scrub.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449
  1. /*
  2. * Copyright (C) 2011, 2012 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/blkdev.h>
  19. #include <linux/ratelimit.h>
  20. #include "ctree.h"
  21. #include "volumes.h"
  22. #include "disk-io.h"
  23. #include "ordered-data.h"
  24. #include "transaction.h"
  25. #include "backref.h"
  26. #include "extent_io.h"
  27. #include "dev-replace.h"
  28. #include "check-integrity.h"
  29. #include "rcu-string.h"
  30. #include "raid56.h"
  31. /*
  32. * This is only the first step towards a full-features scrub. It reads all
  33. * extent and super block and verifies the checksums. In case a bad checksum
  34. * is found or the extent cannot be read, good data will be written back if
  35. * any can be found.
  36. *
  37. * Future enhancements:
  38. * - In case an unrepairable extent is encountered, track which files are
  39. * affected and report them
  40. * - track and record media errors, throw out bad devices
  41. * - add a mode to also read unallocated space
  42. */
  43. struct scrub_block;
  44. struct scrub_ctx;
  45. /*
  46. * the following three values only influence the performance.
  47. * The last one configures the number of parallel and outstanding I/O
  48. * operations. The first two values configure an upper limit for the number
  49. * of (dynamically allocated) pages that are added to a bio.
  50. */
  51. #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
  52. #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
  53. #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
  54. /*
  55. * the following value times PAGE_SIZE needs to be large enough to match the
  56. * largest node/leaf/sector size that shall be supported.
  57. * Values larger than BTRFS_STRIPE_LEN are not supported.
  58. */
  59. #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
  60. struct scrub_recover {
  61. refcount_t refs;
  62. struct btrfs_bio *bbio;
  63. u64 map_length;
  64. };
  65. struct scrub_page {
  66. struct scrub_block *sblock;
  67. struct page *page;
  68. struct btrfs_device *dev;
  69. struct list_head list;
  70. u64 flags; /* extent flags */
  71. u64 generation;
  72. u64 logical;
  73. u64 physical;
  74. u64 physical_for_dev_replace;
  75. atomic_t refs;
  76. struct {
  77. unsigned int mirror_num:8;
  78. unsigned int have_csum:1;
  79. unsigned int io_error:1;
  80. };
  81. u8 csum[BTRFS_CSUM_SIZE];
  82. struct scrub_recover *recover;
  83. };
  84. struct scrub_bio {
  85. int index;
  86. struct scrub_ctx *sctx;
  87. struct btrfs_device *dev;
  88. struct bio *bio;
  89. int err;
  90. u64 logical;
  91. u64 physical;
  92. #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93. struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
  94. #else
  95. struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
  96. #endif
  97. int page_count;
  98. int next_free;
  99. struct btrfs_work work;
  100. };
  101. struct scrub_block {
  102. struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
  103. int page_count;
  104. atomic_t outstanding_pages;
  105. refcount_t refs; /* free mem on transition to zero */
  106. struct scrub_ctx *sctx;
  107. struct scrub_parity *sparity;
  108. struct {
  109. unsigned int header_error:1;
  110. unsigned int checksum_error:1;
  111. unsigned int no_io_error_seen:1;
  112. unsigned int generation_error:1; /* also sets header_error */
  113. /* The following is for the data used to check parity */
  114. /* It is for the data with checksum */
  115. unsigned int data_corrected:1;
  116. };
  117. struct btrfs_work work;
  118. };
  119. /* Used for the chunks with parity stripe such RAID5/6 */
  120. struct scrub_parity {
  121. struct scrub_ctx *sctx;
  122. struct btrfs_device *scrub_dev;
  123. u64 logic_start;
  124. u64 logic_end;
  125. int nsectors;
  126. int stripe_len;
  127. refcount_t refs;
  128. struct list_head spages;
  129. /* Work of parity check and repair */
  130. struct btrfs_work work;
  131. /* Mark the parity blocks which have data */
  132. unsigned long *dbitmap;
  133. /*
  134. * Mark the parity blocks which have data, but errors happen when
  135. * read data or check data
  136. */
  137. unsigned long *ebitmap;
  138. unsigned long bitmap[0];
  139. };
  140. struct scrub_wr_ctx {
  141. struct scrub_bio *wr_curr_bio;
  142. struct btrfs_device *tgtdev;
  143. int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
  144. atomic_t flush_all_writes;
  145. struct mutex wr_lock;
  146. };
  147. struct scrub_ctx {
  148. struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
  149. struct btrfs_fs_info *fs_info;
  150. int first_free;
  151. int curr;
  152. atomic_t bios_in_flight;
  153. atomic_t workers_pending;
  154. spinlock_t list_lock;
  155. wait_queue_head_t list_wait;
  156. u16 csum_size;
  157. struct list_head csum_list;
  158. atomic_t cancel_req;
  159. int readonly;
  160. int pages_per_rd_bio;
  161. u32 sectorsize;
  162. u32 nodesize;
  163. int is_dev_replace;
  164. struct scrub_wr_ctx wr_ctx;
  165. /*
  166. * statistics
  167. */
  168. struct btrfs_scrub_progress stat;
  169. spinlock_t stat_lock;
  170. /*
  171. * Use a ref counter to avoid use-after-free issues. Scrub workers
  172. * decrement bios_in_flight and workers_pending and then do a wakeup
  173. * on the list_wait wait queue. We must ensure the main scrub task
  174. * doesn't free the scrub context before or while the workers are
  175. * doing the wakeup() call.
  176. */
  177. refcount_t refs;
  178. };
  179. struct scrub_fixup_nodatasum {
  180. struct scrub_ctx *sctx;
  181. struct btrfs_device *dev;
  182. u64 logical;
  183. struct btrfs_root *root;
  184. struct btrfs_work work;
  185. int mirror_num;
  186. };
  187. struct scrub_nocow_inode {
  188. u64 inum;
  189. u64 offset;
  190. u64 root;
  191. struct list_head list;
  192. };
  193. struct scrub_copy_nocow_ctx {
  194. struct scrub_ctx *sctx;
  195. u64 logical;
  196. u64 len;
  197. int mirror_num;
  198. u64 physical_for_dev_replace;
  199. struct list_head inodes;
  200. struct btrfs_work work;
  201. };
  202. struct scrub_warning {
  203. struct btrfs_path *path;
  204. u64 extent_item_size;
  205. const char *errstr;
  206. sector_t sector;
  207. u64 logical;
  208. struct btrfs_device *dev;
  209. };
  210. static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
  211. static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
  212. static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
  213. static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
  214. static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
  215. static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
  216. struct scrub_block *sblocks_for_recheck);
  217. static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
  218. struct scrub_block *sblock,
  219. int retry_failed_mirror);
  220. static void scrub_recheck_block_checksum(struct scrub_block *sblock);
  221. static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
  222. struct scrub_block *sblock_good);
  223. static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
  224. struct scrub_block *sblock_good,
  225. int page_num, int force_write);
  226. static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
  227. static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
  228. int page_num);
  229. static int scrub_checksum_data(struct scrub_block *sblock);
  230. static int scrub_checksum_tree_block(struct scrub_block *sblock);
  231. static int scrub_checksum_super(struct scrub_block *sblock);
  232. static void scrub_block_get(struct scrub_block *sblock);
  233. static void scrub_block_put(struct scrub_block *sblock);
  234. static void scrub_page_get(struct scrub_page *spage);
  235. static void scrub_page_put(struct scrub_page *spage);
  236. static void scrub_parity_get(struct scrub_parity *sparity);
  237. static void scrub_parity_put(struct scrub_parity *sparity);
  238. static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
  239. struct scrub_page *spage);
  240. static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
  241. u64 physical, struct btrfs_device *dev, u64 flags,
  242. u64 gen, int mirror_num, u8 *csum, int force,
  243. u64 physical_for_dev_replace);
  244. static void scrub_bio_end_io(struct bio *bio);
  245. static void scrub_bio_end_io_worker(struct btrfs_work *work);
  246. static void scrub_block_complete(struct scrub_block *sblock);
  247. static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
  248. u64 extent_logical, u64 extent_len,
  249. u64 *extent_physical,
  250. struct btrfs_device **extent_dev,
  251. int *extent_mirror_num);
  252. static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
  253. struct btrfs_device *dev,
  254. int is_dev_replace);
  255. static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
  256. static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
  257. struct scrub_page *spage);
  258. static void scrub_wr_submit(struct scrub_ctx *sctx);
  259. static void scrub_wr_bio_end_io(struct bio *bio);
  260. static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
  261. static int write_page_nocow(struct scrub_ctx *sctx,
  262. u64 physical_for_dev_replace, struct page *page);
  263. static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
  264. struct scrub_copy_nocow_ctx *ctx);
  265. static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
  266. int mirror_num, u64 physical_for_dev_replace);
  267. static void copy_nocow_pages_worker(struct btrfs_work *work);
  268. static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
  269. static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
  270. static void scrub_put_ctx(struct scrub_ctx *sctx);
  271. static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
  272. {
  273. refcount_inc(&sctx->refs);
  274. atomic_inc(&sctx->bios_in_flight);
  275. }
  276. static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
  277. {
  278. atomic_dec(&sctx->bios_in_flight);
  279. wake_up(&sctx->list_wait);
  280. scrub_put_ctx(sctx);
  281. }
  282. static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
  283. {
  284. while (atomic_read(&fs_info->scrub_pause_req)) {
  285. mutex_unlock(&fs_info->scrub_lock);
  286. wait_event(fs_info->scrub_pause_wait,
  287. atomic_read(&fs_info->scrub_pause_req) == 0);
  288. mutex_lock(&fs_info->scrub_lock);
  289. }
  290. }
  291. static void scrub_pause_on(struct btrfs_fs_info *fs_info)
  292. {
  293. atomic_inc(&fs_info->scrubs_paused);
  294. wake_up(&fs_info->scrub_pause_wait);
  295. }
  296. static void scrub_pause_off(struct btrfs_fs_info *fs_info)
  297. {
  298. mutex_lock(&fs_info->scrub_lock);
  299. __scrub_blocked_if_needed(fs_info);
  300. atomic_dec(&fs_info->scrubs_paused);
  301. mutex_unlock(&fs_info->scrub_lock);
  302. wake_up(&fs_info->scrub_pause_wait);
  303. }
  304. static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
  305. {
  306. scrub_pause_on(fs_info);
  307. scrub_pause_off(fs_info);
  308. }
  309. /*
  310. * used for workers that require transaction commits (i.e., for the
  311. * NOCOW case)
  312. */
  313. static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
  314. {
  315. struct btrfs_fs_info *fs_info = sctx->fs_info;
  316. refcount_inc(&sctx->refs);
  317. /*
  318. * increment scrubs_running to prevent cancel requests from
  319. * completing as long as a worker is running. we must also
  320. * increment scrubs_paused to prevent deadlocking on pause
  321. * requests used for transactions commits (as the worker uses a
  322. * transaction context). it is safe to regard the worker
  323. * as paused for all matters practical. effectively, we only
  324. * avoid cancellation requests from completing.
  325. */
  326. mutex_lock(&fs_info->scrub_lock);
  327. atomic_inc(&fs_info->scrubs_running);
  328. atomic_inc(&fs_info->scrubs_paused);
  329. mutex_unlock(&fs_info->scrub_lock);
  330. /*
  331. * check if @scrubs_running=@scrubs_paused condition
  332. * inside wait_event() is not an atomic operation.
  333. * which means we may inc/dec @scrub_running/paused
  334. * at any time. Let's wake up @scrub_pause_wait as
  335. * much as we can to let commit transaction blocked less.
  336. */
  337. wake_up(&fs_info->scrub_pause_wait);
  338. atomic_inc(&sctx->workers_pending);
  339. }
  340. /* used for workers that require transaction commits */
  341. static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
  342. {
  343. struct btrfs_fs_info *fs_info = sctx->fs_info;
  344. /*
  345. * see scrub_pending_trans_workers_inc() why we're pretending
  346. * to be paused in the scrub counters
  347. */
  348. mutex_lock(&fs_info->scrub_lock);
  349. atomic_dec(&fs_info->scrubs_running);
  350. atomic_dec(&fs_info->scrubs_paused);
  351. mutex_unlock(&fs_info->scrub_lock);
  352. atomic_dec(&sctx->workers_pending);
  353. wake_up(&fs_info->scrub_pause_wait);
  354. wake_up(&sctx->list_wait);
  355. scrub_put_ctx(sctx);
  356. }
  357. static void scrub_free_csums(struct scrub_ctx *sctx)
  358. {
  359. while (!list_empty(&sctx->csum_list)) {
  360. struct btrfs_ordered_sum *sum;
  361. sum = list_first_entry(&sctx->csum_list,
  362. struct btrfs_ordered_sum, list);
  363. list_del(&sum->list);
  364. kfree(sum);
  365. }
  366. }
  367. static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
  368. {
  369. int i;
  370. if (!sctx)
  371. return;
  372. scrub_free_wr_ctx(&sctx->wr_ctx);
  373. /* this can happen when scrub is cancelled */
  374. if (sctx->curr != -1) {
  375. struct scrub_bio *sbio = sctx->bios[sctx->curr];
  376. for (i = 0; i < sbio->page_count; i++) {
  377. WARN_ON(!sbio->pagev[i]->page);
  378. scrub_block_put(sbio->pagev[i]->sblock);
  379. }
  380. bio_put(sbio->bio);
  381. }
  382. for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
  383. struct scrub_bio *sbio = sctx->bios[i];
  384. if (!sbio)
  385. break;
  386. kfree(sbio);
  387. }
  388. scrub_free_csums(sctx);
  389. kfree(sctx);
  390. }
  391. static void scrub_put_ctx(struct scrub_ctx *sctx)
  392. {
  393. if (refcount_dec_and_test(&sctx->refs))
  394. scrub_free_ctx(sctx);
  395. }
  396. static noinline_for_stack
  397. struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
  398. {
  399. struct scrub_ctx *sctx;
  400. int i;
  401. struct btrfs_fs_info *fs_info = dev->fs_info;
  402. int ret;
  403. sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
  404. if (!sctx)
  405. goto nomem;
  406. refcount_set(&sctx->refs, 1);
  407. sctx->is_dev_replace = is_dev_replace;
  408. sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
  409. sctx->curr = -1;
  410. sctx->fs_info = dev->fs_info;
  411. for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
  412. struct scrub_bio *sbio;
  413. sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
  414. if (!sbio)
  415. goto nomem;
  416. sctx->bios[i] = sbio;
  417. sbio->index = i;
  418. sbio->sctx = sctx;
  419. sbio->page_count = 0;
  420. btrfs_init_work(&sbio->work, btrfs_scrub_helper,
  421. scrub_bio_end_io_worker, NULL, NULL);
  422. if (i != SCRUB_BIOS_PER_SCTX - 1)
  423. sctx->bios[i]->next_free = i + 1;
  424. else
  425. sctx->bios[i]->next_free = -1;
  426. }
  427. sctx->first_free = 0;
  428. sctx->nodesize = fs_info->nodesize;
  429. sctx->sectorsize = fs_info->sectorsize;
  430. atomic_set(&sctx->bios_in_flight, 0);
  431. atomic_set(&sctx->workers_pending, 0);
  432. atomic_set(&sctx->cancel_req, 0);
  433. sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
  434. INIT_LIST_HEAD(&sctx->csum_list);
  435. spin_lock_init(&sctx->list_lock);
  436. spin_lock_init(&sctx->stat_lock);
  437. init_waitqueue_head(&sctx->list_wait);
  438. ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
  439. fs_info->dev_replace.tgtdev, is_dev_replace);
  440. if (ret) {
  441. scrub_free_ctx(sctx);
  442. return ERR_PTR(ret);
  443. }
  444. return sctx;
  445. nomem:
  446. scrub_free_ctx(sctx);
  447. return ERR_PTR(-ENOMEM);
  448. }
  449. static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
  450. void *warn_ctx)
  451. {
  452. u64 isize;
  453. u32 nlink;
  454. int ret;
  455. int i;
  456. struct extent_buffer *eb;
  457. struct btrfs_inode_item *inode_item;
  458. struct scrub_warning *swarn = warn_ctx;
  459. struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
  460. struct inode_fs_paths *ipath = NULL;
  461. struct btrfs_root *local_root;
  462. struct btrfs_key root_key;
  463. struct btrfs_key key;
  464. root_key.objectid = root;
  465. root_key.type = BTRFS_ROOT_ITEM_KEY;
  466. root_key.offset = (u64)-1;
  467. local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  468. if (IS_ERR(local_root)) {
  469. ret = PTR_ERR(local_root);
  470. goto err;
  471. }
  472. /*
  473. * this makes the path point to (inum INODE_ITEM ioff)
  474. */
  475. key.objectid = inum;
  476. key.type = BTRFS_INODE_ITEM_KEY;
  477. key.offset = 0;
  478. ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
  479. if (ret) {
  480. btrfs_release_path(swarn->path);
  481. goto err;
  482. }
  483. eb = swarn->path->nodes[0];
  484. inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
  485. struct btrfs_inode_item);
  486. isize = btrfs_inode_size(eb, inode_item);
  487. nlink = btrfs_inode_nlink(eb, inode_item);
  488. btrfs_release_path(swarn->path);
  489. ipath = init_ipath(4096, local_root, swarn->path);
  490. if (IS_ERR(ipath)) {
  491. ret = PTR_ERR(ipath);
  492. ipath = NULL;
  493. goto err;
  494. }
  495. ret = paths_from_inode(inum, ipath);
  496. if (ret < 0)
  497. goto err;
  498. /*
  499. * we deliberately ignore the bit ipath might have been too small to
  500. * hold all of the paths here
  501. */
  502. for (i = 0; i < ipath->fspath->elem_cnt; ++i)
  503. btrfs_warn_in_rcu(fs_info,
  504. "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
  505. swarn->errstr, swarn->logical,
  506. rcu_str_deref(swarn->dev->name),
  507. (unsigned long long)swarn->sector,
  508. root, inum, offset,
  509. min(isize - offset, (u64)PAGE_SIZE), nlink,
  510. (char *)(unsigned long)ipath->fspath->val[i]);
  511. free_ipath(ipath);
  512. return 0;
  513. err:
  514. btrfs_warn_in_rcu(fs_info,
  515. "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
  516. swarn->errstr, swarn->logical,
  517. rcu_str_deref(swarn->dev->name),
  518. (unsigned long long)swarn->sector,
  519. root, inum, offset, ret);
  520. free_ipath(ipath);
  521. return 0;
  522. }
  523. static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
  524. {
  525. struct btrfs_device *dev;
  526. struct btrfs_fs_info *fs_info;
  527. struct btrfs_path *path;
  528. struct btrfs_key found_key;
  529. struct extent_buffer *eb;
  530. struct btrfs_extent_item *ei;
  531. struct scrub_warning swarn;
  532. unsigned long ptr = 0;
  533. u64 extent_item_pos;
  534. u64 flags = 0;
  535. u64 ref_root;
  536. u32 item_size;
  537. u8 ref_level = 0;
  538. int ret;
  539. WARN_ON(sblock->page_count < 1);
  540. dev = sblock->pagev[0]->dev;
  541. fs_info = sblock->sctx->fs_info;
  542. path = btrfs_alloc_path();
  543. if (!path)
  544. return;
  545. swarn.sector = (sblock->pagev[0]->physical) >> 9;
  546. swarn.logical = sblock->pagev[0]->logical;
  547. swarn.errstr = errstr;
  548. swarn.dev = NULL;
  549. ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
  550. &flags);
  551. if (ret < 0)
  552. goto out;
  553. extent_item_pos = swarn.logical - found_key.objectid;
  554. swarn.extent_item_size = found_key.offset;
  555. eb = path->nodes[0];
  556. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  557. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  558. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  559. do {
  560. ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
  561. item_size, &ref_root,
  562. &ref_level);
  563. btrfs_warn_in_rcu(fs_info,
  564. "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
  565. errstr, swarn.logical,
  566. rcu_str_deref(dev->name),
  567. (unsigned long long)swarn.sector,
  568. ref_level ? "node" : "leaf",
  569. ret < 0 ? -1 : ref_level,
  570. ret < 0 ? -1 : ref_root);
  571. } while (ret != 1);
  572. btrfs_release_path(path);
  573. } else {
  574. btrfs_release_path(path);
  575. swarn.path = path;
  576. swarn.dev = dev;
  577. iterate_extent_inodes(fs_info, found_key.objectid,
  578. extent_item_pos, 1,
  579. scrub_print_warning_inode, &swarn);
  580. }
  581. out:
  582. btrfs_free_path(path);
  583. }
  584. static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
  585. {
  586. struct page *page = NULL;
  587. unsigned long index;
  588. struct scrub_fixup_nodatasum *fixup = fixup_ctx;
  589. int ret;
  590. int corrected = 0;
  591. struct btrfs_key key;
  592. struct inode *inode = NULL;
  593. struct btrfs_fs_info *fs_info;
  594. u64 end = offset + PAGE_SIZE - 1;
  595. struct btrfs_root *local_root;
  596. int srcu_index;
  597. key.objectid = root;
  598. key.type = BTRFS_ROOT_ITEM_KEY;
  599. key.offset = (u64)-1;
  600. fs_info = fixup->root->fs_info;
  601. srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
  602. local_root = btrfs_read_fs_root_no_name(fs_info, &key);
  603. if (IS_ERR(local_root)) {
  604. srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
  605. return PTR_ERR(local_root);
  606. }
  607. key.type = BTRFS_INODE_ITEM_KEY;
  608. key.objectid = inum;
  609. key.offset = 0;
  610. inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
  611. srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
  612. if (IS_ERR(inode))
  613. return PTR_ERR(inode);
  614. index = offset >> PAGE_SHIFT;
  615. page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
  616. if (!page) {
  617. ret = -ENOMEM;
  618. goto out;
  619. }
  620. if (PageUptodate(page)) {
  621. if (PageDirty(page)) {
  622. /*
  623. * we need to write the data to the defect sector. the
  624. * data that was in that sector is not in memory,
  625. * because the page was modified. we must not write the
  626. * modified page to that sector.
