intel_pm.c 191 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * RC6 is a special power stage which allows the GPU to enter an very
  34. * low-voltage mode when idle, using down to 0V while at this stage. This
  35. * stage is entered automatically when the GPU is idle when RC6 support is
  36. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  37. *
  38. * There are different RC6 modes available in Intel GPU, which differentiate
  39. * among each other with the latency required to enter and leave RC6 and
  40. * voltage consumed by the GPU in different states.
  41. *
  42. * The combination of the following flags define which states GPU is allowed
  43. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  44. * RC6pp is deepest RC6. Their support by hardware varies according to the
  45. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  46. * which brings the most power savings; deeper states save more power, but
  47. * require higher latency to switch to and wake up.
  48. */
  49. #define INTEL_RC6_ENABLE (1<<0)
  50. #define INTEL_RC6p_ENABLE (1<<1)
  51. #define INTEL_RC6pp_ENABLE (1<<2)
  52. static void gen9_init_clock_gating(struct drm_device *dev)
  53. {
  54. struct drm_i915_private *dev_priv = dev->dev_private;
  55. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  56. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  57. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  58. }
  59. static void skl_init_clock_gating(struct drm_device *dev)
  60. {
  61. struct drm_i915_private *dev_priv = dev->dev_private;
  62. gen9_init_clock_gating(dev);
  63. if (INTEL_REVID(dev) <= SKL_REVID_B0) {
  64. /*
  65. * WaDisableSDEUnitClockGating:skl
  66. * WaSetGAPSunitClckGateDisable:skl
  67. */
  68. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  69. GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
  70. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  71. /* WaDisableVFUnitClockGating:skl */
  72. I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
  73. GEN6_VFUNIT_CLOCK_GATE_DISABLE);
  74. }
  75. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  76. /* WaDisableHDCInvalidation:skl */
  77. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  78. BDW_DISABLE_HDC_INVALIDATION);
  79. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  80. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  81. I915_READ(FF_SLICE_CS_CHICKEN2) |
  82. GEN9_TSG_BARRIER_ACK_DISABLE);
  83. }
  84. if (INTEL_REVID(dev) <= SKL_REVID_E0)
  85. /* WaDisableLSQCROPERFforOCL:skl */
  86. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  87. GEN8_LQSC_RO_PERF_DIS);
  88. }
  89. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  90. {
  91. struct drm_i915_private *dev_priv = dev->dev_private;
  92. u32 tmp;
  93. tmp = I915_READ(CLKCFG);
  94. switch (tmp & CLKCFG_FSB_MASK) {
  95. case CLKCFG_FSB_533:
  96. dev_priv->fsb_freq = 533; /* 133*4 */
  97. break;
  98. case CLKCFG_FSB_800:
  99. dev_priv->fsb_freq = 800; /* 200*4 */
  100. break;
  101. case CLKCFG_FSB_667:
  102. dev_priv->fsb_freq = 667; /* 167*4 */
  103. break;
  104. case CLKCFG_FSB_400:
  105. dev_priv->fsb_freq = 400; /* 100*4 */
  106. break;
  107. }
  108. switch (tmp & CLKCFG_MEM_MASK) {
  109. case CLKCFG_MEM_533:
  110. dev_priv->mem_freq = 533;
  111. break;
  112. case CLKCFG_MEM_667:
  113. dev_priv->mem_freq = 667;
  114. break;
  115. case CLKCFG_MEM_800:
  116. dev_priv->mem_freq = 800;
  117. break;
  118. }
  119. /* detect pineview DDR3 setting */
  120. tmp = I915_READ(CSHRDDR3CTL);
  121. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  122. }
  123. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u16 ddrpll, csipll;
  127. ddrpll = I915_READ16(DDRMPLL1);
  128. csipll = I915_READ16(CSIPLL0);
  129. switch (ddrpll & 0xff) {
  130. case 0xc:
  131. dev_priv->mem_freq = 800;
  132. break;
  133. case 0x10:
  134. dev_priv->mem_freq = 1066;
  135. break;
  136. case 0x14:
  137. dev_priv->mem_freq = 1333;
  138. break;
  139. case 0x18:
  140. dev_priv->mem_freq = 1600;
  141. break;
  142. default:
  143. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  144. ddrpll & 0xff);
  145. dev_priv->mem_freq = 0;
  146. break;
  147. }
  148. dev_priv->ips.r_t = dev_priv->mem_freq;
  149. switch (csipll & 0x3ff) {
  150. case 0x00c:
  151. dev_priv->fsb_freq = 3200;
  152. break;
  153. case 0x00e:
  154. dev_priv->fsb_freq = 3733;
  155. break;
  156. case 0x010:
  157. dev_priv->fsb_freq = 4266;
  158. break;
  159. case 0x012:
  160. dev_priv->fsb_freq = 4800;
  161. break;
  162. case 0x014:
  163. dev_priv->fsb_freq = 5333;
  164. break;
  165. case 0x016:
  166. dev_priv->fsb_freq = 5866;
  167. break;
  168. case 0x018:
  169. dev_priv->fsb_freq = 6400;
  170. break;
  171. default:
  172. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  173. csipll & 0x3ff);
  174. dev_priv->fsb_freq = 0;
  175. break;
  176. }
  177. if (dev_priv->fsb_freq == 3200) {
  178. dev_priv->ips.c_m = 0;
  179. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  180. dev_priv->ips.c_m = 1;
  181. } else {
  182. dev_priv->ips.c_m = 2;
  183. }
  184. }
  185. static const struct cxsr_latency cxsr_latency_table[] = {
  186. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  187. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  188. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  189. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  190. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  191. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  192. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  193. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  194. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  195. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  196. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  197. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  198. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  199. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  200. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  201. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  202. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  203. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  204. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  205. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  206. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  207. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  208. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  209. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  210. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  211. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  212. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  213. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  214. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  215. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  216. };
  217. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  218. int is_ddr3,
  219. int fsb,
  220. int mem)
  221. {
  222. const struct cxsr_latency *latency;
  223. int i;
  224. if (fsb == 0 || mem == 0)
  225. return NULL;
  226. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  227. latency = &cxsr_latency_table[i];
  228. if (is_desktop == latency->is_desktop &&
  229. is_ddr3 == latency->is_ddr3 &&
  230. fsb == latency->fsb_freq && mem == latency->mem_freq)
  231. return latency;
  232. }
  233. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  234. return NULL;
  235. }
  236. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  237. {
  238. u32 val;
  239. mutex_lock(&dev_priv->rps.hw_lock);
  240. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  241. if (enable)
  242. val &= ~FORCE_DDR_HIGH_FREQ;
  243. else
  244. val |= FORCE_DDR_HIGH_FREQ;
  245. val &= ~FORCE_DDR_LOW_FREQ;
  246. val |= FORCE_DDR_FREQ_REQ_ACK;
  247. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  248. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  249. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  250. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  251. mutex_unlock(&dev_priv->rps.hw_lock);
  252. }
  253. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  254. {
  255. u32 val;
  256. mutex_lock(&dev_priv->rps.hw_lock);
  257. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  258. if (enable)
  259. val |= DSP_MAXFIFO_PM5_ENABLE;
  260. else
  261. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  262. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  263. mutex_unlock(&dev_priv->rps.hw_lock);
  264. }
  265. #define FW_WM(value, plane) \
  266. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  267. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  268. {
  269. struct drm_device *dev = dev_priv->dev;
  270. u32 val;
  271. if (IS_VALLEYVIEW(dev)) {
  272. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  273. if (IS_CHERRYVIEW(dev))
  274. chv_set_memory_pm5(dev_priv, enable);
  275. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  276. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  277. } else if (IS_PINEVIEW(dev)) {
  278. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  279. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  280. I915_WRITE(DSPFW3, val);
  281. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  282. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  283. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  284. I915_WRITE(FW_BLC_SELF, val);
  285. } else if (IS_I915GM(dev)) {
  286. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  287. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  288. I915_WRITE(INSTPM, val);
  289. } else {
  290. return;
  291. }
  292. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  293. enable ? "enabled" : "disabled");
  294. }
  295. /*
  296. * Latency for FIFO fetches is dependent on several factors:
  297. * - memory configuration (speed, channels)
  298. * - chipset
  299. * - current MCH state
  300. * It can be fairly high in some situations, so here we assume a fairly
  301. * pessimal value. It's a tradeoff between extra memory fetches (if we
  302. * set this value too high, the FIFO will fetch frequently to stay full)
  303. * and power consumption (set it too low to save power and we might see
  304. * FIFO underruns and display "flicker").
  305. *
  306. * A value of 5us seems to be a good balance; safe for very low end
  307. * platforms but not overly aggressive on lower latency configs.
  308. */
  309. static const int pessimal_latency_ns = 5000;
  310. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  311. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  312. static int vlv_get_fifo_size(struct drm_device *dev,
  313. enum pipe pipe, int plane)
  314. {
  315. struct drm_i915_private *dev_priv = dev->dev_private;
  316. int sprite0_start, sprite1_start, size;
  317. switch (pipe) {
  318. uint32_t dsparb, dsparb2, dsparb3;
  319. case PIPE_A:
  320. dsparb = I915_READ(DSPARB);
  321. dsparb2 = I915_READ(DSPARB2);
  322. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  323. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  324. break;
  325. case PIPE_B:
  326. dsparb = I915_READ(DSPARB);
  327. dsparb2 = I915_READ(DSPARB2);
  328. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  329. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  330. break;
  331. case PIPE_C:
  332. dsparb2 = I915_READ(DSPARB2);
  333. dsparb3 = I915_READ(DSPARB3);
  334. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  335. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  336. break;
  337. default:
  338. return 0;
  339. }
  340. switch (plane) {
  341. case 0:
  342. size = sprite0_start;
  343. break;
  344. case 1:
  345. size = sprite1_start - sprite0_start;
  346. break;
  347. case 2:
  348. size = 512 - 1 - sprite1_start;
  349. break;
  350. default:
  351. return 0;
  352. }
  353. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  354. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  355. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  356. size);
  357. return size;
  358. }
  359. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  360. {
  361. struct drm_i915_private *dev_priv = dev->dev_private;
  362. uint32_t dsparb = I915_READ(DSPARB);
  363. int size;
  364. size = dsparb & 0x7f;
  365. if (plane)
  366. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  367. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  368. plane ? "B" : "A", size);
  369. return size;
  370. }
  371. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  372. {
  373. struct drm_i915_private *dev_priv = dev->dev_private;
  374. uint32_t dsparb = I915_READ(DSPARB);
  375. int size;
  376. size = dsparb & 0x1ff;
  377. if (plane)
  378. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  379. size >>= 1; /* Convert to cachelines */
  380. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  381. plane ? "B" : "A", size);
  382. return size;
  383. }
  384. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  385. {
  386. struct drm_i915_private *dev_priv = dev->dev_private;
  387. uint32_t dsparb = I915_READ(DSPARB);
  388. int size;
  389. size = dsparb & 0x7f;
  390. size >>= 2; /* Convert to cachelines */
  391. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  392. plane ? "B" : "A",
  393. size);
  394. return size;
  395. }
  396. /* Pineview has different values for various configs */
  397. static const struct intel_watermark_params pineview_display_wm = {
  398. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  399. .max_wm = PINEVIEW_MAX_WM,
  400. .default_wm = PINEVIEW_DFT_WM,
  401. .guard_size = PINEVIEW_GUARD_WM,
  402. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  403. };
  404. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  405. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  406. .max_wm = PINEVIEW_MAX_WM,
  407. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  408. .guard_size = PINEVIEW_GUARD_WM,
  409. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  410. };
  411. static const struct intel_watermark_params pineview_cursor_wm = {
  412. .fifo_size = PINEVIEW_CURSOR_FIFO,
  413. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  414. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  415. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  416. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  417. };
  418. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  419. .fifo_size = PINEVIEW_CURSOR_FIFO,
  420. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  421. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  422. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  423. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  424. };
  425. static const struct intel_watermark_params g4x_wm_info = {
  426. .fifo_size = G4X_FIFO_SIZE,
  427. .max_wm = G4X_MAX_WM,
  428. .default_wm = G4X_MAX_WM,
  429. .guard_size = 2,
  430. .cacheline_size = G4X_FIFO_LINE_SIZE,
  431. };
  432. static const struct intel_watermark_params g4x_cursor_wm_info = {
  433. .fifo_size = I965_CURSOR_FIFO,
  434. .max_wm = I965_CURSOR_MAX_WM,
  435. .default_wm = I965_CURSOR_DFT_WM,
  436. .guard_size = 2,
  437. .cacheline_size = G4X_FIFO_LINE_SIZE,
  438. };
  439. static const struct intel_watermark_params valleyview_wm_info = {
  440. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  441. .max_wm = VALLEYVIEW_MAX_WM,
  442. .default_wm = VALLEYVIEW_MAX_WM,
  443. .guard_size = 2,
  444. .cacheline_size = G4X_FIFO_LINE_SIZE,
  445. };
  446. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  447. .fifo_size = I965_CURSOR_FIFO,
  448. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  449. .default_wm = I965_CURSOR_DFT_WM,
  450. .guard_size = 2,
  451. .cacheline_size = G4X_FIFO_LINE_SIZE,
  452. };
  453. static const struct intel_watermark_params i965_cursor_wm_info = {
  454. .fifo_size = I965_CURSOR_FIFO,
  455. .max_wm = I965_CURSOR_MAX_WM,
  456. .default_wm = I965_CURSOR_DFT_WM,
  457. .guard_size = 2,
  458. .cacheline_size = I915_FIFO_LINE_SIZE,
  459. };
  460. static const struct intel_watermark_params i945_wm_info = {
  461. .fifo_size = I945_FIFO_SIZE,
  462. .max_wm = I915_MAX_WM,
  463. .default_wm = 1,
  464. .guard_size = 2,
  465. .cacheline_size = I915_FIFO_LINE_SIZE,
  466. };
  467. static const struct intel_watermark_params i915_wm_info = {
  468. .fifo_size = I915_FIFO_SIZE,
  469. .max_wm = I915_MAX_WM,
  470. .default_wm = 1,
  471. .guard_size = 2,
  472. .cacheline_size = I915_FIFO_LINE_SIZE,
  473. };
  474. static const struct intel_watermark_params i830_a_wm_info = {
  475. .fifo_size = I855GM_FIFO_SIZE,
  476. .max_wm = I915_MAX_WM,
  477. .default_wm = 1,
  478. .guard_size = 2,
  479. .cacheline_size = I830_FIFO_LINE_SIZE,
  480. };
  481. static const struct intel_watermark_params i830_bc_wm_info = {
  482. .fifo_size = I855GM_FIFO_SIZE,
  483. .max_wm = I915_MAX_WM/2,
  484. .default_wm = 1,
  485. .guard_size = 2,
  486. .cacheline_size = I830_FIFO_LINE_SIZE,
  487. };
  488. static const struct intel_watermark_params i845_wm_info = {
  489. .fifo_size = I830_FIFO_SIZE,
  490. .max_wm = I915_MAX_WM,
  491. .default_wm = 1,
  492. .guard_size = 2,
  493. .cacheline_size = I830_FIFO_LINE_SIZE,
  494. };
  495. /**
  496. * intel_calculate_wm - calculate watermark level
  497. * @clock_in_khz: pixel clock
  498. * @wm: chip FIFO params
  499. * @pixel_size: display pixel size
  500. * @latency_ns: memory latency for the platform
  501. *
  502. * Calculate the watermark level (the level at which the display plane will
  503. * start fetching from memory again). Each chip has a different display
  504. * FIFO size and allocation, so the caller needs to figure that out and pass
  505. * in the correct intel_watermark_params structure.
  506. *
  507. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  508. * on the pixel size. When it reaches the watermark level, it'll start
  509. * fetching FIFO line sized based chunks from memory until the FIFO fills
  510. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  511. * will occur, and a display engine hang could result.
  512. */
  513. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  514. const struct intel_watermark_params *wm,
  515. int fifo_size,
  516. int pixel_size,
  517. unsigned long latency_ns)
  518. {
  519. long entries_required, wm_size;
  520. /*
  521. * Note: we need to make sure we don't overflow for various clock &
  522. * latency values.
  523. * clocks go from a few thousand to several hundred thousand.
  524. * latency is usually a few thousand
  525. */
  526. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  527. 1000;
  528. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  529. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  530. wm_size = fifo_size - (entries_required + wm->guard_size);
  531. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  532. /* Don't promote wm_size to unsigned... */
  533. if (wm_size > (long)wm->max_wm)
  534. wm_size = wm->max_wm;
  535. if (wm_size <= 0)
  536. wm_size = wm->default_wm;
  537. /*
  538. * Bspec seems to indicate that the value shouldn't be lower than
  539. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  540. * Lets go for 8 which is the burst size since certain platforms
  541. * already use a hardcoded 8 (which is what the spec says should be
  542. * done).
  543. */
  544. if (wm_size <= 8)
  545. wm_size = 8;
  546. return wm_size;
  547. }
  548. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  549. {
  550. struct drm_crtc *crtc, *enabled = NULL;
  551. for_each_crtc(dev, crtc) {
  552. if (intel_crtc_active(crtc)) {
  553. if (enabled)
  554. return NULL;
  555. enabled = crtc;
  556. }
  557. }
  558. return enabled;
  559. }
  560. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  561. {
  562. struct drm_device *dev = unused_crtc->dev;
  563. struct drm_i915_private *dev_priv = dev->dev_private;
  564. struct drm_crtc *crtc;
  565. const struct cxsr_latency *latency;
  566. u32 reg;
  567. unsigned long wm;
  568. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  569. dev_priv->fsb_freq, dev_priv->mem_freq);
  570. if (!latency) {
  571. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  572. intel_set_memory_cxsr(dev_priv, false);
  573. return;
  574. }
  575. crtc = single_enabled_crtc(dev);
  576. if (crtc) {
  577. const struct drm_display_mode *adjusted_mode;
  578. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  579. int clock;
  580. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  581. clock = adjusted_mode->crtc_clock;
  582. /* Display SR */
  583. wm = intel_calculate_wm(clock, &pineview_display_wm,
  584. pineview_display_wm.fifo_size,
  585. pixel_size, latency->display_sr);
  586. reg = I915_READ(DSPFW1);
  587. reg &= ~DSPFW_SR_MASK;
  588. reg |= FW_WM(wm, SR);
  589. I915_WRITE(DSPFW1, reg);
  590. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  591. /* cursor SR */
  592. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  593. pineview_display_wm.fifo_size,
  594. pixel_size, latency->cursor_sr);
  595. reg = I915_READ(DSPFW3);
  596. reg &= ~DSPFW_CURSOR_SR_MASK;
  597. reg |= FW_WM(wm, CURSOR_SR);
  598. I915_WRITE(DSPFW3, reg);
  599. /* Display HPLL off SR */
  600. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  601. pineview_display_hplloff_wm.fifo_size,
  602. pixel_size, latency->display_hpll_disable);
  603. reg = I915_READ(DSPFW3);
  604. reg &= ~DSPFW_HPLL_SR_MASK;
  605. reg |= FW_WM(wm, HPLL_SR);
  606. I915_WRITE(DSPFW3, reg);
  607. /* cursor HPLL off SR */
  608. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  609. pineview_display_hplloff_wm.fifo_size,
  610. pixel_size, latency->cursor_hpll_disable);
  611. reg = I915_READ(DSPFW3);
  612. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  613. reg |= FW_WM(wm, HPLL_CURSOR);
  614. I915_WRITE(DSPFW3, reg);
  615. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  616. intel_set_memory_cxsr(dev_priv, true);
  617. } else {
  618. intel_set_memory_cxsr(dev_priv, false);
  619. }
  620. }
  621. static bool g4x_compute_wm0(struct drm_device *dev,
  622. int plane,
  623. const struct intel_watermark_params *display,
  624. int display_latency_ns,
  625. const struct intel_watermark_params *cursor,
  626. int cursor_latency_ns,
  627. int *plane_wm,
  628. int *cursor_wm)
  629. {
  630. struct drm_crtc *crtc;
  631. const struct drm_display_mode *adjusted_mode;
  632. int htotal, hdisplay, clock, pixel_size;
  633. int line_time_us, line_count;
  634. int entries, tlb_miss;
  635. crtc = intel_get_crtc_for_plane(dev, plane);
  636. if (!intel_crtc_active(crtc)) {
  637. *cursor_wm = cursor->guard_size;
  638. *plane_wm = display->guard_size;
  639. return false;
  640. }
  641. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  642. clock = adjusted_mode->crtc_clock;
  643. htotal = adjusted_mode->crtc_htotal;
  644. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  645. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  646. /* Use the small buffer method to calculate plane watermark */
  647. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  648. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  649. if (tlb_miss > 0)
  650. entries += tlb_miss;
  651. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  652. *plane_wm = entries + display->guard_size;
  653. if (*plane_wm > (int)display->max_wm)
  654. *plane_wm = display->max_wm;
  655. /* Use the large buffer method to calculate cursor watermark */
  656. line_time_us = max(htotal * 1000 / clock, 1);
  657. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  658. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  659. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  660. if (tlb_miss > 0)
  661. entries += tlb_miss;
  662. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  663. *cursor_wm = entries + cursor->guard_size;
  664. if (*cursor_wm > (int)cursor->max_wm)
  665. *cursor_wm = (int)cursor->max_wm;
  666. return true;
  667. }
  668. /*
  669. * Check the wm result.
  670. *
  671. * If any calculated watermark values is larger than the maximum value that
  672. * can be programmed into the associated watermark register, that watermark
  673. * must be disabled.
  674. */
  675. static bool g4x_check_srwm(struct drm_device *dev,
  676. int display_wm, int cursor_wm,
  677. const struct intel_watermark_params *display,
  678. const struct intel_watermark_params *cursor)
  679. {
  680. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  681. display_wm, cursor_wm);
  682. if (display_wm > display->max_wm) {
  683. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  684. display_wm, display->max_wm);
  685. return false;
  686. }
  687. if (cursor_wm > cursor->max_wm) {
  688. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  689. cursor_wm, cursor->max_wm);
  690. return false;
  691. }
  692. if (!(display_wm || cursor_wm)) {
  693. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  694. return false;
  695. }
  696. return true;
  697. }
  698. static bool g4x_compute_srwm(struct drm_device *dev,
  699. int plane,
  700. int latency_ns,
  701. const struct intel_watermark_params *display,
  702. const struct intel_watermark_params *cursor,
  703. int *display_wm, int *cursor_wm)
  704. {
  705. struct drm_crtc *crtc;
  706. const struct drm_display_mode *adjusted_mode;
  707. int hdisplay, htotal, pixel_size, clock;
  708. unsigned long line_time_us;
  709. int line_count, line_size;
  710. int small, large;
  711. int entries;
  712. if (!latency_ns) {
  713. *display_wm = *cursor_wm = 0;
  714. return false;
  715. }
  716. crtc = intel_get_crtc_for_plane(dev, plane);
  717. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  718. clock = adjusted_mode->crtc_clock;
  719. htotal = adjusted_mode->crtc_htotal;
  720. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  721. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  722. line_time_us = max(htotal * 1000 / clock, 1);
  723. line_count = (latency_ns / line_time_us + 1000) / 1000;
  724. line_size = hdisplay * pixel_size;
  725. /* Use the minimum of the small and large buffer method for primary */
  726. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  727. large = line_count * line_size;
  728. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  729. *display_wm = entries + display->guard_size;
  730. /* calculate the self-refresh watermark for display cursor */
  731. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  732. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  733. *cursor_wm = entries + cursor->guard_size;
  734. return g4x_check_srwm(dev,
  735. *display_wm, *cursor_wm,
  736. display, cursor);
  737. }
  738. #define FW_WM_VLV(value, plane) \
  739. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  740. static void vlv_write_wm_values(struct intel_crtc *crtc,
  741. const struct vlv_wm_values *wm)
  742. {
  743. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  744. enum pipe pipe = crtc->pipe;
  745. I915_WRITE(VLV_DDL(pipe),
  746. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  747. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  748. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  749. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  750. I915_WRITE(DSPFW1,
  751. FW_WM(wm->sr.plane, SR) |
  752. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  753. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  754. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  755. I915_WRITE(DSPFW2,
  756. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  757. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  758. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  759. I915_WRITE(DSPFW3,
  760. FW_WM(wm->sr.cursor, CURSOR_SR));
  761. if (IS_CHERRYVIEW(dev_priv)) {
  762. I915_WRITE(DSPFW7_CHV,
  763. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  764. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  765. I915_WRITE(DSPFW8_CHV,
  766. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  767. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  768. I915_WRITE(DSPFW9_CHV,
  769. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  770. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  771. I915_WRITE(DSPHOWM,
  772. FW_WM(wm->sr.plane >> 9, SR_HI) |
  773. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  774. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  775. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  776. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  777. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  778. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  779. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  780. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  781. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  782. } else {
  783. I915_WRITE(DSPFW7,
  784. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  785. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  786. I915_WRITE(DSPHOWM,
  787. FW_WM(wm->sr.plane >> 9, SR_HI) |
  788. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  789. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  790. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  791. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  792. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  793. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  794. }
  795. POSTING_READ(DSPFW1);
  796. dev_priv->wm.vlv = *wm;
  797. }
  798. #undef FW_WM_VLV
  799. static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
  800. struct drm_plane *plane)
  801. {
  802. struct drm_device *dev = crtc->dev;
  803. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  804. int entries, prec_mult, drain_latency, pixel_size;
  805. int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
  806. const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
  807. /*
  808. * FIXME the plane might have an fb
  809. * but be invisible (eg. due to clipping)
  810. */
  811. if (!intel_crtc->active || !plane->state->fb)
  812. return 0;
  813. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  814. return 0;
  815. pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
  816. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  817. return 0;
  818. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  819. prec_mult = high_precision;
  820. drain_latency = 64 * prec_mult * 4 / entries;
  821. if (drain_latency > DRAIN_LATENCY_MASK) {
  822. prec_mult /= 2;
  823. drain_latency = 64 * prec_mult * 4 / entries;
  824. }
  825. if (drain_latency > DRAIN_LATENCY_MASK)
  826. drain_latency = DRAIN_LATENCY_MASK;
  827. return drain_latency | (prec_mult == high_precision ?
