intel_ringbuffer.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr =
  328. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  329. u32 flags = 0;
  330. int ret;
  331. flags |= PIPE_CONTROL_CS_STALL;
  332. if (mode & EMIT_FLUSH) {
  333. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  335. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  336. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  337. }
  338. if (mode & EMIT_INVALIDATE) {
  339. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  340. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_QW_WRITE;
  346. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  347. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  348. ret = gen8_emit_pipe_control(req,
  349. PIPE_CONTROL_CS_STALL |
  350. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  351. 0);
  352. if (ret)
  353. return ret;
  354. }
  355. return gen8_emit_pipe_control(req, flags, scratch_addr);
  356. }
  357. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  358. {
  359. struct drm_i915_private *dev_priv = engine->i915;
  360. u32 addr;
  361. addr = dev_priv->status_page_dmah->busaddr;
  362. if (INTEL_GEN(dev_priv) >= 4)
  363. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  364. I915_WRITE(HWS_PGA, addr);
  365. }
  366. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  367. {
  368. struct drm_i915_private *dev_priv = engine->i915;
  369. i915_reg_t mmio;
  370. /* The ring status page addresses are no longer next to the rest of
  371. * the ring registers as of gen7.
  372. */
  373. if (IS_GEN7(dev_priv)) {
  374. switch (engine->id) {
  375. case RCS:
  376. mmio = RENDER_HWS_PGA_GEN7;
  377. break;
  378. case BCS:
  379. mmio = BLT_HWS_PGA_GEN7;
  380. break;
  381. /*
  382. * VCS2 actually doesn't exist on Gen7. Only shut up
  383. * gcc switch check warning
  384. */
  385. case VCS2:
  386. case VCS:
  387. mmio = BSD_HWS_PGA_GEN7;
  388. break;
  389. case VECS:
  390. mmio = VEBOX_HWS_PGA_GEN7;
  391. break;
  392. }
  393. } else if (IS_GEN6(dev_priv)) {
  394. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  395. } else {
  396. /* XXX: gen8 returns to sanity */
  397. mmio = RING_HWS_PGA(engine->mmio_base);
  398. }
  399. I915_WRITE(mmio, engine->status_page.ggtt_offset);
  400. POSTING_READ(mmio);
  401. /*
  402. * Flush the TLB for this page
  403. *
  404. * FIXME: These two bits have disappeared on gen8, so a question
  405. * arises: do we still need this and if so how should we go about
  406. * invalidating the TLB?
  407. */
  408. if (IS_GEN(dev_priv, 6, 7)) {
  409. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  410. /* ring should be idle before issuing a sync flush*/
  411. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  412. I915_WRITE(reg,
  413. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  414. INSTPM_SYNC_FLUSH));
  415. if (intel_wait_for_register(dev_priv,
  416. reg, INSTPM_SYNC_FLUSH, 0,
  417. 1000))
  418. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  419. engine->name);
  420. }
  421. }
  422. static bool stop_ring(struct intel_engine_cs *engine)
  423. {
  424. struct drm_i915_private *dev_priv = engine->i915;
  425. if (INTEL_GEN(dev_priv) > 2) {
  426. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (intel_wait_for_register(dev_priv,
  428. RING_MI_MODE(engine->mmio_base),
  429. MODE_IDLE,
  430. MODE_IDLE,
  431. 1000)) {
  432. DRM_ERROR("%s : timed out trying to stop ring\n",
  433. engine->name);
  434. /* Sometimes we observe that the idle flag is not
  435. * set even though the ring is empty. So double
  436. * check before giving up.
  437. */
  438. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  439. return false;
  440. }
  441. }
  442. I915_WRITE_CTL(engine, 0);
  443. I915_WRITE_HEAD(engine, 0);
  444. I915_WRITE_TAIL(engine, 0);
  445. if (INTEL_GEN(dev_priv) > 2) {
  446. (void)I915_READ_CTL(engine);
  447. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  448. }
  449. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  450. }
  451. static int init_ring_common(struct intel_engine_cs *engine)
  452. {
  453. struct drm_i915_private *dev_priv = engine->i915;
  454. struct intel_ring *ring = engine->buffer;
  455. int ret = 0;
  456. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  457. if (!stop_ring(engine)) {
  458. /* G45 ring initialization often fails to reset head to zero */
  459. DRM_DEBUG_KMS("%s head not reset to zero "
  460. "ctl %08x head %08x tail %08x start %08x\n",
  461. engine->name,
  462. I915_READ_CTL(engine),
  463. I915_READ_HEAD(engine),
  464. I915_READ_TAIL(engine),
  465. I915_READ_START(engine));
  466. if (!stop_ring(engine)) {
  467. DRM_ERROR("failed to set %s head to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. engine->name,
  470. I915_READ_CTL(engine),
  471. I915_READ_HEAD(engine),
  472. I915_READ_TAIL(engine),
  473. I915_READ_START(engine));
  474. ret = -EIO;
  475. goto out;
  476. }
  477. }
  478. if (HWS_NEEDS_PHYSICAL(dev_priv))
  479. ring_setup_phys_status_page(engine);
  480. else
  481. intel_ring_setup_status_page(engine);
  482. intel_engine_reset_irq(engine);
  483. /* Enforce ordering by reading HEAD register back */
  484. I915_READ_HEAD(engine);
  485. /* Initialize the ring. This must happen _after_ we've cleared the ring
  486. * registers with the above sequence (the readback of the HEAD registers
  487. * also enforces ordering), otherwise the hw might lose the new ring
  488. * register values. */
  489. I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
  490. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  491. if (I915_READ_HEAD(engine))
  492. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  493. engine->name, I915_READ_HEAD(engine));
  494. intel_ring_update_space(ring);
  495. I915_WRITE_HEAD(engine, ring->head);
  496. I915_WRITE_TAIL(engine, ring->tail);
  497. (void)I915_READ_TAIL(engine);
  498. I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
  499. /* If the head is still not zero, the ring is dead */
  500. if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
  501. RING_VALID, RING_VALID,
  502. 50)) {
  503. DRM_ERROR("%s initialization failed "
  504. "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
  505. engine->name,
  506. I915_READ_CTL(engine),
  507. I915_READ_CTL(engine) & RING_VALID,
  508. I915_READ_HEAD(engine), ring->head,
  509. I915_READ_TAIL(engine), ring->tail,
  510. I915_READ_START(engine),
  511. i915_ggtt_offset(ring->vma));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. intel_engine_init_hangcheck(engine);
  516. out:
  517. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  518. return ret;
  519. }
  520. static void reset_ring_common(struct intel_engine_cs *engine,
  521. struct drm_i915_gem_request *request)
  522. {
  523. struct intel_ring *ring = request->ring;
  524. ring->head = request->postfix;
  525. ring->last_retired_head = -1;
  526. }
  527. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  528. {
  529. struct intel_ring *ring = req->ring;
  530. struct i915_workarounds *w = &req->i915->workarounds;
  531. int ret, i;
  532. if (w->count == 0)
  533. return 0;
  534. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  535. if (ret)
  536. return ret;
  537. ret = intel_ring_begin(req, (w->count * 2 + 2));
  538. if (ret)
  539. return ret;
  540. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  541. for (i = 0; i < w->count; i++) {
  542. intel_ring_emit_reg(ring, w->reg[i].addr);
  543. intel_ring_emit(ring, w->reg[i].value);
  544. }
  545. intel_ring_emit(ring, MI_NOOP);
  546. intel_ring_advance(ring);
  547. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  548. if (ret)
  549. return ret;
  550. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  551. return 0;
  552. }
  553. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  554. {
  555. int ret;
  556. ret = intel_ring_workarounds_emit(req);
  557. if (ret != 0)
  558. return ret;
  559. ret = i915_gem_render_state_init(req);
  560. if (ret)
  561. return ret;
  562. return 0;
  563. }
  564. static int wa_add(struct drm_i915_private *dev_priv,
  565. i915_reg_t addr,
  566. const u32 mask, const u32 val)
  567. {
  568. const u32 idx = dev_priv->workarounds.count;
  569. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  570. return -ENOSPC;
  571. dev_priv->workarounds.reg[idx].addr = addr;
  572. dev_priv->workarounds.reg[idx].value = val;
  573. dev_priv->workarounds.reg[idx].mask = mask;
  574. dev_priv->workarounds.count++;
  575. return 0;
  576. }
  577. #define WA_REG(addr, mask, val) do { \
  578. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  579. if (r) \
  580. return r; \
  581. } while (0)
  582. #define WA_SET_BIT_MASKED(addr, mask) \
  583. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  584. #define WA_CLR_BIT_MASKED(addr, mask) \
  585. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  586. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  587. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  588. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  589. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  590. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  591. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  592. i915_reg_t reg)
  593. {
  594. struct drm_i915_private *dev_priv = engine->i915;
  595. struct i915_workarounds *wa = &dev_priv->workarounds;
  596. const uint32_t index = wa->hw_whitelist_count[engine->id];
  597. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  598. return -EINVAL;
  599. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  600. i915_mmio_reg_offset(reg));
  601. wa->hw_whitelist_count[engine->id]++;
  602. return 0;
  603. }
  604. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  605. {
  606. struct drm_i915_private *dev_priv = engine->i915;
  607. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  608. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  609. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  610. /* WaDisablePartialInstShootdown:bdw,chv */
  611. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  612. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  613. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  614. * workaround for for a possible hang in the unlikely event a TLB
  615. * invalidation occurs during a PSD flush.
