book3s_64_mmu_radix.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <asm/kvm_ppc.h>
  13. #include <asm/kvm_book3s.h>
  14. #include <asm/page.h>
  15. #include <asm/mmu.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/pgalloc.h>
  18. #include <asm/pte-walk.h>
  19. /*
  20. * Supported radix tree geometry.
  21. * Like p9, we support either 5 or 9 bits at the first (lowest) level,
  22. * for a page size of 64k or 4k.
  23. */
  24. static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
  25. int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
  26. struct kvmppc_pte *gpte, bool data, bool iswrite)
  27. {
  28. struct kvm *kvm = vcpu->kvm;
  29. u32 pid;
  30. int ret, level, ps;
  31. __be64 prte, rpte;
  32. unsigned long ptbl;
  33. unsigned long root, pte, index;
  34. unsigned long rts, bits, offset;
  35. unsigned long gpa;
  36. unsigned long proc_tbl_size;
  37. /* Work out effective PID */
  38. switch (eaddr >> 62) {
  39. case 0:
  40. pid = vcpu->arch.pid;
  41. break;
  42. case 3:
  43. pid = 0;
  44. break;
  45. default:
  46. return -EINVAL;
  47. }
  48. proc_tbl_size = 1 << ((kvm->arch.process_table & PRTS_MASK) + 12);
  49. if (pid * 16 >= proc_tbl_size)
  50. return -EINVAL;
  51. /* Read partition table to find root of tree for effective PID */
  52. ptbl = (kvm->arch.process_table & PRTB_MASK) + (pid * 16);
  53. ret = kvm_read_guest(kvm, ptbl, &prte, sizeof(prte));
  54. if (ret)
  55. return ret;
  56. root = be64_to_cpu(prte);
  57. rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
  58. ((root & RTS2_MASK) >> RTS2_SHIFT);
  59. bits = root & RPDS_MASK;
  60. root = root & RPDB_MASK;
  61. /* P9 DD1 interprets RTS (radix tree size) differently */
  62. offset = rts + 31;
  63. if (cpu_has_feature(CPU_FTR_POWER9_DD1))
  64. offset -= 3;
  65. /* current implementations only support 52-bit space */
  66. if (offset != 52)
  67. return -EINVAL;
  68. for (level = 3; level >= 0; --level) {
  69. if (level && bits != p9_supported_radix_bits[level])
  70. return -EINVAL;
  71. if (level == 0 && !(bits == 5 || bits == 9))
  72. return -EINVAL;
  73. offset -= bits;
  74. index = (eaddr >> offset) & ((1UL << bits) - 1);
  75. /* check that low bits of page table base are zero */
  76. if (root & ((1UL << (bits + 3)) - 1))
  77. return -EINVAL;
  78. ret = kvm_read_guest(kvm, root + index * 8,
  79. &rpte, sizeof(rpte));
  80. if (ret)
  81. return ret;
  82. pte = __be64_to_cpu(rpte);
  83. if (!(pte & _PAGE_PRESENT))
  84. return -ENOENT;
  85. if (pte & _PAGE_PTE)
  86. break;
  87. bits = pte & 0x1f;
  88. root = pte & 0x0fffffffffffff00ul;
  89. }
  90. /* need a leaf at lowest level; 512GB pages not supported */
  91. if (level < 0 || level == 3)
  92. return -EINVAL;
  93. /* offset is now log base 2 of the page size */
  94. gpa = pte & 0x01fffffffffff000ul;
  95. if (gpa & ((1ul << offset) - 1))
  96. return -EINVAL;
  97. gpa += eaddr & ((1ul << offset) - 1);
  98. for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
  99. if (offset == mmu_psize_defs[ps].shift)
  100. break;
  101. gpte->page_size = ps;
  102. gpte->eaddr = eaddr;
  103. gpte->raddr = gpa;
  104. /* Work out permissions */
  105. gpte->may_read = !!(pte & _PAGE_READ);
  106. gpte->may_write = !!(pte & _PAGE_WRITE);
  107. gpte->may_execute = !!(pte & _PAGE_EXEC);
