mm.h 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. struct mempolicy;
  23. struct anon_vma;
  24. struct anon_vma_chain;
  25. struct file_ra_state;
  26. struct user_struct;
  27. struct writeback_control;
  28. struct bdi_writeback;
  29. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  30. extern unsigned long max_mapnr;
  31. static inline void set_max_mapnr(unsigned long limit)
  32. {
  33. max_mapnr = limit;
  34. }
  35. #else
  36. static inline void set_max_mapnr(unsigned long limit) { }
  37. #endif
  38. extern unsigned long totalram_pages;
  39. extern void * high_memory;
  40. extern int page_cluster;
  41. #ifdef CONFIG_SYSCTL
  42. extern int sysctl_legacy_va_layout;
  43. #else
  44. #define sysctl_legacy_va_layout 0
  45. #endif
  46. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  47. extern const int mmap_rnd_bits_min;
  48. extern const int mmap_rnd_bits_max;
  49. extern int mmap_rnd_bits __read_mostly;
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  52. extern const int mmap_rnd_compat_bits_min;
  53. extern const int mmap_rnd_compat_bits_max;
  54. extern int mmap_rnd_compat_bits __read_mostly;
  55. #endif
  56. #include <asm/page.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/processor.h>
  59. #ifndef __pa_symbol
  60. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  61. #endif
  62. /*
  63. * To prevent common memory management code establishing
  64. * a zero page mapping on a read fault.
  65. * This macro should be defined within <asm/pgtable.h>.
  66. * s390 does this to prevent multiplexing of hardware bits
  67. * related to the physical page in case of virtualization.
  68. */
  69. #ifndef mm_forbids_zeropage
  70. #define mm_forbids_zeropage(X) (0)
  71. #endif
  72. extern unsigned long sysctl_user_reserve_kbytes;
  73. extern unsigned long sysctl_admin_reserve_kbytes;
  74. extern int sysctl_overcommit_memory;
  75. extern int sysctl_overcommit_ratio;
  76. extern unsigned long sysctl_overcommit_kbytes;
  77. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  78. size_t *, loff_t *);
  79. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  80. size_t *, loff_t *);
  81. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  82. /* to align the pointer to the (next) page boundary */
  83. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  84. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  85. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  86. /*
  87. * Linux kernel virtual memory manager primitives.
  88. * The idea being to have a "virtual" mm in the same way
  89. * we have a virtual fs - giving a cleaner interface to the
  90. * mm details, and allowing different kinds of memory mappings
  91. * (from shared memory to executable loading to arbitrary
  92. * mmap() functions).
  93. */
  94. extern struct kmem_cache *vm_area_cachep;
  95. #ifndef CONFIG_MMU
  96. extern struct rb_root nommu_region_tree;
  97. extern struct rw_semaphore nommu_region_sem;
  98. extern unsigned int kobjsize(const void *objp);
  99. #endif
  100. /*
  101. * vm_flags in vm_area_struct, see mm_types.h.
  102. */
  103. #define VM_NONE 0x00000000
  104. #define VM_READ 0x00000001 /* currently active flags */
  105. #define VM_WRITE 0x00000002
  106. #define VM_EXEC 0x00000004
  107. #define VM_SHARED 0x00000008
  108. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  109. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  110. #define VM_MAYWRITE 0x00000020
  111. #define VM_MAYEXEC 0x00000040
  112. #define VM_MAYSHARE 0x00000080
  113. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  114. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  115. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  116. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  117. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  118. #define VM_LOCKED 0x00002000
  119. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  120. /* Used by sys_madvise() */
  121. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  122. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  123. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  124. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  125. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  126. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  127. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  128. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  129. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  130. #define VM_ARCH_2 0x02000000
  131. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  132. #ifdef CONFIG_MEM_SOFT_DIRTY
  133. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  134. #else
  135. # define VM_SOFTDIRTY 0
  136. #endif
  137. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  138. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  139. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  140. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  141. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  142. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  143. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  144. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  145. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  146. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  147. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  148. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  149. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  150. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  151. #if defined(CONFIG_X86)
  152. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  153. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  154. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  155. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  156. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  157. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  158. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  159. #endif
  160. #elif defined(CONFIG_PPC)
  161. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  162. #elif defined(CONFIG_PARISC)
  163. # define VM_GROWSUP VM_ARCH_1
  164. #elif defined(CONFIG_METAG)
  165. # define VM_GROWSUP VM_ARCH_1
  166. #elif defined(CONFIG_IA64)
  167. # define VM_GROWSUP VM_ARCH_1
  168. #elif !defined(CONFIG_MMU)
  169. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  170. #endif
  171. #if defined(CONFIG_X86)
  172. /* MPX specific bounds table or bounds directory */
  173. # define VM_MPX VM_ARCH_2
  174. #endif
  175. #ifndef VM_GROWSUP
  176. # define VM_GROWSUP VM_NONE
  177. #endif
  178. /* Bits set in the VMA until the stack is in its final location */
  179. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  180. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  181. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  182. #endif
  183. #ifdef CONFIG_STACK_GROWSUP
  184. #define VM_STACK VM_GROWSUP
  185. #else
  186. #define VM_STACK VM_GROWSDOWN
  187. #endif
  188. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  189. /*
  190. * Special vmas that are non-mergable, non-mlock()able.
  191. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  192. */
  193. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  194. /* This mask defines which mm->def_flags a process can inherit its parent */
  195. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  196. /* This mask is used to clear all the VMA flags used by mlock */
  197. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  198. /*
  199. * mapping from the currently active vm_flags protection bits (the
  200. * low four bits) to a page protection mask..
  201. */
  202. extern pgprot_t protection_map[16];
  203. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  204. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  205. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  206. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  207. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  208. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  209. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  210. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  211. /*
  212. * vm_fault is filled by the the pagefault handler and passed to the vma's
  213. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  214. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  215. *
  216. * MM layer fills up gfp_mask for page allocations but fault handler might
  217. * alter it if its implementation requires a different allocation context.
  218. *
  219. * pgoff should be used in favour of virtual_address, if possible.
  220. */
  221. struct vm_fault {
  222. unsigned int flags; /* FAULT_FLAG_xxx flags */
  223. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  224. pgoff_t pgoff; /* Logical page offset based on vma */
  225. void __user *virtual_address; /* Faulting virtual address */
  226. struct page *cow_page; /* Handler may choose to COW */
  227. struct page *page; /* ->fault handlers should return a
  228. * page here, unless VM_FAULT_NOPAGE
  229. * is set (which is also implied by
  230. * VM_FAULT_ERROR).
  231. */
  232. /* for ->map_pages() only */
  233. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  234. * max_pgoff inclusive */
  235. pte_t *pte; /* pte entry associated with ->pgoff */
  236. };
  237. /*
  238. * These are the virtual MM functions - opening of an area, closing and
  239. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  240. * to the functions called when a no-page or a wp-page exception occurs.
  241. */
  242. struct vm_operations_struct {
  243. void (*open)(struct vm_area_struct * area);
  244. void (*close)(struct vm_area_struct * area);
  245. int (*mremap)(struct vm_area_struct * area);
  246. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  247. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  248. pmd_t *, unsigned int flags);
  249. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  250. /* notification that a previously read-only page is about to become
  251. * writable, if an error is returned it will cause a SIGBUS */
  252. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  253. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  254. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  255. /* called by access_process_vm when get_user_pages() fails, typically
  256. * for use by special VMAs that can switch between memory and hardware
  257. */
  258. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  259. void *buf, int len, int write);
  260. /* Called by the /proc/PID/maps code to ask the vma whether it
  261. * has a special name. Returning non-NULL will also cause this
  262. * vma to be dumped unconditionally. */
  263. const char *(*name)(struct vm_area_struct *vma);
  264. #ifdef CONFIG_NUMA
  265. /*
  266. * set_policy() op must add a reference to any non-NULL @new mempolicy
  267. * to hold the policy upon return. Caller should pass NULL @new to
  268. * remove a policy and fall back to surrounding context--i.e. do not
  269. * install a MPOL_DEFAULT policy, nor the task or system default
  270. * mempolicy.
  271. */
  272. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  273. /*
  274. * get_policy() op must add reference [mpol_get()] to any policy at
  275. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  276. * in mm/mempolicy.c will do this automatically.
  277. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  278. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  279. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  280. * must return NULL--i.e., do not "fallback" to task or system default
  281. * policy.
  282. */
  283. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  284. unsigned long addr);
  285. #endif
  286. /*
  287. * Called by vm_normal_page() for special PTEs to find the
  288. * page for @addr. This is useful if the default behavior
  289. * (using pte_page()) would not find the correct page.
