap(vcpu);
  957. break;
  958. case T_FPE:
  959. ++vcpu->stat.fpe_exits;
  960. trace_kvm_exit(vcpu, FPE_EXITS);
  961. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  962. break;
  963. case T_MSADIS:
  964. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  965. break;
  966. default:
  967. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  968. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  969. kvm_read_c0_guest_status(vcpu->arch.cop0));
  970. kvm_arch_vcpu_dump_regs(vcpu);
  971. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  972. ret = RESUME_HOST;
  973. break;
  974. }
  975. skip_emul:
  976. local_irq_disable();
  977. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  978. kvm_mips_deliver_interrupts(vcpu, cause);
  979. if (!(ret & RESUME_HOST)) {
  980. /* Only check for signals if not already exiting to userspace */
  981. if (signal_pending(current)) {
  982. run->exit_reason = KVM_EXIT_INTR;
  983. ret = (-EINTR << 2) | RESUME_HOST;
  984. ++vcpu->stat.signal_exits;
  985. trace_kvm_exit(vcpu, SIGNAL_EXITS);
  986. }
  987. }
  988. if (ret == RESUME_GUEST) {
  989. /*
  990. * If FPU is enabled (i.e. the guest's FPU context is live),
  991. * restore FCR31.
  992. *
  993. * This should be before returning to the guest exception
  994. * vector, as it may well cause an FP exception if there are
  995. * pending exception bits unmasked. (see
  996. * kvm_mips_csr_die_notifier() for how that is handled).
  997. */
  998. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  999. read_c0_status() & ST0_CU1)
  1000. __kvm_restore_fcsr(&vcpu->arch);
  1001. }
  1002. /* Disable HTW before returning to guest or host */
  1003. htw_stop();
  1004. return ret;
  1005. }
  1006. /* Enable FPU for guest and restore context */
  1007. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1008. {
  1009. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1010. unsigned int sr, cfg5;
  1011. preempt_disable();
  1012. /*
  1013. * Enable FPU for guest
  1014. * We set FR and FRE according to guest context
  1015. */
  1016. sr = kvm_read_c0_guest_status(cop0);
  1017. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1018. if (cpu_has_fre) {
  1019. cfg5 = kvm_read_c0_guest_config5(cop0);
  1020. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1021. }
  1022. enable_fpu_hazard();
  1023. /* If guest FPU state not active, restore it now */
  1024. if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
  1025. __kvm_restore_fpu(&vcpu->arch);
  1026. vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
  1027. }
  1028. preempt_enable();
  1029. }
  1030. /* Drop FPU without saving it */
  1031. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1032. {
  1033. preempt_disable();
  1034. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1035. clear_c0_status(ST0_CU1 | ST0_FR);
  1036. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1037. }
  1038. preempt_enable();
  1039. }
  1040. /* Save and disable FPU */
  1041. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1042. {
  1043. /*
  1044. * FPU gets disabled in root context (hardware) when it is disabled in
  1045. * guest context (software), but the register state in the hardware may
  1046. * still be in use. This is why we explicitly re-enable the hardware
  1047. * before saving.
  1048. */
  1049. preempt_disable();
  1050. if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
  1051. set_c0_status(ST0_CU1);
  1052. enable_fpu_hazard();
  1053. __kvm_save_fpu(&vcpu->arch);
  1054. vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
  1055. /* Disable FPU */
  1056. clear_c0_status(ST0_CU1 | ST0_FR);
  1057. }
  1058. preempt_enable();
  1059. }
  1060. /*
  1061. * Step over a specific ctc1 to FCSR which is used to restore guest FCSR state
  1062. * and may trigger a "harmless" FP exception if cause bits are set in the value
  1063. * being written.
  1064. */
  1065. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1066. unsigned long cmd, void *ptr)
  1067. {
  1068. struct die_args *args = (struct die_args *)ptr;
  1069. struct pt_regs *regs = args->regs;
  1070. unsigned long pc;
  1071. /* Only interested in FPE */
  1072. if (cmd != DIE_FP)
  1073. return NOTIFY_DONE;
  1074. /* Return immediately if guest context isn't active */
  1075. if (!(current->flags & PF_VCPU))
  1076. return NOTIFY_DONE;
  1077. /* Should never get here from user mode */
  1078. BUG_ON(user_mode(regs));
  1079. pc = instruction_pointer(regs);
  1080. switch (cmd) {
  1081. case DIE_FP:
  1082. /* match 2nd instruction in __kvm_restore_fcsr */
  1083. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1084. return NOTIFY_DONE;
  1085. break;
  1086. }
  1087. /* Move PC forward a little and continue executing */
  1088. instruction_pointer(regs) += 4;
  1089. return NOTIFY_STOP;
  1090. }
  1091. static struct notifier_block kvm_mips_csr_die_notifier = {
  1092. .notifier_call = kvm_mips_csr_die_notify,
  1093. };
  1094. int __init kvm_mips_init(void)
  1095. {
  1096. int ret;
  1097. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1098. if (ret)
  1099. return ret;
  1100. register_die_notifier(&kvm_mips_csr_die_notifier);
  1101. /*
  1102. * On MIPS, kernel modules are executed from "mapped space", which
  1103. * requires TLBs. The TLB handling code is statically linked with
  1104. * the rest of the kernel (tlb.c) to avoid the possibility of
  1105. * double faulting. The issue is that the TLB code references
  1106. * routines that are part of the the KVM module, which are only
  1107. * available once the module is loaded.
  1108. */
  1109. kvm_mips_gfn_to_pfn = gfn_to_pfn;
  1110. kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
  1111. kvm_mips_is_error_pfn = is_error_pfn;
  1112. return 0;
  1113. }
  1114. void __exit kvm_mips_exit(void)
  1115. {
  1116. kvm_exit();
  1117. kvm_mips_gfn_to_pfn = NULL;
  1118. kvm_mips_release_pfn_clean = NULL;
  1119. kvm_mips_is_error_pfn = NULL;
  1120. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1121. }
  1122. module_init(kvm_mips_init);
  1123. module_exit(kvm_mips_exit);
  1124. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);