checkpoint.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. sbi->sb->s_flags |= MS_RDONLY;
  30. if (!end_io)
  31. f2fs_flush_merged_bios(sbi);
  32. }
  33. /*
  34. * We guarantee no failure on the returned page.
  35. */
  36. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  37. {
  38. struct address_space *mapping = META_MAPPING(sbi);
  39. struct page *page = NULL;
  40. repeat:
  41. page = f2fs_grab_cache_page(mapping, index, false);
  42. if (!page) {
  43. cond_resched();
  44. goto repeat;
  45. }
  46. f2fs_wait_on_page_writeback(page, META, true);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. return page;
  50. }
  51. /*
  52. * We guarantee no failure on the returned page.
  53. */
  54. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  55. bool is_meta)
  56. {
  57. struct address_space *mapping = META_MAPPING(sbi);
  58. struct page *page;
  59. struct f2fs_io_info fio = {
  60. .sbi = sbi,
  61. .type = META,
  62. .op = REQ_OP_READ,
  63. .op_flags = REQ_META | REQ_PRIO,
  64. .old_blkaddr = index,
  65. .new_blkaddr = index,
  66. .encrypted_page = NULL,
  67. };
  68. if (unlikely(!is_meta))
  69. fio.op_flags &= ~REQ_META;
  70. repeat:
  71. page = f2fs_grab_cache_page(mapping, index, false);
  72. if (!page) {
  73. cond_resched();
  74. goto repeat;
  75. }
  76. if (PageUptodate(page))
  77. goto out;
  78. fio.page = page;
  79. if (f2fs_submit_page_bio(&fio)) {
  80. f2fs_put_page(page, 1);
  81. goto repeat;
  82. }
  83. lock_page(page);
  84. if (unlikely(page->mapping != mapping)) {
  85. f2fs_put_page(page, 1);
  86. goto repeat;
  87. }
  88. /*
  89. * if there is any IO error when accessing device, make our filesystem
  90. * readonly and make sure do not write checkpoint with non-uptodate
  91. * meta page.
  92. */
  93. if (unlikely(!PageUptodate(page)))
  94. f2fs_stop_checkpoint(sbi, false);
  95. out:
  96. return page;
  97. }
  98. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  99. {
  100. return __get_meta_page(sbi, index, true);
  101. }
  102. /* for POR only */
  103. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  104. {
  105. return __get_meta_page(sbi, index, false);
  106. }
  107. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  108. {
  109. switch (type) {
  110. case META_NAT:
  111. break;
  112. case META_SIT:
  113. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  114. return false;
  115. break;
  116. case META_SSA:
  117. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  118. blkaddr < SM_I(sbi)->ssa_blkaddr))
  119. return false;
  120. break;
  121. case META_CP:
  122. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  123. blkaddr < __start_cp_addr(sbi)))
  124. return false;
  125. break;
  126. case META_POR:
  127. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  128. blkaddr < MAIN_BLKADDR(sbi)))
  129. return false;
  130. break;
  131. default:
  132. BUG();
  133. }
  134. return true;
  135. }
  136. /*
  137. * Readahead CP/NAT/SIT/SSA pages
  138. */
  139. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  140. int type, bool sync)
  141. {
  142. struct page *page;
  143. block_t blkno = start;
  144. struct f2fs_io_info fio = {
  145. .sbi = sbi,
  146. .type = META,
  147. .op = REQ_OP_READ,
  148. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  149. .encrypted_page = NULL,
  150. };
  151. struct blk_plug plug;
  152. if (unlikely(type == META_POR))
  153. fio.op_flags &= ~REQ_META;
  154. blk_start_plug(&plug);
  155. for (; nrpages-- > 0; blkno++) {
  156. if (!is_valid_blkaddr(sbi, blkno, type))
  157. goto out;
  158. switch (type) {
  159. case META_NAT:
  160. if (unlikely(blkno >=
  161. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  162. blkno = 0;
  163. /* get nat block addr */
  164. fio.new_blkaddr = current_nat_addr(sbi,
  165. blkno * NAT_ENTRY_PER_BLOCK);
  166. break;
  167. case META_SIT:
  168. /* get sit block addr */
  169. fio.new_blkaddr = current_sit_addr(sbi,
  170. blkno * SIT_ENTRY_PER_BLOCK);
  171. break;
  172. case META_SSA:
  173. case META_CP:
  174. case META_POR:
  175. fio.new_blkaddr = blkno;
  176. break;
  177. default:
  178. BUG();
  179. }
  180. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  181. fio.new_blkaddr, false);
  182. if (!page)
  183. continue;
  184. if (PageUptodate(page)) {
  185. f2fs_put_page(page, 1);
  186. continue;
  187. }
  188. fio.page = page;
  189. f2fs_submit_page_bio(&fio);
  190. f2fs_put_page(page, 0);
  191. }
  192. out:
  193. blk_finish_plug(&plug);
  194. return blkno - start;
  195. }