  290. */
  291. struct page *(*find_special_page)(struct vm_area_struct *vma,
  292. unsigned long addr);
  293. };
  294. struct mmu_gather;
  295. struct inode;
  296. #define page_private(page) ((page)->private)
  297. #define set_page_private(page, v) ((page)->private = (v))
  298. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  299. static inline int pmd_devmap(pmd_t pmd)
  300. {
  301. return 0;
  302. }
  303. #endif
  304. /*
  305. * FIXME: take this include out, include page-flags.h in
  306. * files which need it (119 of them)
  307. */
  308. #include <linux/page-flags.h>
  309. #include <linux/huge_mm.h>
  310. /*
  311. * Methods to modify the page usage count.
  312. *
  313. * What counts for a page usage:
  314. * - cache mapping (page->mapping)
  315. * - private data (page->private)
  316. * - page mapped in a task's page tables, each mapping
  317. * is counted separately
  318. *
  319. * Also, many kernel routines increase the page count before a critical
  320. * routine so they can be sure the page doesn't go away from under them.
  321. */
  322. /*
  323. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  324. */
  325. static inline int put_page_testzero(struct page *page)
  326. {
  327. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  328. return atomic_dec_and_test(&page->_count);
  329. }
  330. /*
  331. * Try to grab a ref unless the page has a refcount of zero, return false if
  332. * that is the case.
  333. * This can be called when MMU is off so it must not access
  334. * any of the virtual mappings.
  335. */
  336. static inline int get_page_unless_zero(struct page *page)
  337. {
  338. return atomic_inc_not_zero(&page->_count);
  339. }
  340. extern int page_is_ram(unsigned long pfn);
  341. enum {
  342. REGION_INTERSECTS,
  343. REGION_DISJOINT,
  344. REGION_MIXED,
  345. };
  346. int region_intersects(resource_size_t offset, size_t size, const char *type);
  347. /* Support for virtually mapped pages */
  348. struct page *vmalloc_to_page(const void *addr);
  349. unsigned long vmalloc_to_pfn(const void *addr);
  350. /*
  351. * Determine if an address is within the vmalloc range
  352. *
  353. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  354. * is no special casing required.
  355. */
  356. static inline int is_vmalloc_addr(const void *x)
  357. {
  358. #ifdef CONFIG_MMU
  359. unsigned long addr = (unsigned long)x;
  360. return addr >= VMALLOC_START && addr < VMALLOC_END;
  361. #else
  362. return 0;
  363. #endif
  364. }
  365. #ifdef CONFIG_MMU
  366. extern int is_vmalloc_or_module_addr(const void *x);
  367. #else
  368. static inline int is_vmalloc_or_module_addr(const void *x)
  369. {
  370. return 0;
  371. }
  372. #endif
  373. extern void kvfree(const void *addr);
  374. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  375. {
  376. return &page[1].compound_mapcount;
  377. }
  378. static inline int compound_mapcount(struct page *page)
  379. {
  380. if (!PageCompound(page))
  381. return 0;
  382. page = compound_head(page);
  383. return atomic_read(compound_mapcount_ptr(page)) + 1;
  384. }
  385. /*
  386. * The atomic page->_mapcount, starts from -1: so that transitions
  387. * both from it and to it can be tracked, using atomic_inc_and_test
  388. * and atomic_add_negative(-1).
  389. */
  390. static inline void page_mapcount_reset(struct page *page)
  391. {
  392. atomic_set(&(page)->_mapcount, -1);
  393. }
  394. int __page_mapcount(struct page *page);
  395. static inline int page_mapcount(struct page *page)
  396. {
  397. VM_BUG_ON_PAGE(PageSlab(page), page);
  398. if (unlikely(PageCompound(page)))
  399. return __page_mapcount(page);
  400. return atomic_read(&page->_mapcount) + 1;
  401. }
  402. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  403. int total_mapcount(struct page *page);
  404. #else
  405. static inline int total_mapcount(struct page *page)
  406. {
  407. return page_mapcount(page);
  408. }
  409. #endif
  410. static inline int page_count(struct page *page)
  411. {
  412. return atomic_read(&compound_head(page)->_count);
  413. }
  414. static inline struct page *virt_to_head_page(const void *x)
  415. {
  416. struct page *page = virt_to_page(x);
  417. return compound_head(page);
  418. }
  419. /*
  420. * Setup the page count before being freed into the page allocator for
  421. * the first time (boot or memory hotplug)
  422. */
  423. static inline void init_page_count(struct page *page)
  424. {
  425. atomic_set(&page->_count, 1);
  426. }
  427. void __put_page(struct page *page);
  428. void put_pages_list(struct list_head *pages);
  429. void split_page(struct page *page, unsigned int order);
  430. int split_free_page(struct page *page);
  431. /*
  432. * Compound pages have a destructor function. Provide a
  433. * prototype for that function and accessor functions.
  434. * These are _only_ valid on the head of a compound page.
  435. */
  436. typedef void compound_page_dtor(struct page *);
  437. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  438. enum compound_dtor_id {
  439. NULL_COMPOUND_DTOR,
  440. COMPOUND_PAGE_DTOR,
  441. #ifdef CONFIG_HUGETLB_PAGE
  442. HUGETLB_PAGE_DTOR,
  443. #endif
  444. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  445. TRANSHUGE_PAGE_DTOR,
  446. #endif
  447. NR_COMPOUND_DTORS,
  448. };
  449. extern compound_page_dtor * const compound_page_dtors[];
  450. static inline void set_compound_page_dtor(struct page *page,
  451. enum compound_dtor_id compound_dtor)
  452. {
  453. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  454. page[1].compound_dtor = compound_dtor;
  455. }
  456. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  457. {
  458. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  459. return compound_page_dtors[page[1].compound_dtor];
  460. }
  461. static inline unsigned int compound_order(struct page *page)
  462. {
  463. if (!PageHead(page))
  464. return 0;
  465. return page[1].compound_order;
  466. }
  467. static inline void set_compound_order(struct page *page, unsigned int order)
  468. {
  469. page[1].compound_order = order;
  470. }
  471. void free_compound_page(struct page *page);
  472. #ifdef CONFIG_MMU
  473. /*
  474. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  475. * servicing faults for write access. In the normal case, do always want
  476. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  477. * that do not have writing enabled, when used by access_process_vm.
  478. */
  479. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  480. {
  481. if (likely(vma->vm_flags & VM_WRITE))
  482. pte = pte_mkwrite(pte);
  483. return pte;
  484. }
  485. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  486. struct page *page, pte_t *pte, bool write, bool anon);
  487. #endif
  488. /*
  489. * Multiple processes may "see" the same page. E.g. for untouched
  490. * mappings of /dev/null, all processes see the same page full of
  491. * zeroes, and text pages of executables and shared libraries have
  492. * only one copy in memory, at most, normally.
  493. *
  494. * For the non-reserved pages, page_count(page) denotes a reference count.
  495. * page_count() == 0 means the page is free. page->lru is then used for
  496. * freelist management in the buddy allocator.
  497. * page_count() > 0 means the page has been allocated.
  498. *
  499. * Pages are allocated by the slab allocator in order to provide memory
  500. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  501. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  502. * unless a particular usage is carefully commented. (the responsibility of
  503. * freeing the kmalloc memory is the caller's, of course).
  504. *
  505. * A page may be used by anyone else who does a __get_free_page().
  506. * In this case, page_count still tracks the references, and should only
  507. * be used through the normal accessor functions. The top bits of page->flags
  508. * and page->virtual store page management information, but all other fields
  509. * are unused and could be used privately, carefully. The management of this
  510. * page is the responsibility of the one who allocated it, and those who have
  511. * subsequently been given references to it.
  512. *
  513. * The other pages (we may call them "pagecache pages") are completely
  514. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  515. * The following discussion applies only to them.
  516. *
  517. * A pagecache page contains an opaque `private' member, which belongs to the
  518. * page's address_space. Usually, this is the address of a circular list of
  519. * the page's disk buffers. PG_private must be set to tell the VM to call
  520. * into the filesystem to release these pages.
  521. *
  522. * A page may belong to an inode's memory mapping. In this case, page->mapping
  523. * is the pointer to the inode, and page->index is the file offset of the page,
  524. * in units of PAGE_CACHE_SIZE.
  525. *
  526. * If pagecache pages are not associated with an inode, they are said to be
  527. * anonymous pages. These may become associated with the swapcache, and in that
  528. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  529. *
  530. * In either case (swapcache or inode backed), the pagecache itself holds one
  531. * reference to the page. Setting PG_private should also increment the
  532. * refcount. The each user mapping also has a reference to the page.