  108. if (kvmppc_get_msr(vcpu) & MSR_PR) {
  109. if (pte & _PAGE_PRIVILEGED) {
  110. gpte->may_read = 0;
  111. gpte->may_write = 0;
  112. gpte->may_execute = 0;
  113. }
  114. } else {
  115. if (!(pte & _PAGE_PRIVILEGED)) {
  116. /* Check AMR/IAMR to see if strict mode is in force */
  117. if (vcpu->arch.amr & (1ul << 62))
  118. gpte->may_read = 0;
  119. if (vcpu->arch.amr & (1ul << 63))
  120. gpte->may_write = 0;
  121. if (vcpu->arch.iamr & (1ul << 62))
  122. gpte->may_execute = 0;
  123. }
  124. }
  125. return 0;
  126. }
  127. #ifdef CONFIG_PPC_64K_PAGES
  128. #define MMU_BASE_PSIZE MMU_PAGE_64K
  129. #else
  130. #define MMU_BASE_PSIZE MMU_PAGE_4K
  131. #endif
  132. static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
  133. unsigned int pshift)
  134. {
  135. int psize = MMU_BASE_PSIZE;
  136. if (pshift >= PMD_SHIFT)
  137. psize = MMU_PAGE_2M;
  138. addr &= ~0xfffUL;
  139. addr |= mmu_psize_defs[psize].ap << 5;
  140. asm volatile("ptesync": : :"memory");
  141. asm volatile(PPC_TLBIE_5(%0, %1, 0, 0, 1)
  142. : : "r" (addr), "r" (kvm->arch.lpid) : "memory");
  143. asm volatile("ptesync": : :"memory");
  144. }
  145. unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
  146. unsigned long clr, unsigned long set,
  147. unsigned long addr, unsigned int shift)
  148. {
  149. unsigned long old = 0;
  150. if (!(clr & _PAGE_PRESENT) && cpu_has_feature(CPU_FTR_POWER9_DD1) &&
  151. pte_present(*ptep)) {
  152. /* have to invalidate it first */
  153. old = __radix_pte_update(ptep, _PAGE_PRESENT, 0);
  154. kvmppc_radix_tlbie_page(kvm, addr, shift);
  155. set |= _PAGE_PRESENT;
  156. old &= _PAGE_PRESENT;
  157. }
  158. return __radix_pte_update(ptep, clr, set) | old;
  159. }
  160. void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
  161. pte_t *ptep, pte_t pte)
  162. {
  163. radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
  164. }
  165. static struct kmem_cache *kvm_pte_cache;
  166. static pte_t *kvmppc_pte_alloc(void)
  167. {
  168. return kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
  169. }
  170. static void kvmppc_pte_free(pte_t *ptep)
  171. {
  172. kmem_cache_free(kvm_pte_cache, ptep);
  173. }
  174. static int kvmppc_create_pte(struct kvm *kvm, pte_t pte, unsigned long gpa,
  175. unsigned int level, unsigned long mmu_seq)
  176. {
  177. pgd_t *pgd;
  178. pud_t *pud, *new_pud = NULL;
  179. pmd_t *pmd, *new_pmd = NULL;
  180. pte_t *ptep, *new_ptep = NULL;
  181. unsigned long old;
  182. int ret;
  183. /* Traverse the guest's 2nd-level tree, allocate new levels needed */
  184. pgd = kvm->arch.pgtable + pgd_index(gpa);
  185. pud = NULL;
  186. if (pgd_present(*pgd))
  187. pud = pud_offset(pgd, gpa);
  188. else
  189. new_pud = pud_alloc_one(kvm->mm, gpa);
  190. pmd = NULL;
  191. if (pud && pud_present(*pud))
  192. pmd = pmd_offset(pud, gpa);
  193. else
  194. new_pmd = pmd_alloc_one(kvm->mm, gpa);
  195. if (level == 0 && !(pmd && pmd_present(*pmd)))
  196. new_ptep = kvmppc_pte_alloc();
  197. /* Check if we might have been invalidated; let the guest retry if so */
  198. spin_lock(&kvm->mmu_lock);
  199. ret = -EAGAIN;
  200. if (mmu_notifier_retry(kvm, mmu_seq))
  201. goto out_unlock;
  202. /* Now traverse again under the lock and change the tree */