  196. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  197. {
  198. struct page *page;
  199. bool readahead = false;
  200. page = find_get_page(META_MAPPING(sbi), index);
  201. if (!page || !PageUptodate(page))
  202. readahead = true;
  203. f2fs_put_page(page, 0);
  204. if (readahead)
  205. ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  206. }
  207. static int f2fs_write_meta_page(struct page *page,
  208. struct writeback_control *wbc)
  209. {
  210. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  211. trace_f2fs_writepage(page, META);
  212. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  213. goto redirty_out;
  214. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  215. goto redirty_out;
  216. if (unlikely(f2fs_cp_error(sbi)))
  217. goto redirty_out;
  218. write_meta_page(sbi, page);
  219. dec_page_count(sbi, F2FS_DIRTY_META);
  220. if (wbc->for_reclaim)
  221. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  222. 0, page->index, META, WRITE);
  223. unlock_page(page);
  224. if (unlikely(f2fs_cp_error(sbi)))
  225. f2fs_submit_merged_bio(sbi, META, WRITE);
  226. return 0;
  227. redirty_out:
  228. redirty_page_for_writepage(wbc, page);
  229. return AOP_WRITEPAGE_ACTIVATE;
  230. }
  231. static int f2fs_write_meta_pages(struct address_space *mapping,
  232. struct writeback_control *wbc)
  233. {
  234. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  235. long diff, written;
  236. /* collect a number of dirty meta pages and write together */
  237. if (wbc->for_kupdate ||
  238. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  239. goto skip_write;
  240. /* if locked failed, cp will flush dirty pages instead */
  241. if (!mutex_trylock(&sbi->cp_mutex))
  242. goto skip_write;
  243. trace_f2fs_writepages(mapping->host, wbc, META);
  244. diff = nr_pages_to_write(sbi, META, wbc);
  245. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  246. mutex_unlock(&sbi->cp_mutex);
  247. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  248. return 0;
  249. skip_write:
  250. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  251. trace_f2fs_writepages(mapping->host, wbc, META);
  252. return 0;
  253. }
  254. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  255. long nr_to_write)
  256. {
  257. struct address_space *mapping = META_MAPPING(sbi);
  258. pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
  259. struct pagevec pvec;
  260. long nwritten = 0;
  261. struct writeback_control wbc = {
  262. .for_reclaim = 0,
  263. };
  264. struct blk_plug plug;
  265. pagevec_init(&pvec, 0);
  266. blk_start_plug(&plug);
  267. while (index <= end) {
  268. int i, nr_pages;
  269. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  270. PAGECACHE_TAG_DIRTY,
  271. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  272. if (unlikely(nr_pages == 0))
  273. break;
  274. for (i = 0; i < nr_pages; i++) {
  275. struct page *page = pvec.pages[i];
  276. if (prev == ULONG_MAX)
  277. prev = page->index - 1;
  278. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  279. pagevec_release(&pvec);
  280. goto stop;
  281. }
  282. lock_page(page);
  283. if (unlikely(page->mapping != mapping)) {
  284. continue_unlock:
  285. unlock_page(page);
  286. continue;
  287. }
  288. if (!PageDirty(page)) {
  289. /* someone wrote it for us */
  290. goto continue_unlock;
  291. }
  292. f2fs_wait_on_page_writeback(page, META, true);
  293. BUG_ON(PageWriteback(page));
  294. if (!clear_page_dirty_for_io(page))
  295. goto continue_unlock;
  296. if (mapping->a_ops->writepage(page, &wbc)) {
  297. unlock_page(page);
  298. break;
  299. }
  300. nwritten++;
  301. prev = page->index;
  302. if (unlikely(nwritten >= nr_to_write))
  303. break;
  304. }
  305. pagevec_release(&pvec);
  306. cond_resched();
  307. }
  308. stop:
  309. if (nwritten)
  310. f2fs_submit_merged_bio(sbi, type, WRITE);
  311. blk_finish_plug(&plug);
  312. return nwritten;
  313. }
  314. static int f2fs_set_meta_page_dirty(struct page *page)
  315. {
  316. trace_f2fs_set_page_dirty(page, META);
  317. if (!PageUptodate(page))
  318. SetPageUptodate(page);
  319. if (!PageDirty(page)) {
  320. f2fs_set_page_dirty_nobuffers(page);
  321. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  322. SetPagePrivate(page);
  323. f2fs_trace_pid(page);
  324. return 1;
  325. }
  326. return 0;
  327. }
  328. const struct address_space_operations f2fs_meta_aops = {
  329. .writepage = f2fs_write_meta_page,
  330. .writepages = f2fs_write_meta_pages,
  331. .set_page_dirty = f2fs_set_meta_page_dirty,