  533. *
  534. * The pagecache pages are stored in a per-mapping radix tree, which is
  535. * rooted at mapping->page_tree, and indexed by offset.
  536. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  537. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  538. *
  539. * All pagecache pages may be subject to I/O:
  540. * - inode pages may need to be read from disk,
  541. * - inode pages which have been modified and are MAP_SHARED may need
  542. * to be written back to the inode on disk,
  543. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  544. * modified may need to be swapped out to swap space and (later) to be read
  545. * back into memory.
  546. */
  547. /*
  548. * The zone field is never updated after free_area_init_core()
  549. * sets it, so none of the operations on it need to be atomic.
  550. */
  551. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  552. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  553. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  554. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  555. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  556. /*
  557. * Define the bit shifts to access each section. For non-existent
  558. * sections we define the shift as 0; that plus a 0 mask ensures
  559. * the compiler will optimise away reference to them.
  560. */
  561. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  562. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  563. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  564. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  565. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  566. #ifdef NODE_NOT_IN_PAGE_FLAGS
  567. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  568. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  569. SECTIONS_PGOFF : ZONES_PGOFF)
  570. #else
  571. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  572. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  573. NODES_PGOFF : ZONES_PGOFF)
  574. #endif
  575. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  576. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  577. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  578. #endif
  579. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  580. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  581. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  582. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  583. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  584. static inline enum zone_type page_zonenum(const struct page *page)
  585. {
  586. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  587. }
  588. #ifdef CONFIG_ZONE_DEVICE
  589. void get_zone_device_page(struct page *page);
  590. void put_zone_device_page(struct page *page);
  591. static inline bool is_zone_device_page(const struct page *page)
  592. {
  593. return page_zonenum(page) == ZONE_DEVICE;
  594. }
  595. #else
  596. static inline void get_zone_device_page(struct page *page)
  597. {
  598. }
  599. static inline void put_zone_device_page(struct page *page)
  600. {
  601. }
  602. static inline bool is_zone_device_page(const struct page *page)
  603. {
  604. return false;
  605. }
  606. #endif
  607. static inline void get_page(struct page *page)
  608. {
  609. page = compound_head(page);
  610. /*
  611. * Getting a normal page or the head of a compound page
  612. * requires to already have an elevated page->_count.
  613. */
  614. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  615. atomic_inc(&page->_count);
  616. if (unlikely(is_zone_device_page(page)))
  617. get_zone_device_page(page);
  618. }
  619. static inline void put_page(struct page *page)
  620. {
  621. page = compound_head(page);
  622. if (put_page_testzero(page))
  623. __put_page(page);
  624. if (unlikely(is_zone_device_page(page)))
  625. put_zone_device_page(page);
  626. }
  627. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  628. #define SECTION_IN_PAGE_FLAGS
  629. #endif
  630. /*
  631. * The identification function is mainly used by the buddy allocator for
  632. * determining if two pages could be buddies. We are not really identifying
  633. * the zone since we could be using the section number id if we do not have
  634. * node id available in page flags.
  635. * We only guarantee that it will return the same value for two combinable
  636. * pages in a zone.
  637. */
  638. static inline int page_zone_id(struct page *page)
  639. {
  640. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  641. }
  642. static inline int zone_to_nid(struct zone *zone)
  643. {
  644. #ifdef CONFIG_NUMA
  645. return zone->node;
  646. #else
  647. return 0;
  648. #endif
  649. }
  650. #ifdef NODE_NOT_IN_PAGE_FLAGS
  651. extern int page_to_nid(const struct page *page);
  652. #else
  653. static inline int page_to_nid(const struct page *page)
  654. {
  655. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  656. }
  657. #endif
  658. #ifdef CONFIG_NUMA_BALANCING
  659. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  660. {
  661. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  662. }
  663. static inline int cpupid_to_pid(int cpupid)
  664. {
  665. return cpupid & LAST__PID_MASK;
  666. }
  667. static inline int cpupid_to_cpu(int cpupid)
  668. {
  669. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  670. }
  671. static inline int cpupid_to_nid(int cpupid)
  672. {
  673. return cpu_to_node(cpupid_to_cpu(cpupid));
  674. }
  675. static inline bool cpupid_pid_unset(int cpupid)
  676. {
  677. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  678. }
  679. static inline bool cpupid_cpu_unset(int cpupid)
  680. {
  681. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  682. }
  683. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  684. {
  685. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  686. }
  687. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  688. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  689. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  690. {
  691. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  692. }
  693. static inline int page_cpupid_last(struct page *page)
  694. {
  695. return page->_last_cpupid;
  696. }
  697. static inline void page_cpupid_reset_last(struct page *page)
  698. {
  699. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  700. }
  701. #else
  702. static inline int page_cpupid_last(struct page *page)
  703. {
  704. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  705. }
  706. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  707. static inline void page_cpupid_reset_last(struct page *page)
  708. {
  709. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  710. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  711. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  712. }
  713. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  714. #else /* !CONFIG_NUMA_BALANCING */
  715. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  716. {
  717. return page_to_nid(page); /* XXX */
  718. }
  719. static inline int page_cpupid_last(struct page *page)
  720. {
  721. return page_to_nid(page); /* XXX */
  722. }
  723. static inline int cpupid_to_nid(int cpupid)
  724. {
  725. return -1;
  726. }
  727. static inline int cpupid_to_pid(int cpupid)
  728. {
  729. return -1;
  730. }
  731. static inline int cpupid_to_cpu(int cpupid)
  732. {
  733. return -1;
  734. }
  735. static inline int cpu_pid_to_cpupid(int nid, int pid)
  736. {
  737. return -1;
  738. }
  739. static inline bool cpupid_pid_unset(int cpupid)
  740. {
  741. return 1;
  742. }
  743. static inline void page_cpupid_reset_last(struct page *page)
  744. {
  745. }
  746. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  747. {
  748. return false;
  749. }
  750. #endif /* CONFIG_NUMA_BALANCING */
  751. static inline struct zone *page_zone(const struct page *page)
  752. {
  753. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  754. }
  755. #ifdef SECTION_IN_PAGE_FLAGS
  756. static inline void set_page_section(struct page *page, unsigned long section)
  757. {
  758. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  759. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  760. }
  761. static inline unsigned long page_to_section(const struct page *page)
  762. {
  763. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  764. }
  765. #endif
  766. static inline void set_page_zone(struct page *page, enum zone_type zone)
  767. {
  768. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  769. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  770. }
  771. static inline void set_page_node(struct page *page, unsigned long node)
  772. {
  773. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  774. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  775. }
  776. static inline void set_page_links(struct page *page, enum zone_type zone,
  777. unsigned long node, unsigned long pfn)
  778. {
  779. set_page_zone(page, zone);
  780. set_page_node(page, node);
  781. #ifdef SECTION_IN_PAGE_FLAGS
  782. set_page_section(page, pfn_to_section_nr(pfn));
  783. #endif
  784. }
  785. #ifdef CONFIG_MEMCG
  786. static inline struct mem_cgroup *page_memcg(struct page *page)
  787. {
  788. return page->mem_cgroup;
  789. }
  790. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  791. {
  792. page->mem_cgroup = memcg;
  793. }
  794. #else
  795. static inline struct mem_cgroup *page_memcg(struct page *page)
  796. {
  797. return NULL;
  798. }
  799. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  800. {
  801. }
  802. #endif
  803. /*
  804. * Some inline functions in vmstat.h depend on page_zone()
  805. */
  806. #include <linux/vmstat.h>
  807. static __always_inline void *lowmem_page_address(const struct page *page)
  808. {
  809. return __va(PFN_PHYS(page_to_pfn(page)));
  810. }
  811. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  812. #define HASHED_PAGE_VIRTUAL
  813. #endif
  814. #if defined(WANT_PAGE_VIRTUAL)
  815. static inline void *page_address(const struct page *page)
  816. {
  817. return page->virtual;
  818. }
  819. static inline void set_page_address(struct page *page, void *address)
  820. {
  821. page->virtual = address;
  822. }
  823. #define page_address_init() do { } while(0)
  824. #endif
  825. #if defined(HASHED_PAGE_VIRTUAL)
  826. void *page_address(const struct page *page);
  827. void set_page_address(struct page *page, void *virtual);
  828. void page_address_init(void);
  829. #endif
  830. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  831. #define page_address(page) lowmem_page_address(page)
  832. #define set_page_address(page, address) do { } while(0)
  833. #define page_address_init() do { } while(0)
  834. #endif
  835. extern void *page_rmapping(struct page *page);
  836. extern struct anon_vma *page_anon_vma(struct page *page);
  837. extern struct address_space *page_mapping(struct page *page);
  838. extern struct address_space *__page_file_mapping(struct page *);
  839. static inline
  840. struct address_space *page_file_mapping(struct page *page)
  841. {
  842. if (unlikely(PageSwapCache(page)))
  843. return __page_file_mapping(page);
  844. return page->mapping;
  845. }
  846. /*
  847. * Return the pagecache index of the passed page. Regular pagecache pages
  848. * use ->index whereas swapcache pages use ->private
  849. */
  850. static inline pgoff_t page_index(struct page *page)
  851. {
  852. if (unlikely(PageSwapCache(page)))
  853. return page_private(page);
  854. return page->index;
  855. }
  856. extern pgoff_t __page_file_index(struct page *page);
  857. /*
  858. * Return the file index of the page. Regular pagecache pages use ->index
  859. * whereas swapcache pages use swp_offset(->private)
  860. */
  861. static inline pgoff_t page_file_index(struct page *page)
  862. {
  863. if (unlikely(PageSwapCache(page)))
  864. return __page_file_index(page);
  865. return page->index;
  866. }
  867. /*
  868. * Return true if this page is mapped into pagetables.
