s2io.c 232 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.5"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. ("alarm_transceiver_temp_high"),
  262. ("alarm_transceiver_temp_low"),
  263. ("alarm_laser_bias_current_high"),
  264. ("alarm_laser_bias_current_low"),
  265. ("alarm_laser_output_power_high"),
  266. ("alarm_laser_output_power_low"),
  267. ("warn_transceiver_temp_high"),
  268. ("warn_transceiver_temp_low"),
  269. ("warn_laser_bias_current_high"),
  270. ("warn_laser_bias_current_low"),
  271. ("warn_laser_output_power_high"),
  272. ("warn_laser_output_power_low"),
  273. ("lro_aggregated_pkts"),
  274. ("lro_flush_both_count"),
  275. ("lro_out_of_sequence_pkts"),
  276. ("lro_flush_due_to_max_pkts"),
  277. ("lro_avg_aggr_pkts"),
  278. ("mem_alloc_fail_cnt"),
  279. ("pci_map_fail_cnt"),
  280. ("watchdog_timer_cnt"),
  281. ("mem_allocated"),
  282. ("mem_freed"),
  283. ("link_up_cnt"),
  284. ("link_down_cnt"),
  285. ("link_up_time"),
  286. ("link_down_time"),
  287. ("tx_tcode_buf_abort_cnt"),
  288. ("tx_tcode_desc_abort_cnt"),
  289. ("tx_tcode_parity_err_cnt"),
  290. ("tx_tcode_link_loss_cnt"),
  291. ("tx_tcode_list_proc_err_cnt"),
  292. ("rx_tcode_parity_err_cnt"),
  293. ("rx_tcode_abort_cnt"),
  294. ("rx_tcode_parity_abort_cnt"),
  295. ("rx_tcode_rda_fail_cnt"),
  296. ("rx_tcode_unkn_prot_cnt"),
  297. ("rx_tcode_fcs_err_cnt"),
  298. ("rx_tcode_buf_size_err_cnt"),
  299. ("rx_tcode_rxd_corrupt_cnt"),
  300. ("rx_tcode_unkn_err_cnt"),
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* copy mac addr to def_mac_addr array */
  335. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  336. {
  337. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  338. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  339. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  340. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  341. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  342. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  343. }
  344. /* Add the vlan */
  345. static void s2io_vlan_rx_register(struct net_device *dev,
  346. struct vlan_group *grp)
  347. {
  348. struct s2io_nic *nic = dev->priv;
  349. unsigned long flags;
  350. spin_lock_irqsave(&nic->tx_lock, flags);
  351. nic->vlgrp = grp;
  352. spin_unlock_irqrestore(&nic->tx_lock, flags);
  353. }
  354. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  355. static int vlan_strip_flag;
  356. /*
  357. * Constants to be programmed into the Xena's registers, to configure
  358. * the XAUI.
  359. */
  360. #define END_SIGN 0x0
  361. static const u64 herc_act_dtx_cfg[] = {
  362. /* Set address */
  363. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  364. /* Write data */
  365. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  366. /* Set address */
  367. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  368. /* Write data */
  369. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  370. /* Set address */
  371. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  372. /* Write data */
  373. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  374. /* Set address */
  375. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  376. /* Write data */
  377. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  378. /* Done */
  379. END_SIGN
  380. };
  381. static const u64 xena_dtx_cfg[] = {
  382. /* Set address */
  383. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  384. /* Write data */
  385. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  386. /* Set address */
  387. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  388. /* Write data */
  389. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  390. /* Set address */
  391. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  392. /* Write data */
  393. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  394. END_SIGN
  395. };
  396. /*
  397. * Constants for Fixing the MacAddress problem seen mostly on
  398. * Alpha machines.
  399. */
  400. static const u64 fix_mac[] = {
  401. 0x0060000000000000ULL, 0x0060600000000000ULL,
  402. 0x0040600000000000ULL, 0x0000600000000000ULL,
  403. 0x0020600000000000ULL, 0x0060600000000000ULL,
  404. 0x0020600000000000ULL, 0x0060600000000000ULL,
  405. 0x0020600000000000ULL, 0x0060600000000000ULL,
  406. 0x0020600000000000ULL, 0x0060600000000000ULL,
  407. 0x0020600000000000ULL, 0x0060600000000000ULL,
  408. 0x0020600000000000ULL, 0x0060600000000000ULL,
  409. 0x0020600000000000ULL, 0x0060600000000000ULL,
  410. 0x0020600000000000ULL, 0x0060600000000000ULL,
  411. 0x0020600000000000ULL, 0x0060600000000000ULL,
  412. 0x0020600000000000ULL, 0x0060600000000000ULL,
  413. 0x0020600000000000ULL, 0x0000600000000000ULL,
  414. 0x0040600000000000ULL, 0x0060600000000000ULL,
  415. END_SIGN
  416. };
  417. MODULE_LICENSE("GPL");
  418. MODULE_VERSION(DRV_VERSION);
  419. /* Module Loadable parameters. */
  420. S2IO_PARM_INT(tx_fifo_num, 1);
  421. S2IO_PARM_INT(rx_ring_num, 1);
  422. S2IO_PARM_INT(rx_ring_mode, 1);
  423. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  424. S2IO_PARM_INT(rmac_pause_time, 0x100);
  425. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  426. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  427. S2IO_PARM_INT(shared_splits, 0);
  428. S2IO_PARM_INT(tmac_util_period, 5);
  429. S2IO_PARM_INT(rmac_util_period, 5);
  430. S2IO_PARM_INT(l3l4hdr_size, 128);
  431. /* Frequency of Rx desc syncs expressed as power of 2 */
  432. S2IO_PARM_INT(rxsync_frequency, 3);
  433. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  434. S2IO_PARM_INT(intr_type, 2);
  435. /* Large receive offload feature */
  436. S2IO_PARM_INT(lro, 0);
  437. /* Max pkts to be aggregated by LRO at one time. If not specified,
  438. * aggregation happens until we hit max IP pkt size(64K)
  439. */
  440. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  441. S2IO_PARM_INT(indicate_max_pkts, 0);
  442. S2IO_PARM_INT(napi, 1);
  443. S2IO_PARM_INT(ufo, 0);
  444. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  445. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  446. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  447. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  448. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  449. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  450. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  451. module_param_array(tx_fifo_len, uint, NULL, 0);
  452. module_param_array(rx_ring_sz, uint, NULL, 0);
  453. module_param_array(rts_frm_len, uint, NULL, 0);
  454. /*
  455. * S2IO device table.
  456. * This table lists all the devices that this driver supports.
  457. */
  458. static struct pci_device_id s2io_tbl[] __devinitdata = {
  459. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  460. PCI_ANY_ID, PCI_ANY_ID},
  461. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  462. PCI_ANY_ID, PCI_ANY_ID},
  463. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  464. PCI_ANY_ID, PCI_ANY_ID},
  465. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  466. PCI_ANY_ID, PCI_ANY_ID},
  467. {0,}
  468. };
  469. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  470. static struct pci_error_handlers s2io_err_handler = {
  471. .error_detected = s2io_io_error_detected,
  472. .slot_reset = s2io_io_slot_reset,
  473. .resume = s2io_io_resume,
  474. };
  475. static struct pci_driver s2io_driver = {
  476. .name = "S2IO",
  477. .id_table = s2io_tbl,
  478. .probe = s2io_init_nic,
  479. .remove = __devexit_p(s2io_rem_nic),
  480. .err_handler = &s2io_err_handler,
  481. };
  482. /* A simplifier macro used both by init and free shared_mem Fns(). */
  483. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  484. /**
  485. * init_shared_mem - Allocation and Initialization of Memory
  486. * @nic: Device private variable.
  487. * Description: The function allocates all the memory areas shared
  488. * between the NIC and the driver. This includes Tx descriptors,
  489. * Rx descriptors and the statistics block.
  490. */
  491. static int init_shared_mem(struct s2io_nic *nic)
  492. {
  493. u32 size;
  494. void *tmp_v_addr, *tmp_v_addr_next;
  495. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  496. struct RxD_block *pre_rxd_blk = NULL;
  497. int i, j, blk_cnt;
  498. int lst_size, lst_per_page;
  499. struct net_device *dev = nic->dev;
  500. unsigned long tmp;
  501. struct buffAdd *ba;
  502. struct mac_info *mac_control;
  503. struct config_param *config;
  504. unsigned long long mem_allocated = 0;
  505. mac_control = &nic->mac_control;
  506. config = &nic->config;
  507. /* Allocation and initialization of TXDLs in FIOFs */
  508. size = 0;
  509. for (i = 0; i < config->tx_fifo_num; i++) {
  510. size += config->tx_cfg[i].fifo_len;
  511. }
  512. if (size > MAX_AVAILABLE_TXDS) {
  513. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  514. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  515. return -EINVAL;
  516. }
  517. lst_size = (sizeof(struct TxD) * config->max_txds);
  518. lst_per_page = PAGE_SIZE / lst_size;
  519. for (i = 0; i < config->tx_fifo_num; i++) {
  520. int fifo_len = config->tx_cfg[i].fifo_len;
  521. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  522. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  523. GFP_KERNEL);
  524. if (!mac_control->fifos[i].list_info) {
  525. DBG_PRINT(INFO_DBG,
  526. "Malloc failed for list_info\n");
  527. return -ENOMEM;
  528. }
  529. mem_allocated += list_holder_size;
  530. }
  531. for (i = 0; i < config->tx_fifo_num; i++) {
  532. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  533. lst_per_page);
  534. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  535. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  536. config->tx_cfg[i].fifo_len - 1;
  537. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  538. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  539. config->tx_cfg[i].fifo_len - 1;
  540. mac_control->fifos[i].fifo_no = i;
  541. mac_control->fifos[i].nic = nic;
  542. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  543. for (j = 0; j < page_num; j++) {
  544. int k = 0;
  545. dma_addr_t tmp_p;
  546. void *tmp_v;
  547. tmp_v = pci_alloc_consistent(nic->pdev,
  548. PAGE_SIZE, &tmp_p);
  549. if (!tmp_v) {
  550. DBG_PRINT(INFO_DBG,
  551. "pci_alloc_consistent ");
  552. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  553. return -ENOMEM;
  554. }
  555. /* If we got a zero DMA address(can happen on
  556. * certain platforms like PPC), reallocate.
  557. * Store virtual address of page we don't want,
  558. * to be freed later.
  559. */
  560. if (!tmp_p) {
  561. mac_control->zerodma_virt_addr = tmp_v;
  562. DBG_PRINT(INIT_DBG,
  563. "%s: Zero DMA address for TxDL. ", dev->name);
  564. DBG_PRINT(INIT_DBG,
  565. "Virtual address %p\n", tmp_v);
  566. tmp_v = pci_alloc_consistent(nic->pdev,
  567. PAGE_SIZE, &tmp_p);
  568. if (!tmp_v) {
  569. DBG_PRINT(INFO_DBG,
  570. "pci_alloc_consistent ");
  571. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  572. return -ENOMEM;
  573. }
  574. mem_allocated += PAGE_SIZE;
  575. }
  576. while (k < lst_per_page) {
  577. int l = (j * lst_per_page) + k;
  578. if (l == config->tx_cfg[i].fifo_len)
  579. break;
  580. mac_control->fifos[i].list_info[l].list_virt_addr =
  581. tmp_v + (k * lst_size);
  582. mac_control->fifos[i].list_info[l].list_phy_addr =
  583. tmp_p + (k * lst_size);
  584. k++;
  585. }
  586. }
  587. }
  588. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  589. if (!nic->ufo_in_band_v)
  590. return -ENOMEM;
  591. mem_allocated += (size * sizeof(u64));
  592. /* Allocation and initialization of RXDs in Rings */
  593. size = 0;
  594. for (i = 0; i < config->rx_ring_num; i++) {
  595. if (config->rx_cfg[i].num_rxd %
  596. (rxd_count[nic->rxd_mode] + 1)) {
  597. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  598. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  599. i);
  600. DBG_PRINT(ERR_DBG, "RxDs per Block");
  601. return FAILURE;
  602. }
  603. size += config->rx_cfg[i].num_rxd;
  604. mac_control->rings[i].block_count =
  605. config->rx_cfg[i].num_rxd /
  606. (rxd_count[nic->rxd_mode] + 1 );
  607. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  608. mac_control->rings[i].block_count;
  609. }
  610. if (nic->rxd_mode == RXD_MODE_1)
  611. size = (size * (sizeof(struct RxD1)));
  612. else
  613. size = (size * (sizeof(struct RxD3)));
  614. for (i = 0; i < config->rx_ring_num; i++) {
  615. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  616. mac_control->rings[i].rx_curr_get_info.offset = 0;
  617. mac_control->rings[i].rx_curr_get_info.ring_len =
  618. config->rx_cfg[i].num_rxd - 1;
  619. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  620. mac_control->rings[i].rx_curr_put_info.offset = 0;
  621. mac_control->rings[i].rx_curr_put_info.ring_len =
  622. config->rx_cfg[i].num_rxd - 1;
  623. mac_control->rings[i].nic = nic;
  624. mac_control->rings[i].ring_no = i;
  625. blk_cnt = config->rx_cfg[i].num_rxd /
  626. (rxd_count[nic->rxd_mode] + 1);
  627. /* Allocating all the Rx blocks */
  628. for (j = 0; j < blk_cnt; j++) {
  629. struct rx_block_info *rx_blocks;
  630. int l;
  631. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  632. size = SIZE_OF_BLOCK; //size is always page size
  633. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  634. &tmp_p_addr);
  635. if (tmp_v_addr == NULL) {
  636. /*
  637. * In case of failure, free_shared_mem()
  638. * is called, which should free any
  639. * memory that was alloced till the
  640. * failure happened.
  641. */
  642. rx_blocks->block_virt_addr = tmp_v_addr;
  643. return -ENOMEM;
  644. }
  645. mem_allocated += size;
  646. memset(tmp_v_addr, 0, size);
  647. rx_blocks->block_virt_addr = tmp_v_addr;
  648. rx_blocks->block_dma_addr = tmp_p_addr;
  649. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  650. rxd_count[nic->rxd_mode],
  651. GFP_KERNEL);
  652. if (!rx_blocks->rxds)
  653. return -ENOMEM;
  654. mem_allocated +=
  655. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  656. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  657. rx_blocks->rxds[l].virt_addr =
  658. rx_blocks->block_virt_addr +
  659. (rxd_size[nic->rxd_mode] * l);
  660. rx_blocks->rxds[l].dma_addr =
  661. rx_blocks->block_dma_addr +
  662. (rxd_size[nic->rxd_mode] * l);
  663. }
  664. }
  665. /* Interlinking all Rx Blocks */
  666. for (j = 0; j < blk_cnt; j++) {
  667. tmp_v_addr =
  668. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  669. tmp_v_addr_next =
  670. mac_control->rings[i].rx_blocks[(j + 1) %
  671. blk_cnt].block_virt_addr;
  672. tmp_p_addr =
  673. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  674. tmp_p_addr_next =
  675. mac_control->rings[i].rx_blocks[(j + 1) %
  676. blk_cnt].block_dma_addr;
  677. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  678. pre_rxd_blk->reserved_2_pNext_RxD_block =
  679. (unsigned long) tmp_v_addr_next;
  680. pre_rxd_blk->pNext_RxD_Blk_physical =
  681. (u64) tmp_p_addr_next;
  682. }
  683. }
  684. if (nic->rxd_mode == RXD_MODE_3B) {
  685. /*
  686. * Allocation of Storages for buffer addresses in 2BUFF mode
  687. * and the buffers as well.
  688. */
  689. for (i = 0; i < config->rx_ring_num; i++) {
  690. blk_cnt = config->rx_cfg[i].num_rxd /
  691. (rxd_count[nic->rxd_mode]+ 1);
  692. mac_control->rings[i].ba =
  693. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  694. GFP_KERNEL);
  695. if (!mac_control->rings[i].ba)
  696. return -ENOMEM;
  697. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  698. for (j = 0; j < blk_cnt; j++) {
  699. int k = 0;
  700. mac_control->rings[i].ba[j] =
  701. kmalloc((sizeof(struct buffAdd) *
  702. (rxd_count[nic->rxd_mode] + 1)),
  703. GFP_KERNEL);
  704. if (!mac_control->rings[i].ba[j])
  705. return -ENOMEM;
  706. mem_allocated += (sizeof(struct buffAdd) * \
  707. (rxd_count[nic->rxd_mode] + 1));
  708. while (k != rxd_count[nic->rxd_mode]) {
  709. ba = &mac_control->rings[i].ba[j][k];
  710. ba->ba_0_org = (void *) kmalloc
  711. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  712. if (!ba->ba_0_org)
  713. return -ENOMEM;
  714. mem_allocated +=
  715. (BUF0_LEN + ALIGN_SIZE);
  716. tmp = (unsigned long)ba->ba_0_org;
  717. tmp += ALIGN_SIZE;
  718. tmp &= ~((unsigned long) ALIGN_SIZE);
  719. ba->ba_0 = (void *) tmp;
  720. ba->ba_1_org = (void *) kmalloc
  721. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  722. if (!ba->ba_1_org)
  723. return -ENOMEM;
  724. mem_allocated
  725. += (BUF1_LEN + ALIGN_SIZE);
  726. tmp = (unsigned long) ba->ba_1_org;
  727. tmp += ALIGN_SIZE;
  728. tmp &= ~((unsigned long) ALIGN_SIZE);
  729. ba->ba_1 = (void *) tmp;
  730. k++;
  731. }
  732. }
  733. }
  734. }
  735. /* Allocation and initialization of Statistics block */
  736. size = sizeof(struct stat_block);
  737. mac_control->stats_mem = pci_alloc_consistent
  738. (nic->pdev, size, &mac_control->stats_mem_phy);
  739. if (!mac_control->stats_mem) {
  740. /*
  741. * In case of failure, free_shared_mem() is called, which
  742. * should free any memory that was alloced till the
  743. * failure happened.
  744. */
  745. return -ENOMEM;
  746. }
  747. mem_allocated += size;
  748. mac_control->stats_mem_sz = size;
  749. tmp_v_addr = mac_control->stats_mem;
  750. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  751. memset(tmp_v_addr, 0, size);
  752. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  753. (unsigned long long) tmp_p_addr);
  754. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  755. return SUCCESS;
  756. }
  757. /**
  758. * free_shared_mem - Free the allocated Memory
  759. * @nic: Device private variable.
  760. * Description: This function is to free all memory locations allocated by
  761. * the init_shared_mem() function and return it to the kernel.
  762. */
  763. static void free_shared_mem(struct s2io_nic *nic)
  764. {
  765. int i, j, blk_cnt, size;
  766. u32 ufo_size = 0;
  767. void *tmp_v_addr;
  768. dma_addr_t tmp_p_addr;
  769. struct mac_info *mac_control;
  770. struct config_param *config;
  771. int lst_size, lst_per_page;
  772. struct net_device *dev;
  773. int page_num = 0;
  774. if (!nic)
  775. return;
  776. dev = nic->dev;
  777. mac_control = &nic->mac_control;
  778. config = &nic->config;
  779. lst_size = (sizeof(struct TxD) * config->max_txds);
  780. lst_per_page = PAGE_SIZE / lst_size;
  781. for (i = 0; i < config->tx_fifo_num; i++) {
  782. ufo_size += config->tx_cfg[i].fifo_len;
  783. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  784. lst_per_page);
  785. for (j = 0; j < page_num; j++) {
  786. int mem_blks = (j * lst_per_page);
  787. if (!mac_control->fifos[i].list_info)
  788. return;
  789. if (!mac_control->fifos[i].list_info[mem_blks].
  790. list_virt_addr)
  791. break;
  792. pci_free_consistent(nic->pdev, PAGE_SIZE,
  793. mac_control->fifos[i].
  794. list_info[mem_blks].
  795. list_virt_addr,
  796. mac_control->fifos[i].
  797. list_info[mem_blks].
  798. list_phy_addr);
  799. nic->mac_control.stats_info->sw_stat.mem_freed
  800. += PAGE_SIZE;
  801. }
  802. /* If we got a zero DMA address during allocation,
  803. * free the page now
  804. */
  805. if (mac_control->zerodma_virt_addr) {
  806. pci_free_consistent(nic->pdev, PAGE_SIZE,
  807. mac_control->zerodma_virt_addr,
  808. (dma_addr_t)0);
  809. DBG_PRINT(INIT_DBG,
  810. "%s: Freeing TxDL with zero DMA addr. ",
  811. dev->name);
  812. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  813. mac_control->zerodma_virt_addr);
  814. nic->mac_control.stats_info->sw_stat.mem_freed
  815. += PAGE_SIZE;
  816. }
  817. kfree(mac_control->fifos[i].list_info);
  818. nic->mac_control.stats_info->sw_stat.mem_freed +=
  819. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  820. }
  821. size = SIZE_OF_BLOCK;
  822. for (i = 0; i < config->rx_ring_num; i++) {
  823. blk_cnt = mac_control->rings[i].block_count;
  824. for (j = 0; j < blk_cnt; j++) {
  825. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  826. block_virt_addr;
  827. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  828. block_dma_addr;
  829. if (tmp_v_addr == NULL)
  830. break;
  831. pci_free_consistent(nic->pdev, size,
  832. tmp_v_addr, tmp_p_addr);
  833. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  834. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  835. nic->mac_control.stats_info->sw_stat.mem_freed +=
  836. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  837. }
  838. }
  839. if (nic->rxd_mode == RXD_MODE_3B) {
  840. /* Freeing buffer storage addresses in 2BUFF mode. */
  841. for (i = 0; i < config->rx_ring_num; i++) {
  842. blk_cnt = config->rx_cfg[i].num_rxd /
  843. (rxd_count[nic->rxd_mode] + 1);
  844. for (j = 0; j < blk_cnt; j++) {
  845. int k = 0;
  846. if (!mac_control->rings[i].ba[j])
  847. continue;
  848. while (k != rxd_count[nic->rxd_mode]) {
  849. struct buffAdd *ba =
  850. &mac_control->rings[i].ba[j][k];
  851. kfree(ba->ba_0_org);
  852. nic->mac_control.stats_info->sw_stat.\
  853. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  854. kfree(ba->ba_1_org);
  855. nic->mac_control.stats_info->sw_stat.\
  856. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  857. k++;
  858. }
  859. kfree(mac_control->rings[i].ba[j]);
  860. nic->mac_control.stats_info->sw_stat.mem_freed +=
  861. (sizeof(struct buffAdd) *
  862. (rxd_count[nic->rxd_mode] + 1));
  863. }
  864. kfree(mac_control->rings[i].ba);
  865. nic->mac_control.stats_info->sw_stat.mem_freed +=
  866. (sizeof(struct buffAdd *) * blk_cnt);
  867. }
  868. }
  869. if (mac_control->stats_mem) {
  870. pci_free_consistent(nic->pdev,
  871. mac_control->stats_mem_sz,
  872. mac_control->stats_mem,
  873. mac_control->stats_mem_phy);
  874. nic->mac_control.stats_info->sw_stat.mem_freed +=
  875. mac_control->stats_mem_sz;
  876. }
  877. if (nic->ufo_in_band_v) {
  878. kfree(nic->ufo_in_band_v);
  879. nic->mac_control.stats_info->sw_stat.mem_freed
  880. += (ufo_size * sizeof(u64));
  881. }
  882. }
  883. /**
  884. * s2io_verify_pci_mode -
  885. */
  886. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  887. {
  888. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  889. register u64 val64 = 0;
  890. int mode;
  891. val64 = readq(&bar0->pci_mode);
  892. mode = (u8)GET_PCI_MODE(val64);
  893. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  894. return -1; /* Unknown PCI mode */
  895. return mode;
  896. }
  897. #define NEC_VENID 0x1033
  898. #define NEC_DEVID 0x0125
  899. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  900. {
  901. struct pci_dev *tdev = NULL;
  902. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  903. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  904. if (tdev->bus == s2io_pdev->bus->parent)
  905. pci_dev_put(tdev);
  906. return 1;
  907. }
  908. }
  909. return 0;
  910. }
  911. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  912. /**
  913. * s2io_print_pci_mode -
  914. */
  915. static int s2io_print_pci_mode(struct s2io_nic *nic)
  916. {
  917. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  918. register u64 val64 = 0;
  919. int mode;
  920. struct config_param *config = &nic->config;
  921. val64 = readq(&bar0->pci_mode);
  922. mode = (u8)GET_PCI_MODE(val64);
  923. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  924. return -1; /* Unknown PCI mode */
  925. config->bus_speed = bus_speed[mode];
  926. if (s2io_on_nec_bridge(nic->pdev)) {
  927. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  928. nic->dev->name);
  929. return mode;
  930. }
  931. if (val64 & PCI_MODE_32_BITS) {
  932. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  933. } else {
  934. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  935. }
  936. switch(mode) {
  937. case PCI_MODE_PCI_33:
  938. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  939. break;
  940. case PCI_MODE_PCI_66:
  941. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  942. break;
  943. case PCI_MODE_PCIX_M1_66:
  944. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  945. break;
  946. case PCI_MODE_PCIX_M1_100:
  947. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  948. break;
  949. case PCI_MODE_PCIX_M1_133:
  950. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  951. break;
  952. case PCI_MODE_PCIX_M2_66:
  953. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  954. break;
  955. case PCI_MODE_PCIX_M2_100:
  956. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  957. break;
  958. case PCI_MODE_PCIX_M2_133:
  959. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  960. break;
  961. default:
  962. return -1; /* Unsupported bus speed */
  963. }
  964. return mode;
  965. }
  966. /**
  967. * init_nic - Initialization of hardware
  968. * @nic: device peivate variable
  969. * Description: The function sequentially configures every block
  970. * of the H/W from their reset values.
  971. * Return Value: SUCCESS on success and
  972. * '-1' on failure (endian settings incorrect).
  973. */
  974. static int init_nic(struct s2io_nic *nic)
  975. {
  976. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  977. struct net_device *dev = nic->dev;
  978. register u64 val64 = 0;
  979. void __iomem *add;
  980. u32 time;
  981. int i, j;
  982. struct mac_info *mac_control;
  983. struct config_param *config;
  984. int dtx_cnt = 0;
  985. unsigned long long mem_share;
  986. int mem_size;
  987. mac_control = &nic->mac_control;
  988. config = &nic->config;
  989. /* to set the swapper controle on the card */
  990. if(s2io_set_swapper(nic)) {
  991. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  992. return -1;
  993. }
  994. /*
  995. * Herc requires EOI to be removed from reset before XGXS, so..
  996. */
  997. if (nic->device_type & XFRAME_II_DEVICE) {
  998. val64 = 0xA500000000ULL;
  999. writeq(val64, &bar0->sw_reset);
  1000. msleep(500);
  1001. val64 = readq(&bar0->sw_reset);
  1002. }
  1003. /* Remove XGXS from reset state */
  1004. val64 = 0;
  1005. writeq(val64, &bar0->sw_reset);
  1006. msleep(500);
  1007. val64 = readq(&bar0->sw_reset);
  1008. /* Enable Receiving broadcasts */
  1009. add = &bar0->mac_cfg;
  1010. val64 = readq(&bar0->mac_cfg);
  1011. val64 |= MAC_RMAC_BCAST_ENABLE;
  1012. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1013. writel((u32) val64, add);
  1014. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1015. writel((u32) (val64 >> 32), (add + 4));
  1016. /* Read registers in all blocks */
  1017. val64 = readq(&bar0->mac_int_mask);
  1018. val64 = readq(&bar0->mc_int_mask);
  1019. val64 = readq(&bar0->xgxs_int_mask);
  1020. /* Set MTU */
  1021. val64 = dev->mtu;
  1022. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1023. if (nic->device_type & XFRAME_II_DEVICE) {
  1024. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1025. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1026. &bar0->dtx_control, UF);
  1027. if (dtx_cnt & 0x1)
  1028. msleep(1); /* Necessary!! */
  1029. dtx_cnt++;
  1030. }
  1031. } else {
  1032. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1033. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1034. &bar0->dtx_control, UF);
  1035. val64 = readq(&bar0->dtx_control);
  1036. dtx_cnt++;
  1037. }
  1038. }
  1039. /* Tx DMA Initialization */
  1040. val64 = 0;
  1041. writeq(val64, &bar0->tx_fifo_partition_0);
  1042. writeq(val64, &bar0->tx_fifo_partition_1);
  1043. writeq(val64, &bar0->tx_fifo_partition_2);
  1044. writeq(val64, &bar0->tx_fifo_partition_3);
  1045. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1046. val64 |=
  1047. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1048. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1049. ((i * 32) + 5), 3);
  1050. if (i == (config->tx_fifo_num - 1)) {
  1051. if (i % 2 == 0)
  1052. i++;
  1053. }
  1054. switch (i) {
  1055. case 1:
  1056. writeq(val64, &bar0->tx_fifo_partition_0);
  1057. val64 = 0;
  1058. break;
  1059. case 3:
  1060. writeq(val64, &bar0->tx_fifo_partition_1);
  1061. val64 = 0;
  1062. break;
  1063. case 5:
  1064. writeq(val64, &bar0->tx_fifo_partition_2);
  1065. val64 = 0;
  1066. break;
  1067. case 7:
  1068. writeq(val64, &bar0->tx_fifo_partition_3);
  1069. break;
  1070. }
  1071. }
  1072. /*
  1073. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1074. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1075. */
  1076. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1077. (nic->pdev->revision < 4))
  1078. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1079. val64 = readq(&bar0->tx_fifo_partition_0);
  1080. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1081. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1082. /*
  1083. * Initialization of Tx_PA_CONFIG register to ignore packet
  1084. * integrity checking.
  1085. */
  1086. val64 = readq(&bar0->tx_pa_cfg);
  1087. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1088. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1089. writeq(val64, &bar0->tx_pa_cfg);
  1090. /* Rx DMA intialization. */
  1091. val64 = 0;
  1092. for (i = 0; i < config->rx_ring_num; i++) {
  1093. val64 |=
  1094. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1095. 3);
  1096. }
  1097. writeq(val64, &bar0->rx_queue_priority);
  1098. /*
  1099. * Allocating equal share of memory to all the
  1100. * configured Rings.