  616. */
  617. /* WaForceEnableNonCoherent:bdw,chv */
  618. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  619. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  620. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  621. HDC_FORCE_NON_COHERENT);
  622. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  623. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  624. * polygons in the same 8x4 pixel/sample area to be processed without
  625. * stalling waiting for the earlier ones to write to Hierarchical Z
  626. * buffer."
  627. *
  628. * This optimization is off by default for BDW and CHV; turn it on.
  629. */
  630. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  631. /* Wa4x4STCOptimizationDisable:bdw,chv */
  632. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  633. /*
  634. * BSpec recommends 8x4 when MSAA is used,
  635. * however in practice 16x4 seems fastest.
  636. *
  637. * Note that PS/WM thread counts depend on the WIZ hashing
  638. * disable bit, which we don't touch here, but it's good
  639. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  640. */
  641. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  642. GEN6_WIZ_HASHING_MASK,
  643. GEN6_WIZ_HASHING_16x4);
  644. return 0;
  645. }
  646. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  647. {
  648. struct drm_i915_private *dev_priv = engine->i915;
  649. int ret;
  650. ret = gen8_init_workarounds(engine);
  651. if (ret)
  652. return ret;
  653. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  654. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  655. /* WaDisableDopClockGating:bdw */
  656. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  657. DOP_CLOCK_GATING_DISABLE);
  658. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  659. GEN8_SAMPLER_POWER_BYPASS_DIS);
  660. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  661. /* WaForceContextSaveRestoreNonCoherent:bdw */
  662. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  663. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  664. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  665. return 0;
  666. }
  667. static int chv_init_workarounds(struct intel_engine_cs *engine)
  668. {
  669. struct drm_i915_private *dev_priv = engine->i915;
  670. int ret;
  671. ret = gen8_init_workarounds(engine);
  672. if (ret)
  673. return ret;
  674. /* WaDisableThreadStallDopClockGating:chv */
  675. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  676. /* Improve HiZ throughput on CHV. */
  677. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  678. return 0;
  679. }
  680. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  681. {
  682. struct drm_i915_private *dev_priv = engine->i915;
  683. int ret;
  684. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  685. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  686. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  687. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  688. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  689. /* WaDisableKillLogic:bxt,skl,kbl */
  690. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  691. ECOCHK_DIS_TLB);
  692. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  693. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  694. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  695. FLOW_CONTROL_ENABLE |
  696. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  697. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  698. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  699. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  700. /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
  701. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  702. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  703. GEN9_DG_MIRROR_FIX_ENABLE);
  704. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
  705. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  706. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  707. GEN9_RHWO_OPTIMIZATION_DISABLE);
  708. /*
  709. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  710. * but we do that in per ctx batchbuffer as there is an issue
  711. * with this register not getting restored on ctx restore
  712. */
  713. }
  714. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  715. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  716. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  717. GEN9_ENABLE_YV12_BUGFIX |
  718. GEN9_ENABLE_GPGPU_PREEMPTION);
  719. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  720. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  721. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  722. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  723. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  724. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  725. GEN9_CCS_TLB_PREFETCH_ENABLE);
  726. /* WaDisableMaskBasedCammingInRCC:bxt */
  727. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  728. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  729. PIXEL_MASK_CAMMING_DISABLE);
  730. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  731. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  732. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  733. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  734. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  735. * both tied to WaForceContextSaveRestoreNonCoherent
  736. * in some hsds for skl. We keep the tie for all gen9. The
  737. * documentation is a bit hazy and so we want to get common behaviour,
  738. * even though there is no clear evidence we would need both on kbl/bxt.
  739. * This area has been source of system hangs so we play it safe
  740. * and mimic the skl regardless of what bspec says.
  741. *
  742. * Use Force Non-Coherent whenever executing a 3D context. This
  743. * is a workaround for a possible hang in the unlikely event
  744. * a TLB invalidation occurs during a PSD flush.
  745. */
  746. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  747. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  748. HDC_FORCE_NON_COHERENT);
  749. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  750. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  751. BDW_DISABLE_HDC_INVALIDATION);
  752. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  753. if (IS_SKYLAKE(dev_priv) ||
  754. IS_KABYLAKE(dev_priv) ||
  755. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  756. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  757. GEN8_SAMPLER_POWER_BYPASS_DIS);
  758. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  759. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  760. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  761. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  762. GEN8_LQSC_FLUSH_COHERENT_LINES));
  763. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  764. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  765. if (ret)
  766. return ret;
  767. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  768. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  769. if (ret)
  770. return ret;
  771. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  772. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  773. if (ret)
  774. return ret;
  775. return 0;
  776. }
  777. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  778. {
  779. struct drm_i915_private *dev_priv = engine->i915;
  780. u8 vals[3] = { 0, 0, 0 };
  781. unsigned int i;
  782. for (i = 0; i < 3; i++) {
  783. u8 ss;
  784. /*
  785. * Only consider slices where one, and only one, subslice has 7
  786. * EUs
  787. */
  788. if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
  789. continue;
  790. /*
  791. * subslice_7eu[i] != 0 (because of the check above) and
  792. * ss_max == 4 (maximum number of subslices possible per slice)
  793. *
  794. * -> 0 <= ss <= 3;
  795. */
  796. ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
  797. vals[i] = 3 - ss;
  798. }
  799. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  800. return 0;
  801. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  802. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  803. GEN9_IZ_HASHING_MASK(2) |
  804. GEN9_IZ_HASHING_MASK(1) |
  805. GEN9_IZ_HASHING_MASK(0),
  806. GEN9_IZ_HASHING(2, vals[2]) |
  807. GEN9_IZ_HASHING(1, vals[1]) |
  808. GEN9_IZ_HASHING(0, vals[0]));
  809. return 0;
  810. }
  811. static int skl_init_workarounds(struct intel_engine_cs *engine)
  812. {
  813. struct drm_i915_private *dev_priv = engine->i915;
  814. int ret;
  815. ret = gen9_init_workarounds(engine);
  816. if (ret)
  817. return ret;
  818. /*
  819. * Actual WA is to disable percontext preemption granularity control
  820. * until D0 which is the default case so this is equivalent to
  821. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  822. */
  823. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  824. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  825. /* WaEnableGapsTsvCreditFix:skl */
  826. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  827. GEN9_GAPS_TSV_CREDIT_DISABLE));
  828. /* WaDisableGafsUnitClkGating:skl */
  829. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  830. /* WaInPlaceDecompressionHang:skl */
  831. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  832. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  833. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  834. /* WaDisableLSQCROPERFforOCL:skl */
  835. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  836. if (ret)
  837. return ret;
  838. return skl_tune_iz_hashing(engine);
  839. }
  840. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  841. {
  842. struct drm_i915_private *dev_priv = engine->i915;
  843. int ret;
  844. ret = gen9_init_workarounds(engine);
  845. if (ret)
  846. return ret;
  847. /* WaStoreMultiplePTEenable:bxt */
  848. /* This is a requirement according to Hardware specification */
  849. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  850. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  851. /* WaSetClckGatingDisableMedia:bxt */
  852. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  853. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  854. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  855. }
  856. /* WaDisableThreadStallDopClockGating:bxt */
  857. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  858. STALL_DOP_GATING_DISABLE);
  859. /* WaDisablePooledEuLoadBalancingFix:bxt */
  860. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  861. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  862. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  863. }
  864. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  865. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  866. WA_SET_BIT_MASKED(
  867. GEN7_HALF_SLICE_CHICKEN1,
  868. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  869. }
  870. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  871. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  872. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  873. /* WaDisableLSQCROPERFforOCL:bxt */
  874. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  875. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  876. if (ret)
  877. return ret;
  878. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  879. if (ret)
  880. return ret;
  881. }
  882. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  883. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  884. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  885. L3_HIGH_PRIO_CREDITS(2));
  886. /* WaToEnableHwFixForPushConstHWBug:bxt */
  887. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  888. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  889. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  890. /* WaInPlaceDecompressionHang:bxt */
  891. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  892. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  893. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  894. return 0;
  895. }
  896. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  897. {
  898. struct drm_i915_private *dev_priv = engine->i915;
  899. int ret;
  900. ret = gen9_init_workarounds(engine);
  901. if (ret)
  902. return ret;
  903. /* WaEnableGapsTsvCreditFix:kbl */
  904. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  905. GEN9_GAPS_TSV_CREDIT_DISABLE));
  906. /* WaDisableDynamicCreditSharing:kbl */
  907. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  908. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  909. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  910. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  911. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  912. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  913. HDC_FENCE_DEST_SLM_DISABLE);
  914. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  915. * involving this register should also be added to WA batch as required.