  869. * For compound page it returns true if any subpage of compound page is mapped.
  870. */
  871. static inline bool page_mapped(struct page *page)
  872. {
  873. int i;
  874. if (likely(!PageCompound(page)))
  875. return atomic_read(&page->_mapcount) >= 0;
  876. page = compound_head(page);
  877. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  878. return true;
  879. for (i = 0; i < hpage_nr_pages(page); i++) {
  880. if (atomic_read(&page[i]._mapcount) >= 0)
  881. return true;
  882. }
  883. return false;
  884. }
  885. /*
  886. * Return true only if the page has been allocated with
  887. * ALLOC_NO_WATERMARKS and the low watermark was not
  888. * met implying that the system is under some pressure.
  889. */
  890. static inline bool page_is_pfmemalloc(struct page *page)
  891. {
  892. /*
  893. * Page index cannot be this large so this must be
  894. * a pfmemalloc page.
  895. */
  896. return page->index == -1UL;
  897. }
  898. /*
  899. * Only to be called by the page allocator on a freshly allocated
  900. * page.
  901. */
  902. static inline void set_page_pfmemalloc(struct page *page)
  903. {
  904. page->index = -1UL;
  905. }
  906. static inline void clear_page_pfmemalloc(struct page *page)
  907. {
  908. page->index = 0;
  909. }
  910. /*
  911. * Different kinds of faults, as returned by handle_mm_fault().
  912. * Used to decide whether a process gets delivered SIGBUS or
  913. * just gets major/minor fault counters bumped up.
  914. */
  915. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  916. #define VM_FAULT_OOM 0x0001
  917. #define VM_FAULT_SIGBUS 0x0002
  918. #define VM_FAULT_MAJOR 0x0004
  919. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  920. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  921. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  922. #define VM_FAULT_SIGSEGV 0x0040
  923. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  924. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  925. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  926. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  927. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  928. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  929. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  930. VM_FAULT_FALLBACK)
  931. /* Encode hstate index for a hwpoisoned large page */
  932. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  933. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  934. /*
  935. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  936. */
  937. extern void pagefault_out_of_memory(void);
  938. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  939. /*
  940. * Flags passed to show_mem() and show_free_areas() to suppress output in
  941. * various contexts.
  942. */
  943. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  944. extern void show_free_areas(unsigned int flags);
  945. extern bool skip_free_areas_node(unsigned int flags, int nid);
  946. int shmem_zero_setup(struct vm_area_struct *);
  947. #ifdef CONFIG_SHMEM
  948. bool shmem_mapping(struct address_space *mapping);
  949. #else
  950. static inline bool shmem_mapping(struct address_space *mapping)
  951. {
  952. return false;
  953. }
  954. #endif
  955. extern bool can_do_mlock(void);
  956. extern int user_shm_lock(size_t, struct user_struct *);
  957. extern void user_shm_unlock(size_t, struct user_struct *);
  958. /*
  959. * Parameter block passed down to zap_pte_range in exceptional cases.
  960. */
  961. struct zap_details {
  962. struct address_space *check_mapping; /* Check page->mapping if set */
  963. pgoff_t first_index; /* Lowest page->index to unmap */
  964. pgoff_t last_index; /* Highest page->index to unmap */
  965. };
  966. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  967. pte_t pte);
  968. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  969. unsigned long size);
  970. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  971. unsigned long size, struct zap_details *);
  972. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  973. unsigned long start, unsigned long end);
  974. /**
  975. * mm_walk - callbacks for walk_page_range
  976. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  977. * this handler is required to be able to handle
  978. * pmd_trans_huge() pmds. They may simply choose to
  979. * split_huge_page() instead of handling it explicitly.
  980. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  981. * @pte_hole: if set, called for each hole at all levels
  982. * @hugetlb_entry: if set, called for each hugetlb entry
  983. * @test_walk: caller specific callback function to determine whether
  984. * we walk over the current vma or not. A positive returned
  985. * value means "do page table walk over the current vma,"
  986. * and a negative one means "abort current page table walk
  987. * right now." 0 means "skip the current vma."
  988. * @mm: mm_struct representing the target process of page table walk
  989. * @vma: vma currently walked (NULL if walking outside vmas)
  990. * @private: private data for callbacks' usage
  991. *
  992. * (see the comment on walk_page_range() for more details)
  993. */
  994. struct mm_walk {
  995. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  996. unsigned long next, struct mm_walk *walk);
  997. int (*pte_entry)(pte_t *pte, unsigned long addr,
  998. unsigned long next, struct mm_walk *walk);
  999. int (*pte_hole)(unsigned long addr, unsigned long next,
  1000. struct mm_walk *walk);
  1001. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1002. unsigned long addr, unsigned long next,
  1003. struct mm_walk *walk);
  1004. int (*test_walk)(unsigned long addr, unsigned long next,
  1005. struct mm_walk *walk);
  1006. struct mm_struct *mm;
  1007. struct vm_area_struct *vma;
  1008. void *private;
  1009. };
  1010. int walk_page_range(unsigned long addr, unsigned long end,
  1011. struct mm_walk *walk);
  1012. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1013. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1014. unsigned long end, unsigned long floor, unsigned long ceiling);
  1015. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1016. struct vm_area_struct *vma);
  1017. void unmap_mapping_range(struct address_space *mapping,
  1018. loff_t const holebegin, loff_t const holelen, int even_cows);
  1019. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1020. unsigned long *pfn);
  1021. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1022. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1023. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1024. void *buf, int len, int write);
  1025. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1026. loff_t const holebegin, loff_t const holelen)
  1027. {
  1028. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1029. }
  1030. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1031. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1032. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1033. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1034. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1035. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1036. int invalidate_inode_page(struct page *page);
  1037. #ifdef CONFIG_MMU
  1038. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1039. unsigned long address, unsigned int flags);
  1040. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1041. unsigned long address, unsigned int fault_flags,
  1042. bool *unlocked);
  1043. #else
  1044. static inline int handle_mm_fault(struct mm_struct *mm,
  1045. struct vm_area_struct *vma, unsigned long address,
  1046. unsigned int flags)
  1047. {
  1048. /* should never happen if there's no MMU */
  1049. BUG();
  1050. return VM_FAULT_SIGBUS;
  1051. }
  1052. static inline int fixup_user_fault(struct task_struct *tsk,
  1053. struct mm_struct *mm, unsigned long address,
  1054. unsigned int fault_flags, bool *unlocked)
  1055. {
  1056. /* should never happen if there's no MMU */
  1057. BUG();
  1058. return -EFAULT;
  1059. }
  1060. #endif
  1061. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1062. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1063. void *buf, int len, int write);
  1064. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1065. unsigned long start, unsigned long nr_pages,
  1066. unsigned int foll_flags, struct page **pages,
  1067. struct vm_area_struct **vmas, int *nonblocking);
  1068. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1069. unsigned long start, unsigned long nr_pages,
  1070. int write, int force, struct page **pages,
  1071. struct vm_area_struct **vmas);
  1072. long get_user_pages6(unsigned long start, unsigned long nr_pages,
  1073. int write, int force, struct page **pages,
  1074. struct vm_area_struct **vmas);
  1075. long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
  1076. int write, int force, struct page **pages, int *locked);
  1077. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1078. unsigned long start, unsigned long nr_pages,
  1079. int write, int force, struct page **pages,
  1080. unsigned int gup_flags);
  1081. long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
  1082. int write, int force, struct page **pages);
  1083. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1084. struct page **pages);
  1085. /* suppress warnings from use in EXPORT_SYMBOL() */
  1086. #ifndef __DISABLE_GUP_DEPRECATED
  1087. #define __gup_deprecated __deprecated
  1088. #else
  1089. #define __gup_deprecated
  1090. #endif
  1091. /*
  1092. * These macros provide backward-compatibility with the old
  1093. * get_user_pages() variants which took tsk/mm. These
  1094. * functions/macros provide both compile-time __deprecated so we
  1095. * can catch old-style use and not break the build. The actual
  1096. * functions also have WARN_ON()s to let us know at runtime if
  1097. * the get_user_pages() should have been the "remote" variant.