  1101. */
  1102. val64 = 0;
  1103. if (nic->device_type & XFRAME_II_DEVICE)
  1104. mem_size = 32;
  1105. else
  1106. mem_size = 64;
  1107. for (i = 0; i < config->rx_ring_num; i++) {
  1108. switch (i) {
  1109. case 0:
  1110. mem_share = (mem_size / config->rx_ring_num +
  1111. mem_size % config->rx_ring_num);
  1112. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1113. continue;
  1114. case 1:
  1115. mem_share = (mem_size / config->rx_ring_num);
  1116. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1117. continue;
  1118. case 2:
  1119. mem_share = (mem_size / config->rx_ring_num);
  1120. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1121. continue;
  1122. case 3:
  1123. mem_share = (mem_size / config->rx_ring_num);
  1124. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1125. continue;
  1126. case 4:
  1127. mem_share = (mem_size / config->rx_ring_num);
  1128. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1129. continue;
  1130. case 5:
  1131. mem_share = (mem_size / config->rx_ring_num);
  1132. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1133. continue;
  1134. case 6:
  1135. mem_share = (mem_size / config->rx_ring_num);
  1136. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1137. continue;
  1138. case 7:
  1139. mem_share = (mem_size / config->rx_ring_num);
  1140. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1141. continue;
  1142. }
  1143. }
  1144. writeq(val64, &bar0->rx_queue_cfg);
  1145. /*
  1146. * Filling Tx round robin registers
  1147. * as per the number of FIFOs
  1148. */
  1149. switch (config->tx_fifo_num) {
  1150. case 1:
  1151. val64 = 0x0000000000000000ULL;
  1152. writeq(val64, &bar0->tx_w_round_robin_0);
  1153. writeq(val64, &bar0->tx_w_round_robin_1);
  1154. writeq(val64, &bar0->tx_w_round_robin_2);
  1155. writeq(val64, &bar0->tx_w_round_robin_3);
  1156. writeq(val64, &bar0->tx_w_round_robin_4);
  1157. break;
  1158. case 2:
  1159. val64 = 0x0000010000010000ULL;
  1160. writeq(val64, &bar0->tx_w_round_robin_0);
  1161. val64 = 0x0100000100000100ULL;
  1162. writeq(val64, &bar0->tx_w_round_robin_1);
  1163. val64 = 0x0001000001000001ULL;
  1164. writeq(val64, &bar0->tx_w_round_robin_2);
  1165. val64 = 0x0000010000010000ULL;
  1166. writeq(val64, &bar0->tx_w_round_robin_3);
  1167. val64 = 0x0100000000000000ULL;
  1168. writeq(val64, &bar0->tx_w_round_robin_4);
  1169. break;
  1170. case 3:
  1171. val64 = 0x0001000102000001ULL;
  1172. writeq(val64, &bar0->tx_w_round_robin_0);
  1173. val64 = 0x0001020000010001ULL;
  1174. writeq(val64, &bar0->tx_w_round_robin_1);
  1175. val64 = 0x0200000100010200ULL;
  1176. writeq(val64, &bar0->tx_w_round_robin_2);
  1177. val64 = 0x0001000102000001ULL;
  1178. writeq(val64, &bar0->tx_w_round_robin_3);
  1179. val64 = 0x0001020000000000ULL;
  1180. writeq(val64, &bar0->tx_w_round_robin_4);
  1181. break;
  1182. case 4:
  1183. val64 = 0x0001020300010200ULL;
  1184. writeq(val64, &bar0->tx_w_round_robin_0);
  1185. val64 = 0x0100000102030001ULL;
  1186. writeq(val64, &bar0->tx_w_round_robin_1);
  1187. val64 = 0x0200010000010203ULL;
  1188. writeq(val64, &bar0->tx_w_round_robin_2);
  1189. val64 = 0x0001020001000001ULL;
  1190. writeq(val64, &bar0->tx_w_round_robin_3);
  1191. val64 = 0x0203000100000000ULL;
  1192. writeq(val64, &bar0->tx_w_round_robin_4);
  1193. break;
  1194. case 5:
  1195. val64 = 0x0001000203000102ULL;
  1196. writeq(val64, &bar0->tx_w_round_robin_0);
  1197. val64 = 0x0001020001030004ULL;
  1198. writeq(val64, &bar0->tx_w_round_robin_1);
  1199. val64 = 0x0001000203000102ULL;
  1200. writeq(val64, &bar0->tx_w_round_robin_2);
  1201. val64 = 0x0001020001030004ULL;
  1202. writeq(val64, &bar0->tx_w_round_robin_3);
  1203. val64 = 0x0001000000000000ULL;
  1204. writeq(val64, &bar0->tx_w_round_robin_4);
  1205. break;
  1206. case 6:
  1207. val64 = 0x0001020304000102ULL;
  1208. writeq(val64, &bar0->tx_w_round_robin_0);
  1209. val64 = 0x0304050001020001ULL;
  1210. writeq(val64, &bar0->tx_w_round_robin_1);
  1211. val64 = 0x0203000100000102ULL;
  1212. writeq(val64, &bar0->tx_w_round_robin_2);
  1213. val64 = 0x0304000102030405ULL;
  1214. writeq(val64, &bar0->tx_w_round_robin_3);
  1215. val64 = 0x0001000200000000ULL;
  1216. writeq(val64, &bar0->tx_w_round_robin_4);
  1217. break;
  1218. case 7:
  1219. val64 = 0x0001020001020300ULL;
  1220. writeq(val64, &bar0->tx_w_round_robin_0);
  1221. val64 = 0x0102030400010203ULL;
  1222. writeq(val64, &bar0->tx_w_round_robin_1);
  1223. val64 = 0x0405060001020001ULL;
  1224. writeq(val64, &bar0->tx_w_round_robin_2);
  1225. val64 = 0x0304050000010200ULL;
  1226. writeq(val64, &bar0->tx_w_round_robin_3);
  1227. val64 = 0x0102030000000000ULL;
  1228. writeq(val64, &bar0->tx_w_round_robin_4);
  1229. break;
  1230. case 8:
  1231. val64 = 0x0001020300040105ULL;
  1232. writeq(val64, &bar0->tx_w_round_robin_0);
  1233. val64 = 0x0200030106000204ULL;
  1234. writeq(val64, &bar0->tx_w_round_robin_1);
  1235. val64 = 0x0103000502010007ULL;
  1236. writeq(val64, &bar0->tx_w_round_robin_2);
  1237. val64 = 0x0304010002060500ULL;
  1238. writeq(val64, &bar0->tx_w_round_robin_3);
  1239. val64 = 0x0103020400000000ULL;
  1240. writeq(val64, &bar0->tx_w_round_robin_4);
  1241. break;
  1242. }
  1243. /* Enable all configured Tx FIFO partitions */
  1244. val64 = readq(&bar0->tx_fifo_partition_0);
  1245. val64 |= (TX_FIFO_PARTITION_EN);
  1246. writeq(val64, &bar0->tx_fifo_partition_0);
  1247. /* Filling the Rx round robin registers as per the
  1248. * number of Rings and steering based on QoS.
  1249. */
  1250. switch (config->rx_ring_num) {
  1251. case 1:
  1252. val64 = 0x8080808080808080ULL;
  1253. writeq(val64, &bar0->rts_qos_steering);
  1254. break;
  1255. case 2:
  1256. val64 = 0x0000010000010000ULL;
  1257. writeq(val64, &bar0->rx_w_round_robin_0);
  1258. val64 = 0x0100000100000100ULL;
  1259. writeq(val64, &bar0->rx_w_round_robin_1);
  1260. val64 = 0x0001000001000001ULL;
  1261. writeq(val64, &bar0->rx_w_round_robin_2);
  1262. val64 = 0x0000010000010000ULL;
  1263. writeq(val64, &bar0->rx_w_round_robin_3);
  1264. val64 = 0x0100000000000000ULL;
  1265. writeq(val64, &bar0->rx_w_round_robin_4);
  1266. val64 = 0x8080808040404040ULL;
  1267. writeq(val64, &bar0->rts_qos_steering);
  1268. break;
  1269. case 3:
  1270. val64 = 0x0001000102000001ULL;
  1271. writeq(val64, &bar0->rx_w_round_robin_0);
  1272. val64 = 0x0001020000010001ULL;
  1273. writeq(val64, &bar0->rx_w_round_robin_1);
  1274. val64 = 0x0200000100010200ULL;
  1275. writeq(val64, &bar0->rx_w_round_robin_2);
  1276. val64 = 0x0001000102000001ULL;
  1277. writeq(val64, &bar0->rx_w_round_robin_3);
  1278. val64 = 0x0001020000000000ULL;
  1279. writeq(val64, &bar0->rx_w_round_robin_4);
  1280. val64 = 0x8080804040402020ULL;
  1281. writeq(val64, &bar0->rts_qos_steering);
  1282. break;
  1283. case 4:
  1284. val64 = 0x0001020300010200ULL;
  1285. writeq(val64, &bar0->rx_w_round_robin_0);
  1286. val64 = 0x0100000102030001ULL;
  1287. writeq(val64, &bar0->rx_w_round_robin_1);
  1288. val64 = 0x0200010000010203ULL;
  1289. writeq(val64, &bar0->rx_w_round_robin_2);
  1290. val64 = 0x0001020001000001ULL;
  1291. writeq(val64, &bar0->rx_w_round_robin_3);
  1292. val64 = 0x0203000100000000ULL;
  1293. writeq(val64, &bar0->rx_w_round_robin_4);
  1294. val64 = 0x8080404020201010ULL;
  1295. writeq(val64, &bar0->rts_qos_steering);
  1296. break;
  1297. case 5:
  1298. val64 = 0x0001000203000102ULL;
  1299. writeq(val64, &bar0->rx_w_round_robin_0);
  1300. val64 = 0x0001020001030004ULL;
  1301. writeq(val64, &bar0->rx_w_round_robin_1);
  1302. val64 = 0x0001000203000102ULL;
  1303. writeq(val64, &bar0->rx_w_round_robin_2);
  1304. val64 = 0x0001020001030004ULL;
  1305. writeq(val64, &bar0->rx_w_round_robin_3);
  1306. val64 = 0x0001000000000000ULL;
  1307. writeq(val64, &bar0->rx_w_round_robin_4);
  1308. val64 = 0x8080404020201008ULL;
  1309. writeq(val64, &bar0->rts_qos_steering);
  1310. break;
  1311. case 6:
  1312. val64 = 0x0001020304000102ULL;
  1313. writeq(val64, &bar0->rx_w_round_robin_0);
  1314. val64 = 0x0304050001020001ULL;
  1315. writeq(val64, &bar0->rx_w_round_robin_1);
  1316. val64 = 0x0203000100000102ULL;
  1317. writeq(val64, &bar0->rx_w_round_robin_2);
  1318. val64 = 0x0304000102030405ULL;
  1319. writeq(val64, &bar0->rx_w_round_robin_3);
  1320. val64 = 0x0001000200000000ULL;
  1321. writeq(val64, &bar0->rx_w_round_robin_4);
  1322. val64 = 0x8080404020100804ULL;
  1323. writeq(val64, &bar0->rts_qos_steering);
  1324. break;
  1325. case 7:
  1326. val64 = 0x0001020001020300ULL;
  1327. writeq(val64, &bar0->rx_w_round_robin_0);
  1328. val64 = 0x0102030400010203ULL;
  1329. writeq(val64, &bar0->rx_w_round_robin_1);
  1330. val64 = 0x0405060001020001ULL;
  1331. writeq(val64, &bar0->rx_w_round_robin_2);
  1332. val64 = 0x0304050000010200ULL;
  1333. writeq(val64, &bar0->rx_w_round_robin_3);
  1334. val64 = 0x0102030000000000ULL;
  1335. writeq(val64, &bar0->rx_w_round_robin_4);
  1336. val64 = 0x8080402010080402ULL;
  1337. writeq(val64, &bar0->rts_qos_steering);
  1338. break;
  1339. case 8:
  1340. val64 = 0x0001020300040105ULL;
  1341. writeq(val64, &bar0->rx_w_round_robin_0);
  1342. val64 = 0x0200030106000204ULL;
  1343. writeq(val64, &bar0->rx_w_round_robin_1);
  1344. val64 = 0x0103000502010007ULL;
  1345. writeq(val64, &bar0->rx_w_round_robin_2);
  1346. val64 = 0x0304010002060500ULL;
  1347. writeq(val64, &bar0->rx_w_round_robin_3);
  1348. val64 = 0x0103020400000000ULL;
  1349. writeq(val64, &bar0->rx_w_round_robin_4);
  1350. val64 = 0x8040201008040201ULL;
  1351. writeq(val64, &bar0->rts_qos_steering);
  1352. break;
  1353. }
  1354. /* UDP Fix */
  1355. val64 = 0;
  1356. for (i = 0; i < 8; i++)
  1357. writeq(val64, &bar0->rts_frm_len_n[i]);
  1358. /* Set the default rts frame length for the rings configured */
  1359. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1360. for (i = 0 ; i < config->rx_ring_num ; i++)
  1361. writeq(val64, &bar0->rts_frm_len_n[i]);
  1362. /* Set the frame length for the configured rings
  1363. * desired by the user
  1364. */
  1365. for (i = 0; i < config->rx_ring_num; i++) {
  1366. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1367. * specified frame length steering.
  1368. * If the user provides the frame length then program
  1369. * the rts_frm_len register for those values or else
  1370. * leave it as it is.
  1371. */
  1372. if (rts_frm_len[i] != 0) {
  1373. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1374. &bar0->rts_frm_len_n[i]);
  1375. }
  1376. }
  1377. /* Disable differentiated services steering logic */
  1378. for (i = 0; i < 64; i++) {
  1379. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1380. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1381. dev->name);
  1382. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1383. return FAILURE;
  1384. }
  1385. }
  1386. /* Program statistics memory */
  1387. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1388. if (nic->device_type == XFRAME_II_DEVICE) {
  1389. val64 = STAT_BC(0x320);
  1390. writeq(val64, &bar0->stat_byte_cnt);
  1391. }
  1392. /*
  1393. * Initializing the sampling rate for the device to calculate the
  1394. * bandwidth utilization.
  1395. */
  1396. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1397. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1398. writeq(val64, &bar0->mac_link_util);
  1399. /*
  1400. * Initializing the Transmit and Receive Traffic Interrupt
  1401. * Scheme.
  1402. */
  1403. /*
  1404. * TTI Initialization. Default Tx timer gets us about
  1405. * 250 interrupts per sec. Continuous interrupts are enabled
  1406. * by default.
  1407. */
  1408. if (nic->device_type == XFRAME_II_DEVICE) {
  1409. int count = (nic->config.bus_speed * 125)/2;
  1410. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1411. } else {
  1412. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1413. }
  1414. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1415. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1416. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1417. if (use_continuous_tx_intrs)
  1418. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1419. writeq(val64, &bar0->tti_data1_mem);
  1420. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1421. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1422. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1423. writeq(val64, &bar0->tti_data2_mem);
  1424. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1425. writeq(val64, &bar0->tti_command_mem);
  1426. /*
  1427. * Once the operation completes, the Strobe bit of the command
  1428. * register will be reset. We poll for this particular condition
  1429. * We wait for a maximum of 500ms for the operation to complete,
  1430. * if it's not complete by then we return error.
  1431. */
  1432. time = 0;
  1433. while (TRUE) {
  1434. val64 = readq(&bar0->tti_command_mem);
  1435. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1436. break;
  1437. }
  1438. if (time > 10) {
  1439. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1440. dev->name);
  1441. return -1;
  1442. }
  1443. msleep(50);
  1444. time++;
  1445. }
  1446. /* RTI Initialization */
  1447. if (nic->device_type == XFRAME_II_DEVICE) {
  1448. /*
  1449. * Programmed to generate Apprx 500 Intrs per
  1450. * second
  1451. */
  1452. int count = (nic->config.bus_speed * 125)/4;
  1453. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1454. } else
  1455. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1456. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1457. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1458. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1459. writeq(val64, &bar0->rti_data1_mem);
  1460. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1461. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1462. if (nic->config.intr_type == MSI_X)
  1463. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1464. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1465. else
  1466. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1467. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1468. writeq(val64, &bar0->rti_data2_mem);
  1469. for (i = 0; i < config->rx_ring_num; i++) {
  1470. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1471. | RTI_CMD_MEM_OFFSET(i);
  1472. writeq(val64, &bar0->rti_command_mem);
  1473. /*
  1474. * Once the operation completes, the Strobe bit of the
  1475. * command register will be reset. We poll for this
  1476. * particular condition. We wait for a maximum of 500ms
  1477. * for the operation to complete, if it's not complete
  1478. * by then we return error.
  1479. */
  1480. time = 0;
  1481. while (TRUE) {
  1482. val64 = readq(&bar0->rti_command_mem);
  1483. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1484. break;
  1485. if (time > 10) {
  1486. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1487. dev->name);
  1488. return -1;
  1489. }
  1490. time++;
  1491. msleep(50);
  1492. }
  1493. }
  1494. /*
  1495. * Initializing proper values as Pause threshold into all
  1496. * the 8 Queues on Rx side.
  1497. */
  1498. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1499. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1500. /* Disable RMAC PAD STRIPPING */
  1501. add = &bar0->mac_cfg;
  1502. val64 = readq(&bar0->mac_cfg);
  1503. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1504. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1505. writel((u32) (val64), add);
  1506. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1507. writel((u32) (val64 >> 32), (add + 4));
  1508. val64 = readq(&bar0->mac_cfg);
  1509. /* Enable FCS stripping by adapter */
  1510. add = &bar0->mac_cfg;
  1511. val64 = readq(&bar0->mac_cfg);
  1512. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1513. if (nic->device_type == XFRAME_II_DEVICE)
  1514. writeq(val64, &bar0->mac_cfg);
  1515. else {
  1516. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1517. writel((u32) (val64), add);
  1518. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1519. writel((u32) (val64 >> 32), (add + 4));
  1520. }
  1521. /*
  1522. * Set the time value to be inserted in the pause frame
  1523. * generated by xena.
  1524. */
  1525. val64 = readq(&bar0->rmac_pause_cfg);
  1526. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1527. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1528. writeq(val64, &bar0->rmac_pause_cfg);
  1529. /*
  1530. * Set the Threshold Limit for Generating the pause frame
  1531. * If the amount of data in any Queue exceeds ratio of
  1532. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1533. * pause frame is generated
  1534. */
  1535. val64 = 0;
  1536. for (i = 0; i < 4; i++) {
  1537. val64 |=
  1538. (((u64) 0xFF00 | nic->mac_control.
  1539. mc_pause_threshold_q0q3)
  1540. << (i * 2 * 8));
  1541. }
  1542. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1543. val64 = 0;
  1544. for (i = 0; i < 4; i++) {
  1545. val64 |=
  1546. (((u64) 0xFF00 | nic->mac_control.
  1547. mc_pause_threshold_q4q7)
  1548. << (i * 2 * 8));
  1549. }
  1550. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1551. /*
  1552. * TxDMA will stop Read request if the number of read split has
  1553. * exceeded the limit pointed by shared_splits
  1554. */
  1555. val64 = readq(&bar0->pic_control);
  1556. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1557. writeq(val64, &bar0->pic_control);
  1558. if (nic->config.bus_speed == 266) {
  1559. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1560. writeq(0x0, &bar0->read_retry_delay);
  1561. writeq(0x0, &bar0->write_retry_delay);
  1562. }
  1563. /*
  1564. * Programming the Herc to split every write transaction
  1565. * that does not start on an ADB to reduce disconnects.
  1566. */
  1567. if (nic->device_type == XFRAME_II_DEVICE) {
  1568. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1569. MISC_LINK_STABILITY_PRD(3);
  1570. writeq(val64, &bar0->misc_control);
  1571. val64 = readq(&bar0->pic_control2);
  1572. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1573. writeq(val64, &bar0->pic_control2);
  1574. }
  1575. if (strstr(nic->product_name, "CX4")) {
  1576. val64 = TMAC_AVG_IPG(0x17);
  1577. writeq(val64, &bar0->tmac_avg_ipg);
  1578. }
  1579. return SUCCESS;
  1580. }
  1581. #define LINK_UP_DOWN_INTERRUPT 1
  1582. #define MAC_RMAC_ERR_TIMER 2
  1583. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1584. {
  1585. if (nic->config.intr_type != INTA)
  1586. return MAC_RMAC_ERR_TIMER;
  1587. if (nic->device_type == XFRAME_II_DEVICE)
  1588. return LINK_UP_DOWN_INTERRUPT;
  1589. else
  1590. return MAC_RMAC_ERR_TIMER;
  1591. }
  1592. /**
  1593. * do_s2io_write_bits - update alarm bits in alarm register
  1594. * @value: alarm bits
  1595. * @flag: interrupt status
  1596. * @addr: address value
  1597. * Description: update alarm bits in alarm register
  1598. * Return Value:
  1599. * NONE.
  1600. */
  1601. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1602. {
  1603. u64 temp64;
  1604. temp64 = readq(addr);
  1605. if(flag == ENABLE_INTRS)
  1606. temp64 &= ~((u64) value);
  1607. else
  1608. temp64 |= ((u64) value);
  1609. writeq(temp64, addr);
  1610. }
  1611. void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1612. {
  1613. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1614. register u64 gen_int_mask = 0;
  1615. if (mask & TX_DMA_INTR) {
  1616. gen_int_mask |= TXDMA_INT_M;
  1617. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1618. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1619. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1620. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1621. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1622. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1623. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1624. &bar0->pfc_err_mask);
  1625. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1626. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1627. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1628. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1629. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1630. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1631. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1632. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1633. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1634. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1635. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1636. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1637. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1638. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1639. flag, &bar0->lso_err_mask);
  1640. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1641. flag, &bar0->tpa_err_mask);
  1642. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1643. }
  1644. if (mask & TX_MAC_INTR) {
  1645. gen_int_mask |= TXMAC_INT_M;
  1646. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1647. &bar0->mac_int_mask);
  1648. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1649. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1650. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1651. flag, &bar0->mac_tmac_err_mask);
  1652. }
  1653. if (mask & TX_XGXS_INTR) {
  1654. gen_int_mask |= TXXGXS_INT_M;
  1655. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1656. &bar0->xgxs_int_mask);
  1657. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1658. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1659. flag, &bar0->xgxs_txgxs_err_mask);
  1660. }
  1661. if (mask & RX_DMA_INTR) {
  1662. gen_int_mask |= RXDMA_INT_M;
  1663. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1664. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1665. flag, &bar0->rxdma_int_mask);
  1666. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1667. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1668. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1669. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1670. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1671. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1672. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1673. &bar0->prc_pcix_err_mask);
  1674. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1675. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1676. &bar0->rpa_err_mask);
  1677. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1678. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1679. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1680. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1681. flag, &bar0->rda_err_mask);
  1682. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1683. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1684. flag, &bar0->rti_err_mask);
  1685. }
  1686. if (mask & RX_MAC_INTR) {
  1687. gen_int_mask |= RXMAC_INT_M;
  1688. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1689. &bar0->mac_int_mask);
  1690. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1691. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1692. RMAC_DOUBLE_ECC_ERR |
  1693. RMAC_LINK_STATE_CHANGE_INT,
  1694. flag, &bar0->mac_rmac_err_mask);
  1695. }
  1696. if (mask & RX_XGXS_INTR)
  1697. {
  1698. gen_int_mask |= RXXGXS_INT_M;
  1699. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1700. &bar0->xgxs_int_mask);
  1701. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1702. &bar0->xgxs_rxgxs_err_mask);
  1703. }
  1704. if (mask & MC_INTR) {
  1705. gen_int_mask |= MC_INT_M;
  1706. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1707. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1708. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1709. &bar0->mc_err_mask);
  1710. }
  1711. nic->general_int_mask = gen_int_mask;
  1712. /* Remove this line when alarm interrupts are enabled */
  1713. nic->general_int_mask = 0;
  1714. }
  1715. /**
  1716. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1717. * @nic: device private variable,
  1718. * @mask: A mask indicating which Intr block must be modified and,
  1719. * @flag: A flag indicating whether to enable or disable the Intrs.
  1720. * Description: This function will either disable or enable the interrupts
  1721. * depending on the flag argument. The mask argument can be used to
  1722. * enable/disable any Intr block.
  1723. * Return Value: NONE.
  1724. */
  1725. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1726. {
  1727. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1728. register u64 temp64 = 0, intr_mask = 0;
  1729. intr_mask = nic->general_int_mask;
  1730. /* Top level interrupt classification */
  1731. /* PIC Interrupts */
  1732. if (mask & TX_PIC_INTR) {
  1733. /* Enable PIC Intrs in the general intr mask register */
  1734. intr_mask |= TXPIC_INT_M;
  1735. if (flag == ENABLE_INTRS) {
  1736. /*
  1737. * If Hercules adapter enable GPIO otherwise
  1738. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1739. * interrupts for now.
  1740. * TODO
  1741. */
  1742. if (s2io_link_fault_indication(nic) ==
  1743. LINK_UP_DOWN_INTERRUPT ) {
  1744. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1745. &bar0->pic_int_mask);
  1746. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1747. &bar0->gpio_int_mask);
  1748. } else
  1749. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1750. } else if (flag == DISABLE_INTRS) {
  1751. /*
  1752. * Disable PIC Intrs in the general
  1753. * intr mask register
  1754. */
  1755. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1756. }
  1757. }
  1758. /* Tx traffic interrupts */
  1759. if (mask & TX_TRAFFIC_INTR) {
  1760. intr_mask |= TXTRAFFIC_INT_M;
  1761. if (flag == ENABLE_INTRS) {
  1762. /*
  1763. * Enable all the Tx side interrupts
  1764. * writing 0 Enables all 64 TX interrupt levels
  1765. */
  1766. writeq(0x0, &bar0->tx_traffic_mask);
  1767. } else if (flag == DISABLE_INTRS) {
  1768. /*
  1769. * Disable Tx Traffic Intrs in the general intr mask
  1770. * register.
  1771. */
  1772. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1773. }
  1774. }
  1775. /* Rx traffic interrupts */
  1776. if (mask & RX_TRAFFIC_INTR) {
  1777. intr_mask |= RXTRAFFIC_INT_M;
  1778. if (flag == ENABLE_INTRS) {
  1779. /* writing 0 Enables all 8 RX interrupt levels */
  1780. writeq(0x0, &bar0->rx_traffic_mask);
  1781. } else if (flag == DISABLE_INTRS) {
  1782. /*
  1783. * Disable Rx Traffic Intrs in the general intr mask
  1784. * register.
  1785. */
  1786. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1787. }
  1788. }
  1789. temp64 = readq(&bar0->general_int_mask);
  1790. if (flag == ENABLE_INTRS)
  1791. temp64 &= ~((u64) intr_mask);
  1792. else
  1793. temp64 = DISABLE_ALL_INTRS;
  1794. writeq(temp64, &bar0->general_int_mask);
  1795. nic->general_int_mask = readq(&bar0->general_int_mask);
  1796. }
  1797. /**
  1798. * verify_pcc_quiescent- Checks for PCC quiescent state
  1799. * Return: 1 If PCC is quiescence
  1800. * 0 If PCC is not quiescence
  1801. */
  1802. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1803. {
  1804. int ret = 0, herc;
  1805. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1806. u64 val64 = readq(&bar0->adapter_status);
  1807. herc = (sp->device_type == XFRAME_II_DEVICE);
  1808. if (flag == FALSE) {
  1809. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1810. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1811. ret = 1;
  1812. } else {
  1813. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1814. ret = 1;
  1815. }
  1816. } else {
  1817. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1818. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1819. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1820. ret = 1;
  1821. } else {
  1822. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1823. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1824. ret = 1;
  1825. }
  1826. }
  1827. return ret;
  1828. }
  1829. /**
  1830. * verify_xena_quiescence - Checks whether the H/W is ready
  1831. * Description: Returns whether the H/W is ready to go or not. Depending
  1832. * on whether adapter enable bit was written or not the comparison
  1833. * differs and the calling function passes the input argument flag to
  1834. * indicate this.
  1835. * Return: 1 If xena is quiescence
  1836. * 0 If Xena is not quiescence
  1837. */
  1838. static int verify_xena_quiescence(struct s2io_nic *sp)
  1839. {
  1840. int mode;
  1841. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1842. u64 val64 = readq(&bar0->adapter_status);
  1843. mode = s2io_verify_pci_mode(sp);
  1844. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1845. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1846. return 0;
  1847. }
  1848. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1849. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1850. return 0;
  1851. }
  1852. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1853. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1854. return 0;
  1855. }
  1856. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1857. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1858. return 0;
  1859. }
  1860. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1861. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1862. return 0;
  1863. }
  1864. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1865. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1866. return 0;
  1867. }
  1868. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1869. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1870. return 0;
  1871. }
  1872. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1873. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1874. return 0;
  1875. }
  1876. /*
  1877. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1878. * the the P_PLL_LOCK bit in the adapter_status register will
  1879. * not be asserted.
  1880. */
  1881. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1882. sp->device_type == XFRAME_II_DEVICE && mode !=
  1883. PCI_MODE_PCI_33) {
  1884. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1885. return 0;
  1886. }
  1887. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1888. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1889. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1890. return 0;
  1891. }
  1892. return 1;
  1893. }
  1894. /**
  1895. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1896. * @sp: Pointer to device specifc structure
  1897. * Description :
  1898. * New procedure to clear mac address reading problems on Alpha platforms
  1899. *
  1900. */
  1901. static void fix_mac_address(struct s2io_nic * sp)
  1902. {
  1903. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1904. u64 val64;
  1905. int i = 0;
  1906. while (fix_mac[i] != END_SIGN) {
  1907. writeq(fix_mac[i++], &bar0->gpio_control);
  1908. udelay(10);
  1909. val64 = readq(&bar0->gpio_control);
  1910. }
  1911. }
  1912. /**
  1913. * start_nic - Turns the device on
  1914. * @nic : device private variable.
  1915. * Description:
  1916. * This function actually turns the device on. Before this function is
  1917. * called,all Registers are configured from their reset states
  1918. * and shared memory is allocated but the NIC is still quiescent. On
  1919. * calling this function, the device interrupts are cleared and the NIC is
  1920. * literally switched on by writing into the adapter control register.
  1921. * Return Value:
  1922. * SUCCESS on success and -1 on failure.