  627. *
  628. * TODO: what could be done here: wait for the delalloc
  629. * runner to write out that page (might involve
  630. * COW) and see whether the sector is still
  631. * referenced afterwards.
  632. *
  633. * For the meantime, we'll treat this error
  634. * incorrectable, although there is a chance that a
  635. * later scrub will find the bad sector again and that
  636. * there's no dirty page in memory, then.
  637. */
  638. ret = -EIO;
  639. goto out;
  640. }
  641. ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
  642. fixup->logical, page,
  643. offset - page_offset(page),
  644. fixup->mirror_num);
  645. unlock_page(page);
  646. corrected = !ret;
  647. } else {
  648. /*
  649. * we need to get good data first. the general readpage path
  650. * will call repair_io_failure for us, we just have to make
  651. * sure we read the bad mirror.
  652. */
  653. ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
  654. EXTENT_DAMAGED);
  655. if (ret) {
  656. /* set_extent_bits should give proper error */
  657. WARN_ON(ret > 0);
  658. if (ret > 0)
  659. ret = -EFAULT;
  660. goto out;
  661. }
  662. ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
  663. btrfs_get_extent,
  664. fixup->mirror_num);
  665. wait_on_page_locked(page);
  666. corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
  667. end, EXTENT_DAMAGED, 0, NULL);
  668. if (!corrected)
  669. clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
  670. EXTENT_DAMAGED);
  671. }
  672. out:
  673. if (page)
  674. put_page(page);
  675. iput(inode);
  676. if (ret < 0)
  677. return ret;
  678. if (ret == 0 && corrected) {
  679. /*
  680. * we only need to call readpage for one of the inodes belonging
  681. * to this extent. so make iterate_extent_inodes stop
  682. */
  683. return 1;
  684. }
  685. return -EIO;
  686. }
  687. static void scrub_fixup_nodatasum(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. int ret;
  691. struct scrub_fixup_nodatasum *fixup;
  692. struct scrub_ctx *sctx;
  693. struct btrfs_trans_handle *trans = NULL;
  694. struct btrfs_path *path;
  695. int uncorrectable = 0;
  696. fixup = container_of(work, struct scrub_fixup_nodatasum, work);
  697. sctx = fixup->sctx;
  698. fs_info = fixup->root->fs_info;
  699. path = btrfs_alloc_path();
  700. if (!path) {
  701. spin_lock(&sctx->stat_lock);
  702. ++sctx->stat.malloc_errors;
  703. spin_unlock(&sctx->stat_lock);
  704. uncorrectable = 1;
  705. goto out;
  706. }
  707. trans = btrfs_join_transaction(fixup->root);
  708. if (IS_ERR(trans)) {
  709. uncorrectable = 1;
  710. goto out;
  711. }
  712. /*
  713. * the idea is to trigger a regular read through the standard path. we
  714. * read a page from the (failed) logical address by specifying the
  715. * corresponding copynum of the failed sector. thus, that readpage is
  716. * expected to fail.
  717. * that is the point where on-the-fly error correction will kick in
  718. * (once it's finished) and rewrite the failed sector if a good copy
  719. * can be found.
  720. */
  721. ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
  722. scrub_fixup_readpage, fixup);
  723. if (ret < 0) {
  724. uncorrectable = 1;
  725. goto out;
  726. }
  727. WARN_ON(ret != 1);
  728. spin_lock(&sctx->stat_lock);
  729. ++sctx->stat.corrected_errors;
  730. spin_unlock(&sctx->stat_lock);
  731. out:
  732. if (trans && !IS_ERR(trans))
  733. btrfs_end_transaction(trans);
  734. if (uncorrectable) {
  735. spin_lock(&sctx->stat_lock);
  736. ++sctx->stat.uncorrectable_errors;
  737. spin_unlock(&sctx->stat_lock);
  738. btrfs_dev_replace_stats_inc(
  739. &fs_info->dev_replace.num_uncorrectable_read_errors);
  740. btrfs_err_rl_in_rcu(fs_info,
  741. "unable to fixup (nodatasum) error at logical %llu on dev %s",
  742. fixup->logical, rcu_str_deref(fixup->dev->name));
  743. }
  744. btrfs_free_path(path);
  745. kfree(fixup);
  746. scrub_pending_trans_workers_dec(sctx);
  747. }
  748. static inline void scrub_get_recover(struct scrub_recover *recover)
  749. {
  750. refcount_inc(&recover->refs);
  751. }
  752. static inline void scrub_put_recover(struct scrub_recover *recover)
  753. {
  754. if (refcount_dec_and_test(&recover->refs)) {
  755. btrfs_put_bbio(recover->bbio);
  756. kfree(recover);
  757. }
  758. }
  759. /*
  760. * scrub_handle_errored_block gets called when either verification of the
  761. * pages failed or the bio failed to read, e.g. with EIO. In the latter
  762. * case, this function handles all pages in the bio, even though only one
  763. * may be bad.
  764. * The goal of this function is to repair the errored block by using the
  765. * contents of one of the mirrors.
  766. */
  767. static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
  768. {
  769. struct scrub_ctx *sctx = sblock_to_check->sctx;
  770. struct btrfs_device *dev;
  771. struct btrfs_fs_info *fs_info;
  772. u64 length;
  773. u64 logical;
  774. unsigned int failed_mirror_index;
  775. unsigned int is_metadata;
  776. unsigned int have_csum;
  777. struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
  778. struct scrub_block *sblock_bad;
  779. int ret;
  780. int mirror_index;
  781. int page_num;
  782. int success;
  783. static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
  784. DEFAULT_RATELIMIT_BURST);
  785. BUG_ON(sblock_to_check->page_count < 1);
  786. fs_info = sctx->fs_info;
  787. if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
  788. /*
  789. * if we find an error in a super block, we just report it.
  790. * They will get written with the next transaction commit
  791. * anyway
  792. */
  793. spin_lock(&sctx->stat_lock);
  794. ++sctx->stat.super_errors;
  795. spin_unlock(&sctx->stat_lock);
  796. return 0;
  797. }
  798. length = sblock_to_check->page_count * PAGE_SIZE;
  799. logical = sblock_to_check->pagev[0]->logical;
  800. BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
  801. failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
  802. is_metadata = !(sblock_to_check->pagev[0]->flags &
  803. BTRFS_EXTENT_FLAG_DATA);
  804. have_csum = sblock_to_check->pagev[0]->have_csum;
  805. dev = sblock_to_check->pagev[0]->dev;
  806. if (sctx->is_dev_replace && !is_metadata && !have_csum) {
  807. sblocks_for_recheck = NULL;
  808. goto nodatasum_case;
  809. }
  810. /*
  811. * read all mirrors one after the other. This includes to
  812. * re-read the extent or metadata block that failed (that was
  813. * the cause that this fixup code is called) another time,
  814. * page by page this time in order to know which pages
  815. * caused I/O errors and which ones are good (for all mirrors).
  816. * It is the goal to handle the situation when more than one
  817. * mirror contains I/O errors, but the errors do not
  818. * overlap, i.e. the data can be repaired by selecting the
  819. * pages from those mirrors without I/O error on the
  820. * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
  821. * would be that mirror #1 has an I/O error on the first page,
  822. * the second page is good, and mirror #2 has an I/O error on
  823. * the second page, but the first page is good.
  824. * Then the first page of the first mirror can be repaired by
  825. * taking the first page of the second mirror, and the
  826. * second page of the second mirror can be repaired by
  827. * copying the contents of the 2nd page of the 1st mirror.
  828. * One more note: if the pages of one mirror contain I/O
  829. * errors, the checksum cannot be verified. In order to get
  830. * the best data for repairing, the first attempt is to find
  831. * a mirror without I/O errors and with a validated checksum.
  832. * Only if this is not possible, the pages are picked from
  833. * mirrors with I/O errors without considering the checksum.
  834. * If the latter is the case, at the end, the checksum of the
  835. * repaired area is verified in order to correctly maintain
  836. * the statistics.
  837. */
  838. sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
  839. sizeof(*sblocks_for_recheck), GFP_NOFS);
  840. if (!sblocks_for_recheck) {
  841. spin_lock(&sctx->stat_lock);
  842. sctx->stat.malloc_errors++;
  843. sctx->stat.read_errors++;
  844. sctx->stat.uncorrectable_errors++;
  845. spin_unlock(&sctx->stat_lock);
  846. btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
  847. goto out;
  848. }
  849. /* setup the context, map the logical blocks and alloc the pages */
  850. ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
  851. if (ret) {
  852. spin_lock(&sctx->stat_lock);
  853. sctx->stat.read_errors++;
  854. sctx->stat.uncorrectable_errors++;
  855. spin_unlock(&sctx->stat_lock);
  856. btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
  857. goto out;
  858. }
  859. BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
  860. sblock_bad = sblocks_for_recheck + failed_mirror_index;
  861. /* build and submit the bios for the failed mirror, check checksums */
  862. scrub_recheck_block(fs_info, sblock_bad, 1);
  863. if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
  864. sblock_bad->no_io_error_seen) {
  865. /*
  866. * the error disappeared after reading page by page, or
  867. * the area was part of a huge bio and other parts of the
  868. * bio caused I/O errors, or the block layer merged several
  869. * read requests into one and the error is caused by a
  870. * different bio (usually one of the two latter cases is
  871. * the cause)
  872. */
  873. spin_lock(&sctx->stat_lock);
  874. sctx->stat.unverified_errors++;
  875. sblock_to_check->data_corrected = 1;
  876. spin_unlock(&sctx->stat_lock);
  877. if (sctx->is_dev_replace)
  878. scrub_write_block_to_dev_replace(sblock_bad);
  879. goto out;
  880. }
  881. if (!sblock_bad->no_io_error_seen) {
  882. spin_lock(&sctx->stat_lock);
  883. sctx->stat.read_errors++;
  884. spin_unlock(&sctx->stat_lock);
  885. if (__ratelimit(&_rs))
  886. scrub_print_warning("i/o error", sblock_to_check);
  887. btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
  888. } else if (sblock_bad->checksum_error) {
  889. spin_lock(&sctx->stat_lock);
  890. sctx->stat.csum_errors++;
  891. spin_unlock(&sctx->stat_lock);
  892. if (__ratelimit(&_rs))
  893. scrub_print_warning("checksum error", sblock_to_check);
  894. btrfs_dev_stat_inc_and_print(dev,
  895. BTRFS_DEV_STAT_CORRUPTION_ERRS);
  896. } else if (sblock_bad->header_error) {
  897. spin_lock(&sctx->stat_lock);
  898. sctx->stat.verify_errors++;
  899. spin_unlock(&sctx->stat_lock);
  900. if (__ratelimit(&_rs))
  901. scrub_print_warning("checksum/header error",
  902. sblock_to_check);
  903. if (sblock_bad->generation_error)
  904. btrfs_dev_stat_inc_and_print(dev,
  905. BTRFS_DEV_STAT_GENERATION_ERRS);
  906. else
  907. btrfs_dev_stat_inc_and_print(dev,
  908. BTRFS_DEV_STAT_CORRUPTION_ERRS);
  909. }
  910. if (sctx->readonly) {
  911. ASSERT(!sctx->is_dev_replace);
  912. goto out;
  913. }
  914. if (!is_metadata && !have_csum) {
  915. struct scrub_fixup_nodatasum *fixup_nodatasum;
  916. WARN_ON(sctx->is_dev_replace);
  917. nodatasum_case:
  918. /*
  919. * !is_metadata and !have_csum, this means that the data
  920. * might not be COWed, that it might be modified
  921. * concurrently. The general strategy to work on the
  922. * commit root does not help in the case when COW is not
  923. * used.
  924. */
  925. fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
  926. if (!fixup_nodatasum)
  927. goto did_not_correct_error;
  928. fixup_nodatasum->sctx = sctx;
  929. fixup_nodatasum->dev = dev;
  930. fixup_nodatasum->logical = logical;
  931. fixup_nodatasum->root = fs_info->extent_root;
  932. fixup_nodatasum->mirror_num = failed_mirror_index + 1;
  933. scrub_pending_trans_workers_inc(sctx);
  934. btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
  935. scrub_fixup_nodatasum, NULL, NULL);
  936. btrfs_queue_work(fs_info->scrub_workers,
  937. &fixup_nodatasum->work);
  938. goto out;
  939. }
  940. /*
  941. * now build and submit the bios for the other mirrors, check
  942. * checksums.
  943. * First try to pick the mirror which is completely without I/O
  944. * errors and also does not have a checksum error.
  945. * If one is found, and if a checksum is present, the full block
  946. * that is known to contain an error is rewritten. Afterwards
  947. * the block is known to be corrected.
  948. * If a mirror is found which is completely correct, and no
  949. * checksum is present, only those pages are rewritten that had
  950. * an I/O error in the block to be repaired, since it cannot be
  951. * determined, which copy of the other pages is better (and it
  952. * could happen otherwise that a correct page would be
  953. * overwritten by a bad one).
  954. */
  955. for (mirror_index = 0;
  956. mirror_index < BTRFS_MAX_MIRRORS &&
  957. sblocks_for_recheck[mirror_index].page_count > 0;
  958. mirror_index++) {
  959. struct scrub_block *sblock_other;
  960. if (mirror_index == failed_mirror_index)
  961. continue;
  962. sblock_other = sblocks_for_recheck + mirror_index;
  963. /* build and submit the bios, check checksums */
  964. scrub_recheck_block(fs_info, sblock_other, 0);
  965. if (!sblock_other->header_error &&
  966. !sblock_other->checksum_error &&
  967. sblock_other->no_io_error_seen) {
  968. if (sctx->is_dev_replace) {
  969. scrub_write_block_to_dev_replace(sblock_other);
  970. goto corrected_error;
  971. } else {
  972. ret = scrub_repair_block_from_good_copy(
  973. sblock_bad, sblock_other);
  974. if (!ret)
  975. goto corrected_error;
  976. }
  977. }
  978. }
  979. if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
  980. goto did_not_correct_error;
  981. /*
  982. * In case of I/O errors in the area that is supposed to be
  983. * repaired, continue by picking good copies of those pages.
  984. * Select the good pages from mirrors to rewrite bad pages from
  985. * the area to fix. Afterwards verify the checksum of the block
  986. * that is supposed to be repaired. This verification step is
  987. * only done for the purpose of statistic counting and for the
  988. * final scrub report, whether errors remain.
  989. * A perfect algorithm could make use of the checksum and try
  990. * all possible combinations of pages from the different mirrors
  991. * until the checksum verification succeeds. For example, when
  992. * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
  993. * of mirror #2 is readable but the final checksum test fails,
  994. * then the 2nd page of mirror #3 could be tried, whether now
  995. * the final checksum succeeds. But this would be a rare
  996. * exception and is therefore not implemented. At least it is
  997. * avoided that the good copy is overwritten.
  998. * A more useful improvement would be to pick the sectors
  999. * without I/O error based on sector sizes (512 bytes on legacy
  1000. * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
  1001. * mirror could be repaired by taking 512 byte of a different
  1002. * mirror, even if other 512 byte sectors in the same PAGE_SIZE
  1003. * area are unreadable.