  332. .invalidatepage = f2fs_invalidate_page,
  333. .releasepage = f2fs_release_page,
  334. #ifdef CONFIG_MIGRATION
  335. .migratepage = f2fs_migrate_page,
  336. #endif
  337. };
  338. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  339. {
  340. struct inode_management *im = &sbi->im[type];
  341. struct ino_entry *e, *tmp;
  342. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  343. retry:
  344. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  345. spin_lock(&im->ino_lock);
  346. e = radix_tree_lookup(&im->ino_root, ino);
  347. if (!e) {
  348. e = tmp;
  349. if (radix_tree_insert(&im->ino_root, ino, e)) {
  350. spin_unlock(&im->ino_lock);
  351. radix_tree_preload_end();
  352. goto retry;
  353. }
  354. memset(e, 0, sizeof(struct ino_entry));
  355. e->ino = ino;
  356. list_add_tail(&e->list, &im->ino_list);
  357. if (type != ORPHAN_INO)
  358. im->ino_num++;
  359. }
  360. spin_unlock(&im->ino_lock);
  361. radix_tree_preload_end();
  362. if (e != tmp)
  363. kmem_cache_free(ino_entry_slab, tmp);
  364. }
  365. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  366. {
  367. struct inode_management *im = &sbi->im[type];
  368. struct ino_entry *e;
  369. spin_lock(&im->ino_lock);
  370. e = radix_tree_lookup(&im->ino_root, ino);
  371. if (e) {
  372. list_del(&e->list);
  373. radix_tree_delete(&im->ino_root, ino);
  374. im->ino_num--;
  375. spin_unlock(&im->ino_lock);
  376. kmem_cache_free(ino_entry_slab, e);
  377. return;
  378. }
  379. spin_unlock(&im->ino_lock);
  380. }
  381. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  382. {
  383. /* add new dirty ino entry into list */
  384. __add_ino_entry(sbi, ino, type);
  385. }
  386. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  387. {
  388. /* remove dirty ino entry from list */
  389. __remove_ino_entry(sbi, ino, type);
  390. }
  391. /* mode should be APPEND_INO or UPDATE_INO */
  392. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  393. {
  394. struct inode_management *im = &sbi->im[mode];
  395. struct ino_entry *e;
  396. spin_lock(&im->ino_lock);
  397. e = radix_tree_lookup(&im->ino_root, ino);
  398. spin_unlock(&im->ino_lock);
  399. return e ? true : false;
  400. }
  401. void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  402. {
  403. struct ino_entry *e, *tmp;
  404. int i;
  405. for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
  406. struct inode_management *im = &sbi->im[i];
  407. spin_lock(&im->ino_lock);
  408. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  409. list_del(&e->list);
  410. radix_tree_delete(&im->ino_root, e->ino);
  411. kmem_cache_free(ino_entry_slab, e);
  412. im->ino_num--;
  413. }
  414. spin_unlock(&im->ino_lock);
  415. }
  416. }
  417. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  418. {
  419. struct inode_management *im = &sbi->im[ORPHAN_INO];
  420. int err = 0;
  421. spin_lock(&im->ino_lock);
  422. #ifdef CONFIG_F2FS_FAULT_INJECTION
  423. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  424. spin_unlock(&im->ino_lock);
  425. f2fs_show_injection_info(FAULT_ORPHAN);
  426. return -ENOSPC;
  427. }
  428. #endif
  429. if (unlikely(im->ino_num >= sbi->max_orphans))
  430. err = -ENOSPC;
  431. else
  432. im->ino_num++;
  433. spin_unlock(&im->ino_lock);
  434. return err;
  435. }
  436. void release_orphan_inode(struct f2fs_sb_info *sbi)
  437. {
  438. struct inode_management *im = &sbi->im[ORPHAN_INO];
  439. spin_lock(&im->ino_lock);
  440. f2fs_bug_on(sbi, im->ino_num == 0);
  441. im->ino_num--;
  442. spin_unlock(&im->ino_lock);
  443. }
  444. void add_orphan_inode(struct inode *inode)
  445. {
  446. /* add new orphan ino entry into list */
  447. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
  448. update_inode_page(inode);
  449. }
  450. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  451. {
  452. /* remove orphan entry from orphan list */
  453. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  454. }
  455. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  456. {
  457. struct inode *inode;
  458. struct node_info ni;
  459. int err = acquire_orphan_inode(sbi);
  460. if (err) {
  461. set_sbi_flag(sbi, SBI_NEED_FSCK);
  462. f2fs_msg(sbi->sb, KERN_WARNING,
  463. "%s: orphan failed (ino=%x), run fsck to fix.",
  464. __func__, ino);
  465. return err;
  466. }
  467. __add_ino_entry(sbi, ino, ORPHAN_INO);
  468. inode = f2fs_iget_retry(sbi->sb, ino);
  469. if (IS_ERR(inode)) {
  470. /*
  471. * there should be a bug that we can't find the entry
  472. * to orphan inode.