  828. DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
  829. }
  830. static int vlv_compute_wm(struct intel_crtc *crtc,
  831. struct intel_plane *plane,
  832. int fifo_size)
  833. {
  834. int clock, entries, pixel_size;
  835. /*
  836. * FIXME the plane might have an fb
  837. * but be invisible (eg. due to clipping)
  838. */
  839. if (!crtc->active || !plane->base.state->fb)
  840. return 0;
  841. pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
  842. clock = crtc->config->base.adjusted_mode.crtc_clock;
  843. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  844. /*
  845. * Set up the watermark such that we don't start issuing memory
  846. * requests until we are within PND's max deadline value (256us).
  847. * Idea being to be idle as long as possible while still taking
  848. * advatange of PND's deadline scheduling. The limit of 8
  849. * cachelines (used when the FIFO will anyway drain in less time
  850. * than 256us) should match what we would be done if trickle
  851. * feed were enabled.
  852. */
  853. return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
  854. }
  855. static bool vlv_compute_sr_wm(struct drm_device *dev,
  856. struct vlv_wm_values *wm)
  857. {
  858. struct drm_i915_private *dev_priv = to_i915(dev);
  859. struct drm_crtc *crtc;
  860. enum pipe pipe = INVALID_PIPE;
  861. int num_planes = 0;
  862. int fifo_size = 0;
  863. struct intel_plane *plane;
  864. wm->sr.cursor = wm->sr.plane = 0;
  865. crtc = single_enabled_crtc(dev);
  866. /* maxfifo not supported on pipe C */
  867. if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
  868. pipe = to_intel_crtc(crtc)->pipe;
  869. num_planes = !!wm->pipe[pipe].primary +
  870. !!wm->pipe[pipe].sprite[0] +
  871. !!wm->pipe[pipe].sprite[1];
  872. fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  873. }
  874. if (fifo_size == 0 || num_planes > 1)
  875. return false;
  876. wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
  877. to_intel_plane(crtc->cursor), 0x3f);
  878. list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
  879. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  880. continue;
  881. if (plane->pipe != pipe)
  882. continue;
  883. wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
  884. plane, fifo_size);
  885. if (wm->sr.plane != 0)
  886. break;
  887. }
  888. return true;
  889. }
  890. static void valleyview_update_wm(struct drm_crtc *crtc)
  891. {
  892. struct drm_device *dev = crtc->dev;
  893. struct drm_i915_private *dev_priv = dev->dev_private;
  894. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  895. enum pipe pipe = intel_crtc->pipe;
  896. bool cxsr_enabled;
  897. struct vlv_wm_values wm = dev_priv->wm.vlv;
  898. wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
  899. wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
  900. to_intel_plane(crtc->primary),
  901. vlv_get_fifo_size(dev, pipe, 0));
  902. wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
  903. wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
  904. to_intel_plane(crtc->cursor),
  905. 0x3f);
  906. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  907. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  908. return;
  909. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  910. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  911. wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  912. wm.sr.plane, wm.sr.cursor);
  913. /*
  914. * FIXME DDR DVFS introduces massive memory latencies which
  915. * are not known to system agent so any deadline specified
  916. * by the display may not be respected. To support DDR DVFS
  917. * the watermark code needs to be rewritten to essentially
  918. * bypass deadline mechanism and rely solely on the
  919. * watermarks. For now disable DDR DVFS.
  920. */
  921. if (IS_CHERRYVIEW(dev_priv))
  922. chv_set_memory_dvfs(dev_priv, false);
  923. if (!cxsr_enabled)
  924. intel_set_memory_cxsr(dev_priv, false);
  925. vlv_write_wm_values(intel_crtc, &wm);
  926. if (cxsr_enabled)
  927. intel_set_memory_cxsr(dev_priv, true);
  928. }
  929. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  930. struct drm_crtc *crtc,
  931. uint32_t sprite_width,
  932. uint32_t sprite_height,
  933. int pixel_size,
  934. bool enabled, bool scaled)
  935. {
  936. struct drm_device *dev = crtc->dev;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  939. enum pipe pipe = intel_crtc->pipe;
  940. int sprite = to_intel_plane(plane)->plane;
  941. bool cxsr_enabled;
  942. struct vlv_wm_values wm = dev_priv->wm.vlv;
  943. if (enabled) {
  944. wm.ddl[pipe].sprite[sprite] =
  945. vlv_compute_drain_latency(crtc, plane);
  946. wm.pipe[pipe].sprite[sprite] =
  947. vlv_compute_wm(intel_crtc,
  948. to_intel_plane(plane),
  949. vlv_get_fifo_size(dev, pipe, sprite+1));
  950. } else {
  951. wm.ddl[pipe].sprite[sprite] = 0;
  952. wm.pipe[pipe].sprite[sprite] = 0;
  953. }
  954. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  955. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  956. return;
  957. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
  958. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  959. sprite_name(pipe, sprite),
  960. wm.pipe[pipe].sprite[sprite],
  961. wm.sr.plane, wm.sr.cursor);
  962. if (!cxsr_enabled)
  963. intel_set_memory_cxsr(dev_priv, false);
  964. vlv_write_wm_values(intel_crtc, &wm);
  965. if (cxsr_enabled)
  966. intel_set_memory_cxsr(dev_priv, true);
  967. }
  968. #define single_plane_enabled(mask) is_power_of_2(mask)
  969. static void g4x_update_wm(struct drm_crtc *crtc)
  970. {
  971. struct drm_device *dev = crtc->dev;
  972. static const int sr_latency_ns = 12000;
  973. struct drm_i915_private *dev_priv = dev->dev_private;
  974. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  975. int plane_sr, cursor_sr;
  976. unsigned int enabled = 0;
  977. bool cxsr_enabled;
  978. if (g4x_compute_wm0(dev, PIPE_A,
  979. &g4x_wm_info, pessimal_latency_ns,
  980. &g4x_cursor_wm_info, pessimal_latency_ns,
  981. &planea_wm, &cursora_wm))
  982. enabled |= 1 << PIPE_A;
  983. if (g4x_compute_wm0(dev, PIPE_B,
  984. &g4x_wm_info, pessimal_latency_ns,
  985. &g4x_cursor_wm_info, pessimal_latency_ns,
  986. &planeb_wm, &cursorb_wm))
  987. enabled |= 1 << PIPE_B;
  988. if (single_plane_enabled(enabled) &&
  989. g4x_compute_srwm(dev, ffs(enabled) - 1,
  990. sr_latency_ns,
  991. &g4x_wm_info,
  992. &g4x_cursor_wm_info,
  993. &plane_sr, &cursor_sr)) {
  994. cxsr_enabled = true;
  995. } else {
  996. cxsr_enabled = false;
  997. intel_set_memory_cxsr(dev_priv, false);
  998. plane_sr = cursor_sr = 0;
  999. }
  1000. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1001. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1002. planea_wm, cursora_wm,
  1003. planeb_wm, cursorb_wm,
  1004. plane_sr, cursor_sr);
  1005. I915_WRITE(DSPFW1,
  1006. FW_WM(plane_sr, SR) |
  1007. FW_WM(cursorb_wm, CURSORB) |
  1008. FW_WM(planeb_wm, PLANEB) |
  1009. FW_WM(planea_wm, PLANEA));
  1010. I915_WRITE(DSPFW2,
  1011. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1012. FW_WM(cursora_wm, CURSORA));
  1013. /* HPLL off in SR has some issues on G4x... disable it */
  1014. I915_WRITE(DSPFW3,
  1015. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1016. FW_WM(cursor_sr, CURSOR_SR));
  1017. if (cxsr_enabled)
  1018. intel_set_memory_cxsr(dev_priv, true);
  1019. }
  1020. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1021. {
  1022. struct drm_device *dev = unused_crtc->dev;
  1023. struct drm_i915_private *dev_priv = dev->dev_private;
  1024. struct drm_crtc *crtc;
  1025. int srwm = 1;
  1026. int cursor_sr = 16;
  1027. bool cxsr_enabled;
  1028. /* Calc sr entries for one plane configs */
  1029. crtc = single_enabled_crtc(dev);
  1030. if (crtc) {
  1031. /* self-refresh has much higher latency */
  1032. static const int sr_latency_ns = 12000;
  1033. const struct drm_display_mode *adjusted_mode =
  1034. &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1035. int clock = adjusted_mode->crtc_clock;
  1036. int htotal = adjusted_mode->crtc_htotal;
  1037. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1038. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1039. unsigned long line_time_us;
  1040. int entries;
  1041. line_time_us = max(htotal * 1000 / clock, 1);
  1042. /* Use ns/us then divide to preserve precision */
  1043. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1044. pixel_size * hdisplay;
  1045. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1046. srwm = I965_FIFO_SIZE - entries;
  1047. if (srwm < 0)
  1048. srwm = 1;
  1049. srwm &= 0x1ff;
  1050. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1051. entries, srwm);
  1052. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1053. pixel_size * crtc->cursor->state->crtc_w;
  1054. entries = DIV_ROUND_UP(entries,
  1055. i965_cursor_wm_info.cacheline_size);
  1056. cursor_sr = i965_cursor_wm_info.fifo_size -
  1057. (entries + i965_cursor_wm_info.guard_size);
  1058. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1059. cursor_sr = i965_cursor_wm_info.max_wm;
  1060. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1061. "cursor %d\n", srwm, cursor_sr);
  1062. cxsr_enabled = true;
  1063. } else {
  1064. cxsr_enabled = false;
  1065. /* Turn off self refresh if both pipes are enabled */
  1066. intel_set_memory_cxsr(dev_priv, false);
  1067. }
  1068. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1069. srwm);
  1070. /* 965 has limitations... */
  1071. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1072. FW_WM(8, CURSORB) |
  1073. FW_WM(8, PLANEB) |
  1074. FW_WM(8, PLANEA));
  1075. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1076. FW_WM(8, PLANEC_OLD));
  1077. /* update cursor SR watermark */
  1078. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1079. if (cxsr_enabled)
  1080. intel_set_memory_cxsr(dev_priv, true);
  1081. }
  1082. #undef FW_WM
  1083. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1084. {
  1085. struct drm_device *dev = unused_crtc->dev;
  1086. struct drm_i915_private *dev_priv = dev->dev_private;
  1087. const struct intel_watermark_params *wm_info;
  1088. uint32_t fwater_lo;
  1089. uint32_t fwater_hi;
  1090. int cwm, srwm = 1;
  1091. int fifo_size;
  1092. int planea_wm, planeb_wm;
  1093. struct drm_crtc *crtc, *enabled = NULL;
  1094. if (IS_I945GM(dev))
  1095. wm_info = &i945_wm_info;
  1096. else if (!IS_GEN2(dev))
  1097. wm_info = &i915_wm_info;
  1098. else
  1099. wm_info = &i830_a_wm_info;
  1100. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1101. crtc = intel_get_crtc_for_plane(dev, 0);
  1102. if (intel_crtc_active(crtc)) {
  1103. const struct drm_display_mode *adjusted_mode;
  1104. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1105. if (IS_GEN2(dev))
  1106. cpp = 4;
  1107. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1108. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1109. wm_info, fifo_size, cpp,
  1110. pessimal_latency_ns);
  1111. enabled = crtc;
  1112. } else {
  1113. planea_wm = fifo_size - wm_info->guard_size;
  1114. if (planea_wm > (long)wm_info->max_wm)
  1115. planea_wm = wm_info->max_wm;
  1116. }
  1117. if (IS_GEN2(dev))
  1118. wm_info = &i830_bc_wm_info;
  1119. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1120. crtc = intel_get_crtc_for_plane(dev, 1);
  1121. if (intel_crtc_active(crtc)) {
  1122. const struct drm_display_mode *adjusted_mode;
  1123. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1124. if (IS_GEN2(dev))
  1125. cpp = 4;
  1126. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1127. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1128. wm_info, fifo_size, cpp,
  1129. pessimal_latency_ns);
  1130. if (enabled == NULL)
  1131. enabled = crtc;
  1132. else
  1133. enabled = NULL;
  1134. } else {
  1135. planeb_wm = fifo_size - wm_info->guard_size;
  1136. if (planeb_wm > (long)wm_info->max_wm)
  1137. planeb_wm = wm_info->max_wm;
  1138. }
  1139. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1140. if (IS_I915GM(dev) && enabled) {
  1141. struct drm_i915_gem_object *obj;
  1142. obj = intel_fb_obj(enabled->primary->state->fb);
  1143. /* self-refresh seems busted with untiled */
  1144. if (obj->tiling_mode == I915_TILING_NONE)
  1145. enabled = NULL;
  1146. }
  1147. /*
  1148. * Overlay gets an aggressive default since video jitter is bad.
  1149. */
  1150. cwm = 2;
  1151. /* Play safe and disable self-refresh before adjusting watermarks. */
  1152. intel_set_memory_cxsr(dev_priv, false);
  1153. /* Calc sr entries for one plane configs */
  1154. if (HAS_FW_BLC(dev) && enabled) {
  1155. /* self-refresh has much higher latency */
  1156. static const int sr_latency_ns = 6000;
  1157. const struct drm_display_mode *adjusted_mode =
  1158. &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1159. int clock = adjusted_mode->crtc_clock;
  1160. int htotal = adjusted_mode->crtc_htotal;
  1161. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1162. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1163. unsigned long line_time_us;
  1164. int entries;
  1165. line_time_us = max(htotal * 1000 / clock, 1);
  1166. /* Use ns/us then divide to preserve precision */
  1167. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1168. pixel_size * hdisplay;
  1169. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1170. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1171. srwm = wm_info->fifo_size - entries;
  1172. if (srwm < 0)
  1173. srwm = 1;
  1174. if (IS_I945G(dev) || IS_I945GM(dev))
  1175. I915_WRITE(FW_BLC_SELF,
  1176. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1177. else if (IS_I915GM(dev))
  1178. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1179. }
  1180. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1181. planea_wm, planeb_wm, cwm, srwm);
  1182. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1183. fwater_hi = (cwm & 0x1f);
  1184. /* Set request length to 8 cachelines per fetch */
  1185. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1186. fwater_hi = fwater_hi | (1 << 8);
  1187. I915_WRITE(FW_BLC, fwater_lo);
  1188. I915_WRITE(FW_BLC2, fwater_hi);
  1189. if (enabled)
  1190. intel_set_memory_cxsr(dev_priv, true);
  1191. }
  1192. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1193. {
  1194. struct drm_device *dev = unused_crtc->dev;
  1195. struct drm_i915_private *dev_priv = dev->dev_private;
  1196. struct drm_crtc *crtc;
  1197. const struct drm_display_mode *adjusted_mode;
  1198. uint32_t fwater_lo;
  1199. int planea_wm;
  1200. crtc = single_enabled_crtc(dev);
  1201. if (crtc == NULL)
  1202. return;
  1203. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1204. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1205. &i845_wm_info,
  1206. dev_priv->display.get_fifo_size(dev, 0),
  1207. 4, pessimal_latency_ns);
  1208. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1209. fwater_lo |= (3<<8) | planea_wm;
  1210. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1211. I915_WRITE(FW_BLC, fwater_lo);
  1212. }
  1213. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1214. struct drm_crtc *crtc)
  1215. {
  1216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1217. uint32_t pixel_rate;
  1218. pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
  1219. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1220. * adjust the pixel_rate here. */
  1221. if (intel_crtc->config->pch_pfit.enabled) {
  1222. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1223. uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
  1224. pipe_w = intel_crtc->config->pipe_src_w;
  1225. pipe_h = intel_crtc->config->pipe_src_h;
  1226. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1227. pfit_h = pfit_size & 0xFFFF;
  1228. if (pipe_w < pfit_w)
  1229. pipe_w = pfit_w;
  1230. if (pipe_h < pfit_h)
  1231. pipe_h = pfit_h;
  1232. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1233. pfit_w * pfit_h);
  1234. }
  1235. return pixel_rate;
  1236. }
  1237. /* latency must be in 0.1us units. */
  1238. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1239. uint32_t latency)
  1240. {
  1241. uint64_t ret;
  1242. if (WARN(latency == 0, "Latency value missing\n"))
  1243. return UINT_MAX;
  1244. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1245. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1246. return ret;
  1247. }
  1248. /* latency must be in 0.1us units. */
  1249. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1250. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1251. uint32_t latency)
  1252. {
  1253. uint32_t ret;
  1254. if (WARN(latency == 0, "Latency value missing\n"))
  1255. return UINT_MAX;
  1256. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1257. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1258. ret = DIV_ROUND_UP(ret, 64) + 2;
  1259. return ret;
  1260. }
  1261. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1262. uint8_t bytes_per_pixel)
  1263. {
  1264. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1265. }
  1266. struct skl_pipe_wm_parameters {
  1267. bool active;
  1268. uint32_t pipe_htotal;
  1269. uint32_t pixel_rate; /* in KHz */
  1270. struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
  1271. struct intel_plane_wm_parameters cursor;
  1272. };
  1273. struct ilk_pipe_wm_parameters {
  1274. bool active;
  1275. uint32_t pipe_htotal;
  1276. uint32_t pixel_rate;
  1277. struct intel_plane_wm_parameters pri;
  1278. struct intel_plane_wm_parameters spr;
  1279. struct intel_plane_wm_parameters cur;
  1280. };
  1281. struct ilk_wm_maximums {
  1282. uint16_t pri;
  1283. uint16_t spr;
  1284. uint16_t cur;
  1285. uint16_t fbc;
  1286. };
  1287. /* used in computing the new watermarks state */
  1288. struct intel_wm_config {
  1289. unsigned int num_pipes_active;
  1290. bool sprites_enabled;
  1291. bool sprites_scaled;
  1292. };
  1293. /*
  1294. * For both WM_PIPE and WM_LP.
  1295. * mem_value must be in 0.1us units.
  1296. */
  1297. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1298. uint32_t mem_value,
  1299. bool is_lp)
  1300. {
  1301. uint32_t method1, method2;
  1302. if (!params->active || !params->pri.enabled)
  1303. return 0;
  1304. method1 = ilk_wm_method1(params->pixel_rate,
  1305. params->pri.bytes_per_pixel,
  1306. mem_value);
  1307. if (!is_lp)
  1308. return method1;
  1309. method2 = ilk_wm_method2(params->pixel_rate,
  1310. params->pipe_htotal,
  1311. params->pri.horiz_pixels,
  1312. params->pri.bytes_per_pixel,
  1313. mem_value);
  1314. return min(method1, method2);
  1315. }
  1316. /*
  1317. * For both WM_PIPE and WM_LP.
  1318. * mem_value must be in 0.1us units.
  1319. */
  1320. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1321. uint32_t mem_value)
  1322. {
  1323. uint32_t method1, method2;
  1324. if (!params->active || !params->spr.enabled)
  1325. return 0;
  1326. method1 = ilk_wm_method1(params->pixel_rate,
  1327. params->spr.bytes_per_pixel,
  1328. mem_value);
  1329. method2 = ilk_wm_method2(params->pixel_rate,
  1330. params->pipe_htotal,
  1331. params->spr.horiz_pixels,
  1332. params->spr.bytes_per_pixel,
  1333. mem_value);
  1334. return min(method1, method2);
  1335. }
  1336. /*
  1337. * For both WM_PIPE and WM_LP.
  1338. * mem_value must be in 0.1us units.
  1339. */
  1340. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1341. uint32_t mem_value)
  1342. {
  1343. if (!params->active || !params->cur.enabled)
  1344. return 0;
  1345. return ilk_wm_method2(params->pixel_rate,
  1346. params->pipe_htotal,
  1347. params->cur.horiz_pixels,
  1348. params->cur.bytes_per_pixel,
  1349. mem_value);
  1350. }
  1351. /* Only for WM_LP. */
  1352. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1353. uint32_t pri_val)
  1354. {
  1355. if (!params->active || !params->pri.enabled)
  1356. return 0;
  1357. return ilk_wm_fbc(pri_val,
  1358. params->pri.horiz_pixels,
  1359. params->pri.bytes_per_pixel);
  1360. }
  1361. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1362. {
  1363. if (INTEL_INFO(dev)->gen >= 8)
  1364. return 3072;
  1365. else if (INTEL_INFO(dev)->gen >= 7)
  1366. return 768;
  1367. else
  1368. return 512;
  1369. }
  1370. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1371. int level, bool is_sprite)
  1372. {
  1373. if (INTEL_INFO(dev)->gen >= 8)
  1374. /* BDW primary/sprite plane watermarks */
  1375. return level == 0 ? 255 : 2047;
  1376. else if (INTEL_INFO(dev)->gen >= 7)
  1377. /* IVB/HSW primary/sprite plane watermarks */
  1378. return level == 0 ? 127 : 1023;
  1379. else if (!is_sprite)
  1380. /* ILK/SNB primary plane watermarks */
  1381. return level == 0 ? 127 : 511;
  1382. else
  1383. /* ILK/SNB sprite plane watermarks */
  1384. return level == 0 ? 63 : 255;
  1385. }
  1386. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1387. int level)
  1388. {
  1389. if (INTEL_INFO(dev)->gen >= 7)
  1390. return level == 0 ? 63 : 255;
  1391. else
  1392. return level == 0 ? 31 : 63;
  1393. }
  1394. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1395. {
  1396. if (INTEL_INFO(dev)->gen >= 8)
  1397. return 31;
  1398. else
  1399. return 15;
  1400. }
  1401. /* Calculate the maximum primary/sprite plane watermark */
  1402. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1403. int level,
  1404. const struct intel_wm_config *config,
  1405. enum intel_ddb_partitioning ddb_partitioning,
  1406. bool is_sprite)
  1407. {
  1408. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1409. /* if sprites aren't enabled, sprites get nothing */
  1410. if (is_sprite && !config->sprites_enabled)
  1411. return 0;
  1412. /* HSW allows LP1+ watermarks even with multiple pipes */
  1413. if (level == 0 || config->num_pipes_active > 1) {
  1414. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1415. /*
  1416. * For some reason the non self refresh
  1417. * FIFO size is only half of the self
  1418. * refresh FIFO size on ILK/SNB.