  916. */
  917. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  918. /* WaDisableLSQCROPERFforOCL:kbl */
  919. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  920. GEN8_LQSC_RO_PERF_DIS);
  921. /* WaToEnableHwFixForPushConstHWBug:kbl */
  922. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  923. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  924. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  925. /* WaDisableGafsUnitClkGating:kbl */
  926. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  927. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  928. WA_SET_BIT_MASKED(
  929. GEN7_HALF_SLICE_CHICKEN1,
  930. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  931. /* WaInPlaceDecompressionHang:kbl */
  932. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  933. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  934. /* WaDisableLSQCROPERFforOCL:kbl */
  935. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  936. if (ret)
  937. return ret;
  938. return 0;
  939. }
  940. int init_workarounds_ring(struct intel_engine_cs *engine)
  941. {
  942. struct drm_i915_private *dev_priv = engine->i915;
  943. WARN_ON(engine->id != RCS);
  944. dev_priv->workarounds.count = 0;
  945. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  946. if (IS_BROADWELL(dev_priv))
  947. return bdw_init_workarounds(engine);
  948. if (IS_CHERRYVIEW(dev_priv))
  949. return chv_init_workarounds(engine);
  950. if (IS_SKYLAKE(dev_priv))
  951. return skl_init_workarounds(engine);
  952. if (IS_BROXTON(dev_priv))
  953. return bxt_init_workarounds(engine);
  954. if (IS_KABYLAKE(dev_priv))
  955. return kbl_init_workarounds(engine);
  956. return 0;
  957. }
  958. static int init_render_ring(struct intel_engine_cs *engine)
  959. {
  960. struct drm_i915_private *dev_priv = engine->i915;
  961. int ret = init_ring_common(engine);
  962. if (ret)
  963. return ret;
  964. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  965. if (IS_GEN(dev_priv, 4, 6))
  966. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  967. /* We need to disable the AsyncFlip performance optimisations in order
  968. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  969. * programmed to '1' on all products.
  970. *
  971. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  972. */
  973. if (IS_GEN(dev_priv, 6, 7))
  974. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  975. /* Required for the hardware to program scanline values for waiting */
  976. /* WaEnableFlushTlbInvalidationMode:snb */
  977. if (IS_GEN6(dev_priv))
  978. I915_WRITE(GFX_MODE,
  979. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  980. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  981. if (IS_GEN7(dev_priv))
  982. I915_WRITE(GFX_MODE_GEN7,
  983. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  984. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  985. if (IS_GEN6(dev_priv)) {
  986. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  987. * "If this bit is set, STCunit will have LRA as replacement
  988. * policy. [...] This bit must be reset. LRA replacement
  989. * policy is not supported."
  990. */
  991. I915_WRITE(CACHE_MODE_0,
  992. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  993. }
  994. if (IS_GEN(dev_priv, 6, 7))
  995. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  996. if (INTEL_INFO(dev_priv)->gen >= 6)
  997. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  998. return init_workarounds_ring(engine);
  999. }
  1000. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1001. {
  1002. struct drm_i915_private *dev_priv = engine->i915;
  1003. i915_vma_unpin_and_release(&dev_priv->semaphore);
  1004. }
  1005. static int gen8_rcs_signal(struct drm_i915_gem_request *req)
  1006. {
  1007. struct intel_ring *ring = req->ring;
  1008. struct drm_i915_private *dev_priv = req->i915;
  1009. struct intel_engine_cs *waiter;
  1010. enum intel_engine_id id;
  1011. int ret, num_rings;
  1012. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1013. ret = intel_ring_begin(req, (num_rings-1) * 8);
  1014. if (ret)
  1015. return ret;
  1016. for_each_engine_id(waiter, dev_priv, id) {
  1017. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1018. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1019. continue;
  1020. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1021. intel_ring_emit(ring,
  1022. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1023. PIPE_CONTROL_QW_WRITE |
  1024. PIPE_CONTROL_CS_STALL);
  1025. intel_ring_emit(ring, lower_32_bits(gtt_offset));
  1026. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1027. intel_ring_emit(ring, req->fence.seqno);
  1028. intel_ring_emit(ring, 0);
  1029. intel_ring_emit(ring,
  1030. MI_SEMAPHORE_SIGNAL |
  1031. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1032. intel_ring_emit(ring, 0);
  1033. }
  1034. intel_ring_advance(ring);
  1035. return 0;
  1036. }
  1037. static int gen8_xcs_signal(struct drm_i915_gem_request *req)
  1038. {
  1039. struct intel_ring *ring = req->ring;
  1040. struct drm_i915_private *dev_priv = req->i915;
  1041. struct intel_engine_cs *waiter;
  1042. enum intel_engine_id id;
  1043. int ret, num_rings;
  1044. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1045. ret = intel_ring_begin(req, (num_rings-1) * 6);
  1046. if (ret)
  1047. return ret;
  1048. for_each_engine_id(waiter, dev_priv, id) {
  1049. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1050. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1051. continue;
  1052. intel_ring_emit(ring,
  1053. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1054. intel_ring_emit(ring,
  1055. lower_32_bits(gtt_offset) |
  1056. MI_FLUSH_DW_USE_GTT);
  1057. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1058. intel_ring_emit(ring, req->fence.seqno);
  1059. intel_ring_emit(ring,
  1060. MI_SEMAPHORE_SIGNAL |
  1061. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1062. intel_ring_emit(ring, 0);
  1063. }
  1064. intel_ring_advance(ring);
  1065. return 0;
  1066. }
  1067. static int gen6_signal(struct drm_i915_gem_request *req)
  1068. {
  1069. struct intel_ring *ring = req->ring;
  1070. struct drm_i915_private *dev_priv = req->i915;
  1071. struct intel_engine_cs *engine;
  1072. int ret, num_rings;
  1073. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1074. ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
  1075. if (ret)
  1076. return ret;
  1077. for_each_engine(engine, dev_priv) {
  1078. i915_reg_t mbox_reg;
  1079. if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
  1080. continue;
  1081. mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
  1082. if (i915_mmio_reg_valid(mbox_reg)) {
  1083. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  1084. intel_ring_emit_reg(ring, mbox_reg);
  1085. intel_ring_emit(ring, req->fence.seqno);
  1086. }
  1087. }
  1088. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1089. if (num_rings % 2 == 0)
  1090. intel_ring_emit(ring, MI_NOOP);
  1091. intel_ring_advance(ring);
  1092. return 0;
  1093. }
  1094. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1095. {
  1096. struct drm_i915_private *dev_priv = request->i915;
  1097. I915_WRITE_TAIL(request->engine,
  1098. intel_ring_offset(request->ring, request->tail));
  1099. }
  1100. static int i9xx_emit_request(struct drm_i915_gem_request *req)
  1101. {
  1102. struct intel_ring *ring = req->ring;
  1103. int ret;
  1104. ret = intel_ring_begin(req, 4);
  1105. if (ret)
  1106. return ret;
  1107. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1108. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1109. intel_ring_emit(ring, req->fence.seqno);
  1110. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1111. intel_ring_advance(ring);
  1112. req->tail = ring->tail;
  1113. return 0;
  1114. }
  1115. /**
  1116. * gen6_sema_emit_request - Update the semaphore mailbox registers
  1117. *
  1118. * @request - request to write to the ring
  1119. *
  1120. * Update the mailbox registers in the *other* rings with the current seqno.