  473. */
  474. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  475. return PTR_ERR(inode);
  476. }
  477. clear_nlink(inode);
  478. /* truncate all the data during iput */
  479. iput(inode);
  480. get_node_info(sbi, ino, &ni);
  481. /* ENOMEM was fully retried in f2fs_evict_inode. */
  482. if (ni.blk_addr != NULL_ADDR) {
  483. set_sbi_flag(sbi, SBI_NEED_FSCK);
  484. f2fs_msg(sbi->sb, KERN_WARNING,
  485. "%s: orphan failed (ino=%x) by kernel, retry mount.",
  486. __func__, ino);
  487. return -EIO;
  488. }
  489. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  490. return 0;
  491. }
  492. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  493. {
  494. block_t start_blk, orphan_blocks, i, j;
  495. int err;
  496. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  497. return 0;
  498. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  499. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  500. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  501. for (i = 0; i < orphan_blocks; i++) {
  502. struct page *page = get_meta_page(sbi, start_blk + i);
  503. struct f2fs_orphan_block *orphan_blk;
  504. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  505. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  506. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  507. err = recover_orphan_inode(sbi, ino);
  508. if (err) {
  509. f2fs_put_page(page, 1);
  510. return err;
  511. }
  512. }
  513. f2fs_put_page(page, 1);
  514. }
  515. /* clear Orphan Flag */
  516. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  517. return 0;
  518. }
  519. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  520. {
  521. struct list_head *head;
  522. struct f2fs_orphan_block *orphan_blk = NULL;
  523. unsigned int nentries = 0;
  524. unsigned short index = 1;
  525. unsigned short orphan_blocks;
  526. struct page *page = NULL;
  527. struct ino_entry *orphan = NULL;
  528. struct inode_management *im = &sbi->im[ORPHAN_INO];
  529. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  530. /*
  531. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  532. * orphan inode operations are covered under f2fs_lock_op().
  533. * And, spin_lock should be avoided due to page operations below.
  534. */
  535. head = &im->ino_list;
  536. /* loop for each orphan inode entry and write them in Jornal block */
  537. list_for_each_entry(orphan, head, list) {
  538. if (!page) {
  539. page = grab_meta_page(sbi, start_blk++);
  540. orphan_blk =
  541. (struct f2fs_orphan_block *)page_address(page);
  542. memset(orphan_blk, 0, sizeof(*orphan_blk));
  543. }
  544. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  545. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  546. /*
  547. * an orphan block is full of 1020 entries,
  548. * then we need to flush current orphan blocks
  549. * and bring another one in memory
  550. */
  551. orphan_blk->blk_addr = cpu_to_le16(index);
  552. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  553. orphan_blk->entry_count = cpu_to_le32(nentries);
  554. set_page_dirty(page);
  555. f2fs_put_page(page, 1);
  556. index++;
  557. nentries = 0;
  558. page = NULL;
  559. }
  560. }
  561. if (page) {
  562. orphan_blk->blk_addr = cpu_to_le16(index);
  563. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  564. orphan_blk->entry_count = cpu_to_le32(nentries);
  565. set_page_dirty(page);
  566. f2fs_put_page(page, 1);
  567. }
  568. }
  569. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  570. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  571. unsigned long long *version)
  572. {
  573. unsigned long blk_size = sbi->blocksize;
  574. size_t crc_offset = 0;
  575. __u32 crc = 0;
  576. *cp_page = get_meta_page(sbi, cp_addr);
  577. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  578. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  579. if (crc_offset > (blk_size - sizeof(__le32))) {
  580. f2fs_msg(sbi->sb, KERN_WARNING,
  581. "invalid crc_offset: %zu", crc_offset);
  582. return -EINVAL;
  583. }
  584. crc = cur_cp_crc(*cp_block);
  585. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  586. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  587. return -EINVAL;
  588. }
  589. *version = cur_cp_version(*cp_block);
  590. return 0;
  591. }
  592. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  593. block_t cp_addr, unsigned long long *version)
  594. {
  595. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  596. struct f2fs_checkpoint *cp_block = NULL;
  597. unsigned long long cur_version = 0, pre_version = 0;
  598. int err;
  599. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  600. &cp_page_1, version);
  601. if (err)
  602. goto invalid_cp1;
  603. pre_version = *version;
  604. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  605. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  606. &cp_page_2, version);