  203. ret = -ENOMEM;
  204. if (pgd_none(*pgd)) {
  205. if (!new_pud)
  206. goto out_unlock;
  207. pgd_populate(kvm->mm, pgd, new_pud);
  208. new_pud = NULL;
  209. }
  210. pud = pud_offset(pgd, gpa);
  211. if (pud_none(*pud)) {
  212. if (!new_pmd)
  213. goto out_unlock;
  214. pud_populate(kvm->mm, pud, new_pmd);
  215. new_pmd = NULL;
  216. }
  217. pmd = pmd_offset(pud, gpa);
  218. if (pmd_large(*pmd)) {
  219. /* Someone else has instantiated a large page here; retry */
  220. ret = -EAGAIN;
  221. goto out_unlock;
  222. }
  223. if (level == 1 && !pmd_none(*pmd)) {
  224. /*
  225. * There's a page table page here, but we wanted
  226. * to install a large page. Tell the caller and let
  227. * it try installing a normal page if it wants.
  228. */
  229. ret = -EBUSY;
  230. goto out_unlock;
  231. }
  232. if (level == 0) {
  233. if (pmd_none(*pmd)) {
  234. if (!new_ptep)
  235. goto out_unlock;
  236. pmd_populate(kvm->mm, pmd, new_ptep);
  237. new_ptep = NULL;
  238. }
  239. ptep = pte_offset_kernel(pmd, gpa);
  240. if (pte_present(*ptep)) {
  241. /* PTE was previously valid, so invalidate it */
  242. old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT,
  243. 0, gpa, 0);
  244. kvmppc_radix_tlbie_page(kvm, gpa, 0);
  245. if (old & _PAGE_DIRTY)
  246. mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
  247. }
  248. kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
  249. } else {
  250. kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
  251. }
  252. ret = 0;
  253. out_unlock:
  254. spin_unlock(&kvm->mmu_lock);
  255. if (new_pud)
  256. pud_free(kvm->mm, new_pud);
  257. if (new_pmd)
  258. pmd_free(kvm->mm, new_pmd);
  259. if (new_ptep)
  260. kvmppc_pte_free(new_ptep);
  261. return ret;
  262. }
  263. int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  264. unsigned long ea, unsigned long dsisr)
  265. {
  266. struct kvm *kvm = vcpu->kvm;
  267. unsigned long mmu_seq, pte_size;
  268. unsigned long gpa, gfn, hva, pfn;
  269. struct kvm_memory_slot *memslot;
  270. struct page *page = NULL, *pages[1];
  271. long ret, npages, ok;
  272. unsigned int writing;
  273. struct vm_area_struct *vma;
  274. unsigned long flags;
  275. pte_t pte, *ptep;
  276. unsigned long pgflags;
  277. unsigned int shift, level;
  278. /* Check for unusual errors */
  279. if (dsisr & DSISR_UNSUPP_MMU) {
  280. pr_err("KVM: Got unsupported MMU fault\n");
  281. return -EFAULT;
  282. }
  283. if (dsisr & DSISR_BADACCESS) {
  284. /* Reflect to the guest as DSI */
  285. pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
  286. kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
  287. return RESUME_GUEST;
  288. }
  289. /* Translate the logical address and get the page */
  290. gpa = vcpu->arch.fault_gpa & ~0xfffUL;
  291. gpa &= ~0xF000000000000000ul;
  292. gfn = gpa >> PAGE_SHIFT;
  293. if (!(dsisr & DSISR_PRTABLE_FAULT))
  294. gpa |= ea & 0xfff;
  295. memslot = gfn_to_memslot(kvm, gfn);
  296. /* No memslot means it's an emulated MMIO region */
  297. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
  298. if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
  299. DSISR_SET_RC)) {
  300. /*
  301. * Bad address in guest page table tree, or other
  302. * unusual error - reflect it to the guest as DSI.