  1121. * This acts like a signal in the canonical semaphore.
  1122. */
  1123. static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
  1124. {
  1125. int ret;
  1126. ret = req->engine->semaphore.signal(req);
  1127. if (ret)
  1128. return ret;
  1129. return i9xx_emit_request(req);
  1130. }
  1131. static int gen8_render_emit_request(struct drm_i915_gem_request *req)
  1132. {
  1133. struct intel_engine_cs *engine = req->engine;
  1134. struct intel_ring *ring = req->ring;
  1135. int ret;
  1136. if (engine->semaphore.signal) {
  1137. ret = engine->semaphore.signal(req);
  1138. if (ret)
  1139. return ret;
  1140. }
  1141. ret = intel_ring_begin(req, 8);
  1142. if (ret)
  1143. return ret;
  1144. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1145. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1146. PIPE_CONTROL_CS_STALL |
  1147. PIPE_CONTROL_QW_WRITE));
  1148. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1149. intel_ring_emit(ring, 0);
  1150. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1151. /* We're thrashing one dword of HWS. */
  1152. intel_ring_emit(ring, 0);
  1153. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1154. intel_ring_emit(ring, MI_NOOP);
  1155. intel_ring_advance(ring);
  1156. req->tail = ring->tail;
  1157. return 0;
  1158. }
  1159. /**
  1160. * intel_ring_sync - sync the waiter to the signaller on seqno
  1161. *
  1162. * @waiter - ring that is waiting
  1163. * @signaller - ring which has, or will signal
  1164. * @seqno - seqno which the waiter will block on
  1165. */
  1166. static int
  1167. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1168. struct drm_i915_gem_request *signal)
  1169. {
  1170. struct intel_ring *ring = req->ring;
  1171. struct drm_i915_private *dev_priv = req->i915;
  1172. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1173. struct i915_hw_ppgtt *ppgtt;
  1174. int ret;
  1175. ret = intel_ring_begin(req, 4);
  1176. if (ret)
  1177. return ret;
  1178. intel_ring_emit(ring,
  1179. MI_SEMAPHORE_WAIT |
  1180. MI_SEMAPHORE_GLOBAL_GTT |
  1181. MI_SEMAPHORE_SAD_GTE_SDD);
  1182. intel_ring_emit(ring, signal->fence.seqno);
  1183. intel_ring_emit(ring, lower_32_bits(offset));
  1184. intel_ring_emit(ring, upper_32_bits(offset));
  1185. intel_ring_advance(ring);
  1186. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1187. * pagetables and we must reload them before executing the batch.
  1188. * We do this on the i915_switch_context() following the wait and
  1189. * before the dispatch.
  1190. */
  1191. ppgtt = req->ctx->ppgtt;
  1192. if (ppgtt && req->engine->id != RCS)
  1193. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1194. return 0;
  1195. }
  1196. static int
  1197. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1198. struct drm_i915_gem_request *signal)
  1199. {
  1200. struct intel_ring *ring = req->ring;
  1201. u32 dw1 = MI_SEMAPHORE_MBOX |
  1202. MI_SEMAPHORE_COMPARE |
  1203. MI_SEMAPHORE_REGISTER;
  1204. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
  1205. int ret;
  1206. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1207. ret = intel_ring_begin(req, 4);
  1208. if (ret)
  1209. return ret;
  1210. intel_ring_emit(ring, dw1 | wait_mbox);
  1211. /* Throughout all of the GEM code, seqno passed implies our current
  1212. * seqno is >= the last seqno executed. However for hardware the
  1213. * comparison is strictly greater than.
  1214. */
  1215. intel_ring_emit(ring, signal->fence.seqno - 1);
  1216. intel_ring_emit(ring, 0);
  1217. intel_ring_emit(ring, MI_NOOP);
  1218. intel_ring_advance(ring);
  1219. return 0;
  1220. }
  1221. static void
  1222. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1223. {
  1224. /* MI_STORE are internally buffered by the GPU and not flushed
  1225. * either by MI_FLUSH or SyncFlush or any other combination of
  1226. * MI commands.
  1227. *
  1228. * "Only the submission of the store operation is guaranteed.
  1229. * The write result will be complete (coherent) some time later
  1230. * (this is practically a finite period but there is no guaranteed
  1231. * latency)."
  1232. *
  1233. * Empirically, we observe that we need a delay of at least 75us to
  1234. * be sure that the seqno write is visible by the CPU.
  1235. */
  1236. usleep_range(125, 250);
  1237. }
  1238. static void
  1239. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1240. {
  1241. struct drm_i915_private *dev_priv = engine->i915;
  1242. /* Workaround to force correct ordering between irq and seqno writes on
  1243. * ivb (and maybe also on snb) by reading from a CS register (like
  1244. * ACTHD) before reading the status page.
  1245. *
  1246. * Note that this effectively stalls the read by the time it takes to
  1247. * do a memory transaction, which more or less ensures that the write
  1248. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1249. * Alternatively we could delay the interrupt from the CS ring to give
  1250. * the write time to land, but that would incur a delay after every
  1251. * batch i.e. much more frequent than a delay when waiting for the
  1252. * interrupt (with the same net latency).
  1253. *
  1254. * Also note that to prevent whole machine hangs on gen7, we have to
  1255. * take the spinlock to guard against concurrent cacheline access.
  1256. */
  1257. spin_lock_irq(&dev_priv->uncore.lock);
  1258. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1259. spin_unlock_irq(&dev_priv->uncore.lock);
  1260. }
  1261. static void
  1262. gen5_irq_enable(struct intel_engine_cs *engine)
  1263. {
  1264. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1265. }
  1266. static void
  1267. gen5_irq_disable(struct intel_engine_cs *engine)
  1268. {
  1269. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1270. }
  1271. static void
  1272. i9xx_irq_enable(struct intel_engine_cs *engine)
  1273. {
  1274. struct drm_i915_private *dev_priv = engine->i915;
  1275. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1276. I915_WRITE(IMR, dev_priv->irq_mask);
  1277. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1278. }
  1279. static void
  1280. i9xx_irq_disable(struct intel_engine_cs *engine)
  1281. {
  1282. struct drm_i915_private *dev_priv = engine->i915;
  1283. dev_priv->irq_mask |= engine->irq_enable_mask;
  1284. I915_WRITE(IMR, dev_priv->irq_mask);
  1285. }
  1286. static void
  1287. i8xx_irq_enable(struct intel_engine_cs *engine)
  1288. {
  1289. struct drm_i915_private *dev_priv = engine->i915;
  1290. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1291. I915_WRITE16(IMR, dev_priv->irq_mask);
  1292. POSTING_READ16(RING_IMR(engine->mmio_base));
  1293. }
  1294. static void
  1295. i8xx_irq_disable(struct intel_engine_cs *engine)
  1296. {
  1297. struct drm_i915_private *dev_priv = engine->i915;
  1298. dev_priv->irq_mask |= engine->irq_enable_mask;
  1299. I915_WRITE16(IMR, dev_priv->irq_mask);
  1300. }
  1301. static int
  1302. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1303. {
  1304. struct intel_ring *ring = req->ring;
  1305. int ret;
  1306. ret = intel_ring_begin(req, 2);
  1307. if (ret)
  1308. return ret;
  1309. intel_ring_emit(ring, MI_FLUSH);
  1310. intel_ring_emit(ring, MI_NOOP);
  1311. intel_ring_advance(ring);
  1312. return 0;
  1313. }
  1314. static void
  1315. gen6_irq_enable(struct intel_engine_cs *engine)
  1316. {
  1317. struct drm_i915_private *dev_priv = engine->i915;
  1318. I915_WRITE_IMR(engine,
  1319. ~(engine->irq_enable_mask |
  1320. engine->irq_keep_mask));
  1321. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1322. }
  1323. static void
  1324. gen6_irq_disable(struct intel_engine_cs *engine)
  1325. {
  1326. struct drm_i915_private *dev_priv = engine->i915;
  1327. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1328. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1329. }
  1330. static void
  1331. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1332. {
  1333. struct drm_i915_private *dev_priv = engine->i915;
  1334. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1335. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1336. }
  1337. static void
  1338. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1339. {
  1340. struct drm_i915_private *dev_priv = engine->i915;
  1341. I915_WRITE_IMR(engine, ~0);
  1342. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1343. }
  1344. static void
  1345. gen8_irq_enable(struct intel_engine_cs *engine)
  1346. {
  1347. struct drm_i915_private *dev_priv = engine->i915;
  1348. I915_WRITE_IMR(engine,
  1349. ~(engine->irq_enable_mask |
  1350. engine->irq_keep_mask));
  1351. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1352. }
  1353. static void
  1354. gen8_irq_disable(struct intel_engine_cs *engine)
  1355. {
  1356. struct drm_i915_private *dev_priv = engine->i915;
  1357. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1358. }
  1359. static int
  1360. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1361. u64 offset, u32 length,
  1362. unsigned int dispatch_flags)
  1363. {
  1364. struct intel_ring *ring = req->ring;
  1365. int ret;
  1366. ret = intel_ring_begin(req, 2);
  1367. if (ret)
  1368. return ret;
  1369. intel_ring_emit(ring,
  1370. MI_BATCH_BUFFER_START |
  1371. MI_BATCH_GTT |
  1372. (dispatch_flags & I915_DISPATCH_SECURE ?