  1923. */
  1924. static int start_nic(struct s2io_nic *nic)
  1925. {
  1926. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1927. struct net_device *dev = nic->dev;
  1928. register u64 val64 = 0;
  1929. u16 subid, i;
  1930. struct mac_info *mac_control;
  1931. struct config_param *config;
  1932. mac_control = &nic->mac_control;
  1933. config = &nic->config;
  1934. /* PRC Initialization and configuration */
  1935. for (i = 0; i < config->rx_ring_num; i++) {
  1936. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1937. &bar0->prc_rxd0_n[i]);
  1938. val64 = readq(&bar0->prc_ctrl_n[i]);
  1939. if (nic->rxd_mode == RXD_MODE_1)
  1940. val64 |= PRC_CTRL_RC_ENABLED;
  1941. else
  1942. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1943. if (nic->device_type == XFRAME_II_DEVICE)
  1944. val64 |= PRC_CTRL_GROUP_READS;
  1945. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1946. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1947. writeq(val64, &bar0->prc_ctrl_n[i]);
  1948. }
  1949. if (nic->rxd_mode == RXD_MODE_3B) {
  1950. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1951. val64 = readq(&bar0->rx_pa_cfg);
  1952. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1953. writeq(val64, &bar0->rx_pa_cfg);
  1954. }
  1955. if (vlan_tag_strip == 0) {
  1956. val64 = readq(&bar0->rx_pa_cfg);
  1957. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1958. writeq(val64, &bar0->rx_pa_cfg);
  1959. vlan_strip_flag = 0;
  1960. }
  1961. /*
  1962. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1963. * for around 100ms, which is approximately the time required
  1964. * for the device to be ready for operation.
  1965. */
  1966. val64 = readq(&bar0->mc_rldram_mrs);
  1967. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1968. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1969. val64 = readq(&bar0->mc_rldram_mrs);
  1970. msleep(100); /* Delay by around 100 ms. */
  1971. /* Enabling ECC Protection. */
  1972. val64 = readq(&bar0->adapter_control);
  1973. val64 &= ~ADAPTER_ECC_EN;
  1974. writeq(val64, &bar0->adapter_control);
  1975. /*
  1976. * Verify if the device is ready to be enabled, if so enable
  1977. * it.
  1978. */
  1979. val64 = readq(&bar0->adapter_status);
  1980. if (!verify_xena_quiescence(nic)) {
  1981. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1982. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1983. (unsigned long long) val64);
  1984. return FAILURE;
  1985. }
  1986. /*
  1987. * With some switches, link might be already up at this point.
  1988. * Because of this weird behavior, when we enable laser,
  1989. * we may not get link. We need to handle this. We cannot
  1990. * figure out which switch is misbehaving. So we are forced to
  1991. * make a global change.
  1992. */
  1993. /* Enabling Laser. */
  1994. val64 = readq(&bar0->adapter_control);
  1995. val64 |= ADAPTER_EOI_TX_ON;
  1996. writeq(val64, &bar0->adapter_control);
  1997. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  1998. /*
  1999. * Dont see link state interrupts initally on some switches,
  2000. * so directly scheduling the link state task here.
  2001. */
  2002. schedule_work(&nic->set_link_task);
  2003. }
  2004. /* SXE-002: Initialize link and activity LED */
  2005. subid = nic->pdev->subsystem_device;
  2006. if (((subid & 0xFF) >= 0x07) &&
  2007. (nic->device_type == XFRAME_I_DEVICE)) {
  2008. val64 = readq(&bar0->gpio_control);
  2009. val64 |= 0x0000800000000000ULL;
  2010. writeq(val64, &bar0->gpio_control);
  2011. val64 = 0x0411040400000000ULL;
  2012. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2013. }
  2014. return SUCCESS;
  2015. }
  2016. /**
  2017. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2018. */
  2019. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2020. TxD *txdlp, int get_off)
  2021. {
  2022. struct s2io_nic *nic = fifo_data->nic;
  2023. struct sk_buff *skb;
  2024. struct TxD *txds;
  2025. u16 j, frg_cnt;
  2026. txds = txdlp;
  2027. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2028. pci_unmap_single(nic->pdev, (dma_addr_t)
  2029. txds->Buffer_Pointer, sizeof(u64),
  2030. PCI_DMA_TODEVICE);
  2031. txds++;
  2032. }
  2033. skb = (struct sk_buff *) ((unsigned long)
  2034. txds->Host_Control);
  2035. if (!skb) {
  2036. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2037. return NULL;
  2038. }
  2039. pci_unmap_single(nic->pdev, (dma_addr_t)
  2040. txds->Buffer_Pointer,
  2041. skb->len - skb->data_len,
  2042. PCI_DMA_TODEVICE);
  2043. frg_cnt = skb_shinfo(skb)->nr_frags;
  2044. if (frg_cnt) {
  2045. txds++;
  2046. for (j = 0; j < frg_cnt; j++, txds++) {
  2047. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2048. if (!txds->Buffer_Pointer)
  2049. break;
  2050. pci_unmap_page(nic->pdev, (dma_addr_t)
  2051. txds->Buffer_Pointer,
  2052. frag->size, PCI_DMA_TODEVICE);
  2053. }
  2054. }
  2055. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2056. return(skb);
  2057. }
  2058. /**
  2059. * free_tx_buffers - Free all queued Tx buffers
  2060. * @nic : device private variable.
  2061. * Description:
  2062. * Free all queued Tx buffers.
  2063. * Return Value: void
  2064. */
  2065. static void free_tx_buffers(struct s2io_nic *nic)
  2066. {
  2067. struct net_device *dev = nic->dev;
  2068. struct sk_buff *skb;
  2069. struct TxD *txdp;
  2070. int i, j;
  2071. struct mac_info *mac_control;
  2072. struct config_param *config;
  2073. int cnt = 0;
  2074. mac_control = &nic->mac_control;
  2075. config = &nic->config;
  2076. for (i = 0; i < config->tx_fifo_num; i++) {
  2077. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2078. txdp = (struct TxD *) \
  2079. mac_control->fifos[i].list_info[j].list_virt_addr;
  2080. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2081. if (skb) {
  2082. nic->mac_control.stats_info->sw_stat.mem_freed
  2083. += skb->truesize;
  2084. dev_kfree_skb(skb);
  2085. cnt++;
  2086. }
  2087. }
  2088. DBG_PRINT(INTR_DBG,
  2089. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2090. dev->name, cnt, i);
  2091. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2092. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2093. }
  2094. }
  2095. /**
  2096. * stop_nic - To stop the nic
  2097. * @nic ; device private variable.
  2098. * Description:
  2099. * This function does exactly the opposite of what the start_nic()
  2100. * function does. This function is called to stop the device.
  2101. * Return Value:
  2102. * void.
  2103. */
  2104. static void stop_nic(struct s2io_nic *nic)
  2105. {
  2106. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2107. register u64 val64 = 0;
  2108. u16 interruptible;
  2109. struct mac_info *mac_control;
  2110. struct config_param *config;
  2111. mac_control = &nic->mac_control;
  2112. config = &nic->config;
  2113. /* Disable all interrupts */
  2114. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2115. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2116. interruptible |= TX_PIC_INTR;
  2117. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2118. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2119. val64 = readq(&bar0->adapter_control);
  2120. val64 &= ~(ADAPTER_CNTL_EN);
  2121. writeq(val64, &bar0->adapter_control);
  2122. }
  2123. /**
  2124. * fill_rx_buffers - Allocates the Rx side skbs
  2125. * @nic: device private variable
  2126. * @ring_no: ring number
  2127. * Description:
  2128. * The function allocates Rx side skbs and puts the physical
  2129. * address of these buffers into the RxD buffer pointers, so that the NIC
  2130. * can DMA the received frame into these locations.
  2131. * The NIC supports 3 receive modes, viz
  2132. * 1. single buffer,
  2133. * 2. three buffer and
  2134. * 3. Five buffer modes.
  2135. * Each mode defines how many fragments the received frame will be split
  2136. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2137. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2138. * is split into 3 fragments. As of now only single buffer mode is
  2139. * supported.
  2140. * Return Value:
  2141. * SUCCESS on success or an appropriate -ve value on failure.
  2142. */
  2143. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2144. {
  2145. struct net_device *dev = nic->dev;
  2146. struct sk_buff *skb;
  2147. struct RxD_t *rxdp;
  2148. int off, off1, size, block_no, block_no1;
  2149. u32 alloc_tab = 0;
  2150. u32 alloc_cnt;
  2151. struct mac_info *mac_control;
  2152. struct config_param *config;
  2153. u64 tmp;
  2154. struct buffAdd *ba;
  2155. unsigned long flags;
  2156. struct RxD_t *first_rxdp = NULL;
  2157. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2158. struct RxD1 *rxdp1;
  2159. struct RxD3 *rxdp3;
  2160. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2161. mac_control = &nic->mac_control;
  2162. config = &nic->config;
  2163. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2164. atomic_read(&nic->rx_bufs_left[ring_no]);
  2165. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2166. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2167. while (alloc_tab < alloc_cnt) {
  2168. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2169. block_index;
  2170. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2171. rxdp = mac_control->rings[ring_no].
  2172. rx_blocks[block_no].rxds[off].virt_addr;
  2173. if ((block_no == block_no1) && (off == off1) &&
  2174. (rxdp->Host_Control)) {
  2175. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2176. dev->name);
  2177. DBG_PRINT(INTR_DBG, " info equated\n");
  2178. goto end;
  2179. }
  2180. if (off && (off == rxd_count[nic->rxd_mode])) {
  2181. mac_control->rings[ring_no].rx_curr_put_info.
  2182. block_index++;
  2183. if (mac_control->rings[ring_no].rx_curr_put_info.
  2184. block_index == mac_control->rings[ring_no].
  2185. block_count)
  2186. mac_control->rings[ring_no].rx_curr_put_info.
  2187. block_index = 0;
  2188. block_no = mac_control->rings[ring_no].
  2189. rx_curr_put_info.block_index;
  2190. if (off == rxd_count[nic->rxd_mode])
  2191. off = 0;
  2192. mac_control->rings[ring_no].rx_curr_put_info.
  2193. offset = off;
  2194. rxdp = mac_control->rings[ring_no].
  2195. rx_blocks[block_no].block_virt_addr;
  2196. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2197. dev->name, rxdp);
  2198. }
  2199. if(!napi) {
  2200. spin_lock_irqsave(&nic->put_lock, flags);
  2201. mac_control->rings[ring_no].put_pos =
  2202. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2203. spin_unlock_irqrestore(&nic->put_lock, flags);
  2204. } else {
  2205. mac_control->rings[ring_no].put_pos =
  2206. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2207. }
  2208. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2209. ((nic->rxd_mode == RXD_MODE_3B) &&
  2210. (rxdp->Control_2 & BIT(0)))) {
  2211. mac_control->rings[ring_no].rx_curr_put_info.
  2212. offset = off;
  2213. goto end;
  2214. }
  2215. /* calculate size of skb based on ring mode */
  2216. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2217. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2218. if (nic->rxd_mode == RXD_MODE_1)
  2219. size += NET_IP_ALIGN;
  2220. else
  2221. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2222. /* allocate skb */
  2223. skb = dev_alloc_skb(size);
  2224. if(!skb) {
  2225. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2226. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2227. if (first_rxdp) {
  2228. wmb();
  2229. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2230. }
  2231. nic->mac_control.stats_info->sw_stat. \
  2232. mem_alloc_fail_cnt++;
  2233. return -ENOMEM ;
  2234. }
  2235. nic->mac_control.stats_info->sw_stat.mem_allocated
  2236. += skb->truesize;
  2237. if (nic->rxd_mode == RXD_MODE_1) {
  2238. /* 1 buffer mode - normal operation mode */
  2239. rxdp1 = (struct RxD1*)rxdp;
  2240. memset(rxdp, 0, sizeof(struct RxD1));
  2241. skb_reserve(skb, NET_IP_ALIGN);
  2242. rxdp1->Buffer0_ptr = pci_map_single
  2243. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2244. PCI_DMA_FROMDEVICE);
  2245. if( (rxdp1->Buffer0_ptr == 0) ||
  2246. (rxdp1->Buffer0_ptr ==
  2247. DMA_ERROR_CODE))
  2248. goto pci_map_failed;
  2249. rxdp->Control_2 =
  2250. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2251. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2252. /*
  2253. * 2 buffer mode -
  2254. * 2 buffer mode provides 128
  2255. * byte aligned receive buffers.
  2256. */
  2257. rxdp3 = (struct RxD3*)rxdp;
  2258. /* save buffer pointers to avoid frequent dma mapping */
  2259. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2260. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2261. memset(rxdp, 0, sizeof(struct RxD3));
  2262. /* restore the buffer pointers for dma sync*/
  2263. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2264. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2265. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2266. skb_reserve(skb, BUF0_LEN);
  2267. tmp = (u64)(unsigned long) skb->data;
  2268. tmp += ALIGN_SIZE;
  2269. tmp &= ~ALIGN_SIZE;
  2270. skb->data = (void *) (unsigned long)tmp;
  2271. skb_reset_tail_pointer(skb);
  2272. if (!(rxdp3->Buffer0_ptr))
  2273. rxdp3->Buffer0_ptr =
  2274. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2275. PCI_DMA_FROMDEVICE);
  2276. else
  2277. pci_dma_sync_single_for_device(nic->pdev,
  2278. (dma_addr_t) rxdp3->Buffer0_ptr,
  2279. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2280. if( (rxdp3->Buffer0_ptr == 0) ||
  2281. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2282. goto pci_map_failed;
  2283. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2284. if (nic->rxd_mode == RXD_MODE_3B) {
  2285. /* Two buffer mode */
  2286. /*
  2287. * Buffer2 will have L3/L4 header plus
  2288. * L4 payload
  2289. */
  2290. rxdp3->Buffer2_ptr = pci_map_single
  2291. (nic->pdev, skb->data, dev->mtu + 4,
  2292. PCI_DMA_FROMDEVICE);
  2293. if( (rxdp3->Buffer2_ptr == 0) ||
  2294. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2295. goto pci_map_failed;
  2296. rxdp3->Buffer1_ptr =
  2297. pci_map_single(nic->pdev,
  2298. ba->ba_1, BUF1_LEN,
  2299. PCI_DMA_FROMDEVICE);
  2300. if( (rxdp3->Buffer1_ptr == 0) ||
  2301. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2302. pci_unmap_single
  2303. (nic->pdev,
  2304. (dma_addr_t)rxdp3->Buffer2_ptr,
  2305. dev->mtu + 4,
  2306. PCI_DMA_FROMDEVICE);
  2307. goto pci_map_failed;
  2308. }
  2309. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2310. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2311. (dev->mtu + 4);
  2312. }
  2313. rxdp->Control_2 |= BIT(0);
  2314. }
  2315. rxdp->Host_Control = (unsigned long) (skb);
  2316. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2317. rxdp->Control_1 |= RXD_OWN_XENA;
  2318. off++;
  2319. if (off == (rxd_count[nic->rxd_mode] + 1))
  2320. off = 0;
  2321. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2322. rxdp->Control_2 |= SET_RXD_MARKER;
  2323. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2324. if (first_rxdp) {
  2325. wmb();
  2326. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2327. }
  2328. first_rxdp = rxdp;
  2329. }
  2330. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2331. alloc_tab++;
  2332. }
  2333. end:
  2334. /* Transfer ownership of first descriptor to adapter just before
  2335. * exiting. Before that, use memory barrier so that ownership
  2336. * and other fields are seen by adapter correctly.
  2337. */
  2338. if (first_rxdp) {
  2339. wmb();
  2340. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2341. }
  2342. return SUCCESS;
  2343. pci_map_failed:
  2344. stats->pci_map_fail_cnt++;
  2345. stats->mem_freed += skb->truesize;
  2346. dev_kfree_skb_irq(skb);
  2347. return -ENOMEM;
  2348. }
  2349. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2350. {
  2351. struct net_device *dev = sp->dev;
  2352. int j;
  2353. struct sk_buff *skb;
  2354. struct RxD_t *rxdp;
  2355. struct mac_info *mac_control;
  2356. struct buffAdd *ba;
  2357. struct RxD1 *rxdp1;
  2358. struct RxD3 *rxdp3;
  2359. mac_control = &sp->mac_control;
  2360. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2361. rxdp = mac_control->rings[ring_no].
  2362. rx_blocks[blk].rxds[j].virt_addr;
  2363. skb = (struct sk_buff *)
  2364. ((unsigned long) rxdp->Host_Control);
  2365. if (!skb) {
  2366. continue;
  2367. }
  2368. if (sp->rxd_mode == RXD_MODE_1) {
  2369. rxdp1 = (struct RxD1*)rxdp;
  2370. pci_unmap_single(sp->pdev, (dma_addr_t)
  2371. rxdp1->Buffer0_ptr,
  2372. dev->mtu +
  2373. HEADER_ETHERNET_II_802_3_SIZE
  2374. + HEADER_802_2_SIZE +
  2375. HEADER_SNAP_SIZE,
  2376. PCI_DMA_FROMDEVICE);
  2377. memset(rxdp, 0, sizeof(struct RxD1));
  2378. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2379. rxdp3 = (struct RxD3*)rxdp;
  2380. ba = &mac_control->rings[ring_no].
  2381. ba[blk][j];
  2382. pci_unmap_single(sp->pdev, (dma_addr_t)
  2383. rxdp3->Buffer0_ptr,
  2384. BUF0_LEN,
  2385. PCI_DMA_FROMDEVICE);
  2386. pci_unmap_single(sp->pdev, (dma_addr_t)
  2387. rxdp3->Buffer1_ptr,
  2388. BUF1_LEN,
  2389. PCI_DMA_FROMDEVICE);
  2390. pci_unmap_single(sp->pdev, (dma_addr_t)
  2391. rxdp3->Buffer2_ptr,
  2392. dev->mtu + 4,
  2393. PCI_DMA_FROMDEVICE);
  2394. memset(rxdp, 0, sizeof(struct RxD3));
  2395. }
  2396. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2397. dev_kfree_skb(skb);
  2398. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2399. }
  2400. }
  2401. /**
  2402. * free_rx_buffers - Frees all Rx buffers
  2403. * @sp: device private variable.
  2404. * Description:
  2405. * This function will free all Rx buffers allocated by host.
  2406. * Return Value:
  2407. * NONE.
  2408. */
  2409. static void free_rx_buffers(struct s2io_nic *sp)
  2410. {
  2411. struct net_device *dev = sp->dev;
  2412. int i, blk = 0, buf_cnt = 0;
  2413. struct mac_info *mac_control;
  2414. struct config_param *config;
  2415. mac_control = &sp->mac_control;
  2416. config = &sp->config;
  2417. for (i = 0; i < config->rx_ring_num; i++) {
  2418. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2419. free_rxd_blk(sp,i,blk);
  2420. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2421. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2422. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2423. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2424. atomic_set(&sp->rx_bufs_left[i], 0);
  2425. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2426. dev->name, buf_cnt, i);
  2427. }
  2428. }
  2429. /**
  2430. * s2io_poll - Rx interrupt handler for NAPI support
  2431. * @napi : pointer to the napi structure.
  2432. * @budget : The number of packets that were budgeted to be processed
  2433. * during one pass through the 'Poll" function.
  2434. * Description:
  2435. * Comes into picture only if NAPI support has been incorporated. It does
  2436. * the same thing that rx_intr_handler does, but not in a interrupt context
  2437. * also It will process only a given number of packets.
  2438. * Return value:
  2439. * 0 on success and 1 if there are No Rx packets to be processed.
  2440. */
  2441. static int s2io_poll(struct napi_struct *napi, int budget)
  2442. {
  2443. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2444. struct net_device *dev = nic->dev;
  2445. int pkt_cnt = 0, org_pkts_to_process;
  2446. struct mac_info *mac_control;
  2447. struct config_param *config;
  2448. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2449. int i;
  2450. if (!is_s2io_card_up(nic))
  2451. return 0;
  2452. mac_control = &nic->mac_control;
  2453. config = &nic->config;
  2454. nic->pkts_to_process = budget;
  2455. org_pkts_to_process = nic->pkts_to_process;
  2456. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2457. readl(&bar0->rx_traffic_int);
  2458. for (i = 0; i < config->rx_ring_num; i++) {
  2459. rx_intr_handler(&mac_control->rings[i]);
  2460. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2461. if (!nic->pkts_to_process) {
  2462. /* Quota for the current iteration has been met */
  2463. goto no_rx;
  2464. }
  2465. }
  2466. netif_rx_complete(dev, napi);
  2467. for (i = 0; i < config->rx_ring_num; i++) {
  2468. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2469. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2470. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2471. break;
  2472. }
  2473. }
  2474. /* Re enable the Rx interrupts. */
  2475. writeq(0x0, &bar0->rx_traffic_mask);
  2476. readl(&bar0->rx_traffic_mask);
  2477. return pkt_cnt;
  2478. no_rx:
  2479. for (i = 0; i < config->rx_ring_num; i++) {
  2480. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2481. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2482. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2483. break;
  2484. }
  2485. }
  2486. return pkt_cnt;
  2487. }
  2488. #ifdef CONFIG_NET_POLL_CONTROLLER
  2489. /**
  2490. * s2io_netpoll - netpoll event handler entry point
  2491. * @dev : pointer to the device structure.
  2492. * Description:
  2493. * This function will be called by upper layer to check for events on the
  2494. * interface in situations where interrupts are disabled. It is used for
  2495. * specific in-kernel networking tasks, such as remote consoles and kernel
  2496. * debugging over the network (example netdump in RedHat).
  2497. */
  2498. static void s2io_netpoll(struct net_device *dev)
  2499. {
  2500. struct s2io_nic *nic = dev->priv;
  2501. struct mac_info *mac_control;
  2502. struct config_param *config;
  2503. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2504. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2505. int i;
  2506. if (pci_channel_offline(nic->pdev))
  2507. return;
  2508. disable_irq(dev->irq);
  2509. mac_control = &nic->mac_control;
  2510. config = &nic->config;
  2511. writeq(val64, &bar0->rx_traffic_int);
  2512. writeq(val64, &bar0->tx_traffic_int);
  2513. /* we need to free up the transmitted skbufs or else netpoll will
  2514. * run out of skbs and will fail and eventually netpoll application such
  2515. * as netdump will fail.
  2516. */
  2517. for (i = 0; i < config->tx_fifo_num; i++)
  2518. tx_intr_handler(&mac_control->fifos[i]);
  2519. /* check for received packet and indicate up to network */
  2520. for (i = 0; i < config->rx_ring_num; i++)
  2521. rx_intr_handler(&mac_control->rings[i]);
  2522. for (i = 0; i < config->rx_ring_num; i++) {
  2523. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2524. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2525. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2526. break;
  2527. }
  2528. }
  2529. enable_irq(dev->irq);
  2530. return;
  2531. }
  2532. #endif
  2533. /**
  2534. * rx_intr_handler - Rx interrupt handler
  2535. * @nic: device private variable.
  2536. * Description:
  2537. * If the interrupt is because of a received frame or if the
  2538. * receive ring contains fresh as yet un-processed frames,this function is
  2539. * called. It picks out the RxD at which place the last Rx processing had
  2540. * stopped and sends the skb to the OSM's Rx handler and then increments
  2541. * the offset.
  2542. * Return Value:
  2543. * NONE.
  2544. */
  2545. static void rx_intr_handler(struct ring_info *ring_data)
  2546. {
  2547. struct s2io_nic *nic = ring_data->nic;
  2548. struct net_device *dev = (struct net_device *) nic->dev;
  2549. int get_block, put_block, put_offset;
  2550. struct rx_curr_get_info get_info, put_info;
  2551. struct RxD_t *rxdp;
  2552. struct sk_buff *skb;
  2553. int pkt_cnt = 0;
  2554. int i;
  2555. struct RxD1* rxdp1;
  2556. struct RxD3* rxdp3;
  2557. spin_lock(&nic->rx_lock);
  2558. get_info = ring_data->rx_curr_get_info;
  2559. get_block = get_info.block_index;
  2560. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2561. put_block = put_info.block_index;
  2562. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2563. if (!napi) {
  2564. spin_lock(&nic->put_lock);
  2565. put_offset = ring_data->put_pos;
  2566. spin_unlock(&nic->put_lock);
  2567. } else
  2568. put_offset = ring_data->put_pos;
  2569. while (RXD_IS_UP2DT(rxdp)) {
  2570. /*
  2571. * If your are next to put index then it's
  2572. * FIFO full condition
  2573. */
  2574. if ((get_block == put_block) &&
  2575. (get_info.offset + 1) == put_info.offset) {
  2576. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2577. break;
  2578. }
  2579. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2580. if (skb == NULL) {
  2581. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2582. dev->name);
  2583. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2584. spin_unlock(&nic->rx_lock);
  2585. return;
  2586. }
  2587. if (nic->rxd_mode == RXD_MODE_1) {
  2588. rxdp1 = (struct RxD1*)rxdp;
  2589. pci_unmap_single(nic->pdev, (dma_addr_t)
  2590. rxdp1->Buffer0_ptr,
  2591. dev->mtu +
  2592. HEADER_ETHERNET_II_802_3_SIZE +
  2593. HEADER_802_2_SIZE +
  2594. HEADER_SNAP_SIZE,
  2595. PCI_DMA_FROMDEVICE);
  2596. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2597. rxdp3 = (struct RxD3*)rxdp;
  2598. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2599. rxdp3->Buffer0_ptr,
  2600. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2601. pci_unmap_single(nic->pdev, (dma_addr_t)
  2602. rxdp3->Buffer2_ptr,
  2603. dev->mtu + 4,
  2604. PCI_DMA_FROMDEVICE);
  2605. }
  2606. prefetch(skb->data);
  2607. rx_osm_handler(ring_data, rxdp);
  2608. get_info.offset++;
  2609. ring_data->rx_curr_get_info.offset = get_info.offset;
  2610. rxdp = ring_data->rx_blocks[get_block].
  2611. rxds[get_info.offset].virt_addr;
  2612. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2613. get_info.offset = 0;
  2614. ring_data->rx_curr_get_info.offset = get_info.offset;
  2615. get_block++;
  2616. if (get_block == ring_data->block_count)
  2617. get_block = 0;
  2618. ring_data->rx_curr_get_info.block_index = get_block;
  2619. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2620. }
  2621. nic->pkts_to_process -= 1;
  2622. if ((napi) && (!nic->pkts_to_process))
  2623. break;
  2624. pkt_cnt++;
  2625. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2626. break;
  2627. }
  2628. if (nic->lro) {
  2629. /* Clear all LRO sessions before exiting */
  2630. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2631. struct lro *lro = &nic->lro0_n[i];
  2632. if (lro->in_use) {
  2633. update_L3L4_header(nic, lro);
  2634. queue_rx_frame(lro->parent);
  2635. clear_lro_session(lro);
  2636. }
  2637. }
  2638. }
  2639. spin_unlock(&nic->rx_lock);
  2640. }
  2641. /**
  2642. * tx_intr_handler - Transmit interrupt handler
  2643. * @nic : device private variable
  2644. * Description:
  2645. * If an interrupt was raised to indicate DMA complete of the
  2646. * Tx packet, this function is called. It identifies the last TxD
  2647. * whose buffer was freed and frees all skbs whose data have already
  2648. * DMA'ed into the NICs internal memory.
  2649. * Return Value:
  2650. * NONE
  2651. */
  2652. static void tx_intr_handler(struct fifo_info *fifo_data)
  2653. {
  2654. struct s2io_nic *nic = fifo_data->nic;
  2655. struct net_device *dev = (struct net_device *) nic->dev;
  2656. struct tx_curr_get_info get_info, put_info;
  2657. struct sk_buff *skb;
  2658. struct TxD *txdlp;
  2659. u8 err_mask;
  2660. get_info = fifo_data->tx_curr_get_info;
  2661. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2662. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2663. list_virt_addr;
  2664. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2665. (get_info.offset != put_info.offset) &&
  2666. (txdlp->Host_Control)) {
  2667. /* Check for TxD errors */
  2668. if (txdlp->Control_1 & TXD_T_CODE) {
  2669. unsigned long long err;
  2670. err = txdlp->Control_1 & TXD_T_CODE;
  2671. if (err & 0x1) {
  2672. nic->mac_control.stats_info->sw_stat.
  2673. parity_err_cnt++;
  2674. }
  2675. /* update t_code statistics */
  2676. err_mask = err >> 48;
  2677. switch(err_mask) {
  2678. case 2:
  2679. nic->mac_control.stats_info->sw_stat.
  2680. tx_buf_abort_cnt++;
  2681. break;
  2682. case 3:
  2683. nic->mac_control.stats_info->sw_stat.
  2684. tx_desc_abort_cnt++;
  2685. break;
  2686. case 7:
  2687. nic->mac_control.stats_info->sw_stat.
  2688. tx_parity_err_cnt++;
  2689. break;
  2690. case 10:
  2691. nic->mac_control.stats_info->sw_stat.
  2692. tx_link_loss_cnt++;
  2693. break;
  2694. case 15:
  2695. nic->mac_control.stats_info->sw_stat.