  303. */
  304. kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
  305. return RESUME_GUEST;
  306. }
  307. return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
  308. dsisr & DSISR_ISSTORE);
  309. }
  310. /* used to check for invalidations in progress */
  311. mmu_seq = kvm->mmu_notifier_seq;
  312. smp_rmb();
  313. writing = (dsisr & DSISR_ISSTORE) != 0;
  314. hva = gfn_to_hva_memslot(memslot, gfn);
  315. if (dsisr & DSISR_SET_RC) {
  316. /*
  317. * Need to set an R or C bit in the 2nd-level tables;
  318. * if the relevant bits aren't already set in the linux
  319. * page tables, fall through to do the gup_fast to
  320. * set them in the linux page tables too.
  321. */
  322. ok = 0;
  323. pgflags = _PAGE_ACCESSED;
  324. if (writing)
  325. pgflags |= _PAGE_DIRTY;
  326. local_irq_save(flags);
  327. ptep = find_current_mm_pte(current->mm->pgd, hva, NULL, NULL);
  328. if (ptep) {
  329. pte = READ_ONCE(*ptep);
  330. if (pte_present(pte) &&
  331. (pte_val(pte) & pgflags) == pgflags)
  332. ok = 1;
  333. }
  334. local_irq_restore(flags);
  335. if (ok) {
  336. spin_lock(&kvm->mmu_lock);
  337. if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
  338. spin_unlock(&kvm->mmu_lock);
  339. return RESUME_GUEST;
  340. }
  341. /*
  342. * We are walking the secondary page table here. We can do this
  343. * without disabling irq.
  344. */
  345. ptep = __find_linux_pte(kvm->arch.pgtable,
  346. gpa, NULL, &shift);
  347. if (ptep && pte_present(*ptep)) {
  348. kvmppc_radix_update_pte(kvm, ptep, 0, pgflags,
  349. gpa, shift);
  350. spin_unlock(&kvm->mmu_lock);
  351. return RESUME_GUEST;
  352. }
  353. spin_unlock(&kvm->mmu_lock);
  354. }
  355. }
  356. ret = -EFAULT;
  357. pfn = 0;
  358. pte_size = PAGE_SIZE;
  359. pgflags = _PAGE_READ | _PAGE_EXEC;
  360. level = 0;
  361. npages = get_user_pages_fast(hva, 1, writing, pages);
  362. if (npages < 1) {
  363. /* Check if it's an I/O mapping */
  364. down_read(&current->mm->mmap_sem);
  365. vma = find_vma(current->mm, hva);
  366. if (vma && vma->vm_start <= hva && hva < vma->vm_end &&
  367. (vma->vm_flags & VM_PFNMAP)) {
  368. pfn = vma->vm_pgoff +
  369. ((hva - vma->vm_start) >> PAGE_SHIFT);
  370. pgflags = pgprot_val(vma->vm_page_prot);
  371. }
  372. up_read(&current->mm->mmap_sem);
  373. if (!pfn)
  374. return -EFAULT;
  375. } else {
  376. page = pages[0];
  377. pfn = page_to_pfn(page);
  378. if (PageHuge(page)) {
  379. page = compound_head(page);
  380. pte_size <<= compound_order(page);
  381. /* See if we can insert a 2MB large-page PTE here */
  382. if (pte_size >= PMD_SIZE &&
  383. (gpa & PMD_MASK & PAGE_MASK) ==
  384. (hva & PMD_MASK & PAGE_MASK)) {
  385. level = 1;
  386. pfn &= ~((PMD_SIZE >> PAGE_SHIFT) - 1);
  387. }
  388. }
  389. /* See if we can provide write access */
  390. if (writing) {
  391. /*
  392. * We assume gup_fast has set dirty on the host PTE.