  1373. 0 : MI_BATCH_NON_SECURE_I965));
  1374. intel_ring_emit(ring, offset);
  1375. intel_ring_advance(ring);
  1376. return 0;
  1377. }
  1378. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1379. #define I830_BATCH_LIMIT (256*1024)
  1380. #define I830_TLB_ENTRIES (2)
  1381. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1382. static int
  1383. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1384. u64 offset, u32 len,
  1385. unsigned int dispatch_flags)
  1386. {
  1387. struct intel_ring *ring = req->ring;
  1388. u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
  1389. int ret;
  1390. ret = intel_ring_begin(req, 6);
  1391. if (ret)
  1392. return ret;
  1393. /* Evict the invalid PTE TLBs */
  1394. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1395. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1396. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1397. intel_ring_emit(ring, cs_offset);
  1398. intel_ring_emit(ring, 0xdeadbeef);
  1399. intel_ring_emit(ring, MI_NOOP);
  1400. intel_ring_advance(ring);
  1401. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1402. if (len > I830_BATCH_LIMIT)
  1403. return -ENOSPC;
  1404. ret = intel_ring_begin(req, 6 + 2);
  1405. if (ret)
  1406. return ret;
  1407. /* Blit the batch (which has now all relocs applied) to the
  1408. * stable batch scratch bo area (so that the CS never
  1409. * stumbles over its tlb invalidation bug) ...
  1410. */
  1411. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1412. intel_ring_emit(ring,
  1413. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1414. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1415. intel_ring_emit(ring, cs_offset);
  1416. intel_ring_emit(ring, 4096);
  1417. intel_ring_emit(ring, offset);
  1418. intel_ring_emit(ring, MI_FLUSH);
  1419. intel_ring_emit(ring, MI_NOOP);
  1420. intel_ring_advance(ring);
  1421. /* ... and execute it. */
  1422. offset = cs_offset;
  1423. }
  1424. ret = intel_ring_begin(req, 2);
  1425. if (ret)
  1426. return ret;
  1427. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1428. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1429. 0 : MI_BATCH_NON_SECURE));
  1430. intel_ring_advance(ring);
  1431. return 0;
  1432. }
  1433. static int
  1434. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1435. u64 offset, u32 len,
  1436. unsigned int dispatch_flags)
  1437. {
  1438. struct intel_ring *ring = req->ring;
  1439. int ret;
  1440. ret = intel_ring_begin(req, 2);
  1441. if (ret)
  1442. return ret;
  1443. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1444. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1445. 0 : MI_BATCH_NON_SECURE));
  1446. intel_ring_advance(ring);
  1447. return 0;
  1448. }
  1449. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1450. {
  1451. struct drm_i915_private *dev_priv = engine->i915;
  1452. if (!dev_priv->status_page_dmah)
  1453. return;
  1454. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1455. engine->status_page.page_addr = NULL;
  1456. }
  1457. static void cleanup_status_page(struct intel_engine_cs *engine)
  1458. {
  1459. struct i915_vma *vma;
  1460. vma = fetch_and_zero(&engine->status_page.vma);
  1461. if (!vma)
  1462. return;
  1463. i915_vma_unpin(vma);
  1464. i915_gem_object_unpin_map(vma->obj);
  1465. i915_vma_put(vma);
  1466. }
  1467. static int init_status_page(struct intel_engine_cs *engine)
  1468. {
  1469. struct drm_i915_gem_object *obj;
  1470. struct i915_vma *vma;
  1471. unsigned int flags;
  1472. int ret;
  1473. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1474. if (IS_ERR(obj)) {
  1475. DRM_ERROR("Failed to allocate status page\n");
  1476. return PTR_ERR(obj);
  1477. }
  1478. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1479. if (ret)
  1480. goto err;
  1481. vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
  1482. if (IS_ERR(vma)) {
  1483. ret = PTR_ERR(vma);
  1484. goto err;
  1485. }
  1486. flags = PIN_GLOBAL;
  1487. if (!HAS_LLC(engine->i915))
  1488. /* On g33, we cannot place HWS above 256MiB, so
  1489. * restrict its pinning to the low mappable arena.
  1490. * Though this restriction is not documented for
  1491. * gen4, gen5, or byt, they also behave similarly
  1492. * and hang if the HWS is placed at the top of the
  1493. * GTT. To generalise, it appears that all !llc
  1494. * platforms have issues with us placing the HWS
  1495. * above the mappable region (even though we never
  1496. * actualy map it).
  1497. */
  1498. flags |= PIN_MAPPABLE;
  1499. ret = i915_vma_pin(vma, 0, 4096, flags);
  1500. if (ret)
  1501. goto err;
  1502. engine->status_page.vma = vma;
  1503. engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
  1504. engine->status_page.page_addr =
  1505. i915_gem_object_pin_map(obj, I915_MAP_WB);
  1506. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1507. engine->name, i915_ggtt_offset(vma));
  1508. return 0;
  1509. err:
  1510. i915_gem_object_put(obj);
  1511. return ret;
  1512. }
  1513. static int init_phys_status_page(struct intel_engine_cs *engine)
  1514. {
  1515. struct drm_i915_private *dev_priv = engine->i915;
  1516. dev_priv->status_page_dmah =
  1517. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1518. if (!dev_priv->status_page_dmah)
  1519. return -ENOMEM;
  1520. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1521. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1522. return 0;
  1523. }
  1524. int intel_ring_pin(struct intel_ring *ring)
  1525. {
  1526. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1527. unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
  1528. enum i915_map_type map;
  1529. struct i915_vma *vma = ring->vma;
  1530. void *addr;
  1531. int ret;
  1532. GEM_BUG_ON(ring->vaddr);
  1533. map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
  1534. if (vma->obj->stolen)
  1535. flags |= PIN_MAPPABLE;
  1536. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1537. if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
  1538. ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
  1539. else
  1540. ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
  1541. if (unlikely(ret))
  1542. return ret;
  1543. }
  1544. ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
  1545. if (unlikely(ret))
  1546. return ret;
  1547. if (i915_vma_is_map_and_fenceable(vma))
  1548. addr = (void __force *)i915_vma_pin_iomap(vma);
  1549. else
  1550. addr = i915_gem_object_pin_map(vma->obj, map);
  1551. if (IS_ERR(addr))
  1552. goto err;
  1553. ring->vaddr = addr;
  1554. return 0;
  1555. err:
  1556. i915_vma_unpin(vma);
  1557. return PTR_ERR(addr);
  1558. }
  1559. void intel_ring_unpin(struct intel_ring *ring)
  1560. {
  1561. GEM_BUG_ON(!ring->vma);
  1562. GEM_BUG_ON(!ring->vaddr);
  1563. if (i915_vma_is_map_and_fenceable(ring->vma))
  1564. i915_vma_unpin_iomap(ring->vma);
  1565. else
  1566. i915_gem_object_unpin_map(ring->vma->obj);
  1567. ring->vaddr = NULL;
  1568. i915_vma_unpin(ring->vma);
  1569. }
  1570. static struct i915_vma *
  1571. intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
  1572. {
  1573. struct drm_i915_gem_object *obj;
  1574. struct i915_vma *vma;
  1575. obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
  1576. if (!obj)
  1577. obj = i915_gem_object_create(&dev_priv->drm, size);
  1578. if (IS_ERR(obj))
  1579. return ERR_CAST(obj);
  1580. /* mark ring buffers as read-only from GPU side by default */
  1581. obj->gt_ro = 1;
  1582. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  1583. if (IS_ERR(vma))
  1584. goto err;
  1585. return vma;
  1586. err:
  1587. i915_gem_object_put(obj);
  1588. return vma;
  1589. }
  1590. struct intel_ring *
  1591. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1592. {
  1593. struct intel_ring *ring;
  1594. struct i915_vma *vma;
  1595. GEM_BUG_ON(!is_power_of_2(size));
  1596. GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
  1597. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1598. if (!ring)
  1599. return ERR_PTR(-ENOMEM);
  1600. ring->engine = engine;
  1601. INIT_LIST_HEAD(&ring->request_list);
  1602. ring->size = size;
  1603. /* Workaround an erratum on the i830 which causes a hang if
  1604. * the TAIL pointer points to within the last 2 cachelines
  1605. * of the buffer.