  1004. */
  1005. success = 1;
  1006. for (page_num = 0; page_num < sblock_bad->page_count;
  1007. page_num++) {
  1008. struct scrub_page *page_bad = sblock_bad->pagev[page_num];
  1009. struct scrub_block *sblock_other = NULL;
  1010. /* skip no-io-error page in scrub */
  1011. if (!page_bad->io_error && !sctx->is_dev_replace)
  1012. continue;
  1013. /* try to find no-io-error page in mirrors */
  1014. if (page_bad->io_error) {
  1015. for (mirror_index = 0;
  1016. mirror_index < BTRFS_MAX_MIRRORS &&
  1017. sblocks_for_recheck[mirror_index].page_count > 0;
  1018. mirror_index++) {
  1019. if (!sblocks_for_recheck[mirror_index].
  1020. pagev[page_num]->io_error) {
  1021. sblock_other = sblocks_for_recheck +
  1022. mirror_index;
  1023. break;
  1024. }
  1025. }
  1026. if (!sblock_other)
  1027. success = 0;
  1028. }
  1029. if (sctx->is_dev_replace) {
  1030. /*
  1031. * did not find a mirror to fetch the page
  1032. * from. scrub_write_page_to_dev_replace()
  1033. * handles this case (page->io_error), by
  1034. * filling the block with zeros before
  1035. * submitting the write request
  1036. */
  1037. if (!sblock_other)
  1038. sblock_other = sblock_bad;
  1039. if (scrub_write_page_to_dev_replace(sblock_other,
  1040. page_num) != 0) {
  1041. btrfs_dev_replace_stats_inc(
  1042. &fs_info->dev_replace.num_write_errors);
  1043. success = 0;
  1044. }
  1045. } else if (sblock_other) {
  1046. ret = scrub_repair_page_from_good_copy(sblock_bad,
  1047. sblock_other,
  1048. page_num, 0);
  1049. if (0 == ret)
  1050. page_bad->io_error = 0;
  1051. else
  1052. success = 0;
  1053. }
  1054. }
  1055. if (success && !sctx->is_dev_replace) {
  1056. if (is_metadata || have_csum) {
  1057. /*
  1058. * need to verify the checksum now that all
  1059. * sectors on disk are repaired (the write
  1060. * request for data to be repaired is on its way).
  1061. * Just be lazy and use scrub_recheck_block()
  1062. * which re-reads the data before the checksum
  1063. * is verified, but most likely the data comes out
  1064. * of the page cache.
  1065. */
  1066. scrub_recheck_block(fs_info, sblock_bad, 1);
  1067. if (!sblock_bad->header_error &&
  1068. !sblock_bad->checksum_error &&
  1069. sblock_bad->no_io_error_seen)
  1070. goto corrected_error;
  1071. else
  1072. goto did_not_correct_error;
  1073. } else {
  1074. corrected_error:
  1075. spin_lock(&sctx->stat_lock);
  1076. sctx->stat.corrected_errors++;
  1077. sblock_to_check->data_corrected = 1;
  1078. spin_unlock(&sctx->stat_lock);
  1079. btrfs_err_rl_in_rcu(fs_info,
  1080. "fixed up error at logical %llu on dev %s",
  1081. logical, rcu_str_deref(dev->name));
  1082. }
  1083. } else {
  1084. did_not_correct_error:
  1085. spin_lock(&sctx->stat_lock);
  1086. sctx->stat.uncorrectable_errors++;
  1087. spin_unlock(&sctx->stat_lock);
  1088. btrfs_err_rl_in_rcu(fs_info,
  1089. "unable to fixup (regular) error at logical %llu on dev %s",
  1090. logical, rcu_str_deref(dev->name));
  1091. }
  1092. out:
  1093. if (sblocks_for_recheck) {
  1094. for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
  1095. mirror_index++) {
  1096. struct scrub_block *sblock = sblocks_for_recheck +
  1097. mirror_index;
  1098. struct scrub_recover *recover;
  1099. int page_index;
  1100. for (page_index = 0; page_index < sblock->page_count;
  1101. page_index++) {
  1102. sblock->pagev[page_index]->sblock = NULL;
  1103. recover = sblock->pagev[page_index]->recover;
  1104. if (recover) {
  1105. scrub_put_recover(recover);
  1106. sblock->pagev[page_index]->recover =
  1107. NULL;
  1108. }
  1109. scrub_page_put(sblock->pagev[page_index]);
  1110. }
  1111. }
  1112. kfree(sblocks_for_recheck);
  1113. }
  1114. return 0;
  1115. }
  1116. static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
  1117. {
  1118. if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
  1119. return 2;
  1120. else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
  1121. return 3;
  1122. else
  1123. return (int)bbio->num_stripes;
  1124. }
  1125. static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
  1126. u64 *raid_map,
  1127. u64 mapped_length,
  1128. int nstripes, int mirror,
  1129. int *stripe_index,
  1130. u64 *stripe_offset)
  1131. {
  1132. int i;
  1133. if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
  1134. /* RAID5/6 */
  1135. for (i = 0; i < nstripes; i++) {
  1136. if (raid_map[i] == RAID6_Q_STRIPE ||
  1137. raid_map[i] == RAID5_P_STRIPE)
  1138. continue;
  1139. if (logical >= raid_map[i] &&
  1140. logical < raid_map[i] + mapped_length)
  1141. break;
  1142. }
  1143. *stripe_index = i;
  1144. *stripe_offset = logical - raid_map[i];
  1145. } else {
  1146. /* The other RAID type */
  1147. *stripe_index = mirror;
  1148. *stripe_offset = 0;
  1149. }
  1150. }
  1151. static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
  1152. struct scrub_block *sblocks_for_recheck)
  1153. {
  1154. struct scrub_ctx *sctx = original_sblock->sctx;
  1155. struct btrfs_fs_info *fs_info = sctx->fs_info;
  1156. u64 length = original_sblock->page_count * PAGE_SIZE;
  1157. u64 logical = original_sblock->pagev[0]->logical;
  1158. u64 generation = original_sblock->pagev[0]->generation;
  1159. u64 flags = original_sblock->pagev[0]->flags;
  1160. u64 have_csum = original_sblock->pagev[0]->have_csum;
  1161. struct scrub_recover *recover;
  1162. struct btrfs_bio *bbio;
  1163. u64 sublen;
  1164. u64 mapped_length;
  1165. u64 stripe_offset;
  1166. int stripe_index;
  1167. int page_index = 0;
  1168. int mirror_index;
  1169. int nmirrors;
  1170. int ret;
  1171. /*
  1172. * note: the two members refs and outstanding_pages
  1173. * are not used (and not set) in the blocks that are used for
  1174. * the recheck procedure
  1175. */
  1176. while (length > 0) {
  1177. sublen = min_t(u64, length, PAGE_SIZE);
  1178. mapped_length = sublen;
  1179. bbio = NULL;
  1180. /*
  1181. * with a length of PAGE_SIZE, each returned stripe
  1182. * represents one mirror
  1183. */
  1184. ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
  1185. logical, &mapped_length, &bbio, 0, 1);
  1186. if (ret || !bbio || mapped_length < sublen) {
  1187. btrfs_put_bbio(bbio);
  1188. return -EIO;
  1189. }
  1190. recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
  1191. if (!recover) {
  1192. btrfs_put_bbio(bbio);
  1193. return -ENOMEM;
  1194. }
  1195. refcount_set(&recover->refs, 1);
  1196. recover->bbio = bbio;
  1197. recover->map_length = mapped_length;
  1198. BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
  1199. nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
  1200. for (mirror_index = 0; mirror_index < nmirrors;
  1201. mirror_index++) {
  1202. struct scrub_block *sblock;
  1203. struct scrub_page *page;
  1204. sblock = sblocks_for_recheck + mirror_index;
  1205. sblock->sctx = sctx;
  1206. page = kzalloc(sizeof(*page), GFP_NOFS);
  1207. if (!page) {
  1208. leave_nomem:
  1209. spin_lock(&sctx->stat_lock);
  1210. sctx->stat.malloc_errors++;
  1211. spin_unlock(&sctx->stat_lock);
  1212. scrub_put_recover(recover);
  1213. return -ENOMEM;
  1214. }
  1215. scrub_page_get(page);
  1216. sblock->pagev[page_index] = page;
  1217. page->sblock = sblock;
  1218. page->flags = flags;
  1219. page->generation = generation;
  1220. page->logical = logical;
  1221. page->have_csum = have_csum;
  1222. if (have_csum)
  1223. memcpy(page->csum,
  1224. original_sblock->pagev[0]->csum,
  1225. sctx->csum_size);
  1226. scrub_stripe_index_and_offset(logical,
  1227. bbio->map_type,
  1228. bbio->raid_map,
  1229. mapped_length,
  1230. bbio->num_stripes -
  1231. bbio->num_tgtdevs,
  1232. mirror_index,
  1233. &stripe_index,
  1234. &stripe_offset);
  1235. page->physical = bbio->stripes[stripe_index].physical +
  1236. stripe_offset;
  1237. page->dev = bbio->stripes[stripe_index].dev;
  1238. BUG_ON(page_index >= original_sblock->page_count);
  1239. page->physical_for_dev_replace =
  1240. original_sblock->pagev[page_index]->
  1241. physical_for_dev_replace;
  1242. /* for missing devices, dev->bdev is NULL */
  1243. page->mirror_num = mirror_index + 1;
  1244. sblock->page_count++;
  1245. page->page = alloc_page(GFP_NOFS);
  1246. if (!page->page)
  1247. goto leave_nomem;
  1248. scrub_get_recover(recover);
  1249. page->recover = recover;
  1250. }
  1251. scrub_put_recover(recover);
  1252. length -= sublen;
  1253. logical += sublen;
  1254. page_index++;
  1255. }
  1256. return 0;
  1257. }
  1258. struct scrub_bio_ret {
  1259. struct completion event;
  1260. int error;
  1261. };
  1262. static void scrub_bio_wait_endio(struct bio *bio)
  1263. {
  1264. struct scrub_bio_ret *ret = bio->bi_private;
  1265. ret->error = bio->bi_error;
  1266. complete(&ret->event);
  1267. }
  1268. static inline int scrub_is_page_on_raid56(struct scrub_page *page)
  1269. {
  1270. return page->recover &&
  1271. (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
  1272. }
  1273. static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
  1274. struct bio *bio,
  1275. struct scrub_page *page)
  1276. {
  1277. struct scrub_bio_ret done;
  1278. int ret;
  1279. init_completion(&done.event);
  1280. done.error = 0;
  1281. bio->bi_iter.bi_sector = page->logical >> 9;
  1282. bio->bi_private = &done;
  1283. bio->bi_end_io = scrub_bio_wait_endio;
  1284. ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
  1285. page->recover->map_length,
  1286. page->mirror_num, 0);
  1287. if (ret)
  1288. return ret;
  1289. wait_for_completion(&done.event);
  1290. if (done.error)
  1291. return -EIO;
  1292. return 0;
  1293. }
  1294. /*
  1295. * this function will check the on disk data for checksum errors, header
  1296. * errors and read I/O errors. If any I/O errors happen, the exact pages
  1297. * which are errored are marked as being bad. The goal is to enable scrub
  1298. * to take those pages that are not errored from all the mirrors so that
  1299. * the pages that are errored in the just handled mirror can be repaired.
  1300. */
  1301. static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
  1302. struct scrub_block *sblock,
  1303. int retry_failed_mirror)
  1304. {
  1305. int page_num;
  1306. sblock->no_io_error_seen = 1;
  1307. for (page_num = 0; page_num < sblock->page_count; page_num++) {
  1308. struct bio *bio;
  1309. struct scrub_page *page = sblock->pagev[page_num];
  1310. if (page->dev->bdev == NULL) {
  1311. page->io_error = 1;
  1312. sblock->no_io_error_seen = 0;
  1313. continue;
  1314. }
  1315. WARN_ON(!page->page);
  1316. bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
  1317. if (!bio) {
  1318. page->io_error = 1;
  1319. sblock->no_io_error_seen = 0;
  1320. continue;
  1321. }
  1322. bio->bi_bdev = page->dev->bdev;
  1323. bio_add_page(bio, page->page, PAGE_SIZE, 0);
  1324. if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
  1325. if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
  1326. page->io_error = 1;
  1327. sblock->no_io_error_seen = 0;
  1328. }
  1329. } else {
  1330. bio->bi_iter.bi_sector = page->physical >> 9;
  1331. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  1332. if (btrfsic_submit_bio_wait(bio)) {
  1333. page->io_error = 1;
  1334. sblock->no_io_error_seen = 0;
  1335. }
  1336. }
  1337. bio_put(bio);
  1338. }
  1339. if (sblock->no_io_error_seen)
  1340. scrub_recheck_block_checksum(sblock);
  1341. }
  1342. static inline int scrub_check_fsid(u8 fsid[],
  1343. struct scrub_page *spage)
  1344. {
  1345. struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
  1346. int ret;
  1347. ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
  1348. return !ret;
  1349. }
  1350. static void scrub_recheck_block_checksum(struct scrub_block *sblock)
  1351. {
  1352. sblock->header_error = 0;
  1353. sblock->checksum_error = 0;
  1354. sblock->generation_error = 0;
  1355. if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
  1356. scrub_checksum_data(sblock);
  1357. else
  1358. scrub_checksum_tree_block(sblock);
  1359. }
  1360. static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
  1361. struct scrub_block *sblock_good)
  1362. {
  1363. int page_num;
  1364. int ret = 0;
  1365. for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
  1366. int ret_sub;
  1367. ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
  1368. sblock_good,
  1369. page_num, 1);
  1370. if (ret_sub)
  1371. ret = ret_sub;
  1372. }
  1373. return ret;
  1374. }
  1375. static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
  1376. struct scrub_block *sblock_good,
  1377. int page_num, int force_write)
  1378. {
  1379. struct scrub_page *page_bad = sblock_bad->pagev[page_num];
  1380. struct scrub_page *page_good = sblock_good->pagev[page_num];
  1381. struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
  1382. BUG_ON(page_bad->page == NULL);
  1383. BUG_ON(page_good->page == NULL);
  1384. if (force_write || sblock_bad->header_error ||
  1385. sblock_bad->checksum_error || page_bad->io_error) {
  1386. struct bio *bio;
  1387. int ret;
  1388. if (!page_bad->dev->bdev) {
  1389. btrfs_warn_rl(fs_info,
  1390. "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
  1391. return -EIO;
  1392. }
  1393. bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
  1394. if (!bio)
  1395. return -EIO;
  1396. bio->bi_bdev = page_bad->dev->bdev;
  1397. bio->bi_iter.bi_sector = page_bad->physical >> 9;
  1398. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  1399. ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
  1400. if (PAGE_SIZE != ret) {
  1401. bio_put(bio);
  1402. return -EIO;
  1403. }
  1404. if (btrfsic_submit_bio_wait(bio)) {
  1405. btrfs_dev_stat_inc_and_print(page_bad->dev,
  1406. BTRFS_DEV_STAT_WRITE_ERRS);
  1407. btrfs_dev_replace_stats_inc(
  1408. &fs_info->dev_replace.num_write_errors);
  1409. bio_put(bio);
  1410. return -EIO;
  1411. }
  1412. bio_put(bio);
  1413. }
  1414. return 0;
  1415. }
  1416. static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
  1417. {
  1418. struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
  1419. int page_num;
  1420. /*
  1421. * This block is used for the check of the parity on the source device,
  1422. * so the data needn't be written into the destination device.