  393. */
  394. pgflags |= _PAGE_WRITE;
  395. } else {
  396. local_irq_save(flags);
  397. ptep = find_current_mm_pte(current->mm->pgd,
  398. hva, NULL, NULL);
  399. if (ptep && pte_write(*ptep) && pte_dirty(*ptep))
  400. pgflags |= _PAGE_WRITE;
  401. local_irq_restore(flags);
  402. }
  403. }
  404. /*
  405. * Compute the PTE value that we need to insert.
  406. */
  407. pgflags |= _PAGE_PRESENT | _PAGE_PTE | _PAGE_ACCESSED;
  408. if (pgflags & _PAGE_WRITE)
  409. pgflags |= _PAGE_DIRTY;
  410. pte = pfn_pte(pfn, __pgprot(pgflags));
  411. /* Allocate space in the tree and write the PTE */
  412. ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
  413. if (ret == -EBUSY) {
  414. /*
  415. * There's already a PMD where wanted to install a large page;
  416. * for now, fall back to installing a small page.
  417. */
  418. level = 0;
  419. pfn |= gfn & ((PMD_SIZE >> PAGE_SHIFT) - 1);
  420. pte = pfn_pte(pfn, __pgprot(pgflags));
  421. ret = kvmppc_create_pte(kvm, pte, gpa, level, mmu_seq);
  422. }
  423. if (ret == 0 || ret == -EAGAIN)
  424. ret = RESUME_GUEST;
  425. if (page) {
  426. /*
  427. * We drop pages[0] here, not page because page might
  428. * have been set to the head page of a compound, but
  429. * we have to drop the reference on the correct tail
  430. * page to match the get inside gup()
  431. */
  432. put_page(pages[0]);
  433. }
  434. return ret;
  435. }
  436. /* Called with kvm->lock held */
  437. int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  438. unsigned long gfn)
  439. {
  440. pte_t *ptep;
  441. unsigned long gpa = gfn << PAGE_SHIFT;
  442. unsigned int shift;
  443. unsigned long old;
  444. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  445. if (ptep && pte_present(*ptep)) {
  446. old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_PRESENT, 0,
  447. gpa, shift);
  448. kvmppc_radix_tlbie_page(kvm, gpa, shift);
  449. if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) {
  450. unsigned long npages = 1;
  451. if (shift)
  452. npages = 1ul << (shift - PAGE_SHIFT);
  453. kvmppc_update_dirty_map(memslot, gfn, npages);
  454. }
  455. }
  456. return 0;
  457. }
  458. /* Called with kvm->lock held */
  459. int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  460. unsigned long gfn)
  461. {
  462. pte_t *ptep;
  463. unsigned long gpa = gfn << PAGE_SHIFT;
  464. unsigned int shift;
  465. int ref = 0;
  466. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  467. if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
  468. kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
  469. gpa, shift);
  470. /* XXX need to flush tlb here? */
  471. ref = 1;
  472. }
  473. return ref;
  474. }
  475. /* Called with kvm->lock held */
  476. int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
  477. unsigned long gfn)
  478. {
  479. pte_t *ptep;
  480. unsigned long gpa = gfn << PAGE_SHIFT;
  481. unsigned int shift;
  482. int ref = 0;
  483. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  484. if (ptep && pte_present(*ptep) && pte_young(*ptep))
  485. ref = 1;
  486. return ref;
  487. }
  488. /* Returns the number of PAGE_SIZE pages that are dirty */
  489. static int kvm_radix_test_clear_dirty(struct kvm *kvm,
  490. struct kvm_memory_slot *memslot, int pagenum)
  491. {
  492. unsigned long gfn = memslot->base_gfn + pagenum;
  493. unsigned long gpa = gfn << PAGE_SHIFT;
  494. pte_t *ptep;
  495. unsigned int shift;
  496. int ret = 0;
  497. ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
  498. if (ptep && pte_present(*ptep) && pte_dirty(*ptep)) {
  499. ret = 1;
  500. if (shift)
  501. ret = 1 << (shift - PAGE_SHIFT);
  502. kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
  503. gpa, shift);
  504. kvmppc_radix_tlbie_page(kvm, gpa, shift);
  505. }
  506. return ret;
  507. }
  508. long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
  509. struct kvm_memory_slot *memslot, unsigned long *map)
  510. {
  511. unsigned long i, j;
  512. int npages;
  513. for (i = 0; i < memslot->npages; i = j) {
  514. npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
  515. /*
  516. * Note that if npages > 0 then i must be a multiple of npages,
  517. * since huge pages are only used to back the guest at guest
  518. * real addresses that are a multiple of their size.