  1098. *
  1099. * These are hideous, but temporary.
  1100. *
  1101. * If you run into one of these __deprecated warnings, look
  1102. * at how you are calling get_user_pages(). If you are calling
  1103. * it with current/current->mm as the first two arguments,
  1104. * simply remove those arguments. The behavior will be the same
  1105. * as it is now. If you are calling it on another task, use
  1106. * get_user_pages_remote() instead.
  1107. *
  1108. * Any questions? Ask Dave Hansen <dave@sr71.net>
  1109. */
  1110. long
  1111. __gup_deprecated
  1112. get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
  1113. unsigned long start, unsigned long nr_pages,
  1114. int write, int force, struct page **pages,
  1115. struct vm_area_struct **vmas);
  1116. #define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
  1117. get_user_pages
  1118. #define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
  1119. get_user_pages8, x, \
  1120. get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
  1121. __gup_deprecated
  1122. long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
  1123. unsigned long start, unsigned long nr_pages,
  1124. int write, int force, struct page **pages,
  1125. int *locked);
  1126. #define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
  1127. get_user_pages_locked
  1128. #define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
  1129. get_user_pages_locked8, x, \
  1130. get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
  1131. __gup_deprecated
  1132. long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
  1133. unsigned long start, unsigned long nr_pages,
  1134. int write, int force, struct page **pages);
  1135. #define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
  1136. get_user_pages_unlocked
  1137. #define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
  1138. get_user_pages_unlocked7, x, \
  1139. get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
  1140. /* Container for pinned pfns / pages */
  1141. struct frame_vector {
  1142. unsigned int nr_allocated; /* Number of frames we have space for */
  1143. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1144. bool got_ref; /* Did we pin pages by getting page ref? */
  1145. bool is_pfns; /* Does array contain pages or pfns? */
  1146. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1147. * pfns_vector_pages() or pfns_vector_pfns()
  1148. * for access */
  1149. };
  1150. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1151. void frame_vector_destroy(struct frame_vector *vec);
  1152. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1153. bool write, bool force, struct frame_vector *vec);
  1154. void put_vaddr_frames(struct frame_vector *vec);
  1155. int frame_vector_to_pages(struct frame_vector *vec);
  1156. void frame_vector_to_pfns(struct frame_vector *vec);
  1157. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1158. {
  1159. return vec->nr_frames;
  1160. }
  1161. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1162. {
  1163. if (vec->is_pfns) {
  1164. int err = frame_vector_to_pages(vec);
  1165. if (err)
  1166. return ERR_PTR(err);
  1167. }
  1168. return (struct page **)(vec->ptrs);
  1169. }
  1170. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1171. {
  1172. if (!vec->is_pfns)
  1173. frame_vector_to_pfns(vec);
  1174. return (unsigned long *)(vec->ptrs);
  1175. }
  1176. struct kvec;
  1177. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1178. struct page **pages);
  1179. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1180. struct page *get_dump_page(unsigned long addr);
  1181. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1182. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1183. unsigned int length);
  1184. int __set_page_dirty_nobuffers(struct page *page);
  1185. int __set_page_dirty_no_writeback(struct page *page);
  1186. int redirty_page_for_writepage(struct writeback_control *wbc,
  1187. struct page *page);
  1188. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1189. struct mem_cgroup *memcg);
  1190. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1191. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1192. int set_page_dirty(struct page *page);
  1193. int set_page_dirty_lock(struct page *page);
  1194. void cancel_dirty_page(struct page *page);
  1195. int clear_page_dirty_for_io(struct page *page);
  1196. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1197. /* Is the vma a continuation of the stack vma above it? */
  1198. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1199. {
  1200. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1201. }
  1202. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1203. {
  1204. return !vma->vm_ops;
  1205. }
  1206. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1207. unsigned long addr)
  1208. {
  1209. return (vma->vm_flags & VM_GROWSDOWN) &&
  1210. (vma->vm_start == addr) &&
  1211. !vma_growsdown(vma->vm_prev, addr);
  1212. }
  1213. /* Is the vma a continuation of the stack vma below it? */
  1214. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1215. {
  1216. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1217. }
  1218. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1219. unsigned long addr)
  1220. {
  1221. return (vma->vm_flags & VM_GROWSUP) &&
  1222. (vma->vm_end == addr) &&
  1223. !vma_growsup(vma->vm_next, addr);
  1224. }
  1225. int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
  1226. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1227. unsigned long old_addr, struct vm_area_struct *new_vma,
  1228. unsigned long new_addr, unsigned long len,
  1229. bool need_rmap_locks);
  1230. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1231. unsigned long end, pgprot_t newprot,
  1232. int dirty_accountable, int prot_numa);
  1233. extern int mprotect_fixup(struct vm_area_struct *vma,
  1234. struct vm_area_struct **pprev, unsigned long start,
  1235. unsigned long end, unsigned long newflags);
  1236. /*
  1237. * doesn't attempt to fault and will return short.
  1238. */
  1239. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1240. struct page **pages);
  1241. /*
  1242. * per-process(per-mm_struct) statistics.
  1243. */
  1244. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1245. {
  1246. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1247. #ifdef SPLIT_RSS_COUNTING
  1248. /*
  1249. * counter is updated in asynchronous manner and may go to minus.
  1250. * But it's never be expected number for users.
  1251. */
  1252. if (val < 0)
  1253. val = 0;
  1254. #endif
  1255. return (unsigned long)val;
  1256. }
  1257. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1258. {
  1259. atomic_long_add(value, &mm->rss_stat.count[member]);
  1260. }
  1261. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1262. {
  1263. atomic_long_inc(&mm->rss_stat.count[member]);
  1264. }
  1265. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1266. {
  1267. atomic_long_dec(&mm->rss_stat.count[member]);
  1268. }
  1269. /* Optimized variant when page is already known not to be PageAnon */
  1270. static inline int mm_counter_file(struct page *page)
  1271. {
  1272. if (PageSwapBacked(page))
  1273. return MM_SHMEMPAGES;
  1274. return MM_FILEPAGES;
  1275. }
  1276. static inline int mm_counter(struct page *page)
  1277. {
  1278. if (PageAnon(page))
  1279. return MM_ANONPAGES;
  1280. return mm_counter_file(page);
  1281. }
  1282. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1283. {
  1284. return get_mm_counter(mm, MM_FILEPAGES) +
  1285. get_mm_counter(mm, MM_ANONPAGES) +
  1286. get_mm_counter(mm, MM_SHMEMPAGES);
  1287. }
  1288. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1289. {
  1290. return max(mm->hiwater_rss, get_mm_rss(mm));
  1291. }
  1292. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1293. {
  1294. return max(mm->hiwater_vm, mm->total_vm);
  1295. }
  1296. static inline void update_hiwater_rss(struct mm_struct *mm)
  1297. {
  1298. unsigned long _rss = get_mm_rss(mm);
  1299. if ((mm)->hiwater_rss < _rss)
  1300. (mm)->hiwater_rss = _rss;
  1301. }
  1302. static inline void update_hiwater_vm(struct mm_struct *mm)
  1303. {
  1304. if (mm->hiwater_vm < mm->total_vm)
  1305. mm->hiwater_vm = mm->total_vm;
  1306. }
  1307. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1308. {
  1309. mm->hiwater_rss = get_mm_rss(mm);
  1310. }
  1311. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1312. struct mm_struct *mm)
  1313. {
  1314. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1315. if (*maxrss < hiwater_rss)
  1316. *maxrss = hiwater_rss;
  1317. }
  1318. #if defined(SPLIT_RSS_COUNTING)
  1319. void sync_mm_rss(struct mm_struct *mm);
  1320. #else
  1321. static inline void sync_mm_rss(struct mm_struct *mm)
  1322. {
  1323. }
  1324. #endif
  1325. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1326. static inline int pte_devmap(pte_t pte)
  1327. {
  1328. return 0;
  1329. }
  1330. #endif
  1331. int vma_wants_writenotify(struct vm_area_struct *vma);
  1332. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1333. spinlock_t **ptl);
  1334. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1335. spinlock_t **ptl)
  1336. {
  1337. pte_t *ptep;
  1338. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1339. return ptep;
  1340. }
  1341. #ifdef __PAGETABLE_PUD_FOLDED
  1342. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1343. unsigned long address)
  1344. {
  1345. return 0;
  1346. }
  1347. #else
  1348. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1349. #endif
  1350. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1351. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1352. unsigned long address)
  1353. {
  1354. return 0;
  1355. }
  1356. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1357. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1358. {
  1359. return 0;
  1360. }
  1361. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1362. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1363. #else
  1364. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1365. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1366. {
  1367. atomic_long_set(&mm->nr_pmds, 0);
  1368. }
  1369. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1370. {
  1371. return atomic_long_read(&mm->nr_pmds);
  1372. }
  1373. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1374. {
  1375. atomic_long_inc(&mm->nr_pmds);
  1376. }
  1377. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1378. {
  1379. atomic_long_dec(&mm->nr_pmds);
  1380. }
  1381. #endif
  1382. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1383. pmd_t *pmd, unsigned long address);
  1384. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1385. /*
  1386. * The following ifdef needed to get the 4level-fixup.h header to work.