  1423. */
  1424. if (sblock->sparity)
  1425. return;
  1426. for (page_num = 0; page_num < sblock->page_count; page_num++) {
  1427. int ret;
  1428. ret = scrub_write_page_to_dev_replace(sblock, page_num);
  1429. if (ret)
  1430. btrfs_dev_replace_stats_inc(
  1431. &fs_info->dev_replace.num_write_errors);
  1432. }
  1433. }
  1434. static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
  1435. int page_num)
  1436. {
  1437. struct scrub_page *spage = sblock->pagev[page_num];
  1438. BUG_ON(spage->page == NULL);
  1439. if (spage->io_error) {
  1440. void *mapped_buffer = kmap_atomic(spage->page);
  1441. memset(mapped_buffer, 0, PAGE_SIZE);
  1442. flush_dcache_page(spage->page);
  1443. kunmap_atomic(mapped_buffer);
  1444. }
  1445. return scrub_add_page_to_wr_bio(sblock->sctx, spage);
  1446. }
  1447. static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
  1448. struct scrub_page *spage)
  1449. {
  1450. struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
  1451. struct scrub_bio *sbio;
  1452. int ret;
  1453. mutex_lock(&wr_ctx->wr_lock);
  1454. again:
  1455. if (!wr_ctx->wr_curr_bio) {
  1456. wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
  1457. GFP_KERNEL);
  1458. if (!wr_ctx->wr_curr_bio) {
  1459. mutex_unlock(&wr_ctx->wr_lock);
  1460. return -ENOMEM;
  1461. }
  1462. wr_ctx->wr_curr_bio->sctx = sctx;
  1463. wr_ctx->wr_curr_bio->page_count = 0;
  1464. }
  1465. sbio = wr_ctx->wr_curr_bio;
  1466. if (sbio->page_count == 0) {
  1467. struct bio *bio;
  1468. sbio->physical = spage->physical_for_dev_replace;
  1469. sbio->logical = spage->logical;
  1470. sbio->dev = wr_ctx->tgtdev;
  1471. bio = sbio->bio;
  1472. if (!bio) {
  1473. bio = btrfs_io_bio_alloc(GFP_KERNEL,
  1474. wr_ctx->pages_per_wr_bio);
  1475. if (!bio) {
  1476. mutex_unlock(&wr_ctx->wr_lock);
  1477. return -ENOMEM;
  1478. }
  1479. sbio->bio = bio;
  1480. }
  1481. bio->bi_private = sbio;
  1482. bio->bi_end_io = scrub_wr_bio_end_io;
  1483. bio->bi_bdev = sbio->dev->bdev;
  1484. bio->bi_iter.bi_sector = sbio->physical >> 9;
  1485. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  1486. sbio->err = 0;
  1487. } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
  1488. spage->physical_for_dev_replace ||
  1489. sbio->logical + sbio->page_count * PAGE_SIZE !=
  1490. spage->logical) {
  1491. scrub_wr_submit(sctx);
  1492. goto again;
  1493. }
  1494. ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
  1495. if (ret != PAGE_SIZE) {
  1496. if (sbio->page_count < 1) {
  1497. bio_put(sbio->bio);
  1498. sbio->bio = NULL;
  1499. mutex_unlock(&wr_ctx->wr_lock);
  1500. return -EIO;
  1501. }
  1502. scrub_wr_submit(sctx);
  1503. goto again;
  1504. }
  1505. sbio->pagev[sbio->page_count] = spage;
  1506. scrub_page_get(spage);
  1507. sbio->page_count++;
  1508. if (sbio->page_count == wr_ctx->pages_per_wr_bio)
  1509. scrub_wr_submit(sctx);
  1510. mutex_unlock(&wr_ctx->wr_lock);
  1511. return 0;
  1512. }
  1513. static void scrub_wr_submit(struct scrub_ctx *sctx)
  1514. {
  1515. struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
  1516. struct scrub_bio *sbio;
  1517. if (!wr_ctx->wr_curr_bio)
  1518. return;
  1519. sbio = wr_ctx->wr_curr_bio;
  1520. wr_ctx->wr_curr_bio = NULL;
  1521. WARN_ON(!sbio->bio->bi_bdev);
  1522. scrub_pending_bio_inc(sctx);
  1523. /* process all writes in a single worker thread. Then the block layer
  1524. * orders the requests before sending them to the driver which
  1525. * doubled the write performance on spinning disks when measured
  1526. * with Linux 3.5 */
  1527. btrfsic_submit_bio(sbio->bio);
  1528. }
  1529. static void scrub_wr_bio_end_io(struct bio *bio)
  1530. {
  1531. struct scrub_bio *sbio = bio->bi_private;
  1532. struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
  1533. sbio->err = bio->bi_error;
  1534. sbio->bio = bio;
  1535. btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
  1536. scrub_wr_bio_end_io_worker, NULL, NULL);
  1537. btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
  1538. }
  1539. static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
  1540. {
  1541. struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
  1542. struct scrub_ctx *sctx = sbio->sctx;
  1543. int i;
  1544. WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
  1545. if (sbio->err) {
  1546. struct btrfs_dev_replace *dev_replace =
  1547. &sbio->sctx->fs_info->dev_replace;
  1548. for (i = 0; i < sbio->page_count; i++) {
  1549. struct scrub_page *spage = sbio->pagev[i];
  1550. spage->io_error = 1;
  1551. btrfs_dev_replace_stats_inc(&dev_replace->
  1552. num_write_errors);
  1553. }
  1554. }
  1555. for (i = 0; i < sbio->page_count; i++)
  1556. scrub_page_put(sbio->pagev[i]);
  1557. bio_put(sbio->bio);
  1558. kfree(sbio);
  1559. scrub_pending_bio_dec(sctx);
  1560. }
  1561. static int scrub_checksum(struct scrub_block *sblock)
  1562. {
  1563. u64 flags;
  1564. int ret;
  1565. /*
  1566. * No need to initialize these stats currently,
  1567. * because this function only use return value
  1568. * instead of these stats value.
  1569. *
  1570. * Todo:
  1571. * always use stats
  1572. */
  1573. sblock->header_error = 0;
  1574. sblock->generation_error = 0;
  1575. sblock->checksum_error = 0;
  1576. WARN_ON(sblock->page_count < 1);
  1577. flags = sblock->pagev[0]->flags;
  1578. ret = 0;
  1579. if (flags & BTRFS_EXTENT_FLAG_DATA)
  1580. ret = scrub_checksum_data(sblock);
  1581. else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1582. ret = scrub_checksum_tree_block(sblock);
  1583. else if (flags & BTRFS_EXTENT_FLAG_SUPER)
  1584. (void)scrub_checksum_super(sblock);
  1585. else
  1586. WARN_ON(1);
  1587. if (ret)
  1588. scrub_handle_errored_block(sblock);
  1589. return ret;
  1590. }
  1591. static int scrub_checksum_data(struct scrub_block *sblock)
  1592. {
  1593. struct scrub_ctx *sctx = sblock->sctx;
  1594. u8 csum[BTRFS_CSUM_SIZE];
  1595. u8 *on_disk_csum;
  1596. struct page *page;
  1597. void *buffer;
  1598. u32 crc = ~(u32)0;
  1599. u64 len;
  1600. int index;
  1601. BUG_ON(sblock->page_count < 1);
  1602. if (!sblock->pagev[0]->have_csum)
  1603. return 0;
  1604. on_disk_csum = sblock->pagev[0]->csum;
  1605. page = sblock->pagev[0]->page;
  1606. buffer = kmap_atomic(page);
  1607. len = sctx->sectorsize;
  1608. index = 0;
  1609. for (;;) {
  1610. u64 l = min_t(u64, len, PAGE_SIZE);
  1611. crc = btrfs_csum_data(buffer, crc, l);
  1612. kunmap_atomic(buffer);
  1613. len -= l;
  1614. if (len == 0)
  1615. break;
  1616. index++;
  1617. BUG_ON(index >= sblock->page_count);
  1618. BUG_ON(!sblock->pagev[index]->page);
  1619. page = sblock->pagev[index]->page;
  1620. buffer = kmap_atomic(page);
  1621. }
  1622. btrfs_csum_final(crc, csum);
  1623. if (memcmp(csum, on_disk_csum, sctx->csum_size))
  1624. sblock->checksum_error = 1;
  1625. return sblock->checksum_error;
  1626. }
  1627. static int scrub_checksum_tree_block(struct scrub_block *sblock)
  1628. {
  1629. struct scrub_ctx *sctx = sblock->sctx;
  1630. struct btrfs_header *h;
  1631. struct btrfs_fs_info *fs_info = sctx->fs_info;
  1632. u8 calculated_csum[BTRFS_CSUM_SIZE];
  1633. u8 on_disk_csum[BTRFS_CSUM_SIZE];
  1634. struct page *page;
  1635. void *mapped_buffer;
  1636. u64 mapped_size;
  1637. void *p;
  1638. u32 crc = ~(u32)0;
  1639. u64 len;
  1640. int index;
  1641. BUG_ON(sblock->page_count < 1);
  1642. page = sblock->pagev[0]->page;
  1643. mapped_buffer = kmap_atomic(page);
  1644. h = (struct btrfs_header *)mapped_buffer;
  1645. memcpy(on_disk_csum, h->csum, sctx->csum_size);
  1646. /*
  1647. * we don't use the getter functions here, as we
  1648. * a) don't have an extent buffer and
  1649. * b) the page is already kmapped
  1650. */
  1651. if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
  1652. sblock->header_error = 1;
  1653. if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
  1654. sblock->header_error = 1;
  1655. sblock->generation_error = 1;
  1656. }
  1657. if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
  1658. sblock->header_error = 1;
  1659. if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
  1660. BTRFS_UUID_SIZE))
  1661. sblock->header_error = 1;
  1662. len = sctx->nodesize - BTRFS_CSUM_SIZE;
  1663. mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
  1664. p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
  1665. index = 0;
  1666. for (;;) {
  1667. u64 l = min_t(u64, len, mapped_size);
  1668. crc = btrfs_csum_data(p, crc, l);
  1669. kunmap_atomic(mapped_buffer);
  1670. len -= l;
  1671. if (len == 0)
  1672. break;
  1673. index++;
  1674. BUG_ON(index >= sblock->page_count);
  1675. BUG_ON(!sblock->pagev[index]->page);
  1676. page = sblock->pagev[index]->page;
  1677. mapped_buffer = kmap_atomic(page);
  1678. mapped_size = PAGE_SIZE;
  1679. p = mapped_buffer;
  1680. }
  1681. btrfs_csum_final(crc, calculated_csum);
  1682. if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
  1683. sblock->checksum_error = 1;
  1684. return sblock->header_error || sblock->checksum_error;
  1685. }
  1686. static int scrub_checksum_super(struct scrub_block *sblock)
  1687. {
  1688. struct btrfs_super_block *s;
  1689. struct scrub_ctx *sctx = sblock->sctx;
  1690. u8 calculated_csum[BTRFS_CSUM_SIZE];
  1691. u8 on_disk_csum[BTRFS_CSUM_SIZE];
  1692. struct page *page;
  1693. void *mapped_buffer;
  1694. u64 mapped_size;
  1695. void *p;
  1696. u32 crc = ~(u32)0;
  1697. int fail_gen = 0;
  1698. int fail_cor = 0;
  1699. u64 len;
  1700. int index;
  1701. BUG_ON(sblock->page_count < 1);
  1702. page = sblock->pagev[0]->page;
  1703. mapped_buffer = kmap_atomic(page);
  1704. s = (struct btrfs_super_block *)mapped_buffer;
  1705. memcpy(on_disk_csum, s->csum, sctx->csum_size);
  1706. if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
  1707. ++fail_cor;
  1708. if (sblock->pagev[0]->generation != btrfs_super_generation(s))
  1709. ++fail_gen;
  1710. if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
  1711. ++fail_cor;
  1712. len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
  1713. mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
  1714. p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
  1715. index = 0;
  1716. for (;;) {
  1717. u64 l = min_t(u64, len, mapped_size);
  1718. crc = btrfs_csum_data(p, crc, l);
  1719. kunmap_atomic(mapped_buffer);
  1720. len -= l;
  1721. if (len == 0)
  1722. break;
  1723. index++;
  1724. BUG_ON(index >= sblock->page_count);
  1725. BUG_ON(!sblock->pagev[index]->page);
  1726. page = sblock->pagev[index]->page;
  1727. mapped_buffer = kmap_atomic(page);
  1728. mapped_size = PAGE_SIZE;
  1729. p = mapped_buffer;
  1730. }
  1731. btrfs_csum_final(crc, calculated_csum);
  1732. if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
  1733. ++fail_cor;
  1734. if (fail_cor + fail_gen) {
  1735. /*
  1736. * if we find an error in a super block, we just report it.
  1737. * They will get written with the next transaction commit
  1738. * anyway
  1739. */
  1740. spin_lock(&sctx->stat_lock);
  1741. ++sctx->stat.super_errors;
  1742. spin_unlock(&sctx->stat_lock);
  1743. if (fail_cor)
  1744. btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
  1745. BTRFS_DEV_STAT_CORRUPTION_ERRS);
  1746. else
  1747. btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
  1748. BTRFS_DEV_STAT_GENERATION_ERRS);
  1749. }
  1750. return fail_cor + fail_gen;
  1751. }
  1752. static void scrub_block_get(struct scrub_block *sblock)
  1753. {
  1754. refcount_inc(&sblock->refs);
  1755. }
  1756. static void scrub_block_put(struct scrub_block *sblock)
  1757. {
  1758. if (refcount_dec_and_test(&sblock->refs)) {
  1759. int i;
  1760. if (sblock->sparity)
  1761. scrub_parity_put(sblock->sparity);
  1762. for (i = 0; i < sblock->page_count; i++)
  1763. scrub_page_put(sblock->pagev[i]);
  1764. kfree(sblock);
  1765. }
  1766. }
  1767. static void scrub_page_get(struct scrub_page *spage)
  1768. {
  1769. atomic_inc(&spage->refs);
  1770. }
  1771. static void scrub_page_put(struct scrub_page *spage)
  1772. {
  1773. if (atomic_dec_and_test(&spage->refs)) {
  1774. if (spage->page)
  1775. __free_page(spage->page);
  1776. kfree(spage);
  1777. }
  1778. }
  1779. static void scrub_submit(struct scrub_ctx *sctx)
  1780. {
  1781. struct scrub_bio *sbio;
  1782. if (sctx->curr == -1)
  1783. return;
  1784. sbio = sctx->bios[sctx->curr];
  1785. sctx->curr = -1;
  1786. scrub_pending_bio_inc(sctx);
  1787. btrfsic_submit_bio(sbio->bio);
  1788. }
  1789. static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
  1790. struct scrub_page *spage)
  1791. {
  1792. struct scrub_block *sblock = spage->sblock;
  1793. struct scrub_bio *sbio;
  1794. int ret;
  1795. again:
  1796. /*
  1797. * grab a fresh bio or wait for one to become available
  1798. */
  1799. while (sctx->curr == -1) {
  1800. spin_lock(&sctx->list_lock);
  1801. sctx->curr = sctx->first_free;
  1802. if (sctx->curr != -1) {
  1803. sctx->first_free = sctx->bios[sctx->curr]->next_free;
  1804. sctx->bios[sctx->curr]->next_free = -1;
  1805. sctx->bios[sctx->curr]->page_count = 0;
  1806. spin_unlock(&sctx->list_lock);
  1807. } else {
  1808. spin_unlock(&sctx->list_lock);
  1809. wait_event(sctx->list_wait, sctx->first_free != -1);
  1810. }
  1811. }
  1812. sbio = sctx->bios[sctx->curr];
  1813. if (sbio->page_count == 0) {
  1814. struct bio *bio;
  1815. sbio->physical = spage->physical;
  1816. sbio->logical = spage->logical;
  1817. sbio->dev = spage->dev;
  1818. bio = sbio->bio;
  1819. if (!bio) {
  1820. bio = btrfs_io_bio_alloc(GFP_KERNEL,
  1821. sctx->pages_per_rd_bio);
  1822. if (!bio)
  1823. return -ENOMEM;
  1824. sbio->bio = bio;
  1825. }
  1826. bio->bi_private = sbio;
  1827. bio->bi_end_io = scrub_bio_end_io;
  1828. bio->bi_bdev = sbio->dev->bdev;
  1829. bio->bi_iter.bi_sector = sbio->physical >> 9;
  1830. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  1831. sbio->err = 0;
  1832. } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
  1833. spage->physical ||
  1834. sbio->logical + sbio->page_count * PAGE_SIZE !=
  1835. spage->logical ||
  1836. sbio->dev != spage->dev) {
  1837. scrub_submit(sctx);
  1838. goto again;
  1839. }
  1840. sbio->pagev[sbio->page_count] = spage;
  1841. ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
  1842. if (ret != PAGE_SIZE) {
  1843. if (sbio->page_count < 1) {
  1844. bio_put(sbio->bio);
  1845. sbio->bio = NULL;
  1846. return -EIO;
  1847. }
  1848. scrub_submit(sctx);
  1849. goto again;
  1850. }
  1851. scrub_block_get(sblock); /* one for the page added to the bio */
  1852. atomic_inc(&sblock->outstanding_pages);
  1853. sbio->page_count++;
  1854. if (sbio->page_count == sctx->pages_per_rd_bio)
  1855. scrub_submit(sctx);
  1856. return 0;
  1857. }
  1858. static void scrub_missing_raid56_end_io(struct bio *bio)
  1859. {
  1860. struct scrub_block *sblock = bio->bi_private;
  1861. struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
  1862. if (bio->bi_error)
  1863. sblock->no_io_error_seen = 0;
  1864. bio_put(bio);
  1865. btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
  1866. }
  1867. static void scrub_missing_raid56_worker(struct btrfs_work *work)
  1868. {
  1869. struct scrub_block *sblock = container_of(work, struct scrub_block, work);
  1870. struct scrub_ctx *sctx = sblock->sctx;
  1871. struct btrfs_fs_info *fs_info = sctx->fs_info;
  1872. u64 logical;
  1873. struct btrfs_device *dev;
  1874. logical = sblock->pagev[0]->logical;
  1875. dev = sblock->pagev[0]->dev;
  1876. if (sblock->no_io_error_seen)
  1877. scrub_recheck_block_checksum(sblock);
  1878. if (!sblock->no_io_error_seen) {
  1879. spin_lock(&sctx->stat_lock);
  1880. sctx->stat.read_errors++;
  1881. spin_unlock(&sctx->stat_lock);
  1882. btrfs_err_rl_in_rcu(fs_info,
  1883. "IO error rebuilding logical %llu for dev %s",
  1884. logical, rcu_str_deref(dev->name));
  1885. } else if (sblock->header_error || sblock->checksum_error) {
  1886. spin_lock(&sctx->stat_lock);
  1887. sctx->stat.uncorrectable_errors++;
  1888. spin_unlock(&sctx->stat_lock);
  1889. btrfs_err_rl_in_rcu(fs_info,
  1890. "failed to rebuild valid logical %llu for dev %s",
  1891. logical, rcu_str_deref(dev->name));
  1892. } else {
  1893. scrub_write_block_to_dev_replace(sblock);
  1894. }
  1895. scrub_block_put(sblock);
  1896. if (sctx->is_dev_replace &&
  1897. atomic_read(&sctx->wr_ctx.flush_all_writes)) {
  1898. mutex_lock(&sctx->wr_ctx.wr_lock);
  1899. scrub_wr_submit(sctx);
  1900. mutex_unlock(&sctx->wr_ctx.wr_lock);
  1901. }
  1902. scrub_pending_bio_dec(sctx);
  1903. }
  1904. static void scrub_missing_raid56_pages(struct scrub_block *sblock)
  1905. {
  1906. struct scrub_ctx *sctx = sblock->sctx;
  1907. struct btrfs_fs_info *fs_info = sctx->fs_info;
  1908. u64 length = sblock->page_count * PAGE_SIZE;
  1909. u64 logical = sblock->pagev[0]->logical;
  1910. struct btrfs_bio *bbio = NULL;
  1911. struct bio *bio;
  1912. struct btrfs_raid_bio *rbio;
  1913. int ret;
  1914. int i;
  1915. ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
  1916. &length, &bbio, 0, 1);
  1917. if (ret || !bbio || !bbio->raid_map)
  1918. goto bbio_out;
  1919. if (WARN_ON(!sctx->is_dev_replace ||
  1920. !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
  1921. /*
  1922. * We shouldn't be scrubbing a missing device. Even for dev
  1923. * replace, we should only get here for RAID 5/6. We either
  1924. * managed to mount something with no mirrors remaining or
  1925. * there's a bug in scrub_remap_extent()/btrfs_map_block().