  519. * Since we have at most one PTE covering any given guest
  520. * real address, if npages > 1 we can skip to i + npages.
  521. */
  522. j = i + 1;
  523. if (npages) {
  524. set_dirty_bits(map, i, npages);
  525. i = j + npages;
  526. }
  527. }
  528. return 0;
  529. }
  530. static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
  531. int psize, int *indexp)
  532. {
  533. if (!mmu_psize_defs[psize].shift)
  534. return;
  535. info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
  536. (mmu_psize_defs[psize].ap << 29);
  537. ++(*indexp);
  538. }
  539. int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
  540. {
  541. int i;
  542. if (!radix_enabled())
  543. return -EINVAL;
  544. memset(info, 0, sizeof(*info));
  545. /* 4k page size */
  546. info->geometries[0].page_shift = 12;
  547. info->geometries[0].level_bits[0] = 9;
  548. for (i = 1; i < 4; ++i)
  549. info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
  550. /* 64k page size */
  551. info->geometries[1].page_shift = 16;
  552. for (i = 0; i < 4; ++i)
  553. info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
  554. i = 0;
  555. add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
  556. add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
  557. add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
  558. add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
  559. return 0;
  560. }
  561. int kvmppc_init_vm_radix(struct kvm *kvm)
  562. {
  563. kvm->arch.pgtable = pgd_alloc(kvm->mm);
  564. if (!kvm->arch.pgtable)
  565. return -ENOMEM;
  566. return 0;
  567. }
  568. void kvmppc_free_radix(struct kvm *kvm)
  569. {
  570. unsigned long ig, iu, im;
  571. pte_t *pte;
  572. pmd_t *pmd;
  573. pud_t *pud;
  574. pgd_t *pgd;
  575. if (!kvm->arch.pgtable)
  576. return;
  577. pgd = kvm->arch.pgtable;
  578. for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
  579. if (!pgd_present(*pgd))
  580. continue;
  581. pud = pud_offset(pgd, 0);
  582. for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++pud) {
  583. if (!pud_present(*pud))
  584. continue;
  585. pmd = pmd_offset(pud, 0);
  586. for (im = 0; im < PTRS_PER_PMD; ++im, ++pmd) {
  587. if (pmd_huge(*pmd)) {
  588. pmd_clear(pmd);
  589. continue;
  590. }
  591. if (!pmd_present(*pmd))
  592. continue;
  593. pte = pte_offset_map(pmd, 0);
  594. memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
  595. kvmppc_pte_free(pte);
  596. pmd_clear(pmd);
  597. }
  598. pmd_free(kvm->mm, pmd_offset(pud, 0));
  599. pud_clear(pud);
  600. }
  601. pud_free(kvm->mm, pud_offset(pgd, 0));
  602. pgd_clear(pgd);
  603. }
  604. pgd_free(kvm->mm, kvm->arch.pgtable);
  605. kvm->arch.pgtable = NULL;
  606. }
  607. static void pte_ctor(void *addr)
  608. {
  609. memset(addr, 0, PTE_TABLE_SIZE);
  610. }
  611. int kvmppc_radix_init(void)
  612. {
  613. unsigned long size = sizeof(void *) << PTE_INDEX_SIZE;
  614. kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
  615. if (!kvm_pte_cache)
  616. return -ENOMEM;
  617. return 0;
  618. }
  619. void kvmppc_radix_exit(void)
  620. {
  621. kmem_cache_destroy(kvm_pte_cache);
  622. }