  1387. * Remove it when 4level-fixup.h has been removed.
  1388. */
  1389. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1390. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1391. {
  1392. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1393. NULL: pud_offset(pgd, address);
  1394. }
  1395. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1396. {
  1397. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1398. NULL: pmd_offset(pud, address);
  1399. }
  1400. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1401. #if USE_SPLIT_PTE_PTLOCKS
  1402. #if ALLOC_SPLIT_PTLOCKS
  1403. void __init ptlock_cache_init(void);
  1404. extern bool ptlock_alloc(struct page *page);
  1405. extern void ptlock_free(struct page *page);
  1406. static inline spinlock_t *ptlock_ptr(struct page *page)
  1407. {
  1408. return page->ptl;
  1409. }
  1410. #else /* ALLOC_SPLIT_PTLOCKS */
  1411. static inline void ptlock_cache_init(void)
  1412. {
  1413. }
  1414. static inline bool ptlock_alloc(struct page *page)
  1415. {
  1416. return true;
  1417. }
  1418. static inline void ptlock_free(struct page *page)
  1419. {
  1420. }
  1421. static inline spinlock_t *ptlock_ptr(struct page *page)
  1422. {
  1423. return &page->ptl;
  1424. }
  1425. #endif /* ALLOC_SPLIT_PTLOCKS */
  1426. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1427. {
  1428. return ptlock_ptr(pmd_page(*pmd));
  1429. }
  1430. static inline bool ptlock_init(struct page *page)
  1431. {
  1432. /*
  1433. * prep_new_page() initialize page->private (and therefore page->ptl)
  1434. * with 0. Make sure nobody took it in use in between.
  1435. *
  1436. * It can happen if arch try to use slab for page table allocation:
  1437. * slab code uses page->slab_cache, which share storage with page->ptl.
  1438. */
  1439. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1440. if (!ptlock_alloc(page))
  1441. return false;
  1442. spin_lock_init(ptlock_ptr(page));
  1443. return true;
  1444. }
  1445. /* Reset page->mapping so free_pages_check won't complain. */
  1446. static inline void pte_lock_deinit(struct page *page)
  1447. {
  1448. page->mapping = NULL;
  1449. ptlock_free(page);
  1450. }
  1451. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1452. /*
  1453. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1454. */
  1455. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1456. {
  1457. return &mm->page_table_lock;
  1458. }
  1459. static inline void ptlock_cache_init(void) {}
  1460. static inline bool ptlock_init(struct page *page) { return true; }
  1461. static inline void pte_lock_deinit(struct page *page) {}
  1462. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1463. static inline void pgtable_init(void)
  1464. {
  1465. ptlock_cache_init();
  1466. pgtable_cache_init();
  1467. }
  1468. static inline bool pgtable_page_ctor(struct page *page)
  1469. {
  1470. if (!ptlock_init(page))
  1471. return false;
  1472. inc_zone_page_state(page, NR_PAGETABLE);
  1473. return true;
  1474. }
  1475. static inline void pgtable_page_dtor(struct page *page)
  1476. {
  1477. pte_lock_deinit(page);
  1478. dec_zone_page_state(page, NR_PAGETABLE);
  1479. }
  1480. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1481. ({ \
  1482. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1483. pte_t *__pte = pte_offset_map(pmd, address); \
  1484. *(ptlp) = __ptl; \
  1485. spin_lock(__ptl); \
  1486. __pte; \
  1487. })
  1488. #define pte_unmap_unlock(pte, ptl) do { \
  1489. spin_unlock(ptl); \
  1490. pte_unmap(pte); \
  1491. } while (0)
  1492. #define pte_alloc_map(mm, vma, pmd, address) \
  1493. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1494. pmd, address))? \
  1495. NULL: pte_offset_map(pmd, address))
  1496. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1497. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1498. pmd, address))? \
  1499. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1500. #define pte_alloc_kernel(pmd, address) \
  1501. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1502. NULL: pte_offset_kernel(pmd, address))
  1503. #if USE_SPLIT_PMD_PTLOCKS
  1504. static struct page *pmd_to_page(pmd_t *pmd)
  1505. {
  1506. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1507. return virt_to_page((void *)((unsigned long) pmd & mask));
  1508. }
  1509. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1510. {
  1511. return ptlock_ptr(pmd_to_page(pmd));
  1512. }
  1513. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1514. {
  1515. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1516. page->pmd_huge_pte = NULL;
  1517. #endif
  1518. return ptlock_init(page);
  1519. }
  1520. static inline void pgtable_pmd_page_dtor(struct page *page)
  1521. {
  1522. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1523. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1524. #endif
  1525. ptlock_free(page);
  1526. }
  1527. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1528. #else
  1529. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1530. {
  1531. return &mm->page_table_lock;
  1532. }
  1533. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1534. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1535. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1536. #endif
  1537. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1538. {
  1539. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1540. spin_lock(ptl);
  1541. return ptl;
  1542. }
  1543. extern void free_area_init(unsigned long * zones_size);
  1544. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1545. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1546. extern void free_initmem(void);
  1547. /*
  1548. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1549. * into the buddy system. The freed pages will be poisoned with pattern
  1550. * "poison" if it's within range [0, UCHAR_MAX].
  1551. * Return pages freed into the buddy system.
  1552. */
  1553. extern unsigned long free_reserved_area(void *start, void *end,
  1554. int poison, char *s);
  1555. #ifdef CONFIG_HIGHMEM
  1556. /*
  1557. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1558. * and totalram_pages.
  1559. */
  1560. extern void free_highmem_page(struct page *page);
  1561. #endif
  1562. extern void adjust_managed_page_count(struct page *page, long count);
  1563. extern void mem_init_print_info(const char *str);
  1564. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1565. /* Free the reserved page into the buddy system, so it gets managed. */
  1566. static inline void __free_reserved_page(struct page *page)
  1567. {
  1568. ClearPageReserved(page);
  1569. init_page_count(page);
  1570. __free_page(page);
  1571. }
  1572. static inline void free_reserved_page(struct page *page)
  1573. {
  1574. __free_reserved_page(page);
  1575. adjust_managed_page_count(page, 1);
  1576. }
  1577. static inline void mark_page_reserved(struct page *page)
  1578. {
  1579. SetPageReserved(page);
  1580. adjust_managed_page_count(page, -1);
  1581. }
  1582. /*
  1583. * Default method to free all the __init memory into the buddy system.
  1584. * The freed pages will be poisoned with pattern "poison" if it's within
  1585. * range [0, UCHAR_MAX].
  1586. * Return pages freed into the buddy system.