  1926. */
  1927. goto bbio_out;
  1928. }
  1929. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  1930. if (!bio)
  1931. goto bbio_out;
  1932. bio->bi_iter.bi_sector = logical >> 9;
  1933. bio->bi_private = sblock;
  1934. bio->bi_end_io = scrub_missing_raid56_end_io;
  1935. rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
  1936. if (!rbio)
  1937. goto rbio_out;
  1938. for (i = 0; i < sblock->page_count; i++) {
  1939. struct scrub_page *spage = sblock->pagev[i];
  1940. raid56_add_scrub_pages(rbio, spage->page, spage->logical);
  1941. }
  1942. btrfs_init_work(&sblock->work, btrfs_scrub_helper,
  1943. scrub_missing_raid56_worker, NULL, NULL);
  1944. scrub_block_get(sblock);
  1945. scrub_pending_bio_inc(sctx);
  1946. raid56_submit_missing_rbio(rbio);
  1947. return;
  1948. rbio_out:
  1949. bio_put(bio);
  1950. bbio_out:
  1951. btrfs_put_bbio(bbio);
  1952. spin_lock(&sctx->stat_lock);
  1953. sctx->stat.malloc_errors++;
  1954. spin_unlock(&sctx->stat_lock);
  1955. }
  1956. static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
  1957. u64 physical, struct btrfs_device *dev, u64 flags,
  1958. u64 gen, int mirror_num, u8 *csum, int force,
  1959. u64 physical_for_dev_replace)
  1960. {
  1961. struct scrub_block *sblock;
  1962. int index;
  1963. sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
  1964. if (!sblock) {
  1965. spin_lock(&sctx->stat_lock);
  1966. sctx->stat.malloc_errors++;
  1967. spin_unlock(&sctx->stat_lock);
  1968. return -ENOMEM;
  1969. }
  1970. /* one ref inside this function, plus one for each page added to
  1971. * a bio later on */
  1972. refcount_set(&sblock->refs, 1);
  1973. sblock->sctx = sctx;
  1974. sblock->no_io_error_seen = 1;
  1975. for (index = 0; len > 0; index++) {
  1976. struct scrub_page *spage;
  1977. u64 l = min_t(u64, len, PAGE_SIZE);
  1978. spage = kzalloc(sizeof(*spage), GFP_KERNEL);
  1979. if (!spage) {
  1980. leave_nomem:
  1981. spin_lock(&sctx->stat_lock);
  1982. sctx->stat.malloc_errors++;
  1983. spin_unlock(&sctx->stat_lock);
  1984. scrub_block_put(sblock);
  1985. return -ENOMEM;
  1986. }
  1987. BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
  1988. scrub_page_get(spage);
  1989. sblock->pagev[index] = spage;
  1990. spage->sblock = sblock;
  1991. spage->dev = dev;
  1992. spage->flags = flags;
  1993. spage->generation = gen;
  1994. spage->logical = logical;
  1995. spage->physical = physical;
  1996. spage->physical_for_dev_replace = physical_for_dev_replace;
  1997. spage->mirror_num = mirror_num;
  1998. if (csum) {
  1999. spage->have_csum = 1;
  2000. memcpy(spage->csum, csum, sctx->csum_size);
  2001. } else {
  2002. spage->have_csum = 0;
  2003. }
  2004. sblock->page_count++;
  2005. spage->page = alloc_page(GFP_KERNEL);
  2006. if (!spage->page)
  2007. goto leave_nomem;
  2008. len -= l;
  2009. logical += l;
  2010. physical += l;
  2011. physical_for_dev_replace += l;
  2012. }
  2013. WARN_ON(sblock->page_count == 0);
  2014. if (dev->missing) {
  2015. /*
  2016. * This case should only be hit for RAID 5/6 device replace. See
  2017. * the comment in scrub_missing_raid56_pages() for details.
  2018. */
  2019. scrub_missing_raid56_pages(sblock);
  2020. } else {
  2021. for (index = 0; index < sblock->page_count; index++) {
  2022. struct scrub_page *spage = sblock->pagev[index];
  2023. int ret;
  2024. ret = scrub_add_page_to_rd_bio(sctx, spage);
  2025. if (ret) {
  2026. scrub_block_put(sblock);
  2027. return ret;
  2028. }
  2029. }
  2030. if (force)
  2031. scrub_submit(sctx);
  2032. }
  2033. /* last one frees, either here or in bio completion for last page */
  2034. scrub_block_put(sblock);
  2035. return 0;
  2036. }
  2037. static void scrub_bio_end_io(struct bio *bio)
  2038. {
  2039. struct scrub_bio *sbio = bio->bi_private;
  2040. struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
  2041. sbio->err = bio->bi_error;
  2042. sbio->bio = bio;
  2043. btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
  2044. }
  2045. static void scrub_bio_end_io_worker(struct btrfs_work *work)
  2046. {
  2047. struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
  2048. struct scrub_ctx *sctx = sbio->sctx;
  2049. int i;
  2050. BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
  2051. if (sbio->err) {
  2052. for (i = 0; i < sbio->page_count; i++) {
  2053. struct scrub_page *spage = sbio->pagev[i];
  2054. spage->io_error = 1;
  2055. spage->sblock->no_io_error_seen = 0;
  2056. }
  2057. }
  2058. /* now complete the scrub_block items that have all pages completed */
  2059. for (i = 0; i < sbio->page_count; i++) {
  2060. struct scrub_page *spage = sbio->pagev[i];
  2061. struct scrub_block *sblock = spage->sblock;
  2062. if (atomic_dec_and_test(&sblock->outstanding_pages))
  2063. scrub_block_complete(sblock);
  2064. scrub_block_put(sblock);
  2065. }
  2066. bio_put(sbio->bio);
  2067. sbio->bio = NULL;
  2068. spin_lock(&sctx->list_lock);
  2069. sbio->next_free = sctx->first_free;
  2070. sctx->first_free = sbio->index;
  2071. spin_unlock(&sctx->list_lock);
  2072. if (sctx->is_dev_replace &&
  2073. atomic_read(&sctx->wr_ctx.flush_all_writes)) {
  2074. mutex_lock(&sctx->wr_ctx.wr_lock);
  2075. scrub_wr_submit(sctx);
  2076. mutex_unlock(&sctx->wr_ctx.wr_lock);
  2077. }
  2078. scrub_pending_bio_dec(sctx);
  2079. }
  2080. static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
  2081. unsigned long *bitmap,
  2082. u64 start, u64 len)
  2083. {
  2084. u32 offset;
  2085. int nsectors;
  2086. int sectorsize = sparity->sctx->fs_info->sectorsize;
  2087. if (len >= sparity->stripe_len) {
  2088. bitmap_set(bitmap, 0, sparity->nsectors);
  2089. return;
  2090. }
  2091. start -= sparity->logic_start;
  2092. start = div_u64_rem(start, sparity->stripe_len, &offset);
  2093. offset /= sectorsize;
  2094. nsectors = (int)len / sectorsize;
  2095. if (offset + nsectors <= sparity->nsectors) {
  2096. bitmap_set(bitmap, offset, nsectors);
  2097. return;
  2098. }
  2099. bitmap_set(bitmap, offset, sparity->nsectors - offset);
  2100. bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
  2101. }
  2102. static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
  2103. u64 start, u64 len)
  2104. {
  2105. __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
  2106. }
  2107. static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
  2108. u64 start, u64 len)
  2109. {
  2110. __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
  2111. }
  2112. static void scrub_block_complete(struct scrub_block *sblock)
  2113. {
  2114. int corrupted = 0;
  2115. if (!sblock->no_io_error_seen) {
  2116. corrupted = 1;
  2117. scrub_handle_errored_block(sblock);
  2118. } else {
  2119. /*
  2120. * if has checksum error, write via repair mechanism in
  2121. * dev replace case, otherwise write here in dev replace
  2122. * case.
  2123. */
  2124. corrupted = scrub_checksum(sblock);
  2125. if (!corrupted && sblock->sctx->is_dev_replace)
  2126. scrub_write_block_to_dev_replace(sblock);
  2127. }
  2128. if (sblock->sparity && corrupted && !sblock->data_corrected) {
  2129. u64 start = sblock->pagev[0]->logical;
  2130. u64 end = sblock->pagev[sblock->page_count - 1]->logical +
  2131. PAGE_SIZE;
  2132. scrub_parity_mark_sectors_error(sblock->sparity,
  2133. start, end - start);
  2134. }
  2135. }
  2136. static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
  2137. {
  2138. struct btrfs_ordered_sum *sum = NULL;
  2139. unsigned long index;
  2140. unsigned long num_sectors;
  2141. while (!list_empty(&sctx->csum_list)) {
  2142. sum = list_first_entry(&sctx->csum_list,
  2143. struct btrfs_ordered_sum, list);
  2144. if (sum->bytenr > logical)
  2145. return 0;
  2146. if (sum->bytenr + sum->len > logical)
  2147. break;
  2148. ++sctx->stat.csum_discards;
  2149. list_del(&sum->list);
  2150. kfree(sum);
  2151. sum = NULL;
  2152. }
  2153. if (!sum)
  2154. return 0;
  2155. index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
  2156. num_sectors = sum->len / sctx->sectorsize;
  2157. memcpy(csum, sum->sums + index, sctx->csum_size);
  2158. if (index == num_sectors - 1) {
  2159. list_del(&sum->list);
  2160. kfree(sum);
  2161. }
  2162. return 1;
  2163. }
  2164. /* scrub extent tries to collect up to 64 kB for each bio */
  2165. static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
  2166. u64 physical, struct btrfs_device *dev, u64 flags,
  2167. u64 gen, int mirror_num, u64 physical_for_dev_replace)
  2168. {
  2169. int ret;
  2170. u8 csum[BTRFS_CSUM_SIZE];
  2171. u32 blocksize;
  2172. if (flags & BTRFS_EXTENT_FLAG_DATA) {
  2173. blocksize = sctx->sectorsize;
  2174. spin_lock(&sctx->stat_lock);
  2175. sctx->stat.data_extents_scrubbed++;
  2176. sctx->stat.data_bytes_scrubbed += len;
  2177. spin_unlock(&sctx->stat_lock);
  2178. } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  2179. blocksize = sctx->nodesize;
  2180. spin_lock(&sctx->stat_lock);
  2181. sctx->stat.tree_extents_scrubbed++;
  2182. sctx->stat.tree_bytes_scrubbed += len;
  2183. spin_unlock(&sctx->stat_lock);
  2184. } else {
  2185. blocksize = sctx->sectorsize;
  2186. WARN_ON(1);
  2187. }
  2188. while (len) {
  2189. u64 l = min_t(u64, len, blocksize);
  2190. int have_csum = 0;
  2191. if (flags & BTRFS_EXTENT_FLAG_DATA) {
  2192. /* push csums to sbio */
  2193. have_csum = scrub_find_csum(sctx, logical, csum);
  2194. if (have_csum == 0)
  2195. ++sctx->stat.no_csum;
  2196. if (sctx->is_dev_replace && !have_csum) {
  2197. ret = copy_nocow_pages(sctx, logical, l,
  2198. mirror_num,
  2199. physical_for_dev_replace);
  2200. goto behind_scrub_pages;
  2201. }
  2202. }
  2203. ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
  2204. mirror_num, have_csum ? csum : NULL, 0,
  2205. physical_for_dev_replace);
  2206. behind_scrub_pages:
  2207. if (ret)
  2208. return ret;
  2209. len -= l;
  2210. logical += l;
  2211. physical += l;
  2212. physical_for_dev_replace += l;
  2213. }
  2214. return 0;
  2215. }
  2216. static int scrub_pages_for_parity(struct scrub_parity *sparity,
  2217. u64 logical, u64 len,
  2218. u64 physical, struct btrfs_device *dev,
  2219. u64 flags, u64 gen, int mirror_num, u8 *csum)
  2220. {
  2221. struct scrub_ctx *sctx = sparity->sctx;
  2222. struct scrub_block *sblock;
  2223. int index;
  2224. sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
  2225. if (!sblock) {
  2226. spin_lock(&sctx->stat_lock);
  2227. sctx->stat.malloc_errors++;
  2228. spin_unlock(&sctx->stat_lock);
  2229. return -ENOMEM;
  2230. }
  2231. /* one ref inside this function, plus one for each page added to
  2232. * a bio later on */
  2233. refcount_set(&sblock->refs, 1);
  2234. sblock->sctx = sctx;
  2235. sblock->no_io_error_seen = 1;
  2236. sblock->sparity = sparity;
  2237. scrub_parity_get(sparity);
  2238. for (index = 0; len > 0; index++) {
  2239. struct scrub_page *spage;
  2240. u64 l = min_t(u64, len, PAGE_SIZE);
  2241. spage = kzalloc(sizeof(*spage), GFP_KERNEL);
  2242. if (!spage) {
  2243. leave_nomem:
  2244. spin_lock(&sctx->stat_lock);
  2245. sctx->stat.malloc_errors++;
  2246. spin_unlock(&sctx->stat_lock);
  2247. scrub_block_put(sblock);
  2248. return -ENOMEM;
  2249. }
  2250. BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
  2251. /* For scrub block */
  2252. scrub_page_get(spage);
  2253. sblock->pagev[index] = spage;
  2254. /* For scrub parity */
  2255. scrub_page_get(spage);
  2256. list_add_tail(&spage->list, &sparity->spages);
  2257. spage->sblock = sblock;
  2258. spage->dev = dev;
  2259. spage->flags = flags;
  2260. spage->generation = gen;
  2261. spage->logical = logical;
  2262. spage->physical = physical;
  2263. spage->mirror_num = mirror_num;
  2264. if (csum) {
  2265. spage->have_csum = 1;
  2266. memcpy(spage->csum, csum, sctx->csum_size);
  2267. } else {
  2268. spage->have_csum = 0;
  2269. }
  2270. sblock->page_count++;
  2271. spage->page = alloc_page(GFP_KERNEL);
  2272. if (!spage->page)
  2273. goto leave_nomem;
  2274. len -= l;
  2275. logical += l;
  2276. physical += l;
  2277. }
  2278. WARN_ON(sblock->page_count == 0);
  2279. for (index = 0; index < sblock->page_count; index++) {
  2280. struct scrub_page *spage = sblock->pagev[index];
  2281. int ret;
  2282. ret = scrub_add_page_to_rd_bio(sctx, spage);
  2283. if (ret) {
  2284. scrub_block_put(sblock);
  2285. return ret;
  2286. }
  2287. }
  2288. /* last one frees, either here or in bio completion for last page */
  2289. scrub_block_put(sblock);
  2290. return 0;
  2291. }
  2292. static int scrub_extent_for_parity(struct scrub_parity *sparity,
  2293. u64 logical, u64 len,
  2294. u64 physical, struct btrfs_device *dev,
  2295. u64 flags, u64 gen, int mirror_num)
  2296. {
  2297. struct scrub_ctx *sctx = sparity->sctx;
  2298. int ret;
  2299. u8 csum[BTRFS_CSUM_SIZE];
  2300. u32 blocksize;
  2301. if (dev->missing) {
  2302. scrub_parity_mark_sectors_error(sparity, logical, len);
  2303. return 0;
  2304. }
  2305. if (flags & BTRFS_EXTENT_FLAG_DATA) {
  2306. blocksize = sctx->sectorsize;
  2307. } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  2308. blocksize = sctx->nodesize;
  2309. } else {
  2310. blocksize = sctx->sectorsize;
  2311. WARN_ON(1);
  2312. }
  2313. while (len) {
  2314. u64 l = min_t(u64, len, blocksize);
  2315. int have_csum = 0;
  2316. if (flags & BTRFS_EXTENT_FLAG_DATA) {
  2317. /* push csums to sbio */
  2318. have_csum = scrub_find_csum(sctx, logical, csum);
  2319. if (have_csum == 0)
  2320. goto skip;
  2321. }
  2322. ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
  2323. flags, gen, mirror_num,
  2324. have_csum ? csum : NULL);
  2325. if (ret)
  2326. return ret;
  2327. skip:
  2328. len -= l;
  2329. logical += l;
  2330. physical += l;
  2331. }
  2332. return 0;
  2333. }
  2334. /*
  2335. * Given a physical address, this will calculate it's
  2336. * logical offset. if this is a parity stripe, it will return
  2337. * the most left data stripe's logical offset.
  2338. *
  2339. * return 0 if it is a data stripe, 1 means parity stripe.