  607. if (err)
  608. goto invalid_cp2;
  609. cur_version = *version;
  610. if (cur_version == pre_version) {
  611. *version = cur_version;
  612. f2fs_put_page(cp_page_2, 1);
  613. return cp_page_1;
  614. }
  615. invalid_cp2:
  616. f2fs_put_page(cp_page_2, 1);
  617. invalid_cp1:
  618. f2fs_put_page(cp_page_1, 1);
  619. return NULL;
  620. }
  621. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  622. {
  623. struct f2fs_checkpoint *cp_block;
  624. struct f2fs_super_block *fsb = sbi->raw_super;
  625. struct page *cp1, *cp2, *cur_page;
  626. unsigned long blk_size = sbi->blocksize;
  627. unsigned long long cp1_version = 0, cp2_version = 0;
  628. unsigned long long cp_start_blk_no;
  629. unsigned int cp_blks = 1 + __cp_payload(sbi);
  630. block_t cp_blk_no;
  631. int i;
  632. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  633. if (!sbi->ckpt)
  634. return -ENOMEM;
  635. /*
  636. * Finding out valid cp block involves read both
  637. * sets( cp pack1 and cp pack 2)
  638. */
  639. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  640. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  641. /* The second checkpoint pack should start at the next segment */
  642. cp_start_blk_no += ((unsigned long long)1) <<
  643. le32_to_cpu(fsb->log_blocks_per_seg);
  644. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  645. if (cp1 && cp2) {
  646. if (ver_after(cp2_version, cp1_version))
  647. cur_page = cp2;
  648. else
  649. cur_page = cp1;
  650. } else if (cp1) {
  651. cur_page = cp1;
  652. } else if (cp2) {
  653. cur_page = cp2;
  654. } else {
  655. goto fail_no_cp;
  656. }
  657. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  658. memcpy(sbi->ckpt, cp_block, blk_size);
  659. /* Sanity checking of checkpoint */
  660. if (sanity_check_ckpt(sbi))
  661. goto free_fail_no_cp;
  662. if (cur_page == cp1)
  663. sbi->cur_cp_pack = 1;
  664. else
  665. sbi->cur_cp_pack = 2;
  666. if (cp_blks <= 1)
  667. goto done;
  668. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  669. if (cur_page == cp2)
  670. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  671. for (i = 1; i < cp_blks; i++) {
  672. void *sit_bitmap_ptr;
  673. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  674. cur_page = get_meta_page(sbi, cp_blk_no + i);
  675. sit_bitmap_ptr = page_address(cur_page);
  676. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  677. f2fs_put_page(cur_page, 1);
  678. }
  679. done:
  680. f2fs_put_page(cp1, 1);
  681. f2fs_put_page(cp2, 1);
  682. return 0;
  683. free_fail_no_cp:
  684. f2fs_put_page(cp1, 1);
  685. f2fs_put_page(cp2, 1);
  686. fail_no_cp:
  687. kfree(sbi->ckpt);
  688. return -EINVAL;
  689. }
  690. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  691. {
  692. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  693. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  694. if (is_inode_flag_set(inode, flag))
  695. return;
  696. set_inode_flag(inode, flag);
  697. if (!f2fs_is_volatile_file(inode))
  698. list_add_tail(&F2FS_I(inode)->dirty_list,
  699. &sbi->inode_list[type]);
  700. stat_inc_dirty_inode(sbi, type);
  701. }
  702. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  703. {
  704. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  705. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  706. return;
  707. list_del_init(&F2FS_I(inode)->dirty_list);
  708. clear_inode_flag(inode, flag);
  709. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  710. }
  711. void update_dirty_page(struct inode *inode, struct page *page)
  712. {
  713. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  714. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  715. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  716. !S_ISLNK(inode->i_mode))
  717. return;
  718. spin_lock(&sbi->inode_lock[type]);
  719. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  720. __add_dirty_inode(inode, type);
  721. inode_inc_dirty_pages(inode);
  722. spin_unlock(&sbi->inode_lock[type]);
  723. SetPagePrivate(page);
  724. f2fs_trace_pid(page);
  725. }
  726. void remove_dirty_inode(struct inode *inode)
  727. {
  728. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  729. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  730. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  731. !S_ISLNK(inode->i_mode))
  732. return;
  733. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  734. return;
  735. spin_lock(&sbi->inode_lock[type]);
  736. __remove_dirty_inode(inode, type);
  737. spin_unlock(&sbi->inode_lock[type]);
  738. }
  739. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  740. {
  741. struct list_head *head;
  742. struct inode *inode;
  743. struct f2fs_inode_info *fi;
  744. bool is_dir = (type == DIR_INODE);
  745. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  746. get_pages(sbi, is_dir ?