  2696. tx_list_proc_err_cnt++;
  2697. break;
  2698. }
  2699. }
  2700. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2701. if (skb == NULL) {
  2702. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2703. __FUNCTION__);
  2704. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2705. return;
  2706. }
  2707. /* Updating the statistics block */
  2708. nic->stats.tx_bytes += skb->len;
  2709. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2710. dev_kfree_skb_irq(skb);
  2711. get_info.offset++;
  2712. if (get_info.offset == get_info.fifo_len + 1)
  2713. get_info.offset = 0;
  2714. txdlp = (struct TxD *) fifo_data->list_info
  2715. [get_info.offset].list_virt_addr;
  2716. fifo_data->tx_curr_get_info.offset =
  2717. get_info.offset;
  2718. }
  2719. spin_lock(&nic->tx_lock);
  2720. if (netif_queue_stopped(dev))
  2721. netif_wake_queue(dev);
  2722. spin_unlock(&nic->tx_lock);
  2723. }
  2724. /**
  2725. * s2io_mdio_write - Function to write in to MDIO registers
  2726. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2727. * @addr : address value
  2728. * @value : data value
  2729. * @dev : pointer to net_device structure
  2730. * Description:
  2731. * This function is used to write values to the MDIO registers
  2732. * NONE
  2733. */
  2734. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2735. {
  2736. u64 val64 = 0x0;
  2737. struct s2io_nic *sp = dev->priv;
  2738. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2739. //address transaction
  2740. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2741. | MDIO_MMD_DEV_ADDR(mmd_type)
  2742. | MDIO_MMS_PRT_ADDR(0x0);
  2743. writeq(val64, &bar0->mdio_control);
  2744. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2745. writeq(val64, &bar0->mdio_control);
  2746. udelay(100);
  2747. //Data transaction
  2748. val64 = 0x0;
  2749. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2750. | MDIO_MMD_DEV_ADDR(mmd_type)
  2751. | MDIO_MMS_PRT_ADDR(0x0)
  2752. | MDIO_MDIO_DATA(value)
  2753. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2754. writeq(val64, &bar0->mdio_control);
  2755. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2756. writeq(val64, &bar0->mdio_control);
  2757. udelay(100);
  2758. val64 = 0x0;
  2759. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2760. | MDIO_MMD_DEV_ADDR(mmd_type)
  2761. | MDIO_MMS_PRT_ADDR(0x0)
  2762. | MDIO_OP(MDIO_OP_READ_TRANS);
  2763. writeq(val64, &bar0->mdio_control);
  2764. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2765. writeq(val64, &bar0->mdio_control);
  2766. udelay(100);
  2767. }
  2768. /**
  2769. * s2io_mdio_read - Function to write in to MDIO registers
  2770. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2771. * @addr : address value
  2772. * @dev : pointer to net_device structure
  2773. * Description:
  2774. * This function is used to read values to the MDIO registers
  2775. * NONE
  2776. */
  2777. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2778. {
  2779. u64 val64 = 0x0;
  2780. u64 rval64 = 0x0;
  2781. struct s2io_nic *sp = dev->priv;
  2782. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2783. /* address transaction */
  2784. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2785. | MDIO_MMD_DEV_ADDR(mmd_type)
  2786. | MDIO_MMS_PRT_ADDR(0x0);
  2787. writeq(val64, &bar0->mdio_control);
  2788. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2789. writeq(val64, &bar0->mdio_control);
  2790. udelay(100);
  2791. /* Data transaction */
  2792. val64 = 0x0;
  2793. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2794. | MDIO_MMD_DEV_ADDR(mmd_type)
  2795. | MDIO_MMS_PRT_ADDR(0x0)
  2796. | MDIO_OP(MDIO_OP_READ_TRANS);
  2797. writeq(val64, &bar0->mdio_control);
  2798. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2799. writeq(val64, &bar0->mdio_control);
  2800. udelay(100);
  2801. /* Read the value from regs */
  2802. rval64 = readq(&bar0->mdio_control);
  2803. rval64 = rval64 & 0xFFFF0000;
  2804. rval64 = rval64 >> 16;
  2805. return rval64;
  2806. }
  2807. /**
  2808. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2809. * @counter : couter value to be updated
  2810. * @flag : flag to indicate the status
  2811. * @type : counter type
  2812. * Description:
  2813. * This function is to check the status of the xpak counters value
  2814. * NONE
  2815. */
  2816. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2817. {
  2818. u64 mask = 0x3;
  2819. u64 val64;
  2820. int i;
  2821. for(i = 0; i <index; i++)
  2822. mask = mask << 0x2;
  2823. if(flag > 0)
  2824. {
  2825. *counter = *counter + 1;
  2826. val64 = *regs_stat & mask;
  2827. val64 = val64 >> (index * 0x2);
  2828. val64 = val64 + 1;
  2829. if(val64 == 3)
  2830. {
  2831. switch(type)
  2832. {
  2833. case 1:
  2834. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2835. "service. Excessive temperatures may "
  2836. "result in premature transceiver "
  2837. "failure \n");
  2838. break;
  2839. case 2:
  2840. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2841. "service Excessive bias currents may "
  2842. "indicate imminent laser diode "
  2843. "failure \n");
  2844. break;
  2845. case 3:
  2846. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2847. "service Excessive laser output "
  2848. "power may saturate far-end "
  2849. "receiver\n");
  2850. break;
  2851. default:
  2852. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2853. "type \n");
  2854. }
  2855. val64 = 0x0;
  2856. }
  2857. val64 = val64 << (index * 0x2);
  2858. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2859. } else {
  2860. *regs_stat = *regs_stat & (~mask);
  2861. }
  2862. }
  2863. /**
  2864. * s2io_updt_xpak_counter - Function to update the xpak counters
  2865. * @dev : pointer to net_device struct
  2866. * Description:
  2867. * This function is to upate the status of the xpak counters value
  2868. * NONE
  2869. */
  2870. static void s2io_updt_xpak_counter(struct net_device *dev)
  2871. {
  2872. u16 flag = 0x0;
  2873. u16 type = 0x0;
  2874. u16 val16 = 0x0;
  2875. u64 val64 = 0x0;
  2876. u64 addr = 0x0;
  2877. struct s2io_nic *sp = dev->priv;
  2878. struct stat_block *stat_info = sp->mac_control.stats_info;
  2879. /* Check the communication with the MDIO slave */
  2880. addr = 0x0000;
  2881. val64 = 0x0;
  2882. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2883. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2884. {
  2885. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2886. "Returned %llx\n", (unsigned long long)val64);
  2887. return;
  2888. }
  2889. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2890. if(val64 != 0x2040)
  2891. {
  2892. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2893. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2894. (unsigned long long)val64);
  2895. return;
  2896. }
  2897. /* Loading the DOM register to MDIO register */
  2898. addr = 0xA100;
  2899. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2900. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2901. /* Reading the Alarm flags */
  2902. addr = 0xA070;
  2903. val64 = 0x0;
  2904. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2905. flag = CHECKBIT(val64, 0x7);
  2906. type = 1;
  2907. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2908. &stat_info->xpak_stat.xpak_regs_stat,
  2909. 0x0, flag, type);
  2910. if(CHECKBIT(val64, 0x6))
  2911. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2912. flag = CHECKBIT(val64, 0x3);
  2913. type = 2;
  2914. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2915. &stat_info->xpak_stat.xpak_regs_stat,
  2916. 0x2, flag, type);
  2917. if(CHECKBIT(val64, 0x2))
  2918. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2919. flag = CHECKBIT(val64, 0x1);
  2920. type = 3;
  2921. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2922. &stat_info->xpak_stat.xpak_regs_stat,
  2923. 0x4, flag, type);
  2924. if(CHECKBIT(val64, 0x0))
  2925. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2926. /* Reading the Warning flags */
  2927. addr = 0xA074;
  2928. val64 = 0x0;
  2929. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2930. if(CHECKBIT(val64, 0x7))
  2931. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2932. if(CHECKBIT(val64, 0x6))
  2933. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2934. if(CHECKBIT(val64, 0x3))
  2935. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2936. if(CHECKBIT(val64, 0x2))
  2937. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2938. if(CHECKBIT(val64, 0x1))
  2939. stat_info->xpak_stat.warn_laser_output_power_high++;
  2940. if(CHECKBIT(val64, 0x0))
  2941. stat_info->xpak_stat.warn_laser_output_power_low++;
  2942. }
  2943. /**
  2944. * wait_for_cmd_complete - waits for a command to complete.
  2945. * @sp : private member of the device structure, which is a pointer to the
  2946. * s2io_nic structure.
  2947. * Description: Function that waits for a command to Write into RMAC
  2948. * ADDR DATA registers to be completed and returns either success or
  2949. * error depending on whether the command was complete or not.
  2950. * Return value:
  2951. * SUCCESS on success and FAILURE on failure.
  2952. */
  2953. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2954. int bit_state)
  2955. {
  2956. int ret = FAILURE, cnt = 0, delay = 1;
  2957. u64 val64;
  2958. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2959. return FAILURE;
  2960. do {
  2961. val64 = readq(addr);
  2962. if (bit_state == S2IO_BIT_RESET) {
  2963. if (!(val64 & busy_bit)) {
  2964. ret = SUCCESS;
  2965. break;
  2966. }
  2967. } else {
  2968. if (!(val64 & busy_bit)) {
  2969. ret = SUCCESS;
  2970. break;
  2971. }
  2972. }
  2973. if(in_interrupt())
  2974. mdelay(delay);
  2975. else
  2976. msleep(delay);
  2977. if (++cnt >= 10)
  2978. delay = 50;
  2979. } while (cnt < 20);
  2980. return ret;
  2981. }
  2982. /*
  2983. * check_pci_device_id - Checks if the device id is supported
  2984. * @id : device id
  2985. * Description: Function to check if the pci device id is supported by driver.
  2986. * Return value: Actual device id if supported else PCI_ANY_ID
  2987. */
  2988. static u16 check_pci_device_id(u16 id)
  2989. {
  2990. switch (id) {
  2991. case PCI_DEVICE_ID_HERC_WIN:
  2992. case PCI_DEVICE_ID_HERC_UNI:
  2993. return XFRAME_II_DEVICE;
  2994. case PCI_DEVICE_ID_S2IO_UNI:
  2995. case PCI_DEVICE_ID_S2IO_WIN:
  2996. return XFRAME_I_DEVICE;
  2997. default:
  2998. return PCI_ANY_ID;
  2999. }
  3000. }
  3001. /**
  3002. * s2io_reset - Resets the card.
  3003. * @sp : private member of the device structure.
  3004. * Description: Function to Reset the card. This function then also
  3005. * restores the previously saved PCI configuration space registers as
  3006. * the card reset also resets the configuration space.
  3007. * Return value:
  3008. * void.
  3009. */
  3010. static void s2io_reset(struct s2io_nic * sp)
  3011. {
  3012. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3013. u64 val64;
  3014. u16 subid, pci_cmd;
  3015. int i;
  3016. u16 val16;
  3017. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3018. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3019. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3020. __FUNCTION__, sp->dev->name);
  3021. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3022. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3023. val64 = SW_RESET_ALL;
  3024. writeq(val64, &bar0->sw_reset);
  3025. if (strstr(sp->product_name, "CX4")) {
  3026. msleep(750);
  3027. }
  3028. msleep(250);
  3029. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3030. /* Restore the PCI state saved during initialization. */
  3031. pci_restore_state(sp->pdev);
  3032. pci_read_config_word(sp->pdev, 0x2, &val16);
  3033. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3034. break;
  3035. msleep(200);
  3036. }
  3037. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3038. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3039. }
  3040. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3041. s2io_init_pci(sp);
  3042. /* Set swapper to enable I/O register access */
  3043. s2io_set_swapper(sp);
  3044. /* Restore the MSIX table entries from local variables */
  3045. restore_xmsi_data(sp);
  3046. /* Clear certain PCI/PCI-X fields after reset */
  3047. if (sp->device_type == XFRAME_II_DEVICE) {
  3048. /* Clear "detected parity error" bit */
  3049. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3050. /* Clearing PCIX Ecc status register */
  3051. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3052. /* Clearing PCI_STATUS error reflected here */
  3053. writeq(BIT(62), &bar0->txpic_int_reg);
  3054. }
  3055. /* Reset device statistics maintained by OS */
  3056. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3057. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3058. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3059. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3060. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3061. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3062. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3063. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3064. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3065. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3066. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3067. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3068. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3069. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3070. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3071. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3072. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3073. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3074. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3075. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3076. /* SXE-002: Configure link and activity LED to turn it off */
  3077. subid = sp->pdev->subsystem_device;
  3078. if (((subid & 0xFF) >= 0x07) &&
  3079. (sp->device_type == XFRAME_I_DEVICE)) {
  3080. val64 = readq(&bar0->gpio_control);
  3081. val64 |= 0x0000800000000000ULL;
  3082. writeq(val64, &bar0->gpio_control);
  3083. val64 = 0x0411040400000000ULL;
  3084. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3085. }
  3086. /*
  3087. * Clear spurious ECC interrupts that would have occured on
  3088. * XFRAME II cards after reset.
  3089. */
  3090. if (sp->device_type == XFRAME_II_DEVICE) {
  3091. val64 = readq(&bar0->pcc_err_reg);
  3092. writeq(val64, &bar0->pcc_err_reg);
  3093. }
  3094. /* restore the previously assigned mac address */
  3095. do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3096. sp->device_enabled_once = FALSE;
  3097. }
  3098. /**
  3099. * s2io_set_swapper - to set the swapper controle on the card
  3100. * @sp : private member of the device structure,
  3101. * pointer to the s2io_nic structure.
  3102. * Description: Function to set the swapper control on the card
  3103. * correctly depending on the 'endianness' of the system.
  3104. * Return value:
  3105. * SUCCESS on success and FAILURE on failure.
  3106. */
  3107. static int s2io_set_swapper(struct s2io_nic * sp)
  3108. {
  3109. struct net_device *dev = sp->dev;
  3110. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3111. u64 val64, valt, valr;
  3112. /*
  3113. * Set proper endian settings and verify the same by reading
  3114. * the PIF Feed-back register.
  3115. */
  3116. val64 = readq(&bar0->pif_rd_swapper_fb);
  3117. if (val64 != 0x0123456789ABCDEFULL) {
  3118. int i = 0;
  3119. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3120. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3121. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3122. 0}; /* FE=0, SE=0 */
  3123. while(i<4) {
  3124. writeq(value[i], &bar0->swapper_ctrl);
  3125. val64 = readq(&bar0->pif_rd_swapper_fb);
  3126. if (val64 == 0x0123456789ABCDEFULL)
  3127. break;
  3128. i++;
  3129. }
  3130. if (i == 4) {
  3131. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3132. dev->name);
  3133. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3134. (unsigned long long) val64);
  3135. return FAILURE;
  3136. }
  3137. valr = value[i];
  3138. } else {
  3139. valr = readq(&bar0->swapper_ctrl);
  3140. }
  3141. valt = 0x0123456789ABCDEFULL;
  3142. writeq(valt, &bar0->xmsi_address);
  3143. val64 = readq(&bar0->xmsi_address);
  3144. if(val64 != valt) {
  3145. int i = 0;
  3146. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3147. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3148. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3149. 0}; /* FE=0, SE=0 */
  3150. while(i<4) {
  3151. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3152. writeq(valt, &bar0->xmsi_address);
  3153. val64 = readq(&bar0->xmsi_address);
  3154. if(val64 == valt)
  3155. break;
  3156. i++;
  3157. }
  3158. if(i == 4) {
  3159. unsigned long long x = val64;
  3160. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3161. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3162. return FAILURE;
  3163. }
  3164. }
  3165. val64 = readq(&bar0->swapper_ctrl);
  3166. val64 &= 0xFFFF000000000000ULL;
  3167. #ifdef __BIG_ENDIAN
  3168. /*
  3169. * The device by default set to a big endian format, so a
  3170. * big endian driver need not set anything.
  3171. */
  3172. val64 |= (SWAPPER_CTRL_TXP_FE |
  3173. SWAPPER_CTRL_TXP_SE |
  3174. SWAPPER_CTRL_TXD_R_FE |
  3175. SWAPPER_CTRL_TXD_W_FE |
  3176. SWAPPER_CTRL_TXF_R_FE |
  3177. SWAPPER_CTRL_RXD_R_FE |
  3178. SWAPPER_CTRL_RXD_W_FE |
  3179. SWAPPER_CTRL_RXF_W_FE |
  3180. SWAPPER_CTRL_XMSI_FE |
  3181. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3182. if (sp->config.intr_type == INTA)
  3183. val64 |= SWAPPER_CTRL_XMSI_SE;
  3184. writeq(val64, &bar0->swapper_ctrl);
  3185. #else
  3186. /*
  3187. * Initially we enable all bits to make it accessible by the
  3188. * driver, then we selectively enable only those bits that
  3189. * we want to set.
  3190. */
  3191. val64 |= (SWAPPER_CTRL_TXP_FE |
  3192. SWAPPER_CTRL_TXP_SE |
  3193. SWAPPER_CTRL_TXD_R_FE |
  3194. SWAPPER_CTRL_TXD_R_SE |
  3195. SWAPPER_CTRL_TXD_W_FE |
  3196. SWAPPER_CTRL_TXD_W_SE |
  3197. SWAPPER_CTRL_TXF_R_FE |
  3198. SWAPPER_CTRL_RXD_R_FE |
  3199. SWAPPER_CTRL_RXD_R_SE |
  3200. SWAPPER_CTRL_RXD_W_FE |
  3201. SWAPPER_CTRL_RXD_W_SE |
  3202. SWAPPER_CTRL_RXF_W_FE |
  3203. SWAPPER_CTRL_XMSI_FE |
  3204. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3205. if (sp->config.intr_type == INTA)
  3206. val64 |= SWAPPER_CTRL_XMSI_SE;
  3207. writeq(val64, &bar0->swapper_ctrl);
  3208. #endif
  3209. val64 = readq(&bar0->swapper_ctrl);
  3210. /*
  3211. * Verifying if endian settings are accurate by reading a
  3212. * feedback register.
  3213. */
  3214. val64 = readq(&bar0->pif_rd_swapper_fb);
  3215. if (val64 != 0x0123456789ABCDEFULL) {
  3216. /* Endian settings are incorrect, calls for another dekko. */
  3217. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3218. dev->name);
  3219. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3220. (unsigned long long) val64);
  3221. return FAILURE;
  3222. }
  3223. return SUCCESS;
  3224. }
  3225. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3226. {
  3227. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3228. u64 val64;
  3229. int ret = 0, cnt = 0;
  3230. do {
  3231. val64 = readq(&bar0->xmsi_access);
  3232. if (!(val64 & BIT(15)))
  3233. break;
  3234. mdelay(1);
  3235. cnt++;
  3236. } while(cnt < 5);
  3237. if (cnt == 5) {
  3238. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3239. ret = 1;
  3240. }
  3241. return ret;
  3242. }
  3243. static void restore_xmsi_data(struct s2io_nic *nic)
  3244. {
  3245. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3246. u64 val64;
  3247. int i;
  3248. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3249. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3250. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3251. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3252. writeq(val64, &bar0->xmsi_access);
  3253. if (wait_for_msix_trans(nic, i)) {
  3254. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3255. continue;
  3256. }
  3257. }
  3258. }
  3259. static void store_xmsi_data(struct s2io_nic *nic)
  3260. {
  3261. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3262. u64 val64, addr, data;
  3263. int i;
  3264. /* Store and display */
  3265. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3266. val64 = (BIT(15) | vBIT(i, 26, 6));
  3267. writeq(val64, &bar0->xmsi_access);
  3268. if (wait_for_msix_trans(nic, i)) {
  3269. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3270. continue;
  3271. }
  3272. addr = readq(&bar0->xmsi_address);
  3273. data = readq(&bar0->xmsi_data);
  3274. if (addr && data) {
  3275. nic->msix_info[i].addr = addr;
  3276. nic->msix_info[i].data = data;
  3277. }
  3278. }
  3279. }
  3280. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3281. {
  3282. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3283. u64 tx_mat, rx_mat;
  3284. u16 msi_control; /* Temp variable */
  3285. int ret, i, j, msix_indx = 1;
  3286. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3287. GFP_KERNEL);
  3288. if (!nic->entries) {
  3289. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3290. __FUNCTION__);
  3291. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3292. return -ENOMEM;
  3293. }
  3294. nic->mac_control.stats_info->sw_stat.mem_allocated
  3295. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3296. nic->s2io_entries =
  3297. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3298. GFP_KERNEL);
  3299. if (!nic->s2io_entries) {
  3300. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3301. __FUNCTION__);
  3302. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3303. kfree(nic->entries);
  3304. nic->mac_control.stats_info->sw_stat.mem_freed
  3305. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3306. return -ENOMEM;
  3307. }
  3308. nic->mac_control.stats_info->sw_stat.mem_allocated
  3309. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3310. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3311. nic->entries[i].entry = i;
  3312. nic->s2io_entries[i].entry = i;
  3313. nic->s2io_entries[i].arg = NULL;
  3314. nic->s2io_entries[i].in_use = 0;
  3315. }
  3316. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3317. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3318. tx_mat |= TX_MAT_SET(i, msix_indx);
  3319. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3320. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3321. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3322. }
  3323. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3324. rx_mat = readq(&bar0->rx_mat);
  3325. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3326. rx_mat |= RX_MAT_SET(j, msix_indx);
  3327. nic->s2io_entries[msix_indx].arg
  3328. = &nic->mac_control.rings[j];
  3329. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3330. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3331. }
  3332. writeq(rx_mat, &bar0->rx_mat);
  3333. nic->avail_msix_vectors = 0;
  3334. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3335. /* We fail init if error or we get less vectors than min required */
  3336. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3337. nic->avail_msix_vectors = ret;
  3338. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3339. }
  3340. if (ret) {
  3341. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3342. kfree(nic->entries);
  3343. nic->mac_control.stats_info->sw_stat.mem_freed
  3344. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3345. kfree(nic->s2io_entries);
  3346. nic->mac_control.stats_info->sw_stat.mem_freed
  3347. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3348. nic->entries = NULL;
  3349. nic->s2io_entries = NULL;
  3350. nic->avail_msix_vectors = 0;
  3351. return -ENOMEM;
  3352. }
  3353. if (!nic->avail_msix_vectors)
  3354. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3355. /*
  3356. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3357. * in the herc NIC. (Temp change, needs to be removed later)
  3358. */
  3359. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3360. msi_control |= 0x1; /* Enable MSI */
  3361. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3362. return 0;
  3363. }
  3364. /* Handle software interrupt used during MSI(X) test */
  3365. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3366. {
  3367. struct s2io_nic *sp = dev_id;
  3368. sp->msi_detected = 1;
  3369. wake_up(&sp->msi_wait);
  3370. return IRQ_HANDLED;
  3371. }
  3372. /* Test interrupt path by forcing a a software IRQ */
  3373. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3374. {
  3375. struct pci_dev *pdev = sp->pdev;
  3376. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3377. int err;
  3378. u64 val64, saved64;
  3379. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3380. sp->name, sp);
  3381. if (err) {
  3382. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3383. sp->dev->name, pci_name(pdev), pdev->irq);
  3384. return err;
  3385. }
  3386. init_waitqueue_head (&sp->msi_wait);
  3387. sp->msi_detected = 0;
  3388. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3389. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3390. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3391. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3392. writeq(val64, &bar0->scheduled_int_ctrl);
  3393. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3394. if (!sp->msi_detected) {
  3395. /* MSI(X) test failed, go back to INTx mode */
  3396. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3397. "using MSI(X) during test\n", sp->dev->name,
  3398. pci_name(pdev));
  3399. err = -EOPNOTSUPP;
  3400. }
  3401. free_irq(sp->entries[1].vector, sp);
  3402. writeq(saved64, &bar0->scheduled_int_ctrl);
  3403. return err;
  3404. }
  3405. /* ********************************************************* *
  3406. * Functions defined below concern the OS part of the driver *
  3407. * ********************************************************* */
  3408. /**
  3409. * s2io_open - open entry point of the driver
  3410. * @dev : pointer to the device structure.
  3411. * Description:
  3412. * This function is the open entry point of the driver. It mainly calls a
  3413. * function to allocate Rx buffers and inserts them into the buffer
  3414. * descriptors and then enables the Rx part of the NIC.
  3415. * Return value:
  3416. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3417. * file on failure.
  3418. */
  3419. static int s2io_open(struct net_device *dev)
  3420. {
  3421. struct s2io_nic *sp = dev->priv;
  3422. int err = 0;
  3423. /*
  3424. * Make sure you have link off by default every time
  3425. * Nic is initialized
  3426. */
  3427. netif_carrier_off(dev);
  3428. sp->last_link_state = 0;
  3429. napi_enable(&sp->napi);
  3430. if (sp->config.intr_type == MSI_X) {
  3431. int ret = s2io_enable_msi_x(sp);
  3432. if (!ret) {
  3433. u16 msi_control;
  3434. ret = s2io_test_msi(sp);
  3435. /* rollback MSI-X, will re-enable during add_isr() */
  3436. kfree(sp->entries);
  3437. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3438. (MAX_REQUESTED_MSI_X *
  3439. sizeof(struct msix_entry));
  3440. kfree(sp->s2io_entries);
  3441. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3442. (MAX_REQUESTED_MSI_X *
  3443. sizeof(struct s2io_msix_entry));
  3444. sp->entries = NULL;
  3445. sp->s2io_entries = NULL;
  3446. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3447. msi_control &= 0xFFFE; /* Disable MSI */
  3448. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3449. pci_disable_msix(sp->pdev);
  3450. }
  3451. if (ret) {
  3452. DBG_PRINT(ERR_DBG,
  3453. "%s: MSI-X requested but failed to enable\n",
  3454. dev->name);
  3455. sp->config.intr_type = INTA;
  3456. }
  3457. }
  3458. /* NAPI doesn't work well with MSI(X) */
  3459. if (sp->config.intr_type != INTA) {
  3460. if(sp->config.napi)
  3461. sp->config.napi = 0;
  3462. }
  3463. /* Initialize H/W and enable interrupts */
  3464. err = s2io_card_up(sp);
  3465. if (err) {
  3466. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3467. dev->name);
  3468. goto hw_init_failed;
  3469. }
  3470. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3471. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3472. s2io_card_down(sp);
  3473. err = -ENODEV;
  3474. goto hw_init_failed;
  3475. }
  3476. netif_start_queue(dev);
  3477. return 0;
  3478. hw_init_failed:
  3479. napi_disable(&sp->napi);
  3480. if (sp->config.intr_type == MSI_X) {
  3481. if (sp->entries) {
  3482. kfree(sp->entries);
  3483. sp->mac_control.stats_info->sw_stat.mem_freed
  3484. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3485. }
  3486. if (sp->s2io_entries) {
  3487. kfree(sp->s2io_entries);
  3488. sp->mac_control.stats_info->sw_stat.mem_freed
  3489. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3490. }
  3491. }
  3492. return err;
  3493. }
  3494. /**
  3495. * s2io_close -close entry point of the driver
  3496. * @dev : device pointer.
  3497. * Description:
  3498. * This is the stop entry point of the driver. It needs to undo exactly
  3499. * whatever was done by the open entry point,thus it's usually referred to
  3500. * as the close function.Among other things this function mainly stops the
  3501. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3502. * Return value:
  3503. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3504. * file on failure.
  3505. */
  3506. static int s2io_close(struct net_device *dev)
  3507. {
  3508. struct s2io_nic *sp = dev->priv;
  3509. netif_stop_queue(dev);
  3510. napi_disable(&sp->napi);
  3511. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3512. s2io_card_down(sp);
  3513. return 0;
  3514. }
  3515. /**
  3516. * s2io_xmit - Tx entry point of te driver
  3517. * @skb : the socket buffer containing the Tx data.
  3518. * @dev : device pointer.
  3519. * Description :
  3520. * This function is the Tx entry point of the driver. S2IO NIC supports
  3521. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3522. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3523. * not be upadted.
  3524. * Return value:
  3525. * 0 on success & 1 on failure.
  3526. */
  3527. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3528. {
  3529. struct s2io_nic *sp = dev->priv;
  3530. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3531. register u64 val64;
  3532. struct TxD *txdp;
  3533. struct TxFIFO_element __iomem *tx_fifo;
  3534. unsigned long flags;
  3535. u16 vlan_tag = 0;
  3536. int vlan_priority = 0;
  3537. struct mac_info *mac_control;
  3538. struct config_param *config;
  3539. int offload_type;
  3540. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3541. mac_control = &sp->mac_control;
  3542. config = &sp->config;
  3543. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3544. if (unlikely(skb->len <= 0)) {
  3545. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3546. dev_kfree_skb_any(skb);
  3547. return 0;
  3548. }
  3549. spin_lock_irqsave(&sp->tx_lock, flags);
  3550. if (!is_s2io_card_up(sp)) {
  3551. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3552. dev->name);
  3553. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3554. dev_kfree_skb(skb);
  3555. return 0;
  3556. }
  3557. queue = 0;
  3558. /* Get Fifo number to Transmit based on vlan priority */
  3559. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3560. vlan_tag = vlan_tx_tag_get(skb);
  3561. vlan_priority = vlan_tag >> 13;
  3562. queue = config->fifo_mapping[vlan_priority];
  3563. }
  3564. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3565. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3566. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3567. list_virt_addr;
  3568. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3569. /* Avoid "put" pointer going beyond "get" pointer */
  3570. if (txdp->Host_Control ||
  3571. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3572. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3573. netif_stop_queue(dev);
  3574. dev_kfree_skb(skb);
  3575. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3576. return 0;
  3577. }
  3578. offload_type = s2io_offload_type(skb);
  3579. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3580. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3581. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3582. }
  3583. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3584. txdp->Control_2 |=
  3585. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3586. TXD_TX_CKO_UDP_EN);
  3587. }
  3588. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3589. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3590. txdp->Control_2 |= config->tx_intr_type;
  3591. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3592. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3593. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3594. }
  3595. frg_len = skb->len - skb->data_len;
  3596. if (offload_type == SKB_GSO_UDP) {
  3597. int ufo_size;
  3598. ufo_size = s2io_udp_mss(skb);
  3599. ufo_size &= ~7;
  3600. txdp->Control_1 |= TXD_UFO_EN;
  3601. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3602. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3603. #ifdef __BIG_ENDIAN
  3604. sp->ufo_in_band_v[put_off] =
  3605. (u64)skb_shinfo(skb)->ip6_frag_id;
  3606. #else
  3607. sp->ufo_in_band_v[put_off] =
  3608. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3609. #endif
  3610. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3611. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3612. sp->ufo_in_band_v,
  3613. sizeof(u64), PCI_DMA_TODEVICE);
  3614. if((txdp->Buffer_Pointer == 0) ||
  3615. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3616. goto pci_map_failed;
  3617. txdp++;
  3618. }
  3619. txdp->Buffer_Pointer = pci_map_single
  3620. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3621. if((txdp->Buffer_Pointer == 0) ||
  3622. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3623. goto pci_map_failed;
  3624. txdp->Host_Control = (unsigned long) skb;
  3625. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3626. if (offload_type == SKB_GSO_UDP)
  3627. txdp->Control_1 |= TXD_UFO_EN;
  3628. frg_cnt = skb_shinfo(skb)->nr_frags;
  3629. /* For fragmented SKB. */
  3630. for (i = 0; i < frg_cnt; i++) {
  3631. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3632. /* A '0' length fragment will be ignored */
  3633. if (!frag->size)
  3634. continue;
  3635. txdp++;
  3636. txdp->Buffer_Pointer = (u64) pci_map_page
  3637. (sp->pdev, frag->page, frag->page_offset,
  3638. frag->size, PCI_DMA_TODEVICE);
  3639. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3640. if (offload_type == SKB_GSO_UDP)
  3641. txdp->Control_1 |= TXD_UFO_EN;
  3642. }
  3643. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3644. if (offload_type == SKB_GSO_UDP)
  3645. frg_cnt++; /* as Txd0 was used for inband header */
  3646. tx_fifo = mac_control->tx_FIFO_start[queue];
  3647. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3648. writeq(val64, &tx_fifo->TxDL_Pointer);
  3649. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3650. TX_FIFO_LAST_LIST);
  3651. if (offload_type)
  3652. val64 |= TX_FIFO_SPECIAL_FUNC;
  3653. writeq(val64, &tx_fifo->List_Control);
  3654. mmiowb();
  3655. put_off++;
  3656. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3657. put_off = 0;
  3658. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3659. /* Avoid "put" pointer going beyond "get" pointer */
  3660. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3661. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3662. DBG_PRINT(TX_DBG,
  3663. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3664. put_off, get_off);
  3665. netif_stop_queue(dev);
  3666. }
  3667. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3668. dev->trans_start = jiffies;
  3669. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3670. return 0;
  3671. pci_map_failed:
  3672. stats->pci_map_fail_cnt++;
  3673. netif_stop_queue(dev);
  3674. stats->mem_freed += skb->truesize;
  3675. dev_kfree_skb(skb);
  3676. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3677. return 0;
  3678. }
  3679. static void
  3680. s2io_alarm_handle(unsigned long data)
  3681. {
  3682. struct s2io_nic *sp = (struct s2io_nic *)data;
  3683. struct net_device *dev = sp->dev;
  3684. s2io_handle_errors(dev);
  3685. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3686. }
  3687. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3688. {
  3689. int rxb_size, level;
  3690. if (!sp->lro) {
  3691. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3692. level = rx_buffer_level(sp, rxb_size, rng_n);
  3693. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3694. int ret;
  3695. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3696. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3697. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3698. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3699. __FUNCTION__);
  3700. clear_bit(0, (&sp->tasklet_status));
  3701. return -1;
  3702. }
  3703. clear_bit(0, (&sp->tasklet_status));
  3704. } else if (level == LOW)
  3705. tasklet_schedule(&sp->task);
  3706. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3707. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3708. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3709. }
  3710. return 0;
  3711. }
  3712. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3713. {
  3714. struct ring_info *ring = (struct ring_info *)dev_id;
  3715. struct s2io_nic *sp = ring->nic;
  3716. if (!is_s2io_card_up(sp))
  3717. return IRQ_HANDLED;
  3718. rx_intr_handler(ring);
  3719. s2io_chk_rx_buffers(sp, ring->ring_no);
  3720. return IRQ_HANDLED;
  3721. }
  3722. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3723. {
  3724. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3725. struct s2io_nic *sp = fifo->nic;
  3726. if (!is_s2io_card_up(sp))
  3727. return IRQ_HANDLED;
  3728. tx_intr_handler(fifo);
  3729. return IRQ_HANDLED;
  3730. }
  3731. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3732. {
  3733. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3734. u64 val64;
  3735. val64 = readq(&bar0->pic_int_status);
  3736. if (val64 & PIC_INT_GPIO) {
  3737. val64 = readq(&bar0->gpio_int_reg);
  3738. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3739. (val64 & GPIO_INT_REG_LINK_UP)) {
  3740. /*
  3741. * This is unstable state so clear both up/down
  3742. * interrupt and adapter to re-evaluate the link state.