  2340. */
  2341. static int get_raid56_logic_offset(u64 physical, int num,
  2342. struct map_lookup *map, u64 *offset,
  2343. u64 *stripe_start)
  2344. {
  2345. int i;
  2346. int j = 0;
  2347. u64 stripe_nr;
  2348. u64 last_offset;
  2349. u32 stripe_index;
  2350. u32 rot;
  2351. last_offset = (physical - map->stripes[num].physical) *
  2352. nr_data_stripes(map);
  2353. if (stripe_start)
  2354. *stripe_start = last_offset;
  2355. *offset = last_offset;
  2356. for (i = 0; i < nr_data_stripes(map); i++) {
  2357. *offset = last_offset + i * map->stripe_len;
  2358. stripe_nr = div_u64(*offset, map->stripe_len);
  2359. stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
  2360. /* Work out the disk rotation on this stripe-set */
  2361. stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
  2362. /* calculate which stripe this data locates */
  2363. rot += i;
  2364. stripe_index = rot % map->num_stripes;
  2365. if (stripe_index == num)
  2366. return 0;
  2367. if (stripe_index < num)
  2368. j++;
  2369. }
  2370. *offset = last_offset + j * map->stripe_len;
  2371. return 1;
  2372. }
  2373. static void scrub_free_parity(struct scrub_parity *sparity)
  2374. {
  2375. struct scrub_ctx *sctx = sparity->sctx;
  2376. struct scrub_page *curr, *next;
  2377. int nbits;
  2378. nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
  2379. if (nbits) {
  2380. spin_lock(&sctx->stat_lock);
  2381. sctx->stat.read_errors += nbits;
  2382. sctx->stat.uncorrectable_errors += nbits;
  2383. spin_unlock(&sctx->stat_lock);
  2384. }
  2385. list_for_each_entry_safe(curr, next, &sparity->spages, list) {
  2386. list_del_init(&curr->list);
  2387. scrub_page_put(curr);
  2388. }
  2389. kfree(sparity);
  2390. }
  2391. static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
  2392. {
  2393. struct scrub_parity *sparity = container_of(work, struct scrub_parity,
  2394. work);
  2395. struct scrub_ctx *sctx = sparity->sctx;
  2396. scrub_free_parity(sparity);
  2397. scrub_pending_bio_dec(sctx);
  2398. }
  2399. static void scrub_parity_bio_endio(struct bio *bio)
  2400. {
  2401. struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
  2402. struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
  2403. if (bio->bi_error)
  2404. bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
  2405. sparity->nsectors);
  2406. bio_put(bio);
  2407. btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
  2408. scrub_parity_bio_endio_worker, NULL, NULL);
  2409. btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
  2410. }
  2411. static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
  2412. {
  2413. struct scrub_ctx *sctx = sparity->sctx;
  2414. struct btrfs_fs_info *fs_info = sctx->fs_info;
  2415. struct bio *bio;
  2416. struct btrfs_raid_bio *rbio;
  2417. struct scrub_page *spage;
  2418. struct btrfs_bio *bbio = NULL;
  2419. u64 length;
  2420. int ret;
  2421. if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
  2422. sparity->nsectors))
  2423. goto out;
  2424. length = sparity->logic_end - sparity->logic_start;
  2425. ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
  2426. &length, &bbio, 0, 1);
  2427. if (ret || !bbio || !bbio->raid_map)
  2428. goto bbio_out;
  2429. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2430. if (!bio)
  2431. goto bbio_out;
  2432. bio->bi_iter.bi_sector = sparity->logic_start >> 9;
  2433. bio->bi_private = sparity;
  2434. bio->bi_end_io = scrub_parity_bio_endio;
  2435. rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
  2436. length, sparity->scrub_dev,
  2437. sparity->dbitmap,
  2438. sparity->nsectors);
  2439. if (!rbio)
  2440. goto rbio_out;
  2441. list_for_each_entry(spage, &sparity->spages, list)
  2442. raid56_add_scrub_pages(rbio, spage->page, spage->logical);
  2443. scrub_pending_bio_inc(sctx);
  2444. raid56_parity_submit_scrub_rbio(rbio);
  2445. return;
  2446. rbio_out:
  2447. bio_put(bio);
  2448. bbio_out:
  2449. btrfs_put_bbio(bbio);
  2450. bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
  2451. sparity->nsectors);
  2452. spin_lock(&sctx->stat_lock);
  2453. sctx->stat.malloc_errors++;
  2454. spin_unlock(&sctx->stat_lock);
  2455. out:
  2456. scrub_free_parity(sparity);
  2457. }
  2458. static inline int scrub_calc_parity_bitmap_len(int nsectors)
  2459. {
  2460. return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
  2461. }
  2462. static void scrub_parity_get(struct scrub_parity *sparity)
  2463. {
  2464. refcount_inc(&sparity->refs);
  2465. }
  2466. static void scrub_parity_put(struct scrub_parity *sparity)
  2467. {
  2468. if (!refcount_dec_and_test(&sparity->refs))
  2469. return;
  2470. scrub_parity_check_and_repair(sparity);
  2471. }
  2472. static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
  2473. struct map_lookup *map,
  2474. struct btrfs_device *sdev,
  2475. struct btrfs_path *path,
  2476. u64 logic_start,
  2477. u64 logic_end)
  2478. {
  2479. struct btrfs_fs_info *fs_info = sctx->fs_info;
  2480. struct btrfs_root *root = fs_info->extent_root;
  2481. struct btrfs_root *csum_root = fs_info->csum_root;
  2482. struct btrfs_extent_item *extent;
  2483. struct btrfs_bio *bbio = NULL;
  2484. u64 flags;
  2485. int ret;
  2486. int slot;
  2487. struct extent_buffer *l;
  2488. struct btrfs_key key;
  2489. u64 generation;
  2490. u64 extent_logical;
  2491. u64 extent_physical;
  2492. u64 extent_len;
  2493. u64 mapped_length;
  2494. struct btrfs_device *extent_dev;
  2495. struct scrub_parity *sparity;
  2496. int nsectors;
  2497. int bitmap_len;
  2498. int extent_mirror_num;
  2499. int stop_loop = 0;
  2500. nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
  2501. bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
  2502. sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
  2503. GFP_NOFS);
  2504. if (!sparity) {
  2505. spin_lock(&sctx->stat_lock);
  2506. sctx->stat.malloc_errors++;
  2507. spin_unlock(&sctx->stat_lock);
  2508. return -ENOMEM;
  2509. }
  2510. sparity->stripe_len = map->stripe_len;
  2511. sparity->nsectors = nsectors;
  2512. sparity->sctx = sctx;
  2513. sparity->scrub_dev = sdev;
  2514. sparity->logic_start = logic_start;
  2515. sparity->logic_end = logic_end;
  2516. refcount_set(&sparity->refs, 1);
  2517. INIT_LIST_HEAD(&sparity->spages);
  2518. sparity->dbitmap = sparity->bitmap;
  2519. sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
  2520. ret = 0;
  2521. while (logic_start < logic_end) {
  2522. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  2523. key.type = BTRFS_METADATA_ITEM_KEY;
  2524. else
  2525. key.type = BTRFS_EXTENT_ITEM_KEY;
  2526. key.objectid = logic_start;
  2527. key.offset = (u64)-1;
  2528. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2529. if (ret < 0)
  2530. goto out;
  2531. if (ret > 0) {
  2532. ret = btrfs_previous_extent_item(root, path, 0);
  2533. if (ret < 0)
  2534. goto out;
  2535. if (ret > 0) {
  2536. btrfs_release_path(path);
  2537. ret = btrfs_search_slot(NULL, root, &key,
  2538. path, 0, 0);
  2539. if (ret < 0)
  2540. goto out;
  2541. }
  2542. }
  2543. stop_loop = 0;
  2544. while (1) {
  2545. u64 bytes;
  2546. l = path->nodes[0];
  2547. slot = path->slots[0];
  2548. if (slot >= btrfs_header_nritems(l)) {
  2549. ret = btrfs_next_leaf(root, path);
  2550. if (ret == 0)
  2551. continue;
  2552. if (ret < 0)
  2553. goto out;
  2554. stop_loop = 1;
  2555. break;
  2556. }
  2557. btrfs_item_key_to_cpu(l, &key, slot);
  2558. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  2559. key.type != BTRFS_METADATA_ITEM_KEY)
  2560. goto next;
  2561. if (key.type == BTRFS_METADATA_ITEM_KEY)
  2562. bytes = fs_info->nodesize;
  2563. else
  2564. bytes = key.offset;
  2565. if (key.objectid + bytes <= logic_start)
  2566. goto next;
  2567. if (key.objectid >= logic_end) {
  2568. stop_loop = 1;
  2569. break;
  2570. }
  2571. while (key.objectid >= logic_start + map->stripe_len)
  2572. logic_start += map->stripe_len;
  2573. extent = btrfs_item_ptr(l, slot,
  2574. struct btrfs_extent_item);
  2575. flags = btrfs_extent_flags(l, extent);
  2576. generation = btrfs_extent_generation(l, extent);
  2577. if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
  2578. (key.objectid < logic_start ||
  2579. key.objectid + bytes >
  2580. logic_start + map->stripe_len)) {
  2581. btrfs_err(fs_info,
  2582. "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
  2583. key.objectid, logic_start);
  2584. spin_lock(&sctx->stat_lock);
  2585. sctx->stat.uncorrectable_errors++;
  2586. spin_unlock(&sctx->stat_lock);
  2587. goto next;
  2588. }
  2589. again:
  2590. extent_logical = key.objectid;
  2591. extent_len = bytes;
  2592. if (extent_logical < logic_start) {
  2593. extent_len -= logic_start - extent_logical;
  2594. extent_logical = logic_start;
  2595. }
  2596. if (extent_logical + extent_len >
  2597. logic_start + map->stripe_len)
  2598. extent_len = logic_start + map->stripe_len -
  2599. extent_logical;
  2600. scrub_parity_mark_sectors_data(sparity, extent_logical,
  2601. extent_len);
  2602. mapped_length = extent_len;
  2603. bbio = NULL;
  2604. ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
  2605. extent_logical, &mapped_length, &bbio,
  2606. 0);
  2607. if (!ret) {
  2608. if (!bbio || mapped_length < extent_len)
  2609. ret = -EIO;
  2610. }
  2611. if (ret) {
  2612. btrfs_put_bbio(bbio);
  2613. goto out;
  2614. }
  2615. extent_physical = bbio->stripes[0].physical;
  2616. extent_mirror_num = bbio->mirror_num;
  2617. extent_dev = bbio->stripes[0].dev;
  2618. btrfs_put_bbio(bbio);
  2619. ret = btrfs_lookup_csums_range(csum_root,
  2620. extent_logical,
  2621. extent_logical + extent_len - 1,
  2622. &sctx->csum_list, 1);
  2623. if (ret)
  2624. goto out;
  2625. ret = scrub_extent_for_parity(sparity, extent_logical,
  2626. extent_len,
  2627. extent_physical,
  2628. extent_dev, flags,
  2629. generation,
  2630. extent_mirror_num);
  2631. scrub_free_csums(sctx);
  2632. if (ret)
  2633. goto out;
  2634. if (extent_logical + extent_len <
  2635. key.objectid + bytes) {
  2636. logic_start += map->stripe_len;
  2637. if (logic_start >= logic_end) {
  2638. stop_loop = 1;
  2639. break;
  2640. }
  2641. if (logic_start < key.objectid + bytes) {
  2642. cond_resched();
  2643. goto again;
  2644. }
  2645. }
  2646. next:
  2647. path->slots[0]++;
  2648. }
  2649. btrfs_release_path(path);
  2650. if (stop_loop)
  2651. break;
  2652. logic_start += map->stripe_len;
  2653. }
  2654. out:
  2655. if (ret < 0)
  2656. scrub_parity_mark_sectors_error(sparity, logic_start,
  2657. logic_end - logic_start);
  2658. scrub_parity_put(sparity);
  2659. scrub_submit(sctx);
  2660. mutex_lock(&sctx->wr_ctx.wr_lock);
  2661. scrub_wr_submit(sctx);
  2662. mutex_unlock(&sctx->wr_ctx.wr_lock);
  2663. btrfs_release_path(path);
  2664. return ret < 0 ? ret : 0;
  2665. }
  2666. static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
  2667. struct map_lookup *map,
  2668. struct btrfs_device *scrub_dev,
  2669. int num, u64 base, u64 length,
  2670. int is_dev_replace)
  2671. {
  2672. struct btrfs_path *path, *ppath;
  2673. struct btrfs_fs_info *fs_info = sctx->fs_info;
  2674. struct btrfs_root *root = fs_info->extent_root;
  2675. struct btrfs_root *csum_root = fs_info->csum_root;
  2676. struct btrfs_extent_item *extent;
  2677. struct blk_plug plug;
  2678. u64 flags;
  2679. int ret;
  2680. int slot;
  2681. u64 nstripes;
  2682. struct extent_buffer *l;
  2683. u64 physical;
  2684. u64 logical;
  2685. u64 logic_end;
  2686. u64 physical_end;
  2687. u64 generation;
  2688. int mirror_num;
  2689. struct reada_control *reada1;
  2690. struct reada_control *reada2;
  2691. struct btrfs_key key;
  2692. struct btrfs_key key_end;
  2693. u64 increment = map->stripe_len;
  2694. u64 offset;
  2695. u64 extent_logical;
  2696. u64 extent_physical;
  2697. u64 extent_len;
  2698. u64 stripe_logical;
  2699. u64 stripe_end;
  2700. struct btrfs_device *extent_dev;
  2701. int extent_mirror_num;
  2702. int stop_loop = 0;
  2703. physical = map->stripes[num].physical;
  2704. offset = 0;
  2705. nstripes = div_u64(length, map->stripe_len);
  2706. if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
  2707. offset = map->stripe_len * num;
  2708. increment = map->stripe_len * map->num_stripes;
  2709. mirror_num = 1;
  2710. } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
  2711. int factor = map->num_stripes / map->sub_stripes;
  2712. offset = map->stripe_len * (num / map->sub_stripes);
  2713. increment = map->stripe_len * factor;
  2714. mirror_num = num % map->sub_stripes + 1;
  2715. } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
  2716. increment = map->stripe_len;
  2717. mirror_num = num % map->num_stripes + 1;
  2718. } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
  2719. increment = map->stripe_len;
  2720. mirror_num = num % map->num_stripes + 1;
  2721. } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
  2722. get_raid56_logic_offset(physical, num, map, &offset, NULL);
  2723. increment = map->stripe_len * nr_data_stripes(map);
  2724. mirror_num = 1;
  2725. } else {
  2726. increment = map->stripe_len;
  2727. mirror_num = 1;
  2728. }
  2729. path = btrfs_alloc_path();
  2730. if (!path)
  2731. return -ENOMEM;
  2732. ppath = btrfs_alloc_path();
  2733. if (!ppath) {
  2734. btrfs_free_path(path);
  2735. return -ENOMEM;
  2736. }
  2737. /*
  2738. * work on commit root. The related disk blocks are static as
  2739. * long as COW is applied. This means, it is save to rewrite
  2740. * them to repair disk errors without any race conditions
  2741. */
  2742. path->search_commit_root = 1;
  2743. path->skip_locking = 1;
  2744. ppath->search_commit_root = 1;
  2745. ppath->skip_locking = 1;
  2746. /*
  2747. * trigger the readahead for extent tree csum tree and wait for
  2748. * completion. During readahead, the scrub is officially paused
  2749. * to not hold off transaction commits
  2750. */
  2751. logical = base + offset;
  2752. physical_end = physical + nstripes * map->stripe_len;
  2753. if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
  2754. get_raid56_logic_offset(physical_end, num,
  2755. map, &logic_end, NULL);
  2756. logic_end += base;
  2757. } else {
  2758. logic_end = logical + increment * nstripes;
  2759. }
  2760. wait_event(sctx->list_wait,
  2761. atomic_read(&sctx->bios_in_flight) == 0);
  2762. scrub_blocked_if_needed(fs_info);
  2763. /* FIXME it might be better to start readahead at commit root */
  2764. key.objectid = logical;
  2765. key.type = BTRFS_EXTENT_ITEM_KEY;
  2766. key.offset = (u64)0;
  2767. key_end.objectid = logic_end;
  2768. key_end.type = BTRFS_METADATA_ITEM_KEY;
  2769. key_end.offset = (u64)-1;
  2770. reada1 = btrfs_reada_add(root, &key, &key_end);
  2771. key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
  2772. key.type = BTRFS_EXTENT_CSUM_KEY;
  2773. key.offset = logical;
  2774. key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
  2775. key_end.type = BTRFS_EXTENT_CSUM_KEY;
  2776. key_end.offset = logic_end;
  2777. reada2 = btrfs_reada_add(csum_root, &key, &key_end);
  2778. if (!IS_ERR(reada1))
  2779. btrfs_reada_wait(reada1);
  2780. if (!IS_ERR(reada2))
  2781. btrfs_reada_wait(reada2);
  2782. /*
  2783. * collect all data csums for the stripe to avoid seeking during
  2784. * the scrub. This might currently (crc32) end up to be about 1MB
  2785. */
  2786. blk_start_plug(&plug);
  2787. /*
  2788. * now find all extents for each stripe and scrub them
  2789. */
  2790. ret = 0;
  2791. while (physical < physical_end) {
  2792. /*
  2793. * canceled?
  2794. */
  2795. if (atomic_read(&fs_info->scrub_cancel_req) ||
  2796. atomic_read(&sctx->cancel_req)) {
  2797. ret = -ECANCELED;
  2798. goto out;
  2799. }
  2800. /*
  2801. * check to see if we have to pause
  2802. */
  2803. if (atomic_read(&fs_info->scrub_pause_req)) {
  2804. /* push queued extents */
  2805. atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
  2806. scrub_submit(sctx);
  2807. mutex_lock(&sctx->wr_ctx.wr_lock);
  2808. scrub_wr_submit(sctx);
  2809. mutex_unlock(&sctx->wr_ctx.wr_lock);
  2810. wait_event(sctx->list_wait,
  2811. atomic_read(&sctx->bios_in_flight) == 0);
  2812. atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
  2813. scrub_blocked_if_needed(fs_info);
  2814. }
  2815. if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
  2816. ret = get_raid56_logic_offset(physical, num, map,
  2817. &logical,
  2818. &stripe_logical);
  2819. logical += base;
  2820. if (ret) {
  2821. /* it is parity strip */
  2822. stripe_logical += base;
  2823. stripe_end = stripe_logical + increment;
  2824. ret = scrub_raid56_parity(sctx, map, scrub_dev,
  2825. ppath, stripe_logical,
  2826. stripe_end);
  2827. if (ret)
  2828. goto out;
  2829. goto skip;
  2830. }
  2831. }
  2832. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  2833. key.type = BTRFS_METADATA_ITEM_KEY;
  2834. else
  2835. key.type = BTRFS_EXTENT_ITEM_KEY;
  2836. key.objectid = logical;
  2837. key.offset = (u64)-1;
  2838. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  2839. if (ret < 0)
  2840. goto out;
  2841. if (ret > 0) {
  2842. ret = btrfs_previous_extent_item(root, path, 0);
  2843. if (ret < 0)
  2844. goto out;
  2845. if (ret > 0) {
  2846. /* there's no smaller item, so stick with the
  2847. * larger one */
  2848. btrfs_release_path(path);
  2849. ret = btrfs_search_slot(NULL, root, &key,
  2850. path, 0, 0);
  2851. if (ret < 0)
  2852. goto out;
  2853. }
  2854. }
  2855. stop_loop = 0;
  2856. while (1) {
  2857. u64 bytes;
  2858. l = path->nodes[0];
  2859. slot = path->slots[0];
  2860. if (slot >= btrfs_header_nritems(l)) {
  2861. ret = btrfs_next_leaf(root, path);
  2862. if (ret == 0)
  2863. continue;
  2864. if (ret < 0)
  2865. goto out;
  2866. stop_loop = 1;
  2867. break;
  2868. }
  2869. btrfs_item_key_to_cpu(l, &key, slot);
  2870. if (key.type != BTRFS_EXTENT_ITEM_KEY &&
  2871. key.type != BTRFS_METADATA_ITEM_KEY)
  2872. goto next;
  2873. if (key.type == BTRFS_METADATA_ITEM_KEY)
  2874. bytes = fs_info->nodesize;
  2875. else
  2876. bytes = key.offset;
  2877. if (key.objectid + bytes <= logical)
  2878. goto next;
  2879. if (key.objectid >= logical + map->stripe_len) {
  2880. /* out of this device extent */
  2881. if (key.objectid >= logic_end)
  2882. stop_loop = 1;
  2883. break;
  2884. }
  2885. extent = btrfs_item_ptr(l, slot,
  2886. struct btrfs_extent_item);
  2887. flags = btrfs_extent_flags(l, extent);
  2888. generation = btrfs_extent_generation(l, extent);
  2889. if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
  2890. (key.objectid < logical ||
  2891. key.objectid + bytes >
  2892. logical + map->stripe_len)) {
  2893. btrfs_err(fs_info,
  2894. "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
  2895. key.objectid, logical);
  2896. spin_lock(&sctx->stat_lock);
  2897. sctx->stat.uncorrectable_errors++;
  2898. spin_unlock(&sctx->stat_lock);
  2899. goto next;
  2900. }
  2901. again:
  2902. extent_logical = key.objectid;
  2903. extent_len = bytes;
  2904. /*
  2905. * trim extent to this stripe
  2906. */
  2907. if (extent_logical < logical) {
  2908. extent_len -= logical - extent_logical;
  2909. extent_logical = logical;
  2910. }
  2911. if (extent_logical + extent_len >
  2912. logical + map->stripe_len) {
  2913. extent_len = logical + map->stripe_len -
  2914. extent_logical;
  2915. }
  2916. extent_physical = extent_logical - logical + physical;
  2917. extent_dev = scrub_dev;
  2918. extent_mirror_num = mirror_num;
  2919. if (is_dev_replace)
  2920. scrub_remap_extent(fs_info, extent_logical,
  2921. extent_len, &extent_physical,
  2922. &extent_dev,
  2923. &extent_mirror_num);
  2924. ret = btrfs_lookup_csums_range(csum_root,
  2925. extent_logical,
  2926. extent_logical +
  2927. extent_len - 1,
  2928. &sctx->csum_list, 1);
  2929. if (ret)
  2930. goto out;
  2931. ret = scrub_extent(sctx, extent_logical, extent_len,
  2932. extent_physical, extent_dev, flags,
  2933. generation, extent_mirror_num,
  2934. extent_logical - logical + physical);
  2935. scrub_free_csums(sctx);
  2936. if (ret)
  2937. goto out;
  2938. if (extent_logical + extent_len <
  2939. key.objectid + bytes) {
  2940. if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
  2941. /*
  2942. * loop until we find next data stripe
  2943. * or we have finished all stripes.