  747. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  748. retry:
  749. if (unlikely(f2fs_cp_error(sbi)))
  750. return -EIO;
  751. spin_lock(&sbi->inode_lock[type]);
  752. head = &sbi->inode_list[type];
  753. if (list_empty(head)) {
  754. spin_unlock(&sbi->inode_lock[type]);
  755. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  756. get_pages(sbi, is_dir ?
  757. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  758. return 0;
  759. }
  760. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  761. inode = igrab(&fi->vfs_inode);
  762. spin_unlock(&sbi->inode_lock[type]);
  763. if (inode) {
  764. filemap_fdatawrite(inode->i_mapping);
  765. iput(inode);
  766. } else {
  767. /*
  768. * We should submit bio, since it exists several
  769. * wribacking dentry pages in the freeing inode.
  770. */
  771. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  772. cond_resched();
  773. }
  774. goto retry;
  775. }
  776. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  777. {
  778. struct list_head *head = &sbi->inode_list[DIRTY_META];
  779. struct inode *inode;
  780. struct f2fs_inode_info *fi;
  781. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  782. while (total--) {
  783. if (unlikely(f2fs_cp_error(sbi)))
  784. return -EIO;
  785. spin_lock(&sbi->inode_lock[DIRTY_META]);
  786. if (list_empty(head)) {
  787. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  788. return 0;
  789. }
  790. fi = list_first_entry(head, struct f2fs_inode_info,
  791. gdirty_list);
  792. inode = igrab(&fi->vfs_inode);
  793. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  794. if (inode) {
  795. sync_inode_metadata(inode, 0);
  796. /* it's on eviction */
  797. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  798. update_inode_page(inode);
  799. iput(inode);
  800. }
  801. };
  802. return 0;
  803. }
  804. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  805. {
  806. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  807. struct f2fs_nm_info *nm_i = NM_I(sbi);
  808. nid_t last_nid = nm_i->next_scan_nid;
  809. next_free_nid(sbi, &last_nid);
  810. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  811. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  812. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  813. ckpt->next_free_nid = cpu_to_le32(last_nid);
  814. }
  815. /*
  816. * Freeze all the FS-operations for checkpoint.
  817. */
  818. static int block_operations(struct f2fs_sb_info *sbi)
  819. {
  820. struct writeback_control wbc = {
  821. .sync_mode = WB_SYNC_ALL,
  822. .nr_to_write = LONG_MAX,
  823. .for_reclaim = 0,
  824. };
  825. struct blk_plug plug;
  826. int err = 0;
  827. blk_start_plug(&plug);
  828. retry_flush_dents:
  829. f2fs_lock_all(sbi);
  830. /* write all the dirty dentry pages */
  831. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  832. f2fs_unlock_all(sbi);
  833. err = sync_dirty_inodes(sbi, DIR_INODE);
  834. if (err)
  835. goto out;
  836. cond_resched();
  837. goto retry_flush_dents;
  838. }
  839. /*
  840. * POR: we should ensure that there are no dirty node pages
  841. * until finishing nat/sit flush. inode->i_blocks can be updated.
  842. */
  843. down_write(&sbi->node_change);
  844. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  845. up_write(&sbi->node_change);
  846. f2fs_unlock_all(sbi);
  847. err = f2fs_sync_inode_meta(sbi);
  848. if (err)
  849. goto out;
  850. cond_resched();
  851. goto retry_flush_dents;
  852. }
  853. retry_flush_nodes:
  854. down_write(&sbi->node_write);
  855. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  856. up_write(&sbi->node_write);
  857. err = sync_node_pages(sbi, &wbc);
  858. if (err) {
  859. up_write(&sbi->node_change);
  860. f2fs_unlock_all(sbi);
  861. goto out;
  862. }
  863. cond_resched();
  864. goto retry_flush_nodes;
  865. }
  866. /*
  867. * sbi->node_change is used only for AIO write_begin path which produces
  868. * dirty node blocks and some checkpoint values by block allocation.