  1419. */
  1420. if (INTEL_INFO(dev)->gen <= 6)
  1421. fifo_size /= 2;
  1422. }
  1423. if (config->sprites_enabled) {
  1424. /* level 0 is always calculated with 1:1 split */
  1425. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1426. if (is_sprite)
  1427. fifo_size *= 5;
  1428. fifo_size /= 6;
  1429. } else {
  1430. fifo_size /= 2;
  1431. }
  1432. }
  1433. /* clamp to max that the registers can hold */
  1434. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1435. }
  1436. /* Calculate the maximum cursor plane watermark */
  1437. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1438. int level,
  1439. const struct intel_wm_config *config)
  1440. {
  1441. /* HSW LP1+ watermarks w/ multiple pipes */
  1442. if (level > 0 && config->num_pipes_active > 1)
  1443. return 64;
  1444. /* otherwise just report max that registers can hold */
  1445. return ilk_cursor_wm_reg_max(dev, level);
  1446. }
  1447. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1448. int level,
  1449. const struct intel_wm_config *config,
  1450. enum intel_ddb_partitioning ddb_partitioning,
  1451. struct ilk_wm_maximums *max)
  1452. {
  1453. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1454. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1455. max->cur = ilk_cursor_wm_max(dev, level, config);
  1456. max->fbc = ilk_fbc_wm_reg_max(dev);
  1457. }
  1458. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1459. int level,
  1460. struct ilk_wm_maximums *max)
  1461. {
  1462. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1463. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1464. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1465. max->fbc = ilk_fbc_wm_reg_max(dev);
  1466. }
  1467. static bool ilk_validate_wm_level(int level,
  1468. const struct ilk_wm_maximums *max,
  1469. struct intel_wm_level *result)
  1470. {
  1471. bool ret;
  1472. /* already determined to be invalid? */
  1473. if (!result->enable)
  1474. return false;
  1475. result->enable = result->pri_val <= max->pri &&
  1476. result->spr_val <= max->spr &&
  1477. result->cur_val <= max->cur;
  1478. ret = result->enable;
  1479. /*
  1480. * HACK until we can pre-compute everything,
  1481. * and thus fail gracefully if LP0 watermarks
  1482. * are exceeded...
  1483. */
  1484. if (level == 0 && !result->enable) {
  1485. if (result->pri_val > max->pri)
  1486. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1487. level, result->pri_val, max->pri);
  1488. if (result->spr_val > max->spr)
  1489. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1490. level, result->spr_val, max->spr);
  1491. if (result->cur_val > max->cur)
  1492. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1493. level, result->cur_val, max->cur);
  1494. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1495. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1496. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1497. result->enable = true;
  1498. }
  1499. return ret;
  1500. }
  1501. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1502. int level,
  1503. const struct ilk_pipe_wm_parameters *p,
  1504. struct intel_wm_level *result)
  1505. {
  1506. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1507. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1508. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1509. /* WM1+ latency values stored in 0.5us units */
  1510. if (level > 0) {
  1511. pri_latency *= 5;
  1512. spr_latency *= 5;
  1513. cur_latency *= 5;
  1514. }
  1515. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1516. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1517. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1518. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1519. result->enable = true;
  1520. }
  1521. static uint32_t
  1522. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1523. {
  1524. struct drm_i915_private *dev_priv = dev->dev_private;
  1525. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1526. struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
  1527. u32 linetime, ips_linetime;
  1528. if (!intel_crtc->active)
  1529. return 0;
  1530. /* The WM are computed with base on how long it takes to fill a single
  1531. * row at the given clock rate, multiplied by 8.
  1532. * */
  1533. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1534. mode->crtc_clock);
  1535. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1536. dev_priv->display.get_display_clock_speed(dev_priv->dev));
  1537. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1538. PIPE_WM_LINETIME_TIME(linetime);
  1539. }
  1540. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1541. {
  1542. struct drm_i915_private *dev_priv = dev->dev_private;
  1543. if (IS_GEN9(dev)) {
  1544. uint32_t val;
  1545. int ret, i;
  1546. int level, max_level = ilk_wm_max_level(dev);
  1547. /* read the first set of memory latencies[0:3] */
  1548. val = 0; /* data0 to be programmed to 0 for first set */
  1549. mutex_lock(&dev_priv->rps.hw_lock);
  1550. ret = sandybridge_pcode_read(dev_priv,
  1551. GEN9_PCODE_READ_MEM_LATENCY,
  1552. &val);
  1553. mutex_unlock(&dev_priv->rps.hw_lock);
  1554. if (ret) {
  1555. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1556. return;
  1557. }
  1558. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1559. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1560. GEN9_MEM_LATENCY_LEVEL_MASK;
  1561. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1562. GEN9_MEM_LATENCY_LEVEL_MASK;
  1563. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1564. GEN9_MEM_LATENCY_LEVEL_MASK;
  1565. /* read the second set of memory latencies[4:7] */
  1566. val = 1; /* data0 to be programmed to 1 for second set */
  1567. mutex_lock(&dev_priv->rps.hw_lock);
  1568. ret = sandybridge_pcode_read(dev_priv,
  1569. GEN9_PCODE_READ_MEM_LATENCY,
  1570. &val);
  1571. mutex_unlock(&dev_priv->rps.hw_lock);
  1572. if (ret) {
  1573. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1574. return;
  1575. }
  1576. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1577. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1578. GEN9_MEM_LATENCY_LEVEL_MASK;
  1579. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1580. GEN9_MEM_LATENCY_LEVEL_MASK;
  1581. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1582. GEN9_MEM_LATENCY_LEVEL_MASK;
  1583. /*
  1584. * WaWmMemoryReadLatency:skl
  1585. *
  1586. * punit doesn't take into account the read latency so we need
  1587. * to add 2us to the various latency levels we retrieve from
  1588. * the punit.
  1589. * - W0 is a bit special in that it's the only level that
  1590. * can't be disabled if we want to have display working, so
  1591. * we always add 2us there.
  1592. * - For levels >=1, punit returns 0us latency when they are
  1593. * disabled, so we respect that and don't add 2us then
  1594. *
  1595. * Additionally, if a level n (n > 1) has a 0us latency, all
  1596. * levels m (m >= n) need to be disabled. We make sure to
  1597. * sanitize the values out of the punit to satisfy this
  1598. * requirement.
  1599. */
  1600. wm[0] += 2;
  1601. for (level = 1; level <= max_level; level++)
  1602. if (wm[level] != 0)
  1603. wm[level] += 2;
  1604. else {
  1605. for (i = level + 1; i <= max_level; i++)
  1606. wm[i] = 0;
  1607. break;
  1608. }
  1609. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1610. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1611. wm[0] = (sskpd >> 56) & 0xFF;
  1612. if (wm[0] == 0)
  1613. wm[0] = sskpd & 0xF;
  1614. wm[1] = (sskpd >> 4) & 0xFF;
  1615. wm[2] = (sskpd >> 12) & 0xFF;
  1616. wm[3] = (sskpd >> 20) & 0x1FF;
  1617. wm[4] = (sskpd >> 32) & 0x1FF;
  1618. } else if (INTEL_INFO(dev)->gen >= 6) {
  1619. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1620. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1621. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1622. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1623. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1624. } else if (INTEL_INFO(dev)->gen >= 5) {
  1625. uint32_t mltr = I915_READ(MLTR_ILK);
  1626. /* ILK primary LP0 latency is 700 ns */
  1627. wm[0] = 7;
  1628. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1629. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1630. }
  1631. }
  1632. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1633. {
  1634. /* ILK sprite LP0 latency is 1300 ns */
  1635. if (INTEL_INFO(dev)->gen == 5)
  1636. wm[0] = 13;
  1637. }
  1638. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1639. {
  1640. /* ILK cursor LP0 latency is 1300 ns */
  1641. if (INTEL_INFO(dev)->gen == 5)
  1642. wm[0] = 13;
  1643. /* WaDoubleCursorLP3Latency:ivb */
  1644. if (IS_IVYBRIDGE(dev))
  1645. wm[3] *= 2;
  1646. }
  1647. int ilk_wm_max_level(const struct drm_device *dev)
  1648. {
  1649. /* how many WM levels are we expecting */
  1650. if (IS_GEN9(dev))
  1651. return 7;
  1652. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1653. return 4;
  1654. else if (INTEL_INFO(dev)->gen >= 6)
  1655. return 3;
  1656. else
  1657. return 2;
  1658. }
  1659. static void intel_print_wm_latency(struct drm_device *dev,
  1660. const char *name,
  1661. const uint16_t wm[8])
  1662. {
  1663. int level, max_level = ilk_wm_max_level(dev);
  1664. for (level = 0; level <= max_level; level++) {
  1665. unsigned int latency = wm[level];
  1666. if (latency == 0) {
  1667. DRM_ERROR("%s WM%d latency not provided\n",
  1668. name, level);
  1669. continue;
  1670. }
  1671. /*
  1672. * - latencies are in us on gen9.
  1673. * - before then, WM1+ latency values are in 0.5us units
  1674. */
  1675. if (IS_GEN9(dev))
  1676. latency *= 10;
  1677. else if (level > 0)
  1678. latency *= 5;
  1679. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1680. name, level, wm[level],
  1681. latency / 10, latency % 10);
  1682. }
  1683. }
  1684. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1685. uint16_t wm[5], uint16_t min)
  1686. {
  1687. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1688. if (wm[0] >= min)
  1689. return false;
  1690. wm[0] = max(wm[0], min);
  1691. for (level = 1; level <= max_level; level++)
  1692. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1693. return true;
  1694. }
  1695. static void snb_wm_latency_quirk(struct drm_device *dev)
  1696. {
  1697. struct drm_i915_private *dev_priv = dev->dev_private;
  1698. bool changed;
  1699. /*
  1700. * The BIOS provided WM memory latency values are often
  1701. * inadequate for high resolution displays. Adjust them.
  1702. */
  1703. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1704. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1705. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1706. if (!changed)
  1707. return;
  1708. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1709. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1710. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1711. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1712. }
  1713. static void ilk_setup_wm_latency(struct drm_device *dev)
  1714. {
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1717. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1718. sizeof(dev_priv->wm.pri_latency));
  1719. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1720. sizeof(dev_priv->wm.pri_latency));
  1721. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1722. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1723. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1724. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1725. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1726. if (IS_GEN6(dev))
  1727. snb_wm_latency_quirk(dev);
  1728. }
  1729. static void skl_setup_wm_latency(struct drm_device *dev)
  1730. {
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1733. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1734. }
  1735. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1736. struct ilk_pipe_wm_parameters *p)
  1737. {
  1738. struct drm_device *dev = crtc->dev;
  1739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1740. enum pipe pipe = intel_crtc->pipe;
  1741. struct drm_plane *plane;
  1742. if (!intel_crtc->active)
  1743. return;
  1744. p->active = true;
  1745. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  1746. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1747. if (crtc->primary->state->fb) {
  1748. p->pri.enabled = true;
  1749. p->pri.bytes_per_pixel =
  1750. crtc->primary->state->fb->bits_per_pixel / 8;
  1751. } else {
  1752. p->pri.enabled = false;
  1753. p->pri.bytes_per_pixel = 0;
  1754. }
  1755. if (crtc->cursor->state->fb) {
  1756. p->cur.enabled = true;
  1757. p->cur.bytes_per_pixel = 4;
  1758. } else {
  1759. p->cur.enabled = false;
  1760. p->cur.bytes_per_pixel = 0;
  1761. }
  1762. p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
  1763. p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
  1764. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1765. struct intel_plane *intel_plane = to_intel_plane(plane);
  1766. if (intel_plane->pipe == pipe) {
  1767. p->spr = intel_plane->wm;
  1768. break;
  1769. }
  1770. }
  1771. }
  1772. static void ilk_compute_wm_config(struct drm_device *dev,
  1773. struct intel_wm_config *config)
  1774. {
  1775. struct intel_crtc *intel_crtc;
  1776. /* Compute the currently _active_ config */
  1777. for_each_intel_crtc(dev, intel_crtc) {
  1778. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1779. if (!wm->pipe_enabled)
  1780. continue;
  1781. config->sprites_enabled |= wm->sprites_enabled;
  1782. config->sprites_scaled |= wm->sprites_scaled;
  1783. config->num_pipes_active++;
  1784. }
  1785. }
  1786. /* Compute new watermarks for the pipe */
  1787. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1788. const struct ilk_pipe_wm_parameters *params,
  1789. struct intel_pipe_wm *pipe_wm)
  1790. {
  1791. struct drm_device *dev = crtc->dev;
  1792. const struct drm_i915_private *dev_priv = dev->dev_private;
  1793. int level, max_level = ilk_wm_max_level(dev);
  1794. /* LP0 watermark maximums depend on this pipe alone */
  1795. struct intel_wm_config config = {
  1796. .num_pipes_active = 1,
  1797. .sprites_enabled = params->spr.enabled,
  1798. .sprites_scaled = params->spr.scaled,
  1799. };
  1800. struct ilk_wm_maximums max;
  1801. pipe_wm->pipe_enabled = params->active;
  1802. pipe_wm->sprites_enabled = params->spr.enabled;
  1803. pipe_wm->sprites_scaled = params->spr.scaled;
  1804. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1805. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1806. max_level = 1;
  1807. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1808. if (params->spr.scaled)
  1809. max_level = 0;
  1810. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1811. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1812. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1813. /* LP0 watermarks always use 1/2 DDB partitioning */
  1814. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1815. /* At least LP0 must be valid */
  1816. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1817. return false;
  1818. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1819. for (level = 1; level <= max_level; level++) {
  1820. struct intel_wm_level wm = {};
  1821. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1822. /*
  1823. * Disable any watermark level that exceeds the
  1824. * register maximums since such watermarks are
  1825. * always invalid.
  1826. */
  1827. if (!ilk_validate_wm_level(level, &max, &wm))
  1828. break;
  1829. pipe_wm->wm[level] = wm;
  1830. }
  1831. return true;
  1832. }
  1833. /*
  1834. * Merge the watermarks from all active pipes for a specific level.
  1835. */
  1836. static void ilk_merge_wm_level(struct drm_device *dev,
  1837. int level,
  1838. struct intel_wm_level *ret_wm)
  1839. {
  1840. const struct intel_crtc *intel_crtc;
  1841. ret_wm->enable = true;
  1842. for_each_intel_crtc(dev, intel_crtc) {
  1843. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1844. const struct intel_wm_level *wm = &active->wm[level];
  1845. if (!active->pipe_enabled)
  1846. continue;
  1847. /*
  1848. * The watermark values may have been used in the past,
  1849. * so we must maintain them in the registers for some
  1850. * time even if the level is now disabled.
  1851. */
  1852. if (!wm->enable)
  1853. ret_wm->enable = false;
  1854. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1855. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1856. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1857. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1858. }
  1859. }
  1860. /*
  1861. * Merge all low power watermarks for all active pipes.
  1862. */
  1863. static void ilk_wm_merge(struct drm_device *dev,
  1864. const struct intel_wm_config *config,
  1865. const struct ilk_wm_maximums *max,
  1866. struct intel_pipe_wm *merged)
  1867. {
  1868. int level, max_level = ilk_wm_max_level(dev);
  1869. int last_enabled_level = max_level;
  1870. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1871. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1872. config->num_pipes_active > 1)
  1873. return;
  1874. /* ILK: FBC WM must be disabled always */
  1875. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1876. /* merge each WM1+ level */
  1877. for (level = 1; level <= max_level; level++) {
  1878. struct intel_wm_level *wm = &merged->wm[level];
  1879. ilk_merge_wm_level(dev, level, wm);
  1880. if (level > last_enabled_level)
  1881. wm->enable = false;
  1882. else if (!ilk_validate_wm_level(level, max, wm))
  1883. /* make sure all following levels get disabled */
  1884. last_enabled_level = level - 1;
  1885. /*
  1886. * The spec says it is preferred to disable
  1887. * FBC WMs instead of disabling a WM level.
  1888. */
  1889. if (wm->fbc_val > max->fbc) {
  1890. if (wm->enable)
  1891. merged->fbc_wm_enabled = false;
  1892. wm->fbc_val = 0;
  1893. }
  1894. }
  1895. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  1896. /*
  1897. * FIXME this is racy. FBC might get enabled later.
  1898. * What we should check here is whether FBC can be
  1899. * enabled sometime later.
  1900. */
  1901. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  1902. for (level = 2; level <= max_level; level++) {
  1903. struct intel_wm_level *wm = &merged->wm[level];
  1904. wm->enable = false;
  1905. }
  1906. }
  1907. }
  1908. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  1909. {
  1910. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  1911. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  1912. }
  1913. /* The value we need to program into the WM_LPx latency field */
  1914. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  1915. {
  1916. struct drm_i915_private *dev_priv = dev->dev_private;
  1917. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1918. return 2 * level;
  1919. else
  1920. return dev_priv->wm.pri_latency[level];
  1921. }
  1922. static void ilk_compute_wm_results(struct drm_device *dev,
  1923. const struct intel_pipe_wm *merged,
  1924. enum intel_ddb_partitioning partitioning,
  1925. struct ilk_wm_values *results)
  1926. {
  1927. struct intel_crtc *intel_crtc;
  1928. int level, wm_lp;
  1929. results->enable_fbc_wm = merged->fbc_wm_enabled;
  1930. results->partitioning = partitioning;
  1931. /* LP1+ register values */
  1932. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  1933. const struct intel_wm_level *r;
  1934. level = ilk_wm_lp_to_level(wm_lp, merged);
  1935. r = &merged->wm[level];
  1936. /*
  1937. * Maintain the watermark values even if the level is
  1938. * disabled. Doing otherwise could cause underruns.
  1939. */
  1940. results->wm_lp[wm_lp - 1] =
  1941. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  1942. (r->pri_val << WM1_LP_SR_SHIFT) |
  1943. r->cur_val;
  1944. if (r->enable)
  1945. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  1946. if (INTEL_INFO(dev)->gen >= 8)
  1947. results->wm_lp[wm_lp - 1] |=
  1948. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  1949. else
  1950. results->wm_lp[wm_lp - 1] |=
  1951. r->fbc_val << WM1_LP_FBC_SHIFT;
  1952. /*
  1953. * Always set WM1S_LP_EN when spr_val != 0, even if the
  1954. * level is disabled. Doing otherwise could cause underruns.
  1955. */
  1956. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  1957. WARN_ON(wm_lp != 1);
  1958. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  1959. } else
  1960. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  1961. }
  1962. /* LP0 register values */
  1963. for_each_intel_crtc(dev, intel_crtc) {
  1964. enum pipe pipe = intel_crtc->pipe;
  1965. const struct intel_wm_level *r =
  1966. &intel_crtc->wm.active.wm[0];
  1967. if (WARN_ON(!r->enable))
  1968. continue;
  1969. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  1970. results->wm_pipe[pipe] =
  1971. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  1972. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  1973. r->cur_val;
  1974. }
  1975. }
  1976. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  1977. * case both are at the same level. Prefer r1 in case they're the same. */
  1978. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  1979. struct intel_pipe_wm *r1,
  1980. struct intel_pipe_wm *r2)
  1981. {
  1982. int level, max_level = ilk_wm_max_level(dev);
  1983. int level1 = 0, level2 = 0;
  1984. for (level = 1; level <= max_level; level++) {
  1985. if (r1->wm[level].enable)
  1986. level1 = level;
  1987. if (r2->wm[level].enable)
  1988. level2 = level;
  1989. }
  1990. if (level1 == level2) {
  1991. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  1992. return r2;
  1993. else
  1994. return r1;
  1995. } else if (level1 > level2) {
  1996. return r1;
  1997. } else {
  1998. return r2;
  1999. }
  2000. }
  2001. /* dirty bits used to track which watermarks need changes */
  2002. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2003. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2004. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2005. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2006. #define WM_DIRTY_FBC (1 << 24)
  2007. #define WM_DIRTY_DDB (1 << 25)
  2008. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2009. const struct ilk_wm_values *old,
  2010. const struct ilk_wm_values *new)
  2011. {
  2012. unsigned int dirty = 0;
  2013. enum pipe pipe;
  2014. int wm_lp;
  2015. for_each_pipe(dev_priv, pipe) {
  2016. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2017. dirty |= WM_DIRTY_LINETIME(pipe);
  2018. /* Must disable LP1+ watermarks too */
  2019. dirty |= WM_DIRTY_LP_ALL;
  2020. }
  2021. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2022. dirty |= WM_DIRTY_PIPE(pipe);
  2023. /* Must disable LP1+ watermarks too */
  2024. dirty |= WM_DIRTY_LP_ALL;
  2025. }
  2026. }
  2027. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2028. dirty |= WM_DIRTY_FBC;
  2029. /* Must disable LP1+ watermarks too */
  2030. dirty |= WM_DIRTY_LP_ALL;
  2031. }
  2032. if (old->partitioning != new->partitioning) {
  2033. dirty |= WM_DIRTY_DDB;
  2034. /* Must disable LP1+ watermarks too */
  2035. dirty |= WM_DIRTY_LP_ALL;
  2036. }
  2037. /* LP1+ watermarks already deemed dirty, no need to continue */
  2038. if (dirty & WM_DIRTY_LP_ALL)
  2039. return dirty;
  2040. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2041. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2042. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2043. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2044. break;
  2045. }
  2046. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2047. for (; wm_lp <= 3; wm_lp++)
  2048. dirty |= WM_DIRTY_LP(wm_lp);
  2049. return dirty;
  2050. }
  2051. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2052. unsigned int dirty)
  2053. {
  2054. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2055. bool changed = false;
  2056. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2057. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2058. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2059. changed = true;
  2060. }
  2061. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2062. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2063. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2064. changed = true;
  2065. }
  2066. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2067. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2068. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2069. changed = true;
  2070. }
  2071. /*
  2072. * Don't touch WM1S_LP_EN here.
  2073. * Doing so could cause underruns.
  2074. */
  2075. return changed;
  2076. }
  2077. /*
  2078. * The spec says we shouldn't write when we don't need, because every write
  2079. * causes WMs to be re-evaluated, expending some power.
  2080. */
  2081. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2082. struct ilk_wm_values *results)
  2083. {
  2084. struct drm_device *dev = dev_priv->dev;
  2085. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2086. unsigned int dirty;
  2087. uint32_t val;
  2088. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2089. if (!dirty)
  2090. return;
  2091. _ilk_disable_lp_wm(dev_priv, dirty);
  2092. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2093. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2094. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2095. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2096. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2097. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2098. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2099. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2100. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2101. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2102. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2103. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2104. if (dirty & WM_DIRTY_DDB) {
  2105. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2106. val = I915_READ(WM_MISC);
  2107. if (results->partitioning == INTEL_DDB_PART_1_2)
  2108. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2109. else
  2110. val |= WM_MISC_DATA_PARTITION_5_6;
  2111. I915_WRITE(WM_MISC, val);
  2112. } else {
  2113. val = I915_READ(DISP_ARB_CTL2);
  2114. if (results->partitioning == INTEL_DDB_PART_1_2)
  2115. val &= ~DISP_DATA_PARTITION_5_6;
  2116. else
  2117. val |= DISP_DATA_PARTITION_5_6;
  2118. I915_WRITE(DISP_ARB_CTL2, val);
  2119. }
  2120. }
  2121. if (dirty & WM_DIRTY_FBC) {
  2122. val = I915_READ(DISP_ARB_CTL);
  2123. if (results->enable_fbc_wm)
  2124. val &= ~DISP_FBC_WM_DIS;
  2125. else
  2126. val |= DISP_FBC_WM_DIS;
  2127. I915_WRITE(DISP_ARB_CTL, val);
  2128. }
  2129. if (dirty & WM_DIRTY_LP(1) &&
  2130. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2131. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2132. if (INTEL_INFO(dev)->gen >= 7) {
  2133. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2134. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2135. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2136. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2137. }
  2138. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2139. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2140. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2141. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2142. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2143. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2144. dev_priv->wm.hw = *results;
  2145. }
  2146. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2147. {
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2150. }
  2151. /*
  2152. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2153. * different active planes.