  1587. */
  1588. static inline unsigned long free_initmem_default(int poison)
  1589. {
  1590. extern char __init_begin[], __init_end[];
  1591. return free_reserved_area(&__init_begin, &__init_end,
  1592. poison, "unused kernel");
  1593. }
  1594. static inline unsigned long get_num_physpages(void)
  1595. {
  1596. int nid;
  1597. unsigned long phys_pages = 0;
  1598. for_each_online_node(nid)
  1599. phys_pages += node_present_pages(nid);
  1600. return phys_pages;
  1601. }
  1602. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1603. /*
  1604. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1605. * zones, allocate the backing mem_map and account for memory holes in a more
  1606. * architecture independent manner. This is a substitute for creating the
  1607. * zone_sizes[] and zholes_size[] arrays and passing them to
  1608. * free_area_init_node()
  1609. *
  1610. * An architecture is expected to register range of page frames backed by
  1611. * physical memory with memblock_add[_node]() before calling
  1612. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1613. * usage, an architecture is expected to do something like
  1614. *
  1615. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1616. * max_highmem_pfn};
  1617. * for_each_valid_physical_page_range()
  1618. * memblock_add_node(base, size, nid)
  1619. * free_area_init_nodes(max_zone_pfns);
  1620. *
  1621. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1622. * registered physical page range. Similarly
  1623. * sparse_memory_present_with_active_regions() calls memory_present() for
  1624. * each range when SPARSEMEM is enabled.
  1625. *
  1626. * See mm/page_alloc.c for more information on each function exposed by
  1627. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1628. */
  1629. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1630. unsigned long node_map_pfn_alignment(void);
  1631. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1632. unsigned long end_pfn);
  1633. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1634. unsigned long end_pfn);
  1635. extern void get_pfn_range_for_nid(unsigned int nid,
  1636. unsigned long *start_pfn, unsigned long *end_pfn);
  1637. extern unsigned long find_min_pfn_with_active_regions(void);
  1638. extern void free_bootmem_with_active_regions(int nid,
  1639. unsigned long max_low_pfn);
  1640. extern void sparse_memory_present_with_active_regions(int nid);
  1641. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1642. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1643. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1644. static inline int __early_pfn_to_nid(unsigned long pfn,
  1645. struct mminit_pfnnid_cache *state)
  1646. {
  1647. return 0;
  1648. }
  1649. #else
  1650. /* please see mm/page_alloc.c */
  1651. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1652. /* there is a per-arch backend function. */
  1653. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1654. struct mminit_pfnnid_cache *state);
  1655. #endif
  1656. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1657. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1658. unsigned long, enum memmap_context);
  1659. extern void setup_per_zone_wmarks(void);
  1660. extern int __meminit init_per_zone_wmark_min(void);
  1661. extern void mem_init(void);
  1662. extern void __init mmap_init(void);
  1663. extern void show_mem(unsigned int flags);
  1664. extern void si_meminfo(struct sysinfo * val);
  1665. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1666. extern __printf(3, 4)
  1667. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
  1668. const char *fmt, ...);
  1669. extern void setup_per_cpu_pageset(void);
  1670. extern void zone_pcp_update(struct zone *zone);
  1671. extern void zone_pcp_reset(struct zone *zone);
  1672. /* page_alloc.c */
  1673. extern int min_free_kbytes;
  1674. /* nommu.c */
  1675. extern atomic_long_t mmap_pages_allocated;
  1676. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1677. /* interval_tree.c */
  1678. void vma_interval_tree_insert(struct vm_area_struct *node,
  1679. struct rb_root *root);
  1680. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1681. struct vm_area_struct *prev,
  1682. struct rb_root *root);
  1683. void vma_interval_tree_remove(struct vm_area_struct *node,
  1684. struct rb_root *root);
  1685. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1686. unsigned long start, unsigned long last);
  1687. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1688. unsigned long start, unsigned long last);
  1689. #define vma_interval_tree_foreach(vma, root, start, last) \
  1690. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1691. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1692. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1693. struct rb_root *root);
  1694. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1695. struct rb_root *root);
  1696. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1697. struct rb_root *root, unsigned long start, unsigned long last);
  1698. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1699. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1700. #ifdef CONFIG_DEBUG_VM_RB
  1701. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1702. #endif
  1703. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1704. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1705. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1706. /* mmap.c */
  1707. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1708. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1709. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1710. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1711. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1712. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1713. struct mempolicy *, struct vm_userfaultfd_ctx);
  1714. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1715. extern int split_vma(struct mm_struct *,
  1716. struct vm_area_struct *, unsigned long addr, int new_below);
  1717. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1718. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1719. struct rb_node **, struct rb_node *);
  1720. extern void unlink_file_vma(struct vm_area_struct *);
  1721. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1722. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1723. bool *need_rmap_locks);
  1724. extern void exit_mmap(struct mm_struct *);
  1725. static inline int check_data_rlimit(unsigned long rlim,
  1726. unsigned long new,
  1727. unsigned long start,
  1728. unsigned long end_data,
  1729. unsigned long start_data)
  1730. {
  1731. if (rlim < RLIM_INFINITY) {
  1732. if (((new - start) + (end_data - start_data)) > rlim)
  1733. return -ENOSPC;
  1734. }
  1735. return 0;
  1736. }
  1737. extern int mm_take_all_locks(struct mm_struct *mm);
  1738. extern void mm_drop_all_locks(struct mm_struct *mm);
  1739. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1740. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1741. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1742. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1743. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1744. unsigned long addr, unsigned long len,
  1745. unsigned long flags,
  1746. const struct vm_special_mapping *spec);
  1747. /* This is an obsolete alternative to _install_special_mapping. */
  1748. extern int install_special_mapping(struct mm_struct *mm,
  1749. unsigned long addr, unsigned long len,
  1750. unsigned long flags, struct page **pages);
  1751. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1752. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1753. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1754. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1755. unsigned long len, unsigned long prot, unsigned long flags,
  1756. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1757. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1758. static inline unsigned long
  1759. do_mmap_pgoff(struct file *file, unsigned long addr,
  1760. unsigned long len, unsigned long prot, unsigned long flags,
  1761. unsigned long pgoff, unsigned long *populate)
  1762. {
  1763. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1764. }
  1765. #ifdef CONFIG_MMU
  1766. extern int __mm_populate(unsigned long addr, unsigned long len,
  1767. int ignore_errors);
  1768. static inline void mm_populate(unsigned long addr, unsigned long len)
  1769. {
  1770. /* Ignore errors */
  1771. (void) __mm_populate(addr, len, 1);
  1772. }
  1773. #else
  1774. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1775. #endif
  1776. /* These take the mm semaphore themselves */
  1777. extern unsigned long vm_brk(unsigned long, unsigned long);
  1778. extern int vm_munmap(unsigned long, size_t);
  1779. extern unsigned long vm_mmap(struct file *, unsigned long,
  1780. unsigned long, unsigned long,
  1781. unsigned long, unsigned long);
  1782. struct vm_unmapped_area_info {
  1783. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1784. unsigned long flags;
  1785. unsigned long length;
  1786. unsigned long low_limit;
  1787. unsigned long high_limit;
  1788. unsigned long align_mask;
  1789. unsigned long align_offset;
  1790. };
  1791. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1792. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1793. /*
  1794. * Search for an unmapped address range.
  1795. *
  1796. * We are looking for a range that:
  1797. * - does not intersect with any VMA;
  1798. * - is contained within the [low_limit, high_limit) interval;
  1799. * - is at least the desired size.