  3743. */
  3744. val64 |= GPIO_INT_REG_LINK_DOWN;
  3745. val64 |= GPIO_INT_REG_LINK_UP;
  3746. writeq(val64, &bar0->gpio_int_reg);
  3747. val64 = readq(&bar0->gpio_int_mask);
  3748. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3749. GPIO_INT_MASK_LINK_DOWN);
  3750. writeq(val64, &bar0->gpio_int_mask);
  3751. }
  3752. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3753. val64 = readq(&bar0->adapter_status);
  3754. /* Enable Adapter */
  3755. val64 = readq(&bar0->adapter_control);
  3756. val64 |= ADAPTER_CNTL_EN;
  3757. writeq(val64, &bar0->adapter_control);
  3758. val64 |= ADAPTER_LED_ON;
  3759. writeq(val64, &bar0->adapter_control);
  3760. if (!sp->device_enabled_once)
  3761. sp->device_enabled_once = 1;
  3762. s2io_link(sp, LINK_UP);
  3763. /*
  3764. * unmask link down interrupt and mask link-up
  3765. * intr
  3766. */
  3767. val64 = readq(&bar0->gpio_int_mask);
  3768. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3769. val64 |= GPIO_INT_MASK_LINK_UP;
  3770. writeq(val64, &bar0->gpio_int_mask);
  3771. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3772. val64 = readq(&bar0->adapter_status);
  3773. s2io_link(sp, LINK_DOWN);
  3774. /* Link is down so unmaks link up interrupt */
  3775. val64 = readq(&bar0->gpio_int_mask);
  3776. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3777. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3778. writeq(val64, &bar0->gpio_int_mask);
  3779. /* turn off LED */
  3780. val64 = readq(&bar0->adapter_control);
  3781. val64 = val64 &(~ADAPTER_LED_ON);
  3782. writeq(val64, &bar0->adapter_control);
  3783. }
  3784. }
  3785. val64 = readq(&bar0->gpio_int_mask);
  3786. }
  3787. /**
  3788. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3789. * @value: alarm bits
  3790. * @addr: address value
  3791. * @cnt: counter variable
  3792. * Description: Check for alarm and increment the counter
  3793. * Return Value:
  3794. * 1 - if alarm bit set
  3795. * 0 - if alarm bit is not set
  3796. */
  3797. int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3798. unsigned long long *cnt)
  3799. {
  3800. u64 val64;
  3801. val64 = readq(addr);
  3802. if ( val64 & value ) {
  3803. writeq(val64, addr);
  3804. (*cnt)++;
  3805. return 1;
  3806. }
  3807. return 0;
  3808. }
  3809. /**
  3810. * s2io_handle_errors - Xframe error indication handler
  3811. * @nic: device private variable
  3812. * Description: Handle alarms such as loss of link, single or
  3813. * double ECC errors, critical and serious errors.
  3814. * Return Value:
  3815. * NONE
  3816. */
  3817. static void s2io_handle_errors(void * dev_id)
  3818. {
  3819. struct net_device *dev = (struct net_device *) dev_id;
  3820. struct s2io_nic *sp = dev->priv;
  3821. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3822. u64 temp64 = 0,val64=0;
  3823. int i = 0;
  3824. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3825. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3826. if (!is_s2io_card_up(sp))
  3827. return;
  3828. if (pci_channel_offline(sp->pdev))
  3829. return;
  3830. memset(&sw_stat->ring_full_cnt, 0,
  3831. sizeof(sw_stat->ring_full_cnt));
  3832. /* Handling the XPAK counters update */
  3833. if(stats->xpak_timer_count < 72000) {
  3834. /* waiting for an hour */
  3835. stats->xpak_timer_count++;
  3836. } else {
  3837. s2io_updt_xpak_counter(dev);
  3838. /* reset the count to zero */
  3839. stats->xpak_timer_count = 0;
  3840. }
  3841. /* Handling link status change error Intr */
  3842. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3843. val64 = readq(&bar0->mac_rmac_err_reg);
  3844. writeq(val64, &bar0->mac_rmac_err_reg);
  3845. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3846. schedule_work(&sp->set_link_task);
  3847. }
  3848. /* In case of a serious error, the device will be Reset. */
  3849. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3850. &sw_stat->serious_err_cnt))
  3851. goto reset;
  3852. /* Check for data parity error */
  3853. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3854. &sw_stat->parity_err_cnt))
  3855. goto reset;
  3856. /* Check for ring full counter */
  3857. if (sp->device_type == XFRAME_II_DEVICE) {
  3858. val64 = readq(&bar0->ring_bump_counter1);
  3859. for (i=0; i<4; i++) {
  3860. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3861. temp64 >>= 64 - ((i+1)*16);
  3862. sw_stat->ring_full_cnt[i] += temp64;
  3863. }
  3864. val64 = readq(&bar0->ring_bump_counter2);
  3865. for (i=0; i<4; i++) {
  3866. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3867. temp64 >>= 64 - ((i+1)*16);
  3868. sw_stat->ring_full_cnt[i+4] += temp64;
  3869. }
  3870. }
  3871. val64 = readq(&bar0->txdma_int_status);
  3872. /*check for pfc_err*/
  3873. if (val64 & TXDMA_PFC_INT) {
  3874. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3875. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3876. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3877. &sw_stat->pfc_err_cnt))
  3878. goto reset;
  3879. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3880. &sw_stat->pfc_err_cnt);
  3881. }
  3882. /*check for tda_err*/
  3883. if (val64 & TXDMA_TDA_INT) {
  3884. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3885. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3886. &sw_stat->tda_err_cnt))
  3887. goto reset;
  3888. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3889. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3890. }
  3891. /*check for pcc_err*/
  3892. if (val64 & TXDMA_PCC_INT) {
  3893. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3894. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3895. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3896. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3897. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3898. &sw_stat->pcc_err_cnt))
  3899. goto reset;
  3900. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3901. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3902. }
  3903. /*check for tti_err*/
  3904. if (val64 & TXDMA_TTI_INT) {
  3905. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3906. &sw_stat->tti_err_cnt))
  3907. goto reset;
  3908. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3909. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3910. }
  3911. /*check for lso_err*/
  3912. if (val64 & TXDMA_LSO_INT) {
  3913. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3914. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3915. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3916. goto reset;
  3917. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3918. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3919. }
  3920. /*check for tpa_err*/
  3921. if (val64 & TXDMA_TPA_INT) {
  3922. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3923. &sw_stat->tpa_err_cnt))
  3924. goto reset;
  3925. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3926. &sw_stat->tpa_err_cnt);
  3927. }
  3928. /*check for sm_err*/
  3929. if (val64 & TXDMA_SM_INT) {
  3930. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3931. &sw_stat->sm_err_cnt))
  3932. goto reset;
  3933. }
  3934. val64 = readq(&bar0->mac_int_status);
  3935. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3936. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3937. &bar0->mac_tmac_err_reg,
  3938. &sw_stat->mac_tmac_err_cnt))
  3939. goto reset;
  3940. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3941. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3942. &bar0->mac_tmac_err_reg,
  3943. &sw_stat->mac_tmac_err_cnt);
  3944. }
  3945. val64 = readq(&bar0->xgxs_int_status);
  3946. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3947. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3948. &bar0->xgxs_txgxs_err_reg,
  3949. &sw_stat->xgxs_txgxs_err_cnt))
  3950. goto reset;
  3951. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3952. &bar0->xgxs_txgxs_err_reg,
  3953. &sw_stat->xgxs_txgxs_err_cnt);
  3954. }
  3955. val64 = readq(&bar0->rxdma_int_status);
  3956. if (val64 & RXDMA_INT_RC_INT_M) {
  3957. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3958. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  3959. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  3960. goto reset;
  3961. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  3962. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  3963. &sw_stat->rc_err_cnt);
  3964. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  3965. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3966. &sw_stat->prc_pcix_err_cnt))
  3967. goto reset;
  3968. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  3969. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3970. &sw_stat->prc_pcix_err_cnt);
  3971. }
  3972. if (val64 & RXDMA_INT_RPA_INT_M) {
  3973. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  3974. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  3975. goto reset;
  3976. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  3977. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  3978. }
  3979. if (val64 & RXDMA_INT_RDA_INT_M) {
  3980. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  3981. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  3982. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  3983. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  3984. goto reset;
  3985. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  3986. | RDA_MISC_ERR | RDA_PCIX_ERR,
  3987. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  3988. }
  3989. if (val64 & RXDMA_INT_RTI_INT_M) {
  3990. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  3991. &sw_stat->rti_err_cnt))
  3992. goto reset;
  3993. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  3994. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  3995. }
  3996. val64 = readq(&bar0->mac_int_status);
  3997. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  3998. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  3999. &bar0->mac_rmac_err_reg,
  4000. &sw_stat->mac_rmac_err_cnt))
  4001. goto reset;
  4002. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4003. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4004. &sw_stat->mac_rmac_err_cnt);
  4005. }
  4006. val64 = readq(&bar0->xgxs_int_status);
  4007. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4008. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4009. &bar0->xgxs_rxgxs_err_reg,
  4010. &sw_stat->xgxs_rxgxs_err_cnt))
  4011. goto reset;
  4012. }
  4013. val64 = readq(&bar0->mc_int_status);
  4014. if(val64 & MC_INT_STATUS_MC_INT) {
  4015. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4016. &sw_stat->mc_err_cnt))
  4017. goto reset;
  4018. /* Handling Ecc errors */
  4019. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4020. writeq(val64, &bar0->mc_err_reg);
  4021. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4022. sw_stat->double_ecc_errs++;
  4023. if (sp->device_type != XFRAME_II_DEVICE) {
  4024. /*
  4025. * Reset XframeI only if critical error
  4026. */
  4027. if (val64 &
  4028. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4029. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4030. goto reset;
  4031. }
  4032. } else
  4033. sw_stat->single_ecc_errs++;
  4034. }
  4035. }
  4036. return;
  4037. reset:
  4038. netif_stop_queue(dev);
  4039. schedule_work(&sp->rst_timer_task);
  4040. sw_stat->soft_reset_cnt++;
  4041. return;
  4042. }
  4043. /**
  4044. * s2io_isr - ISR handler of the device .
  4045. * @irq: the irq of the device.
  4046. * @dev_id: a void pointer to the dev structure of the NIC.
  4047. * Description: This function is the ISR handler of the device. It
  4048. * identifies the reason for the interrupt and calls the relevant
  4049. * service routines. As a contongency measure, this ISR allocates the
  4050. * recv buffers, if their numbers are below the panic value which is
  4051. * presently set to 25% of the original number of rcv buffers allocated.
  4052. * Return value:
  4053. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4054. * IRQ_NONE: will be returned if interrupt is not from our device
  4055. */
  4056. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4057. {
  4058. struct net_device *dev = (struct net_device *) dev_id;
  4059. struct s2io_nic *sp = dev->priv;
  4060. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4061. int i;
  4062. u64 reason = 0;
  4063. struct mac_info *mac_control;
  4064. struct config_param *config;
  4065. /* Pretend we handled any irq's from a disconnected card */
  4066. if (pci_channel_offline(sp->pdev))
  4067. return IRQ_NONE;
  4068. if (!is_s2io_card_up(sp))
  4069. return IRQ_NONE;
  4070. mac_control = &sp->mac_control;
  4071. config = &sp->config;
  4072. /*
  4073. * Identify the cause for interrupt and call the appropriate
  4074. * interrupt handler. Causes for the interrupt could be;
  4075. * 1. Rx of packet.
  4076. * 2. Tx complete.
  4077. * 3. Link down.
  4078. */
  4079. reason = readq(&bar0->general_int_status);
  4080. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4081. /* Nothing much can be done. Get out */
  4082. return IRQ_HANDLED;
  4083. }
  4084. if (reason & (GEN_INTR_RXTRAFFIC |
  4085. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4086. {
  4087. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4088. if (config->napi) {
  4089. if (reason & GEN_INTR_RXTRAFFIC) {
  4090. if (likely(netif_rx_schedule_prep(dev,
  4091. &sp->napi))) {
  4092. __netif_rx_schedule(dev, &sp->napi);
  4093. writeq(S2IO_MINUS_ONE,
  4094. &bar0->rx_traffic_mask);
  4095. } else
  4096. writeq(S2IO_MINUS_ONE,
  4097. &bar0->rx_traffic_int);
  4098. }
  4099. } else {
  4100. /*
  4101. * rx_traffic_int reg is an R1 register, writing all 1's
  4102. * will ensure that the actual interrupt causing bit
  4103. * get's cleared and hence a read can be avoided.
  4104. */
  4105. if (reason & GEN_INTR_RXTRAFFIC)
  4106. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4107. for (i = 0; i < config->rx_ring_num; i++)
  4108. rx_intr_handler(&mac_control->rings[i]);
  4109. }
  4110. /*
  4111. * tx_traffic_int reg is an R1 register, writing all 1's
  4112. * will ensure that the actual interrupt causing bit get's
  4113. * cleared and hence a read can be avoided.
  4114. */
  4115. if (reason & GEN_INTR_TXTRAFFIC)
  4116. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4117. for (i = 0; i < config->tx_fifo_num; i++)
  4118. tx_intr_handler(&mac_control->fifos[i]);
  4119. if (reason & GEN_INTR_TXPIC)
  4120. s2io_txpic_intr_handle(sp);
  4121. /*
  4122. * Reallocate the buffers from the interrupt handler itself.
  4123. */
  4124. if (!config->napi) {
  4125. for (i = 0; i < config->rx_ring_num; i++)
  4126. s2io_chk_rx_buffers(sp, i);
  4127. }
  4128. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4129. readl(&bar0->general_int_status);
  4130. return IRQ_HANDLED;
  4131. }
  4132. else if (!reason) {
  4133. /* The interrupt was not raised by us */
  4134. return IRQ_NONE;
  4135. }
  4136. return IRQ_HANDLED;
  4137. }
  4138. /**
  4139. * s2io_updt_stats -
  4140. */
  4141. static void s2io_updt_stats(struct s2io_nic *sp)
  4142. {
  4143. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4144. u64 val64;
  4145. int cnt = 0;
  4146. if (is_s2io_card_up(sp)) {
  4147. /* Apprx 30us on a 133 MHz bus */
  4148. val64 = SET_UPDT_CLICKS(10) |
  4149. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4150. writeq(val64, &bar0->stat_cfg);
  4151. do {
  4152. udelay(100);
  4153. val64 = readq(&bar0->stat_cfg);
  4154. if (!(val64 & BIT(0)))
  4155. break;
  4156. cnt++;
  4157. if (cnt == 5)
  4158. break; /* Updt failed */
  4159. } while(1);
  4160. }
  4161. }
  4162. /**
  4163. * s2io_get_stats - Updates the device statistics structure.
  4164. * @dev : pointer to the device structure.
  4165. * Description:
  4166. * This function updates the device statistics structure in the s2io_nic
  4167. * structure and returns a pointer to the same.
  4168. * Return value:
  4169. * pointer to the updated net_device_stats structure.
  4170. */
  4171. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4172. {
  4173. struct s2io_nic *sp = dev->priv;
  4174. struct mac_info *mac_control;
  4175. struct config_param *config;
  4176. mac_control = &sp->mac_control;
  4177. config = &sp->config;
  4178. /* Configure Stats for immediate updt */
  4179. s2io_updt_stats(sp);
  4180. sp->stats.tx_packets =
  4181. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4182. sp->stats.tx_errors =
  4183. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4184. sp->stats.rx_errors =
  4185. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4186. sp->stats.multicast =
  4187. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4188. sp->stats.rx_length_errors =
  4189. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4190. return (&sp->stats);
  4191. }
  4192. /**
  4193. * s2io_set_multicast - entry point for multicast address enable/disable.
  4194. * @dev : pointer to the device structure
  4195. * Description:
  4196. * This function is a driver entry point which gets called by the kernel
  4197. * whenever multicast addresses must be enabled/disabled. This also gets
  4198. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4199. * determine, if multicast address must be enabled or if promiscuous mode
  4200. * is to be disabled etc.
  4201. * Return value:
  4202. * void.
  4203. */
  4204. static void s2io_set_multicast(struct net_device *dev)
  4205. {
  4206. int i, j, prev_cnt;
  4207. struct dev_mc_list *mclist;
  4208. struct s2io_nic *sp = dev->priv;
  4209. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4210. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4211. 0xfeffffffffffULL;
  4212. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4213. void __iomem *add;
  4214. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4215. /* Enable all Multicast addresses */
  4216. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4217. &bar0->rmac_addr_data0_mem);
  4218. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4219. &bar0->rmac_addr_data1_mem);
  4220. val64 = RMAC_ADDR_CMD_MEM_WE |
  4221. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4222. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4223. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4224. /* Wait till command completes */
  4225. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4226. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4227. S2IO_BIT_RESET);
  4228. sp->m_cast_flg = 1;
  4229. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4230. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4231. /* Disable all Multicast addresses */
  4232. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4233. &bar0->rmac_addr_data0_mem);
  4234. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4235. &bar0->rmac_addr_data1_mem);
  4236. val64 = RMAC_ADDR_CMD_MEM_WE |
  4237. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4238. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4239. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4240. /* Wait till command completes */
  4241. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4242. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4243. S2IO_BIT_RESET);
  4244. sp->m_cast_flg = 0;
  4245. sp->all_multi_pos = 0;
  4246. }
  4247. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4248. /* Put the NIC into promiscuous mode */
  4249. add = &bar0->mac_cfg;
  4250. val64 = readq(&bar0->mac_cfg);
  4251. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4252. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4253. writel((u32) val64, add);
  4254. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4255. writel((u32) (val64 >> 32), (add + 4));
  4256. if (vlan_tag_strip != 1) {
  4257. val64 = readq(&bar0->rx_pa_cfg);
  4258. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4259. writeq(val64, &bar0->rx_pa_cfg);
  4260. vlan_strip_flag = 0;
  4261. }
  4262. val64 = readq(&bar0->mac_cfg);
  4263. sp->promisc_flg = 1;
  4264. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4265. dev->name);
  4266. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4267. /* Remove the NIC from promiscuous mode */
  4268. add = &bar0->mac_cfg;
  4269. val64 = readq(&bar0->mac_cfg);
  4270. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4271. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4272. writel((u32) val64, add);
  4273. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4274. writel((u32) (val64 >> 32), (add + 4));
  4275. if (vlan_tag_strip != 0) {
  4276. val64 = readq(&bar0->rx_pa_cfg);
  4277. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4278. writeq(val64, &bar0->rx_pa_cfg);
  4279. vlan_strip_flag = 1;
  4280. }
  4281. val64 = readq(&bar0->mac_cfg);
  4282. sp->promisc_flg = 0;
  4283. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4284. dev->name);
  4285. }
  4286. /* Update individual M_CAST address list */
  4287. if ((!sp->m_cast_flg) && dev->mc_count) {
  4288. if (dev->mc_count >
  4289. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4290. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4291. dev->name);
  4292. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4293. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4294. return;
  4295. }
  4296. prev_cnt = sp->mc_addr_count;
  4297. sp->mc_addr_count = dev->mc_count;
  4298. /* Clear out the previous list of Mc in the H/W. */
  4299. for (i = 0; i < prev_cnt; i++) {
  4300. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4301. &bar0->rmac_addr_data0_mem);
  4302. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4303. &bar0->rmac_addr_data1_mem);
  4304. val64 = RMAC_ADDR_CMD_MEM_WE |
  4305. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4306. RMAC_ADDR_CMD_MEM_OFFSET
  4307. (MAC_MC_ADDR_START_OFFSET + i);
  4308. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4309. /* Wait for command completes */
  4310. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4311. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4312. S2IO_BIT_RESET)) {
  4313. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4314. dev->name);
  4315. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4316. return;
  4317. }
  4318. }
  4319. /* Create the new Rx filter list and update the same in H/W. */
  4320. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4321. i++, mclist = mclist->next) {
  4322. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4323. ETH_ALEN);
  4324. mac_addr = 0;
  4325. for (j = 0; j < ETH_ALEN; j++) {
  4326. mac_addr |= mclist->dmi_addr[j];
  4327. mac_addr <<= 8;
  4328. }
  4329. mac_addr >>= 8;
  4330. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4331. &bar0->rmac_addr_data0_mem);
  4332. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4333. &bar0->rmac_addr_data1_mem);
  4334. val64 = RMAC_ADDR_CMD_MEM_WE |
  4335. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4336. RMAC_ADDR_CMD_MEM_OFFSET
  4337. (i + MAC_MC_ADDR_START_OFFSET);
  4338. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4339. /* Wait for command completes */
  4340. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4341. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4342. S2IO_BIT_RESET)) {
  4343. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4344. dev->name);
  4345. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4346. return;
  4347. }
  4348. }
  4349. }
  4350. }
  4351. /* add unicast MAC address to CAM */
  4352. static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
  4353. {
  4354. u64 val64;
  4355. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4356. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4357. &bar0->rmac_addr_data0_mem);
  4358. val64 =
  4359. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4360. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4361. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4362. /* Wait till command completes */
  4363. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4364. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4365. S2IO_BIT_RESET)) {
  4366. DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
  4367. return FAILURE;
  4368. }
  4369. return SUCCESS;
  4370. }
  4371. /**
  4372. * s2io_set_mac_addr driver entry point
  4373. */
  4374. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4375. {
  4376. struct sockaddr *addr = p;
  4377. if (!is_valid_ether_addr(addr->sa_data))
  4378. return -EINVAL;
  4379. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4380. /* store the MAC address in CAM */
  4381. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4382. }
  4383. /**
  4384. * do_s2io_prog_unicast - Programs the Xframe mac address
  4385. * @dev : pointer to the device structure.
  4386. * @addr: a uchar pointer to the new mac address which is to be set.
  4387. * Description : This procedure will program the Xframe to receive
  4388. * frames with new Mac Address
  4389. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4390. * as defined in errno.h file on failure.
  4391. */
  4392. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4393. {
  4394. struct s2io_nic *sp = dev->priv;
  4395. register u64 mac_addr = 0, perm_addr = 0;
  4396. int i;
  4397. /*
  4398. * Set the new MAC address as the new unicast filter and reflect this
  4399. * change on the device address registered with the OS. It will be
  4400. * at offset 0.
  4401. */
  4402. for (i = 0; i < ETH_ALEN; i++) {
  4403. mac_addr <<= 8;
  4404. mac_addr |= addr[i];
  4405. perm_addr <<= 8;
  4406. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4407. }
  4408. /* check if the dev_addr is different than perm_addr */
  4409. if (mac_addr == perm_addr)
  4410. return SUCCESS;
  4411. /* Update the internal structure with this new mac address */
  4412. do_s2io_copy_mac_addr(sp, 0, mac_addr);
  4413. return (do_s2io_add_unicast(sp, mac_addr, 0));
  4414. }
  4415. /**
  4416. * s2io_ethtool_sset - Sets different link parameters.
  4417. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4418. * @info: pointer to the structure with parameters given by ethtool to set
  4419. * link information.
  4420. * Description:
  4421. * The function sets different link parameters provided by the user onto
  4422. * the NIC.
  4423. * Return value:
  4424. * 0 on success.
  4425. */
  4426. static int s2io_ethtool_sset(struct net_device *dev,
  4427. struct ethtool_cmd *info)
  4428. {
  4429. struct s2io_nic *sp = dev->priv;
  4430. if ((info->autoneg == AUTONEG_ENABLE) ||
  4431. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4432. return -EINVAL;
  4433. else {
  4434. s2io_close(sp->dev);
  4435. s2io_open(sp->dev);
  4436. }
  4437. return 0;
  4438. }
  4439. /**
  4440. * s2io_ethtol_gset - Return link specific information.
  4441. * @sp : private member of the device structure, pointer to the
  4442. * s2io_nic structure.
  4443. * @info : pointer to the structure with parameters given by ethtool
  4444. * to return link information.
  4445. * Description:
  4446. * Returns link specific information like speed, duplex etc.. to ethtool.
  4447. * Return value :
  4448. * return 0 on success.
  4449. */
  4450. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4451. {
  4452. struct s2io_nic *sp = dev->priv;
  4453. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4454. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4455. info->port = PORT_FIBRE;
  4456. /* info->transceiver */
  4457. info->transceiver = XCVR_EXTERNAL;
  4458. if (netif_carrier_ok(sp->dev)) {
  4459. info->speed = 10000;
  4460. info->duplex = DUPLEX_FULL;
  4461. } else {
  4462. info->speed = -1;
  4463. info->duplex = -1;
  4464. }
  4465. info->autoneg = AUTONEG_DISABLE;
  4466. return 0;
  4467. }
  4468. /**
  4469. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4470. * @sp : private member of the device structure, which is a pointer to the
  4471. * s2io_nic structure.
  4472. * @info : pointer to the structure with parameters given by ethtool to
  4473. * return driver information.
  4474. * Description:
  4475. * Returns driver specefic information like name, version etc.. to ethtool.
  4476. * Return value:
  4477. * void
  4478. */
  4479. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4480. struct ethtool_drvinfo *info)
  4481. {
  4482. struct s2io_nic *sp = dev->priv;
  4483. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4484. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4485. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4486. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4487. info->regdump_len = XENA_REG_SPACE;
  4488. info->eedump_len = XENA_EEPROM_SPACE;
  4489. }
  4490. /**
  4491. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4492. * @sp: private member of the device structure, which is a pointer to the
  4493. * s2io_nic structure.
  4494. * @regs : pointer to the structure with parameters given by ethtool for
  4495. * dumping the registers.
  4496. * @reg_space: The input argumnet into which all the registers are dumped.
  4497. * Description:
  4498. * Dumps the entire register space of xFrame NIC into the user given
  4499. * buffer area.
  4500. * Return value :
  4501. * void .
  4502. */
  4503. static void s2io_ethtool_gregs(struct net_device *dev,
  4504. struct ethtool_regs *regs, void *space)
  4505. {
  4506. int i;
  4507. u64 reg;
  4508. u8 *reg_space = (u8 *) space;
  4509. struct s2io_nic *sp = dev->priv;
  4510. regs->len = XENA_REG_SPACE;
  4511. regs->version = sp->pdev->subsystem_device;
  4512. for (i = 0; i < regs->len; i += 8) {
  4513. reg = readq(sp->bar0 + i);
  4514. memcpy((reg_space + i), &reg, 8);
  4515. }
  4516. }
  4517. /**
  4518. * s2io_phy_id - timer function that alternates adapter LED.
  4519. * @data : address of the private member of the device structure, which
  4520. * is a pointer to the s2io_nic structure, provided as an u32.
  4521. * Description: This is actually the timer function that alternates the
  4522. * adapter LED bit of the adapter control bit to set/reset every time on
  4523. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4524. * once every second.
  4525. */
  4526. static void s2io_phy_id(unsigned long data)
  4527. {
  4528. struct s2io_nic *sp = (struct s2io_nic *) data;
  4529. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4530. u64 val64 = 0;
  4531. u16 subid;
  4532. subid = sp->pdev->subsystem_device;
  4533. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4534. ((subid & 0xFF) >= 0x07)) {
  4535. val64 = readq(&bar0->gpio_control);
  4536. val64 ^= GPIO_CTRL_GPIO_0;
  4537. writeq(val64, &bar0->gpio_control);
  4538. } else {
  4539. val64 = readq(&bar0->adapter_control);
  4540. val64 ^= ADAPTER_LED_ON;
  4541. writeq(val64, &bar0->adapter_control);
  4542. }
  4543. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4544. }
  4545. /**
  4546. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4547. * @sp : private member of the device structure, which is a pointer to the
  4548. * s2io_nic structure.