  2944. */
  2945. loop:
  2946. physical += map->stripe_len;
  2947. ret = get_raid56_logic_offset(physical,
  2948. num, map, &logical,
  2949. &stripe_logical);
  2950. logical += base;
  2951. if (ret && physical < physical_end) {
  2952. stripe_logical += base;
  2953. stripe_end = stripe_logical +
  2954. increment;
  2955. ret = scrub_raid56_parity(sctx,
  2956. map, scrub_dev, ppath,
  2957. stripe_logical,
  2958. stripe_end);
  2959. if (ret)
  2960. goto out;
  2961. goto loop;
  2962. }
  2963. } else {
  2964. physical += map->stripe_len;
  2965. logical += increment;
  2966. }
  2967. if (logical < key.objectid + bytes) {
  2968. cond_resched();
  2969. goto again;
  2970. }
  2971. if (physical >= physical_end) {
  2972. stop_loop = 1;
  2973. break;
  2974. }
  2975. }
  2976. next:
  2977. path->slots[0]++;
  2978. }
  2979. btrfs_release_path(path);
  2980. skip:
  2981. logical += increment;
  2982. physical += map->stripe_len;
  2983. spin_lock(&sctx->stat_lock);
  2984. if (stop_loop)
  2985. sctx->stat.last_physical = map->stripes[num].physical +
  2986. length;
  2987. else
  2988. sctx->stat.last_physical = physical;
  2989. spin_unlock(&sctx->stat_lock);
  2990. if (stop_loop)
  2991. break;
  2992. }
  2993. out:
  2994. /* push queued extents */
  2995. scrub_submit(sctx);
  2996. mutex_lock(&sctx->wr_ctx.wr_lock);
  2997. scrub_wr_submit(sctx);
  2998. mutex_unlock(&sctx->wr_ctx.wr_lock);
  2999. blk_finish_plug(&plug);
  3000. btrfs_free_path(path);
  3001. btrfs_free_path(ppath);
  3002. return ret < 0 ? ret : 0;
  3003. }
  3004. static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
  3005. struct btrfs_device *scrub_dev,
  3006. u64 chunk_offset, u64 length,
  3007. u64 dev_offset,
  3008. struct btrfs_block_group_cache *cache,
  3009. int is_dev_replace)
  3010. {
  3011. struct btrfs_fs_info *fs_info = sctx->fs_info;
  3012. struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
  3013. struct map_lookup *map;
  3014. struct extent_map *em;
  3015. int i;
  3016. int ret = 0;
  3017. read_lock(&map_tree->map_tree.lock);
  3018. em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
  3019. read_unlock(&map_tree->map_tree.lock);
  3020. if (!em) {
  3021. /*
  3022. * Might have been an unused block group deleted by the cleaner
  3023. * kthread or relocation.
  3024. */
  3025. spin_lock(&cache->lock);
  3026. if (!cache->removed)
  3027. ret = -EINVAL;
  3028. spin_unlock(&cache->lock);
  3029. return ret;
  3030. }
  3031. map = em->map_lookup;
  3032. if (em->start != chunk_offset)
  3033. goto out;
  3034. if (em->len < length)
  3035. goto out;
  3036. for (i = 0; i < map->num_stripes; ++i) {
  3037. if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
  3038. map->stripes[i].physical == dev_offset) {
  3039. ret = scrub_stripe(sctx, map, scrub_dev, i,
  3040. chunk_offset, length,
  3041. is_dev_replace);
  3042. if (ret)
  3043. goto out;
  3044. }
  3045. }
  3046. out:
  3047. free_extent_map(em);
  3048. return ret;
  3049. }
  3050. static noinline_for_stack
  3051. int scrub_enumerate_chunks(struct scrub_ctx *sctx,
  3052. struct btrfs_device *scrub_dev, u64 start, u64 end,
  3053. int is_dev_replace)
  3054. {
  3055. struct btrfs_dev_extent *dev_extent = NULL;
  3056. struct btrfs_path *path;
  3057. struct btrfs_fs_info *fs_info = sctx->fs_info;
  3058. struct btrfs_root *root = fs_info->dev_root;
  3059. u64 length;
  3060. u64 chunk_offset;
  3061. int ret = 0;
  3062. int ro_set;
  3063. int slot;
  3064. struct extent_buffer *l;
  3065. struct btrfs_key key;
  3066. struct btrfs_key found_key;
  3067. struct btrfs_block_group_cache *cache;
  3068. struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
  3069. path = btrfs_alloc_path();
  3070. if (!path)
  3071. return -ENOMEM;
  3072. path->reada = READA_FORWARD;
  3073. path->search_commit_root = 1;
  3074. path->skip_locking = 1;
  3075. key.objectid = scrub_dev->devid;
  3076. key.offset = 0ull;
  3077. key.type = BTRFS_DEV_EXTENT_KEY;
  3078. while (1) {
  3079. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3080. if (ret < 0)
  3081. break;
  3082. if (ret > 0) {
  3083. if (path->slots[0] >=
  3084. btrfs_header_nritems(path->nodes[0])) {
  3085. ret = btrfs_next_leaf(root, path);
  3086. if (ret < 0)
  3087. break;
  3088. if (ret > 0) {
  3089. ret = 0;
  3090. break;
  3091. }
  3092. } else {
  3093. ret = 0;
  3094. }
  3095. }
  3096. l = path->nodes[0];
  3097. slot = path->slots[0];
  3098. btrfs_item_key_to_cpu(l, &found_key, slot);
  3099. if (found_key.objectid != scrub_dev->devid)
  3100. break;
  3101. if (found_key.type != BTRFS_DEV_EXTENT_KEY)
  3102. break;
  3103. if (found_key.offset >= end)
  3104. break;
  3105. if (found_key.offset < key.offset)
  3106. break;
  3107. dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
  3108. length = btrfs_dev_extent_length(l, dev_extent);
  3109. if (found_key.offset + length <= start)
  3110. goto skip;
  3111. chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
  3112. /*
  3113. * get a reference on the corresponding block group to prevent
  3114. * the chunk from going away while we scrub it
  3115. */
  3116. cache = btrfs_lookup_block_group(fs_info, chunk_offset);
  3117. /* some chunks are removed but not committed to disk yet,
  3118. * continue scrubbing */
  3119. if (!cache)
  3120. goto skip;
  3121. /*
  3122. * we need call btrfs_inc_block_group_ro() with scrubs_paused,
  3123. * to avoid deadlock caused by:
  3124. * btrfs_inc_block_group_ro()
  3125. * -> btrfs_wait_for_commit()
  3126. * -> btrfs_commit_transaction()
  3127. * -> btrfs_scrub_pause()
  3128. */
  3129. scrub_pause_on(fs_info);
  3130. ret = btrfs_inc_block_group_ro(fs_info, cache);
  3131. if (!ret && is_dev_replace) {
  3132. /*
  3133. * If we are doing a device replace wait for any tasks
  3134. * that started dellaloc right before we set the block
  3135. * group to RO mode, as they might have just allocated
  3136. * an extent from it or decided they could do a nocow
  3137. * write. And if any such tasks did that, wait for their
  3138. * ordered extents to complete and then commit the
  3139. * current transaction, so that we can later see the new
  3140. * extent items in the extent tree - the ordered extents
  3141. * create delayed data references (for cow writes) when
  3142. * they complete, which will be run and insert the
  3143. * corresponding extent items into the extent tree when
  3144. * we commit the transaction they used when running
  3145. * inode.c:btrfs_finish_ordered_io(). We later use
  3146. * the commit root of the extent tree to find extents
  3147. * to copy from the srcdev into the tgtdev, and we don't
  3148. * want to miss any new extents.
  3149. */
  3150. btrfs_wait_block_group_reservations(cache);
  3151. btrfs_wait_nocow_writers(cache);
  3152. ret = btrfs_wait_ordered_roots(fs_info, -1,
  3153. cache->key.objectid,
  3154. cache->key.offset);
  3155. if (ret > 0) {
  3156. struct btrfs_trans_handle *trans;
  3157. trans = btrfs_join_transaction(root);
  3158. if (IS_ERR(trans))
  3159. ret = PTR_ERR(trans);
  3160. else
  3161. ret = btrfs_commit_transaction(trans);
  3162. if (ret) {
  3163. scrub_pause_off(fs_info);
  3164. btrfs_put_block_group(cache);
  3165. break;
  3166. }
  3167. }
  3168. }
  3169. scrub_pause_off(fs_info);
  3170. if (ret == 0) {
  3171. ro_set = 1;
  3172. } else if (ret == -ENOSPC) {
  3173. /*
  3174. * btrfs_inc_block_group_ro return -ENOSPC when it
  3175. * failed in creating new chunk for metadata.
  3176. * It is not a problem for scrub/replace, because
  3177. * metadata are always cowed, and our scrub paused
  3178. * commit_transactions.
  3179. */
  3180. ro_set = 0;
  3181. } else {
  3182. btrfs_warn(fs_info,
  3183. "failed setting block group ro, ret=%d\n",
  3184. ret);
  3185. btrfs_put_block_group(cache);
  3186. break;
  3187. }
  3188. btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
  3189. dev_replace->cursor_right = found_key.offset + length;
  3190. dev_replace->cursor_left = found_key.offset;
  3191. dev_replace->item_needs_writeback = 1;
  3192. btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
  3193. ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
  3194. found_key.offset, cache, is_dev_replace);
  3195. /*
  3196. * flush, submit all pending read and write bios, afterwards
  3197. * wait for them.
  3198. * Note that in the dev replace case, a read request causes
  3199. * write requests that are submitted in the read completion
  3200. * worker. Therefore in the current situation, it is required
  3201. * that all write requests are flushed, so that all read and
  3202. * write requests are really completed when bios_in_flight
  3203. * changes to 0.
  3204. */
  3205. atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
  3206. scrub_submit(sctx);
  3207. mutex_lock(&sctx->wr_ctx.wr_lock);
  3208. scrub_wr_submit(sctx);
  3209. mutex_unlock(&sctx->wr_ctx.wr_lock);
  3210. wait_event(sctx->list_wait,
  3211. atomic_read(&sctx->bios_in_flight) == 0);
  3212. scrub_pause_on(fs_info);
  3213. /*
  3214. * must be called before we decrease @scrub_paused.
  3215. * make sure we don't block transaction commit while
  3216. * we are waiting pending workers finished.
  3217. */
  3218. wait_event(sctx->list_wait,
  3219. atomic_read(&sctx->workers_pending) == 0);
  3220. atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
  3221. scrub_pause_off(fs_info);
  3222. btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
  3223. dev_replace->cursor_left = dev_replace->cursor_right;
  3224. dev_replace->item_needs_writeback = 1;
  3225. btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
  3226. if (ro_set)
  3227. btrfs_dec_block_group_ro(cache);
  3228. /*
  3229. * We might have prevented the cleaner kthread from deleting
  3230. * this block group if it was already unused because we raced
  3231. * and set it to RO mode first. So add it back to the unused
  3232. * list, otherwise it might not ever be deleted unless a manual
  3233. * balance is triggered or it becomes used and unused again.
  3234. */
  3235. spin_lock(&cache->lock);
  3236. if (!cache->removed && !cache->ro && cache->reserved == 0 &&
  3237. btrfs_block_group_used(&cache->item) == 0) {
  3238. spin_unlock(&cache->lock);
  3239. spin_lock(&fs_info->unused_bgs_lock);
  3240. if (list_empty(&cache->bg_list)) {
  3241. btrfs_get_block_group(cache);
  3242. list_add_tail(&cache->bg_list,
  3243. &fs_info->unused_bgs);
  3244. }
  3245. spin_unlock(&fs_info->unused_bgs_lock);
  3246. } else {
  3247. spin_unlock(&cache->lock);
  3248. }
  3249. btrfs_put_block_group(cache);
  3250. if (ret)
  3251. break;
  3252. if (is_dev_replace &&
  3253. atomic64_read(&dev_replace->num_write_errors) > 0) {
  3254. ret = -EIO;
  3255. break;
  3256. }
  3257. if (sctx->stat.malloc_errors > 0) {
  3258. ret = -ENOMEM;
  3259. break;
  3260. }
  3261. skip:
  3262. key.offset = found_key.offset + length;
  3263. btrfs_release_path(path);
  3264. }
  3265. btrfs_free_path(path);
  3266. return ret;
  3267. }
  3268. static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
  3269. struct btrfs_device *scrub_dev)
  3270. {
  3271. int i;
  3272. u64 bytenr;
  3273. u64 gen;
  3274. int ret;
  3275. struct btrfs_fs_info *fs_info = sctx->fs_info;
  3276. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3277. return -EIO;
  3278. /* Seed devices of a new filesystem has their own generation. */
  3279. if (scrub_dev->fs_devices != fs_info->fs_devices)
  3280. gen = scrub_dev->generation;
  3281. else
  3282. gen = fs_info->last_trans_committed;
  3283. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  3284. bytenr = btrfs_sb_offset(i);
  3285. if (bytenr + BTRFS_SUPER_INFO_SIZE >
  3286. scrub_dev->commit_total_bytes)
  3287. break;
  3288. ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
  3289. scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
  3290. NULL, 1, bytenr);
  3291. if (ret)
  3292. return ret;
  3293. }
  3294. wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
  3295. return 0;
  3296. }
  3297. /*
  3298. * get a reference count on fs_info->scrub_workers. start worker if necessary
  3299. */
  3300. static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
  3301. int is_dev_replace)
  3302. {
  3303. unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
  3304. int max_active = fs_info->thread_pool_size;
  3305. if (fs_info->scrub_workers_refcnt == 0) {
  3306. if (is_dev_replace)
  3307. fs_info->scrub_workers =
  3308. btrfs_alloc_workqueue(fs_info, "scrub", flags,
  3309. 1, 4);
  3310. else
  3311. fs_info->scrub_workers =
  3312. btrfs_alloc_workqueue(fs_info, "scrub", flags,
  3313. max_active, 4);
  3314. if (!fs_info->scrub_workers)
  3315. goto fail_scrub_workers;
  3316. fs_info->scrub_wr_completion_workers =
  3317. btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
  3318. max_active, 2);
  3319. if (!fs_info->scrub_wr_completion_workers)
  3320. goto fail_scrub_wr_completion_workers;
  3321. fs_info->scrub_nocow_workers =
  3322. btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
  3323. if (!fs_info->scrub_nocow_workers)
  3324. goto fail_scrub_nocow_workers;
  3325. fs_info->scrub_parity_workers =
  3326. btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
  3327. max_active, 2);
  3328. if (!fs_info->scrub_parity_workers)
  3329. goto fail_scrub_parity_workers;
  3330. }
  3331. ++fs_info->scrub_workers_refcnt;
  3332. return 0;
  3333. fail_scrub_parity_workers:
  3334. btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
  3335. fail_scrub_nocow_workers:
  3336. btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
  3337. fail_scrub_wr_completion_workers:
  3338. btrfs_destroy_workqueue(fs_info->scrub_workers);
  3339. fail_scrub_workers:
  3340. return -ENOMEM;
  3341. }
  3342. static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
  3343. {
  3344. if (--fs_info->scrub_workers_refcnt == 0) {
  3345. btrfs_destroy_workqueue(fs_info->scrub_workers);
  3346. btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
  3347. btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
  3348. btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
  3349. }
  3350. WARN_ON(fs_info->scrub_workers_refcnt < 0);
  3351. }
  3352. int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
  3353. u64 end, struct btrfs_scrub_progress *progress,
  3354. int readonly, int is_dev_replace)
  3355. {
  3356. struct scrub_ctx *sctx;
  3357. int ret;
  3358. struct btrfs_device *dev;
  3359. struct rcu_string *name;
  3360. if (btrfs_fs_closing(fs_info))
  3361. return -EINVAL;
  3362. if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
  3363. /*
  3364. * in this case scrub is unable to calculate the checksum
  3365. * the way scrub is implemented. Do not handle this
  3366. * situation at all because it won't ever happen.