  1606. */
  1607. ring->effective_size = size;
  1608. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1609. ring->effective_size -= 2 * CACHELINE_BYTES;
  1610. ring->last_retired_head = -1;
  1611. intel_ring_update_space(ring);
  1612. vma = intel_ring_create_vma(engine->i915, size);
  1613. if (IS_ERR(vma)) {
  1614. kfree(ring);
  1615. return ERR_CAST(vma);
  1616. }
  1617. ring->vma = vma;
  1618. return ring;
  1619. }
  1620. void
  1621. intel_ring_free(struct intel_ring *ring)
  1622. {
  1623. i915_vma_put(ring->vma);
  1624. kfree(ring);
  1625. }
  1626. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1627. struct intel_engine_cs *engine)
  1628. {
  1629. struct intel_context *ce = &ctx->engine[engine->id];
  1630. int ret;
  1631. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1632. if (ce->pin_count++)
  1633. return 0;
  1634. if (ce->state) {
  1635. ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
  1636. if (ret)
  1637. goto error;
  1638. ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
  1639. PIN_GLOBAL | PIN_HIGH);
  1640. if (ret)
  1641. goto error;
  1642. }
  1643. /* The kernel context is only used as a placeholder for flushing the
  1644. * active context. It is never used for submitting user rendering and
  1645. * as such never requires the golden render context, and so we can skip
  1646. * emitting it when we switch to the kernel context. This is required
  1647. * as during eviction we cannot allocate and pin the renderstate in
  1648. * order to initialise the context.
  1649. */
  1650. if (ctx == ctx->i915->kernel_context)
  1651. ce->initialised = true;
  1652. i915_gem_context_get(ctx);
  1653. return 0;
  1654. error:
  1655. ce->pin_count = 0;
  1656. return ret;
  1657. }
  1658. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1659. struct intel_engine_cs *engine)
  1660. {
  1661. struct intel_context *ce = &ctx->engine[engine->id];
  1662. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1663. if (--ce->pin_count)
  1664. return;
  1665. if (ce->state)
  1666. i915_vma_unpin(ce->state);
  1667. i915_gem_context_put(ctx);
  1668. }
  1669. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1670. {
  1671. struct drm_i915_private *dev_priv = engine->i915;
  1672. struct intel_ring *ring;
  1673. int ret;
  1674. WARN_ON(engine->buffer);
  1675. intel_engine_setup_common(engine);
  1676. memset(engine->semaphore.sync_seqno, 0,
  1677. sizeof(engine->semaphore.sync_seqno));
  1678. ret = intel_engine_init_common(engine);
  1679. if (ret)
  1680. goto error;
  1681. /* We may need to do things with the shrinker which
  1682. * require us to immediately switch back to the default
  1683. * context. This can cause a problem as pinning the
  1684. * default context also requires GTT space which may not
  1685. * be available. To avoid this we always pin the default
  1686. * context.
  1687. */
  1688. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1689. if (ret)
  1690. goto error;
  1691. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1692. if (IS_ERR(ring)) {
  1693. ret = PTR_ERR(ring);
  1694. goto error;
  1695. }
  1696. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1697. WARN_ON(engine->id != RCS);
  1698. ret = init_phys_status_page(engine);
  1699. if (ret)
  1700. goto error;
  1701. } else {
  1702. ret = init_status_page(engine);
  1703. if (ret)
  1704. goto error;
  1705. }
  1706. ret = intel_ring_pin(ring);
  1707. if (ret) {
  1708. intel_ring_free(ring);
  1709. goto error;
  1710. }
  1711. engine->buffer = ring;
  1712. return 0;
  1713. error:
  1714. intel_engine_cleanup(engine);
  1715. return ret;
  1716. }
  1717. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1718. {
  1719. struct drm_i915_private *dev_priv;
  1720. if (!intel_engine_initialized(engine))
  1721. return;
  1722. dev_priv = engine->i915;
  1723. if (engine->buffer) {
  1724. WARN_ON(INTEL_GEN(dev_priv) > 2 &&
  1725. (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1726. intel_ring_unpin(engine->buffer);
  1727. intel_ring_free(engine->buffer);
  1728. engine->buffer = NULL;
  1729. }
  1730. if (engine->cleanup)
  1731. engine->cleanup(engine);
  1732. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1733. WARN_ON(engine->id != RCS);
  1734. cleanup_phys_status_page(engine);
  1735. } else {
  1736. cleanup_status_page(engine);
  1737. }
  1738. intel_engine_cleanup_common(engine);
  1739. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1740. engine->i915 = NULL;
  1741. }
  1742. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
  1743. {
  1744. struct intel_engine_cs *engine;
  1745. for_each_engine(engine, dev_priv) {
  1746. engine->buffer->head = engine->buffer->tail;
  1747. engine->buffer->last_retired_head = -1;
  1748. }
  1749. }
  1750. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1751. {
  1752. int ret;
  1753. /* Flush enough space to reduce the likelihood of waiting after
  1754. * we start building the request - in which case we will just
  1755. * have to repeat work.
  1756. */
  1757. request->reserved_space += LEGACY_REQUEST_SIZE;
  1758. request->ring = request->engine->buffer;
  1759. ret = intel_ring_begin(request, 0);
  1760. if (ret)
  1761. return ret;
  1762. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1763. return 0;
  1764. }
  1765. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1766. {
  1767. struct intel_ring *ring = req->ring;
  1768. struct drm_i915_gem_request *target;
  1769. int ret;
  1770. intel_ring_update_space(ring);
  1771. if (ring->space >= bytes)
  1772. return 0;
  1773. /*
  1774. * Space is reserved in the ringbuffer for finalising the request,
  1775. * as that cannot be allowed to fail. During request finalisation,
  1776. * reserved_space is set to 0 to stop the overallocation and the
  1777. * assumption is that then we never need to wait (which has the
  1778. * risk of failing with EINTR).
  1779. *
  1780. * See also i915_gem_request_alloc() and i915_add_request().
  1781. */
  1782. GEM_BUG_ON(!req->reserved_space);
  1783. list_for_each_entry(target, &ring->request_list, ring_link) {
  1784. unsigned space;
  1785. /* Would completion of this request free enough space? */
  1786. space = __intel_ring_space(target->postfix, ring->tail,
  1787. ring->size);
  1788. if (space >= bytes)
  1789. break;
  1790. }
  1791. if (WARN_ON(&target->ring_link == &ring->request_list))
  1792. return -ENOSPC;
  1793. ret = i915_wait_request(target,
  1794. I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
  1795. NULL, NO_WAITBOOST);
  1796. if (ret)
  1797. return ret;
  1798. i915_gem_request_retire_upto(target);
  1799. intel_ring_update_space(ring);
  1800. GEM_BUG_ON(ring->space < bytes);
  1801. return 0;
  1802. }
  1803. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1804. {
  1805. struct intel_ring *ring = req->ring;
  1806. int remain_actual = ring->size - ring->tail;
  1807. int remain_usable = ring->effective_size - ring->tail;
  1808. int bytes = num_dwords * sizeof(u32);
  1809. int total_bytes, wait_bytes;
  1810. bool need_wrap = false;
  1811. total_bytes = bytes + req->reserved_space;
  1812. if (unlikely(bytes > remain_usable)) {
  1813. /*
  1814. * Not enough space for the basic request. So need to flush
  1815. * out the remainder and then wait for base + reserved.
  1816. */
  1817. wait_bytes = remain_actual + total_bytes;
  1818. need_wrap = true;
  1819. } else if (unlikely(total_bytes > remain_usable)) {
  1820. /*
  1821. * The base request will fit but the reserved space
  1822. * falls off the end. So we don't need an immediate wrap
  1823. * and only need to effectively wait for the reserved
  1824. * size space from the start of ringbuffer.