  2154. */
  2155. #define SKL_DDB_SIZE 896 /* in blocks */
  2156. static void
  2157. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2158. struct drm_crtc *for_crtc,
  2159. const struct intel_wm_config *config,
  2160. const struct skl_pipe_wm_parameters *params,
  2161. struct skl_ddb_entry *alloc /* out */)
  2162. {
  2163. struct drm_crtc *crtc;
  2164. unsigned int pipe_size, ddb_size;
  2165. int nth_active_pipe;
  2166. if (!params->active) {
  2167. alloc->start = 0;
  2168. alloc->end = 0;
  2169. return;
  2170. }
  2171. ddb_size = SKL_DDB_SIZE;
  2172. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2173. nth_active_pipe = 0;
  2174. for_each_crtc(dev, crtc) {
  2175. if (!to_intel_crtc(crtc)->active)
  2176. continue;
  2177. if (crtc == for_crtc)
  2178. break;
  2179. nth_active_pipe++;
  2180. }
  2181. pipe_size = ddb_size / config->num_pipes_active;
  2182. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2183. alloc->end = alloc->start + pipe_size;
  2184. }
  2185. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2186. {
  2187. if (config->num_pipes_active == 1)
  2188. return 32;
  2189. return 8;
  2190. }
  2191. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2192. {
  2193. entry->start = reg & 0x3ff;
  2194. entry->end = (reg >> 16) & 0x3ff;
  2195. if (entry->end)
  2196. entry->end += 1;
  2197. }
  2198. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2199. struct skl_ddb_allocation *ddb /* out */)
  2200. {
  2201. enum pipe pipe;
  2202. int plane;
  2203. u32 val;
  2204. for_each_pipe(dev_priv, pipe) {
  2205. for_each_plane(dev_priv, pipe, plane) {
  2206. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2207. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2208. val);
  2209. }
  2210. val = I915_READ(CUR_BUF_CFG(pipe));
  2211. skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
  2212. }
  2213. }
  2214. static unsigned int
  2215. skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
  2216. {
  2217. return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
  2218. }
  2219. /*
  2220. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2221. * a 8192x4096@32bpp framebuffer:
  2222. * 3 * 4096 * 8192 * 4 < 2^32
  2223. */
  2224. static unsigned int
  2225. skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
  2226. const struct skl_pipe_wm_parameters *params)
  2227. {
  2228. unsigned int total_data_rate = 0;
  2229. int plane;
  2230. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2231. const struct intel_plane_wm_parameters *p;
  2232. p = &params->plane[plane];
  2233. if (!p->enabled)
  2234. continue;
  2235. total_data_rate += skl_plane_relative_data_rate(p);
  2236. }
  2237. return total_data_rate;
  2238. }
  2239. static void
  2240. skl_allocate_pipe_ddb(struct drm_crtc *crtc,
  2241. const struct intel_wm_config *config,
  2242. const struct skl_pipe_wm_parameters *params,
  2243. struct skl_ddb_allocation *ddb /* out */)
  2244. {
  2245. struct drm_device *dev = crtc->dev;
  2246. struct drm_i915_private *dev_priv = dev->dev_private;
  2247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2248. enum pipe pipe = intel_crtc->pipe;
  2249. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2250. uint16_t alloc_size, start, cursor_blocks;
  2251. uint16_t minimum[I915_MAX_PLANES];
  2252. unsigned int total_data_rate;
  2253. int plane;
  2254. skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
  2255. alloc_size = skl_ddb_entry_size(alloc);
  2256. if (alloc_size == 0) {
  2257. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2258. memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
  2259. return;
  2260. }
  2261. cursor_blocks = skl_cursor_allocation(config);
  2262. ddb->cursor[pipe].start = alloc->end - cursor_blocks;
  2263. ddb->cursor[pipe].end = alloc->end;
  2264. alloc_size -= cursor_blocks;
  2265. alloc->end -= cursor_blocks;
  2266. /* 1. Allocate the mininum required blocks for each active plane */
  2267. for_each_plane(dev_priv, pipe, plane) {
  2268. const struct intel_plane_wm_parameters *p;
  2269. p = &params->plane[plane];
  2270. if (!p->enabled)
  2271. continue;
  2272. minimum[plane] = 8;
  2273. alloc_size -= minimum[plane];
  2274. }
  2275. /*
  2276. * 2. Distribute the remaining space in proportion to the amount of
  2277. * data each plane needs to fetch from memory.
  2278. *
  2279. * FIXME: we may not allocate every single block here.
  2280. */
  2281. total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
  2282. start = alloc->start;
  2283. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2284. const struct intel_plane_wm_parameters *p;
  2285. unsigned int data_rate;
  2286. uint16_t plane_blocks;
  2287. p = &params->plane[plane];
  2288. if (!p->enabled)
  2289. continue;
  2290. data_rate = skl_plane_relative_data_rate(p);
  2291. /*
  2292. * promote the expression to 64 bits to avoid overflowing, the
  2293. * result is < available as data_rate / total_data_rate < 1
  2294. */
  2295. plane_blocks = minimum[plane];
  2296. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2297. total_data_rate);
  2298. ddb->plane[pipe][plane].start = start;
  2299. ddb->plane[pipe][plane].end = start + plane_blocks;
  2300. start += plane_blocks;
  2301. }
  2302. }
  2303. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2304. {
  2305. /* TODO: Take into account the scalers once we support them */
  2306. return config->base.adjusted_mode.crtc_clock;
  2307. }
  2308. /*
  2309. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2310. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2311. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2312. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2313. */
  2314. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2315. uint32_t latency)
  2316. {
  2317. uint32_t wm_intermediate_val, ret;
  2318. if (latency == 0)
  2319. return UINT_MAX;
  2320. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2321. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2322. return ret;
  2323. }
  2324. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2325. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2326. uint64_t tiling, uint32_t latency)
  2327. {
  2328. uint32_t ret;
  2329. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2330. uint32_t wm_intermediate_val;
  2331. if (latency == 0)
  2332. return UINT_MAX;
  2333. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2334. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2335. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2336. plane_bytes_per_line *= 4;
  2337. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2338. plane_blocks_per_line /= 4;
  2339. } else {
  2340. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2341. }
  2342. wm_intermediate_val = latency * pixel_rate;
  2343. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2344. plane_blocks_per_line;
  2345. return ret;
  2346. }
  2347. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2348. const struct intel_crtc *intel_crtc)
  2349. {
  2350. struct drm_device *dev = intel_crtc->base.dev;
  2351. struct drm_i915_private *dev_priv = dev->dev_private;
  2352. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2353. enum pipe pipe = intel_crtc->pipe;
  2354. if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
  2355. sizeof(new_ddb->plane[pipe])))
  2356. return true;
  2357. if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
  2358. sizeof(new_ddb->cursor[pipe])))
  2359. return true;
  2360. return false;
  2361. }
  2362. static void skl_compute_wm_global_parameters(struct drm_device *dev,
  2363. struct intel_wm_config *config)
  2364. {
  2365. struct drm_crtc *crtc;
  2366. struct drm_plane *plane;
  2367. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2368. config->num_pipes_active += to_intel_crtc(crtc)->active;
  2369. /* FIXME: I don't think we need those two global parameters on SKL */
  2370. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2371. struct intel_plane *intel_plane = to_intel_plane(plane);
  2372. config->sprites_enabled |= intel_plane->wm.enabled;
  2373. config->sprites_scaled |= intel_plane->wm.scaled;
  2374. }
  2375. }
  2376. static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
  2377. struct skl_pipe_wm_parameters *p)
  2378. {
  2379. struct drm_device *dev = crtc->dev;
  2380. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2381. enum pipe pipe = intel_crtc->pipe;
  2382. struct drm_plane *plane;
  2383. struct drm_framebuffer *fb;
  2384. int i = 1; /* Index for sprite planes start */
  2385. p->active = intel_crtc->active;
  2386. if (p->active) {
  2387. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  2388. p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
  2389. fb = crtc->primary->state->fb;
  2390. if (fb) {
  2391. p->plane[0].enabled = true;
  2392. p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
  2393. p->plane[0].tiling = fb->modifier[0];
  2394. } else {
  2395. p->plane[0].enabled = false;
  2396. p->plane[0].bytes_per_pixel = 0;
  2397. p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
  2398. }
  2399. p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
  2400. p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
  2401. p->plane[0].rotation = crtc->primary->state->rotation;
  2402. fb = crtc->cursor->state->fb;
  2403. if (fb) {
  2404. p->cursor.enabled = true;
  2405. p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
  2406. p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
  2407. p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
  2408. } else {
  2409. p->cursor.enabled = false;
  2410. p->cursor.bytes_per_pixel = 0;
  2411. p->cursor.horiz_pixels = 64;
  2412. p->cursor.vert_pixels = 64;
  2413. }
  2414. }
  2415. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2416. struct intel_plane *intel_plane = to_intel_plane(plane);
  2417. if (intel_plane->pipe == pipe &&
  2418. plane->type == DRM_PLANE_TYPE_OVERLAY)
  2419. p->plane[i++] = intel_plane->wm;
  2420. }
  2421. }
  2422. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2423. struct skl_pipe_wm_parameters *p,
  2424. struct intel_plane_wm_parameters *p_params,
  2425. uint16_t ddb_allocation,
  2426. int level,
  2427. uint16_t *out_blocks, /* out */
  2428. uint8_t *out_lines /* out */)
  2429. {
  2430. uint32_t latency = dev_priv->wm.skl_latency[level];
  2431. uint32_t method1, method2;
  2432. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2433. uint32_t res_blocks, res_lines;
  2434. uint32_t selected_result;
  2435. if (latency == 0 || !p->active || !p_params->enabled)
  2436. return false;
  2437. method1 = skl_wm_method1(p->pixel_rate,
  2438. p_params->bytes_per_pixel,
  2439. latency);
  2440. method2 = skl_wm_method2(p->pixel_rate,
  2441. p->pipe_htotal,
  2442. p_params->horiz_pixels,
  2443. p_params->bytes_per_pixel,
  2444. p_params->tiling,
  2445. latency);
  2446. plane_bytes_per_line = p_params->horiz_pixels *
  2447. p_params->bytes_per_pixel;
  2448. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2449. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2450. p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
  2451. uint32_t min_scanlines = 4;
  2452. uint32_t y_tile_minimum;
  2453. if (intel_rotation_90_or_270(p_params->rotation)) {
  2454. switch (p_params->bytes_per_pixel) {
  2455. case 1:
  2456. min_scanlines = 16;
  2457. break;
  2458. case 2:
  2459. min_scanlines = 8;
  2460. break;
  2461. case 8:
  2462. WARN(1, "Unsupported pixel depth for rotation");
  2463. }
  2464. }
  2465. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2466. selected_result = max(method2, y_tile_minimum);
  2467. } else {
  2468. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2469. selected_result = min(method1, method2);
  2470. else
  2471. selected_result = method1;
  2472. }
  2473. res_blocks = selected_result + 1;
  2474. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2475. if (level >= 1 && level <= 7) {
  2476. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2477. p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
  2478. res_lines += 4;
  2479. else
  2480. res_blocks++;
  2481. }
  2482. if (res_blocks >= ddb_allocation || res_lines > 31)
  2483. return false;
  2484. *out_blocks = res_blocks;
  2485. *out_lines = res_lines;
  2486. return true;
  2487. }
  2488. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2489. struct skl_ddb_allocation *ddb,
  2490. struct skl_pipe_wm_parameters *p,
  2491. enum pipe pipe,
  2492. int level,
  2493. int num_planes,
  2494. struct skl_wm_level *result)
  2495. {
  2496. uint16_t ddb_blocks;
  2497. int i;
  2498. for (i = 0; i < num_planes; i++) {
  2499. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2500. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2501. p, &p->plane[i],
  2502. ddb_blocks,
  2503. level,
  2504. &result->plane_res_b[i],
  2505. &result->plane_res_l[i]);
  2506. }
  2507. ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
  2508. result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
  2509. ddb_blocks, level,
  2510. &result->cursor_res_b,
  2511. &result->cursor_res_l);
  2512. }
  2513. static uint32_t
  2514. skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
  2515. {
  2516. if (!to_intel_crtc(crtc)->active)
  2517. return 0;
  2518. return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
  2519. }
  2520. static void skl_compute_transition_wm(struct drm_crtc *crtc,
  2521. struct skl_pipe_wm_parameters *params,
  2522. struct skl_wm_level *trans_wm /* out */)
  2523. {
  2524. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2525. int i;
  2526. if (!params->active)
  2527. return;
  2528. /* Until we know more, just disable transition WMs */
  2529. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2530. trans_wm->plane_en[i] = false;
  2531. trans_wm->cursor_en = false;
  2532. }
  2533. static void skl_compute_pipe_wm(struct drm_crtc *crtc,
  2534. struct skl_ddb_allocation *ddb,
  2535. struct skl_pipe_wm_parameters *params,
  2536. struct skl_pipe_wm *pipe_wm)
  2537. {
  2538. struct drm_device *dev = crtc->dev;
  2539. const struct drm_i915_private *dev_priv = dev->dev_private;
  2540. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2541. int level, max_level = ilk_wm_max_level(dev);
  2542. for (level = 0; level <= max_level; level++) {
  2543. skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
  2544. level, intel_num_planes(intel_crtc),
  2545. &pipe_wm->wm[level]);
  2546. }
  2547. pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
  2548. skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
  2549. }
  2550. static void skl_compute_wm_results(struct drm_device *dev,
  2551. struct skl_pipe_wm_parameters *p,
  2552. struct skl_pipe_wm *p_wm,
  2553. struct skl_wm_values *r,
  2554. struct intel_crtc *intel_crtc)
  2555. {
  2556. int level, max_level = ilk_wm_max_level(dev);
  2557. enum pipe pipe = intel_crtc->pipe;
  2558. uint32_t temp;
  2559. int i;
  2560. for (level = 0; level <= max_level; level++) {
  2561. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2562. temp = 0;
  2563. temp |= p_wm->wm[level].plane_res_l[i] <<
  2564. PLANE_WM_LINES_SHIFT;
  2565. temp |= p_wm->wm[level].plane_res_b[i];
  2566. if (p_wm->wm[level].plane_en[i])
  2567. temp |= PLANE_WM_EN;
  2568. r->plane[pipe][i][level] = temp;
  2569. }
  2570. temp = 0;
  2571. temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
  2572. temp |= p_wm->wm[level].cursor_res_b;
  2573. if (p_wm->wm[level].cursor_en)
  2574. temp |= PLANE_WM_EN;
  2575. r->cursor[pipe][level] = temp;
  2576. }
  2577. /* transition WMs */
  2578. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2579. temp = 0;
  2580. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2581. temp |= p_wm->trans_wm.plane_res_b[i];
  2582. if (p_wm->trans_wm.plane_en[i])
  2583. temp |= PLANE_WM_EN;
  2584. r->plane_trans[pipe][i] = temp;
  2585. }
  2586. temp = 0;
  2587. temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
  2588. temp |= p_wm->trans_wm.cursor_res_b;
  2589. if (p_wm->trans_wm.cursor_en)
  2590. temp |= PLANE_WM_EN;
  2591. r->cursor_trans[pipe] = temp;
  2592. r->wm_linetime[pipe] = p_wm->linetime;
  2593. }
  2594. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
  2595. const struct skl_ddb_entry *entry)
  2596. {
  2597. if (entry->end)
  2598. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2599. else
  2600. I915_WRITE(reg, 0);
  2601. }
  2602. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2603. const struct skl_wm_values *new)
  2604. {
  2605. struct drm_device *dev = dev_priv->dev;
  2606. struct intel_crtc *crtc;
  2607. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  2608. int i, level, max_level = ilk_wm_max_level(dev);
  2609. enum pipe pipe = crtc->pipe;
  2610. if (!new->dirty[pipe])
  2611. continue;
  2612. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2613. for (level = 0; level <= max_level; level++) {
  2614. for (i = 0; i < intel_num_planes(crtc); i++)
  2615. I915_WRITE(PLANE_WM(pipe, i, level),
  2616. new->plane[pipe][i][level]);
  2617. I915_WRITE(CUR_WM(pipe, level),
  2618. new->cursor[pipe][level]);
  2619. }
  2620. for (i = 0; i < intel_num_planes(crtc); i++)
  2621. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2622. new->plane_trans[pipe][i]);
  2623. I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
  2624. for (i = 0; i < intel_num_planes(crtc); i++)
  2625. skl_ddb_entry_write(dev_priv,
  2626. PLANE_BUF_CFG(pipe, i),
  2627. &new->ddb.plane[pipe][i]);
  2628. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2629. &new->ddb.cursor[pipe]);
  2630. }
  2631. }
  2632. /*
  2633. * When setting up a new DDB allocation arrangement, we need to correctly
  2634. * sequence the times at which the new allocations for the pipes are taken into
  2635. * account or we'll have pipes fetching from space previously allocated to
  2636. * another pipe.
  2637. *
  2638. * Roughly the sequence looks like:
  2639. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2640. * overlapping with a previous light-up pipe (another way to put it is:
  2641. * pipes with their new allocation strickly included into their old ones).
  2642. * 2. re-allocate the other pipes that get their allocation reduced
  2643. * 3. allocate the pipes having their allocation increased
  2644. *
  2645. * Steps 1. and 2. are here to take care of the following case:
  2646. * - Initially DDB looks like this:
  2647. * | B | C |
  2648. * - enable pipe A.
  2649. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2650. * allocation
  2651. * | A | B | C |
  2652. *
  2653. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2654. */
  2655. static void
  2656. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2657. {
  2658. int plane;
  2659. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2660. for_each_plane(dev_priv, pipe, plane) {
  2661. I915_WRITE(PLANE_SURF(pipe, plane),
  2662. I915_READ(PLANE_SURF(pipe, plane)));
  2663. }
  2664. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2665. }
  2666. static bool
  2667. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2668. const struct skl_ddb_allocation *new,
  2669. enum pipe pipe)
  2670. {
  2671. uint16_t old_size, new_size;
  2672. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2673. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2674. return old_size != new_size &&
  2675. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2676. new->pipe[pipe].end <= old->pipe[pipe].end;
  2677. }
  2678. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2679. struct skl_wm_values *new_values)
  2680. {
  2681. struct drm_device *dev = dev_priv->dev;
  2682. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2683. bool reallocated[I915_MAX_PIPES] = {};
  2684. struct intel_crtc *crtc;
  2685. enum pipe pipe;
  2686. new_ddb = &new_values->ddb;
  2687. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2688. /*
  2689. * First pass: flush the pipes with the new allocation contained into
  2690. * the old space.
  2691. *
  2692. * We'll wait for the vblank on those pipes to ensure we can safely
  2693. * re-allocate the freed space without this pipe fetching from it.
  2694. */
  2695. for_each_intel_crtc(dev, crtc) {
  2696. if (!crtc->active)
  2697. continue;
  2698. pipe = crtc->pipe;
  2699. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2700. continue;
  2701. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2702. intel_wait_for_vblank(dev, pipe);
  2703. reallocated[pipe] = true;
  2704. }
  2705. /*
  2706. * Second pass: flush the pipes that are having their allocation
  2707. * reduced, but overlapping with a previous allocation.
  2708. *
  2709. * Here as well we need to wait for the vblank to make sure the freed
  2710. * space is not used anymore.
  2711. */
  2712. for_each_intel_crtc(dev, crtc) {
  2713. if (!crtc->active)
  2714. continue;
  2715. pipe = crtc->pipe;
  2716. if (reallocated[pipe])
  2717. continue;
  2718. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2719. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2720. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2721. intel_wait_for_vblank(dev, pipe);
  2722. reallocated[pipe] = true;
  2723. }
  2724. }
  2725. /*
  2726. * Third pass: flush the pipes that got more space allocated.
  2727. *
  2728. * We don't need to actively wait for the update here, next vblank
  2729. * will just get more DDB space with the correct WM values.
  2730. */
  2731. for_each_intel_crtc(dev, crtc) {
  2732. if (!crtc->active)
  2733. continue;
  2734. pipe = crtc->pipe;
  2735. /*
  2736. * At this point, only the pipes more space than before are
  2737. * left to re-allocate.
  2738. */
  2739. if (reallocated[pipe])
  2740. continue;
  2741. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2742. }
  2743. }
  2744. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2745. struct skl_pipe_wm_parameters *params,
  2746. struct intel_wm_config *config,
  2747. struct skl_ddb_allocation *ddb, /* out */
  2748. struct skl_pipe_wm *pipe_wm /* out */)
  2749. {
  2750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2751. skl_compute_wm_pipe_parameters(crtc, params);
  2752. skl_allocate_pipe_ddb(crtc, config, params, ddb);
  2753. skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
  2754. if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
  2755. return false;
  2756. intel_crtc->wm.skl_active = *pipe_wm;
  2757. return true;
  2758. }
  2759. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2760. struct drm_crtc *crtc,
  2761. struct intel_wm_config *config,
  2762. struct skl_wm_values *r)
  2763. {
  2764. struct intel_crtc *intel_crtc;
  2765. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2766. /*
  2767. * If the WM update hasn't changed the allocation for this_crtc (the
  2768. * crtc we are currently computing the new WM values for), other
  2769. * enabled crtcs will keep the same allocation and we don't need to
  2770. * recompute anything for them.
  2771. */
  2772. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2773. return;
  2774. /*
  2775. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2776. * other active pipes need new DDB allocation and WM values.
  2777. */
  2778. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  2779. base.head) {
  2780. struct skl_pipe_wm_parameters params = {};
  2781. struct skl_pipe_wm pipe_wm = {};
  2782. bool wm_changed;
  2783. if (this_crtc->pipe == intel_crtc->pipe)
  2784. continue;
  2785. if (!intel_crtc->active)
  2786. continue;
  2787. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2788. &params, config,
  2789. &r->ddb, &pipe_wm);
  2790. /*
  2791. * If we end up re-computing the other pipe WM values, it's
  2792. * because it was really needed, so we expect the WM values to
  2793. * be different.
  2794. */
  2795. WARN_ON(!wm_changed);
  2796. skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
  2797. r->dirty[intel_crtc->pipe] = true;
  2798. }
  2799. }
  2800. static void skl_update_wm(struct drm_crtc *crtc)
  2801. {
  2802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2803. struct drm_device *dev = crtc->dev;
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. struct skl_pipe_wm_parameters params = {};
  2806. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  2807. struct skl_pipe_wm pipe_wm = {};
  2808. struct intel_wm_config config = {};
  2809. memset(results, 0, sizeof(*results));
  2810. skl_compute_wm_global_parameters(dev, &config);
  2811. if (!skl_update_pipe_wm(crtc, &params, &config,
  2812. &results->ddb, &pipe_wm))
  2813. return;
  2814. skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
  2815. results->dirty[intel_crtc->pipe] = true;
  2816. skl_update_other_pipe_wm(dev, crtc, &config, results);
  2817. skl_write_wm_values(dev_priv, results);
  2818. skl_flush_wm_values(dev_priv, results);
  2819. /* store the new configuration */
  2820. dev_priv->wm.skl_hw = *results;
  2821. }
  2822. static void
  2823. skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
  2824. uint32_t sprite_width, uint32_t sprite_height,
  2825. int pixel_size, bool enabled, bool scaled)
  2826. {
  2827. struct intel_plane *intel_plane = to_intel_plane(plane);
  2828. struct drm_framebuffer *fb = plane->state->fb;
  2829. intel_plane->wm.enabled = enabled;
  2830. intel_plane->wm.scaled = scaled;
  2831. intel_plane->wm.horiz_pixels = sprite_width;
  2832. intel_plane->wm.vert_pixels = sprite_height;
  2833. intel_plane->wm.bytes_per_pixel = pixel_size;
  2834. intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
  2835. /*
  2836. * Framebuffer can be NULL on plane disable, but it does not
  2837. * matter for watermarks if we assume no tiling in that case.