  4549. * @id : pointer to the structure with identification parameters given by
  4550. * ethtool.
  4551. * Description: Used to physically identify the NIC on the system.
  4552. * The Link LED will blink for a time specified by the user for
  4553. * identification.
  4554. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4555. * identification is possible only if it's link is up.
  4556. * Return value:
  4557. * int , returns 0 on success
  4558. */
  4559. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4560. {
  4561. u64 val64 = 0, last_gpio_ctrl_val;
  4562. struct s2io_nic *sp = dev->priv;
  4563. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4564. u16 subid;
  4565. subid = sp->pdev->subsystem_device;
  4566. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4567. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4568. ((subid & 0xFF) < 0x07)) {
  4569. val64 = readq(&bar0->adapter_control);
  4570. if (!(val64 & ADAPTER_CNTL_EN)) {
  4571. printk(KERN_ERR
  4572. "Adapter Link down, cannot blink LED\n");
  4573. return -EFAULT;
  4574. }
  4575. }
  4576. if (sp->id_timer.function == NULL) {
  4577. init_timer(&sp->id_timer);
  4578. sp->id_timer.function = s2io_phy_id;
  4579. sp->id_timer.data = (unsigned long) sp;
  4580. }
  4581. mod_timer(&sp->id_timer, jiffies);
  4582. if (data)
  4583. msleep_interruptible(data * HZ);
  4584. else
  4585. msleep_interruptible(MAX_FLICKER_TIME);
  4586. del_timer_sync(&sp->id_timer);
  4587. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4588. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4589. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4590. }
  4591. return 0;
  4592. }
  4593. static void s2io_ethtool_gringparam(struct net_device *dev,
  4594. struct ethtool_ringparam *ering)
  4595. {
  4596. struct s2io_nic *sp = dev->priv;
  4597. int i,tx_desc_count=0,rx_desc_count=0;
  4598. if (sp->rxd_mode == RXD_MODE_1)
  4599. ering->rx_max_pending = MAX_RX_DESC_1;
  4600. else if (sp->rxd_mode == RXD_MODE_3B)
  4601. ering->rx_max_pending = MAX_RX_DESC_2;
  4602. ering->tx_max_pending = MAX_TX_DESC;
  4603. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4604. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4605. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4606. ering->tx_pending = tx_desc_count;
  4607. rx_desc_count = 0;
  4608. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4609. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4610. ering->rx_pending = rx_desc_count;
  4611. ering->rx_mini_max_pending = 0;
  4612. ering->rx_mini_pending = 0;
  4613. if(sp->rxd_mode == RXD_MODE_1)
  4614. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4615. else if (sp->rxd_mode == RXD_MODE_3B)
  4616. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4617. ering->rx_jumbo_pending = rx_desc_count;
  4618. }
  4619. /**
  4620. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4621. * @sp : private member of the device structure, which is a pointer to the
  4622. * s2io_nic structure.
  4623. * @ep : pointer to the structure with pause parameters given by ethtool.
  4624. * Description:
  4625. * Returns the Pause frame generation and reception capability of the NIC.
  4626. * Return value:
  4627. * void
  4628. */
  4629. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4630. struct ethtool_pauseparam *ep)
  4631. {
  4632. u64 val64;
  4633. struct s2io_nic *sp = dev->priv;
  4634. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4635. val64 = readq(&bar0->rmac_pause_cfg);
  4636. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4637. ep->tx_pause = TRUE;
  4638. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4639. ep->rx_pause = TRUE;
  4640. ep->autoneg = FALSE;
  4641. }
  4642. /**
  4643. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4644. * @sp : private member of the device structure, which is a pointer to the
  4645. * s2io_nic structure.
  4646. * @ep : pointer to the structure with pause parameters given by ethtool.
  4647. * Description:
  4648. * It can be used to set or reset Pause frame generation or reception
  4649. * support of the NIC.
  4650. * Return value:
  4651. * int, returns 0 on Success
  4652. */
  4653. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4654. struct ethtool_pauseparam *ep)
  4655. {
  4656. u64 val64;
  4657. struct s2io_nic *sp = dev->priv;
  4658. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4659. val64 = readq(&bar0->rmac_pause_cfg);
  4660. if (ep->tx_pause)
  4661. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4662. else
  4663. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4664. if (ep->rx_pause)
  4665. val64 |= RMAC_PAUSE_RX_ENABLE;
  4666. else
  4667. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4668. writeq(val64, &bar0->rmac_pause_cfg);
  4669. return 0;
  4670. }
  4671. /**
  4672. * read_eeprom - reads 4 bytes of data from user given offset.
  4673. * @sp : private member of the device structure, which is a pointer to the
  4674. * s2io_nic structure.
  4675. * @off : offset at which the data must be written
  4676. * @data : Its an output parameter where the data read at the given
  4677. * offset is stored.
  4678. * Description:
  4679. * Will read 4 bytes of data from the user given offset and return the
  4680. * read data.
  4681. * NOTE: Will allow to read only part of the EEPROM visible through the
  4682. * I2C bus.
  4683. * Return value:
  4684. * -1 on failure and 0 on success.
  4685. */
  4686. #define S2IO_DEV_ID 5
  4687. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4688. {
  4689. int ret = -1;
  4690. u32 exit_cnt = 0;
  4691. u64 val64;
  4692. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4693. if (sp->device_type == XFRAME_I_DEVICE) {
  4694. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4695. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4696. I2C_CONTROL_CNTL_START;
  4697. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4698. while (exit_cnt < 5) {
  4699. val64 = readq(&bar0->i2c_control);
  4700. if (I2C_CONTROL_CNTL_END(val64)) {
  4701. *data = I2C_CONTROL_GET_DATA(val64);
  4702. ret = 0;
  4703. break;
  4704. }
  4705. msleep(50);
  4706. exit_cnt++;
  4707. }
  4708. }
  4709. if (sp->device_type == XFRAME_II_DEVICE) {
  4710. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4711. SPI_CONTROL_BYTECNT(0x3) |
  4712. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4713. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4714. val64 |= SPI_CONTROL_REQ;
  4715. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4716. while (exit_cnt < 5) {
  4717. val64 = readq(&bar0->spi_control);
  4718. if (val64 & SPI_CONTROL_NACK) {
  4719. ret = 1;
  4720. break;
  4721. } else if (val64 & SPI_CONTROL_DONE) {
  4722. *data = readq(&bar0->spi_data);
  4723. *data &= 0xffffff;
  4724. ret = 0;
  4725. break;
  4726. }
  4727. msleep(50);
  4728. exit_cnt++;
  4729. }
  4730. }
  4731. return ret;
  4732. }
  4733. /**
  4734. * write_eeprom - actually writes the relevant part of the data value.
  4735. * @sp : private member of the device structure, which is a pointer to the
  4736. * s2io_nic structure.
  4737. * @off : offset at which the data must be written
  4738. * @data : The data that is to be written
  4739. * @cnt : Number of bytes of the data that are actually to be written into
  4740. * the Eeprom. (max of 3)
  4741. * Description:
  4742. * Actually writes the relevant part of the data value into the Eeprom
  4743. * through the I2C bus.
  4744. * Return value:
  4745. * 0 on success, -1 on failure.
  4746. */
  4747. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4748. {
  4749. int exit_cnt = 0, ret = -1;
  4750. u64 val64;
  4751. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4752. if (sp->device_type == XFRAME_I_DEVICE) {
  4753. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4754. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4755. I2C_CONTROL_CNTL_START;
  4756. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4757. while (exit_cnt < 5) {
  4758. val64 = readq(&bar0->i2c_control);
  4759. if (I2C_CONTROL_CNTL_END(val64)) {
  4760. if (!(val64 & I2C_CONTROL_NACK))
  4761. ret = 0;
  4762. break;
  4763. }
  4764. msleep(50);
  4765. exit_cnt++;
  4766. }
  4767. }
  4768. if (sp->device_type == XFRAME_II_DEVICE) {
  4769. int write_cnt = (cnt == 8) ? 0 : cnt;
  4770. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4771. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4772. SPI_CONTROL_BYTECNT(write_cnt) |
  4773. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4774. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4775. val64 |= SPI_CONTROL_REQ;
  4776. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4777. while (exit_cnt < 5) {
  4778. val64 = readq(&bar0->spi_control);
  4779. if (val64 & SPI_CONTROL_NACK) {
  4780. ret = 1;
  4781. break;
  4782. } else if (val64 & SPI_CONTROL_DONE) {
  4783. ret = 0;
  4784. break;
  4785. }
  4786. msleep(50);
  4787. exit_cnt++;
  4788. }
  4789. }
  4790. return ret;
  4791. }
  4792. static void s2io_vpd_read(struct s2io_nic *nic)
  4793. {
  4794. u8 *vpd_data;
  4795. u8 data;
  4796. int i=0, cnt, fail = 0;
  4797. int vpd_addr = 0x80;
  4798. if (nic->device_type == XFRAME_II_DEVICE) {
  4799. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4800. vpd_addr = 0x80;
  4801. }
  4802. else {
  4803. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4804. vpd_addr = 0x50;
  4805. }
  4806. strcpy(nic->serial_num, "NOT AVAILABLE");
  4807. vpd_data = kmalloc(256, GFP_KERNEL);
  4808. if (!vpd_data) {
  4809. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4810. return;
  4811. }
  4812. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4813. for (i = 0; i < 256; i +=4 ) {
  4814. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4815. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4816. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4817. for (cnt = 0; cnt <5; cnt++) {
  4818. msleep(2);
  4819. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4820. if (data == 0x80)
  4821. break;
  4822. }
  4823. if (cnt >= 5) {
  4824. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4825. fail = 1;
  4826. break;
  4827. }
  4828. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4829. (u32 *)&vpd_data[i]);
  4830. }
  4831. if(!fail) {
  4832. /* read serial number of adapter */
  4833. for (cnt = 0; cnt < 256; cnt++) {
  4834. if ((vpd_data[cnt] == 'S') &&
  4835. (vpd_data[cnt+1] == 'N') &&
  4836. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4837. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4838. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4839. vpd_data[cnt+2]);
  4840. break;
  4841. }
  4842. }
  4843. }
  4844. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4845. memset(nic->product_name, 0, vpd_data[1]);
  4846. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4847. }
  4848. kfree(vpd_data);
  4849. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4850. }
  4851. /**
  4852. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4853. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4854. * @eeprom : pointer to the user level structure provided by ethtool,
  4855. * containing all relevant information.
  4856. * @data_buf : user defined value to be written into Eeprom.
  4857. * Description: Reads the values stored in the Eeprom at given offset
  4858. * for a given length. Stores these values int the input argument data
  4859. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4860. * Return value:
  4861. * int 0 on success
  4862. */
  4863. static int s2io_ethtool_geeprom(struct net_device *dev,
  4864. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4865. {
  4866. u32 i, valid;
  4867. u64 data;
  4868. struct s2io_nic *sp = dev->priv;
  4869. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4870. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4871. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4872. for (i = 0; i < eeprom->len; i += 4) {
  4873. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4874. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4875. return -EFAULT;
  4876. }
  4877. valid = INV(data);
  4878. memcpy((data_buf + i), &valid, 4);
  4879. }
  4880. return 0;
  4881. }
  4882. /**
  4883. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4884. * @sp : private member of the device structure, which is a pointer to the
  4885. * s2io_nic structure.
  4886. * @eeprom : pointer to the user level structure provided by ethtool,
  4887. * containing all relevant information.
  4888. * @data_buf ; user defined value to be written into Eeprom.
  4889. * Description:
  4890. * Tries to write the user provided value in the Eeprom, at the offset
  4891. * given by the user.
  4892. * Return value:
  4893. * 0 on success, -EFAULT on failure.
  4894. */
  4895. static int s2io_ethtool_seeprom(struct net_device *dev,
  4896. struct ethtool_eeprom *eeprom,
  4897. u8 * data_buf)
  4898. {
  4899. int len = eeprom->len, cnt = 0;
  4900. u64 valid = 0, data;
  4901. struct s2io_nic *sp = dev->priv;
  4902. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4903. DBG_PRINT(ERR_DBG,
  4904. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4905. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4906. eeprom->magic);
  4907. return -EFAULT;
  4908. }
  4909. while (len) {
  4910. data = (u32) data_buf[cnt] & 0x000000FF;
  4911. if (data) {
  4912. valid = (u32) (data << 24);
  4913. } else
  4914. valid = data;
  4915. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4916. DBG_PRINT(ERR_DBG,
  4917. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4918. DBG_PRINT(ERR_DBG,
  4919. "write into the specified offset\n");
  4920. return -EFAULT;
  4921. }
  4922. cnt++;
  4923. len--;
  4924. }
  4925. return 0;
  4926. }
  4927. /**
  4928. * s2io_register_test - reads and writes into all clock domains.
  4929. * @sp : private member of the device structure, which is a pointer to the
  4930. * s2io_nic structure.
  4931. * @data : variable that returns the result of each of the test conducted b
  4932. * by the driver.
  4933. * Description:
  4934. * Read and write into all clock domains. The NIC has 3 clock domains,
  4935. * see that registers in all the three regions are accessible.
  4936. * Return value:
  4937. * 0 on success.
  4938. */
  4939. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4940. {
  4941. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4942. u64 val64 = 0, exp_val;
  4943. int fail = 0;
  4944. val64 = readq(&bar0->pif_rd_swapper_fb);
  4945. if (val64 != 0x123456789abcdefULL) {
  4946. fail = 1;
  4947. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4948. }
  4949. val64 = readq(&bar0->rmac_pause_cfg);
  4950. if (val64 != 0xc000ffff00000000ULL) {
  4951. fail = 1;
  4952. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4953. }
  4954. val64 = readq(&bar0->rx_queue_cfg);
  4955. if (sp->device_type == XFRAME_II_DEVICE)
  4956. exp_val = 0x0404040404040404ULL;
  4957. else
  4958. exp_val = 0x0808080808080808ULL;
  4959. if (val64 != exp_val) {
  4960. fail = 1;
  4961. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4962. }
  4963. val64 = readq(&bar0->xgxs_efifo_cfg);
  4964. if (val64 != 0x000000001923141EULL) {
  4965. fail = 1;
  4966. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4967. }
  4968. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4969. writeq(val64, &bar0->xmsi_data);
  4970. val64 = readq(&bar0->xmsi_data);
  4971. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  4972. fail = 1;
  4973. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  4974. }
  4975. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  4976. writeq(val64, &bar0->xmsi_data);
  4977. val64 = readq(&bar0->xmsi_data);
  4978. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  4979. fail = 1;
  4980. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  4981. }
  4982. *data = fail;
  4983. return fail;
  4984. }
  4985. /**
  4986. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  4987. * @sp : private member of the device structure, which is a pointer to the
  4988. * s2io_nic structure.
  4989. * @data:variable that returns the result of each of the test conducted by
  4990. * the driver.
  4991. * Description:
  4992. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  4993. * register.
  4994. * Return value:
  4995. * 0 on success.
  4996. */
  4997. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  4998. {
  4999. int fail = 0;
  5000. u64 ret_data, org_4F0, org_7F0;
  5001. u8 saved_4F0 = 0, saved_7F0 = 0;
  5002. struct net_device *dev = sp->dev;
  5003. /* Test Write Error at offset 0 */
  5004. /* Note that SPI interface allows write access to all areas
  5005. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5006. */
  5007. if (sp->device_type == XFRAME_I_DEVICE)
  5008. if (!write_eeprom(sp, 0, 0, 3))
  5009. fail = 1;
  5010. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5011. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5012. saved_4F0 = 1;
  5013. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5014. saved_7F0 = 1;
  5015. /* Test Write at offset 4f0 */
  5016. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5017. fail = 1;
  5018. if (read_eeprom(sp, 0x4F0, &ret_data))
  5019. fail = 1;
  5020. if (ret_data != 0x012345) {
  5021. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5022. "Data written %llx Data read %llx\n",
  5023. dev->name, (unsigned long long)0x12345,
  5024. (unsigned long long)ret_data);
  5025. fail = 1;
  5026. }
  5027. /* Reset the EEPROM data go FFFF */
  5028. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5029. /* Test Write Request Error at offset 0x7c */
  5030. if (sp->device_type == XFRAME_I_DEVICE)
  5031. if (!write_eeprom(sp, 0x07C, 0, 3))
  5032. fail = 1;
  5033. /* Test Write Request at offset 0x7f0 */
  5034. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5035. fail = 1;
  5036. if (read_eeprom(sp, 0x7F0, &ret_data))
  5037. fail = 1;
  5038. if (ret_data != 0x012345) {
  5039. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5040. "Data written %llx Data read %llx\n",
  5041. dev->name, (unsigned long long)0x12345,
  5042. (unsigned long long)ret_data);
  5043. fail = 1;
  5044. }
  5045. /* Reset the EEPROM data go FFFF */
  5046. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5047. if (sp->device_type == XFRAME_I_DEVICE) {
  5048. /* Test Write Error at offset 0x80 */
  5049. if (!write_eeprom(sp, 0x080, 0, 3))
  5050. fail = 1;
  5051. /* Test Write Error at offset 0xfc */
  5052. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5053. fail = 1;
  5054. /* Test Write Error at offset 0x100 */
  5055. if (!write_eeprom(sp, 0x100, 0, 3))
  5056. fail = 1;
  5057. /* Test Write Error at offset 4ec */
  5058. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5059. fail = 1;
  5060. }
  5061. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5062. if (saved_4F0)
  5063. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5064. if (saved_7F0)
  5065. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5066. *data = fail;
  5067. return fail;
  5068. }
  5069. /**
  5070. * s2io_bist_test - invokes the MemBist test of the card .
  5071. * @sp : private member of the device structure, which is a pointer to the
  5072. * s2io_nic structure.
  5073. * @data:variable that returns the result of each of the test conducted by
  5074. * the driver.
  5075. * Description:
  5076. * This invokes the MemBist test of the card. We give around
  5077. * 2 secs time for the Test to complete. If it's still not complete
  5078. * within this peiod, we consider that the test failed.
  5079. * Return value:
  5080. * 0 on success and -1 on failure.
  5081. */
  5082. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5083. {
  5084. u8 bist = 0;
  5085. int cnt = 0, ret = -1;
  5086. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5087. bist |= PCI_BIST_START;
  5088. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5089. while (cnt < 20) {
  5090. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5091. if (!(bist & PCI_BIST_START)) {
  5092. *data = (bist & PCI_BIST_CODE_MASK);
  5093. ret = 0;
  5094. break;
  5095. }
  5096. msleep(100);
  5097. cnt++;
  5098. }
  5099. return ret;
  5100. }
  5101. /**
  5102. * s2io-link_test - verifies the link state of the nic
  5103. * @sp ; private member of the device structure, which is a pointer to the
  5104. * s2io_nic structure.
  5105. * @data: variable that returns the result of each of the test conducted by
  5106. * the driver.
  5107. * Description:
  5108. * The function verifies the link state of the NIC and updates the input
  5109. * argument 'data' appropriately.
  5110. * Return value:
  5111. * 0 on success.
  5112. */
  5113. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5114. {
  5115. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5116. u64 val64;
  5117. val64 = readq(&bar0->adapter_status);
  5118. if(!(LINK_IS_UP(val64)))
  5119. *data = 1;
  5120. else
  5121. *data = 0;
  5122. return *data;
  5123. }
  5124. /**
  5125. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5126. * @sp - private member of the device structure, which is a pointer to the
  5127. * s2io_nic structure.
  5128. * @data - variable that returns the result of each of the test
  5129. * conducted by the driver.
  5130. * Description:
  5131. * This is one of the offline test that tests the read and write
  5132. * access to the RldRam chip on the NIC.
  5133. * Return value:
  5134. * 0 on success.
  5135. */
  5136. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5137. {
  5138. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5139. u64 val64;
  5140. int cnt, iteration = 0, test_fail = 0;
  5141. val64 = readq(&bar0->adapter_control);
  5142. val64 &= ~ADAPTER_ECC_EN;
  5143. writeq(val64, &bar0->adapter_control);
  5144. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5145. val64 |= MC_RLDRAM_TEST_MODE;
  5146. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5147. val64 = readq(&bar0->mc_rldram_mrs);
  5148. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5149. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5150. val64 |= MC_RLDRAM_MRS_ENABLE;
  5151. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5152. while (iteration < 2) {
  5153. val64 = 0x55555555aaaa0000ULL;
  5154. if (iteration == 1) {
  5155. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5156. }
  5157. writeq(val64, &bar0->mc_rldram_test_d0);
  5158. val64 = 0xaaaa5a5555550000ULL;
  5159. if (iteration == 1) {
  5160. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5161. }
  5162. writeq(val64, &bar0->mc_rldram_test_d1);
  5163. val64 = 0x55aaaaaaaa5a0000ULL;
  5164. if (iteration == 1) {
  5165. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5166. }
  5167. writeq(val64, &bar0->mc_rldram_test_d2);
  5168. val64 = (u64) (0x0000003ffffe0100ULL);
  5169. writeq(val64, &bar0->mc_rldram_test_add);
  5170. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5171. MC_RLDRAM_TEST_GO;
  5172. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5173. for (cnt = 0; cnt < 5; cnt++) {
  5174. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5175. if (val64 & MC_RLDRAM_TEST_DONE)
  5176. break;
  5177. msleep(200);
  5178. }
  5179. if (cnt == 5)
  5180. break;
  5181. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5182. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5183. for (cnt = 0; cnt < 5; cnt++) {
  5184. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5185. if (val64 & MC_RLDRAM_TEST_DONE)
  5186. break;
  5187. msleep(500);
  5188. }
  5189. if (cnt == 5)
  5190. break;
  5191. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5192. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5193. test_fail = 1;
  5194. iteration++;
  5195. }
  5196. *data = test_fail;
  5197. /* Bring the adapter out of test mode */
  5198. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5199. return test_fail;
  5200. }
  5201. /**
  5202. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5203. * @sp : private member of the device structure, which is a pointer to the
  5204. * s2io_nic structure.
  5205. * @ethtest : pointer to a ethtool command specific structure that will be
  5206. * returned to the user.
  5207. * @data : variable that returns the result of each of the test
  5208. * conducted by the driver.
  5209. * Description:
  5210. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5211. * the health of the card.
  5212. * Return value:
  5213. * void
  5214. */
  5215. static void s2io_ethtool_test(struct net_device *dev,
  5216. struct ethtool_test *ethtest,
  5217. uint64_t * data)
  5218. {
  5219. struct s2io_nic *sp = dev->priv;
  5220. int orig_state = netif_running(sp->dev);
  5221. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5222. /* Offline Tests. */
  5223. if (orig_state)
  5224. s2io_close(sp->dev);
  5225. if (s2io_register_test(sp, &data[0]))
  5226. ethtest->flags |= ETH_TEST_FL_FAILED;
  5227. s2io_reset(sp);
  5228. if (s2io_rldram_test(sp, &data[3]))
  5229. ethtest->flags |= ETH_TEST_FL_FAILED;
  5230. s2io_reset(sp);
  5231. if (s2io_eeprom_test(sp, &data[1]))
  5232. ethtest->flags |= ETH_TEST_FL_FAILED;
  5233. if (s2io_bist_test(sp, &data[4]))
  5234. ethtest->flags |= ETH_TEST_FL_FAILED;
  5235. if (orig_state)
  5236. s2io_open(sp->dev);
  5237. data[2] = 0;
  5238. } else {
  5239. /* Online Tests. */
  5240. if (!orig_state) {
  5241. DBG_PRINT(ERR_DBG,
  5242. "%s: is not up, cannot run test\n",
  5243. dev->name);
  5244. data[0] = -1;
  5245. data[1] = -1;
  5246. data[2] = -1;
  5247. data[3] = -1;
  5248. data[4] = -1;
  5249. }
  5250. if (s2io_link_test(sp, &data[2]))
  5251. ethtest->flags |= ETH_TEST_FL_FAILED;
  5252. data[0] = 0;
  5253. data[1] = 0;
  5254. data[3] = 0;
  5255. data[4] = 0;
  5256. }
  5257. }
  5258. static void s2io_get_ethtool_stats(struct net_device *dev,
  5259. struct ethtool_stats *estats,
  5260. u64 * tmp_stats)
  5261. {
  5262. int i = 0, k;
  5263. struct s2io_nic *sp = dev->priv;
  5264. struct stat_block *stat_info = sp->mac_control.stats_info;
  5265. s2io_updt_stats(sp);
  5266. tmp_stats[i++] =
  5267. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5268. le32_to_cpu(stat_info->tmac_frms);
  5269. tmp_stats[i++] =
  5270. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5271. le32_to_cpu(stat_info->tmac_data_octets);
  5272. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5273. tmp_stats[i++] =
  5274. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5275. le32_to_cpu(stat_info->tmac_mcst_frms);
  5276. tmp_stats[i++] =
  5277. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5278. le32_to_cpu(stat_info->tmac_bcst_frms);
  5279. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5280. tmp_stats[i++] =
  5281. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5282. le32_to_cpu(stat_info->tmac_ttl_octets);
  5283. tmp_stats[i++] =
  5284. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5285. le32_to_cpu(stat_info->tmac_ucst_frms);
  5286. tmp_stats[i++] =
  5287. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5288. le32_to_cpu(stat_info->tmac_nucst_frms);
  5289. tmp_stats[i++] =
  5290. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5291. le32_to_cpu(stat_info->tmac_any_err_frms);
  5292. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5293. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5294. tmp_stats[i++] =
  5295. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5296. le32_to_cpu(stat_info->tmac_vld_ip);
  5297. tmp_stats[i++] =
  5298. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5299. le32_to_cpu(stat_info->tmac_drop_ip);
  5300. tmp_stats[i++] =
  5301. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5302. le32_to_cpu(stat_info->tmac_icmp);
  5303. tmp_stats[i++] =
  5304. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5305. le32_to_cpu(stat_info->tmac_rst_tcp);
  5306. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5307. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5308. le32_to_cpu(stat_info->tmac_udp);
  5309. tmp_stats[i++] =
  5310. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5311. le32_to_cpu(stat_info->rmac_vld_frms);
  5312. tmp_stats[i++] =
  5313. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5314. le32_to_cpu(stat_info->rmac_data_octets);
  5315. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5316. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5317. tmp_stats[i++] =
  5318. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5319. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5320. tmp_stats[i++] =
  5321. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5322. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5323. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5324. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5325. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5326. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5327. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5328. tmp_stats[i++] =
  5329. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5330. le32_to_cpu(stat_info->rmac_ttl_octets);
  5331. tmp_stats[i++] =
  5332. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5333. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5334. tmp_stats[i++] =
  5335. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5336. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5337. tmp_stats[i++] =
  5338. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5339. le32_to_cpu(stat_info->rmac_discarded_frms);
  5340. tmp_stats[i++] =
  5341. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5342. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5343. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5344. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5345. tmp_stats[i++] =
  5346. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5347. le32_to_cpu(stat_info->rmac_usized_frms);
  5348. tmp_stats[i++] =
  5349. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5350. le32_to_cpu(stat_info->rmac_osized_frms);
  5351. tmp_stats[i++] =
  5352. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5353. le32_to_cpu(stat_info->rmac_frag_frms);
  5354. tmp_stats[i++] =
  5355. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5356. le32_to_cpu(stat_info->rmac_jabber_frms);
  5357. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5358. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5359. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5360. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5361. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5362. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5363. tmp_stats[i++] =
  5364. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5365. le32_to_cpu(stat_info->rmac_ip);
  5366. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5367. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5368. tmp_stats[i++] =
  5369. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5370. le32_to_cpu(stat_info->rmac_drop_ip);
  5371. tmp_stats[i++] =
  5372. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5373. le32_to_cpu(stat_info->rmac_icmp);
  5374. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5375. tmp_stats[i++] =
  5376. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5377. le32_to_cpu(stat_info->rmac_udp);
  5378. tmp_stats[i++] =
  5379. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5380. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5381. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5382. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5383. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5384. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5385. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5386. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5387. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5388. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5389. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5390. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5391. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5392. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5393. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5394. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5395. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5396. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5397. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5398. tmp_stats[i++] =
  5399. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5400. le32_to_cpu(stat_info->rmac_pause_cnt);
  5401. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5402. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5403. tmp_stats[i++] =
  5404. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5405. le32_to_cpu(stat_info->rmac_accepted_ip);
  5406. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5407. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5408. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5409. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5410. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5411. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5412. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5413. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5414. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5415. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5416. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5417. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5418. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5419. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5420. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5421. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5422. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5423. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5424. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5425. /* Enhanced statistics exist only for Hercules */
  5426. if(sp->device_type == XFRAME_II_DEVICE) {
  5427. tmp_stats[i++] =
  5428. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5429. tmp_stats[i++] =
  5430. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5431. tmp_stats[i++] =
  5432. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5433. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5434. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5435. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5436. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5437. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5438. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5439. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5440. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5441. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5442. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5443. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5444. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5445. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5446. }
  5447. tmp_stats[i++] = 0;
  5448. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5449. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5450. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5451. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5452. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5453. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5454. for (k = 0; k < MAX_RX_RINGS; k++)
  5455. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5456. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5457. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5458. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5459. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5460. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5461. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5462. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5463. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5464. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5465. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5466. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5467. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5468. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5469. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5470. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5471. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5472. if (stat_info->sw_stat.num_aggregations) {
  5473. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5474. int count = 0;
  5475. /*
  5476. * Since 64-bit divide does not work on all platforms,
  5477. * do repeated subtraction.