  1800. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1801. */
  1802. static inline unsigned long
  1803. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1804. {
  1805. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1806. return unmapped_area_topdown(info);
  1807. else
  1808. return unmapped_area(info);
  1809. }
  1810. /* truncate.c */
  1811. extern void truncate_inode_pages(struct address_space *, loff_t);
  1812. extern void truncate_inode_pages_range(struct address_space *,
  1813. loff_t lstart, loff_t lend);
  1814. extern void truncate_inode_pages_final(struct address_space *);
  1815. /* generic vm_area_ops exported for stackable file systems */
  1816. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1817. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1818. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1819. /* mm/page-writeback.c */
  1820. int write_one_page(struct page *page, int wait);
  1821. void task_dirty_inc(struct task_struct *tsk);
  1822. /* readahead.c */
  1823. #define VM_MAX_READAHEAD 128 /* kbytes */
  1824. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1825. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1826. pgoff_t offset, unsigned long nr_to_read);
  1827. void page_cache_sync_readahead(struct address_space *mapping,
  1828. struct file_ra_state *ra,
  1829. struct file *filp,
  1830. pgoff_t offset,
  1831. unsigned long size);
  1832. void page_cache_async_readahead(struct address_space *mapping,
  1833. struct file_ra_state *ra,
  1834. struct file *filp,
  1835. struct page *pg,
  1836. pgoff_t offset,
  1837. unsigned long size);
  1838. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1839. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1840. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1841. extern int expand_downwards(struct vm_area_struct *vma,
  1842. unsigned long address);
  1843. #if VM_GROWSUP
  1844. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1845. #else
  1846. #define expand_upwards(vma, address) (0)
  1847. #endif
  1848. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1849. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1850. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1851. struct vm_area_struct **pprev);
  1852. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1853. NULL if none. Assume start_addr < end_addr. */
  1854. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1855. {
  1856. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1857. if (vma && end_addr <= vma->vm_start)
  1858. vma = NULL;
  1859. return vma;
  1860. }
  1861. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1862. {
  1863. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1864. }
  1865. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1866. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1867. unsigned long vm_start, unsigned long vm_end)
  1868. {
  1869. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1870. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1871. vma = NULL;
  1872. return vma;
  1873. }
  1874. #ifdef CONFIG_MMU
  1875. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1876. void vma_set_page_prot(struct vm_area_struct *vma);
  1877. #else
  1878. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1879. {
  1880. return __pgprot(0);
  1881. }
  1882. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1883. {
  1884. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1885. }
  1886. #endif
  1887. #ifdef CONFIG_NUMA_BALANCING
  1888. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1889. unsigned long start, unsigned long end);
  1890. #endif
  1891. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1892. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1893. unsigned long pfn, unsigned long size, pgprot_t);
  1894. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1895. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1896. unsigned long pfn);
  1897. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1898. unsigned long pfn, pgprot_t pgprot);
  1899. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1900. pfn_t pfn);
  1901. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1902. struct page *follow_page_mask(struct vm_area_struct *vma,
  1903. unsigned long address, unsigned int foll_flags,
  1904. unsigned int *page_mask);
  1905. static inline struct page *follow_page(struct vm_area_struct *vma,
  1906. unsigned long address, unsigned int foll_flags)
  1907. {
  1908. unsigned int unused_page_mask;
  1909. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1910. }
  1911. #define FOLL_WRITE 0x01 /* check pte is writable */
  1912. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1913. #define FOLL_GET 0x04 /* do get_page on page */
  1914. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1915. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1916. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1917. * and return without waiting upon it */
  1918. #define FOLL_POPULATE 0x40 /* fault in page */
  1919. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1920. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1921. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1922. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1923. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1924. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1925. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1926. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1927. void *data);
  1928. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1929. unsigned long size, pte_fn_t fn, void *data);
  1930. #ifdef CONFIG_DEBUG_PAGEALLOC
  1931. extern bool _debug_pagealloc_enabled;
  1932. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1933. static inline bool debug_pagealloc_enabled(void)
  1934. {
  1935. return _debug_pagealloc_enabled;
  1936. }
  1937. static inline void
  1938. kernel_map_pages(struct page *page, int numpages, int enable)
  1939. {
  1940. if (!debug_pagealloc_enabled())
  1941. return;
  1942. __kernel_map_pages(page, numpages, enable);
  1943. }
  1944. #ifdef CONFIG_HIBERNATION
  1945. extern bool kernel_page_present(struct page *page);
  1946. #endif /* CONFIG_HIBERNATION */
  1947. #else
  1948. static inline void
  1949. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1950. #ifdef CONFIG_HIBERNATION
  1951. static inline bool kernel_page_present(struct page *page) { return true; }
  1952. #endif /* CONFIG_HIBERNATION */
  1953. #endif
  1954. #ifdef __HAVE_ARCH_GATE_AREA
  1955. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1956. extern int in_gate_area_no_mm(unsigned long addr);
  1957. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1958. #else
  1959. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1960. {
  1961. return NULL;
  1962. }
  1963. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1964. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1965. {
  1966. return 0;
  1967. }
  1968. #endif /* __HAVE_ARCH_GATE_AREA */
  1969. #ifdef CONFIG_SYSCTL
  1970. extern int sysctl_drop_caches;
  1971. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1972. void __user *, size_t *, loff_t *);
  1973. #endif
  1974. void drop_slab(void);
  1975. void drop_slab_node(int nid);
  1976. #ifndef CONFIG_MMU
  1977. #define randomize_va_space 0
  1978. #else
  1979. extern int randomize_va_space;
  1980. #endif
  1981. const char * arch_vma_name(struct vm_area_struct *vma);
  1982. void print_vma_addr(char *prefix, unsigned long rip);
  1983. void sparse_mem_maps_populate_node(struct page **map_map,
  1984. unsigned long pnum_begin,
  1985. unsigned long pnum_end,
  1986. unsigned long map_count,
  1987. int nodeid);
  1988. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1989. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1990. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1991. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1992. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1993. void *vmemmap_alloc_block(unsigned long size, int node);
  1994. struct vmem_altmap;
  1995. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1996. struct vmem_altmap *altmap);
  1997. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1998. {
  1999. return __vmemmap_alloc_block_buf(size, node, NULL);
  2000. }
  2001. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2002. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2003. int node);
  2004. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2005. void vmemmap_populate_print_last(void);
  2006. #ifdef CONFIG_MEMORY_HOTPLUG
  2007. void vmemmap_free(unsigned long start, unsigned long end);
  2008. #endif
  2009. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2010. unsigned long size);
  2011. enum mf_flags {
  2012. MF_COUNT_INCREASED = 1 << 0,
  2013. MF_ACTION_REQUIRED = 1 << 1,
  2014. MF_MUST_KILL = 1 << 2,
  2015. MF_SOFT_OFFLINE = 1 << 3,
  2016. };
  2017. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2018. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2019. extern int unpoison_memory(unsigned long pfn);
  2020. extern int get_hwpoison_page(struct page *page);
  2021. #define put_hwpoison_page(page) put_page(page)
  2022. extern int sysctl_memory_failure_early_kill;
  2023. extern int sysctl_memory_failure_recovery;
  2024. extern void shake_page(struct page *p, int access);
  2025. extern atomic_long_t num_poisoned_pages;
  2026. extern int soft_offline_page(struct page *page, int flags);
  2027. /*
  2028. * Error handlers for various types of pages.
  2029. */
  2030. enum mf_result {
  2031. MF_IGNORED, /* Error: cannot be handled */
  2032. MF_FAILED, /* Error: handling failed */
  2033. MF_DELAYED, /* Will be handled later */
  2034. MF_RECOVERED, /* Successfully recovered */
  2035. };
  2036. enum mf_action_page_type {
  2037. MF_MSG_KERNEL,
  2038. MF_MSG_KERNEL_HIGH_ORDER,
  2039. MF_MSG_SLAB,
  2040. MF_MSG_DIFFERENT_COMPOUND,
  2041. MF_MSG_POISONED_HUGE,
  2042. MF_MSG_HUGE,
  2043. MF_MSG_FREE_HUGE,
  2044. MF_MSG_UNMAP_FAILED,
  2045. MF_MSG_DIRTY_SWAPCACHE,
  2046. MF_MSG_CLEAN_SWAPCACHE,
  2047. MF_MSG_DIRTY_MLOCKED_LRU,
  2048. MF_MSG_CLEAN_MLOCKED_LRU,
  2049. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2050. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2051. MF_MSG_DIRTY_LRU,
  2052. MF_MSG_CLEAN_LRU,
  2053. MF_MSG_TRUNCATED_LRU,
  2054. MF_MSG_BUDDY,
  2055. MF_MSG_BUDDY_2ND,
  2056. MF_MSG_UNKNOWN,
  2057. };
  2058. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2059. extern void clear_huge_page(struct page *page,
  2060. unsigned long addr,
  2061. unsigned int pages_per_huge_page);
  2062. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2063. unsigned long addr, struct vm_area_struct *vma,
  2064. unsigned int pages_per_huge_page);
  2065. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2066. extern struct page_ext_operations debug_guardpage_ops;
  2067. extern struct page_ext_operations page_poisoning_ops;
  2068. #ifdef CONFIG_DEBUG_PAGEALLOC
  2069. extern unsigned int _debug_guardpage_minorder;
  2070. extern bool _debug_guardpage_enabled;
  2071. static inline unsigned int debug_guardpage_minorder(void)
  2072. {
  2073. return _debug_guardpage_minorder;
  2074. }
  2075. static inline bool debug_guardpage_enabled(void)
  2076. {
  2077. return _debug_guardpage_enabled;
  2078. }
  2079. static inline bool page_is_guard(struct page *page)
  2080. {
  2081. struct page_ext *page_ext;
  2082. if (!debug_guardpage_enabled())
  2083. return false;
  2084. page_ext = lookup_page_ext(page);
  2085. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2086. }
  2087. #else
  2088. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2089. static inline bool debug_guardpage_enabled(void) { return false; }
  2090. static inline bool page_is_guard(struct page *page) { return false; }
  2091. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2092. #if MAX_NUMNODES > 1
  2093. void __init setup_nr_node_ids(void);
  2094. #else
  2095. static inline void setup_nr_node_ids(void) {}
  2096. #endif
  2097. #endif /* __KERNEL__ */
  2098. #endif /* _LINUX_MM_H */