  2838. */
  2839. if (fb)
  2840. intel_plane->wm.tiling = fb->modifier[0];
  2841. intel_plane->wm.rotation = plane->state->rotation;
  2842. skl_update_wm(crtc);
  2843. }
  2844. static void ilk_update_wm(struct drm_crtc *crtc)
  2845. {
  2846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2847. struct drm_device *dev = crtc->dev;
  2848. struct drm_i915_private *dev_priv = dev->dev_private;
  2849. struct ilk_wm_maximums max;
  2850. struct ilk_pipe_wm_parameters params = {};
  2851. struct ilk_wm_values results = {};
  2852. enum intel_ddb_partitioning partitioning;
  2853. struct intel_pipe_wm pipe_wm = {};
  2854. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2855. struct intel_wm_config config = {};
  2856. ilk_compute_wm_parameters(crtc, &params);
  2857. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2858. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2859. return;
  2860. intel_crtc->wm.active = pipe_wm;
  2861. ilk_compute_wm_config(dev, &config);
  2862. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2863. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2864. /* 5/6 split only in single pipe config on IVB+ */
  2865. if (INTEL_INFO(dev)->gen >= 7 &&
  2866. config.num_pipes_active == 1 && config.sprites_enabled) {
  2867. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2868. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2869. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2870. } else {
  2871. best_lp_wm = &lp_wm_1_2;
  2872. }
  2873. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2874. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2875. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2876. ilk_write_wm_values(dev_priv, &results);
  2877. }
  2878. static void
  2879. ilk_update_sprite_wm(struct drm_plane *plane,
  2880. struct drm_crtc *crtc,
  2881. uint32_t sprite_width, uint32_t sprite_height,
  2882. int pixel_size, bool enabled, bool scaled)
  2883. {
  2884. struct drm_device *dev = plane->dev;
  2885. struct intel_plane *intel_plane = to_intel_plane(plane);
  2886. intel_plane->wm.enabled = enabled;
  2887. intel_plane->wm.scaled = scaled;
  2888. intel_plane->wm.horiz_pixels = sprite_width;
  2889. intel_plane->wm.vert_pixels = sprite_width;
  2890. intel_plane->wm.bytes_per_pixel = pixel_size;
  2891. /*
  2892. * IVB workaround: must disable low power watermarks for at least
  2893. * one frame before enabling scaling. LP watermarks can be re-enabled
  2894. * when scaling is disabled.
  2895. *
  2896. * WaCxSRDisabledForSpriteScaling:ivb
  2897. */
  2898. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2899. intel_wait_for_vblank(dev, intel_plane->pipe);
  2900. ilk_update_wm(crtc);
  2901. }
  2902. static void skl_pipe_wm_active_state(uint32_t val,
  2903. struct skl_pipe_wm *active,
  2904. bool is_transwm,
  2905. bool is_cursor,
  2906. int i,
  2907. int level)
  2908. {
  2909. bool is_enabled = (val & PLANE_WM_EN) != 0;
  2910. if (!is_transwm) {
  2911. if (!is_cursor) {
  2912. active->wm[level].plane_en[i] = is_enabled;
  2913. active->wm[level].plane_res_b[i] =
  2914. val & PLANE_WM_BLOCKS_MASK;
  2915. active->wm[level].plane_res_l[i] =
  2916. (val >> PLANE_WM_LINES_SHIFT) &
  2917. PLANE_WM_LINES_MASK;
  2918. } else {
  2919. active->wm[level].cursor_en = is_enabled;
  2920. active->wm[level].cursor_res_b =
  2921. val & PLANE_WM_BLOCKS_MASK;
  2922. active->wm[level].cursor_res_l =
  2923. (val >> PLANE_WM_LINES_SHIFT) &
  2924. PLANE_WM_LINES_MASK;
  2925. }
  2926. } else {
  2927. if (!is_cursor) {
  2928. active->trans_wm.plane_en[i] = is_enabled;
  2929. active->trans_wm.plane_res_b[i] =
  2930. val & PLANE_WM_BLOCKS_MASK;
  2931. active->trans_wm.plane_res_l[i] =
  2932. (val >> PLANE_WM_LINES_SHIFT) &
  2933. PLANE_WM_LINES_MASK;
  2934. } else {
  2935. active->trans_wm.cursor_en = is_enabled;
  2936. active->trans_wm.cursor_res_b =
  2937. val & PLANE_WM_BLOCKS_MASK;
  2938. active->trans_wm.cursor_res_l =
  2939. (val >> PLANE_WM_LINES_SHIFT) &
  2940. PLANE_WM_LINES_MASK;
  2941. }
  2942. }
  2943. }
  2944. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2945. {
  2946. struct drm_device *dev = crtc->dev;
  2947. struct drm_i915_private *dev_priv = dev->dev_private;
  2948. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  2949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2950. struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
  2951. enum pipe pipe = intel_crtc->pipe;
  2952. int level, i, max_level;
  2953. uint32_t temp;
  2954. max_level = ilk_wm_max_level(dev);
  2955. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2956. for (level = 0; level <= max_level; level++) {
  2957. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2958. hw->plane[pipe][i][level] =
  2959. I915_READ(PLANE_WM(pipe, i, level));
  2960. hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
  2961. }
  2962. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2963. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  2964. hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
  2965. if (!intel_crtc->active)
  2966. return;
  2967. hw->dirty[pipe] = true;
  2968. active->linetime = hw->wm_linetime[pipe];
  2969. for (level = 0; level <= max_level; level++) {
  2970. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2971. temp = hw->plane[pipe][i][level];
  2972. skl_pipe_wm_active_state(temp, active, false,
  2973. false, i, level);
  2974. }
  2975. temp = hw->cursor[pipe][level];
  2976. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  2977. }
  2978. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2979. temp = hw->plane_trans[pipe][i];
  2980. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  2981. }
  2982. temp = hw->cursor_trans[pipe];
  2983. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  2984. }
  2985. void skl_wm_get_hw_state(struct drm_device *dev)
  2986. {
  2987. struct drm_i915_private *dev_priv = dev->dev_private;
  2988. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  2989. struct drm_crtc *crtc;
  2990. skl_ddb_get_hw_state(dev_priv, ddb);
  2991. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2992. skl_pipe_wm_get_hw_state(crtc);
  2993. }
  2994. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2995. {
  2996. struct drm_device *dev = crtc->dev;
  2997. struct drm_i915_private *dev_priv = dev->dev_private;
  2998. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2999. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3000. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  3001. enum pipe pipe = intel_crtc->pipe;
  3002. static const unsigned int wm0_pipe_reg[] = {
  3003. [PIPE_A] = WM0_PIPEA_ILK,
  3004. [PIPE_B] = WM0_PIPEB_ILK,
  3005. [PIPE_C] = WM0_PIPEC_IVB,
  3006. };
  3007. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3008. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3009. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3010. active->pipe_enabled = intel_crtc->active;
  3011. if (active->pipe_enabled) {
  3012. u32 tmp = hw->wm_pipe[pipe];
  3013. /*
  3014. * For active pipes LP0 watermark is marked as
  3015. * enabled, and LP1+ watermaks as disabled since
  3016. * we can't really reverse compute them in case
  3017. * multiple pipes are active.
  3018. */
  3019. active->wm[0].enable = true;
  3020. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3021. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3022. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3023. active->linetime = hw->wm_linetime[pipe];
  3024. } else {
  3025. int level, max_level = ilk_wm_max_level(dev);
  3026. /*
  3027. * For inactive pipes, all watermark levels
  3028. * should be marked as enabled but zeroed,
  3029. * which is what we'd compute them to.
  3030. */
  3031. for (level = 0; level <= max_level; level++)
  3032. active->wm[level].enable = true;
  3033. }
  3034. }
  3035. void ilk_wm_get_hw_state(struct drm_device *dev)
  3036. {
  3037. struct drm_i915_private *dev_priv = dev->dev_private;
  3038. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3039. struct drm_crtc *crtc;
  3040. for_each_crtc(dev, crtc)
  3041. ilk_pipe_wm_get_hw_state(crtc);
  3042. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3043. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3044. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3045. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3046. if (INTEL_INFO(dev)->gen >= 7) {
  3047. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3048. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3049. }
  3050. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3051. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3052. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3053. else if (IS_IVYBRIDGE(dev))
  3054. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3055. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3056. hw->enable_fbc_wm =
  3057. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3058. }
  3059. /**
  3060. * intel_update_watermarks - update FIFO watermark values based on current modes
  3061. *
  3062. * Calculate watermark values for the various WM regs based on current mode
  3063. * and plane configuration.
  3064. *
  3065. * There are several cases to deal with here:
  3066. * - normal (i.e. non-self-refresh)
  3067. * - self-refresh (SR) mode
  3068. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3069. * - lines are small relative to FIFO size (buffer can hold more than 2
  3070. * lines), so need to account for TLB latency
  3071. *
  3072. * The normal calculation is:
  3073. * watermark = dotclock * bytes per pixel * latency
  3074. * where latency is platform & configuration dependent (we assume pessimal
  3075. * values here).
  3076. *
  3077. * The SR calculation is:
  3078. * watermark = (trunc(latency/line time)+1) * surface width *
  3079. * bytes per pixel
  3080. * where
  3081. * line time = htotal / dotclock
  3082. * surface width = hdisplay for normal plane and 64 for cursor
  3083. * and latency is assumed to be high, as above.
  3084. *
  3085. * The final value programmed to the register should always be rounded up,
  3086. * and include an extra 2 entries to account for clock crossings.
  3087. *
  3088. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3089. * to set the non-SR watermarks to 8.
  3090. */
  3091. void intel_update_watermarks(struct drm_crtc *crtc)
  3092. {
  3093. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3094. if (dev_priv->display.update_wm)
  3095. dev_priv->display.update_wm(crtc);
  3096. }
  3097. void intel_update_sprite_watermarks(struct drm_plane *plane,
  3098. struct drm_crtc *crtc,
  3099. uint32_t sprite_width,
  3100. uint32_t sprite_height,
  3101. int pixel_size,
  3102. bool enabled, bool scaled)
  3103. {
  3104. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  3105. if (dev_priv->display.update_sprite_wm)
  3106. dev_priv->display.update_sprite_wm(plane, crtc,
  3107. sprite_width, sprite_height,
  3108. pixel_size, enabled, scaled);
  3109. }
  3110. /**
  3111. * Lock protecting IPS related data structures
  3112. */
  3113. DEFINE_SPINLOCK(mchdev_lock);
  3114. /* Global for IPS driver to get at the current i915 device. Protected by
  3115. * mchdev_lock. */
  3116. static struct drm_i915_private *i915_mch_dev;
  3117. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3118. {
  3119. struct drm_i915_private *dev_priv = dev->dev_private;
  3120. u16 rgvswctl;
  3121. assert_spin_locked(&mchdev_lock);
  3122. rgvswctl = I915_READ16(MEMSWCTL);
  3123. if (rgvswctl & MEMCTL_CMD_STS) {
  3124. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3125. return false; /* still busy with another command */
  3126. }
  3127. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3128. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3129. I915_WRITE16(MEMSWCTL, rgvswctl);
  3130. POSTING_READ16(MEMSWCTL);
  3131. rgvswctl |= MEMCTL_CMD_STS;
  3132. I915_WRITE16(MEMSWCTL, rgvswctl);
  3133. return true;
  3134. }
  3135. static void ironlake_enable_drps(struct drm_device *dev)
  3136. {
  3137. struct drm_i915_private *dev_priv = dev->dev_private;
  3138. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3139. u8 fmax, fmin, fstart, vstart;
  3140. spin_lock_irq(&mchdev_lock);
  3141. /* Enable temp reporting */
  3142. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3143. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3144. /* 100ms RC evaluation intervals */
  3145. I915_WRITE(RCUPEI, 100000);
  3146. I915_WRITE(RCDNEI, 100000);
  3147. /* Set max/min thresholds to 90ms and 80ms respectively */
  3148. I915_WRITE(RCBMAXAVG, 90000);
  3149. I915_WRITE(RCBMINAVG, 80000);
  3150. I915_WRITE(MEMIHYST, 1);
  3151. /* Set up min, max, and cur for interrupt handling */
  3152. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3153. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3154. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3155. MEMMODE_FSTART_SHIFT;
  3156. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  3157. PXVFREQ_PX_SHIFT;
  3158. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3159. dev_priv->ips.fstart = fstart;
  3160. dev_priv->ips.max_delay = fstart;
  3161. dev_priv->ips.min_delay = fmin;
  3162. dev_priv->ips.cur_delay = fstart;
  3163. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3164. fmax, fmin, fstart);
  3165. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3166. /*
  3167. * Interrupts will be enabled in ironlake_irq_postinstall
  3168. */
  3169. I915_WRITE(VIDSTART, vstart);
  3170. POSTING_READ(VIDSTART);
  3171. rgvmodectl |= MEMMODE_SWMODE_EN;
  3172. I915_WRITE(MEMMODECTL, rgvmodectl);
  3173. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3174. DRM_ERROR("stuck trying to change perf mode\n");
  3175. mdelay(1);
  3176. ironlake_set_drps(dev, fstart);
  3177. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  3178. I915_READ(0x112e0);
  3179. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3180. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  3181. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3182. spin_unlock_irq(&mchdev_lock);
  3183. }
  3184. static void ironlake_disable_drps(struct drm_device *dev)
  3185. {
  3186. struct drm_i915_private *dev_priv = dev->dev_private;
  3187. u16 rgvswctl;
  3188. spin_lock_irq(&mchdev_lock);
  3189. rgvswctl = I915_READ16(MEMSWCTL);
  3190. /* Ack interrupts, disable EFC interrupt */
  3191. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3192. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3193. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3194. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3195. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3196. /* Go back to the starting frequency */
  3197. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3198. mdelay(1);
  3199. rgvswctl |= MEMCTL_CMD_STS;
  3200. I915_WRITE(MEMSWCTL, rgvswctl);
  3201. mdelay(1);
  3202. spin_unlock_irq(&mchdev_lock);
  3203. }
  3204. /* There's a funny hw issue where the hw returns all 0 when reading from
  3205. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3206. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3207. * all limits and the gpu stuck at whatever frequency it is at atm).
  3208. */
  3209. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3210. {
  3211. u32 limits;
  3212. /* Only set the down limit when we've reached the lowest level to avoid
  3213. * getting more interrupts, otherwise leave this clear. This prevents a
  3214. * race in the hw when coming out of rc6: There's a tiny window where
  3215. * the hw runs at the minimal clock before selecting the desired
  3216. * frequency, if the down threshold expires in that window we will not
  3217. * receive a down interrupt. */
  3218. if (IS_GEN9(dev_priv->dev)) {
  3219. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3220. if (val <= dev_priv->rps.min_freq_softlimit)
  3221. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3222. } else {
  3223. limits = dev_priv->rps.max_freq_softlimit << 24;
  3224. if (val <= dev_priv->rps.min_freq_softlimit)
  3225. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3226. }
  3227. return limits;
  3228. }
  3229. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3230. {
  3231. int new_power;
  3232. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3233. u32 ei_up = 0, ei_down = 0;
  3234. new_power = dev_priv->rps.power;
  3235. switch (dev_priv->rps.power) {
  3236. case LOW_POWER:
  3237. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3238. new_power = BETWEEN;
  3239. break;
  3240. case BETWEEN:
  3241. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3242. new_power = LOW_POWER;
  3243. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3244. new_power = HIGH_POWER;
  3245. break;
  3246. case HIGH_POWER:
  3247. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3248. new_power = BETWEEN;
  3249. break;
  3250. }
  3251. /* Max/min bins are special */
  3252. if (val <= dev_priv->rps.min_freq_softlimit)
  3253. new_power = LOW_POWER;
  3254. if (val >= dev_priv->rps.max_freq_softlimit)
  3255. new_power = HIGH_POWER;
  3256. if (new_power == dev_priv->rps.power)
  3257. return;
  3258. /* Note the units here are not exactly 1us, but 1280ns. */
  3259. switch (new_power) {
  3260. case LOW_POWER:
  3261. /* Upclock if more than 95% busy over 16ms */
  3262. ei_up = 16000;
  3263. threshold_up = 95;
  3264. /* Downclock if less than 85% busy over 32ms */
  3265. ei_down = 32000;
  3266. threshold_down = 85;
  3267. break;
  3268. case BETWEEN:
  3269. /* Upclock if more than 90% busy over 13ms */
  3270. ei_up = 13000;
  3271. threshold_up = 90;
  3272. /* Downclock if less than 75% busy over 32ms */
  3273. ei_down = 32000;
  3274. threshold_down = 75;
  3275. break;
  3276. case HIGH_POWER:
  3277. /* Upclock if more than 85% busy over 10ms */
  3278. ei_up = 10000;
  3279. threshold_up = 85;
  3280. /* Downclock if less than 60% busy over 32ms */
  3281. ei_down = 32000;
  3282. threshold_down = 60;
  3283. break;
  3284. }
  3285. I915_WRITE(GEN6_RP_UP_EI,
  3286. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3287. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3288. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3289. I915_WRITE(GEN6_RP_DOWN_EI,
  3290. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3291. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3292. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3293. I915_WRITE(GEN6_RP_CONTROL,
  3294. GEN6_RP_MEDIA_TURBO |
  3295. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3296. GEN6_RP_MEDIA_IS_GFX |
  3297. GEN6_RP_ENABLE |
  3298. GEN6_RP_UP_BUSY_AVG |
  3299. GEN6_RP_DOWN_IDLE_AVG);
  3300. dev_priv->rps.power = new_power;
  3301. dev_priv->rps.up_threshold = threshold_up;
  3302. dev_priv->rps.down_threshold = threshold_down;
  3303. dev_priv->rps.last_adj = 0;
  3304. }
  3305. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3306. {
  3307. u32 mask = 0;
  3308. if (val > dev_priv->rps.min_freq_softlimit)
  3309. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3310. if (val < dev_priv->rps.max_freq_softlimit)
  3311. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3312. mask &= dev_priv->pm_rps_events;
  3313. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3314. }
  3315. /* gen6_set_rps is called to update the frequency request, but should also be
  3316. * called when the range (min_delay and max_delay) is modified so that we can
  3317. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3318. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3319. {
  3320. struct drm_i915_private *dev_priv = dev->dev_private;
  3321. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3322. WARN_ON(val > dev_priv->rps.max_freq);
  3323. WARN_ON(val < dev_priv->rps.min_freq);
  3324. /* min/max delay may still have been modified so be sure to
  3325. * write the limits value.
  3326. */
  3327. if (val != dev_priv->rps.cur_freq) {
  3328. gen6_set_rps_thresholds(dev_priv, val);
  3329. if (IS_GEN9(dev))
  3330. I915_WRITE(GEN6_RPNSWREQ,
  3331. GEN9_FREQUENCY(val));
  3332. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3333. I915_WRITE(GEN6_RPNSWREQ,
  3334. HSW_FREQUENCY(val));
  3335. else
  3336. I915_WRITE(GEN6_RPNSWREQ,
  3337. GEN6_FREQUENCY(val) |
  3338. GEN6_OFFSET(0) |
  3339. GEN6_AGGRESSIVE_TURBO);
  3340. }
  3341. /* Make sure we continue to get interrupts
  3342. * until we hit the minimum or maximum frequencies.
  3343. */
  3344. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3345. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3346. POSTING_READ(GEN6_RPNSWREQ);
  3347. dev_priv->rps.cur_freq = val;
  3348. trace_intel_gpu_freq_change(val * 50);
  3349. }
  3350. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3351. {
  3352. struct drm_i915_private *dev_priv = dev->dev_private;
  3353. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3354. WARN_ON(val > dev_priv->rps.max_freq);
  3355. WARN_ON(val < dev_priv->rps.min_freq);
  3356. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3357. "Odd GPU freq value\n"))
  3358. val &= ~1;
  3359. if (val != dev_priv->rps.cur_freq) {
  3360. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3361. if (!IS_CHERRYVIEW(dev_priv))
  3362. gen6_set_rps_thresholds(dev_priv, val);
  3363. }
  3364. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3365. dev_priv->rps.cur_freq = val;
  3366. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3367. }
  3368. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  3369. *
  3370. * * If Gfx is Idle, then
  3371. * 1. Mask Turbo interrupts
  3372. * 2. Bring up Gfx clock
  3373. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  3374. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  3375. * 5. Unmask Turbo interrupts
  3376. */
  3377. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3378. {
  3379. struct drm_device *dev = dev_priv->dev;
  3380. u32 val = dev_priv->rps.idle_freq;
  3381. /* CHV and latest VLV don't need to force the gfx clock */
  3382. if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
  3383. valleyview_set_rps(dev_priv->dev, val);
  3384. return;
  3385. }
  3386. /*
  3387. * When we are idle. Drop to min voltage state.