  5478. */
  5479. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5480. tmp -= stat_info->sw_stat.num_aggregations;
  5481. count++;
  5482. }
  5483. tmp_stats[i++] = count;
  5484. }
  5485. else
  5486. tmp_stats[i++] = 0;
  5487. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5488. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5489. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5490. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5491. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5492. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5493. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5494. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5495. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5496. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5497. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5498. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5499. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5500. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5501. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5502. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5503. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5504. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5505. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5506. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5507. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5508. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5509. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5510. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5511. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5512. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5513. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5514. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5515. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5516. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5517. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5518. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5519. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5520. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5521. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5524. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5525. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5526. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5527. }
  5528. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5529. {
  5530. return (XENA_REG_SPACE);
  5531. }
  5532. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5533. {
  5534. struct s2io_nic *sp = dev->priv;
  5535. return (sp->rx_csum);
  5536. }
  5537. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5538. {
  5539. struct s2io_nic *sp = dev->priv;
  5540. if (data)
  5541. sp->rx_csum = 1;
  5542. else
  5543. sp->rx_csum = 0;
  5544. return 0;
  5545. }
  5546. static int s2io_get_eeprom_len(struct net_device *dev)
  5547. {
  5548. return (XENA_EEPROM_SPACE);
  5549. }
  5550. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5551. {
  5552. struct s2io_nic *sp = dev->priv;
  5553. switch (sset) {
  5554. case ETH_SS_TEST:
  5555. return S2IO_TEST_LEN;
  5556. case ETH_SS_STATS:
  5557. switch(sp->device_type) {
  5558. case XFRAME_I_DEVICE:
  5559. return XFRAME_I_STAT_LEN;
  5560. case XFRAME_II_DEVICE:
  5561. return XFRAME_II_STAT_LEN;
  5562. default:
  5563. return 0;
  5564. }
  5565. default:
  5566. return -EOPNOTSUPP;
  5567. }
  5568. }
  5569. static void s2io_ethtool_get_strings(struct net_device *dev,
  5570. u32 stringset, u8 * data)
  5571. {
  5572. int stat_size = 0;
  5573. struct s2io_nic *sp = dev->priv;
  5574. switch (stringset) {
  5575. case ETH_SS_TEST:
  5576. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5577. break;
  5578. case ETH_SS_STATS:
  5579. stat_size = sizeof(ethtool_xena_stats_keys);
  5580. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5581. if(sp->device_type == XFRAME_II_DEVICE) {
  5582. memcpy(data + stat_size,
  5583. &ethtool_enhanced_stats_keys,
  5584. sizeof(ethtool_enhanced_stats_keys));
  5585. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5586. }
  5587. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5588. sizeof(ethtool_driver_stats_keys));
  5589. }
  5590. }
  5591. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5592. {
  5593. if (data)
  5594. dev->features |= NETIF_F_IP_CSUM;
  5595. else
  5596. dev->features &= ~NETIF_F_IP_CSUM;
  5597. return 0;
  5598. }
  5599. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5600. {
  5601. return (dev->features & NETIF_F_TSO) != 0;
  5602. }
  5603. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5604. {
  5605. if (data)
  5606. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5607. else
  5608. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5609. return 0;
  5610. }
  5611. static const struct ethtool_ops netdev_ethtool_ops = {
  5612. .get_settings = s2io_ethtool_gset,
  5613. .set_settings = s2io_ethtool_sset,
  5614. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5615. .get_regs_len = s2io_ethtool_get_regs_len,
  5616. .get_regs = s2io_ethtool_gregs,
  5617. .get_link = ethtool_op_get_link,
  5618. .get_eeprom_len = s2io_get_eeprom_len,
  5619. .get_eeprom = s2io_ethtool_geeprom,
  5620. .set_eeprom = s2io_ethtool_seeprom,
  5621. .get_ringparam = s2io_ethtool_gringparam,
  5622. .get_pauseparam = s2io_ethtool_getpause_data,
  5623. .set_pauseparam = s2io_ethtool_setpause_data,
  5624. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5625. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5626. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5627. .set_sg = ethtool_op_set_sg,
  5628. .get_tso = s2io_ethtool_op_get_tso,
  5629. .set_tso = s2io_ethtool_op_set_tso,
  5630. .set_ufo = ethtool_op_set_ufo,
  5631. .self_test = s2io_ethtool_test,
  5632. .get_strings = s2io_ethtool_get_strings,
  5633. .phys_id = s2io_ethtool_idnic,
  5634. .get_ethtool_stats = s2io_get_ethtool_stats,
  5635. .get_sset_count = s2io_get_sset_count,
  5636. };
  5637. /**
  5638. * s2io_ioctl - Entry point for the Ioctl
  5639. * @dev : Device pointer.
  5640. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5641. * a proprietary structure used to pass information to the driver.
  5642. * @cmd : This is used to distinguish between the different commands that
  5643. * can be passed to the IOCTL functions.
  5644. * Description:
  5645. * Currently there are no special functionality supported in IOCTL, hence
  5646. * function always return EOPNOTSUPPORTED
  5647. */
  5648. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5649. {
  5650. return -EOPNOTSUPP;
  5651. }
  5652. /**
  5653. * s2io_change_mtu - entry point to change MTU size for the device.
  5654. * @dev : device pointer.
  5655. * @new_mtu : the new MTU size for the device.
  5656. * Description: A driver entry point to change MTU size for the device.
  5657. * Before changing the MTU the device must be stopped.
  5658. * Return value:
  5659. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5660. * file on failure.
  5661. */
  5662. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5663. {
  5664. struct s2io_nic *sp = dev->priv;
  5665. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5666. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5667. dev->name);
  5668. return -EPERM;
  5669. }
  5670. dev->mtu = new_mtu;
  5671. if (netif_running(dev)) {
  5672. s2io_card_down(sp);
  5673. netif_stop_queue(dev);
  5674. if (s2io_card_up(sp)) {
  5675. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5676. __FUNCTION__);
  5677. }
  5678. if (netif_queue_stopped(dev))
  5679. netif_wake_queue(dev);
  5680. } else { /* Device is down */
  5681. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5682. u64 val64 = new_mtu;
  5683. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5684. }
  5685. return 0;
  5686. }
  5687. /**
  5688. * s2io_tasklet - Bottom half of the ISR.
  5689. * @dev_adr : address of the device structure in dma_addr_t format.
  5690. * Description:
  5691. * This is the tasklet or the bottom half of the ISR. This is
  5692. * an extension of the ISR which is scheduled by the scheduler to be run
  5693. * when the load on the CPU is low. All low priority tasks of the ISR can
  5694. * be pushed into the tasklet. For now the tasklet is used only to
  5695. * replenish the Rx buffers in the Rx buffer descriptors.
  5696. * Return value:
  5697. * void.
  5698. */
  5699. static void s2io_tasklet(unsigned long dev_addr)
  5700. {
  5701. struct net_device *dev = (struct net_device *) dev_addr;
  5702. struct s2io_nic *sp = dev->priv;
  5703. int i, ret;
  5704. struct mac_info *mac_control;
  5705. struct config_param *config;
  5706. mac_control = &sp->mac_control;
  5707. config = &sp->config;
  5708. if (!TASKLET_IN_USE) {
  5709. for (i = 0; i < config->rx_ring_num; i++) {
  5710. ret = fill_rx_buffers(sp, i);
  5711. if (ret == -ENOMEM) {
  5712. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5713. dev->name);
  5714. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5715. break;
  5716. } else if (ret == -EFILL) {
  5717. DBG_PRINT(INFO_DBG,
  5718. "%s: Rx Ring %d is full\n",
  5719. dev->name, i);
  5720. break;
  5721. }
  5722. }
  5723. clear_bit(0, (&sp->tasklet_status));
  5724. }
  5725. }
  5726. /**
  5727. * s2io_set_link - Set the LInk status
  5728. * @data: long pointer to device private structue
  5729. * Description: Sets the link status for the adapter
  5730. */
  5731. static void s2io_set_link(struct work_struct *work)
  5732. {
  5733. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5734. struct net_device *dev = nic->dev;
  5735. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5736. register u64 val64;
  5737. u16 subid;
  5738. rtnl_lock();
  5739. if (!netif_running(dev))
  5740. goto out_unlock;
  5741. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5742. /* The card is being reset, no point doing anything */
  5743. goto out_unlock;
  5744. }
  5745. subid = nic->pdev->subsystem_device;
  5746. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5747. /*
  5748. * Allow a small delay for the NICs self initiated
  5749. * cleanup to complete.
  5750. */
  5751. msleep(100);
  5752. }
  5753. val64 = readq(&bar0->adapter_status);
  5754. if (LINK_IS_UP(val64)) {
  5755. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5756. if (verify_xena_quiescence(nic)) {
  5757. val64 = readq(&bar0->adapter_control);
  5758. val64 |= ADAPTER_CNTL_EN;
  5759. writeq(val64, &bar0->adapter_control);
  5760. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5761. nic->device_type, subid)) {
  5762. val64 = readq(&bar0->gpio_control);
  5763. val64 |= GPIO_CTRL_GPIO_0;
  5764. writeq(val64, &bar0->gpio_control);
  5765. val64 = readq(&bar0->gpio_control);
  5766. } else {
  5767. val64 |= ADAPTER_LED_ON;
  5768. writeq(val64, &bar0->adapter_control);
  5769. }
  5770. nic->device_enabled_once = TRUE;
  5771. } else {
  5772. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5773. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5774. netif_stop_queue(dev);
  5775. }
  5776. }
  5777. val64 = readq(&bar0->adapter_control);
  5778. val64 |= ADAPTER_LED_ON;
  5779. writeq(val64, &bar0->adapter_control);
  5780. s2io_link(nic, LINK_UP);
  5781. } else {
  5782. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5783. subid)) {
  5784. val64 = readq(&bar0->gpio_control);
  5785. val64 &= ~GPIO_CTRL_GPIO_0;
  5786. writeq(val64, &bar0->gpio_control);
  5787. val64 = readq(&bar0->gpio_control);
  5788. }
  5789. /* turn off LED */
  5790. val64 = readq(&bar0->adapter_control);
  5791. val64 = val64 &(~ADAPTER_LED_ON);
  5792. writeq(val64, &bar0->adapter_control);
  5793. s2io_link(nic, LINK_DOWN);
  5794. }
  5795. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5796. out_unlock:
  5797. rtnl_unlock();
  5798. }
  5799. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5800. struct buffAdd *ba,
  5801. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5802. u64 *temp2, int size)
  5803. {
  5804. struct net_device *dev = sp->dev;
  5805. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5806. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5807. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5808. /* allocate skb */
  5809. if (*skb) {
  5810. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5811. /*
  5812. * As Rx frame are not going to be processed,
  5813. * using same mapped address for the Rxd
  5814. * buffer pointer
  5815. */
  5816. rxdp1->Buffer0_ptr = *temp0;
  5817. } else {
  5818. *skb = dev_alloc_skb(size);
  5819. if (!(*skb)) {
  5820. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5821. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5822. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5823. sp->mac_control.stats_info->sw_stat. \
  5824. mem_alloc_fail_cnt++;
  5825. return -ENOMEM ;
  5826. }
  5827. sp->mac_control.stats_info->sw_stat.mem_allocated
  5828. += (*skb)->truesize;
  5829. /* storing the mapped addr in a temp variable
  5830. * such it will be used for next rxd whose
  5831. * Host Control is NULL
  5832. */
  5833. rxdp1->Buffer0_ptr = *temp0 =
  5834. pci_map_single( sp->pdev, (*skb)->data,
  5835. size - NET_IP_ALIGN,
  5836. PCI_DMA_FROMDEVICE);
  5837. if( (rxdp1->Buffer0_ptr == 0) ||
  5838. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5839. goto memalloc_failed;
  5840. }
  5841. rxdp->Host_Control = (unsigned long) (*skb);
  5842. }
  5843. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5844. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5845. /* Two buffer Mode */
  5846. if (*skb) {
  5847. rxdp3->Buffer2_ptr = *temp2;
  5848. rxdp3->Buffer0_ptr = *temp0;
  5849. rxdp3->Buffer1_ptr = *temp1;
  5850. } else {
  5851. *skb = dev_alloc_skb(size);
  5852. if (!(*skb)) {
  5853. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5854. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5855. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5856. sp->mac_control.stats_info->sw_stat. \
  5857. mem_alloc_fail_cnt++;
  5858. return -ENOMEM;
  5859. }
  5860. sp->mac_control.stats_info->sw_stat.mem_allocated
  5861. += (*skb)->truesize;
  5862. rxdp3->Buffer2_ptr = *temp2 =
  5863. pci_map_single(sp->pdev, (*skb)->data,
  5864. dev->mtu + 4,
  5865. PCI_DMA_FROMDEVICE);
  5866. if( (rxdp3->Buffer2_ptr == 0) ||
  5867. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5868. goto memalloc_failed;
  5869. }
  5870. rxdp3->Buffer0_ptr = *temp0 =
  5871. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5872. PCI_DMA_FROMDEVICE);
  5873. if( (rxdp3->Buffer0_ptr == 0) ||
  5874. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5875. pci_unmap_single (sp->pdev,
  5876. (dma_addr_t)rxdp3->Buffer2_ptr,
  5877. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5878. goto memalloc_failed;
  5879. }
  5880. rxdp->Host_Control = (unsigned long) (*skb);
  5881. /* Buffer-1 will be dummy buffer not used */
  5882. rxdp3->Buffer1_ptr = *temp1 =
  5883. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5884. PCI_DMA_FROMDEVICE);
  5885. if( (rxdp3->Buffer1_ptr == 0) ||
  5886. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5887. pci_unmap_single (sp->pdev,
  5888. (dma_addr_t)rxdp3->Buffer0_ptr,
  5889. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5890. pci_unmap_single (sp->pdev,
  5891. (dma_addr_t)rxdp3->Buffer2_ptr,
  5892. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5893. goto memalloc_failed;
  5894. }
  5895. }
  5896. }
  5897. return 0;
  5898. memalloc_failed:
  5899. stats->pci_map_fail_cnt++;
  5900. stats->mem_freed += (*skb)->truesize;
  5901. dev_kfree_skb(*skb);
  5902. return -ENOMEM;
  5903. }
  5904. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5905. int size)
  5906. {
  5907. struct net_device *dev = sp->dev;
  5908. if (sp->rxd_mode == RXD_MODE_1) {
  5909. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5910. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5911. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5912. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5913. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5914. }
  5915. }
  5916. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5917. {
  5918. int i, j, k, blk_cnt = 0, size;
  5919. struct mac_info * mac_control = &sp->mac_control;
  5920. struct config_param *config = &sp->config;
  5921. struct net_device *dev = sp->dev;
  5922. struct RxD_t *rxdp = NULL;
  5923. struct sk_buff *skb = NULL;
  5924. struct buffAdd *ba = NULL;
  5925. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5926. /* Calculate the size based on ring mode */
  5927. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5928. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5929. if (sp->rxd_mode == RXD_MODE_1)
  5930. size += NET_IP_ALIGN;
  5931. else if (sp->rxd_mode == RXD_MODE_3B)
  5932. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5933. for (i = 0; i < config->rx_ring_num; i++) {
  5934. blk_cnt = config->rx_cfg[i].num_rxd /
  5935. (rxd_count[sp->rxd_mode] +1);
  5936. for (j = 0; j < blk_cnt; j++) {
  5937. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5938. rxdp = mac_control->rings[i].
  5939. rx_blocks[j].rxds[k].virt_addr;
  5940. if(sp->rxd_mode == RXD_MODE_3B)
  5941. ba = &mac_control->rings[i].ba[j][k];
  5942. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5943. &skb,(u64 *)&temp0_64,
  5944. (u64 *)&temp1_64,
  5945. (u64 *)&temp2_64,
  5946. size) == ENOMEM) {
  5947. return 0;
  5948. }
  5949. set_rxd_buffer_size(sp, rxdp, size);
  5950. wmb();
  5951. /* flip the Ownership bit to Hardware */
  5952. rxdp->Control_1 |= RXD_OWN_XENA;
  5953. }
  5954. }
  5955. }
  5956. return 0;
  5957. }
  5958. static int s2io_add_isr(struct s2io_nic * sp)
  5959. {
  5960. int ret = 0;
  5961. struct net_device *dev = sp->dev;
  5962. int err = 0;
  5963. if (sp->config.intr_type == MSI_X)
  5964. ret = s2io_enable_msi_x(sp);
  5965. if (ret) {
  5966. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5967. sp->config.intr_type = INTA;
  5968. }
  5969. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5970. store_xmsi_data(sp);
  5971. /* After proper initialization of H/W, register ISR */
  5972. if (sp->config.intr_type == MSI_X) {
  5973. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  5974. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  5975. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  5976. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  5977. dev->name, i);
  5978. err = request_irq(sp->entries[i].vector,
  5979. s2io_msix_fifo_handle, 0, sp->desc[i],
  5980. sp->s2io_entries[i].arg);
  5981. /* If either data or addr is zero print it */
  5982. if(!(sp->msix_info[i].addr &&
  5983. sp->msix_info[i].data)) {
  5984. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  5985. "Data:0x%lx\n",sp->desc[i],
  5986. (unsigned long long)
  5987. sp->msix_info[i].addr,
  5988. (unsigned long)
  5989. ntohl(sp->msix_info[i].data));
  5990. } else {
  5991. msix_tx_cnt++;
  5992. }
  5993. } else {
  5994. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  5995. dev->name, i);
  5996. err = request_irq(sp->entries[i].vector,
  5997. s2io_msix_ring_handle, 0, sp->desc[i],
  5998. sp->s2io_entries[i].arg);
  5999. /* If either data or addr is zero print it */
  6000. if(!(sp->msix_info[i].addr &&
  6001. sp->msix_info[i].data)) {
  6002. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6003. "Data:0x%lx\n",sp->desc[i],
  6004. (unsigned long long)
  6005. sp->msix_info[i].addr,
  6006. (unsigned long)
  6007. ntohl(sp->msix_info[i].data));
  6008. } else {
  6009. msix_rx_cnt++;
  6010. }
  6011. }
  6012. if (err) {
  6013. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6014. "failed\n", dev->name, i);
  6015. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  6016. return -1;
  6017. }
  6018. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6019. }
  6020. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  6021. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  6022. }
  6023. if (sp->config.intr_type == INTA) {
  6024. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6025. sp->name, dev);
  6026. if (err) {
  6027. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6028. dev->name);
  6029. return -1;
  6030. }
  6031. }
  6032. return 0;
  6033. }
  6034. static void s2io_rem_isr(struct s2io_nic * sp)
  6035. {
  6036. struct net_device *dev = sp->dev;
  6037. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6038. if (sp->config.intr_type == MSI_X) {
  6039. int i;
  6040. u16 msi_control;
  6041. for (i=1; (sp->s2io_entries[i].in_use ==
  6042. MSIX_REGISTERED_SUCCESS); i++) {
  6043. int vector = sp->entries[i].vector;
  6044. void *arg = sp->s2io_entries[i].arg;
  6045. synchronize_irq(vector);
  6046. free_irq(vector, arg);
  6047. }
  6048. kfree(sp->entries);
  6049. stats->mem_freed +=
  6050. (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  6051. kfree(sp->s2io_entries);
  6052. stats->mem_freed +=
  6053. (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  6054. sp->entries = NULL;
  6055. sp->s2io_entries = NULL;
  6056. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  6057. msi_control &= 0xFFFE; /* Disable MSI */
  6058. pci_write_config_word(sp->pdev, 0x42, msi_control);
  6059. pci_disable_msix(sp->pdev);
  6060. } else {
  6061. synchronize_irq(sp->pdev->irq);
  6062. free_irq(sp->pdev->irq, dev);
  6063. }
  6064. }
  6065. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6066. {
  6067. int cnt = 0;
  6068. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6069. unsigned long flags;
  6070. register u64 val64 = 0;
  6071. del_timer_sync(&sp->alarm_timer);
  6072. /* If s2io_set_link task is executing, wait till it completes. */
  6073. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6074. msleep(50);
  6075. }
  6076. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6077. /* disable Tx and Rx traffic on the NIC */
  6078. if (do_io)
  6079. stop_nic(sp);
  6080. s2io_rem_isr(sp);
  6081. /* Kill tasklet. */
  6082. tasklet_kill(&sp->task);
  6083. /* Check if the device is Quiescent and then Reset the NIC */
  6084. while(do_io) {
  6085. /* As per the HW requirement we need to replenish the
  6086. * receive buffer to avoid the ring bump. Since there is
  6087. * no intention of processing the Rx frame at this pointwe are
  6088. * just settting the ownership bit of rxd in Each Rx
  6089. * ring to HW and set the appropriate buffer size
  6090. * based on the ring mode
  6091. */
  6092. rxd_owner_bit_reset(sp);
  6093. val64 = readq(&bar0->adapter_status);
  6094. if (verify_xena_quiescence(sp)) {
  6095. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6096. break;
  6097. }
  6098. msleep(50);
  6099. cnt++;
  6100. if (cnt == 10) {
  6101. DBG_PRINT(ERR_DBG,
  6102. "s2io_close:Device not Quiescent ");
  6103. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6104. (unsigned long long) val64);
  6105. break;
  6106. }
  6107. }
  6108. if (do_io)
  6109. s2io_reset(sp);
  6110. spin_lock_irqsave(&sp->tx_lock, flags);
  6111. /* Free all Tx buffers */
  6112. free_tx_buffers(sp);
  6113. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6114. /* Free all Rx buffers */
  6115. spin_lock_irqsave(&sp->rx_lock, flags);
  6116. free_rx_buffers(sp);
  6117. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6118. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6119. }
  6120. static void s2io_card_down(struct s2io_nic * sp)
  6121. {
  6122. do_s2io_card_down(sp, 1);
  6123. }
  6124. static int s2io_card_up(struct s2io_nic * sp)
  6125. {
  6126. int i, ret = 0;
  6127. struct mac_info *mac_control;
  6128. struct config_param *config;
  6129. struct net_device *dev = (struct net_device *) sp->dev;
  6130. u16 interruptible;
  6131. /* Initialize the H/W I/O registers */
  6132. if (init_nic(sp) != 0) {
  6133. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6134. dev->name);
  6135. s2io_reset(sp);
  6136. return -ENODEV;
  6137. }
  6138. /*
  6139. * Initializing the Rx buffers. For now we are considering only 1
  6140. * Rx ring and initializing buffers into 30 Rx blocks
  6141. */
  6142. mac_control = &sp->mac_control;
  6143. config = &sp->config;
  6144. for (i = 0; i < config->rx_ring_num; i++) {
  6145. if ((ret = fill_rx_buffers(sp, i))) {
  6146. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6147. dev->name);
  6148. s2io_reset(sp);
  6149. free_rx_buffers(sp);
  6150. return -ENOMEM;
  6151. }
  6152. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6153. atomic_read(&sp->rx_bufs_left[i]));
  6154. }
  6155. /* Maintain the state prior to the open */
  6156. if (sp->promisc_flg)
  6157. sp->promisc_flg = 0;
  6158. if (sp->m_cast_flg) {
  6159. sp->m_cast_flg = 0;
  6160. sp->all_multi_pos= 0;
  6161. }
  6162. /* Setting its receive mode */
  6163. s2io_set_multicast(dev);
  6164. if (sp->lro) {
  6165. /* Initialize max aggregatable pkts per session based on MTU */
  6166. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6167. /* Check if we can use(if specified) user provided value */
  6168. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6169. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6170. }
  6171. /* Enable Rx Traffic and interrupts on the NIC */
  6172. if (start_nic(sp)) {
  6173. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6174. s2io_reset(sp);
  6175. free_rx_buffers(sp);
  6176. return -ENODEV;
  6177. }
  6178. /* Add interrupt service routine */
  6179. if (s2io_add_isr(sp) != 0) {
  6180. if (sp->config.intr_type == MSI_X)
  6181. s2io_rem_isr(sp);
  6182. s2io_reset(sp);
  6183. free_rx_buffers(sp);
  6184. return -ENODEV;
  6185. }
  6186. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6187. /* Enable tasklet for the device */
  6188. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6189. /* Enable select interrupts */
  6190. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6191. if (sp->config.intr_type != INTA)
  6192. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6193. else {
  6194. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6195. interruptible |= TX_PIC_INTR;
  6196. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6197. }
  6198. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6199. return 0;
  6200. }
  6201. /**
  6202. * s2io_restart_nic - Resets the NIC.
  6203. * @data : long pointer to the device private structure
  6204. * Description:
  6205. * This function is scheduled to be run by the s2io_tx_watchdog
  6206. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6207. * the run time of the watch dog routine which is run holding a
  6208. * spin lock.
  6209. */
  6210. static void s2io_restart_nic(struct work_struct *work)
  6211. {
  6212. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6213. struct net_device *dev = sp->dev;
  6214. rtnl_lock();
  6215. if (!netif_running(dev))
  6216. goto out_unlock;
  6217. s2io_card_down(sp);
  6218. if (s2io_card_up(sp)) {
  6219. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6220. dev->name);
  6221. }
  6222. netif_wake_queue(dev);
  6223. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6224. dev->name);
  6225. out_unlock:
  6226. rtnl_unlock();
  6227. }
  6228. /**
  6229. * s2io_tx_watchdog - Watchdog for transmit side.
  6230. * @dev : Pointer to net device structure
  6231. * Description:
  6232. * This function is triggered if the Tx Queue is stopped
  6233. * for a pre-defined amount of time when the Interface is still up.
  6234. * If the Interface is jammed in such a situation, the hardware is
  6235. * reset (by s2io_close) and restarted again (by s2io_open) to
  6236. * overcome any problem that might have been caused in the hardware.
  6237. * Return value:
  6238. * void
  6239. */
  6240. static void s2io_tx_watchdog(struct net_device *dev)
  6241. {
  6242. struct s2io_nic *sp = dev->priv;
  6243. if (netif_carrier_ok(dev)) {
  6244. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6245. schedule_work(&sp->rst_timer_task);
  6246. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6247. }
  6248. }
  6249. /**
  6250. * rx_osm_handler - To perform some OS related operations on SKB.
  6251. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6252. * @skb : the socket buffer pointer.
  6253. * @len : length of the packet
  6254. * @cksum : FCS checksum of the frame.
  6255. * @ring_no : the ring from which this RxD was extracted.
  6256. * Description:
  6257. * This function is called by the Rx interrupt serivce routine to perform
  6258. * some OS related operations on the SKB before passing it to the upper
  6259. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6260. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6261. * to the upper layer. If the checksum is wrong, it increments the Rx
  6262. * packet error count, frees the SKB and returns error.
  6263. * Return value:
  6264. * SUCCESS on success and -1 on failure.
  6265. */
  6266. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6267. {
  6268. struct s2io_nic *sp = ring_data->nic;
  6269. struct net_device *dev = (struct net_device *) sp->dev;
  6270. struct sk_buff *skb = (struct sk_buff *)
  6271. ((unsigned long) rxdp->Host_Control);
  6272. int ring_no = ring_data->ring_no;
  6273. u16 l3_csum, l4_csum;
  6274. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6275. struct lro *lro;
  6276. u8 err_mask;
  6277. skb->dev = dev;
  6278. if (err) {
  6279. /* Check for parity error */
  6280. if (err & 0x1) {
  6281. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6282. }
  6283. err_mask = err >> 48;
  6284. switch(err_mask) {
  6285. case 1:
  6286. sp->mac_control.stats_info->sw_stat.
  6287. rx_parity_err_cnt++;
  6288. break;
  6289. case 2:
  6290. sp->mac_control.stats_info->sw_stat.
  6291. rx_abort_cnt++;
  6292. break;
  6293. case 3:
  6294. sp->mac_control.stats_info->sw_stat.
  6295. rx_parity_abort_cnt++;
  6296. break;
  6297. case 4:
  6298. sp->mac_control.stats_info->sw_stat.
  6299. rx_rda_fail_cnt++;
  6300. break;
  6301. case 5:
  6302. sp->mac_control.stats_info->sw_stat.
  6303. rx_unkn_prot_cnt++;
  6304. break;
  6305. case 6:
  6306. sp->mac_control.stats_info->sw_stat.
  6307. rx_fcs_err_cnt++;
  6308. break;
  6309. case 7:
  6310. sp->mac_control.stats_info->sw_stat.
  6311. rx_buf_size_err_cnt++;
  6312. break;
  6313. case 8:
  6314. sp->mac_control.stats_info->sw_stat.
  6315. rx_rxd_corrupt_cnt++;
  6316. break;
  6317. case 15:
  6318. sp->mac_control.stats_info->sw_stat.
  6319. rx_unkn_err_cnt++;
  6320. break;
  6321. }
  6322. /*
  6323. * Drop the packet if bad transfer code. Exception being
  6324. * 0x5, which could be due to unsupported IPv6 extension header.
  6325. * In this case, we let stack handle the packet.
  6326. * Note that in this case, since checksum will be incorrect,
  6327. * stack will validate the same.
  6328. */
  6329. if (err_mask != 0x5) {
  6330. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6331. dev->name, err_mask);
  6332. sp->stats.rx_crc_errors++;
  6333. sp->mac_control.stats_info->sw_stat.mem_freed
  6334. += skb->truesize;
  6335. dev_kfree_skb(skb);
  6336. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6337. rxdp->Host_Control = 0;
  6338. return 0;
  6339. }
  6340. }
  6341. /* Updating statistics */
  6342. sp->stats.rx_packets++;
  6343. rxdp->Host_Control = 0;
  6344. if (sp->rxd_mode == RXD_MODE_1) {
  6345. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6346. sp->stats.rx_bytes += len;
  6347. skb_put(skb, len);
  6348. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6349. int get_block = ring_data->rx_curr_get_info.block_index;
  6350. int get_off = ring_data->rx_curr_get_info.offset;
  6351. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6352. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6353. unsigned char *buff = skb_push(skb, buf0_len);
  6354. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6355. sp->stats.rx_bytes += buf0_len + buf2_len;
  6356. memcpy(buff, ba->ba_0, buf0_len);
  6357. skb_put(skb, buf2_len);
  6358. }
  6359. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6360. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6361. (sp->rx_csum)) {
  6362. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6363. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6364. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6365. /*
  6366. * NIC verifies if the Checksum of the received
  6367. * frame is Ok or not and accordingly returns
  6368. * a flag in the RxD.
  6369. */
  6370. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6371. if (sp->lro) {
  6372. u32 tcp_len;
  6373. u8 *tcp;
  6374. int ret = 0;
  6375. ret = s2io_club_tcp_session(skb->data, &tcp,
  6376. &tcp_len, &lro, rxdp, sp);
  6377. switch (ret) {
  6378. case 3: /* Begin anew */
  6379. lro->parent = skb;
  6380. goto aggregate;
  6381. case 1: /* Aggregate */
  6382. {
  6383. lro_append_pkt(sp, lro,
  6384. skb, tcp_len);
  6385. goto aggregate;
  6386. }
  6387. case 4: /* Flush session */
  6388. {
  6389. lro_append_pkt(sp, lro,
  6390. skb, tcp_len);
  6391. queue_rx_frame(lro->parent);
  6392. clear_lro_session(lro);
  6393. sp->mac_control.stats_info->
  6394. sw_stat.flush_max_pkts++;
  6395. goto aggregate;
  6396. }
  6397. case 2: /* Flush both */
  6398. lro->parent->data_len =
  6399. lro->frags_len;
  6400. sp->mac_control.stats_info->
  6401. sw_stat.sending_both++;
  6402. queue_rx_frame(lro->parent);
  6403. clear_lro_session(lro);
  6404. goto send_up;
  6405. case 0: /* sessions exceeded */
  6406. case -1: /* non-TCP or not
  6407. * L2 aggregatable
  6408. */
  6409. case 5: /*
  6410. * First pkt in session not
  6411. * L3/L4 aggregatable
  6412. */
  6413. break;
  6414. default:
  6415. DBG_PRINT(ERR_DBG,
  6416. "%s: Samadhana!!\n",
  6417. __FUNCTION__);
  6418. BUG();
  6419. }
  6420. }
  6421. } else {
  6422. /*
  6423. * Packet with erroneous checksum, let the
  6424. * upper layers deal with it.