  1825. */
  1826. wait_bytes = remain_actual + req->reserved_space;
  1827. } else {
  1828. /* No wrapping required, just waiting. */
  1829. wait_bytes = total_bytes;
  1830. }
  1831. if (wait_bytes > ring->space) {
  1832. int ret = wait_for_space(req, wait_bytes);
  1833. if (unlikely(ret))
  1834. return ret;
  1835. }
  1836. if (unlikely(need_wrap)) {
  1837. GEM_BUG_ON(remain_actual > ring->space);
  1838. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1839. /* Fill the tail with MI_NOOP */
  1840. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1841. ring->tail = 0;
  1842. ring->space -= remain_actual;
  1843. }
  1844. ring->space -= bytes;
  1845. GEM_BUG_ON(ring->space < 0);
  1846. return 0;
  1847. }
  1848. /* Align the ring tail to a cacheline boundary */
  1849. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1850. {
  1851. struct intel_ring *ring = req->ring;
  1852. int num_dwords =
  1853. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1854. int ret;
  1855. if (num_dwords == 0)
  1856. return 0;
  1857. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1858. ret = intel_ring_begin(req, num_dwords);
  1859. if (ret)
  1860. return ret;
  1861. while (num_dwords--)
  1862. intel_ring_emit(ring, MI_NOOP);
  1863. intel_ring_advance(ring);
  1864. return 0;
  1865. }
  1866. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1867. {
  1868. struct drm_i915_private *dev_priv = request->i915;
  1869. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1870. /* Every tail move must follow the sequence below */
  1871. /* Disable notification that the ring is IDLE. The GT
  1872. * will then assume that it is busy and bring it out of rc6.
  1873. */
  1874. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1875. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1876. /* Clear the context id. Here be magic! */
  1877. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1878. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1879. if (intel_wait_for_register_fw(dev_priv,
  1880. GEN6_BSD_SLEEP_PSMI_CONTROL,
  1881. GEN6_BSD_SLEEP_INDICATOR,
  1882. 0,
  1883. 50))
  1884. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1885. /* Now that the ring is fully powered up, update the tail */
  1886. i9xx_submit_request(request);
  1887. /* Let the ring send IDLE messages to the GT again,
  1888. * and so let it sleep to conserve power when idle.
  1889. */
  1890. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1891. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1892. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1893. }
  1894. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1895. {
  1896. struct intel_ring *ring = req->ring;
  1897. uint32_t cmd;
  1898. int ret;
  1899. ret = intel_ring_begin(req, 4);
  1900. if (ret)
  1901. return ret;
  1902. cmd = MI_FLUSH_DW;
  1903. if (INTEL_GEN(req->i915) >= 8)
  1904. cmd += 1;
  1905. /* We always require a command barrier so that subsequent
  1906. * commands, such as breadcrumb interrupts, are strictly ordered
  1907. * wrt the contents of the write cache being flushed to memory
  1908. * (and thus being coherent from the CPU).
  1909. */
  1910. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1911. /*
  1912. * Bspec vol 1c.5 - video engine command streamer:
  1913. * "If ENABLED, all TLBs will be invalidated once the flush
  1914. * operation is complete. This bit is only valid when the
  1915. * Post-Sync Operation field is a value of 1h or 3h."
  1916. */
  1917. if (mode & EMIT_INVALIDATE)
  1918. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1919. intel_ring_emit(ring, cmd);
  1920. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1921. if (INTEL_GEN(req->i915) >= 8) {
  1922. intel_ring_emit(ring, 0); /* upper addr */
  1923. intel_ring_emit(ring, 0); /* value */
  1924. } else {
  1925. intel_ring_emit(ring, 0);
  1926. intel_ring_emit(ring, MI_NOOP);
  1927. }
  1928. intel_ring_advance(ring);
  1929. return 0;
  1930. }
  1931. static int
  1932. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  1933. u64 offset, u32 len,
  1934. unsigned int dispatch_flags)
  1935. {
  1936. struct intel_ring *ring = req->ring;
  1937. bool ppgtt = USES_PPGTT(req->i915) &&
  1938. !(dispatch_flags & I915_DISPATCH_SECURE);
  1939. int ret;
  1940. ret = intel_ring_begin(req, 4);
  1941. if (ret)
  1942. return ret;
  1943. /* FIXME(BDW): Address space and security selectors. */
  1944. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  1945. (dispatch_flags & I915_DISPATCH_RS ?
  1946. MI_BATCH_RESOURCE_STREAMER : 0));
  1947. intel_ring_emit(ring, lower_32_bits(offset));
  1948. intel_ring_emit(ring, upper_32_bits(offset));
  1949. intel_ring_emit(ring, MI_NOOP);
  1950. intel_ring_advance(ring);
  1951. return 0;
  1952. }
  1953. static int
  1954. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  1955. u64 offset, u32 len,
  1956. unsigned int dispatch_flags)
  1957. {
  1958. struct intel_ring *ring = req->ring;
  1959. int ret;
  1960. ret = intel_ring_begin(req, 2);
  1961. if (ret)
  1962. return ret;
  1963. intel_ring_emit(ring,
  1964. MI_BATCH_BUFFER_START |
  1965. (dispatch_flags & I915_DISPATCH_SECURE ?
  1966. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  1967. (dispatch_flags & I915_DISPATCH_RS ?
  1968. MI_BATCH_RESOURCE_STREAMER : 0));
  1969. /* bit0-7 is the length on GEN6+ */
  1970. intel_ring_emit(ring, offset);
  1971. intel_ring_advance(ring);
  1972. return 0;
  1973. }
  1974. static int
  1975. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  1976. u64 offset, u32 len,
  1977. unsigned int dispatch_flags)
  1978. {
  1979. struct intel_ring *ring = req->ring;
  1980. int ret;
  1981. ret = intel_ring_begin(req, 2);
  1982. if (ret)
  1983. return ret;
  1984. intel_ring_emit(ring,
  1985. MI_BATCH_BUFFER_START |
  1986. (dispatch_flags & I915_DISPATCH_SECURE ?
  1987. 0 : MI_BATCH_NON_SECURE_I965));
  1988. /* bit0-7 is the length on GEN6+ */
  1989. intel_ring_emit(ring, offset);
  1990. intel_ring_advance(ring);
  1991. return 0;
  1992. }
  1993. /* Blitter support (SandyBridge+) */
  1994. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1995. {
  1996. struct intel_ring *ring = req->ring;
  1997. uint32_t cmd;
  1998. int ret;
  1999. ret = intel_ring_begin(req, 4);
  2000. if (ret)
  2001. return ret;
  2002. cmd = MI_FLUSH_DW;
  2003. if (INTEL_GEN(req->i915) >= 8)
  2004. cmd += 1;
  2005. /* We always require a command barrier so that subsequent
  2006. * commands, such as breadcrumb interrupts, are strictly ordered
  2007. * wrt the contents of the write cache being flushed to memory
  2008. * (and thus being coherent from the CPU).
  2009. */
  2010. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2011. /*
  2012. * Bspec vol 1c.3 - blitter engine command streamer:
  2013. * "If ENABLED, all TLBs will be invalidated once the flush
  2014. * operation is complete. This bit is only valid when the
  2015. * Post-Sync Operation field is a value of 1h or 3h."
  2016. */
  2017. if (mode & EMIT_INVALIDATE)
  2018. cmd |= MI_INVALIDATE_TLB;
  2019. intel_ring_emit(ring, cmd);
  2020. intel_ring_emit(ring,
  2021. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2022. if (INTEL_GEN(req->i915) >= 8) {
  2023. intel_ring_emit(ring, 0); /* upper addr */
  2024. intel_ring_emit(ring, 0); /* value */
  2025. } else {
  2026. intel_ring_emit(ring, 0);
  2027. intel_ring_emit(ring, MI_NOOP);
  2028. }
  2029. intel_ring_advance(ring);
  2030. return 0;
  2031. }
  2032. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2033. struct intel_engine_cs *engine)
  2034. {
  2035. struct drm_i915_gem_object *obj;
  2036. int ret, i;
  2037. if (!i915.semaphores)
  2038. return;
  2039. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
  2040. struct i915_vma *vma;
  2041. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2042. if (IS_ERR(obj))
  2043. goto err;
  2044. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  2045. if (IS_ERR(vma))
  2046. goto err_obj;
  2047. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  2048. if (ret)
  2049. goto err_obj;
  2050. ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
  2051. if (ret)
  2052. goto err_obj;
  2053. dev_priv->semaphore = vma;
  2054. }
  2055. if (INTEL_GEN(dev_priv) >= 8) {
  2056. u32 offset = i915_ggtt_offset(dev_priv->semaphore);
  2057. engine->semaphore.sync_to = gen8_ring_sync_to;
  2058. engine->semaphore.signal = gen8_xcs_signal;
  2059. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2060. u32 ring_offset;
  2061. if (i != engine->id)
  2062. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2063. else
  2064. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2065. engine->semaphore.signal_ggtt[i] = ring_offset;
  2066. }
  2067. } else if (INTEL_GEN(dev_priv) >= 6) {
  2068. engine->semaphore.sync_to = gen6_ring_sync_to;
  2069. engine->semaphore.signal = gen6_signal;
  2070. /*
  2071. * The current semaphore is only applied on pre-gen8
  2072. * platform. And there is no VCS2 ring on the pre-gen8
  2073. * platform. So the semaphore between RCS and VCS2 is
  2074. * initialized as INVALID. Gen8 will initialize the
  2075. * sema between VCS2 and RCS later.