  3388. */
  3389. if (dev_priv->rps.cur_freq <= val)
  3390. return;
  3391. /* Mask turbo interrupt so that they will not come in between */
  3392. I915_WRITE(GEN6_PMINTRMSK,
  3393. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  3394. vlv_force_gfx_clock(dev_priv, true);
  3395. dev_priv->rps.cur_freq = val;
  3396. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3397. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  3398. & GENFREQSTATUS) == 0, 100))
  3399. DRM_ERROR("timed out waiting for Punit\n");
  3400. gen6_set_rps_thresholds(dev_priv, val);
  3401. vlv_force_gfx_clock(dev_priv, false);
  3402. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3403. }
  3404. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3405. {
  3406. mutex_lock(&dev_priv->rps.hw_lock);
  3407. if (dev_priv->rps.enabled) {
  3408. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3409. gen6_rps_reset_ei(dev_priv);
  3410. I915_WRITE(GEN6_PMINTRMSK,
  3411. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3412. }
  3413. mutex_unlock(&dev_priv->rps.hw_lock);
  3414. }
  3415. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3416. {
  3417. struct drm_device *dev = dev_priv->dev;
  3418. mutex_lock(&dev_priv->rps.hw_lock);
  3419. if (dev_priv->rps.enabled) {
  3420. if (IS_VALLEYVIEW(dev))
  3421. vlv_set_rps_idle(dev_priv);
  3422. else
  3423. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3424. dev_priv->rps.last_adj = 0;
  3425. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3426. }
  3427. while (!list_empty(&dev_priv->rps.clients))
  3428. list_del_init(dev_priv->rps.clients.next);
  3429. mutex_unlock(&dev_priv->rps.hw_lock);
  3430. }
  3431. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3432. struct drm_i915_file_private *file_priv)
  3433. {
  3434. u32 val;
  3435. mutex_lock(&dev_priv->rps.hw_lock);
  3436. val = dev_priv->rps.max_freq_softlimit;
  3437. if (dev_priv->rps.enabled &&
  3438. dev_priv->mm.busy &&
  3439. dev_priv->rps.cur_freq < val &&
  3440. (file_priv == NULL || list_empty(&file_priv->rps_boost))) {
  3441. intel_set_rps(dev_priv->dev, val);
  3442. dev_priv->rps.last_adj = 0;
  3443. if (file_priv != NULL) {
  3444. list_add(&file_priv->rps_boost, &dev_priv->rps.clients);
  3445. file_priv->rps_boosts++;
  3446. } else
  3447. dev_priv->rps.boosts++;
  3448. }
  3449. mutex_unlock(&dev_priv->rps.hw_lock);
  3450. }
  3451. void intel_set_rps(struct drm_device *dev, u8 val)
  3452. {
  3453. if (IS_VALLEYVIEW(dev))
  3454. valleyview_set_rps(dev, val);
  3455. else
  3456. gen6_set_rps(dev, val);
  3457. }
  3458. static void gen9_disable_rps(struct drm_device *dev)
  3459. {
  3460. struct drm_i915_private *dev_priv = dev->dev_private;
  3461. I915_WRITE(GEN6_RC_CONTROL, 0);
  3462. I915_WRITE(GEN9_PG_ENABLE, 0);
  3463. }
  3464. static void gen6_disable_rps(struct drm_device *dev)
  3465. {
  3466. struct drm_i915_private *dev_priv = dev->dev_private;
  3467. I915_WRITE(GEN6_RC_CONTROL, 0);
  3468. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3469. }
  3470. static void cherryview_disable_rps(struct drm_device *dev)
  3471. {
  3472. struct drm_i915_private *dev_priv = dev->dev_private;
  3473. I915_WRITE(GEN6_RC_CONTROL, 0);
  3474. }
  3475. static void valleyview_disable_rps(struct drm_device *dev)
  3476. {
  3477. struct drm_i915_private *dev_priv = dev->dev_private;
  3478. /* we're doing forcewake before Disabling RC6,
  3479. * This what the BIOS expects when going into suspend */
  3480. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3481. I915_WRITE(GEN6_RC_CONTROL, 0);
  3482. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3483. }
  3484. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3485. {
  3486. if (IS_VALLEYVIEW(dev)) {
  3487. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3488. mode = GEN6_RC_CTL_RC6_ENABLE;
  3489. else
  3490. mode = 0;
  3491. }
  3492. if (HAS_RC6p(dev))
  3493. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3494. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3495. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3496. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3497. else
  3498. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3499. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3500. }
  3501. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3502. {
  3503. /* No RC6 before Ironlake */
  3504. if (INTEL_INFO(dev)->gen < 5)
  3505. return 0;
  3506. /* RC6 is only on Ironlake mobile not on desktop */
  3507. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3508. return 0;
  3509. /* Respect the kernel parameter if it is set */
  3510. if (enable_rc6 >= 0) {
  3511. int mask;
  3512. if (HAS_RC6p(dev))
  3513. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3514. INTEL_RC6pp_ENABLE;
  3515. else
  3516. mask = INTEL_RC6_ENABLE;
  3517. if ((enable_rc6 & mask) != enable_rc6)
  3518. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3519. enable_rc6 & mask, enable_rc6, mask);
  3520. return enable_rc6 & mask;
  3521. }
  3522. /* Disable RC6 on Ironlake */
  3523. if (INTEL_INFO(dev)->gen == 5)
  3524. return 0;
  3525. if (IS_IVYBRIDGE(dev))
  3526. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3527. return INTEL_RC6_ENABLE;
  3528. }
  3529. int intel_enable_rc6(const struct drm_device *dev)
  3530. {
  3531. return i915.enable_rc6;
  3532. }
  3533. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3534. {
  3535. struct drm_i915_private *dev_priv = dev->dev_private;
  3536. uint32_t rp_state_cap;
  3537. u32 ddcc_status = 0;
  3538. int ret;
  3539. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3540. /* All of these values are in units of 50MHz */
  3541. dev_priv->rps.cur_freq = 0;
  3542. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3543. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3544. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3545. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3546. if (IS_SKYLAKE(dev)) {
  3547. /* Store the frequency values in 16.66 MHZ units, which is
  3548. the natural hardware unit for SKL */
  3549. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3550. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3551. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3552. }
  3553. /* hw_max = RP0 until we check for overclocking */
  3554. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3555. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3556. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  3557. ret = sandybridge_pcode_read(dev_priv,
  3558. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3559. &ddcc_status);
  3560. if (0 == ret)
  3561. dev_priv->rps.efficient_freq =
  3562. clamp_t(u8,
  3563. ((ddcc_status >> 8) & 0xff),
  3564. dev_priv->rps.min_freq,
  3565. dev_priv->rps.max_freq);
  3566. }
  3567. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3568. /* Preserve min/max settings in case of re-init */
  3569. if (dev_priv->rps.max_freq_softlimit == 0)
  3570. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3571. if (dev_priv->rps.min_freq_softlimit == 0) {
  3572. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3573. dev_priv->rps.min_freq_softlimit =
  3574. /* max(RPe, 450 MHz) */
  3575. max(dev_priv->rps.efficient_freq, (u8) 9);
  3576. else
  3577. dev_priv->rps.min_freq_softlimit =
  3578. dev_priv->rps.min_freq;
  3579. }
  3580. }
  3581. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3582. static void gen9_enable_rps(struct drm_device *dev)
  3583. {
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3586. gen6_init_rps_frequencies(dev);
  3587. /* Program defaults and thresholds for RPS*/
  3588. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3589. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3590. /* 1 second timeout*/
  3591. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3592. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3593. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3594. /* Leaning on the below call to gen6_set_rps to program/setup the
  3595. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3596. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3597. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3598. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3599. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3600. }
  3601. static void gen9_enable_rc6(struct drm_device *dev)
  3602. {
  3603. struct drm_i915_private *dev_priv = dev->dev_private;
  3604. struct intel_engine_cs *ring;
  3605. uint32_t rc6_mask = 0;
  3606. int unused;
  3607. /* 1a: Software RC state - RC0 */
  3608. I915_WRITE(GEN6_RC_STATE, 0);
  3609. /* 1b: Get forcewake during program sequence. Although the driver
  3610. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3611. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3612. /* 2a: Disable RC states. */
  3613. I915_WRITE(GEN6_RC_CONTROL, 0);
  3614. /* 2b: Program RC6 thresholds.*/
  3615. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3616. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3617. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3618. for_each_ring(ring, dev_priv, unused)
  3619. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3620. I915_WRITE(GEN6_RC_SLEEP, 0);
  3621. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  3622. /* 2c: Program Coarse Power Gating Policies. */
  3623. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3624. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  3625. /* 3a: Enable RC6 */
  3626. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3627. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3628. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3629. "on" : "off");
  3630. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3631. GEN6_RC_CTL_EI_MODE(1) |
  3632. rc6_mask);
  3633. /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
  3634. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
  3635. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3636. }
  3637. static void gen8_enable_rps(struct drm_device *dev)
  3638. {
  3639. struct drm_i915_private *dev_priv = dev->dev_private;
  3640. struct intel_engine_cs *ring;
  3641. uint32_t rc6_mask = 0;
  3642. int unused;
  3643. /* 1a: Software RC state - RC0 */
  3644. I915_WRITE(GEN6_RC_STATE, 0);
  3645. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3646. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3647. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3648. /* 2a: Disable RC states. */
  3649. I915_WRITE(GEN6_RC_CONTROL, 0);
  3650. /* Initialize rps frequencies */
  3651. gen6_init_rps_frequencies(dev);
  3652. /* 2b: Program RC6 thresholds.*/
  3653. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3654. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3655. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3656. for_each_ring(ring, dev_priv, unused)
  3657. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3658. I915_WRITE(GEN6_RC_SLEEP, 0);
  3659. if (IS_BROADWELL(dev))
  3660. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3661. else
  3662. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3663. /* 3: Enable RC6 */
  3664. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3665. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3666. intel_print_rc6_info(dev, rc6_mask);
  3667. if (IS_BROADWELL(dev))
  3668. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3669. GEN7_RC_CTL_TO_MODE |
  3670. rc6_mask);
  3671. else
  3672. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3673. GEN6_RC_CTL_EI_MODE(1) |
  3674. rc6_mask);
  3675. /* 4 Program defaults and thresholds for RPS*/
  3676. I915_WRITE(GEN6_RPNSWREQ,
  3677. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3678. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3679. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3680. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3681. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3682. /* Docs recommend 900MHz, and 300 MHz respectively */
  3683. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3684. dev_priv->rps.max_freq_softlimit << 24 |
  3685. dev_priv->rps.min_freq_softlimit << 16);
  3686. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3687. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3688. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3689. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3690. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3691. /* 5: Enable RPS */
  3692. I915_WRITE(GEN6_RP_CONTROL,
  3693. GEN6_RP_MEDIA_TURBO |
  3694. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3695. GEN6_RP_MEDIA_IS_GFX |
  3696. GEN6_RP_ENABLE |
  3697. GEN6_RP_UP_BUSY_AVG |
  3698. GEN6_RP_DOWN_IDLE_AVG);
  3699. /* 6: Ring frequency + overclocking (our driver does this later */
  3700. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3701. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3702. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3703. }
  3704. static void gen6_enable_rps(struct drm_device *dev)
  3705. {
  3706. struct drm_i915_private *dev_priv = dev->dev_private;
  3707. struct intel_engine_cs *ring;
  3708. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3709. u32 gtfifodbg;
  3710. int rc6_mode;
  3711. int i, ret;
  3712. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3713. /* Here begins a magic sequence of register writes to enable
  3714. * auto-downclocking.
  3715. *
  3716. * Perhaps there might be some value in exposing these to
  3717. * userspace...
  3718. */
  3719. I915_WRITE(GEN6_RC_STATE, 0);
  3720. /* Clear the DBG now so we don't confuse earlier errors */
  3721. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3722. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3723. I915_WRITE(GTFIFODBG, gtfifodbg);
  3724. }
  3725. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3726. /* Initialize rps frequencies */
  3727. gen6_init_rps_frequencies(dev);
  3728. /* disable the counters and set deterministic thresholds */
  3729. I915_WRITE(GEN6_RC_CONTROL, 0);
  3730. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3731. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3732. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3733. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3734. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3735. for_each_ring(ring, dev_priv, i)
  3736. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3737. I915_WRITE(GEN6_RC_SLEEP, 0);
  3738. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3739. if (IS_IVYBRIDGE(dev))
  3740. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3741. else
  3742. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3743. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3744. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3745. /* Check if we are enabling RC6 */
  3746. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3747. if (rc6_mode & INTEL_RC6_ENABLE)
  3748. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3749. /* We don't use those on Haswell */
  3750. if (!IS_HASWELL(dev)) {
  3751. if (rc6_mode & INTEL_RC6p_ENABLE)
  3752. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3753. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3754. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3755. }
  3756. intel_print_rc6_info(dev, rc6_mask);
  3757. I915_WRITE(GEN6_RC_CONTROL,
  3758. rc6_mask |
  3759. GEN6_RC_CTL_EI_MODE(1) |
  3760. GEN6_RC_CTL_HW_ENABLE);
  3761. /* Power down if completely idle for over 50ms */
  3762. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3763. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3764. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3765. if (ret)
  3766. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3767. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3768. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3769. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3770. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3771. (pcu_mbox & 0xff) * 50);
  3772. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3773. }
  3774. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3775. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3776. rc6vids = 0;
  3777. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3778. if (IS_GEN6(dev) && ret) {
  3779. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3780. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3781. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3782. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3783. rc6vids &= 0xffff00;
  3784. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3785. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3786. if (ret)
  3787. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3788. }
  3789. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3790. }
  3791. static void __gen6_update_ring_freq(struct drm_device *dev)
  3792. {
  3793. struct drm_i915_private *dev_priv = dev->dev_private;
  3794. int min_freq = 15;
  3795. unsigned int gpu_freq;
  3796. unsigned int max_ia_freq, min_ring_freq;
  3797. int scaling_factor = 180;
  3798. struct cpufreq_policy *policy;
  3799. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3800. policy = cpufreq_cpu_get(0);
  3801. if (policy) {
  3802. max_ia_freq = policy->cpuinfo.max_freq;
  3803. cpufreq_cpu_put(policy);
  3804. } else {
  3805. /*
  3806. * Default to measured freq if none found, PCU will ensure we
  3807. * don't go over
  3808. */
  3809. max_ia_freq = tsc_khz;
  3810. }
  3811. /* Convert from kHz to MHz */
  3812. max_ia_freq /= 1000;
  3813. min_ring_freq = I915_READ(DCLK) & 0xf;
  3814. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3815. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3816. /*
  3817. * For each potential GPU frequency, load a ring frequency we'd like
  3818. * to use for memory access. We do this by specifying the IA frequency
  3819. * the PCU should use as a reference to determine the ring frequency.
  3820. */
  3821. for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
  3822. gpu_freq--) {
  3823. int diff = dev_priv->rps.max_freq - gpu_freq;
  3824. unsigned int ia_freq = 0, ring_freq = 0;
  3825. if (INTEL_INFO(dev)->gen >= 8) {
  3826. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3827. ring_freq = max(min_ring_freq, gpu_freq);
  3828. } else if (IS_HASWELL(dev)) {
  3829. ring_freq = mult_frac(gpu_freq, 5, 4);
  3830. ring_freq = max(min_ring_freq, ring_freq);
  3831. /* leave ia_freq as the default, chosen by cpufreq */
  3832. } else {
  3833. /* On older processors, there is no separate ring
  3834. * clock domain, so in order to boost the bandwidth
  3835. * of the ring, we need to upclock the CPU (ia_freq).
  3836. *
  3837. * For GPU frequencies less than 750MHz,
  3838. * just use the lowest ring freq.
  3839. */
  3840. if (gpu_freq < min_freq)
  3841. ia_freq = 800;
  3842. else
  3843. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3844. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3845. }
  3846. sandybridge_pcode_write(dev_priv,
  3847. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3848. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3849. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3850. gpu_freq);
  3851. }
  3852. }
  3853. void gen6_update_ring_freq(struct drm_device *dev)
  3854. {
  3855. struct drm_i915_private *dev_priv = dev->dev_private;
  3856. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3857. return;
  3858. mutex_lock(&dev_priv->rps.hw_lock);
  3859. __gen6_update_ring_freq(dev);
  3860. mutex_unlock(&dev_priv->rps.hw_lock);
  3861. }
  3862. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3863. {
  3864. struct drm_device *dev = dev_priv->dev;
  3865. u32 val, rp0;
  3866. if (dev->pdev->revision >= 0x20) {
  3867. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3868. switch (INTEL_INFO(dev)->eu_total) {
  3869. case 8:
  3870. /* (2 * 4) config */
  3871. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  3872. break;
  3873. case 12:
  3874. /* (2 * 6) config */
  3875. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  3876. break;
  3877. case 16:
  3878. /* (2 * 8) config */
  3879. default:
  3880. /* Setting (2 * 8) Min RP0 for any other combination */
  3881. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  3882. break;
  3883. }
  3884. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  3885. } else {
  3886. /* For pre-production hardware */
  3887. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3888. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3889. PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3890. }
  3891. return rp0;
  3892. }
  3893. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3894. {
  3895. u32 val, rpe;
  3896. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3897. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3898. return rpe;
  3899. }
  3900. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3901. {
  3902. struct drm_device *dev = dev_priv->dev;
  3903. u32 val, rp1;
  3904. if (dev->pdev->revision >= 0x20) {
  3905. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3906. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  3907. } else {
  3908. /* For pre-production hardware */
  3909. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3910. rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3911. PUNIT_GPU_STATUS_MAX_FREQ_MASK);
  3912. }
  3913. return rp1;
  3914. }
  3915. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3916. {
  3917. struct drm_device *dev = dev_priv->dev;
  3918. u32 val, rpn;
  3919. if (dev->pdev->revision >= 0x20) {
  3920. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  3921. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  3922. FB_GFX_FREQ_FUSE_MASK);
  3923. } else { /* For pre-production hardware */
  3924. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3925. rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
  3926. PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
  3927. }
  3928. return rpn;
  3929. }
  3930. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3931. {
  3932. u32 val, rp1;
  3933. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3934. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3935. return rp1;
  3936. }
  3937. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3938. {
  3939. u32 val, rp0;
  3940. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3941. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3942. /* Clamp to max */
  3943. rp0 = min_t(u32, rp0, 0xea);
  3944. return rp0;
  3945. }
  3946. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3947. {
  3948. u32 val, rpe;
  3949. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3950. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3951. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3952. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3953. return rpe;
  3954. }
  3955. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3956. {
  3957. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3958. }
  3959. /* Check that the pctx buffer wasn't move under us. */
  3960. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3961. {
  3962. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3963. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3964. dev_priv->vlv_pctx->stolen->start);
  3965. }
  3966. /* Check that the pcbr address is not empty. */
  3967. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3968. {
  3969. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3970. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3971. }
  3972. static void cherryview_setup_pctx(struct drm_device *dev)
  3973. {
  3974. struct drm_i915_private *dev_priv = dev->dev_private;
  3975. unsigned long pctx_paddr, paddr;
  3976. struct i915_gtt *gtt = &dev_priv->gtt;
  3977. u32 pcbr;
  3978. int pctx_size = 32*1024;
  3979. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3980. pcbr = I915_READ(VLV_PCBR);
  3981. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3982. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3983. paddr = (dev_priv->mm.stolen_base +
  3984. (gtt->stolen_size - pctx_size));
  3985. pctx_paddr = (paddr & (~4095));
  3986. I915_WRITE(VLV_PCBR, pctx_paddr);
  3987. }
  3988. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  3989. }
  3990. static void valleyview_setup_pctx(struct drm_device *dev)
  3991. {
  3992. struct drm_i915_private *dev_priv = dev->dev_private;
  3993. struct drm_i915_gem_object *pctx;
  3994. unsigned long pctx_paddr;
  3995. u32 pcbr;
  3996. int pctx_size = 24*1024;
  3997. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3998. pcbr = I915_READ(VLV_PCBR);
  3999. if (pcbr) {
  4000. /* BIOS set it up already, grab the pre-alloc'd space */
  4001. int pcbr_offset;
  4002. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4003. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4004. pcbr_offset,
  4005. I915_GTT_OFFSET_NONE,
  4006. pctx_size);
  4007. goto out;
  4008. }
  4009. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4010. /*
  4011. * From the Gunit register HAS:
  4012. * The Gfx driver is expected to program this register and ensure
  4013. * proper allocation within Gfx stolen memory. For example, this
  4014. * register should be programmed such than the PCBR range does not
  4015. * overlap with other ranges, such as the frame buffer, protected
  4016. * memory, or any other relevant ranges.
  4017. */
  4018. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4019. if (!pctx) {
  4020. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4021. return;
  4022. }
  4023. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4024. I915_WRITE(VLV_PCBR, pctx_paddr);
  4025. out:
  4026. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4027. dev_priv->vlv_pctx = pctx;
  4028. }
  4029. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4030. {
  4031. struct drm_i915_private *dev_priv = dev->dev_private;
  4032. if (WARN_ON(!dev_priv->vlv_pctx))
  4033. return;
  4034. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4035. dev_priv->vlv_pctx = NULL;
  4036. }
  4037. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4038. {
  4039. struct drm_i915_private *dev_priv = dev->dev_private;
  4040. u32 val;
  4041. valleyview_setup_pctx(dev);
  4042. mutex_lock(&dev_priv->rps.hw_lock);
  4043. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4044. switch ((val >> 6) & 3) {
  4045. case 0:
  4046. case 1:
  4047. dev_priv->mem_freq = 800;
  4048. break;
  4049. case 2:
  4050. dev_priv->mem_freq = 1066;
  4051. break;
  4052. case 3:
  4053. dev_priv->mem_freq = 1333;
  4054. break;
  4055. }
  4056. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4057. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4058. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4059. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4060. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4061. dev_priv->rps.max_freq);
  4062. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4063. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4064. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4065. dev_priv->rps.efficient_freq);
  4066. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4067. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4068. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4069. dev_priv->rps.rp1_freq);
  4070. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4071. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4072. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4073. dev_priv->rps.min_freq);
  4074. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4075. /* Preserve min/max settings in case of re-init */
  4076. if (dev_priv->rps.max_freq_softlimit == 0)
  4077. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4078. if (dev_priv->rps.min_freq_softlimit == 0)
  4079. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4080. mutex_unlock(&dev_priv->rps.hw_lock);
  4081. }
  4082. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4083. {
  4084. struct drm_i915_private *dev_priv = dev->dev_private;
  4085. u32 val;
  4086. cherryview_setup_pctx(dev);
  4087. mutex_lock(&dev_priv->rps.hw_lock);
  4088. mutex_lock(&dev_priv->dpio_lock);
  4089. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4090. mutex_unlock(&dev_priv->dpio_lock);
  4091. switch ((val >> 2) & 0x7) {
  4092. case 0:
  4093. case 1:
  4094. dev_priv->rps.cz_freq = 200;
  4095. dev_priv->mem_freq = 1600;
  4096. break;
  4097. case 2:
  4098. dev_priv->rps.cz_freq = 267;
  4099. dev_priv->mem_freq = 1600;
  4100. break;
  4101. case 3:
  4102. dev_priv->rps.cz_freq = 333;
  4103. dev_priv->mem_freq = 2000;
  4104. break;
  4105. case 4:
  4106. dev_priv->rps.cz_freq = 320;
  4107. dev_priv->mem_freq = 1600;
  4108. break;
  4109. case 5:
  4110. dev_priv->rps.cz_freq = 400;
  4111. dev_priv->mem_freq = 1600;
  4112. break;
  4113. }
  4114. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4115. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4116. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4117. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4118. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4119. dev_priv->rps.max_freq);
  4120. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4121. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4122. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4123. dev_priv->rps.efficient_freq);
  4124. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4125. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4126. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4127. dev_priv->rps.rp1_freq);
  4128. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  4129. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4130. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4131. dev_priv->rps.min_freq);
  4132. WARN_ONCE((dev_priv->rps.max_freq |
  4133. dev_priv->rps.efficient_freq |
  4134. dev_priv->rps.rp1_freq |
  4135. dev_priv->rps.min_freq) & 1,
  4136. "Odd GPU freq values\n");
  4137. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4138. /* Preserve min/max settings in case of re-init */
  4139. if (dev_priv->rps.max_freq_softlimit == 0)
  4140. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4141. if (dev_priv->rps.min_freq_softlimit == 0)
  4142. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4143. mutex_unlock(&dev_priv->rps.hw_lock);
  4144. }
  4145. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4146. {
  4147. valleyview_cleanup_pctx(dev);
  4148. }
  4149. static void cherryview_enable_rps(struct drm_device *dev)
  4150. {
  4151. struct drm_i915_private *dev_priv = dev->dev_private;
  4152. struct intel_engine_cs *ring;
  4153. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4154. int i;
  4155. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4156. gtfifodbg = I915_READ(GTFIFODBG);
  4157. if (gtfifodbg) {
  4158. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4159. gtfifodbg);
  4160. I915_WRITE(GTFIFODBG, gtfifodbg);
  4161. }
  4162. cherryview_check_pctx(dev_priv);
  4163. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4164. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4165. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4166. /* Disable RC states. */
  4167. I915_WRITE(GEN6_RC_CONTROL, 0);
  4168. /* 2a: Program RC6 thresholds.*/
  4169. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4170. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4171. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4172. for_each_ring(ring, dev_priv, i)
  4173. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4174. I915_WRITE(GEN6_RC_SLEEP, 0);
  4175. /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
  4176. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4177. /* allows RC6 residency counter to work */
  4178. I915_WRITE(VLV_COUNTER_CONTROL,
  4179. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4180. VLV_MEDIA_RC6_COUNT_EN |
  4181. VLV_RENDER_RC6_COUNT_EN));
  4182. /* For now we assume BIOS is allocating and populating the PCBR */
  4183. pcbr = I915_READ(VLV_PCBR);
  4184. /* 3: Enable RC6 */
  4185. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4186. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4187. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4188. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4189. /* 4 Program defaults and thresholds for RPS*/
  4190. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4191. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4192. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4193. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4194. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4195. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4196. /* 5: Enable RPS */
  4197. I915_WRITE(GEN6_RP_CONTROL,
  4198. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4199. GEN6_RP_MEDIA_IS_GFX |
  4200. GEN6_RP_ENABLE |
  4201. GEN6_RP_UP_BUSY_AVG |
  4202. GEN6_RP_DOWN_IDLE_AVG);
  4203. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4204. /* RPS code assumes GPLL is used */
  4205. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4206. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4207. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4208. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4209. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4210. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4211. dev_priv->rps.cur_freq);
  4212. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4213. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4214. dev_priv->rps.efficient_freq);
  4215. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4216. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4217. }
  4218. static void valleyview_enable_rps(struct drm_device *dev)
  4219. {
  4220. struct drm_i915_private *dev_priv = dev->dev_private;
  4221. struct intel_engine_cs *ring;
  4222. u32 gtfifodbg, val, rc6_mode = 0;
  4223. int i;
  4224. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4225. valleyview_check_pctx(dev_priv);
  4226. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4227. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4228. gtfifodbg);
  4229. I915_WRITE(GTFIFODBG, gtfifodbg);
  4230. }
  4231. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4232. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4233. /* Disable RC states. */
  4234. I915_WRITE(GEN6_RC_CONTROL, 0);
  4235. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4236. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4237. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4238. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4239. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4240. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4241. I915_WRITE(GEN6_RP_CONTROL,
  4242. GEN6_RP_MEDIA_TURBO |
  4243. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4244. GEN6_RP_MEDIA_IS_GFX |
  4245. GEN6_RP_ENABLE |
  4246. GEN6_RP_UP_BUSY_AVG |
  4247. GEN6_RP_DOWN_IDLE_CONT);
  4248. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4249. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4250. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4251. for_each_ring(ring, dev_priv, i)
  4252. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4253. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4254. /* allows RC6 residency counter to work */
  4255. I915_WRITE(VLV_COUNTER_CONTROL,
  4256. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4257. VLV_RENDER_RC0_COUNT_EN |
  4258. VLV_MEDIA_RC6_COUNT_EN |
  4259. VLV_RENDER_RC6_COUNT_EN));
  4260. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4261. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4262. intel_print_rc6_info(dev, rc6_mode);
  4263. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4264. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4265. /* RPS code assumes GPLL is used */
  4266. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4267. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4268. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4269. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4270. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4271. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4272. dev_priv->rps.cur_freq);
  4273. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4274. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4275. dev_priv->rps.efficient_freq);
  4276. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4277. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4278. }
  4279. static unsigned long intel_pxfreq(u32 vidfreq)
  4280. {
  4281. unsigned long freq;
  4282. int div = (vidfreq & 0x3f0000) >> 16;
  4283. int post = (vidfreq & 0x3000) >> 12;
  4284. int pre = (vidfreq & 0x7);
  4285. if (!pre)
  4286. return 0;
  4287. freq = ((div * 133333) / ((1<<post) * pre));
  4288. return freq;
  4289. }
  4290. static const struct cparams {
  4291. u16 i;
  4292. u16 t;
  4293. u16 m;
  4294. u16 c;
  4295. } cparams[] = {
  4296. { 1, 1333, 301, 28664 },
  4297. { 1, 1066, 294, 24460 },
  4298. { 1, 800, 294, 25192 },
  4299. { 0, 1333, 276, 27605 },
  4300. { 0, 1066, 276, 27605 },
  4301. { 0, 800, 231, 23784 },
  4302. };
  4303. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4304. {
  4305. u64 total_count, diff, ret;
  4306. u32 count1, count2, count3, m = 0, c = 0;
  4307. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4308. int i;
  4309. assert_spin_locked(&mchdev_lock);
  4310. diff1 = now - dev_priv->ips.last_time1;
  4311. /* Prevent division-by-zero if we are asking too fast.