  6425. */
  6426. skb->ip_summed = CHECKSUM_NONE;
  6427. }
  6428. } else {
  6429. skb->ip_summed = CHECKSUM_NONE;
  6430. }
  6431. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6432. if (!sp->lro) {
  6433. skb->protocol = eth_type_trans(skb, dev);
  6434. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6435. vlan_strip_flag)) {
  6436. /* Queueing the vlan frame to the upper layer */
  6437. if (napi)
  6438. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6439. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6440. else
  6441. vlan_hwaccel_rx(skb, sp->vlgrp,
  6442. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6443. } else {
  6444. if (napi)
  6445. netif_receive_skb(skb);
  6446. else
  6447. netif_rx(skb);
  6448. }
  6449. } else {
  6450. send_up:
  6451. queue_rx_frame(skb);
  6452. }
  6453. dev->last_rx = jiffies;
  6454. aggregate:
  6455. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6456. return SUCCESS;
  6457. }
  6458. /**
  6459. * s2io_link - stops/starts the Tx queue.
  6460. * @sp : private member of the device structure, which is a pointer to the
  6461. * s2io_nic structure.
  6462. * @link : inidicates whether link is UP/DOWN.
  6463. * Description:
  6464. * This function stops/starts the Tx queue depending on whether the link
  6465. * status of the NIC is is down or up. This is called by the Alarm
  6466. * interrupt handler whenever a link change interrupt comes up.
  6467. * Return value:
  6468. * void.
  6469. */
  6470. static void s2io_link(struct s2io_nic * sp, int link)
  6471. {
  6472. struct net_device *dev = (struct net_device *) sp->dev;
  6473. if (link != sp->last_link_state) {
  6474. if (link == LINK_DOWN) {
  6475. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6476. netif_carrier_off(dev);
  6477. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6478. sp->mac_control.stats_info->sw_stat.link_up_time =
  6479. jiffies - sp->start_time;
  6480. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6481. } else {
  6482. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6483. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6484. sp->mac_control.stats_info->sw_stat.link_down_time =
  6485. jiffies - sp->start_time;
  6486. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6487. netif_carrier_on(dev);
  6488. }
  6489. }
  6490. sp->last_link_state = link;
  6491. sp->start_time = jiffies;
  6492. }
  6493. /**
  6494. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6495. * @sp : private member of the device structure, which is a pointer to the
  6496. * s2io_nic structure.
  6497. * Description:
  6498. * This function initializes a few of the PCI and PCI-X configuration registers
  6499. * with recommended values.
  6500. * Return value:
  6501. * void
  6502. */
  6503. static void s2io_init_pci(struct s2io_nic * sp)
  6504. {
  6505. u16 pci_cmd = 0, pcix_cmd = 0;
  6506. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6507. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6508. &(pcix_cmd));
  6509. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6510. (pcix_cmd | 1));
  6511. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6512. &(pcix_cmd));
  6513. /* Set the PErr Response bit in PCI command register. */
  6514. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6515. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6516. (pci_cmd | PCI_COMMAND_PARITY));
  6517. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6518. }
  6519. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6520. {
  6521. if ( tx_fifo_num > 8) {
  6522. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6523. "supported\n");
  6524. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6525. tx_fifo_num = 8;
  6526. }
  6527. if ( rx_ring_num > 8) {
  6528. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6529. "supported\n");
  6530. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6531. rx_ring_num = 8;
  6532. }
  6533. if (*dev_intr_type != INTA)
  6534. napi = 0;
  6535. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6536. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6537. "Defaulting to INTA\n");
  6538. *dev_intr_type = INTA;
  6539. }
  6540. if ((*dev_intr_type == MSI_X) &&
  6541. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6542. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6543. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6544. "Defaulting to INTA\n");
  6545. *dev_intr_type = INTA;
  6546. }
  6547. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6548. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6549. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6550. rx_ring_mode = 1;
  6551. }
  6552. return SUCCESS;
  6553. }
  6554. /**
  6555. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6556. * or Traffic class respectively.
  6557. * @nic: device peivate variable
  6558. * Description: The function configures the receive steering to
  6559. * desired receive ring.
  6560. * Return Value: SUCCESS on success and
  6561. * '-1' on failure (endian settings incorrect).
  6562. */
  6563. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6564. {
  6565. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6566. register u64 val64 = 0;
  6567. if (ds_codepoint > 63)
  6568. return FAILURE;
  6569. val64 = RTS_DS_MEM_DATA(ring);
  6570. writeq(val64, &bar0->rts_ds_mem_data);
  6571. val64 = RTS_DS_MEM_CTRL_WE |
  6572. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6573. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6574. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6575. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6576. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6577. S2IO_BIT_RESET);
  6578. }
  6579. /**
  6580. * s2io_init_nic - Initialization of the adapter .
  6581. * @pdev : structure containing the PCI related information of the device.
  6582. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6583. * Description:
  6584. * The function initializes an adapter identified by the pci_dec structure.
  6585. * All OS related initialization including memory and device structure and
  6586. * initlaization of the device private variable is done. Also the swapper
  6587. * control register is initialized to enable read and write into the I/O
  6588. * registers of the device.
  6589. * Return value:
  6590. * returns 0 on success and negative on failure.
  6591. */
  6592. static int __devinit
  6593. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6594. {
  6595. struct s2io_nic *sp;
  6596. struct net_device *dev;
  6597. int i, j, ret;
  6598. int dma_flag = FALSE;
  6599. u32 mac_up, mac_down;
  6600. u64 val64 = 0, tmp64 = 0;
  6601. struct XENA_dev_config __iomem *bar0 = NULL;
  6602. u16 subid;
  6603. struct mac_info *mac_control;
  6604. struct config_param *config;
  6605. int mode;
  6606. u8 dev_intr_type = intr_type;
  6607. DECLARE_MAC_BUF(mac);
  6608. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6609. return ret;
  6610. if ((ret = pci_enable_device(pdev))) {
  6611. DBG_PRINT(ERR_DBG,
  6612. "s2io_init_nic: pci_enable_device failed\n");
  6613. return ret;
  6614. }
  6615. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6616. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6617. dma_flag = TRUE;
  6618. if (pci_set_consistent_dma_mask
  6619. (pdev, DMA_64BIT_MASK)) {
  6620. DBG_PRINT(ERR_DBG,
  6621. "Unable to obtain 64bit DMA for \
  6622. consistent allocations\n");
  6623. pci_disable_device(pdev);
  6624. return -ENOMEM;
  6625. }
  6626. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6627. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6628. } else {
  6629. pci_disable_device(pdev);
  6630. return -ENOMEM;
  6631. }
  6632. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6633. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6634. pci_disable_device(pdev);
  6635. return -ENODEV;
  6636. }
  6637. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6638. if (dev == NULL) {
  6639. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6640. pci_disable_device(pdev);
  6641. pci_release_regions(pdev);
  6642. return -ENODEV;
  6643. }
  6644. pci_set_master(pdev);
  6645. pci_set_drvdata(pdev, dev);
  6646. SET_NETDEV_DEV(dev, &pdev->dev);
  6647. /* Private member variable initialized to s2io NIC structure */
  6648. sp = dev->priv;
  6649. memset(sp, 0, sizeof(struct s2io_nic));
  6650. sp->dev = dev;
  6651. sp->pdev = pdev;
  6652. sp->high_dma_flag = dma_flag;
  6653. sp->device_enabled_once = FALSE;
  6654. if (rx_ring_mode == 1)
  6655. sp->rxd_mode = RXD_MODE_1;
  6656. if (rx_ring_mode == 2)
  6657. sp->rxd_mode = RXD_MODE_3B;
  6658. sp->config.intr_type = dev_intr_type;
  6659. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6660. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6661. sp->device_type = XFRAME_II_DEVICE;
  6662. else
  6663. sp->device_type = XFRAME_I_DEVICE;
  6664. sp->lro = lro;
  6665. /* Initialize some PCI/PCI-X fields of the NIC. */
  6666. s2io_init_pci(sp);
  6667. /*
  6668. * Setting the device configuration parameters.
  6669. * Most of these parameters can be specified by the user during
  6670. * module insertion as they are module loadable parameters. If
  6671. * these parameters are not not specified during load time, they
  6672. * are initialized with default values.
  6673. */
  6674. mac_control = &sp->mac_control;
  6675. config = &sp->config;
  6676. config->napi = napi;
  6677. /* Tx side parameters. */
  6678. config->tx_fifo_num = tx_fifo_num;
  6679. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6680. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6681. config->tx_cfg[i].fifo_priority = i;
  6682. }
  6683. /* mapping the QoS priority to the configured fifos */
  6684. for (i = 0; i < MAX_TX_FIFOS; i++)
  6685. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6686. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6687. for (i = 0; i < config->tx_fifo_num; i++) {
  6688. config->tx_cfg[i].f_no_snoop =
  6689. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6690. if (config->tx_cfg[i].fifo_len < 65) {
  6691. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6692. break;
  6693. }
  6694. }
  6695. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6696. config->max_txds = MAX_SKB_FRAGS + 2;
  6697. /* Rx side parameters. */
  6698. config->rx_ring_num = rx_ring_num;
  6699. for (i = 0; i < MAX_RX_RINGS; i++) {
  6700. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6701. (rxd_count[sp->rxd_mode] + 1);
  6702. config->rx_cfg[i].ring_priority = i;
  6703. }
  6704. for (i = 0; i < rx_ring_num; i++) {
  6705. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6706. config->rx_cfg[i].f_no_snoop =
  6707. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6708. }
  6709. /* Setting Mac Control parameters */
  6710. mac_control->rmac_pause_time = rmac_pause_time;
  6711. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6712. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6713. /* Initialize Ring buffer parameters. */
  6714. for (i = 0; i < config->rx_ring_num; i++)
  6715. atomic_set(&sp->rx_bufs_left[i], 0);
  6716. /* initialize the shared memory used by the NIC and the host */
  6717. if (init_shared_mem(sp)) {
  6718. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6719. dev->name);
  6720. ret = -ENOMEM;
  6721. goto mem_alloc_failed;
  6722. }
  6723. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6724. pci_resource_len(pdev, 0));
  6725. if (!sp->bar0) {
  6726. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6727. dev->name);
  6728. ret = -ENOMEM;
  6729. goto bar0_remap_failed;
  6730. }
  6731. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6732. pci_resource_len(pdev, 2));
  6733. if (!sp->bar1) {
  6734. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6735. dev->name);
  6736. ret = -ENOMEM;
  6737. goto bar1_remap_failed;
  6738. }
  6739. dev->irq = pdev->irq;
  6740. dev->base_addr = (unsigned long) sp->bar0;
  6741. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6742. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6743. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6744. (sp->bar1 + (j * 0x00020000));
  6745. }
  6746. /* Driver entry points */
  6747. dev->open = &s2io_open;
  6748. dev->stop = &s2io_close;
  6749. dev->hard_start_xmit = &s2io_xmit;
  6750. dev->get_stats = &s2io_get_stats;
  6751. dev->set_multicast_list = &s2io_set_multicast;
  6752. dev->do_ioctl = &s2io_ioctl;
  6753. dev->set_mac_address = &s2io_set_mac_addr;
  6754. dev->change_mtu = &s2io_change_mtu;
  6755. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6756. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6757. dev->vlan_rx_register = s2io_vlan_rx_register;
  6758. /*
  6759. * will use eth_mac_addr() for dev->set_mac_address
  6760. * mac address will be set every time dev->open() is called
  6761. */
  6762. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6763. #ifdef CONFIG_NET_POLL_CONTROLLER
  6764. dev->poll_controller = s2io_netpoll;
  6765. #endif
  6766. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6767. if (sp->high_dma_flag == TRUE)
  6768. dev->features |= NETIF_F_HIGHDMA;
  6769. dev->features |= NETIF_F_TSO;
  6770. dev->features |= NETIF_F_TSO6;
  6771. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6772. dev->features |= NETIF_F_UFO;
  6773. dev->features |= NETIF_F_HW_CSUM;
  6774. }
  6775. dev->tx_timeout = &s2io_tx_watchdog;
  6776. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6777. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6778. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6779. pci_save_state(sp->pdev);
  6780. /* Setting swapper control on the NIC, for proper reset operation */
  6781. if (s2io_set_swapper(sp)) {
  6782. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6783. dev->name);
  6784. ret = -EAGAIN;
  6785. goto set_swap_failed;
  6786. }
  6787. /* Verify if the Herc works on the slot its placed into */
  6788. if (sp->device_type & XFRAME_II_DEVICE) {
  6789. mode = s2io_verify_pci_mode(sp);
  6790. if (mode < 0) {
  6791. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6792. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6793. ret = -EBADSLT;
  6794. goto set_swap_failed;
  6795. }
  6796. }
  6797. /* Not needed for Herc */
  6798. if (sp->device_type & XFRAME_I_DEVICE) {
  6799. /*
  6800. * Fix for all "FFs" MAC address problems observed on
  6801. * Alpha platforms
  6802. */
  6803. fix_mac_address(sp);
  6804. s2io_reset(sp);
  6805. }
  6806. /*
  6807. * MAC address initialization.
  6808. * For now only one mac address will be read and used.
  6809. */
  6810. bar0 = sp->bar0;
  6811. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6812. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6813. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6814. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6815. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6816. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6817. mac_down = (u32) tmp64;
  6818. mac_up = (u32) (tmp64 >> 32);
  6819. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6820. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6821. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6822. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6823. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6824. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6825. /* Set the factory defined MAC address initially */
  6826. dev->addr_len = ETH_ALEN;
  6827. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6828. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  6829. /* Store the values of the MSIX table in the s2io_nic structure */
  6830. store_xmsi_data(sp);
  6831. /* reset Nic and bring it to known state */
  6832. s2io_reset(sp);
  6833. /*
  6834. * Initialize the tasklet status and link state flags
  6835. * and the card state parameter
  6836. */
  6837. sp->tasklet_status = 0;
  6838. sp->state = 0;
  6839. /* Initialize spinlocks */
  6840. spin_lock_init(&sp->tx_lock);
  6841. if (!napi)
  6842. spin_lock_init(&sp->put_lock);
  6843. spin_lock_init(&sp->rx_lock);
  6844. /*
  6845. * SXE-002: Configure link and activity LED to init state
  6846. * on driver load.
  6847. */
  6848. subid = sp->pdev->subsystem_device;
  6849. if ((subid & 0xFF) >= 0x07) {
  6850. val64 = readq(&bar0->gpio_control);
  6851. val64 |= 0x0000800000000000ULL;
  6852. writeq(val64, &bar0->gpio_control);
  6853. val64 = 0x0411040400000000ULL;
  6854. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6855. val64 = readq(&bar0->gpio_control);
  6856. }
  6857. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6858. if (register_netdev(dev)) {
  6859. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6860. ret = -ENODEV;
  6861. goto register_failed;
  6862. }
  6863. s2io_vpd_read(sp);
  6864. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6865. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6866. sp->product_name, pdev->revision);
  6867. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6868. s2io_driver_version);
  6869. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  6870. dev->name, print_mac(mac, dev->dev_addr));
  6871. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6872. if (sp->device_type & XFRAME_II_DEVICE) {
  6873. mode = s2io_print_pci_mode(sp);
  6874. if (mode < 0) {
  6875. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6876. ret = -EBADSLT;
  6877. unregister_netdev(dev);
  6878. goto set_swap_failed;
  6879. }
  6880. }
  6881. switch(sp->rxd_mode) {
  6882. case RXD_MODE_1:
  6883. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6884. dev->name);
  6885. break;
  6886. case RXD_MODE_3B:
  6887. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6888. dev->name);
  6889. break;
  6890. }
  6891. if (napi)
  6892. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6893. switch(sp->config.intr_type) {
  6894. case INTA:
  6895. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6896. break;
  6897. case MSI_X:
  6898. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6899. break;
  6900. }
  6901. if (sp->lro)
  6902. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6903. dev->name);
  6904. if (ufo)
  6905. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6906. " enabled\n", dev->name);
  6907. /* Initialize device name */
  6908. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6909. /*
  6910. * Make Link state as off at this point, when the Link change
  6911. * interrupt comes the state will be automatically changed to
  6912. * the right state.
  6913. */
  6914. netif_carrier_off(dev);
  6915. return 0;
  6916. register_failed:
  6917. set_swap_failed:
  6918. iounmap(sp->bar1);
  6919. bar1_remap_failed:
  6920. iounmap(sp->bar0);
  6921. bar0_remap_failed:
  6922. mem_alloc_failed:
  6923. free_shared_mem(sp);
  6924. pci_disable_device(pdev);
  6925. pci_release_regions(pdev);
  6926. pci_set_drvdata(pdev, NULL);
  6927. free_netdev(dev);
  6928. return ret;
  6929. }
  6930. /**
  6931. * s2io_rem_nic - Free the PCI device
  6932. * @pdev: structure containing the PCI related information of the device.
  6933. * Description: This function is called by the Pci subsystem to release a
  6934. * PCI device and free up all resource held up by the device. This could
  6935. * be in response to a Hot plug event or when the driver is to be removed
  6936. * from memory.
  6937. */
  6938. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6939. {
  6940. struct net_device *dev =
  6941. (struct net_device *) pci_get_drvdata(pdev);
  6942. struct s2io_nic *sp;
  6943. if (dev == NULL) {
  6944. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6945. return;
  6946. }
  6947. flush_scheduled_work();
  6948. sp = dev->priv;
  6949. unregister_netdev(dev);
  6950. free_shared_mem(sp);
  6951. iounmap(sp->bar0);
  6952. iounmap(sp->bar1);
  6953. pci_release_regions(pdev);
  6954. pci_set_drvdata(pdev, NULL);
  6955. free_netdev(dev);
  6956. pci_disable_device(pdev);
  6957. }
  6958. /**
  6959. * s2io_starter - Entry point for the driver
  6960. * Description: This function is the entry point for the driver. It verifies
  6961. * the module loadable parameters and initializes PCI configuration space.
  6962. */
  6963. int __init s2io_starter(void)
  6964. {
  6965. return pci_register_driver(&s2io_driver);
  6966. }
  6967. /**
  6968. * s2io_closer - Cleanup routine for the driver
  6969. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6970. */
  6971. static __exit void s2io_closer(void)
  6972. {
  6973. pci_unregister_driver(&s2io_driver);
  6974. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6975. }
  6976. module_init(s2io_starter);
  6977. module_exit(s2io_closer);
  6978. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6979. struct tcphdr **tcp, struct RxD_t *rxdp)
  6980. {
  6981. int ip_off;
  6982. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  6983. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  6984. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  6985. __FUNCTION__);
  6986. return -1;
  6987. }
  6988. /* TODO:
  6989. * By default the VLAN field in the MAC is stripped by the card, if this
  6990. * feature is turned off in rx_pa_cfg register, then the ip_off field
  6991. * has to be shifted by a further 2 bytes
  6992. */
  6993. switch (l2_type) {
  6994. case 0: /* DIX type */
  6995. case 4: /* DIX type with VLAN */
  6996. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  6997. break;
  6998. /* LLC, SNAP etc are considered non-mergeable */
  6999. default:
  7000. return -1;
  7001. }
  7002. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7003. ip_len = (u8)((*ip)->ihl);
  7004. ip_len <<= 2;
  7005. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7006. return 0;
  7007. }
  7008. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7009. struct tcphdr *tcp)
  7010. {
  7011. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7012. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7013. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7014. return -1;
  7015. return 0;
  7016. }
  7017. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7018. {
  7019. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7020. }
  7021. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7022. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7023. {
  7024. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7025. lro->l2h = l2h;
  7026. lro->iph = ip;
  7027. lro->tcph = tcp;
  7028. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7029. lro->tcp_ack = ntohl(tcp->ack_seq);
  7030. lro->sg_num = 1;
  7031. lro->total_len = ntohs(ip->tot_len);
  7032. lro->frags_len = 0;
  7033. /*
  7034. * check if we saw TCP timestamp. Other consistency checks have
  7035. * already been done.
  7036. */
  7037. if (tcp->doff == 8) {
  7038. u32 *ptr;
  7039. ptr = (u32 *)(tcp+1);
  7040. lro->saw_ts = 1;
  7041. lro->cur_tsval = *(ptr+1);
  7042. lro->cur_tsecr = *(ptr+2);
  7043. }
  7044. lro->in_use = 1;
  7045. }
  7046. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7047. {
  7048. struct iphdr *ip = lro->iph;
  7049. struct tcphdr *tcp = lro->tcph;
  7050. __sum16 nchk;
  7051. struct stat_block *statinfo = sp->mac_control.stats_info;
  7052. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7053. /* Update L3 header */
  7054. ip->tot_len = htons(lro->total_len);
  7055. ip->check = 0;
  7056. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7057. ip->check = nchk;
  7058. /* Update L4 header */
  7059. tcp->ack_seq = lro->tcp_ack;
  7060. tcp->window = lro->window;
  7061. /* Update tsecr field if this session has timestamps enabled */
  7062. if (lro->saw_ts) {
  7063. u32 *ptr = (u32 *)(tcp + 1);
  7064. *(ptr+2) = lro->cur_tsecr;
  7065. }
  7066. /* Update counters required for calculation of
  7067. * average no. of packets aggregated.
  7068. */
  7069. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7070. statinfo->sw_stat.num_aggregations++;
  7071. }
  7072. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7073. struct tcphdr *tcp, u32 l4_pyld)
  7074. {
  7075. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7076. lro->total_len += l4_pyld;
  7077. lro->frags_len += l4_pyld;
  7078. lro->tcp_next_seq += l4_pyld;
  7079. lro->sg_num++;
  7080. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7081. lro->tcp_ack = tcp->ack_seq;
  7082. lro->window = tcp->window;
  7083. if (lro->saw_ts) {
  7084. u32 *ptr;
  7085. /* Update tsecr and tsval from this packet */
  7086. ptr = (u32 *) (tcp + 1);
  7087. lro->cur_tsval = *(ptr + 1);
  7088. lro->cur_tsecr = *(ptr + 2);
  7089. }
  7090. }
  7091. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7092. struct tcphdr *tcp, u32 tcp_pyld_len)
  7093. {
  7094. u8 *ptr;
  7095. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7096. if (!tcp_pyld_len) {
  7097. /* Runt frame or a pure ack */
  7098. return -1;
  7099. }
  7100. if (ip->ihl != 5) /* IP has options */
  7101. return -1;
  7102. /* If we see CE codepoint in IP header, packet is not mergeable */
  7103. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7104. return -1;
  7105. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7106. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7107. tcp->ece || tcp->cwr || !tcp->ack) {
  7108. /*
  7109. * Currently recognize only the ack control word and
  7110. * any other control field being set would result in
  7111. * flushing the LRO session
  7112. */
  7113. return -1;
  7114. }
  7115. /*
  7116. * Allow only one TCP timestamp option. Don't aggregate if
  7117. * any other options are detected.
  7118. */
  7119. if (tcp->doff != 5 && tcp->doff != 8)
  7120. return -1;
  7121. if (tcp->doff == 8) {
  7122. ptr = (u8 *)(tcp + 1);
  7123. while (*ptr == TCPOPT_NOP)
  7124. ptr++;
  7125. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7126. return -1;
  7127. /* Ensure timestamp value increases monotonically */
  7128. if (l_lro)
  7129. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7130. return -1;
  7131. /* timestamp echo reply should be non-zero */
  7132. if (*((u32 *)(ptr+6)) == 0)
  7133. return -1;
  7134. }
  7135. return 0;
  7136. }
  7137. static int
  7138. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7139. struct RxD_t *rxdp, struct s2io_nic *sp)
  7140. {
  7141. struct iphdr *ip;
  7142. struct tcphdr *tcph;
  7143. int ret = 0, i;
  7144. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7145. rxdp))) {
  7146. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7147. ip->saddr, ip->daddr);
  7148. } else {
  7149. return ret;
  7150. }
  7151. tcph = (struct tcphdr *)*tcp;
  7152. *tcp_len = get_l4_pyld_length(ip, tcph);
  7153. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7154. struct lro *l_lro = &sp->lro0_n[i];
  7155. if (l_lro->in_use) {
  7156. if (check_for_socket_match(l_lro, ip, tcph))
  7157. continue;
  7158. /* Sock pair matched */
  7159. *lro = l_lro;
  7160. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7161. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7162. "0x%x, actual 0x%x\n", __FUNCTION__,
  7163. (*lro)->tcp_next_seq,
  7164. ntohl(tcph->seq));
  7165. sp->mac_control.stats_info->
  7166. sw_stat.outof_sequence_pkts++;
  7167. ret = 2;
  7168. break;
  7169. }
  7170. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7171. ret = 1; /* Aggregate */
  7172. else
  7173. ret = 2; /* Flush both */
  7174. break;
  7175. }
  7176. }
  7177. if (ret == 0) {
  7178. /* Before searching for available LRO objects,
  7179. * check if the pkt is L3/L4 aggregatable. If not
  7180. * don't create new LRO session. Just send this
  7181. * packet up.
  7182. */
  7183. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7184. return 5;
  7185. }
  7186. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7187. struct lro *l_lro = &sp->lro0_n[i];
  7188. if (!(l_lro->in_use)) {
  7189. *lro = l_lro;
  7190. ret = 3; /* Begin anew */
  7191. break;
  7192. }
  7193. }
  7194. }
  7195. if (ret == 0) { /* sessions exceeded */
  7196. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7197. __FUNCTION__);
  7198. *lro = NULL;
  7199. return ret;
  7200. }
  7201. switch (ret) {
  7202. case 3:
  7203. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7204. break;
  7205. case 2:
  7206. update_L3L4_header(sp, *lro);
  7207. break;
  7208. case 1:
  7209. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7210. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7211. update_L3L4_header(sp, *lro);
  7212. ret = 4; /* Flush the LRO */
  7213. }
  7214. break;
  7215. default:
  7216. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7217. __FUNCTION__);
  7218. break;
  7219. }
  7220. return ret;
  7221. }
  7222. static void clear_lro_session(struct lro *lro)
  7223. {
  7224. static u16 lro_struct_size = sizeof(struct lro);
  7225. memset(lro, 0, lro_struct_size);
  7226. }
  7227. static void queue_rx_frame(struct sk_buff *skb)
  7228. {
  7229. struct net_device *dev = skb->dev;
  7230. skb->protocol = eth_type_trans(skb, dev);
  7231. if (napi)
  7232. netif_receive_skb(skb);
  7233. else
  7234. netif_rx(skb);
  7235. }
  7236. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7237. struct sk_buff *skb,
  7238. u32 tcp_len)
  7239. {
  7240. struct sk_buff *first = lro->parent;
  7241. first->len += tcp_len;
  7242. first->data_len = lro->frags_len;
  7243. skb_pull(skb, (skb->len - tcp_len));
  7244. if (skb_shinfo(first)->frag_list)
  7245. lro->last_frag->next = skb;
  7246. else
  7247. skb_shinfo(first)->frag_list = skb;
  7248. first->truesize += skb->truesize;
  7249. lro->last_frag = skb;
  7250. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7251. return;
  7252. }
  7253. /**
  7254. * s2io_io_error_detected - called when PCI error is detected
  7255. * @pdev: Pointer to PCI device
  7256. * @state: The current pci connection state
  7257. *
  7258. * This function is called after a PCI bus error affecting
  7259. * this device has been detected.
  7260. */
  7261. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7262. pci_channel_state_t state)
  7263. {
  7264. struct net_device *netdev = pci_get_drvdata(pdev);
  7265. struct s2io_nic *sp = netdev->priv;
  7266. netif_device_detach(netdev);
  7267. if (netif_running(netdev)) {
  7268. /* Bring down the card, while avoiding PCI I/O */
  7269. do_s2io_card_down(sp, 0);
  7270. }
  7271. pci_disable_device(pdev);
  7272. return PCI_ERS_RESULT_NEED_RESET;
  7273. }
  7274. /**
  7275. * s2io_io_slot_reset - called after the pci bus has been reset.
  7276. * @pdev: Pointer to PCI device
  7277. *
  7278. * Restart the card from scratch, as if from a cold-boot.
  7279. * At this point, the card has exprienced a hard reset,
  7280. * followed by fixups by BIOS, and has its config space
  7281. * set up identically to what it was at cold boot.
  7282. */
  7283. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7284. {
  7285. struct net_device *netdev = pci_get_drvdata(pdev);
  7286. struct s2io_nic *sp = netdev->priv;
  7287. if (pci_enable_device(pdev)) {
  7288. printk(KERN_ERR "s2io: "
  7289. "Cannot re-enable PCI device after reset.\n");
  7290. return PCI_ERS_RESULT_DISCONNECT;
  7291. }
  7292. pci_set_master(pdev);
  7293. s2io_reset(sp);
  7294. return PCI_ERS_RESULT_RECOVERED;
  7295. }
  7296. /**
  7297. * s2io_io_resume - called when traffic can start flowing again.
  7298. * @pdev: Pointer to PCI device
  7299. *
  7300. * This callback is called when the error recovery driver tells
  7301. * us that its OK to resume normal operation.
  7302. */
  7303. static void s2io_io_resume(struct pci_dev *pdev)
  7304. {
  7305. struct net_device *netdev = pci_get_drvdata(pdev);
  7306. struct s2io_nic *sp = netdev->priv;
  7307. if (netif_running(netdev)) {
  7308. if (s2io_card_up(sp)) {
  7309. printk(KERN_ERR "s2io: "
  7310. "Can't bring device back up after reset.\n");
  7311. return;
  7312. }
  7313. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7314. s2io_card_down(sp);
  7315. printk(KERN_ERR "s2io: "
  7316. "Can't resetore mac addr after reset.\n");
  7317. return;
  7318. }
  7319. }
  7320. netif_device_attach(netdev);
  7321. netif_wake_queue(netdev);
  7322. }