  2076. */
  2077. for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
  2078. static const struct {
  2079. u32 wait_mbox;
  2080. i915_reg_t mbox_reg;
  2081. } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
  2082. [RCS_HW] = {
  2083. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2084. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2085. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2086. },
  2087. [VCS_HW] = {
  2088. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2089. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2090. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2091. },
  2092. [BCS_HW] = {
  2093. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2094. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2095. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2096. },
  2097. [VECS_HW] = {
  2098. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2099. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2100. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2101. },
  2102. };
  2103. u32 wait_mbox;
  2104. i915_reg_t mbox_reg;
  2105. if (i == engine->hw_id) {
  2106. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2107. mbox_reg = GEN6_NOSYNC;
  2108. } else {
  2109. wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
  2110. mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
  2111. }
  2112. engine->semaphore.mbox.wait[i] = wait_mbox;
  2113. engine->semaphore.mbox.signal[i] = mbox_reg;
  2114. }
  2115. }
  2116. return;
  2117. err_obj:
  2118. i915_gem_object_put(obj);
  2119. err:
  2120. DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
  2121. i915.semaphores = 0;
  2122. }
  2123. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2124. struct intel_engine_cs *engine)
  2125. {
  2126. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2127. if (INTEL_GEN(dev_priv) >= 8) {
  2128. engine->irq_enable = gen8_irq_enable;
  2129. engine->irq_disable = gen8_irq_disable;
  2130. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2131. } else if (INTEL_GEN(dev_priv) >= 6) {
  2132. engine->irq_enable = gen6_irq_enable;
  2133. engine->irq_disable = gen6_irq_disable;
  2134. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2135. } else if (INTEL_GEN(dev_priv) >= 5) {
  2136. engine->irq_enable = gen5_irq_enable;
  2137. engine->irq_disable = gen5_irq_disable;
  2138. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2139. } else if (INTEL_GEN(dev_priv) >= 3) {
  2140. engine->irq_enable = i9xx_irq_enable;
  2141. engine->irq_disable = i9xx_irq_disable;
  2142. } else {
  2143. engine->irq_enable = i8xx_irq_enable;
  2144. engine->irq_disable = i8xx_irq_disable;
  2145. }
  2146. }
  2147. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2148. struct intel_engine_cs *engine)
  2149. {
  2150. intel_ring_init_irq(dev_priv, engine);
  2151. intel_ring_init_semaphores(dev_priv, engine);
  2152. engine->init_hw = init_ring_common;
  2153. engine->reset_hw = reset_ring_common;
  2154. engine->emit_request = i9xx_emit_request;
  2155. if (i915.semaphores)
  2156. engine->emit_request = gen6_sema_emit_request;
  2157. engine->submit_request = i9xx_submit_request;
  2158. if (INTEL_GEN(dev_priv) >= 8)
  2159. engine->emit_bb_start = gen8_emit_bb_start;
  2160. else if (INTEL_GEN(dev_priv) >= 6)
  2161. engine->emit_bb_start = gen6_emit_bb_start;
  2162. else if (INTEL_GEN(dev_priv) >= 4)
  2163. engine->emit_bb_start = i965_emit_bb_start;
  2164. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2165. engine->emit_bb_start = i830_emit_bb_start;
  2166. else
  2167. engine->emit_bb_start = i915_emit_bb_start;
  2168. }
  2169. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2170. {
  2171. struct drm_i915_private *dev_priv = engine->i915;
  2172. int ret;
  2173. intel_ring_default_vfuncs(dev_priv, engine);
  2174. if (HAS_L3_DPF(dev_priv))
  2175. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2176. if (INTEL_GEN(dev_priv) >= 8) {
  2177. engine->init_context = intel_rcs_ctx_init;
  2178. engine->emit_request = gen8_render_emit_request;
  2179. engine->emit_flush = gen8_render_ring_flush;
  2180. if (i915.semaphores)
  2181. engine->semaphore.signal = gen8_rcs_signal;
  2182. } else if (INTEL_GEN(dev_priv) >= 6) {
  2183. engine->init_context = intel_rcs_ctx_init;
  2184. engine->emit_flush = gen7_render_ring_flush;
  2185. if (IS_GEN6(dev_priv))
  2186. engine->emit_flush = gen6_render_ring_flush;
  2187. } else if (IS_GEN5(dev_priv)) {
  2188. engine->emit_flush = gen4_render_ring_flush;
  2189. } else {
  2190. if (INTEL_GEN(dev_priv) < 4)
  2191. engine->emit_flush = gen2_render_ring_flush;
  2192. else
  2193. engine->emit_flush = gen4_render_ring_flush;
  2194. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2195. }
  2196. if (IS_HASWELL(dev_priv))
  2197. engine->emit_bb_start = hsw_emit_bb_start;
  2198. engine->init_hw = init_render_ring;
  2199. engine->cleanup = render_ring_cleanup;
  2200. ret = intel_init_ring_buffer(engine);
  2201. if (ret)
  2202. return ret;
  2203. if (INTEL_GEN(dev_priv) >= 6) {
  2204. ret = intel_engine_create_scratch(engine, 4096);
  2205. if (ret)
  2206. return ret;
  2207. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2208. ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
  2209. if (ret)
  2210. return ret;
  2211. }
  2212. return 0;
  2213. }
  2214. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2215. {
  2216. struct drm_i915_private *dev_priv = engine->i915;
  2217. intel_ring_default_vfuncs(dev_priv, engine);
  2218. if (INTEL_GEN(dev_priv) >= 6) {
  2219. /* gen6 bsd needs a special wa for tail updates */
  2220. if (IS_GEN6(dev_priv))
  2221. engine->submit_request = gen6_bsd_submit_request;
  2222. engine->emit_flush = gen6_bsd_ring_flush;
  2223. if (INTEL_GEN(dev_priv) < 8)
  2224. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2225. } else {
  2226. engine->mmio_base = BSD_RING_BASE;
  2227. engine->emit_flush = bsd_ring_flush;
  2228. if (IS_GEN5(dev_priv))
  2229. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2230. else
  2231. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2232. }
  2233. return intel_init_ring_buffer(engine);
  2234. }
  2235. /**
  2236. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2237. */
  2238. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2239. {
  2240. struct drm_i915_private *dev_priv = engine->i915;
  2241. intel_ring_default_vfuncs(dev_priv, engine);
  2242. engine->emit_flush = gen6_bsd_ring_flush;
  2243. return intel_init_ring_buffer(engine);
  2244. }
  2245. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2246. {
  2247. struct drm_i915_private *dev_priv = engine->i915;
  2248. intel_ring_default_vfuncs(dev_priv, engine);
  2249. engine->emit_flush = gen6_ring_flush;
  2250. if (INTEL_GEN(dev_priv) < 8)
  2251. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2252. return intel_init_ring_buffer(engine);
  2253. }
  2254. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2255. {
  2256. struct drm_i915_private *dev_priv = engine->i915;
  2257. intel_ring_default_vfuncs(dev_priv, engine);
  2258. engine->emit_flush = gen6_ring_flush;
  2259. if (INTEL_GEN(dev_priv) < 8) {
  2260. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2261. engine->irq_enable = hsw_vebox_irq_enable;
  2262. engine->irq_disable = hsw_vebox_irq_disable;
  2263. }
  2264. return intel_init_ring_buffer(engine);
  2265. }