  4312. * Also, we don't get interesting results if we are polling
  4313. * faster than once in 10ms, so just return the saved value
  4314. * in such cases.
  4315. */
  4316. if (diff1 <= 10)
  4317. return dev_priv->ips.chipset_power;
  4318. count1 = I915_READ(DMIEC);
  4319. count2 = I915_READ(DDREC);
  4320. count3 = I915_READ(CSIEC);
  4321. total_count = count1 + count2 + count3;
  4322. /* FIXME: handle per-counter overflow */
  4323. if (total_count < dev_priv->ips.last_count1) {
  4324. diff = ~0UL - dev_priv->ips.last_count1;
  4325. diff += total_count;
  4326. } else {
  4327. diff = total_count - dev_priv->ips.last_count1;
  4328. }
  4329. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4330. if (cparams[i].i == dev_priv->ips.c_m &&
  4331. cparams[i].t == dev_priv->ips.r_t) {
  4332. m = cparams[i].m;
  4333. c = cparams[i].c;
  4334. break;
  4335. }
  4336. }
  4337. diff = div_u64(diff, diff1);
  4338. ret = ((m * diff) + c);
  4339. ret = div_u64(ret, 10);
  4340. dev_priv->ips.last_count1 = total_count;
  4341. dev_priv->ips.last_time1 = now;
  4342. dev_priv->ips.chipset_power = ret;
  4343. return ret;
  4344. }
  4345. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4346. {
  4347. struct drm_device *dev = dev_priv->dev;
  4348. unsigned long val;
  4349. if (INTEL_INFO(dev)->gen != 5)
  4350. return 0;
  4351. spin_lock_irq(&mchdev_lock);
  4352. val = __i915_chipset_val(dev_priv);
  4353. spin_unlock_irq(&mchdev_lock);
  4354. return val;
  4355. }
  4356. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4357. {
  4358. unsigned long m, x, b;
  4359. u32 tsfs;
  4360. tsfs = I915_READ(TSFS);
  4361. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4362. x = I915_READ8(TR1);
  4363. b = tsfs & TSFS_INTR_MASK;
  4364. return ((m * x) / 127) - b;
  4365. }
  4366. static int _pxvid_to_vd(u8 pxvid)
  4367. {
  4368. if (pxvid == 0)
  4369. return 0;
  4370. if (pxvid >= 8 && pxvid < 31)
  4371. pxvid = 31;
  4372. return (pxvid + 2) * 125;
  4373. }
  4374. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4375. {
  4376. struct drm_device *dev = dev_priv->dev;
  4377. const int vd = _pxvid_to_vd(pxvid);
  4378. const int vm = vd - 1125;
  4379. if (INTEL_INFO(dev)->is_mobile)
  4380. return vm > 0 ? vm : 0;
  4381. return vd;
  4382. }
  4383. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4384. {
  4385. u64 now, diff, diffms;
  4386. u32 count;
  4387. assert_spin_locked(&mchdev_lock);
  4388. now = ktime_get_raw_ns();
  4389. diffms = now - dev_priv->ips.last_time2;
  4390. do_div(diffms, NSEC_PER_MSEC);
  4391. /* Don't divide by 0 */
  4392. if (!diffms)
  4393. return;
  4394. count = I915_READ(GFXEC);
  4395. if (count < dev_priv->ips.last_count2) {
  4396. diff = ~0UL - dev_priv->ips.last_count2;
  4397. diff += count;
  4398. } else {
  4399. diff = count - dev_priv->ips.last_count2;
  4400. }
  4401. dev_priv->ips.last_count2 = count;
  4402. dev_priv->ips.last_time2 = now;
  4403. /* More magic constants... */
  4404. diff = diff * 1181;
  4405. diff = div_u64(diff, diffms * 10);
  4406. dev_priv->ips.gfx_power = diff;
  4407. }
  4408. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4409. {
  4410. struct drm_device *dev = dev_priv->dev;
  4411. if (INTEL_INFO(dev)->gen != 5)
  4412. return;
  4413. spin_lock_irq(&mchdev_lock);
  4414. __i915_update_gfx_val(dev_priv);
  4415. spin_unlock_irq(&mchdev_lock);
  4416. }
  4417. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4418. {
  4419. unsigned long t, corr, state1, corr2, state2;
  4420. u32 pxvid, ext_v;
  4421. assert_spin_locked(&mchdev_lock);
  4422. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4423. pxvid = (pxvid >> 24) & 0x7f;
  4424. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4425. state1 = ext_v;
  4426. t = i915_mch_val(dev_priv);
  4427. /* Revel in the empirically derived constants */
  4428. /* Correction factor in 1/100000 units */
  4429. if (t > 80)
  4430. corr = ((t * 2349) + 135940);
  4431. else if (t >= 50)
  4432. corr = ((t * 964) + 29317);
  4433. else /* < 50 */
  4434. corr = ((t * 301) + 1004);
  4435. corr = corr * ((150142 * state1) / 10000 - 78642);
  4436. corr /= 100000;
  4437. corr2 = (corr * dev_priv->ips.corr);
  4438. state2 = (corr2 * state1) / 10000;
  4439. state2 /= 100; /* convert to mW */
  4440. __i915_update_gfx_val(dev_priv);
  4441. return dev_priv->ips.gfx_power + state2;
  4442. }
  4443. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4444. {
  4445. struct drm_device *dev = dev_priv->dev;
  4446. unsigned long val;
  4447. if (INTEL_INFO(dev)->gen != 5)
  4448. return 0;
  4449. spin_lock_irq(&mchdev_lock);
  4450. val = __i915_gfx_val(dev_priv);
  4451. spin_unlock_irq(&mchdev_lock);
  4452. return val;
  4453. }
  4454. /**
  4455. * i915_read_mch_val - return value for IPS use
  4456. *
  4457. * Calculate and return a value for the IPS driver to use when deciding whether
  4458. * we have thermal and power headroom to increase CPU or GPU power budget.
  4459. */
  4460. unsigned long i915_read_mch_val(void)
  4461. {
  4462. struct drm_i915_private *dev_priv;
  4463. unsigned long chipset_val, graphics_val, ret = 0;
  4464. spin_lock_irq(&mchdev_lock);
  4465. if (!i915_mch_dev)
  4466. goto out_unlock;
  4467. dev_priv = i915_mch_dev;
  4468. chipset_val = __i915_chipset_val(dev_priv);
  4469. graphics_val = __i915_gfx_val(dev_priv);
  4470. ret = chipset_val + graphics_val;
  4471. out_unlock:
  4472. spin_unlock_irq(&mchdev_lock);
  4473. return ret;
  4474. }
  4475. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4476. /**
  4477. * i915_gpu_raise - raise GPU frequency limit
  4478. *
  4479. * Raise the limit; IPS indicates we have thermal headroom.
  4480. */
  4481. bool i915_gpu_raise(void)
  4482. {
  4483. struct drm_i915_private *dev_priv;
  4484. bool ret = true;
  4485. spin_lock_irq(&mchdev_lock);
  4486. if (!i915_mch_dev) {
  4487. ret = false;
  4488. goto out_unlock;
  4489. }
  4490. dev_priv = i915_mch_dev;
  4491. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4492. dev_priv->ips.max_delay--;
  4493. out_unlock:
  4494. spin_unlock_irq(&mchdev_lock);
  4495. return ret;
  4496. }
  4497. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4498. /**
  4499. * i915_gpu_lower - lower GPU frequency limit
  4500. *
  4501. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4502. * frequency maximum.
  4503. */
  4504. bool i915_gpu_lower(void)
  4505. {
  4506. struct drm_i915_private *dev_priv;
  4507. bool ret = true;
  4508. spin_lock_irq(&mchdev_lock);
  4509. if (!i915_mch_dev) {
  4510. ret = false;
  4511. goto out_unlock;
  4512. }
  4513. dev_priv = i915_mch_dev;
  4514. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4515. dev_priv->ips.max_delay++;
  4516. out_unlock:
  4517. spin_unlock_irq(&mchdev_lock);
  4518. return ret;
  4519. }
  4520. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4521. /**
  4522. * i915_gpu_busy - indicate GPU business to IPS
  4523. *
  4524. * Tell the IPS driver whether or not the GPU is busy.
  4525. */
  4526. bool i915_gpu_busy(void)
  4527. {
  4528. struct drm_i915_private *dev_priv;
  4529. struct intel_engine_cs *ring;
  4530. bool ret = false;
  4531. int i;
  4532. spin_lock_irq(&mchdev_lock);
  4533. if (!i915_mch_dev)
  4534. goto out_unlock;
  4535. dev_priv = i915_mch_dev;
  4536. for_each_ring(ring, dev_priv, i)
  4537. ret |= !list_empty(&ring->request_list);
  4538. out_unlock:
  4539. spin_unlock_irq(&mchdev_lock);
  4540. return ret;
  4541. }
  4542. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4543. /**
  4544. * i915_gpu_turbo_disable - disable graphics turbo
  4545. *
  4546. * Disable graphics turbo by resetting the max frequency and setting the
  4547. * current frequency to the default.
  4548. */
  4549. bool i915_gpu_turbo_disable(void)
  4550. {
  4551. struct drm_i915_private *dev_priv;
  4552. bool ret = true;
  4553. spin_lock_irq(&mchdev_lock);
  4554. if (!i915_mch_dev) {
  4555. ret = false;
  4556. goto out_unlock;
  4557. }
  4558. dev_priv = i915_mch_dev;
  4559. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4560. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4561. ret = false;
  4562. out_unlock:
  4563. spin_unlock_irq(&mchdev_lock);
  4564. return ret;
  4565. }
  4566. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4567. /**
  4568. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4569. * IPS got loaded first.
  4570. *
  4571. * This awkward dance is so that neither module has to depend on the
  4572. * other in order for IPS to do the appropriate communication of
  4573. * GPU turbo limits to i915.
  4574. */
  4575. static void
  4576. ips_ping_for_i915_load(void)
  4577. {
  4578. void (*link)(void);
  4579. link = symbol_get(ips_link_to_i915_driver);
  4580. if (link) {
  4581. link();
  4582. symbol_put(ips_link_to_i915_driver);
  4583. }
  4584. }
  4585. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4586. {
  4587. /* We only register the i915 ips part with intel-ips once everything is
  4588. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4589. spin_lock_irq(&mchdev_lock);
  4590. i915_mch_dev = dev_priv;
  4591. spin_unlock_irq(&mchdev_lock);
  4592. ips_ping_for_i915_load();
  4593. }
  4594. void intel_gpu_ips_teardown(void)
  4595. {
  4596. spin_lock_irq(&mchdev_lock);
  4597. i915_mch_dev = NULL;
  4598. spin_unlock_irq(&mchdev_lock);
  4599. }
  4600. static void intel_init_emon(struct drm_device *dev)
  4601. {
  4602. struct drm_i915_private *dev_priv = dev->dev_private;
  4603. u32 lcfuse;
  4604. u8 pxw[16];
  4605. int i;
  4606. /* Disable to program */
  4607. I915_WRITE(ECR, 0);
  4608. POSTING_READ(ECR);
  4609. /* Program energy weights for various events */
  4610. I915_WRITE(SDEW, 0x15040d00);
  4611. I915_WRITE(CSIEW0, 0x007f0000);
  4612. I915_WRITE(CSIEW1, 0x1e220004);
  4613. I915_WRITE(CSIEW2, 0x04000004);
  4614. for (i = 0; i < 5; i++)
  4615. I915_WRITE(PEW + (i * 4), 0);
  4616. for (i = 0; i < 3; i++)
  4617. I915_WRITE(DEW + (i * 4), 0);
  4618. /* Program P-state weights to account for frequency power adjustment */
  4619. for (i = 0; i < 16; i++) {
  4620. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4621. unsigned long freq = intel_pxfreq(pxvidfreq);
  4622. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4623. PXVFREQ_PX_SHIFT;
  4624. unsigned long val;
  4625. val = vid * vid;
  4626. val *= (freq / 1000);
  4627. val *= 255;
  4628. val /= (127*127*900);
  4629. if (val > 0xff)
  4630. DRM_ERROR("bad pxval: %ld\n", val);
  4631. pxw[i] = val;
  4632. }
  4633. /* Render standby states get 0 weight */
  4634. pxw[14] = 0;
  4635. pxw[15] = 0;
  4636. for (i = 0; i < 4; i++) {
  4637. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4638. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4639. I915_WRITE(PXW + (i * 4), val);
  4640. }
  4641. /* Adjust magic regs to magic values (more experimental results) */
  4642. I915_WRITE(OGW0, 0);
  4643. I915_WRITE(OGW1, 0);
  4644. I915_WRITE(EG0, 0x00007f00);
  4645. I915_WRITE(EG1, 0x0000000e);
  4646. I915_WRITE(EG2, 0x000e0000);
  4647. I915_WRITE(EG3, 0x68000300);
  4648. I915_WRITE(EG4, 0x42000000);
  4649. I915_WRITE(EG5, 0x00140031);
  4650. I915_WRITE(EG6, 0);
  4651. I915_WRITE(EG7, 0);
  4652. for (i = 0; i < 8; i++)
  4653. I915_WRITE(PXWL + (i * 4), 0);
  4654. /* Enable PMON + select events */
  4655. I915_WRITE(ECR, 0x80000019);
  4656. lcfuse = I915_READ(LCFUSE02);
  4657. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4658. }
  4659. void intel_init_gt_powersave(struct drm_device *dev)
  4660. {
  4661. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4662. if (IS_CHERRYVIEW(dev))
  4663. cherryview_init_gt_powersave(dev);
  4664. else if (IS_VALLEYVIEW(dev))
  4665. valleyview_init_gt_powersave(dev);
  4666. }
  4667. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4668. {
  4669. if (IS_CHERRYVIEW(dev))
  4670. return;
  4671. else if (IS_VALLEYVIEW(dev))
  4672. valleyview_cleanup_gt_powersave(dev);
  4673. }
  4674. static void gen6_suspend_rps(struct drm_device *dev)
  4675. {
  4676. struct drm_i915_private *dev_priv = dev->dev_private;
  4677. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4678. gen6_disable_rps_interrupts(dev);
  4679. }
  4680. /**
  4681. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4682. * @dev: drm device
  4683. *
  4684. * We don't want to disable RC6 or other features here, we just want
  4685. * to make sure any work we've queued has finished and won't bother
  4686. * us while we're suspended.
  4687. */
  4688. void intel_suspend_gt_powersave(struct drm_device *dev)
  4689. {
  4690. struct drm_i915_private *dev_priv = dev->dev_private;
  4691. if (INTEL_INFO(dev)->gen < 6)
  4692. return;
  4693. gen6_suspend_rps(dev);
  4694. /* Force GPU to min freq during suspend */
  4695. gen6_rps_idle(dev_priv);
  4696. }
  4697. void intel_disable_gt_powersave(struct drm_device *dev)
  4698. {
  4699. struct drm_i915_private *dev_priv = dev->dev_private;
  4700. if (IS_IRONLAKE_M(dev)) {
  4701. ironlake_disable_drps(dev);
  4702. } else if (INTEL_INFO(dev)->gen >= 6) {
  4703. intel_suspend_gt_powersave(dev);
  4704. mutex_lock(&dev_priv->rps.hw_lock);
  4705. if (INTEL_INFO(dev)->gen >= 9)
  4706. gen9_disable_rps(dev);
  4707. else if (IS_CHERRYVIEW(dev))
  4708. cherryview_disable_rps(dev);
  4709. else if (IS_VALLEYVIEW(dev))
  4710. valleyview_disable_rps(dev);
  4711. else
  4712. gen6_disable_rps(dev);
  4713. dev_priv->rps.enabled = false;
  4714. mutex_unlock(&dev_priv->rps.hw_lock);
  4715. }
  4716. }
  4717. static void intel_gen6_powersave_work(struct work_struct *work)
  4718. {
  4719. struct drm_i915_private *dev_priv =
  4720. container_of(work, struct drm_i915_private,
  4721. rps.delayed_resume_work.work);
  4722. struct drm_device *dev = dev_priv->dev;
  4723. mutex_lock(&dev_priv->rps.hw_lock);
  4724. gen6_reset_rps_interrupts(dev);
  4725. if (IS_CHERRYVIEW(dev)) {
  4726. cherryview_enable_rps(dev);
  4727. } else if (IS_VALLEYVIEW(dev)) {
  4728. valleyview_enable_rps(dev);
  4729. } else if (INTEL_INFO(dev)->gen >= 9) {
  4730. gen9_enable_rc6(dev);
  4731. gen9_enable_rps(dev);
  4732. __gen6_update_ring_freq(dev);
  4733. } else if (IS_BROADWELL(dev)) {
  4734. gen8_enable_rps(dev);
  4735. __gen6_update_ring_freq(dev);
  4736. } else {
  4737. gen6_enable_rps(dev);
  4738. __gen6_update_ring_freq(dev);
  4739. }
  4740. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  4741. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  4742. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  4743. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  4744. dev_priv->rps.enabled = true;
  4745. gen6_enable_rps_interrupts(dev);
  4746. mutex_unlock(&dev_priv->rps.hw_lock);
  4747. intel_runtime_pm_put(dev_priv);
  4748. }
  4749. void intel_enable_gt_powersave(struct drm_device *dev)
  4750. {
  4751. struct drm_i915_private *dev_priv = dev->dev_private;
  4752. /* Powersaving is controlled by the host when inside a VM */
  4753. if (intel_vgpu_active(dev))
  4754. return;
  4755. if (IS_IRONLAKE_M(dev)) {
  4756. mutex_lock(&dev->struct_mutex);
  4757. ironlake_enable_drps(dev);
  4758. intel_init_emon(dev);
  4759. mutex_unlock(&dev->struct_mutex);
  4760. } else if (INTEL_INFO(dev)->gen >= 6) {
  4761. /*
  4762. * PCU communication is slow and this doesn't need to be
  4763. * done at any specific time, so do this out of our fast path
  4764. * to make resume and init faster.
  4765. *
  4766. * We depend on the HW RC6 power context save/restore
  4767. * mechanism when entering D3 through runtime PM suspend. So
  4768. * disable RPM until RPS/RC6 is properly setup. We can only
  4769. * get here via the driver load/system resume/runtime resume
  4770. * paths, so the _noresume version is enough (and in case of
  4771. * runtime resume it's necessary).
  4772. */
  4773. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4774. round_jiffies_up_relative(HZ)))
  4775. intel_runtime_pm_get_noresume(dev_priv);
  4776. }
  4777. }
  4778. void intel_reset_gt_powersave(struct drm_device *dev)
  4779. {
  4780. struct drm_i915_private *dev_priv = dev->dev_private;
  4781. if (INTEL_INFO(dev)->gen < 6)
  4782. return;
  4783. gen6_suspend_rps(dev);
  4784. dev_priv->rps.enabled = false;
  4785. }
  4786. static void ibx_init_clock_gating(struct drm_device *dev)
  4787. {
  4788. struct drm_i915_private *dev_priv = dev->dev_private;
  4789. /*
  4790. * On Ibex Peak and Cougar Point, we need to disable clock
  4791. * gating for the panel power sequencer or it will fail to
  4792. * start up when no ports are active.
  4793. */
  4794. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4795. }
  4796. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4797. {
  4798. struct drm_i915_private *dev_priv = dev->dev_private;
  4799. int pipe;
  4800. for_each_pipe(dev_priv, pipe) {
  4801. I915_WRITE(DSPCNTR(pipe),
  4802. I915_READ(DSPCNTR(pipe)) |
  4803. DISPPLANE_TRICKLE_FEED_DISABLE);
  4804. intel_flush_primary_plane(dev_priv, pipe);
  4805. }
  4806. }
  4807. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4808. {
  4809. struct drm_i915_private *dev_priv = dev->dev_private;
  4810. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4811. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4812. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4813. /*
  4814. * Don't touch WM1S_LP_EN here.
  4815. * Doing so could cause underruns.
  4816. */
  4817. }
  4818. static void ironlake_init_clock_gating(struct drm_device *dev)
  4819. {
  4820. struct drm_i915_private *dev_priv = dev->dev_private;
  4821. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4822. /*
  4823. * Required for FBC
  4824. * WaFbcDisableDpfcClockGating:ilk
  4825. */
  4826. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4827. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4828. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4829. I915_WRITE(PCH_3DCGDIS0,
  4830. MARIUNIT_CLOCK_GATE_DISABLE |
  4831. SVSMUNIT_CLOCK_GATE_DISABLE);
  4832. I915_WRITE(PCH_3DCGDIS1,
  4833. VFMUNIT_CLOCK_GATE_DISABLE);
  4834. /*
  4835. * According to the spec the following bits should be set in
  4836. * order to enable memory self-refresh
  4837. * The bit 22/21 of 0x42004
  4838. * The bit 5 of 0x42020
  4839. * The bit 15 of 0x45000
  4840. */
  4841. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4842. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4843. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4844. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4845. I915_WRITE(DISP_ARB_CTL,
  4846. (I915_READ(DISP_ARB_CTL) |
  4847. DISP_FBC_WM_DIS));
  4848. ilk_init_lp_watermarks(dev);
  4849. /*
  4850. * Based on the document from hardware guys the following bits
  4851. * should be set unconditionally in order to enable FBC.
  4852. * The bit 22 of 0x42000
  4853. * The bit 22 of 0x42004
  4854. * The bit 7,8,9 of 0x42020.
  4855. */
  4856. if (IS_IRONLAKE_M(dev)) {
  4857. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4858. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4859. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4860. ILK_FBCQ_DIS);
  4861. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4862. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4863. ILK_DPARB_GATE);
  4864. }
  4865. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4866. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4867. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4868. ILK_ELPIN_409_SELECT);
  4869. I915_WRITE(_3D_CHICKEN2,
  4870. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4871. _3D_CHICKEN2_WM_READ_PIPELINED);
  4872. /* WaDisableRenderCachePipelinedFlush:ilk */
  4873. I915_WRITE(CACHE_MODE_0,
  4874. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4875. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4876. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4877. g4x_disable_trickle_feed(dev);
  4878. ibx_init_clock_gating(dev);
  4879. }
  4880. static void cpt_init_clock_gating(struct drm_device *dev)
  4881. {
  4882. struct drm_i915_private *dev_priv = dev->dev_private;
  4883. int pipe;
  4884. uint32_t val;
  4885. /*
  4886. * On Ibex Peak and Cougar Point, we need to disable clock
  4887. * gating for the panel power sequencer or it will fail to
  4888. * start up when no ports are active.
  4889. */
  4890. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4891. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4892. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4893. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4894. DPLS_EDP_PPS_FIX_DIS);
  4895. /* The below fixes the weird display corruption, a few pixels shifted
  4896. * downward, on (only) LVDS of some HP laptops with IVY.
  4897. */
  4898. for_each_pipe(dev_priv, pipe) {
  4899. val = I915_READ(TRANS_CHICKEN2(pipe));
  4900. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4901. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4902. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4903. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4904. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4905. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4906. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4907. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4908. }
  4909. /* WADP0ClockGatingDisable */
  4910. for_each_pipe(dev_priv, pipe) {
  4911. I915_WRITE(TRANS_CHICKEN1(pipe),
  4912. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4913. }
  4914. }
  4915. static void gen6_check_mch_setup(struct drm_device *dev)
  4916. {
  4917. struct drm_i915_private *dev_priv = dev->dev_private;
  4918. uint32_t tmp;
  4919. tmp = I915_READ(MCH_SSKPD);
  4920. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4921. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4922. tmp);
  4923. }
  4924. static void gen6_init_clock_gating(struct drm_device *dev)
  4925. {
  4926. struct drm_i915_private *dev_priv = dev->dev_private;
  4927. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4928. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4929. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4930. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4931. ILK_ELPIN_409_SELECT);
  4932. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4933. I915_WRITE(_3D_CHICKEN,
  4934. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4935. /* WaDisable_RenderCache_OperationalFlush:snb */
  4936. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4937. /*
  4938. * BSpec recoomends 8x4 when MSAA is used,
  4939. * however in practice 16x4 seems fastest.