  869. */
  870. __prepare_cp_block(sbi);
  871. up_write(&sbi->node_change);
  872. out:
  873. blk_finish_plug(&plug);
  874. return err;
  875. }
  876. static void unblock_operations(struct f2fs_sb_info *sbi)
  877. {
  878. up_write(&sbi->node_write);
  879. f2fs_unlock_all(sbi);
  880. }
  881. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  882. {
  883. DEFINE_WAIT(wait);
  884. for (;;) {
  885. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  886. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  887. break;
  888. io_schedule_timeout(5*HZ);
  889. }
  890. finish_wait(&sbi->cp_wait, &wait);
  891. }
  892. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  893. {
  894. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  895. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  896. spin_lock(&sbi->cp_lock);
  897. if ((cpc->reason & CP_UMOUNT) &&
  898. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  899. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  900. disable_nat_bits(sbi, false);
  901. if (cpc->reason & CP_TRIMMED)
  902. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  903. if (cpc->reason & CP_UMOUNT)
  904. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  905. else
  906. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  907. if (cpc->reason & CP_FASTBOOT)
  908. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  909. else
  910. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  911. if (orphan_num)
  912. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  913. else
  914. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  915. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  916. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  917. /* set this flag to activate crc|cp_ver for recovery */
  918. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  919. spin_unlock(&sbi->cp_lock);
  920. }
  921. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  922. {
  923. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  924. struct f2fs_nm_info *nm_i = NM_I(sbi);
  925. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  926. block_t start_blk;
  927. unsigned int data_sum_blocks, orphan_blocks;
  928. __u32 crc32 = 0;
  929. int i;
  930. int cp_payload_blks = __cp_payload(sbi);
  931. struct super_block *sb = sbi->sb;
  932. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  933. u64 kbytes_written;
  934. /* Flush all the NAT/SIT pages */
  935. while (get_pages(sbi, F2FS_DIRTY_META)) {
  936. sync_meta_pages(sbi, META, LONG_MAX);
  937. if (unlikely(f2fs_cp_error(sbi)))
  938. return -EIO;
  939. }
  940. /*
  941. * modify checkpoint
  942. * version number is already updated
  943. */
  944. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  945. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  946. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  947. ckpt->cur_node_segno[i] =
  948. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  949. ckpt->cur_node_blkoff[i] =
  950. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  951. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  952. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  953. }
  954. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  955. ckpt->cur_data_segno[i] =
  956. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  957. ckpt->cur_data_blkoff[i] =
  958. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  959. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  960. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  961. }
  962. /* 2 cp + n data seg summary + orphan inode blocks */
  963. data_sum_blocks = npages_for_summary_flush(sbi, false);
  964. spin_lock(&sbi->cp_lock);
  965. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  966. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  967. else
  968. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  969. spin_unlock(&sbi->cp_lock);
  970. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  971. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  972. orphan_blocks);
  973. if (__remain_node_summaries(cpc->reason))
  974. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  975. cp_payload_blks + data_sum_blocks +
  976. orphan_blocks + NR_CURSEG_NODE_TYPE);
  977. else
  978. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  979. cp_payload_blks + data_sum_blocks +
  980. orphan_blocks);
  981. /* update ckpt flag for checkpoint */
  982. update_ckpt_flags(sbi, cpc);
  983. /* update SIT/NAT bitmap */
  984. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  985. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  986. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  987. *((__le32 *)((unsigned char *)ckpt +
  988. le32_to_cpu(ckpt->checksum_offset)))
  989. = cpu_to_le32(crc32);
  990. start_blk = __start_cp_next_addr(sbi);
  991. /* write nat bits */
  992. if (enabled_nat_bits(sbi, cpc)) {
  993. __u64 cp_ver = cur_cp_version(ckpt);
  994. block_t blk;
  995. cp_ver |= ((__u64)crc32 << 32);
  996. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  997. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  998. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  999. update_meta_page(sbi, nm_i->nat_bits +
  1000. (i << F2FS_BLKSIZE_BITS), blk + i);
  1001. /* Flush all the NAT BITS pages */
  1002. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1003. sync_meta_pages(sbi, META, LONG_MAX);
  1004. if (unlikely(f2fs_cp_error(sbi)))
  1005. return -EIO;
  1006. }
  1007. }
  1008. /* need to wait for end_io results */
  1009. wait_on_all_pages_writeback(sbi);
  1010. if (unlikely(f2fs_cp_error(sbi)))
  1011. return -EIO;
  1012. /* write out checkpoint buffer at block 0 */
  1013. update_meta_page(sbi, ckpt, start_blk++);
  1014. for (i = 1; i < 1 + cp_payload_blks; i++)
  1015. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1016. start_blk++);
  1017. if (orphan_num) {
  1018. write_orphan_inodes(sbi, start_blk);
  1019. start_blk += orphan_blocks;
  1020. }
  1021. write_data_summaries(sbi, start_blk);
  1022. start_blk += data_sum_blocks;
  1023. /* Record write statistics in the hot node summary */
  1024. kbytes_written = sbi->kbytes_written;
  1025. if (sb->s_bdev->bd_part)
  1026. kbytes_written += BD_PART_WRITTEN(sbi);
  1027. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1028. if (__remain_node_summaries(cpc->reason)) {
  1029. write_node_summaries(sbi, start_blk);
  1030. start_blk += NR_CURSEG_NODE_TYPE;
  1031. }
  1032. /* writeout checkpoint block */
  1033. update_meta_page(sbi, ckpt, start_blk);
  1034. /* wait for previous submitted node/meta pages writeback */
  1035. wait_on_all_pages_writeback(sbi);
  1036. if (unlikely(f2fs_cp_error(sbi)))
  1037. return -EIO;
  1038. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
  1039. filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
  1040. /* update user_block_counts */
  1041. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1042. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1043. /* Here, we only have one bio having CP pack */
  1044. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  1045. /* wait for previous submitted meta pages writeback */
  1046. wait_on_all_pages_writeback(sbi);
  1047. release_ino_entry(sbi, false);
  1048. if (unlikely(f2fs_cp_error(sbi)))
  1049. return -EIO;
  1050. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1051. clear_sbi_flag(sbi, SBI_NEED_CP);
  1052. __set_cp_next_pack(sbi);
  1053. /*
  1054. * redirty superblock if metadata like node page or inode cache is
  1055. * updated during writing checkpoint.