  3367. */
  3368. btrfs_err(fs_info,
  3369. "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
  3370. fs_info->nodesize,
  3371. BTRFS_STRIPE_LEN);
  3372. return -EINVAL;
  3373. }
  3374. if (fs_info->sectorsize != PAGE_SIZE) {
  3375. /* not supported for data w/o checksums */
  3376. btrfs_err_rl(fs_info,
  3377. "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
  3378. fs_info->sectorsize, PAGE_SIZE);
  3379. return -EINVAL;
  3380. }
  3381. if (fs_info->nodesize >
  3382. PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
  3383. fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
  3384. /*
  3385. * would exhaust the array bounds of pagev member in
  3386. * struct scrub_block
  3387. */
  3388. btrfs_err(fs_info,
  3389. "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
  3390. fs_info->nodesize,
  3391. SCRUB_MAX_PAGES_PER_BLOCK,
  3392. fs_info->sectorsize,
  3393. SCRUB_MAX_PAGES_PER_BLOCK);
  3394. return -EINVAL;
  3395. }
  3396. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3397. dev = btrfs_find_device(fs_info, devid, NULL, NULL);
  3398. if (!dev || (dev->missing && !is_dev_replace)) {
  3399. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3400. return -ENODEV;
  3401. }
  3402. if (!is_dev_replace && !readonly && !dev->writeable) {
  3403. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3404. rcu_read_lock();
  3405. name = rcu_dereference(dev->name);
  3406. btrfs_err(fs_info, "scrub: device %s is not writable",
  3407. name->str);
  3408. rcu_read_unlock();
  3409. return -EROFS;
  3410. }
  3411. mutex_lock(&fs_info->scrub_lock);
  3412. if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
  3413. mutex_unlock(&fs_info->scrub_lock);
  3414. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3415. return -EIO;
  3416. }
  3417. btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
  3418. if (dev->scrub_device ||
  3419. (!is_dev_replace &&
  3420. btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
  3421. btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
  3422. mutex_unlock(&fs_info->scrub_lock);
  3423. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3424. return -EINPROGRESS;
  3425. }
  3426. btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
  3427. ret = scrub_workers_get(fs_info, is_dev_replace);
  3428. if (ret) {
  3429. mutex_unlock(&fs_info->scrub_lock);
  3430. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3431. return ret;
  3432. }
  3433. sctx = scrub_setup_ctx(dev, is_dev_replace);
  3434. if (IS_ERR(sctx)) {
  3435. mutex_unlock(&fs_info->scrub_lock);
  3436. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3437. scrub_workers_put(fs_info);
  3438. return PTR_ERR(sctx);
  3439. }
  3440. sctx->readonly = readonly;
  3441. dev->scrub_device = sctx;
  3442. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3443. /*
  3444. * checking @scrub_pause_req here, we can avoid
  3445. * race between committing transaction and scrubbing.
  3446. */
  3447. __scrub_blocked_if_needed(fs_info);
  3448. atomic_inc(&fs_info->scrubs_running);
  3449. mutex_unlock(&fs_info->scrub_lock);
  3450. if (!is_dev_replace) {
  3451. /*
  3452. * by holding device list mutex, we can
  3453. * kick off writing super in log tree sync.
  3454. */
  3455. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3456. ret = scrub_supers(sctx, dev);
  3457. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3458. }
  3459. if (!ret)
  3460. ret = scrub_enumerate_chunks(sctx, dev, start, end,
  3461. is_dev_replace);
  3462. wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
  3463. atomic_dec(&fs_info->scrubs_running);
  3464. wake_up(&fs_info->scrub_pause_wait);
  3465. wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
  3466. if (progress)
  3467. memcpy(progress, &sctx->stat, sizeof(*progress));
  3468. mutex_lock(&fs_info->scrub_lock);
  3469. dev->scrub_device = NULL;
  3470. scrub_workers_put(fs_info);
  3471. mutex_unlock(&fs_info->scrub_lock);
  3472. scrub_put_ctx(sctx);
  3473. return ret;
  3474. }
  3475. void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
  3476. {
  3477. mutex_lock(&fs_info->scrub_lock);
  3478. atomic_inc(&fs_info->scrub_pause_req);
  3479. while (atomic_read(&fs_info->scrubs_paused) !=
  3480. atomic_read(&fs_info->scrubs_running)) {
  3481. mutex_unlock(&fs_info->scrub_lock);
  3482. wait_event(fs_info->scrub_pause_wait,
  3483. atomic_read(&fs_info->scrubs_paused) ==
  3484. atomic_read(&fs_info->scrubs_running));
  3485. mutex_lock(&fs_info->scrub_lock);
  3486. }
  3487. mutex_unlock(&fs_info->scrub_lock);
  3488. }
  3489. void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
  3490. {
  3491. atomic_dec(&fs_info->scrub_pause_req);
  3492. wake_up(&fs_info->scrub_pause_wait);
  3493. }
  3494. int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
  3495. {
  3496. mutex_lock(&fs_info->scrub_lock);
  3497. if (!atomic_read(&fs_info->scrubs_running)) {
  3498. mutex_unlock(&fs_info->scrub_lock);
  3499. return -ENOTCONN;
  3500. }
  3501. atomic_inc(&fs_info->scrub_cancel_req);
  3502. while (atomic_read(&fs_info->scrubs_running)) {
  3503. mutex_unlock(&fs_info->scrub_lock);
  3504. wait_event(fs_info->scrub_pause_wait,
  3505. atomic_read(&fs_info->scrubs_running) == 0);
  3506. mutex_lock(&fs_info->scrub_lock);
  3507. }
  3508. atomic_dec(&fs_info->scrub_cancel_req);
  3509. mutex_unlock(&fs_info->scrub_lock);
  3510. return 0;
  3511. }
  3512. int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
  3513. struct btrfs_device *dev)
  3514. {
  3515. struct scrub_ctx *sctx;
  3516. mutex_lock(&fs_info->scrub_lock);
  3517. sctx = dev->scrub_device;
  3518. if (!sctx) {
  3519. mutex_unlock(&fs_info->scrub_lock);
  3520. return -ENOTCONN;
  3521. }
  3522. atomic_inc(&sctx->cancel_req);
  3523. while (dev->scrub_device) {
  3524. mutex_unlock(&fs_info->scrub_lock);
  3525. wait_event(fs_info->scrub_pause_wait,
  3526. dev->scrub_device == NULL);
  3527. mutex_lock(&fs_info->scrub_lock);
  3528. }
  3529. mutex_unlock(&fs_info->scrub_lock);
  3530. return 0;
  3531. }
  3532. int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
  3533. struct btrfs_scrub_progress *progress)
  3534. {
  3535. struct btrfs_device *dev;
  3536. struct scrub_ctx *sctx = NULL;
  3537. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3538. dev = btrfs_find_device(fs_info, devid, NULL, NULL);
  3539. if (dev)
  3540. sctx = dev->scrub_device;
  3541. if (sctx)
  3542. memcpy(progress, &sctx->stat, sizeof(*progress));
  3543. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3544. return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
  3545. }
  3546. static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
  3547. u64 extent_logical, u64 extent_len,
  3548. u64 *extent_physical,
  3549. struct btrfs_device **extent_dev,
  3550. int *extent_mirror_num)
  3551. {
  3552. u64 mapped_length;
  3553. struct btrfs_bio *bbio = NULL;
  3554. int ret;
  3555. mapped_length = extent_len;
  3556. ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
  3557. &mapped_length, &bbio, 0);
  3558. if (ret || !bbio || mapped_length < extent_len ||
  3559. !bbio->stripes[0].dev->bdev) {
  3560. btrfs_put_bbio(bbio);
  3561. return;
  3562. }
  3563. *extent_physical = bbio->stripes[0].physical;
  3564. *extent_mirror_num = bbio->mirror_num;
  3565. *extent_dev = bbio->stripes[0].dev;
  3566. btrfs_put_bbio(bbio);
  3567. }
  3568. static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
  3569. struct btrfs_device *dev,
  3570. int is_dev_replace)
  3571. {
  3572. WARN_ON(wr_ctx->wr_curr_bio != NULL);
  3573. mutex_init(&wr_ctx->wr_lock);
  3574. wr_ctx->wr_curr_bio = NULL;
  3575. if (!is_dev_replace)
  3576. return 0;
  3577. WARN_ON(!dev->bdev);
  3578. wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
  3579. wr_ctx->tgtdev = dev;
  3580. atomic_set(&wr_ctx->flush_all_writes, 0);
  3581. return 0;
  3582. }
  3583. static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
  3584. {
  3585. mutex_lock(&wr_ctx->wr_lock);
  3586. kfree(wr_ctx->wr_curr_bio);
  3587. wr_ctx->wr_curr_bio = NULL;
  3588. mutex_unlock(&wr_ctx->wr_lock);
  3589. }
  3590. static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
  3591. int mirror_num, u64 physical_for_dev_replace)
  3592. {
  3593. struct scrub_copy_nocow_ctx *nocow_ctx;
  3594. struct btrfs_fs_info *fs_info = sctx->fs_info;
  3595. nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
  3596. if (!nocow_ctx) {
  3597. spin_lock(&sctx->stat_lock);
  3598. sctx->stat.malloc_errors++;
  3599. spin_unlock(&sctx->stat_lock);
  3600. return -ENOMEM;
  3601. }
  3602. scrub_pending_trans_workers_inc(sctx);
  3603. nocow_ctx->sctx = sctx;
  3604. nocow_ctx->logical = logical;
  3605. nocow_ctx->len = len;
  3606. nocow_ctx->mirror_num = mirror_num;
  3607. nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
  3608. btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
  3609. copy_nocow_pages_worker, NULL, NULL);
  3610. INIT_LIST_HEAD(&nocow_ctx->inodes);
  3611. btrfs_queue_work(fs_info->scrub_nocow_workers,
  3612. &nocow_ctx->work);
  3613. return 0;
  3614. }
  3615. static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
  3616. {
  3617. struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
  3618. struct scrub_nocow_inode *nocow_inode;
  3619. nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
  3620. if (!nocow_inode)
  3621. return -ENOMEM;
  3622. nocow_inode->inum = inum;
  3623. nocow_inode->offset = offset;
  3624. nocow_inode->root = root;
  3625. list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
  3626. return 0;
  3627. }
  3628. #define COPY_COMPLETE 1
  3629. static void copy_nocow_pages_worker(struct btrfs_work *work)
  3630. {
  3631. struct scrub_copy_nocow_ctx *nocow_ctx =
  3632. container_of(work, struct scrub_copy_nocow_ctx, work);
  3633. struct scrub_ctx *sctx = nocow_ctx->sctx;
  3634. struct btrfs_fs_info *fs_info = sctx->fs_info;
  3635. struct btrfs_root *root = fs_info->extent_root;
  3636. u64 logical = nocow_ctx->logical;
  3637. u64 len = nocow_ctx->len;
  3638. int mirror_num = nocow_ctx->mirror_num;
  3639. u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
  3640. int ret;
  3641. struct btrfs_trans_handle *trans = NULL;
  3642. struct btrfs_path *path;
  3643. int not_written = 0;
  3644. path = btrfs_alloc_path();
  3645. if (!path) {
  3646. spin_lock(&sctx->stat_lock);
  3647. sctx->stat.malloc_errors++;
  3648. spin_unlock(&sctx->stat_lock);
  3649. not_written = 1;
  3650. goto out;
  3651. }
  3652. trans = btrfs_join_transaction(root);
  3653. if (IS_ERR(trans)) {
  3654. not_written = 1;
  3655. goto out;
  3656. }
  3657. ret = iterate_inodes_from_logical(logical, fs_info, path,
  3658. record_inode_for_nocow, nocow_ctx);
  3659. if (ret != 0 && ret != -ENOENT) {
  3660. btrfs_warn(fs_info,
  3661. "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
  3662. logical, physical_for_dev_replace, len, mirror_num,
  3663. ret);
  3664. not_written = 1;
  3665. goto out;
  3666. }
  3667. btrfs_end_transaction(trans);
  3668. trans = NULL;
  3669. while (!list_empty(&nocow_ctx->inodes)) {
  3670. struct scrub_nocow_inode *entry;
  3671. entry = list_first_entry(&nocow_ctx->inodes,
  3672. struct scrub_nocow_inode,
  3673. list);
  3674. list_del_init(&entry->list);
  3675. ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
  3676. entry->root, nocow_ctx);
  3677. kfree(entry);
  3678. if (ret == COPY_COMPLETE) {
  3679. ret = 0;
  3680. break;
  3681. } else if (ret) {
  3682. break;
  3683. }
  3684. }
  3685. out:
  3686. while (!list_empty(&nocow_ctx->inodes)) {
  3687. struct scrub_nocow_inode *entry;
  3688. entry = list_first_entry(&nocow_ctx->inodes,
  3689. struct scrub_nocow_inode,
  3690. list);
  3691. list_del_init(&entry->list);
  3692. kfree(entry);
  3693. }
  3694. if (trans && !IS_ERR(trans))
  3695. btrfs_end_transaction(trans);
  3696. if (not_written)
  3697. btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
  3698. num_uncorrectable_read_errors);
  3699. btrfs_free_path(path);
  3700. kfree(nocow_ctx);
  3701. scrub_pending_trans_workers_dec(sctx);
  3702. }
  3703. static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
  3704. u64 logical)
  3705. {
  3706. struct extent_state *cached_state = NULL;
  3707. struct btrfs_ordered_extent *ordered;
  3708. struct extent_io_tree *io_tree;
  3709. struct extent_map *em;
  3710. u64 lockstart = start, lockend = start + len - 1;
  3711. int ret = 0;
  3712. io_tree = &inode->io_tree;
  3713. lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
  3714. ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
  3715. if (ordered) {
  3716. btrfs_put_ordered_extent(ordered);
  3717. ret = 1;
  3718. goto out_unlock;
  3719. }
  3720. em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
  3721. if (IS_ERR(em)) {
  3722. ret = PTR_ERR(em);
  3723. goto out_unlock;
  3724. }
  3725. /*
  3726. * This extent does not actually cover the logical extent anymore,
  3727. * move on to the next inode.
  3728. */
  3729. if (em->block_start > logical ||
  3730. em->block_start + em->block_len < logical + len) {
  3731. free_extent_map(em);
  3732. ret = 1;
  3733. goto out_unlock;
  3734. }
  3735. free_extent_map(em);
  3736. out_unlock:
  3737. unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
  3738. GFP_NOFS);
  3739. return ret;
  3740. }
  3741. static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
  3742. struct scrub_copy_nocow_ctx *nocow_ctx)
  3743. {
  3744. struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
  3745. struct btrfs_key key;
  3746. struct inode *inode;
  3747. struct page *page;
  3748. struct btrfs_root *local_root;
  3749. struct extent_io_tree *io_tree;
  3750. u64 physical_for_dev_replace;
  3751. u64 nocow_ctx_logical;
  3752. u64 len = nocow_ctx->len;
  3753. unsigned long index;
  3754. int srcu_index;
  3755. int ret = 0;
  3756. int err = 0;
  3757. key.objectid = root;
  3758. key.type = BTRFS_ROOT_ITEM_KEY;
  3759. key.offset = (u64)-1;
  3760. srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
  3761. local_root = btrfs_read_fs_root_no_name(fs_info, &key);
  3762. if (IS_ERR(local_root)) {
  3763. srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
  3764. return PTR_ERR(local_root);
  3765. }
  3766. key.type = BTRFS_INODE_ITEM_KEY;
  3767. key.objectid = inum;
  3768. key.offset = 0;
  3769. inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
  3770. srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
  3771. if (IS_ERR(inode))
  3772. return PTR_ERR(inode);
  3773. /* Avoid truncate/dio/punch hole.. */
  3774. inode_lock(inode);
  3775. inode_dio_wait(inode);
  3776. physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
  3777. io_tree = &BTRFS_I(inode)->io_tree;
  3778. nocow_ctx_logical = nocow_ctx->logical;
  3779. ret = check_extent_to_block(BTRFS_I(inode), offset, len,
  3780. nocow_ctx_logical);
  3781. if (ret) {
  3782. ret = ret > 0 ? 0 : ret;
  3783. goto out;
  3784. }
  3785. while (len >= PAGE_SIZE) {
  3786. index = offset >> PAGE_SHIFT;
  3787. again:
  3788. page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
  3789. if (!page) {
  3790. btrfs_err(fs_info, "find_or_create_page() failed");
  3791. ret = -ENOMEM;
  3792. goto out;
  3793. }
  3794. if (PageUptodate(page)) {
  3795. if (PageDirty(page))
  3796. goto next_page;
  3797. } else {
  3798. ClearPageError(page);
  3799. err = extent_read_full_page(io_tree, page,
  3800. btrfs_get_extent,
  3801. nocow_ctx->mirror_num);
  3802. if (err) {
  3803. ret = err;
  3804. goto next_page;
  3805. }
  3806. lock_page(page);
  3807. /*
  3808. * If the page has been remove from the page cache,
  3809. * the data on it is meaningless, because it may be
  3810. * old one, the new data may be written into the new
  3811. * page in the page cache.
  3812. */
  3813. if (page->mapping != inode->i_mapping) {
  3814. unlock_page(page);
  3815. put_page(page);
  3816. goto again;
  3817. }
  3818. if (!PageUptodate(page)) {
  3819. ret = -EIO;
  3820. goto next_page;
  3821. }
  3822. }
  3823. ret = check_extent_to_block(BTRFS_I(inode), offset, len,
  3824. nocow_ctx_logical);
  3825. if (ret) {
  3826. ret = ret > 0 ? 0 : ret;
  3827. goto next_page;
  3828. }
  3829. err = write_page_nocow(nocow_ctx->sctx,
  3830. physical_for_dev_replace, page);
  3831. if (err)
  3832. ret = err;
  3833. next_page:
  3834. unlock_page(page);
  3835. put_page(page);
  3836. if (ret)
  3837. break;
  3838. offset += PAGE_SIZE;
  3839. physical_for_dev_replace += PAGE_SIZE;
  3840. nocow_ctx_logical += PAGE_SIZE;
  3841. len -= PAGE_SIZE;
  3842. }
  3843. ret = COPY_COMPLETE;
  3844. out:
  3845. inode_unlock(inode);
  3846. iput(inode);
  3847. return ret;
  3848. }
  3849. static int write_page_nocow(struct scrub_ctx *sctx,
  3850. u64 physical_for_dev_replace, struct page *page)
  3851. {
  3852. struct bio *bio;
  3853. struct btrfs_device *dev;
  3854. int ret;
  3855. dev = sctx->wr_ctx.tgtdev;
  3856. if (!dev)
  3857. return -EIO;
  3858. if (!dev->bdev) {
  3859. btrfs_warn_rl(dev->fs_info,
  3860. "scrub write_page_nocow(bdev == NULL) is unexpected");
  3861. return -EIO;
  3862. }
  3863. bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
  3864. if (!bio) {
  3865. spin_lock(&sctx->stat_lock);
  3866. sctx->stat.malloc_errors++;
  3867. spin_unlock(&sctx->stat_lock);
  3868. return -ENOMEM;
  3869. }
  3870. bio->bi_iter.bi_size = 0;
  3871. bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
  3872. bio->bi_bdev = dev->bdev;
  3873. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
  3874. ret = bio_add_page(bio, page, PAGE_SIZE, 0);
  3875. if (ret != PAGE_SIZE) {
  3876. leave_with_eio:
  3877. bio_put(bio);
  3878. btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
  3879. return -EIO;
  3880. }
  3881. if (btrfsic_submit_bio_wait(bio))
  3882. goto leave_with_eio;
  3883. bio_put(bio);
  3884. return 0;
  3885. }