  4940. *
  4941. * Note that PS/WM thread counts depend on the WIZ hashing
  4942. * disable bit, which we don't touch here, but it's good
  4943. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4944. */
  4945. I915_WRITE(GEN6_GT_MODE,
  4946. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  4947. ilk_init_lp_watermarks(dev);
  4948. I915_WRITE(CACHE_MODE_0,
  4949. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4950. I915_WRITE(GEN6_UCGCTL1,
  4951. I915_READ(GEN6_UCGCTL1) |
  4952. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4953. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4954. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4955. * gating disable must be set. Failure to set it results in
  4956. * flickering pixels due to Z write ordering failures after
  4957. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4958. * Sanctuary and Tropics, and apparently anything else with
  4959. * alpha test or pixel discard.
  4960. *
  4961. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4962. * but we didn't debug actual testcases to find it out.
  4963. *
  4964. * WaDisableRCCUnitClockGating:snb
  4965. * WaDisableRCPBUnitClockGating:snb
  4966. */
  4967. I915_WRITE(GEN6_UCGCTL2,
  4968. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4969. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4970. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4971. I915_WRITE(_3D_CHICKEN3,
  4972. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4973. /*
  4974. * Bspec says:
  4975. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4976. * 3DSTATE_SF number of SF output attributes is more than 16."
  4977. */
  4978. I915_WRITE(_3D_CHICKEN3,
  4979. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4980. /*
  4981. * According to the spec the following bits should be
  4982. * set in order to enable memory self-refresh and fbc:
  4983. * The bit21 and bit22 of 0x42000
  4984. * The bit21 and bit22 of 0x42004
  4985. * The bit5 and bit7 of 0x42020
  4986. * The bit14 of 0x70180
  4987. * The bit14 of 0x71180
  4988. *
  4989. * WaFbcAsynchFlipDisableFbcQueue:snb
  4990. */
  4991. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4992. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4993. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4994. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4995. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4996. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4997. I915_WRITE(ILK_DSPCLK_GATE_D,
  4998. I915_READ(ILK_DSPCLK_GATE_D) |
  4999. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5000. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5001. g4x_disable_trickle_feed(dev);
  5002. cpt_init_clock_gating(dev);
  5003. gen6_check_mch_setup(dev);
  5004. }
  5005. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5006. {
  5007. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5008. /*
  5009. * WaVSThreadDispatchOverride:ivb,vlv
  5010. *
  5011. * This actually overrides the dispatch
  5012. * mode for all thread types.
  5013. */
  5014. reg &= ~GEN7_FF_SCHED_MASK;
  5015. reg |= GEN7_FF_TS_SCHED_HW;
  5016. reg |= GEN7_FF_VS_SCHED_HW;
  5017. reg |= GEN7_FF_DS_SCHED_HW;
  5018. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5019. }
  5020. static void lpt_init_clock_gating(struct drm_device *dev)
  5021. {
  5022. struct drm_i915_private *dev_priv = dev->dev_private;
  5023. /*
  5024. * TODO: this bit should only be enabled when really needed, then
  5025. * disabled when not needed anymore in order to save power.
  5026. */
  5027. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  5028. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5029. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5030. PCH_LP_PARTITION_LEVEL_DISABLE);
  5031. /* WADPOClockGatingDisable:hsw */
  5032. I915_WRITE(_TRANSA_CHICKEN1,
  5033. I915_READ(_TRANSA_CHICKEN1) |
  5034. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5035. }
  5036. static void lpt_suspend_hw(struct drm_device *dev)
  5037. {
  5038. struct drm_i915_private *dev_priv = dev->dev_private;
  5039. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5040. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5041. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5042. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5043. }
  5044. }
  5045. static void broadwell_init_clock_gating(struct drm_device *dev)
  5046. {
  5047. struct drm_i915_private *dev_priv = dev->dev_private;
  5048. enum pipe pipe;
  5049. I915_WRITE(WM3_LP_ILK, 0);
  5050. I915_WRITE(WM2_LP_ILK, 0);
  5051. I915_WRITE(WM1_LP_ILK, 0);
  5052. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5053. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5054. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5055. I915_WRITE(CHICKEN_PAR1_1,
  5056. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5057. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5058. for_each_pipe(dev_priv, pipe) {
  5059. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5060. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5061. BDW_DPRS_MASK_VBLANK_SRD);
  5062. }
  5063. /* WaVSRefCountFullforceMissDisable:bdw */
  5064. /* WaDSRefCountFullforceMissDisable:bdw */
  5065. I915_WRITE(GEN7_FF_THREAD_MODE,
  5066. I915_READ(GEN7_FF_THREAD_MODE) &
  5067. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5068. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5069. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5070. /* WaDisableSDEUnitClockGating:bdw */
  5071. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5072. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5073. lpt_init_clock_gating(dev);
  5074. }
  5075. static void haswell_init_clock_gating(struct drm_device *dev)
  5076. {
  5077. struct drm_i915_private *dev_priv = dev->dev_private;
  5078. ilk_init_lp_watermarks(dev);
  5079. /* L3 caching of data atomics doesn't work -- disable it. */
  5080. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5081. I915_WRITE(HSW_ROW_CHICKEN3,
  5082. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5083. /* This is required by WaCatErrorRejectionIssue:hsw */
  5084. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5085. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5086. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5087. /* WaVSRefCountFullforceMissDisable:hsw */
  5088. I915_WRITE(GEN7_FF_THREAD_MODE,
  5089. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5090. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5091. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5092. /* enable HiZ Raw Stall Optimization */
  5093. I915_WRITE(CACHE_MODE_0_GEN7,
  5094. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5095. /* WaDisable4x2SubspanOptimization:hsw */
  5096. I915_WRITE(CACHE_MODE_1,
  5097. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5098. /*
  5099. * BSpec recommends 8x4 when MSAA is used,
  5100. * however in practice 16x4 seems fastest.
  5101. *
  5102. * Note that PS/WM thread counts depend on the WIZ hashing
  5103. * disable bit, which we don't touch here, but it's good
  5104. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5105. */
  5106. I915_WRITE(GEN7_GT_MODE,
  5107. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5108. /* WaSampleCChickenBitEnable:hsw */
  5109. I915_WRITE(HALF_SLICE_CHICKEN3,
  5110. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5111. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5112. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5113. /* WaRsPkgCStateDisplayPMReq:hsw */
  5114. I915_WRITE(CHICKEN_PAR1_1,
  5115. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5116. lpt_init_clock_gating(dev);
  5117. }
  5118. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5119. {
  5120. struct drm_i915_private *dev_priv = dev->dev_private;
  5121. uint32_t snpcr;
  5122. ilk_init_lp_watermarks(dev);
  5123. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5124. /* WaDisableEarlyCull:ivb */
  5125. I915_WRITE(_3D_CHICKEN3,
  5126. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5127. /* WaDisableBackToBackFlipFix:ivb */
  5128. I915_WRITE(IVB_CHICKEN3,
  5129. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5130. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5131. /* WaDisablePSDDualDispatchEnable:ivb */
  5132. if (IS_IVB_GT1(dev))
  5133. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5134. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5135. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5136. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5137. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5138. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5139. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5140. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5141. I915_WRITE(GEN7_L3CNTLREG1,
  5142. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5143. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5144. GEN7_WA_L3_CHICKEN_MODE);
  5145. if (IS_IVB_GT1(dev))
  5146. I915_WRITE(GEN7_ROW_CHICKEN2,
  5147. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5148. else {
  5149. /* must write both registers */
  5150. I915_WRITE(GEN7_ROW_CHICKEN2,
  5151. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5152. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5153. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5154. }
  5155. /* WaForceL3Serialization:ivb */
  5156. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5157. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5158. /*
  5159. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5160. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5161. */
  5162. I915_WRITE(GEN6_UCGCTL2,
  5163. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5164. /* This is required by WaCatErrorRejectionIssue:ivb */
  5165. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5166. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5167. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5168. g4x_disable_trickle_feed(dev);
  5169. gen7_setup_fixed_func_scheduler(dev_priv);
  5170. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5171. /* enable HiZ Raw Stall Optimization */
  5172. I915_WRITE(CACHE_MODE_0_GEN7,
  5173. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5174. }
  5175. /* WaDisable4x2SubspanOptimization:ivb */
  5176. I915_WRITE(CACHE_MODE_1,
  5177. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5178. /*
  5179. * BSpec recommends 8x4 when MSAA is used,
  5180. * however in practice 16x4 seems fastest.
  5181. *
  5182. * Note that PS/WM thread counts depend on the WIZ hashing
  5183. * disable bit, which we don't touch here, but it's good
  5184. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5185. */
  5186. I915_WRITE(GEN7_GT_MODE,
  5187. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5188. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5189. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5190. snpcr |= GEN6_MBC_SNPCR_MED;
  5191. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5192. if (!HAS_PCH_NOP(dev))
  5193. cpt_init_clock_gating(dev);
  5194. gen6_check_mch_setup(dev);
  5195. }
  5196. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5197. {
  5198. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5199. /*
  5200. * Disable trickle feed and enable pnd deadline calculation
  5201. */
  5202. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5203. I915_WRITE(CBR1_VLV, 0);
  5204. }
  5205. static void valleyview_init_clock_gating(struct drm_device *dev)
  5206. {
  5207. struct drm_i915_private *dev_priv = dev->dev_private;
  5208. vlv_init_display_clock_gating(dev_priv);
  5209. /* WaDisableEarlyCull:vlv */
  5210. I915_WRITE(_3D_CHICKEN3,
  5211. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5212. /* WaDisableBackToBackFlipFix:vlv */
  5213. I915_WRITE(IVB_CHICKEN3,
  5214. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5215. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5216. /* WaPsdDispatchEnable:vlv */
  5217. /* WaDisablePSDDualDispatchEnable:vlv */
  5218. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5219. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5220. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5221. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5222. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5223. /* WaForceL3Serialization:vlv */
  5224. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5225. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5226. /* WaDisableDopClockGating:vlv */
  5227. I915_WRITE(GEN7_ROW_CHICKEN2,
  5228. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5229. /* This is required by WaCatErrorRejectionIssue:vlv */
  5230. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5231. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5232. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5233. gen7_setup_fixed_func_scheduler(dev_priv);
  5234. /*
  5235. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5236. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5237. */
  5238. I915_WRITE(GEN6_UCGCTL2,
  5239. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5240. /* WaDisableL3Bank2xClockGate:vlv
  5241. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5242. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5243. I915_WRITE(GEN7_UCGCTL4,
  5244. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5245. /*
  5246. * BSpec says this must be set, even though
  5247. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5248. */
  5249. I915_WRITE(CACHE_MODE_1,
  5250. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5251. /*
  5252. * BSpec recommends 8x4 when MSAA is used,
  5253. * however in practice 16x4 seems fastest.
  5254. *
  5255. * Note that PS/WM thread counts depend on the WIZ hashing
  5256. * disable bit, which we don't touch here, but it's good
  5257. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5258. */
  5259. I915_WRITE(GEN7_GT_MODE,
  5260. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5261. /*
  5262. * WaIncreaseL3CreditsForVLVB0:vlv
  5263. * This is the hardware default actually.
  5264. */
  5265. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5266. /*
  5267. * WaDisableVLVClockGating_VBIIssue:vlv
  5268. * Disable clock gating on th GCFG unit to prevent a delay
  5269. * in the reporting of vblank events.
  5270. */
  5271. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5272. }
  5273. static void cherryview_init_clock_gating(struct drm_device *dev)
  5274. {
  5275. struct drm_i915_private *dev_priv = dev->dev_private;
  5276. vlv_init_display_clock_gating(dev_priv);
  5277. /* WaVSRefCountFullforceMissDisable:chv */
  5278. /* WaDSRefCountFullforceMissDisable:chv */
  5279. I915_WRITE(GEN7_FF_THREAD_MODE,
  5280. I915_READ(GEN7_FF_THREAD_MODE) &
  5281. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5282. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5283. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5284. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5285. /* WaDisableCSUnitClockGating:chv */
  5286. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5287. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5288. /* WaDisableSDEUnitClockGating:chv */
  5289. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5290. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5291. }
  5292. static void g4x_init_clock_gating(struct drm_device *dev)
  5293. {
  5294. struct drm_i915_private *dev_priv = dev->dev_private;
  5295. uint32_t dspclk_gate;
  5296. I915_WRITE(RENCLK_GATE_D1, 0);
  5297. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5298. GS_UNIT_CLOCK_GATE_DISABLE |
  5299. CL_UNIT_CLOCK_GATE_DISABLE);
  5300. I915_WRITE(RAMCLK_GATE_D, 0);
  5301. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5302. OVRUNIT_CLOCK_GATE_DISABLE |
  5303. OVCUNIT_CLOCK_GATE_DISABLE;
  5304. if (IS_GM45(dev))
  5305. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5306. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5307. /* WaDisableRenderCachePipelinedFlush */
  5308. I915_WRITE(CACHE_MODE_0,
  5309. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5310. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5311. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5312. g4x_disable_trickle_feed(dev);
  5313. }
  5314. static void crestline_init_clock_gating(struct drm_device *dev)
  5315. {
  5316. struct drm_i915_private *dev_priv = dev->dev_private;
  5317. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5318. I915_WRITE(RENCLK_GATE_D2, 0);
  5319. I915_WRITE(DSPCLK_GATE_D, 0);
  5320. I915_WRITE(RAMCLK_GATE_D, 0);
  5321. I915_WRITE16(DEUC, 0);
  5322. I915_WRITE(MI_ARB_STATE,
  5323. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5324. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5325. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5326. }
  5327. static void broadwater_init_clock_gating(struct drm_device *dev)
  5328. {
  5329. struct drm_i915_private *dev_priv = dev->dev_private;
  5330. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5331. I965_RCC_CLOCK_GATE_DISABLE |
  5332. I965_RCPB_CLOCK_GATE_DISABLE |
  5333. I965_ISC_CLOCK_GATE_DISABLE |
  5334. I965_FBC_CLOCK_GATE_DISABLE);
  5335. I915_WRITE(RENCLK_GATE_D2, 0);
  5336. I915_WRITE(MI_ARB_STATE,
  5337. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5338. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5339. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5340. }
  5341. static void gen3_init_clock_gating(struct drm_device *dev)
  5342. {
  5343. struct drm_i915_private *dev_priv = dev->dev_private;
  5344. u32 dstate = I915_READ(D_STATE);
  5345. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5346. DSTATE_DOT_CLOCK_GATING;
  5347. I915_WRITE(D_STATE, dstate);
  5348. if (IS_PINEVIEW(dev))
  5349. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5350. /* IIR "flip pending" means done if this bit is set */
  5351. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5352. /* interrupts should cause a wake up from C3 */
  5353. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5354. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5355. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5356. I915_WRITE(MI_ARB_STATE,
  5357. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5358. }
  5359. static void i85x_init_clock_gating(struct drm_device *dev)
  5360. {
  5361. struct drm_i915_private *dev_priv = dev->dev_private;
  5362. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5363. /* interrupts should cause a wake up from C3 */
  5364. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5365. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5366. I915_WRITE(MEM_MODE,
  5367. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5368. }
  5369. static void i830_init_clock_gating(struct drm_device *dev)
  5370. {
  5371. struct drm_i915_private *dev_priv = dev->dev_private;
  5372. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5373. I915_WRITE(MEM_MODE,
  5374. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5375. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5376. }
  5377. void intel_init_clock_gating(struct drm_device *dev)
  5378. {
  5379. struct drm_i915_private *dev_priv = dev->dev_private;
  5380. if (dev_priv->display.init_clock_gating)
  5381. dev_priv->display.init_clock_gating(dev);
  5382. }
  5383. void intel_suspend_hw(struct drm_device *dev)
  5384. {
  5385. if (HAS_PCH_LPT(dev))
  5386. lpt_suspend_hw(dev);
  5387. }
  5388. /* Set up chip specific power management-related functions */
  5389. void intel_init_pm(struct drm_device *dev)
  5390. {
  5391. struct drm_i915_private *dev_priv = dev->dev_private;
  5392. intel_fbc_init(dev_priv);
  5393. /* For cxsr */
  5394. if (IS_PINEVIEW(dev))
  5395. i915_pineview_get_mem_freq(dev);
  5396. else if (IS_GEN5(dev))
  5397. i915_ironlake_get_mem_freq(dev);
  5398. /* For FIFO watermark updates */
  5399. if (INTEL_INFO(dev)->gen >= 9) {
  5400. skl_setup_wm_latency(dev);
  5401. dev_priv->display.init_clock_gating = skl_init_clock_gating;
  5402. dev_priv->display.update_wm = skl_update_wm;
  5403. dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
  5404. } else if (HAS_PCH_SPLIT(dev)) {
  5405. ilk_setup_wm_latency(dev);
  5406. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5407. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5408. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5409. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5410. dev_priv->display.update_wm = ilk_update_wm;
  5411. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5412. } else {
  5413. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5414. "Disable CxSR\n");
  5415. }
  5416. if (IS_GEN5(dev))
  5417. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5418. else if (IS_GEN6(dev))
  5419. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5420. else if (IS_IVYBRIDGE(dev))
  5421. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5422. else if (IS_HASWELL(dev))
  5423. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5424. else if (INTEL_INFO(dev)->gen == 8)
  5425. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5426. } else if (IS_CHERRYVIEW(dev)) {
  5427. dev_priv->display.update_wm = valleyview_update_wm;
  5428. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5429. dev_priv->display.init_clock_gating =
  5430. cherryview_init_clock_gating;
  5431. } else if (IS_VALLEYVIEW(dev)) {
  5432. dev_priv->display.update_wm = valleyview_update_wm;
  5433. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5434. dev_priv->display.init_clock_gating =
  5435. valleyview_init_clock_gating;
  5436. } else if (IS_PINEVIEW(dev)) {
  5437. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5438. dev_priv->is_ddr3,
  5439. dev_priv->fsb_freq,
  5440. dev_priv->mem_freq)) {
  5441. DRM_INFO("failed to find known CxSR latency "
  5442. "(found ddr%s fsb freq %d, mem freq %d), "
  5443. "disabling CxSR\n",
  5444. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5445. dev_priv->fsb_freq, dev_priv->mem_freq);
  5446. /* Disable CxSR and never update its watermark again */
  5447. intel_set_memory_cxsr(dev_priv, false);
  5448. dev_priv->display.update_wm = NULL;
  5449. } else
  5450. dev_priv->display.update_wm = pineview_update_wm;
  5451. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5452. } else if (IS_G4X(dev)) {
  5453. dev_priv->display.update_wm = g4x_update_wm;
  5454. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5455. } else if (IS_GEN4(dev)) {
  5456. dev_priv->display.update_wm = i965_update_wm;
  5457. if (IS_CRESTLINE(dev))
  5458. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5459. else if (IS_BROADWATER(dev))
  5460. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5461. } else if (IS_GEN3(dev)) {
  5462. dev_priv->display.update_wm = i9xx_update_wm;
  5463. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5464. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5465. } else if (IS_GEN2(dev)) {
  5466. if (INTEL_INFO(dev)->num_pipes == 1) {
  5467. dev_priv->display.update_wm = i845_update_wm;
  5468. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5469. } else {
  5470. dev_priv->display.update_wm = i9xx_update_wm;
  5471. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5472. }
  5473. if (IS_I85X(dev) || IS_I865G(dev))
  5474. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5475. else
  5476. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5477. } else {
  5478. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5479. }
  5480. }
  5481. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5482. {
  5483. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5484. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5485. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5486. return -EAGAIN;
  5487. }
  5488. I915_WRITE(GEN6_PCODE_DATA, *val);
  5489. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5490. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5491. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5492. 500)) {
  5493. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5494. return -ETIMEDOUT;
  5495. }
  5496. *val = I915_READ(GEN6_PCODE_DATA);
  5497. I915_WRITE(GEN6_PCODE_DATA, 0);
  5498. return 0;
  5499. }
  5500. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5501. {
  5502. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5503. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5504. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5505. return -EAGAIN;
  5506. }
  5507. I915_WRITE(GEN6_PCODE_DATA, val);
  5508. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5509. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5510. 500)) {
  5511. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5512. return -ETIMEDOUT;
  5513. }
  5514. I915_WRITE(GEN6_PCODE_DATA, 0);
  5515. return 0;
  5516. }
  5517. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5518. {
  5519. switch (czclk_freq) {
  5520. case 200:
  5521. return 10;
  5522. case 267:
  5523. return 12;
  5524. case 320:
  5525. case 333:
  5526. return 16;
  5527. case 400:
  5528. return 20;
  5529. default:
  5530. return -1;
  5531. }
  5532. }
  5533. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5534. {
  5535. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5536. div = vlv_gpu_freq_div(czclk_freq);
  5537. if (div < 0)
  5538. return div;
  5539. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5540. }
  5541. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5542. {
  5543. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5544. mul = vlv_gpu_freq_div(czclk_freq);
  5545. if (mul < 0)
  5546. return mul;
  5547. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5548. }
  5549. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5550. {
  5551. int div, czclk_freq = dev_priv->rps.cz_freq;
  5552. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5553. if (div < 0)
  5554. return div;
  5555. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5556. }
  5557. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5558. {
  5559. int mul, czclk_freq = dev_priv->rps.cz_freq;
  5560. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5561. if (mul < 0)
  5562. return mul;
  5563. /* CHV needs even values */
  5564. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5565. }
  5566. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5567. {
  5568. if (IS_GEN9(dev_priv->dev))
  5569. return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
  5570. else if (IS_CHERRYVIEW(dev_priv->dev))
  5571. return chv_gpu_freq(dev_priv, val);
  5572. else if (IS_VALLEYVIEW(dev_priv->dev))
  5573. return byt_gpu_freq(dev_priv, val);
  5574. else
  5575. return val * GT_FREQUENCY_MULTIPLIER;
  5576. }
  5577. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5578. {
  5579. if (IS_GEN9(dev_priv->dev))
  5580. return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
  5581. else if (IS_CHERRYVIEW(dev_priv->dev))
  5582. return chv_freq_opcode(dev_priv, val);
  5583. else if (IS_VALLEYVIEW(dev_priv->dev))
  5584. return byt_freq_opcode(dev_priv, val);
  5585. else
  5586. return val / GT_FREQUENCY_MULTIPLIER;
  5587. }
  5588. struct request_boost {
  5589. struct work_struct work;
  5590. struct drm_i915_gem_request *rq;
  5591. };
  5592. static void __intel_rps_boost_work(struct work_struct *work)
  5593. {
  5594. struct request_boost *boost = container_of(work, struct request_boost, work);
  5595. if (!i915_gem_request_completed(boost->rq, true))
  5596. gen6_rps_boost(to_i915(boost->rq->ring->dev), NULL);
  5597. i915_gem_request_unreference__unlocked(boost->rq);
  5598. kfree(boost);
  5599. }
  5600. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  5601. struct drm_i915_gem_request *rq)
  5602. {
  5603. struct request_boost *boost;
  5604. if (rq == NULL || INTEL_INFO(dev)->gen < 6)
  5605. return;
  5606. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  5607. if (boost == NULL)
  5608. return;
  5609. i915_gem_request_reference(rq);
  5610. boost->rq = rq;
  5611. INIT_WORK(&boost->work, __intel_rps_boost_work);
  5612. queue_work(to_i915(dev)->wq, &boost->work);
  5613. }
  5614. void intel_pm_setup(struct drm_device *dev)
  5615. {
  5616. struct drm_i915_private *dev_priv = dev->dev_private;
  5617. mutex_init(&dev_priv->rps.hw_lock);
  5618. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5619. intel_gen6_powersave_work);
  5620. INIT_LIST_HEAD(&dev_priv->rps.clients);
  5621. dev_priv->pm.suspended = false;
  5622. }