  1056. */
  1057. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1058. get_pages(sbi, F2FS_DIRTY_IMETA))
  1059. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1060. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1061. return 0;
  1062. }
  1063. /*
  1064. * We guarantee that this checkpoint procedure will not fail.
  1065. */
  1066. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1067. {
  1068. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1069. unsigned long long ckpt_ver;
  1070. int err = 0;
  1071. mutex_lock(&sbi->cp_mutex);
  1072. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1073. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1074. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1075. goto out;
  1076. if (unlikely(f2fs_cp_error(sbi))) {
  1077. err = -EIO;
  1078. goto out;
  1079. }
  1080. if (f2fs_readonly(sbi->sb)) {
  1081. err = -EROFS;
  1082. goto out;
  1083. }
  1084. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1085. err = block_operations(sbi);
  1086. if (err)
  1087. goto out;
  1088. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1089. f2fs_flush_merged_bios(sbi);
  1090. /* this is the case of multiple fstrims without any changes */
  1091. if (cpc->reason & CP_DISCARD) {
  1092. if (!exist_trim_candidates(sbi, cpc)) {
  1093. unblock_operations(sbi);
  1094. goto out;
  1095. }
  1096. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1097. SIT_I(sbi)->dirty_sentries == 0 &&
  1098. prefree_segments(sbi) == 0) {
  1099. flush_sit_entries(sbi, cpc);
  1100. clear_prefree_segments(sbi, cpc);
  1101. unblock_operations(sbi);
  1102. goto out;
  1103. }
  1104. }
  1105. /*
  1106. * update checkpoint pack index
  1107. * Increase the version number so that
  1108. * SIT entries and seg summaries are written at correct place
  1109. */
  1110. ckpt_ver = cur_cp_version(ckpt);
  1111. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1112. /* write cached NAT/SIT entries to NAT/SIT area */
  1113. flush_nat_entries(sbi, cpc);
  1114. flush_sit_entries(sbi, cpc);
  1115. /* unlock all the fs_lock[] in do_checkpoint() */
  1116. err = do_checkpoint(sbi, cpc);
  1117. if (err)
  1118. release_discard_addrs(sbi);
  1119. else
  1120. clear_prefree_segments(sbi, cpc);
  1121. unblock_operations(sbi);
  1122. stat_inc_cp_count(sbi->stat_info);
  1123. if (cpc->reason & CP_RECOVERY)
  1124. f2fs_msg(sbi->sb, KERN_NOTICE,
  1125. "checkpoint: version = %llx", ckpt_ver);
  1126. /* do checkpoint periodically */
  1127. f2fs_update_time(sbi, CP_TIME);
  1128. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1129. out:
  1130. mutex_unlock(&sbi->cp_mutex);
  1131. return err;
  1132. }
  1133. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  1134. {
  1135. int i;
  1136. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1137. struct inode_management *im = &sbi->im[i];
  1138. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1139. spin_lock_init(&im->ino_lock);
  1140. INIT_LIST_HEAD(&im->ino_list);
  1141. im->ino_num = 0;
  1142. }
  1143. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1144. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1145. F2FS_ORPHANS_PER_BLOCK;
  1146. }
  1147. int __init create_checkpoint_caches(void)
  1148. {
  1149. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1150. sizeof(struct ino_entry));
  1151. if (!ino_entry_slab)
  1152. return -ENOMEM;
  1153. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1154. sizeof(struct inode_entry));
  1155. if (!inode_entry_slab) {
  1156. kmem_cache_destroy(ino_entry_slab);
  1157. return -ENOMEM;
  1158. }
  1159. return 0;
  1160. }
  1161. void destroy_checkpoint_caches(void)
  1162. {
  1163. kmem_cache_destroy(ino_entry_slab);
  1164. kmem_cache_destroy(inode_entry_slab);
  1165. }